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Cure Rate estimation based on uncensored and censored data
Mohammed Taj Uddin
Abstract
This thesis deals with the analysis of cure model under uncensored and censored data.
First we provide related concepts and second, we develop the cure rate model. Thirdly,
we study the non-parametric maximum likelihood method to estimate the parameter of
cure model. We consider both uncensored and censored data as well as Type 1 and Type
2 censoring to estimate the parameter of the model. Finally, we develop some parametric

and non-parametric estimating equations to estimate the parameter of the cure rate model.
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Chapter 1
Survival analysis and related concepts

1.1 Introduction

Survival analysis is a loosely defined statistical term encompassing a variety of statistical
techniques for analyzing positive valued random variables. Typically the value of the
random variable is the time to failure of a physical component (say, mechanical or
electrical or biological) or the time to the death of a biological unit (say, patient, animal,
cell etc.). However it could be the time to the learning of a skill or it may not even be a
time at all. For example, it could be the number of dollars that a health insurance
company pays in a particular case.

While the origins of survival analysis might be attributed to the early work on mortality
tables centuries ago, the more modern era started about a half century ago with
applications to engineering and medical science. World War II stimulated interest in the
reliability of military equipment and this interest in reliability carried over into the past
war era for military and commercial products. Most of the statistical research for
engineering and medical applications was concentrated on parametric survival models.
Within the past few decades there has been an increase in the number of clinical trials in
medical research and this has shifted the statistical focus to non- parametric approaches.
The analysis of survival experiment is complicated by issues of censoring, where an
individual life length is known to occur only in a certain period of time and by truncation,
where individuals enter the study only if they survive a sufficient length of time or
individuals are included in the study only if the event has occurred by a given date. In

recent years, the use of counting process methodology has resulted in developing theory



to account for censoring and truncation in survival experiments. Anderson et al. (1993)

give an excellent survey of the mathematics of this theory.
1.2 Some basic quantities related to the estimation of Cure Model

The problem of analyzing time to event data arises in a number of applied fields such as
medicine, biology, public health, epidemiology, engineering, economics and demography
etc. A common feature of this data set is that they contain either censored or truncated
observations. Censored data arise when an individual’s life length is known to occur only
in a certain period of time. Possible censoring schemes are right censoring, where all that
is known is that the individual is still alive at a given time, left censoring when all that is
known is that the individual has not experienced the event of interest prior to the start of
the study or interval censoring, where the only information is that the event occurs within
some interval. Truncation schemes are left truncation, where only individuals who
survive a sufficient time are included in the sample and right truncation, where only
individuals who have experienced the event by a specified time are included in the
sample.

Let X be the time until some specified event. This event may be death, the appearance of
a tumor, the development of disease, recurrence of a disease, equipment break down,
conception, cessation of smoking, cessation of breast feeding and so forth. More
precisely, here X is a non-negative random variable from a homogeneous population.
Basically the following four quantities (functions) characterize the distribution of X,
namely, the survival function S(x), which is the probability of an individual surviving
beyond time x, the hazard rate, which is the chance an individual of age x experiences

the event in the next instant, the survival density function, which is the unconditional



probability of the event occurring at time x and the mean residual life at time x, which is
the mean time to the event of interest, given that the event has not occurred at time x. If
we know any one of these four quantities, then the other three can be uniquely
determined. In practice, these four functions along with the following quantity known as
the cumulative hazard function, are used to illustrate the different aspects of the

distribution of X .
1.3 The Survival Function

The most basic quantity used to describe time to event data is the survival function,

which is the probability of an individual surviving beyond time x. It is denoted by S(x)
and defined as S(x) = Pr(X > x).

In some contexts involving systems or lifetimes of manufactured itimes, S(x) is
considered as the reliability function. Note that the Survival function is non-negative and
non- increasing function with S(0)=1 and S(«) = )lcl_rg S(x) =0. In some special cases,
we consider S(«) >0 where some individuals never fail. For example, to estimate the
cure model (mixture model), S() > 0. On the other hand, if X is a continuous random
variable, the survival function, S(x) is the complement of the Cumulative distribution
function, that is S(x)=1- F(x), where F(x)=Pr(X <x). Also the survival function is

the integral of the probability density function, f(x), thatis

S(x)=Pr(X > x) = f f)dt

Therefore,

S'(X) = ~F'(X); where prime denotes the derivative,

and hence, f(x)=-S'(X)



In Survival analysis, sometimes discrete random variables arise due to rounding off
measurements, grouping of failure times (life times) into intervals, or when life times

refer to an integral number of units. Suppose that X can assume on values x i J =12,
with probability mass function P(x,)=Pr(X =x,),j=12,.. and x <x, <..... The

Survival function of a discrete random variable X is given by

S(x)=Pr(X >x)= Y P(x,)

x>%
Note that, in practice many types of survival curves are used but they have the same
fundamental properties. They are monotone, non-increasing functions equal to one at
origin and zero as the survival time tends to infinity. Their rate of decline varies
according to the risk of experiencing the event. Nevertheless, this quantity continues to
be a proper description of survival in the applied literature and can be very useful in

comparing two or more mortality patterns.

1.4 The Hazard Function

A very important and fundamental concept in survival analysis is the hazard function.
This function is sometimes given other names, such as ‘The forces of mortality’ in
Demography, the inverse of ‘The Mill’s ratio’ or ‘the hazard rate’ in Economics, ‘The
conditional failure rate’ in reliability, ‘The intensity function’ in Stochastic process, and
“The age specific failure rate’ in Epidemiology. The hazard rate is defined by

Px<X<x+h|X2x)
h

) = lim

im S(x)—-S(x+h)
=0 hS(x)




lim S(x+h)-S(x)

h=>0 hS(x)
S'(x)
=_ , 4.
50) (1.4.1)
Jf(x)
Thus, h(x)= , 4.
(x) S(x) (1.4.2)
The equation (1.4.1) can be written in a nice form involving S(x) only as,
d
h(x)=- —log[S(x)] (1.4.3)
dx
Now integrating (1.4.3) with respect to x and using S(0) =1, we obtain,
In[S(x)] = - [ h(x)dx
Hence, S(x)=exp [- fh(x)dx] , (1.4.4)

A very important and related quantity is the cumulative hazard function H(x), defined
by H(x)= [ h(t)dt = 1n[5(x)]

Therefore, for continuous life times,

S(x) =exp[—H(x)]=exp[- [ h(dt], (1.4.5)
Since, S(e) =0, then H(0)=c0 and thus it follows from (1.4.2)

£(x)=h(x)expl- [ h(t)dt ], (1.4.6)

The hazard function is useful in determining the appropriate failure distributions utilizing
qualitative information about the mechanism of failure and for describing the way in
which the chance of experiencing the event changes with time. Information about the

nature of the hazard rate is very helpful in selecting a model.



When X is a discrete random variable, the hazard function is given by

P(x;)

S (1.4.7)

hx,)=Pr{X =x,|X 2x )=

Where, j=12,... and S(x,) =1. Note that, P(x,) =S(x,,) - S(x,) and therefore,

S(x))
S(Xj-l)’

h(x,)=1- (1.4.8)

Also the survival function can be written as the product of conditional probabilities

S(x)=P(X >x|X 2x,)=][S(x,)/S(x,.), (1.4.9)

X;SX

Thus, the survival function can be written in terms of hazard function as
Sx)=[]a-nx)}, (1.4.10)
i=1

For discrete lifetime, the cumulative hazard function is defined as

H(x)=Y h(x;), (1.4.11)

X;jSX
Cox and Oakes (1984) prefer to define the cumulative hazard function for discrete
lifetime as

H(x)=Y In{l—h(x,)}, (1.4.12)

ijx

1.5 The Mean Residual Life Function

The next basic quantity of interest in survival analysis is the mean residual life at time x.

This quantity measures the expected lifetime of an individual given the survival until
time x. It is defined as
mrl(x)=E(X —x|X > x) (1.5.1)

For a continuous random variable,



mrl(x)=E(X - x| X > x)

_[e-vsoa
S(x)

_ [e-ncaswy
S(x)

~(t-x)S@) |+ [ S@)as
) SG)

) fS(r))dt
TS

f S(¢)dt

Thus, mri(x)= S0
x

, (1.5.2)

Note that, the mean life, u = mrI(0)is the total area under the survival curve and
h=Ex)= [ @dr

= [swar, (1.5.3)

Also the variance of X in terms of survival function is given by the following expression
Var(X) =2 f tf()dt - [ f tf(O)dt P

1.6. Different types of Censoring and Truncation

Right censoring: Failure time data often include some individuals who do not fail during
their observation period, the data on these individuals are said to be right censored. In
some situations, right censoring arises simply, because some individuals are still

surviving at the time that the study is terminated and the analysis is done. In other



instances, individuals may move away from the study area for reasons unconnected with
the failure time endpoint, so contact is lost. In yet other instances, individuals may decide
to withdraw or may be withdrawn from the study because of worsening or improving
prognosis. A right censoring mechanism is said to be independent if the failure rates that
apply to individuals on trial at each time are the same as those that would have applied
had there been no censoring.

Typel censoring: Censored data are called Typel censoring if observations occur only at
a specified fixed time. For example, in life testing when all unit are put on test at the
same time and the data are collected and analyzed at a specified point in time. For life
data it is also called time censored if the censoring time is fixed and the number of
failures in the fixed time is random. Basically Typel censoring is a special kind of right
censoring. But in a censoring scheme if the individuals enter the study at different times
and the termination point of the study is predetermined by the investigator so that the
censoring times are known when an individual is entered in to the study. In such studies,
individuals have their own specific, fixed censoring time. This kind of censoring is
termed as generalized Typel censoring (c.f. David and Moeschberger, 1978).

Type2 censoring: A second type of right censoring is called Type 2 censoring in which
the study continues until the failure of the first ‘#’ individuals, where r is some
predetermined integer (7 < n). Experiment involving Type 2 censoring are often used in
testing of equipment life. Here all items are put on test at the same time and the test is
terminated when ‘r’of the ‘n’ items have failed. Such an experiment may have time
and money because it could take long time for all items to fail. The statistical treatment of

Type 2 censored data is simple because the data consists of the 7> smallest life time in a



random sample of ‘n’ life times, so that the theory of order statistics is directly
applicable to determining the likelihood function and any inferential technique employed.
Random censoring: Sometimes, individuals will experience some other competing
events which cause them to be removed from the study. In such cases, the event of
interest is not observable. This situation has been studied in details in competing risk
theory (c.f David and Moeschberger, 1978) and is termed as random censoring. Some
events which cause the individuals to be randomly censored, with respect to the event of
interest, are accidental deaths, migration of human population, death due to some cause
other than the one of interest, patients withdrawn from a clinical trial, and so forth. If the
distribution of random censoring times contains no parameters common with survival
function, S(t), then the estimates of such parameters may be obtained in the usual
behavior for generalized Typel censoring.

Some comments on Typel censoring: Typel censoring can be considered as a special
case of random censoring if we allow the censoring time to have degenerate distributions,
each with mass at one fixed point. Though it may be desirable to make inferences
conditional on the censoring time in any given situation, the properties of the procedures
averaged over the distribution of the censoring time may be of interest when planning
studies, and in some applications. Though the individual random censorship model is
often reasonable, in many situations the censoring process is linked to the failure time
process. Suppose, for example, that the termination date for a medical trial is not fixed
before the study commences, but is chosen later, with the choice influenced by the results

of the study up to that time. In such instances it may be difficult to write down a model



that fully represents the process under study. Hopefully, the likelihood function of Typel
censoring is still applicable in many such complicated situations.

Left censoring: Individuals can also be subject to left censoring, which occurs if the
individual is observed to fail prior to some time, but actual time of failure is otherwise
unknown. In other words, a life time associated with a specific individual in a study is
considered to be left censoring if it is less than a censoring time, i.e., the event of interest
has already occurred for the individual before that person is observed in the study at time.
For such individuals, we know that they have experienced the event sometimes before
censoring time, but their exact event time is unknown. The exact life time will be known
if and only if the life time is greater than or equal to censoring time.

In the next chapter, we will discuss some methods of estimation in survival analysis.
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Chapter 2

Some methods of estimation in survival analysis

2.1 Non-parametric maximum likelihood method

The Method of maximum likelihood is the most commonly employed estimation
procedure. From the theoretical and practical point of view, it is the most general method
of estimation. This method was initially formulated by C.F. Gauss but as a general
method of estimation was first introduced by R.A. Fisher and later on developed by him
in a series of papers.

For some models, explicit solution of the estimating equations may be obtained.
However, for other models, the solutions can not be obtained explicitly. In this situation
some computational methods of finding estimators such as Newton-Raphson method,
Iterative method, Scoring method, EM method and Lagrange Multiplier method have
been employed.

Suppose that X is a random variable with probability density function f(x;8), € to be

estimated and x,,Xx,,.....x, is a random sample of size n. The joint probability density

function of the random variable comprising the sample is called the likelihood function of

the sample and is given by

L 0%,50) = £ (530)f (530)-.f (,30)
=] fe:0), @1

If there exists a value 8 such that L(x,,x,,...x,;0 ) > L(x,,X,,...x,;8) for all possible

choices of 6, then based upon the meaning of likelihood function, 8" maximizes the

equation (2.1.1) and this value 8" is considered as the maximum likelihood estimate.

11



Choosing the value of € that makes it most likely that the data would be as obtained is
certainly a reasonable approach. Therefore, if a value 8" can be found such that 6°

maximizes the likelihood function (2.1.1) for a given set of sample values x,x,,....x,,,

then 8" is called the maximum likelihood estimate for the given set of sample values.
Since the likelihood function is a function of parameter, § under the sample information

(x;,%,,....%, ), the maximum likelihood estimate will be a function of the sample values.

If the sample functional relationship between the estimate and the sample information

(x;,%,,.....x, ) holds for all possible choices of the x;, then that functional relationship can

be taken as an estimation rule and the result will be an estimator € of@, this estimator
being known as maximum likelihood estimator or the maximum likelihood filter.
In Non-parametric maximum likelihood method, we write the non-parametric likelihood

function as
LR =T TAFG,, 2.12)

where, F() is the common distribution function of X, 1<i<n and
AF(x,)=F(x,)—F(x,_) is the jump of F()at X, 1<i<n. Putting AF(x,)=p, in

(2.1.2), we can write

Ln(plapzs---apn)=]_—[pi s (2.1.3)
i=1

Now we maximize (2.1.3) subject to condition
Y p=1,p20l<i<n, (2.1.4)
i=1

The log-likelihood function becomes

12



log L, (py, pys-pn) = D log p, ,
i=l

2.1.5)

By using Lagrange multiplier method we can maximize (2.1.5). By adding a Lagrange

multiplier 1, (2.1.5) becomes

log L, (py> PysePn) = P log p, — A p, - 1),
i=1 i=1

(2.1.6)

Thus, the non-parametric maximum likelihood estimator of p,is obtained by the solution

of the following equations

OlogL :0’alogL =0,i=12,..n,
o, oA

Now, GlaogL =0 gives

i

—1———1 =0
P,
1 .
Therefore, p, =—}:,1= 1,2,...,n,

Similarly, %g—L =0 gives

=1

From (2.1.8), we can write

WK
A
Using (2.1.9) in (2.1.10) we obtain

A
A=n,

13
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2.1.8)

(2.1.9)

(2.1.10)

2.1.11)



Therefore, the non-parametric maximum likelihood estimator of p, is
pi=l,i=1,2, ...... ,n
n
For Type 1 censoring the non-parametric likelihood function can be written as follows
L,(F)=T1@F&) a-FO)™, (2.1.12)
i=1
where, 0, =1, .,

Suppose x, <x, <...<x, are order statistics and let k=max{i|X o <T }.Putting

p; =AF(x,), the non-parametric likelihood function becomes

k k
L(ppor-p) =[] P)A-2 2" (2.1.13)

By using Lagrange multiplier method we can obtain the non-parametric maximum
likelihood estimate of the parameter.

The log-likelihood function can be written as

k k
10g L, (Pys Paseess Pu) = D l0g p, +(n=k)log(1-3  p,) , (2.1.14)
i=1 i=i
k
Now, we maximize (2.1.14) subject to condition Z p; <1, (2.1.15)
i=1
k
Adding a non-negative slack variable S in (2.1.15) we get Z p,+S=1, (2.1.16)
i=]

Adding Lagrange multiplier 4 in (2.1.14) we get the following equation

k k
log L, (P1s Pyreers Pn) = 2 l0g p; +(n—k)log(S) - 2D p, +S-1), (2.1.17)
i=1

i=1

Therefore the non-parametric maximum likelihood estimator of p;is obtained by the

solution of the following simultaneous equations

14



Olog L, (p1, Py>Pi) _ 4 O108(P1;--Py) 0,2108p1P0) _ (2.1.18)

op, oA a8

Now OlogL,(p,, PyseDi)
api

=0, gives

1
——A=0, (2.1.19)

p;

OlogL,(p,, psse-p;)
oA

=0, gives

pi+S-1=0, (2.1.20)

M-

i=]

dlogL,(py, pys-Di)
oS

= (0 gives

n—k

-A=0, 2.1.21
. @.1.21)

Solving the equations (2.1.19), (2.1.20) and (2.1.21), we obtain the following estimate

of p,and § respectively,

p=ts=1-Ki<i<k
n n

2.2 Expectation-Maximization Algorithm (EM-algorithm)

The Expectation—-Maximization (EM) algorithm is most useful in much more complicated
problems and often provides a simple and intuitively appealing algorithm. It has been
used widely in various contexts to fit models with incomplete data (censored data). In
particular, interval censored data is analyzed by EM-algorithm. It can be very slow to

converge and may not converge to the Maximum Likelihood Estimator (MLE).

15



Basically, the EM-algorithm (Dempster et al. 1977) is a convenient and widely used tool
to compute Maximum Likelihood Estimates for incomplete data. Suppose that the

complete data are denoted by x and that the incomplete data are denoted by y = g(x),
where g(.) is one to one function that corresponds to some grouping or incomplete
observation of the complete data. Let the probability density function of x depends on an
unknown parameter vector € and that the log-likelihood function for € given x, the
complete data log-likelihood, is / (6). The log-likelihood from the incomplete data is
denoted by 7, (6). In many cases, /,(8) is of complicated form, whereas [ (8) is

relatively much simpler and more easily maximized. In this situation, the EM-algorithm

often provides a simple approach to finding the MLE of parameter vector, & based on y .

Let 8 be an initial estimate of 6. The algorithm proceeds through an expectation (E)

step and then a maximization (M) step:

E-step: Calculate Q(8,0) = E[I_(8)|y;6], (2.2.1)

M-step: Find 8% to maximize Q(8,6”), (2.2.2)

In the next iteration, replace 8@ with 8 and then repeat step (i) and step (ii) to
convergence. This algorithm converges to the value of 6 that maximizes the log-
likelihood function /,(@) based on the incomplete data. If /,(8) is multi-modal,
however the algorithm may converge to a local maximum or it can converge to a saddle
point. In some fairly simple problems, such as the interval censoring, the algorithm can

be shown to be globally convergent. In most applications, however, one would wish to

16



explore various initial values to be assured that the MLE has been obtained. It should be

noted that the estimation of the variance of # generally involves a separate calculation of

the observed information based on the incomplete likelihood, /,(6) and can not be

computed directly by taking second derivative of Q. Louis (1982) gives some alternative

A
approaches to estimating the variance-covariance matrix for €.

It can be seen that the algorithm is monotone in that, at each step, the incomplete log-

likelihood 7, (@) can not decrease. To show this we observe that
1,(0)=1.(0)-Ix1(8), (2.23)

where, the second term on the right hand is the log-likelihood function coming from the

(0)

conditional density of x given y. Taking an expectation conditional ony at § = 8" gives
1,(0)=Q(8,6) E[1:1(8)] y; 6“1, (2.2.4)
which follows that

1,(06M)~1,(6)= 4+B, (2.2.5)
where,

4=Q(8Y, 8©)-Q(o®,80)>0, (2.2.6)
and

B =E[ly, (8™ 61- E[1.1,(6™ 0”1, 227

17



Since 1,|,(0) is the log of the conditional density of x given y, it follows from well-

known Jenson’s Inequality that B > 0, and the monotonic follows. From the above

discussion, it is easily seen that the MLE g? coming from incomplete likelihood, 7, () is

a fixed point of the algorithm and under differentiability conditions, is a solution to the

self-consistency equation

d
do.

006.,0) 6., =0, 2.2.8)

In chapter 3, we will discuss the cure model along with some basic properties.
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Chapter 3
Cure Model

3.1 Introduction

In some clinical trials, a substantial proportion of patients who respond favorably to
treatment subsequently appear to be free of any signs or symptoms of the diseases and
may be considered as cured, while the remaining patients may eventually relapse. The
objective of these clinical trials is on estimating the proportion of patients who are cured
(cure rate or cure fraction) and the failure time distribution of proportion of patients who
are not cured (uncured patients).

The survival models incorporating a cure fraction are called cure rate models. Nowadays
these models are becoming popular in analyzing data from cancer (or other diseases)
clinical trials. The cure rate model has been widely used for modeling time to event data
for various types of cancers for which a large (significant) proportion of patients are
cured. For example, breast cancer, non-Hodgkins lymphoma, leukemia, prostate cancer,
melanoma, head and neck cancer etc. Actually a cure model is a survival model where a
fraction of population is not exposed to the hazard of interest. For example, a treatment
for a fatal disease prevents death (from that disease) in a proportion of those treated (the
cure rate or cure fraction). It may or may not delay death in the remaining individuals
(vulnerable fraction). In fact cure model is a special case of frailty model, whether or not

a patient is cured is an ‘unobserved explanatory variable’.

3.2 Mixture model:

The mixture model was introduced by Berkson and Gage (1952). In this model assume

that T be a non-negative random variable denoting the failure time. A certain proportion
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7 of population is ‘cured’(cured patients) and the remaining 1- 7 are not cured (uncured

patients). For this model, S(¢#) denote the survival function for the whole population

(cured and uncured patients) and S”(¢) denote the survival function for the uncured

patients in the population. The value of the survival function for the cured patients is 1.
Thus the mixture model that has long been used for cure rate estimation can then be
written as follows

SH)=n+(1-m)S (), 3.2.1)
Note that the survival function of the failure time distribution of cured patients is set
equal to one for all finite values of the survival time because it is assumed that cured
patients will never experience a relapse or death to the disease under investigation.

To estimate S” (¢) in this model, we must specify the failure time distribution of uncured

patients. The specification can be parametric or non parametric, which leads to
parametric and semi-parametric cure model respectively. In parametric cure models, we
assume a particular distribution for the failure time distribution of uncured patients. The
most typical distribution that have been used for this purpose are: the Exponential
distribution (Jones et al. 1981; Goldman, 1984; Ghitany et al. 1994), the Weibull
distribution (Farewell, 1982; 1986), the Lognormal distribution (Boag,1949; Gamel et al.
1990), the Gompertz distribution(Gordon, 1990a, b; Cantor and Shuster, 1992) the Log-
logistic distribution, the Gamma distribution, the Normal distribution, the Exponential
power distribution, the Inverse Gaussian distribution and the Pareto distribution. More
comprehensive distribution families such as the Extended Generalised Gamma (EGG)
distribution and the Generalised F (GF) distribution (Yamaguchi,1992; Peng er al. 1998)

have also been proposed recently to accommodate other forms of failure time
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distributions for uncured patients. The model (3.2.1) is called Standard Cure Rate Model.
It has been extensively used in the statistical literature by many authors, including Ewell
and Ibrahim (1997), Farewell (1982, 1986), Goldman (1984), Gray and Tsiatis (1989),
Greenhouse and Wolfe (1984), Halpern and Brown (1987a, 1987b), Kuk and Chen
(1992), Laska and Meisner (1992), Sposto, Sather, and Baker (1992), Stangl and
Greenhouse (1998), Taylor (1995), Yamaguchi (1992), Cantor and Shuster (1992), Peng
and Carriere (2002), Chen, Ibrahim and Sinha (1999), Peng (2003), Yakovlev (1994),
Spoto (2002), Peng, Dear and Denham (1998), Wienke et al. (2003), Li and Taylor
(2002), Brown and Ibrahim (2003), Frankel and Longmate (2002), Tsodikov (2002),
Tsodikov (2001). The model (3.2.1) is also called Mixture Cure Rate Model by several
authors. In this model, the fraction of non-cured of patients ultimately will experience

recurrence or other treatment failure according to a statistical distribution function, F(¢).
Note that in model (3.2.1),

S'®=1-F@), (3.2.2)
and F(0)=0,F(0)=1, so that S"(0)=1,8"(0)=0 and S,() =7, the plateau value.

The hazard function for this model is

h(t)=g——;()t—’;@ , (3.2.3)
_L®)
So (3.2.4)

Where, f(¢) is the density corresponding to F(¢) and f,(1)=(1-7m)f ().
Originally, when treatments for cancer comprised surgery or radiation therapy alone

administered over a short period, Mixture Cure Models has a practical interpretation
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(Boag, 1949, Berkson and Gage, 1952). Patients either were cured by treatment (i.e., the
disease was eradicated) or they were not, and the later would experience a recurrence
after some time. Nowadays with combined modality treatment that can last up to three
years in some children cancers, this interpretation does not apply, since eradication of
disease, if it occurs, can occur at any time during treatment. The time to cure can not
reliably be observed using current technology. Hence even though mixture cure models
often fit cancer data well, they usually can not be viewed literally as describing a mixture
of cured and uncured patients. The literal interpretation of the cure model is meaningful
also in some non-cancer applications ( Hauck et al. 1997). Cure models were first
proposed 50 years ago (Boag, 1949, Berkson et al. 1952 and haybittle 1959) and have
since received regular attention in the statistical literature ( Haybittle 1965, Mould et al.
1975, O’Neill 1979, Farewell 1982, Goldman 1984, Sposto 1985, Farewell 1986, Halpern
1987, Goldman 1991, Sposto ef al. 1992, Kuk ef al. 1992, Maller et al.1992, Cantor et al.
1992, Ghitany et al. 1994, Yakovlev 1994, Cantor et al. 1994, Ghitany et al. 1995. Lee et
al. 1995, Zhou et al. 1995, Ghitany ef al. 1995, Laska et al. 1992, Tsodikov et al. 1998,
Peng et al. 1998 Gieser et al. 1998, Tsodikov 1998, Hauck et al. 1997, de Angelis et al.
1999, Sy et al. 2000). However, they have not attained wide use or acceptance in the
medical research literature, perhaps in part because of their reliance on particular
parametric forms. However, parametric cure models provide a good empirical description
of outcome in paediatric cancer data (Sposto et al. 1985, Sposto et al. 1992, Geiser et al.
1998) and have been used in analysis of adult (Gamel et al. 1993, Gamel amd Jones
1993, Gamel and Vogel 1993, Gamel and McLean 1994, Gamel and Vogel 1994, Gamel

et al., 1995) and childhood cancer (Nesbit ef al. 1994). Most importantly, they provide a
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single analytic method within which the effect of treatments and prognostic factors on the
proportion cured can be assessed separately from their effect on the time to failure.
Although the mixture model appears to be attractive and is widely used, it has some
drawbacks. Chen ef al. (1999) have identified the following drawbacks of model (3.2.1).
Firstly, in the presence of covariates, it can not have a proportional hazard structure
which is a desirable property for any survival model, because many asymptotic and
computational results require a proportional hazard structure.

Secondly, when including covariates through the parameter © via a standard regression
model, (3.2.1) yields improper posterior distributions for many types of non-informative
improper priors, including the uniform prior for the regression coefficients. This is the
most crucial drawback of model (3.2.1), because Bayesian inference with the model
(3.2.1) essentially requires a proper prior.

Thirdly, the model (3.2.1) does not appear to describe the underlying biological process
generating the failure time, at least in the context of cancer relapse, where cure rate

model are frequently used.

3.3 Frailty model:
Chen et al. (1999) and Yakovlev et al. (1993) have proposed a different type of cure rate
model, which is considered as a frailty model. The model they propose overcomes the
drawbacks of mixture model. The model is quite attractive in several respects.
i) The model is derived from a natural biological motivation.
ii) It has proportional hazard structure through the cure rate parameter =, and
thus has an appealing interpretation.

1ii) It is very computationally attractive.
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iv)  The proposed model has a mathematical relationship with the standard cure
rate model. Specifically one can show that any standard cure rate model can
be written as the proposed model and vice versa.

V) The model yields proper posterior distribution under a wide class of non-
informative improper prior for the regression coefficients, including an
improper uniform prior. This is an especially solid feature of the model.

Suppose that for an individual in the population, N denotes the total number of

carcinogenic cells (often called clonogens) for that individual left active after the initial
treatment, and then assume that N has a Poisson distribution with mean 8. Also let Z,
denote the random time for the ith clonogenic cell to produce a detectable cancer mass.

That Z, can be viewed as an incubation time for the ith clonogenic cell. The variable Z,,
i=1,2, ..., are assumed to be identically independently distributed (i.i.d.) with a
common distribution function F(¢) =1- S(¢)and are independent of N. Where S(¢)is
the survival function. The time to relapse of cancer can be defined by the random variable
T=min{Z,, 0<i< N}, P(Z,=w0)=1 and N is independent of the sequence Z,,Z,,
... The survival function for 7 and hence the survival function for the population is given
by

S, ()= P(T >t) = P(no cancer by time #)

=P(IN=0)+P(Z, >t,...Z, >t,N 21)

=exp(-0)+ P(Z, >t)P(Z,)....P(Z,,))P(N 21)

= exp(-0) + S(OS®)...SE{P(N = 1)+ P(N =2) +...}

=exp(-0) + S()* iP(N =k)
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e—Gek

k!

= exp(-0) + 3. S(®)*
k=1

=exp(-0) + exp(- H)Z{S(tk)'e}
k=1

=exp(-0)(1 +Z {S(t)B}
k=1

© k
=exp(-6) Z {S(Z&}
k=0 .

= exp(-8)exp(6 S(r))

=exp(-0 + 6 S(t) )

=exp(-0 + 8(1 - F(t)), since S(t) =1-F(r)

=exp(-0 F(1)), 3.3.1)
The model (3.3.1) is not a proper survival function. Because S, () = exp(-8). Note that
F(0)=0 and F()=1. We observe that model (3.3.1) shows explicitly the contribution

to the failure time of two distinct characteristics of tumor growth: the initial number of
carcinogenic cells and the rate of their progression. Thus the model incorporates
parameters bearing clear biological meaning. The model (3.3.1) is suitable for any type of
failure data that has a surviving fraction (cure rate). Thus the model can be useful for
modeling various types of failure time data, including time to relapse, time to death, time
to first infection and so forth.

We also observe that the cure rate « is given by

S, () = P(N = 0) =exp(-0), (3.3.2)
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As 6 — oo, the cure rate tends to zero, whereas as 6 — 0, the cure rate tends to 1.i.e., the
cure rate lies between 0 and 1.

Note that by taking first derivative of (3.3.1), we get,

S, (t) = exp(=OF (t))(-6F'(¢)

=- g () exp(-6F (1))

Where S; (t) and F'(r) denote the first derivative of S ,(t) and F(¢) respectively and
F'(t)= 1

Or, - §,(1) = & (1) exp(-6F () )

Since, -5, () = £, (*)

The density function corresponding to model (3.3.1) is given by

1,0 =g () exp(-0F (1)), (3.33)
We observe that S, (¢) is not a proper survival function, because S »(©) # 0. Therefore
f,(#) is not a proper probability density function. But f(¢) in model (3.3.3) is a proper
density function. The hazard function is given by

_ O g @ exp(-6F (1)
S,(t)  exp(—6F(t))

hy (1)

= 6f(1), (3.3.4)

We observe that 4, (f) is not a proper hazard function corresponding to a probability
distribution, because S, (¢) is not a proper survival function. The cure rate model (3.3.1)

yields an attractive form for the hazard function in (3.3.4). Basically, we observe that

h,(t)is multiplicative in 6 and f(#) and thus has the proportional hazard structure, with
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the covariates modeled through 6. This form of hazard is more appealing than the one

from standard cure rate model in (3.2.1), which does not have the proportional hazard
structure if m= (e™®) is modeled as function of covariates. The proportional hazard
property in (3.3.4) is also computationally attractive. The survival function for the ‘non-
cured’ group is given by

S')=P(T >t|N=1)

_P(Z, >t,Z,>t,..Zy >1,N 21])
P(N 21)

i(o%k
k:

o as(t
;( ()"

"I PV =0)

ﬁzw@ _y
k=0

1-e”®
et Z (9S (f )) e
1-e7?
_ e 0B _ 0
1-e®
_ o OO _ 0
1-e?
~ ~00-S(@) _ 50
1-e®
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_ exp(-06F (1)) —exp(-0)
1—exp(-0)

, (3.3.5)

Note that, in (3.3.5), S"(0)=1 and §" () =0, so that S”(¢) is a proper survival function.
Thus the survival density corresponding to (3.3.5) is given by

e O —GF'(1))
-0

‘O=-250)=-
fO=-_85 0= )
=(w)9f ®, (3.3.6)

Here, f"(f) is a proper density function. Since S’(t) is a proper survival function. The

hazard function for the non-cured group (population) is given by

e _ SO _ exp(-OF (1)) . exp(—0F (t)) —exp(-0)

A S*(f) (1—exp(—9) A0 1-exp(-6)

__ exp(=0F()h, (1)
exp(—0F (1)) —exp(-6)

[ by using (3.3.4) ]

_ exp(—6F (1))
exp(—60F (1)) — exp(-0)

), (1), (3.3.7)

We observe that the model (3.3.7) does not have a proportional hazard structure, because

exp(—6F (1))
exp(—0F (1)) —exp(-0)

can never be free of ¢ for any f(¢). Also /'(f)—> 0 as t - ©

and thus %" (¢) converges to the hazard function of the incubation time random variable Z

as t — co. At last it can be shown that the hazard function 4" (¢) is an increasing function
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of 0. There is an attractive mathematical relationship between the models in (3.2.1) and
(3.3.1). From (3.3.5), we can write

exp(~0F (1)) — exp(-0) = (1 - exp(-6))S" (¢)

or, exp(—0F(¢)) = (1 - exp(-0))S” (t) + exp(-6), (3.3.8)
Using (3.3.8) in (3.3.1), we obtain the following model as

S,(t) = exp(—0) + (1 - exp(-0))S" (1), (3.3.9)
Where, S (¢) is given by (3.3.5). Therefore, S ,(?) is a standard cure rate model with cure

rate equal to m = ¢ and the survival function for the non-cured population given by
S”(t) . This shows that every model defined by (3.3.1) can be written as a standard cure
rate model. This results also means that every standard cure model corresponds to some
model of the form (3.3.1) for some 6 and distribution function F (.). We want to mention

here that if the covariates enter through 6, then S, (f)can be taken to have a Cox

proportional hazards structure, but 4" (¢) will not have a proportional hazard structure. In

the proposed model, we model the entire population as a proportional hazard model,
whereas in the standard cure rate model, only the non-cured group can be modeled with a

proportional hazard structure.

3.4 Review of cure rate estimation
The following sections present brief review of the work done in cure rate estimation.

3.5 Work of Peng and Carriere
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Peng and Carriere(2002) have proposed parametric and semi-parametric cured models
for cure rate estimation. In their study, several parametric and semi-parametric models
are compared and their estimation methods are discussed within the framework of EM
algorithm. They showed that semi-parametric cure models can achieve efficiency levels
similar to those of parametric cure models, provided that the failure time distribution is
well specified and non-cured patients have an increasing hazard rate. Therefore they
recommended that the semi-parametric model is a viable alternative to parametric cure

models. They have proposed mixture models for these analyses.

Let T denote the failure time and S(¢]|x,z)be the survival function of 7', where x and z

are two covariate vectors on which the distribution of 7'may depend. A mixture models

for cure rate estimation can then be written as follows

St |x,2) = 7(2)S, (t | x) +1-7(2) (3.5.1)

Where, n(z) is the proportion of non-cured patients depending on z with unknown
parameter vector y by a logistic form log[n(z)/{ 1-n(z)}]= vz and S, (¢|x)is the survival
function of the failure time distribution of non-cured patients depending on x with
unknown parameter vector B. The survival function of the failure time distribution of
cured patients is set to be equal to 1 because it is assumed that cured patients will never
experience a relapse or death due to disease under investigation. To estimate [3, one
should specify the failure time distribution of non-cured patients. The specification can
be parametric and non-parametric. In parametric cure models we assume a particular

distribution for the failure time of non-cured patients. Semi-parametric cure models in
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cure rate estimation have gained attention only in recent years. Taylor (1995) used
Kaplan-Mier survival estimator to model the failure time distribution of uncured patients
and the EM algorithm to obtain estimates of the parameter of interest. Peng and Dear
(2000) and Sy and Taylor (2000) proposed to use EM algorithm to estimate the
parameters which simplifies the method used by Kuk and Chen (1992). To facilitate the
application of these models, they compared the performance of parametric and semi-
parametric cure models. They reviewed the existing estimation method and used
simulation to compare the mean squared error (MSE) and bias of the estimates from the

models. They perform their analysis as follows:
Cure model and the EM algorithm

Considering the data in the form (¢,,6,,x,,2,),i =1,2,.n, where f,, is the observed
survival time for the ith patient; J,, is the censoring indicator with 1 if ¢, is uncensored
and 0 otherwise; and x,, and z, are observed values of two covariate vectors. Let
8'=(fB',y") that relates to x,,and z respectively. To use the EM algorithm, define
c'=(¢,,¢y5...,C,) , Where ¢, is an indicator of the status of being cured for ith patient,

taking a value 1 if the patient is cured and 0 otherwise. Given c, the complete log-

likelihood function is
1Ble)=tog ] [1((z)1, ()} 1 L1~ 7(2))* £2(2))S, ()} 17, (3:52)

The EM algorithm starts with an initial value 8. The E-step in the (7 +1)th iteration

calculates the expectation of the complete log-likelihood function / (th) with respect to
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C, conditional on the observed data and 0 | the estimate of © at the rth iteration. This is

equivalent to calculating the following conditional expectation

7(z,)S$, (tilxi)
1-7(z,)+7(z,)S, (t |x,)

g"= E(l-¢,)0")= 6, +(1-5)) (3.5.3)

That is, (3.5.3) is the rth estimator of the probability of the ith patient being uncured. Let
g =(g{”,g,...g"). The M-step in the (r+1)th iteration maximizes the expected

(r+1)

complete log-likelihood function with respect to 0 to obtain 6, where the expected

log-likelihood function is the sum of the two following functions:

l (y\g(”) = i[g,‘” logz(z,)+(1- g log{l - z(z,))}], (3.5.4)
L(Alg™) = (e logs, t}x,)+ 6, logh, (tx)] . (3.5.5)

where  h,()= f,()/s,(.)is the hazard function of the failure time distribution of

uncured patients. The algorithm is stopped until | |§“*" -] | is sufficiently small.

Equation (3.5.4) can be maximized by the Newton-Raphson method and maximizing
equation (3.5.5) will depend on how the failure time distribution of uncured patients is

specified.

Parametric cure model
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In parametric cure models, a specific distribution is assumed for the failure time
distribution of uncured patients. The most commonly used distribution includes the
Exponential, Gamma, Weibull and Lognormal distribution. Yamaguchi(1992) and Peng
et al.(1998) proposed the use of Extended Generalized Gamma(EGQG) Distribution and
the Generalized F(GF) Distribution. If the GF distribution is used in parametric cure
models, the density function of the failure time distribution of uncured patients is given

by

[ty = pAQOP 1+ (A T B (51,8,) (3.5.6)

where, A =(s,/s,)e™? is a scale parameter with positive shape parameterss,,s,, p, and
B(s,,s,)is the beta function evaluated at s,,s,.The advantages of using the GF

distribution is its flexibility: it include all the distributions mentioned above as special

cases. For example, when s, &« or s, —> o, the GF distribution reduces to the EGG

distribution with the following density

lala™)*” AN " expl-g2(AN7]
I“q‘2 4%

JACHE
= p(J2m)™ exp(-p* [log(A)]* /2),4 = 0

where, A =exp(—f%) and q=1/\/g if s, > and ¢g= -1/\/3 if s, = . The EGG
distribution further reduces to the lognormal when g = 0, the Weibull distribution when
g =1, and the exponential when g= 0 and p =1. Detailed discussion of the relationship to

other distributions can be found in Peng et al.(1998). Once the distribution of failure time
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for the uncured patients is specified 8*" can be obtained by maximizing (3.5.5). When
the GF distribution is reduced to Weibull distribution, the hazard function of uncured

patients becomes #, (tix) = pt”" exp(—f%), where x also acts on the hazard function

multiplicatively, which leads to a PH model.
Semi-parametric cure model

Considering that the PH assumptions are appropriate for the effect of x on the failure

time distribution of uncured patients (that is, A, (¢|x) =k ,(t)exp(B%), where h,(t) is

the base line hazard function of uncured patients, Sy and Taylor (2000) and Peng and
Dear (2000) recently proposed Cox’s partial-likelihood type method to estimate £ semi-
parametrically without specifying 4,,(#) .This method can viewed as an alternative to the

parametric approaches above. For this method, a Cox’s partial-likelihood-type function

can be obtained from (3.5.5):

SIB'S,, ~d, log(Y g exp()] . (.57)

zeRj

where & is the number of distinct uncensored failure times 7, <7, <....<7,, d, is the
number of uncensored observations at 7, S, is the sum of covariates associated with
the uncensored observations at 7, and R, is the risk set at 7. Therefore in the M-step,

B can be separated from 7,,(f) and B“*" can be obtained directly from (3.5.7).
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A non-parametric estimate of 4,,(¢f) or the baseline cumulative hazard function

H, )= '[huo (w)dw can be obtained following the method similar to those proposed for

the Cox’s PH model (Kalbfleisch and prentice, 1980, p. 85). That is, a non-parametric

maximum likelihood estimator of H ,(¢) in the (# +1)th iteration of the EM algorithm is

d,

given by HW (1) = —
’ ,;zgpexp(ﬁ‘ x)

ieR;

Finally, Peng and Carriere (2000) conducted a simulation study to compare the
performance of the parametric and semi-parametric cure models in studying cure
proportions and the failure time distribution of uncured patients. Performance is
measured by the MSE and bias of estimated survival function and cure proportion. They
found that when the hazard function of uncured patients is decreasing, all cure models
suffer from large MSEs and biases. The poor performances of the models can be
explained in part by the fact that when the hazard rate of uncured patients is deceasing, it
is difficult to distinguish a cured patient from an uncured patient who has a small hazard
rate after a long term follow up. Even the Weibull cure model has rather large MSE and
biases in estimating the parameters. Semi-parametric cure models especially suffer from a
large bias in cure proportion because the estimated survival and hazard function are
forced to be zero and infinite, respectively, after the largest observed failure time.
However when the hazard function is not decreasing, the PH cure model becomes viable
alternative for cure proportion. The findings reported here suggested that its performance

is comparable to that of an appropriately specified parametric cure model. Nonetheless,
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the semi-parametric cure model is useful in situations where determining an appropriate

distribution for the failure time of uncured patients is difficult.
3.6 Work of Cantor and Shuster

When analyzing survival data from clinical trials, it is sometimes clear that a non-zero
proportion of patients can be considered as cured. Cantor and Shuster (1992) make a
constructive discussion about parametric and non-parametric methods for estimating cure
rate based on censored survival data. They use Kaplan-Meier method for non-parametric
estimation of cure proportion. On the other hand for parametric estimation of cure rates,

they assume a survival function S(t) for which }im S(t) = S(0) >0 i.e., in a proportion of

patients the event never occurs, using MLE one can estimate S(e0), which is considered

as cure rate. Two such survival functions are:
SO=rn+(1-r)exp(-At),0<n <,A>0, (3.6.1)

S, () = exp[ B a{l —exp B} ], > 0, B <0 , (3.6.2)

The model (3.6.1) represents the case where a proportion 7 of patients are cured, while
the remaining 1-7 have an exponential failure rate. The model (3.6.2) is a modified
Gompertz survival distribution, for which S, (#)approaches exp(a /) asymptotically.

The model (3.6.1) based on the exponential distribution has been extensively discussed

by Goldman (1984), who studied the performance of Maximum likelihood estimates of
the parameters of S,(rf) by Monte Carlo method. The model (3.6.2) was developed by

Gompertz (1825) and was motivated by observed population life tables. Garg et al,
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(1970) discuss the Gompertz distribution and the maximum likelihood estimation of its
parameters. They do not consider the situation in which the hazard is decreasing, causing

S (), the ‘cure rate’ to be positive. Gehan and Siddiqui (1973) present a least squares

procedure for estimating the parameters of the Gompertz distribution. Given a set of
survival data, either of the above survival functions can be used as the basis of likelihood

function whose logarithm can be maximized to find parameter estimates. Estimates of

cure rates are given by s or exp(oAz/ ,%). The maximization of the likelihood function

based on S,(#) creates problems. Newton-type methods often fail or require a large
number of iterations. Convergence of values outsides the domain of the parameter space
occurs frequently for data that do not support a non-zero cure rate, for example where the
Kaplan Meier curve does not have a plateau. On the other hand, the likelihood function

based on Gompertz distribution is maximized readily using Newton- Raphson method.

Here var( oAt) may be estimated from the information matrix and var| exp(oAz/ ,g)] using
delta method. Finally they recommended that Gompertz model is more suitable than

exponential model in parametric estimation of cure rate.

Since the exponential distribution, in many cases, clearly does not fit the survival data
well, the use of non-parametric methods such as Kaplan-Meier is attractive. However, the
Kaplan-Meier method is not free of problems and limitations. Cantor and Shuster (1992)
have demonstrated the potential for misleading or counter-intuitive results. Miller (1983)
shows that the asymptotic efficiency of the Kaplan-Meier estimator tends to be low
relative to the MLE for a given distribution. In fact, the asymptotic efficiency approaches

0 as t tends to infinity. The Gompertz distribution may provide a useful alternative to
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non-parametric method. Estimation of cure rate using this distribution may be preferable

to the use of the plateau of the Kaplan-Meier curve.
3.7 Work of Tsodikov

Tsodikov (2001) studied the estimation of survival function based on proportional hazard
model with cure. He proposed an algorithm to fit the proportional hazard model restricted
by the fixed survival rates at the end of observation period. He used parametric cure
model to estimate the proportion of long term survivors. To combine the stability of the
parametric method, the survival function is estimated non-parametrically conditional on
the cure rates provided by the parametric analysis. Time to relapse or freedom from
treatment failure is an endpoint used in many cancer clinical trials when evaluation of the
efficiency of primary therapy of cancer is of interest. Usually the semi parametric
proportional hazard model [D.R. Cox , 1972] is used to estimate the treatment effects.

The population survival function is given by

G(t)=exp{—H()}, where, H(¢)= ‘[h(x)dx is the cumulative hazard function and A(x)

is the hazard function. The survival function G(¢) is improper which means that the

cumulative hazard is bounded

H() <0 imH(H)=0, (3.7.1)

By considering H(t)= 6 F(t), we can adjust the above property. Where F(¢)is the

proper distribution function. An alternative form of Cox’s model is given by
G@t)=exp{-@ F(t)}, (3.7.2)
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Estimation of cure rates based on continuous model

Along with model (3.7.2) with parametrically specified F (.), [Yakovlev and
Tsodikov,1996] there exists a variety of other parametric cure model. Most of them are of
mixture type. The simplest model of this type would assume that the population is
divided into two subpopulations due to some unobserved prognostic factor, so that an
individual is either a long term survivor with some probability or has a proper survival
function otherwise [Farewell, V.T., 1982]. Note that the model (3.7.2) can be
simultaneously interpreted both as a mixture model, as‘ well as simple model of
carcinogenesis. According to the carcinogenic interpretation, the observed tumor
originates from clonogens that have a random progression time X with the distribution
function F (.). It is assumed that the number v of such clonogens in a patients is Poisson
distributed with parameter 8. The observed tumor onset is associated with completing of
the progression by one of the competing clonogens, so that the tumor onset time U is
given by U = min {X,,i=12,.., v}. Where X,, is the time of ith clonogens to

produce detectable tumor. Let X, is i.i.d random variables with distribution function F

(). Thus the S(t;v)=[1-F()]". If the number of clonogens in a patients could be

measured, we would have a PH model with the baseline cumulative hazard as
H,(t) =-log(1- F()), Hy(0) = 0.

Since v is unobservable, we take an expectation over the frailty and obtain (3.7.2) for the

population survival function. Suppose that ¢, <t, <....<t, are the ordered failure times

with ¢, =0,t,,, =. Let m; be the number of failures at ¢;in the treatment group j

n+l
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=1,2,....k, and n; be the number of censored observations. Let 0 , be the value of 0 in the

treatment group j. The cure rates are given by exp(-8, ). The log-likelihood of data based

on a continuous model can be written as

n k

1= (m, logl0, f(t)] - (m, +n,)0,F (1)}, (3.1.3)

i=l j=l1

Where f(.) is the probability density function corresponding to F(.) The estimates of

0, are obtained by the solution of following equation

ol
—=0,j=1.2,...k , 3.7.4
20, j (3.7.4)

Thus the MLE of 6, is given by

n M, M,
0, =— = , (3.7.5)

D (m; +n)F(t,) > R,AF,
i=]

i=l

Where M, is the number of failures in the treatment group j, Ry is the number of patients
at risk at #,—0 in group j.

Restricted estimate of survival function under the cure rate

In order to estimate F (.) non-parametrically, Tsodikov ( 2001) consider it as a step
function and use 0 as estimated from a continuous model. The generalized log-likelihood

function of the data on the class of step functions can be written as

n k
1= {m,log[AG,1-n,0,F}, (3.7.6)

i=l j=1
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Where, AG,; =G, (t,,) - G,(t;) and F;=1. Suppose that /as a function of AF,,i =1,2,..,n-
n-1

1, where AF, =1- ZAF, . To get the MLE of F, we maximize (3.7.6) with respect to
i=]

AF;,1=1,2,...,n-1. This is performed by the following numerical algorithm.

Define the functions z, = ¢, (x) as solutions to the following equations

k e m. k k m 6.
=D AR mmy o Y (3.7.7)
al-exp{-0,z} i3 7 1-exp{-0,x}
i=12,..,n-1
n-1
Then, solve the equation x+ ) ¢,(x) =1, (3.7.8)
i=1

Let x* be the solution of (3.7.8). As aresult of the above estimation procedure, we have

AII;\; =¢(x*),i=1,2,..,,n-1, AFn =X*.

He showed that the above algorithm indeed finds the maximum likelihood estimator for

F.
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Chapter 4
Estimation of Cure rate
4.1 Introduction:

Suppose that X is the life time of a patient. Then P(X = o0)= }im P(X >t)=e?, which
—0

is considered as cure rate. On the other hand, P(X <w)=1-¢7%,0 <t <0, which is the
probability of non-cured. Since X e[0,00)U{"cured"}, hence the probability density
function of X can be written as

o) = o ()€™ Ny + € Ny (4.L.1)
with respect to the measure

p(A) = [dx+1pppey for A [0,0)U{" cured"}

AN[0,)

Thus) P{X € A} = J.WO (x)e_gFO(X)dx + e—gl("cured“eA}

AN[0,0)
By using non-parametric maximum likelihood method we can estimate the parameter of
the cure models [(3.2.1) and (3.3.1)]. We are interested to estimate the parameter by

using uncensored and censored data.
4.2 Estimation of cure rate from mixture model

Uncensored case: F(.), f,(.)and 6 are unknown. Here we observe both cured and

non-cured group.

Suppose that we have the data in the form (x,,€,;),i =1,2,..,n, where x, denotes the

survival time for the ith patient, €, is the cured indicator with 1 if x, is not cured and 0

otherwise i.e., €, =1 .
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From the mixture model (3.2.1), we can write

1-F(x)=n+(1-n)1-F"(x))

or, F(x)=(1-m)F"(x)

Therefore, AF(x) = (1-7)AF" (x) (4.2.1)
Likelihood function: The non-parametric likelihood function is given by

L, F) =T [(AF ()" (=)™, (422)

Where, AF (x,)=jump of F(.) at x;

Using (4.2.1) in (4.2.2)) we get the following likelihood as

L,(7,F)= ﬁ {d- n)AF* (x,)} (ﬂ.)l—e,.
i=1

=T Tia-m)p,}* (1)
i=]

Where, p, = AF (x,)

Therefore, the log likelihood function becomes

logL,(m,F)=Y € logl-n)+ Y € logp, +>.(1-€)logr (4.2.3)
i=1 i=1 i=1

We want to maximize (4.2.3) subject to condition ) p, =1

i=1

Adding a Lagrange multiplier A, we obtain the following equation
logL,(m,F) =Y €, logl-m)+ Y €, log p, + > (- €)logr = A _p, -1) (4.2.4)
i=1 i=1 i=1 i=l

Therefore, the non-parametric maximum likelihood estimators of p,and 7z are obtained

by the solution of the following equations
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ologL,(7,p;) 0 OlogL,(7,p,) -0
op, o on -

ThuS, alog Ln (ﬂ.B px)

= (Qgives
op, &

Si

b,

-A1=0,i=12,..,n

ologL, (7, p,)
oA

i(l"' ei) iei

=0

=(gives

/4 _1—72

Solving (4.2.6) and (4.2.7), we get

n e A ;(1_ ei)

p,=——and 7 =

iei i(l"ei)"'iei
i=] i=1 i=l

(4.2.5)

(4.2.6)

4.2.7)

Censored case: F;(.), f,(.)and @ are unknown. Suppose that we have data in the form

(Z,,6,),i=12,.n. Where Z, =min{X,,T}, 6,is the censoring indicator and §,=1, .,

T is fixed censoring time.

Likelihood function: The non-parametric likelihood function based on Type 1 censoring

can be written as follows

L,(F,7) =] [{-m)p}* z + (- m)S" (D}~

=L,(F.m)=[[ [{0-m)p}] {z +Q-m)S" ()"
i=1

Where, k =max{i|X, <T}
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The log-likelihood function becomes

logL,(F,7)=klog(l1-7)+ Zkllog p,+(n—k)log{r +(1-7)(1- Zk:p,. )} 4.2.9

i=1

Note that the above equation (4.2.9) is very difficult to maximize subject to condition

Zp,. <l1.

i=1
4.3 Estimation of cure rate from frailty model

In uncensored data, we consider the following cases:

Case —(al): F;(.), f,(.) are known and @ unknown and also both cured and non-

cured observed.

This case is fully parametric. Suppose that we have the data in the form

(x,,€,),i=12,..,n, where x, denotes the survival time for the ith patient, €, is the cured
indicator with 1 if x, is not cured and 0 otherwise. Also, x €[0,00)U{“cured”}, 1<i<n.

Likelihood function:

The likelihood function is given by

L©O)= [1/oG) =T @ (x)e™ )% ()™, (4.3.1)
i=1 i=1

Where, €,=1,; ., and 1-€,=1,y _;eun

”ei _eielFO(xi) —0zn:(l_el)

20 )
=0,~=1 {fo(xi)}iﬂ e e

The log-likelihood function is given by

log L(O)=(3 &) logh+ 3 <, log £, (x,) 03 €, F, (x) 03 (I €,), (432)
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Differentiating (4.3.2) with respect to 8 and equating to zero i.c.,

n

ei
n
i=]
g2k
i=1

(x)-Y(-€) =0

i=1
n

S

i=

or,

Therefore, é =

= n
Ser.
i=1

(x)+ Y-

1 n
o
n

1
n-.

ZEiFo(xi) +li(1— Ei)
i=1 nig

Q_IHFL&@_) = () gives

(4.3.3)

(4.3.4)

Which is the required estimate of 8. Therefore, the estimate of cure rate is 7= ¢™. Now,

we will show that 8 converges to the true parameter 6.

Convergence of 6:

From the law of convergence, we can write,

lZe, i;E(e): P(X <0)=1-¢"?,
n

i=l

and

1 & a.s _ _ - ]
Y (- €) S E(-9) = P >@) = e,

1S e RS EEF ()

i=]

= E(I(X<oo} Fy(x))

= [0 0RO ™ ar

46

(4.3.5)

(4.3.6)



= Eoze‘& dz [ putting Fo(t) = z]
= f&ze'&dz-i- j:e‘&dz

=zl e,

= — - — _6_1
e 0(6’ )
1-e7® 0
= - s 4.3.7
g ¢ (4.3.7)

Therefore, g? -0

Case-(a2): F,(.), f,(.) are known and 8 unknown and only non-cured are observed.

This case is also fully parametric. We also consider here only non-cured group i.c., we

observe X if X <o ie, X, €[0,0). The p.d.fof X given X <oo can be written as

)
&, (x)e X <o (4.3.8)

8 (JC)—‘—-‘ l_e_g )

Likelihood function: The likelihood function is given by
@) =115
i=]

I_n_l WO (x )e—gFO(xi)
— i

1-e”°

i=1
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-0 Fy(x)

0" T1foeGx)e =
= i=1
(1-e)"

Thus the log-likelihood function becomes

log L (6) = nlog6 + Y_log f,(x,) ~ 0 Fy(x,) - nlog(1-¢™), (4.3.9)
i=1 i=1
Differentiating (4.3.9) with respect to 6 and equating to zero i.e., glo_geL_@ =0 gives
n o< ne™?
Z-NF,(x)- =0
0 ; 0 (xx ) 1 _ e_g
1 1 e’
or, ——— ) Fy(x,)— =0
0 n ; o (%) l-e™®
Therefore, the estimate of © can be obtained by the following equation
1 18 e
7‘“ZFo(xi)" — =0, (4.3.10)
o i 1-e™®
1 ¥ 1g
—- —=—>"F(x,), (4.3.11)
0 1-e¢? Mi
Also we can write (4.3.10) as
A 1
6 = — (4.3.12)
1 e—ﬁ
=D Fy(x)+——
n iz l_e—H

Comment: The equation (4.3.10) is an estimating equation of # and it can not be solved
analytically but it may be solved numerically. Therefore, the numerical solution of this

equation is the required estimate of 6.
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Convergence of 0:

From the law of convergence we can write,

—i—zn:Fo(x,)i;E<Fo(x)|x<oo>

[eR,0 10 O dr

s 4.3.13
P(x < ) ( )
Using (4.3.5) and (4.3.7) in (4.3.13), we obtain the following expression as
1-e*
lZn:F (x)= "o
n& 0 1-¢™®
1 e
=_—~ , 43.14
0 1-e° ( )
Therefore,
1 —9 n a.s -0
~ d A=le0(‘xi)_)l— ¢ )
9 1_e—0 n i=1 9 l_e
And hence,
1 —3 as 1 -6
=52 (4.3.15)
0 l_e—0 0 l—e

Case-bl: F (), f,()and & are unknown. Here we observe both cured and non-cured

group.

Suppose that we have the data in the form (x,,€;), i =12,..,n, where x,denotes the
survival time for the ith patient, €, is the cured indicator with 1 if x, is not cured and 0

otherwise i.e., €,=1,y .-
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Let F(x)= [ 6f, (e ™ dt

= KO(x)He_&dz [by putting F(t) =z ]

-&
€ x
=0[t§ 5()

— ~ 6
=1- e (%) ,

Therefore, the non-parametric likelihood function is given by

L,0,F) =] [(AF ()" )™ ,
i=1

where, AF(x,)=jump of F(.) at x,
=1 _ e—HF()(xi) . (1 _ e—BFO(xi—))
=e—€Fo(x,_) — e—eFO(xi)

o)

o -OFo(x) (1
el e—eﬁo<x,_))

=g Fo(x-) (1 — g R )—Fo(x,--)])

where, p, = F,(x,)— F,(x,..)

Therefore, the above likelihood function (4.3.17) can be written as

i=1

We want to maximize (4.3.19) subject to condition

The log-likelihood function becomes
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(4.3.18)
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10g L, (0, 1» Pysees ) = =03 €, (D, + Py + oot p) + )€, log(l—e ™) =6 (1-€)
i=1 i=1 i=1
Or,

log L (8, pys Dyseneen ,pn)_—ezp,(z€)+Ze log(1—e™#) - 92(1 €), (4321

i=1 J=i+l

By using Lagrange multiplier method we can maximize (4.3.21). Adding Lagrange

multiplier A, we can write (4.3.21) as follows

log L, (8, Pys Pyseeoe-r ,pn)——GZpl ZE )+Ze log(1-e™®) - 92(1 €,)- l(Zp -1)
(43.22)

Therefore, the non-parametric maximum likelihood estimators of 8 and p, are obtained

by the solution of the following equations

dlogL _ dlogL _ (43.24)
86 ap,

Olog L

Now
08

=0 gives,

—Zp. Ze)+Ze _@)—Z(l €)=0, (4.3.25)

J=i+l

Simi larly,al gl =0 gives, i=1,2,..,n-1
3 e 0 (4.3.26)
-0 €t ———— A=V, .
=i+l ! (I-e @Ji)
And Olog L =0 gives,
ap,
-8,
ad -A=0, (4.3.27)

e
" (-

51



Multiplying (4.3.26) by p; and summing over i from 1 to n, we obtain the following

equation

“HZP:(ZGHZP, € —ﬂZp, (4.3.28)

i=] J=i+l
Since, Z p, =1, so the equation (4.1.28) becomes
i=1

G~

—HZp, ZG +Zp, Z=—4=0, (4.3.29)

J=i+l i=1 —e™® )

From (4.3.25) and (4.3.29), we obtain
2=03(-¢), (4.3.30)
i=1

Now using the estimate of A in (4.3.26), we get

J=i+l

—926 +e, o> )-92(1 €)=0,i=1.2,.

(4.3.31)

n -, n
Therefore, Y &~ €, ————+ > (I-€,) =0 , (4.3.32)
Jjeitl (I-e™) 3

Comment: This equation (4.3.32) can be considered as an estimating equation of p,
which can not be solved analytically but may be solved numerically. So the solution of
this equation is our desired estimate of p,.

Again using (4.3.30) in (4.3.27), we may obtain the estimate of p,

Ge -,

€ —————Gn 1-€)=0
el ONCE

Comment: The above equation also can not be solved analytically but may be solved

numerically.
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Finally the estimate of 6 may be obtained from the numerical solution of equation

(4.3.25).

Case-b2: F (.),f,()and 8 are unknown and only non-cured group are observed.
Suppose that we have the data in the form (x,,€;), i =12,..,n, where x,denotes the
survival time for the ith patient, €, is the cured indicator with 1 if x, is not cured and 0
otherwise i.e., €,=1, _,,. The non-parametric likelihood function can be written as

n -0(py+py+..pi -&,
nc e 1 2 i1 1_e A
Ln (gapppz,....,pn)zl——[ ( )

i=1 l-e

-8

-0%. (Py+pr+.pi) 1

e " H (l—e‘@”‘)

1

(-e 9)

The log-likelihood function is given by

log L (0, py» Pyser-Pn) = =0 . (Py + Py +piy) + D log(l— ™) — nlog(1—e™)
i=1 i=1
n-1 n
=-0) (n—i)p,)+ Y log(l—e ") —nlogl-¢™), (4.3.34)
j=1 i=1

We want to maximize (4.3.34) subject to condition Z p, =1,

i=1
By using Lagrange multiplier method we can maximize (4.3.34). Adding Lagrange

multiplier A4 in (4.3.34), we can write

i=1

n—-1 n n
log L (0, py, Py-Pa) = =0 . (n=1)p) + Y log(l—e ) —nlog(l—e™*) = 4D p, =)
i=1 i=1

(4.3.35)
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Therefore, the non-parametric maximum likelihood estimators of 6 and p; are obtained by
the solution of following equations

OlnL  OlnL _

py: 0, . 0, (4.3.36)
Now Olnl =0 gives
00
n-1 n -t -6
, p.e ne
~L DA =0 (4.3.37)
And OlnL =0 gives,i=1,2,...,n-1
op,
-t
—(n—i)9+1ge e -A=0, (4.3.38)
OlogL =0 gives
Pp,
._@"
le—ee“‘*’" -A=0, (4.3.39)

Multiplying (4.3.38) by p, and summing over i from1 to » we obtain

n n -&p; n
-0 p,(n—0)+).p, 198 5~ A2, P, =0, (4.3.40)
i=1 i=1 i=1

—€e

n
Since )" p, =1, so the above equation becomes

i=l1

-1=0, (4.3.41)

n n G~
—ezlpi(n—i)"'zllpi —o®

Multiplying equation (4.3.37) by @ and subtracting from (4.3.41), we obtain

-8
-A+ noe =0

1-e?
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née™?

-8

Therefore, 3» = (4.3.42)

l1-e
Using the estimate of A in (4.3.38), we obtain

G~ nfe?
@ ]_g?

-(n-00+ =0

l-e l1-e
o ® -6
or,—(n—i)+1 — — =0

-, -6
e ne

—(n—z)+ -~
1-e™® l1-e

or,

-6

Thus, p, = ——[log{(n —1i) + -} +log(1— e )], (4.3.43)

Comment: This is an estimating equation of p,, i =1,2,...n-1. and it can not be solved
analytically but it may be solved numerically and the solution of this equation is the
desired estimate of p,.

Again, using (4.3.42) in (4.3.39) we obtain

Ge ™~ ~ nGe o
l—e® 1-e7°
e  ne”?
l-e® 1-¢7°
-8
———-{log( —— ) +log(l-e” Py, - (4344)

We observe that the estimate of p, may be obtained from the numerical solution of the
equation (4.3.44)
Finally the estimate of @ can be obtained from the numerical solution of the equation

4.3.37).

In censored data, we consider the following cases:
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Case —(a): F;,(.), f,(.) are known and @ is unknown. So, this case is fully parametric.

We are going to estimate the parameter based on Type 1 censoring and Type 2 censoring.

4.4 Estimation of parameter based on Type 1 censoring for known

distribution
A Type 1 censoring is said to apply when each individual has a fixed potential censoring

time C, such that T, is observed if 7, < C,;; otherwise we only know that 7, > C,. Type 1

censoring often arises when a study is conducted over a specified time period. Let us
consider the following notation for type 1 censoring.

t,=min(7,,C,), 6, =T, <C,}, 4.4.1)
The likelihood function of Type 1 censoring is based on the probability distribution of

(t,0,),i=1,2,..n. Here #,and &, both are random variables and their joint probability
density function is

f@)" p(@ >CH™ (4.4.2)
Assuming that 7;,7,,...,T, are independent. We obtain the likelihood function from

(4.4.2) as

L= H @) s@e)H)™%, 4.4.3)

i=1

Using the cure model mentioned above we can write the likelihood function as follows

L(Q) = H (qo (ti )e"eFo(ti))‘sf (e—GFO(C) )1“5,- , (444)
i1
> 6 6365 63 RO-8)
=0 i=1 (fO (ti )) =l e iF e i

Therefore the log-likelihood function becomes
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log L(8) = iai logh+ 33, log £y (1)~ 03.8,F, (1) 63 (1~ 6 ) F, (©), (4.4.5)

Thus the estimate of @ is obtained by the solution of the equation alggL =0, which

gives
25 .
6 —ZéF(t) 2(1 8)F,(C)=0
0 =l (4.4.6)

$6,5,1)+3 (1= 8)F,C)

A >33,
Therefore, 6 = T3 " ’;1 . , (4.4.7)
~2 8 F )+ -2 (1= 8)F (C)
i=1

i=1

4.5 Estimation of parameter based on Type 2 censoring for known
distribution

In Type 2 censoring, the data consist of r smallest life times 7j,) <7,, <....<T},, outofa
random sample of » life times 7,,7,,....7, If 7., 1 =1,2,...,n, has a probability density
function f(¢)and survival function S(¢), then the joint probability density function of

Ty <Tyy <....<T,, is (¢ David,1981) given by

) (4.5.1)

(—)'

Using cure rate model in (4.5.1), the likelihood function can be written as

L) = (t,)e @} feF Iy

(—)'
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The log-likelihood function becomes

n_

log L(6) = log(( "!r),) +rlogh + ilog folt)) - 6’2 Fo(t,)—(n—r)6F(t,), (4.5.2)

. Olog L(6)

Thu =0 gives

r r
5—;F<,<ti)—(n—r)F(t,) =0
Therefore, the estimate of @ is given by the following expression as

0= r (4.5.3)
Y Fy(t)+ (1=r)F(t,)

Case-b: f,(.),F,(.)and & are unknown. So this case is fully non-parametric. We are
going to estimate the parameter based on Type 1 censoring and Type 2 censoring.

4.6 Estimation of parameter under type 1 censoring for unknown
distribution

Suppose that we have data in the form (Z,,8,), i =1,2,..,n. Where Z, =min{X,,T}, J,is
the censoring indicator and &,=1,, ,, T is fixed censoring time. Therefore the non-

parametric likelihood function can be written as

L(g’pl’p2"'pn|zl’ZZ""Zn)

n &
=H((e—B(P1+P2+~~-Pi—1))(1 . e‘&’i )) (e‘HFO(T))l—‘S: , (4.61)
i=1

5
.___ﬁ (€ OPHPr-PY([ =)y (¢ 0Pt )i
i=1
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‘ai@(l’l*l’z*‘ulh-l) n
=g H (1-e
i=l

-8) (1-6 +pg.F
s, Z( P+ Py4 D)
)'e ;

(4.6.2)

Where p, = F(X,)—F,(X,.) and k =largest i such that X, <T . Since there are kth

observations are uncensored and (n—k)th are censored. So the above (4.6.2) non-

parametric likelihood function becomes

k
—-0) (p+py+.piy) Kk
Z, R (1= ¢ 0 RXp+pir.po)

L(H,pl,pz,..,pn 2152555 2,) =€

>
i=1

Hence the log-likelihood function becomes

k k
logL=-0) (p, +p, +..p,;)+ D logl—e )= 0(n-k)(p, + p, +..p,)
i=1

i=1

k=1 k k
==Y (k-i)p,+ ) log(l—e™)-6(n-k)Y p,,
i=1 i=1 =1

We want to maximize (4.6.4) subject to condition
p+p,+.p, =1

ie. p+p,+..p,+S=1,

where, S is a non-negative slack variable.

By adding a Lagrange multiplier A in (4.6.4), we get

k-1 k k k
logL=-0Y (k-i)p, + Y logl—e)-0(n-k)> p, — 2D p, +S-1),
i=1 i=1 i=t i=1

(4.6.3)

(4.6.4)

(4.6.5)

(4.6.6)

The non-parametric maximum-likelihood estimator of 8, p, are obtained by the solution

of the following equations

0,

dloglL _0 Olog L _0 dlog L _0 OlogL _
06 " op, A as
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Thus, Ologl =0 gives
060

—tb; k

k-1 k p.e
—Z(k—l)p,+zl le_@,i—(n_k)zpizoa
i=1 i=1 17 i=l

log L

Similarly, 0 =0,i=1,2,...k-1 gives

i

-6,

-0(k-i)+ o ——(n-k)@-1=0,
1—e™
OlogL =0 gives
Py
ee"@’k
-(n—-kB-1=0,
1-e % ( )
alogL=0gives
oA
k
> p+S-1=0,
i=1
dlog =0 gives
oS
A=0,

Using (4.6.12) in (4.6.9), we obtain

-op;
Ok —i)+ b — —(n—k)9 =0
1-e™
. &,
_(k_l)+1—e'q”" -(n-k)=0
o P _
or, =(n—i
1-e™® ( )

or, —fp, =log{(n-i)(1—e™™)}

60

(4.6.8)

4.6.9)

(4.6.10)

4.6.11)
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Therefore, p, = —%log{(n—i)+log(1—e"””)},i =1,2,...k-1, (4.6.13)

Comment: This is an estimating equation of p,. This equation can not be solved

analytically but it may be solved numerically. So the numerical solution of the above

equation for known value of @ is the desired estimate of p,.

Again using (4.6.12) in (4.6.10), we obtain

e-Hpk i 0
—(n— e
1—e™® ( )
Thus, p, = —%log{(n —k)+log(1—e )}, (4.6.14)

Which is same as equation (4.4.13) when i =k
The estimate of S may be obtained from (4.6.11).

Finally the estimate of & may be obtained from the numerical solution of the following

equation

'Z(k—l)P,+Z p’ —(n k)Zp, | (4.6.15)

4.7 Estimation of parameter based on type 2 censoring for unknown

distribution

The non-parametric likelihood function under type 2 censoring [using (4.3.1)] is given by

L, py, s p,)—(——_—),{H ) (| - ) YT @.7.1)

n 'BZ(PI+P2+~-+P, 1)

= =t H(l e'GPr )e“e(P1+Pz+~-~-+P » Xn=r)
(n— r)!

So the log-likelihood function can be written as
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n!

log L(8, p,, p,,.-p,) = log( ,
(n - r). i=1 i=1

n! r—1 . r N
) -0 (r=D)p, + Y log(l—e™*)=0(n-r)p, + p, +..+ p,)>
i=1 i=1

(n-r)!

= log(

We want to maximize (4.7.2) subject to condition
p+p,+..+p, <1

ie. py+p,+..+p, +S=1,

where, S is a non-negative slack variable.

Adding Lagrange multiplier Ain (4.7.2), we get the following equation

n!

(n-r)!

L0, p, --p,) =log(

)—Hi(pl +p, +-.-p,--1)+Zr:10g(1 e ")—0(n-r)p, +p, +..p,)

4.7.2)

(4.7.3)

)—Bi(r—i)p, +ilog(1_e-9p:)_a(n—r)(ipi)—ﬂ(ipi +S8-1)>

(4.7.4)

Therefore, the non-parametric maximum likelihood estimator of 8, p, are obtained from

the solution of the following equations

dloglL =0’610gL _ 0’6logL _ ObalogL _

0,
20 op, oA oS

Now, Ologl =0 gives
00

r=1 r —6p, r
-2 =P, + B~ (n=rX (L p) =0

Sl
Similarly, OlogL =0,i=1,2,.1-1 gives
op;
. ee‘@i
—(r—z)0+l_ e -0(n—-r)-1=0,
Ologl =0 gives
p,
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4.7.7)



-,
& o)A, (478)

PY) =0 gives
> p+S-1=0, (4.7.9)
i=1
Ologl =0 gives
oS
A=0, (4.7.10)

Using (4.7.10) in (4.7.7) we obtain

ee‘ﬂ"l
-(r-00+ -0(n-r)=0
(=) +=—~0(n~1)
e
or,—(r—i)+ —-(n-r)=90
(=D 4 ~(n=)
or e =n-i
T1-e™®

or, —fp, = log(n—i)+log(l—e™®)
Therefore, p, = —%{log(n ~D+logl—e®)},i=12,..1-1, (4.7.11)

Comment: This is an estimating equation of p,. This equation can not be solved
analytically but it may be solved numerically. So the numerical solution of the above
equation for known value of @ is the desired estimate of p,

Again using (4.7.10) in (4.7.8), we obtain
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e—&’r
or

=(n-r)

T l-e®
Therefore, p, = —l—;—{log(n ~r)+log(l-e *)}, (4.7.12)

The estimate of S may be obtained from the equation (4.7.9).
Finally the estimate of 8 can be obtain from the numerical solution of the following

equation

r-1 r ~6p; r
> r=ip, =, e +(n - p)=0 (4.7.13)

o l—e”
4.8 Conclusions and further research
In this thesis, at first we have developed cure rate models, after words we have tried to
find an estimator to estimate the cure rate by considering uncensored and censored data.
In uncensored data, eventually we have considered several cases. When we have assumed

fo()and Fj()yare known and also assumed non-cured and cured group in uncensored

data, we have found an analytic solution for the cure rate parameter &. That is, we have
found an estimator of & which converges to the true value of the parameter. On the other
hand, when we assume only non-cured group in uncensored data, we could not find an
analytic solution of & but we have found an estimating equation for 8 which might be
solved numerically and the numerical solution of the estimating equation would be the
estimate of the parameter. Also in that situation we have found that our estimating
equation converges to the true equation. Considering both non-cured and cured group,

when we assume f,(.)and F|(.)are unknown, we found a non-parametric estimating

equation of #. Unfortunately we could not find an explicit solution for 8. But hopefully,

this non-parametric estimating equation may be solved numerically by choosing any one
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of appropriate method as described in appendix. Also we have found the same result
when we consider non-cured group only. That is, in that case we have found a non-
parametric estimating equation for €. Our finding suggests that we have developed the
estimator of cure rate in one case and for the remaining cases we have developed the
estimating equation for € in uncensored data. Similarly, we have considered several
cases to estimate the parameter of cure rate in censored data. Basically, we have tried to

estimate the parameter based on Type 1 and Type 2 censoring. For known f,(.)and
F,(.)we have found an explicit solution for the parameter of cure rate model based on
Type 1 and Type 2 censoring. On the other hand when f,(.) and F(.)are unknown, then

we have found non-parametric estimating equations for € based on Type 1 and Type 2
censoring scheme. So our whole findings suggest that theoretically we have developed
several estimating equation of cure rate model.

For further research one could perform the simulation study of the cure rate model based
on uncensored and censored data. The fact that one could apply numerical method which
has been described in appendix in order to get the estimation or to obtain numerical

results of the parameter of cure rate model.
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Appendix

A.1 Introduction to Numerical approach

In many applied problems, the equations involved can not be written in linear form,
and the solution of non-linear equations plays a role in applied mathematics of
importance equal to that of the solution of system of linear equations. Numerical
methods (non linear method) are usually needed if the terms of the equations are in
whole or in part transcendental functions.

A basic approach to the solution of numerical (non linear equation) equations
involves a set of successive approximation to the precise solution. In some examples
several different ways may be considered for setting up an approximation formula.
The convergence of the particular scheme chosen must be established, and then the
rate of convergence may be speeded up by an appropriate choice of method.

A.2 Iterative method

The Iterative method is more general and used method for any numerical solution.

We start with the equation g(0) = 0 and rearrange it into an equivalent expression of

the form 8 = g(6) such that f(8) =0, 8= g(8).

In general we will be concerned with only the real roots of these equations. The
approximation scheme is given by

6,.=80,), (A.2.1)
where,n=1,2, 3, .....

The equation (A.2.1) produces a sequence {6,} starting with an inijtial value 6,

which may be guess, or the result of another approximation scheme or merely an
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arbitrary value such as 8,= 0. The convergence of a particular sequence may be tested

in terms of the absolute error involved. Aitkinson(1978) shows that each error is
about proportional to the previous error to the 1.85th power.

A.3 The Newton-Raphson method

The Newton-Raphson method is one of the most applied method of solving equations.
This method is based on a linear approximation of the function. When the derivative
of g(6) is a simple expression which can be easily found, the real roots of the
equation g (@) =0 can be found rapidly by a process called Newton-Raphson method
after its discovers. This method consists in finding an approximate value of the
desired root graphically or otherwise and then finding a correction term which must
be applied to the approximate value to get the exact value of the root. We illustrate
this technique by solving first for single parameter €. Let us consider the following
expression

OlogL
00

g(0)=
(A3.1)

Where, L = L(0)= ﬁf(xi;ﬁ)

The problem is to find the estimate of & say é such that g (@)= 0. Therefore, é is

the required maximum likelihood estimator of @. If there is more than one value 8

such that g (@) = 0, the choice of an initial value is very important. In most cases, the

initial value obtained is in the neighborhood of the maximum likelihood estimator.
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When in doubt, one should consider several different initial values. If @ can not be
obtained explicitly from solving equation g(é) = 0, we may attempt a solution by

means of the Newton-Raphson procedure. Suppose that ¢9AO be an initial value of é
and then finding a correction term h so that the equation g(é) = 0 becomes g( éo +h)
= (. Now we can expand g( éo +h) by Taylor’s theorem as

2

g(6, +h) = (6, ) + hg'Go)+ % g"(00)F oo ... 0, (A32)

Suppose that h is very small and we may neglect the higher power of h. Then (A.3.2)

becomes as
g(6, th)y=g(6,)+hg'(00)=0, (A.3.3)
Therefore, g( HAO )+h g’(éo)=0 , (A3.4)

which means that

b= g._(g«;) , (A3.5)
g'6,)

Then the improved value of the root is given by

6,0 =60 8 (A3.6)
g'(6y)
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Where, 00(1) is called the first approximation of the desired root. Similarly in the

same way, the p-th approximation of 8 is given by

2(0,.)

9,” =6, =Ea
g’(ep—l)

(A3.7)

LN dg(@ A
Where, g'(6,.)) = %l |o- 9,

Therefore, Newton —Raphson method consists of solving each iteration, the equation

is g(0,)+(©0-0,)g'0,) =0, (A3.8)

It is evident from Newton-Raphson formula that the larger derivative g'(8), the
smaller is the correction term which must be applied to get the correct value of the
root. This means that when the graph of g () is nearly vertical where it crosses the
x-axis, the correct value of the root can be found rapidly. But this method should not
be used when the graph of g (@) is nearly horizontal where it crosses the x-axis. The
most important part of this method is to choose initial value because the Newton-
Raphson method will converge to value that is not the maximum likelihood function
L (0). Newton did not publish an extensive discussion of this method but he solved a
cubic polynomial in “Principia” [1687]. In 1975, Gross and Clark noted that although
this method does not always guarantee a maximum, it is a safeguard in that more than
one set of initial values is considered and it means that any particular values in

convergence can be uncovered.
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A.4 Lagrange Multiplier

In many problem of optimization i.e., of finding a maximum or minimum value of a
function, the real world context imposes certain restrictions on the variables of the
function. Lagrange has invented a method that can convert such a problem to one
which yields to the standard technique of setting the partial derivatives equal to zero.

The method is described as follows:

Given a function f(x,y). Find (x,,y,) such that (i) f(x,,y,)is optimal (either
maximum or minimum) subject to the condition (ii) g(x,,y,)=0. It involves the

following steps:
Step 1. Form a new function of three variables
F(xsyaﬂ)zf(xay)—ﬂ'g(xay)a (A41)

Step 2. Take the partial derivatives of F with respect to its variables and set them

equal to zero:

F(x,y,4) = %F(x,y,ﬂ») =0, (A42)
’ d A43

Fy(x,y,l)=?d}—F(x,y,/1)=O > (A4.3)
, d

F!(x,y,A) = HF(x, $,2)=0, (A.4.4)
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Step 3. Find the simultaneous solutions x,,y,,4, of the equations (A.4.2), (A.4.3)
and (A.4.4) and check the value f(x,,y,)to determine whether it is the desired

optimal solution.

Note that the value A is called a Lagrange Multiplier. The auxiliary function
F(x,y,A) is called the Lagrangean. The function f(x,y)is called the objective
function. The method can be more tersely described as introducing a Lagrangean and
optimizing it instead of the original function f(x,y,z). As with any general method,
the practitioner or the researcher must be wary of using Lagrange Multiplier when a
suitable direct approach is available. It should be pointed out that we offer no
justification for the Lagrange Multiplier technique because doing so would require a

fairly sophisticated excursion in to the properties of functions of several variables.
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