A Fault-Tolerant Multi-Agent Development Framework

Lin Wang

A Thesis
in
The Department
Of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 2004

© Lin Wang, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94754-8
Our file Notre référence
ISBN: 0-612-94754-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

A Fault-Tolerant Multi-Agent Development Framework

Lin Wang

Application-level fault tolerance incurs significant development-time cost. FATMAD is
a fault-tolerant multi-agent development framework that is built on top of a mobile
agent platform (Jade) and provides development support for application level fault
tolerance. FATMAD aims to satisfy the needs of two communities of users: agent
application developers and fault-tolerant protocol developers. FATMAD is based on a
generic fault-tolerant protocol whose refinements lead to a broad range of checkpoint
and recovery protocols to be used in user applications. This, in turn, can significantly
reduce the development time of fault-tolerant agent applications. FATMAD allows
application developers to apply suitable protocols and customizable deployment
configurations to their applications so that the characteristics and fault tolerance
requirements of a particular application can be addressed. FATMAD implements
common facilities that are required by different protocols. The protocol-specific parts

in each protocol can be extended by protocol designers.

1il

Acknowledgements

| extend my sincere gratitude and appreciation to many people who made this
master thesis possible. Special thanks are due to my supervisor Dr. Dhrubajyoti
Goswami and Professor Hon F. Li. Without their help this thesis cannot be done
properly. | am deeply indebted to Prof. Hon F. Li whose help, stimulating suggestions
and encouragement helped me in all the time of research.

I would also like to acknowledge with much appreciation my colleagues in the
distributed research group for all their help, support, interest and valuable hints.
Special thanks go to Zunce Wei who spared his time in contributing his idea and
revising a paper related to this work.

Especially, |1 would like to give my special thanks to my wife Jian and my parents
whose patient love enabled me to complete this work.

v

Table of Contents

LISt Of FIQUIES ..ottt vi
List Of TabIeS....c.ciiericecec e vii
Chapter 1 INtrodUCHIONccooiiiiicceeee e |
1.1 MOUIVALION ...ttt 1
1.2 ODJECHVES ...ttt r e erns 5
T RESUIES......coeiireiccc ettt r s 6
1.4 Organization of the thesisc.coviviiiiiciiceecec e, 7
Chapter 2 BACKGROUNDccooioiiiiiecceec ettt 8
2.1 Introduction to agent-based system technology..........c.ccccocvevevivenrnnn. 8
2.2 INtroduction t0 JAde.........ccccoiiiirieiicrcece e, 14
2.3 Rollback-recovery fault tolerance techniques..............cccooovveeernnnnn, 21
Chapter 3 Overview of the frameworkccccoeeeieiirecieeeceeee, 28
3.1 Objectives of FATMADo.ooioiieeecceeeeeeeee e, 28
3.2 USEr reqUIrEMENTSc.ooiiviiiieieeeeceeeeeeeee e 29
3.3 framework design approachc.oceeieeeeceeceeiee e, 33
Chapter 4 Framework model and architecture..............ccocooecuvecveeeceeeenan.. 35
4.1 Generic application - framework modelccocccooeeiveeeeiccn, 35
4.2 Role model @nalySis.........ccccovveiiiiioiiiieieceeeeeeeee e 37
4.3 ATCIITECIUTE........oveiiriiiieeieee ettt 41
4.4 FrameWOTK laYEIScocviiiiiiieeeecieeee e 45
Chapter 5 FATMAD ruNtimeoocovoviiiiieeeeeeeeeeee e 48
5.1 FD MONIOr @QeNt.........cocoooueiiieieieniieeeeeeeeeeeeeeeeeeeeeeeeet s 49
5.2 Repository manager agent..........c.oooovoieeeieeeecieee e, 53
5.3 Container ProXy @geNtcoovevovvoeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeererereeen 55
5.4 Communication MEeChaniSIMc.oooiioiiieeieeeeeeeeeeeeee e, 59
5.5 DePIOYMENT......oiiiiiiiee et 62
Chapter 6 Protocol SKeIEtONc.ooviiiiioeeeeeeeeeeeeeeeeeeeeeeee e 63
6.1 The generic rollback-recovery protoCol.............coouvvevieeoeeeecereeeean. 63
6.2 Structure of the protocol skeletonccoovevoveeooeeeeeeeeeeeeen 65
6.3 FT application agent Skeleton................c.ooooeev oo 68
6.4 Functional design of the Protocol skeleton...............ccoueveeceeeeann. 70
Chapter 7 Protocol extension and case study............coooooooeveoeeevceeeen. 84
7.1 ProtoCol @XIENSIONoouiveieiiuiiieeetieeeeeeeee e 84
7.2 Case study: Log-based rollback-recovery protocol..............cccouu....... 87
7.3 Case study: synchronized checkpoint protocolccccecvveevrennn... 91
Chapter 8 Fault tolerant application development and deployment........... 102
8.1 Developing fault tolerant agents............c.c.ooooi oo 102
8.2 Deploying a fault-tolerant applicationc.ccooveeonencenceen. 105
Chapter O EVAlUALIONcocoooviiiiiceceeeeee e 107
9.1 Usability evaluationccocooioiioiieeeeee e, 107
9.2 Performance evaluation...............c..c.ooooooiioiiiicioeeeeeeeeeeeeeeeeeen 108
Chapter 10 CONCIUSIONScoovivieiieieecceeeeee e 114
BIDOGIapRYc..cuiiiii e 115

List of Figures

Figure 2-1 FIPA reference agent platform architecturecc.coovoeeviiiciieeieeeenen. 16
Figure 2-2 JADE Agent Platform distributed over several containers...........ccc.c....... 17
Figure 2-3 An agent runs with concurrent behaviours..........ccccovveecveeicce e 20
Figure 2-4 Checkpoint and rollback-recovery of an application.............c...cccvvevenn.... 23
Figure 2-5 Checkpoint and rollback-recovery on distributed application 23
Figure 3-1 A layered view of an agent System.coooocvureeeceie e 28
Figure 3-2 FATMAD as @ MiddIE@WAre............coouiveiiiiieeecceie ettt 30
Figure 3-3 FATMAD framEWOTK......c.uuiiiiiiiee et ee e e eeeeee s 32
Figure 4-1 FATMAD supported fault tolerancecccoocuveeeereicciiscnee e, 35
Figure 4-2 Rollback-recovery protoCol SBt......cuuuiiviieceeeiiiiie et eeeeeeeaaenan 37
Figure 4-3 Role model for checkpoint/logging protocolccccveeveereveiiieieccreennnn 38
Figure 4-4 Role model for failure detection protocolc..ccceveevcviiicieiecreceeeean. 39
Figure 4-5 Role model for recovery protoCol.........ouieceiciceeeeeiie e eeeeee e e, 40
Figure 4-6 Role Mapping Strategycucieriiiiieeece ettt eee e 43
Figure 4-7 Layered view of FATMAD frameworkcccoueieecveerieioeieeeeeeeeee e, 45
Figure 5-1 A failure detection protocol scenario in the absence of failures 50
Figure 5-2 A failure detection protocol scenario in the presence of a failure 52
Figure 5-3 Repository Managercccciiiuiiiiuiieciiecctee e ee e e e raeae s 55
Figure 5-4 Message transmission MechaniSM............cccoeeveeiieieeeiieeceeeeeeeeeeeeeeeeans 56
Figure 5-5 FATMAD messaging mechaniSmcooceuevueeeeieeoienieeeeeeeeeeeeeeenan 61
Figure 6-1 Protocol skeleton StruCturec.eceeeieeeie et 65
Figure 6-2 Class diagram of the FT application agent skeletonccoeeeeerenann.. 68
Figure 6-3 Checkpoint/logging protocol over a set of agentsco.vcevvevvveeeeveennen 70
Figure 6-4 FIFOness of message deliVery ..o icieeeceeeeeeeeeeeeeeeeee e 73
Figure 6-5 A generic checkpoint/logging ProtoColccooeeveeeeeeeeeeceeeeeeeeeeeeee, 78
Figure 6-6 Distributed-timing SEIVICEc.ocvi i 79
Figure 6-7 Class diagram for distributed timing SErvicecooevveeeveeeeeeeeeeeann. 79
Figure 6-8 MesSages May MESS UP....uuciiiecirie ettt seeeeeeeeeeeeeeesseesaeaeean 82
Figure 7-1 Class diagram for protocol skeleton and generic protocol extension 85
Figure 7-2 LogBasedFTAgent class SoUrce Codecc.oviiiieicmeeeeeeeeeeeeeeenaennn 89
Figure 7-3 Source code of LogBasedRecoveryManager classc..ccoeecveeeeeeen.. 91
Figure 7-4 Class diagram for Log based rollback-recovery protocol extension......... 91
Figure 7-5 Class diagram for synchronized checkpoint protocol.........cccccceveveeunen..... 94
Figure 7-6 SynFTAgent Class SOUICE COUEcuuuiiiriiieeeee e e eeeee e e, 95
Figure 7-7 SynFTBehaviour class SOUICe COUEoouiiiiuivuieeiecieeeeeeeeeeeeeeeaenan 97
Figure 7-8 SynLoggingAction class SOUICe COU@.......cuiiiiiriieeeeeeeeeeeeeeeeeeeeer e 98
Figure 7-9 SynRecoveryManager class source Code..........ccooouveevveeveeecrveeneennnnn. 101
Figure 8-1 TransformMationoooiieiieiccee et e e 102
Figure 8-2 Transformed code eXample.............ocviiiiieiieeeee e, 104
Figure 8-3 FT agent deployment tool: FT Agent Launcher.........oooveeeveeveeereennnnn.. 106
Figure 9-1 FATMAD performance chart - [........c.cccocivvininiiiinieeeieeecce e 111
Figure 9-2 FATMAD performance chart = H...........ocoooeiiiiieeeeeeeeeeeeeeeeeeee e, 113

Vi

List of Tables

=T o (=38 B PSP 111
TADIE G2 . e e 112
AL -Gt 112
A G4 it —aa e e —————— 112

Vil

Chapter 1 Introduction

1.1 Motivation

1.1.1 Maturity of agent oriented software engineering

The discipline of agent-oriented software engineering (AOSE) has emerged during
the last decade and the potential advantages of agent paradigm have been
recognized by both scientific and industry communities. The agent paradigm have
been explored and applied in many application areas, such as bioinformatics, e-
commerce, supply-chain management, semantic web, etc [Cole98] [Preist99]
[PiGa00] [MaFu01] [Mols02] [VeCo02] [KMMK+03] [AGJ04] [DiW003].

The distributed agent community has done a lot of research and development work
to promote AOSE. Many methodologies and modeling techniques have been
suggested to support the development process of agent-based systems [ShSt01]
[JSMMO03] [OdPBO00] [SaSh00] [ArL.a98]. Some software standards, such as FIPA
ACL [FIPA97] and KQML [FiLa97] have been established to promote collaboration
and interaction among heterogeneous agent systems [KSTV+01]. Moreover, many
development frameworks and agent platforms have been provided to support agent-
based system development and deployment. However, the number of deployed
commercial agent-based applications is not large. The research and practice on
agent-based technology are not mature enough yet and require contribution from
different aspects.

Agents are active objects [Liu01] [ArLa98] presenting purposeful and also
autonomous behaviours at runtime. Tolerating failures in an agent application is a
non-trivial problem for agent developers and system designers. Along with the
evolution of agent-based system, adapting fault tolerance techniques into agent-
based system becomes an important work that will contribute the maturity of Agent

based system development.

1.1.2 Adaptation of fault tolerance techniques
Dependability is one of the most desirable features for all kinds of systems. Fault
tolerance, as one of essential techniques to enhance system dependability, has been
explored for many years. A lot of research effort has been put into fault tolerance
research and a lot of fruitful research results have been delivered [Jalote94]
[EAWJO02]. However, there is only a quite small subset of them that ever have been
put into practice. The reasons might be the following:

- some techniques might not fit into all application domain

- some techniques might be too complicated to be applied efficiently
Therefore, adapting fault tolerance research work into practice is a valuable effort

that could make them become realizable.

1.1.3 Developing fault tolerance feature is a complex job

As all distributed system, agent-based systems are prone to failures. Developing
fault tolerant features for agent-based systems is a complex and difficult job due to
the following reasons:

1) Different failures have different characteristics. System developers need to
distinguish them and address them in suitable ways.

2) Distributed systems involve much more complexity than centralized systems,
because the coupling relationships among distributed components usually lead to
extra coordination efforts in fault tolerance design. Distributed coordination is usually
complex since there is no unified global clock to easily support this coordination.

3) Fault tolerance features produce overhead. The characteristics of an application
are required to be considered very carefully in selecting and incorporating suitable
fault tolerance technique so that overhead may be minimized.

4) There are different fault tolerance strategies, each of which has different

characteristics, assumptions, suitability, and performance.

5) Incorporating fault tolerance techniques in applications requires very careful
design and implementation to guarantee that the added features do not conflict with
the application and do not bring about any new problem.

Consequently, we can see that designing a fault tolerance feature for a distributed
system requires designers to have deep understanding and knowledge of distributed
fault tolerance techniques, which are usually not possessed by main-stream
application developers.

Therefore, support for fault tolerance can be very helpful in developing fault tolerant
applications.

1.1.4 Fault tolerance support from existing agent platforms

There are a lot of multi-agent platforms and frameworks that have been developed to
enhance development and deployment of multi-agent system [AGKSWO01], such as
IBM Aglet, Concordia, Grasshopper, Zeus, Jade, FIPA OS, etc. All these platforms
provide system level services to support agent execution at runtime, such as agent
management, naming services, agent communication, etc. These systems also
provide different levels of support in designing and developing agent-based
applications. However, fault tolerance features are not commonly available in
existing platforms.

From the existing published works [WaPW98] [SSS+99] [BePR99] [Jade], we can
see that fault tolerance support at the system level has been explored in some agent
platforms, such as Concordia, James, Jade, etc.

The Concordia [WaPW98] system framework developed by Mitsubishi Electric
Research Lab mainly focuses on agent mobility support. It implements a "store
(checkpoint) and forward" queuing mechanism and a two phase commit protocol to
ensure atomic agent migration between nodes. Its checkpoint and recovery scheme
is partially implemented since it takes no consideration on agents running extensively

on one node as well as agent communication. Although its persistence storage

service can be used to implement checkpoint and recovery schemes, this leaves the
burden to application developers.
James [SSS+99] is a mobile agent platform that implements a rich set of reliability
and fault tolerance services, such as resource control, checkpoint/recovery,
reconfigurable itinerary, etc. Similar to Concordia, its fault tolerance scheme focuses
on agent mobility. We notice that James' application level checkpoint strategy is
based on each individual agent and it takes no consideration on multi-agent
collaboration and communication. This means, a recovered agent will possibly be
inconsistent with its environment agents due to lost messages.
Jade [BePR99] [Jade] developed by TILAB, is a multi-agent platform and agent
development framework that gains increasing popularity. As compared to the
previous two frameworks, besides providing agent mobility support, Jade provides
comprehensive support for high-level agent interaction. It implements the FIPA agent
specification proposed by the FIPA organization [FIPA], which aims at developing
standards to enhance interoperability among heterogeneous agent systems.
Starting from version 3.1, Jade provides two fault tolerance features at system level.
- Reliable message transmission:
By implementing a persistent delivery mechanism, Jade tries to provide a reliable
message transmission service.
- System level replication
In Jade, agents run within agent containers at different nodes (machines). A Jade
platform maintains all the platform management functionalities in a special agent
container, i.e. main container. By employing replication techniques on this main
container, the platform can survive crash failure. With this facility, we are allowed
to run several main containers (nodes) that provide system management
services in a distributed Jade platform. As long as there is more than one main

container alive, the whole platform remains functional.

However, Jade doesn't provide any scheme on application (agent) level fault
tolerance.

In general, we notice that existing fault tolerance enabled systems mainly focus on
system level fault tolerance. Application level fault tolerance support is very weak.
Agent communication as an important factor in multi-agent system is rarely taken
into consideration in these systems.

Therefore, to develop an effective fault tolerant multi-agent application, a developer

has to design and implement suitable schemes from scratch.

1.2 Objectives

With the consideration of application level fault tolerance development support, this
thesis intends to develop a fault-tolerant multi-agent development framework, which
is abbreviated as FATMAD, to pursue the following objectives:

1) Provide support for application developers in developing fault tolerant multi-

agent applications.

With the support from FATMAD, the application developer should be able to easily

incorporate a specific fault tolerance scheme into his/her agent application so that

the agent application can be fault tolerant at runtime.

Considering various requirements from application developers, the framework should

provide the following flexibilities:

- The application developer can decide fault tolerance design boundary. Since
fault tolerance is usually implemented at the expense of performance, the
application developer has the flexibility to implement fault tolerance features
within a smaller domain if necessary.

- Since various applications may have different characteristics that lead to different
requirements on fault tolerance feature design, FATMAD should provide choices
in helping the application developer implement different schemes. With a set of
available choices, the application developer can compare and select a fault

tolerance scheme that is suitable for the application.

_5-

2) Provide support for protocol designers so that they can easily test different
fault tolerance schemes and extend the framework by enriching the protocol
set.

There are different fault tolerance strategies, such as replication, rollback-recovery.
Under each strategy, there are various protocols, each Qf which has its own
characteristics that differ from others, such as assumptions, suitability of application
types, performance, etc. Besides the built-in protocols, protocol designers can use
the framework to design and test new protocols with minimum implementation effort.
The resulting protocol can become part of the framework and be used by application
developers.

In general, unlike some existing systems providing system level support, FATMAD
aims at providing application level fault tolerance features and also focuses on a

protocol developers’ perspective.

1.3 Results

With the previous objectives, the current version of FATMAD has been built on top of
the Jade agent platform version 3.0b and it currently supports the roliback-recovery

fault tolerance strategy.

As an extension of Jade, FATMAD incorporates the following features into Jade:

1) A set of fault tolerance service components (FATMAD runtime):

FATMAD integrates a set of components providing general services that are needed
in a variety of checkpoint and recovery schemes, ranging from coordinated
checkpoint/recovery, message induced checkpoint/recovery, to log-based recovery.
These components can be customized and launched on Jade to form a FATMAD
runtime environment that is needed by fault tolerant applications embedded with

relevant protocols.

2) A set of built-in roliback-recovery protocols (selectable FT schemes)

Through these component services, FATMAD provides a set of complete fault

tolerance protocols that can be applied to agent applications.

FATMAD provides a generic programming interface that is extended (by protocol
developers) in each specific fault tolerance protocol. Application developers can

easily incorporate the selected protocol into their application via this extended API.

3) Protocol skeleton and protocol development API

FATMAD can be extended and enriched with variant protocols. FATMAD provides a
generic protocol skeleton and a set of APIs that can help protocol developers to

implement various rollback-recovery protocols with significantly reduced effort.

4) Deployment tool
Deploying fault tolerance agents requires some parameters be specified at runtime.
FATMAD provides a deployment tool that can be used to specify these parameters

when loading fault tolerant agents to a Jade platform.

1.4 Organization of the thesis

The thesis is organized as follows:

In chapter 2, we introduce some background knowledge related to FATMAD. In
chapter 3, we analyze framework requirements from a user perspective and
introduce the framework design approach. In chapter 4, 5, and 6, we introduce the
framework model, architecture, and detailed design. In chapter 7, 8, we introduce
how FATMAD can be used by framework users: protocol designers and application

designers. In chapter 9, we introduce some evaluation. In chapter 10 conclude the

thesis.

Chapter 2 BACKGROUND

As we already mentioned, FATMAD framework has been built on top of Jade agent
platform and it mainly provides support for fault tolerance techniques based on
checkpoint and rollback-recovery strategy. In this chapter, we introduce some related
background materials that are involved in this project. We give a brief overview on
checkpoint and rollback-recovery techniques, agent based paradigm, and Jade

agent platform.

2.1 Introduction to agent-based system technology

2.1.1 Agent

Originating from artificial intelligence, the discipline of agent-oriented software
engineering (AOSE) has emerged for more than ten years, and gained a lot of
interests in computer science community. As a new paradigm for conceptualizing,
designing, and implementing software systems, agent-based technology is intended
to emulate or simulate the way human act in their environment, interact with one
another, and cooperatively solve problems [Adina98].

An agent-based system is composed of active software entities, i.e. agents, which
carry out some set of operations on behalf of a user or another program with some
degree of independence or autonomy, and in so doing, employ some knowledge or
representation of the user's goals or desires [a definition of IBM]. Software agents
are usually expected to encapsulate some of the following generic characteristics
[KSTV+01]:

- Autonomy:

Agents operate without the direct intervention of humans or others, and have some
kind of control over their actions and internal state.

- Social ability:

Agents interact with other agents via some kind of agent-communication language.

- Reactivity:

Agents perceive their environment and respond in a timely fashion to changes in it.

- Pro-activeness:

Agents do not simply act in response to their environment. They are able to exhibit
goal-directed behaviour by taking the initiative.

- Learning:

Adaptive changes its behaviour based on its previous experience.

- Mobility:

Agents are able to transport itself from one machine to another.

2.1.2 AOP

Developing software system with such characteristics is quite different from
conventional development paradigm, such as object-oriented design (OOD), object
oriented programming (OOP). However, this new paradigm, agent-oriented
programming (AOP), can be regarded as an extension of object-oriented
programming (OOP), with the following key additional features [Tveit01]:

- Agents are active objects with independent threads of execution;

- Agents have autonomous behaviour that can’t be directly controlled;

- Agents usually support structures for representing mental components, i.e. beliefs
and commitments;

- Agents support high-level interactions (using agent-communication languages)
between agents based on the “speech act” theory as opposed to ad-hoc messages
frequently used between objects. Examples of such languages are FIPA ACL and
KQML.

2.1.3 Multi-agent system

Quite large amount of applications require multiple agents to accomplish some
complex tasks. A multi-agent system (MAS) can be regarded as a set of loosely
coupled software agents scattering over networks and interacting to solve problems

that are beyond the individual capacities or knowledge.

As stated in [CM-MAS], the MAS approach has the following advantages over a
single agent or a centralized approach:

1) MAS distributes computational resources and functionalities across a network of
interconnected égents. Whereas a centralized system may be plagued by resource
limitations, performance bottlenecks, or critical failures, an MAS is decentralized and
thus does not suffer from the "single point of failure" problem associated with
centralized systems.

2) MAS allows for the interconnection and interoperation of muitiple existing legacy
systems. By building an agent wrapper around such systems, they can be
incorporated into an agent society.

3) MAS models problems in terms of autonomous interacting agents, which is
proving to be a more natural way of representing task allocation, team planning, user
preferences, open environments, and so on.

4) MAS efficiently retrieves, filters, and globally coordinates information from sources
that are spatially distributed.

5) MAS provides solutions in situations where expertise is spatially and temporally
distributed.

6) MAS enhances overall system performance, specifically along the dimensions of
computational efficiency, reliability, extensibility, robustness, maintainability,
responsiveness, flexibility, and reuse.

2.1.4 Available techniques and tool support for MAS

MAS is increasingly getting a lot of attention and the MAS community has done quite
a lot of work to promote multi-agent system development. These works mainly
involve the following aspects:

(1) Application domain

MAS has been explored by both scientific and industrial communities. Quite a lot of
experimental projects have been conducted. [AgentLink] lists more than ninety

projects exploring various agent-based applications in different domains.

- 10 -

(2) Development methodology

Aé a new paradigm, the growth of MAS requires mature methodologies. Many
diverse Agent Oriented Software Engineering (AOSE) approaches and
methodologies have been proposed, including Gaia [WoJKO00], MESSAGE
[MaDNO02], MaSE [DelLoach99], Prometheus [PaWi02] and Tropos [GiIMP02], AAIl
methodology [KiGR96], AUML [OdPB00], and ROADMAP [JuPS02]. Each of the
methodologies has different strengths and weaknesses, and different specialized
features to support different aspects of their intended application domains.

(3) Agent standard

To promote collaboration and interaction between agents and interoperation among
different agents systems, there are some standards and specifications that have

been proposed and can be applied to agent-based systems.
e KQML

One of them is the Knowledge Query and Manipulation Language, also known as
KQML [FiLa97], which is part of the ARPA sponsored project: Knowledge Sharing
Effort. KQML is both a message format and a message-handling protocol to support
run-time knowledge exchange among agents. It focuses on an extensible set of
performatives, which defines the permissible operations that agents may attempt on
each other's knowledge and goal stores. The performatives comprise a substrate on
which to develop higher-level models of inter-agent interaction such as contract nets
and negotiation. In addition, KQML provides a basic architecture for knowledge
sharing through a special class of agent called communication facilitators which

coordinate the interactions of other agents.

« MASIF
Another standard is MASIF [OMG-MASIF] [MBBC+98]. In 1995 the OMG started

working on a standard, called Mobile Agent Facility (MAF), in order to promote

-11 -

interoperability among agent platforms. In 1997, a joint submission by IBM, General
Magic, The Open Group, GMD FOKUS, etc., was presented to the OMG. And the
standard's name was changed from MAF to Mobile Agent System Interoperability
Facility (MASIF). In 1998 this specification was accepted as an OMG standard. The
current edition was issued in 2000.

MASIF was developed in order to achieve a certain degree of interoperability
between mobile agent platforms of different manufacturers without enforcing radical
platform modifications. MASIF is not intended to build the basis for any new agent
platform. Instead, the provided specifications shall be used as an “add-on” to already
existing systems.

e FIPA

Another important standard that is gaining increasing popularity is FIPA
specification[FIPA]. The Foundation for Intelligent Physical Agents (FIPA) was
formed in 1996 to produce software standards for heterogenous and interacting
agents and agent-based systems. It is a non-profit association formed under Swiss
law. Its members include companies and universities. FIPA identified a list of agent
technologies deemed to be specifiable in 1997 and standardization work started.
There is a set of spec called FIPA 97 and another called FIPA 98, both are now on
Obsolete Status. The current spec is FIPA 2000, half of which is in the Preliminary
Staus, another half on Experimental Status.

FIPA’s main effort is towards the production of internationally agreed-upon
specifications that provide a standard for the development of agent-based
applications, services and equipment. FIPA’s vision of the future landscape in agent
technology depicts large agent societies, in which agents can co-operate.

At this time, the FIPA's specifications are grouped into 5 categories:

1. Applications

2. Abstract Architecture

3. Agent Communication

-12-

4. Agent Management

5. Agent Message Transport

In general, these specifications provide:

- A commonly agreed means by which agents can communicate with each other so
that they can exchange information, negotiate for services, or delegate tasks;

- Facilities whereby agents can locate each other (i.e. directory facilities)

- An environment which is secure and trusted where agents can operate and
exchange confidential messages

- A unique way of identifying other agents (i.e. global unique names)

- A means of accessing non-agent and legacy systems, if necessary

- A means of interacting with users

- A means of migrating agents between platforms

- etc.

Comparing with other specifications, we can see FIPA gradually integrates some
features from other standards. For example, FIPA ACL derives from KQML, and
FIPA 2000 specification deals with the mobility aspect of agents. It tries to integrate
FIPA and MASIF.

¢ Agentcities

Agentcities [Agentcities] is an initiative that was first conceived in January 2000 to
create a next generation Internet that is based upon a worldwide network of services
that use the metaphor of a real or a virtual city to cluster services. These services,
ranging from eCommerce to integrating business processes into a virtual
organization, can be accessed across the Internet, and have an explicit
representation of the capabilities that they offer. The ultimate aim is to enable the
dynamic, intelligent and autonomous composition of services to achieve user and
business goals, thereby creating compound services to address changing needs.

Agentcities is based on FIPA.

-13 -

Since its inception the testbed network has grown rapidly to support a wide range of
prototype systems: from small test systems to large demonstrators involving over
100 deployed agent-based services.

(4) Agent platform and tools

There are quite a few agent platforms and frameworks that have been developed to
support agent-based system development and deployment. Some mobility-oriented
agent platforms include IBM's Aglets, General Magic's Odyssey, ObjectSpace's
Voyager, IKV's Grasshopper, Mitsubishi's Concordia, James, AgentTcl, MOA, etc.
FIPA, as an important multi-agent system standard, has gained encouraging support
from many publicly available agent platforms: Agent Development Kit, April Agent
Platform, Comtec Agent Platform, FIPA-OS, Grasshopper, JACK Intelligent Agents,
JADE, JAS (Java Agent Services API), LEAP, ZEUS.

MASIF standard doesn't have as many implementations as FIPA does. Some
MASIF-compliant platforms are Grasshopper (by IKA), Open Mobile Agent (SOMA)
System (by Universita' di Bologna in Italy).

2.2 Introduction to Jade

2.2.1 Why choose Jade?

In this project, we choose Jade [Jade] as agent platform, on which we implement the
fault tolerant framework. Existing multi-agent platforms are not mature and stable
enough to be commercialized, although there are a few commercial products
announced. One reason to choose Jade is that it has gained increasing popularity
and it currently has a relatively large user community and applications. Another
reason is that Jade has relatively more complete features for multi-agent systems
and it supports the FIPA standard.

2.2.2 What’s in Jade?

Jade (Java Agent Development Framework) is a software development framework

aimed at developing multi-agent systems and applications conforming to FIPA

-14 -

standards for intelligent agent. It includes two main products: a FIPA-compliant agent
platform and a package to develop Jade agents.

Jade agent platform provides a runtime environment for software agents to execute,
to manage their execution, to access system resources, and to guarantee integrity
and protection of agents and the platform itself. Jade also provides support for
migration, naming, location and communication services.

Jade comes with an agent programming model to help developers implement agents
that are supported by the Jade platform. Such programming model captures
common requirements for developing a multi-agent system, such as concurrency,
asynchronous communication, agent mobility, high-level interaction, etc. Jade
development package is the framework that can be used to implement Jade
supported agents to run on Jade platform.

In addition, Jade provides support for agent communication at different levels of
abstraction specified by FIPA, such as agent communication language (ACL)
support, ontology support, content language support and so on.

In general, Jade’s implementation complies to FIPA2000 specification, which
guarantees that agents running on Jade platform are able to communicate with

agents running on other FIPA-compliant platforms.

2.2.3 Jade agent platform

To develop a framework on Jade, we need first to understand the Jade platform.
Jade conforms to FIPA standards, which has relevant platform architecture
specification and agent management specification.

Figure 2-1 FIPA reference agent platform architecture illustrates the agent
management reference model for an agent platform, which is specified in FIPA.

The reference model consists of the following logical components [FIPA], each

representing a capability set:

~15-

Software Software

‘| Directory | Agent Directory
Management | | Facilitator -, | Management

Facilitator
System

Figure 2-1 FIPA reference agent platform architecture

1) Agent Platform

An Agent Platform (AP) provides the physical infrastructure in which agents can be
deployed. The AP consists of the machine(s), operating system, agent support
software, FIPA agent management components (DF, AMS and MTS) and agents.
Figure 2-2 illustrates the Jade platform topology. A Jade agent platform can be split
on several hosts. The part of platform on each host is one Java application, and
hence one Java virtual machine. Each JVM is basically an agent container that
provides a complete run time environment for agent executions and allows several
agents to concurrently execute on the same host.

The main-container, or front-end, is the agent container where the AMS and DF lives
and where the RMI registry, that is used internally by JADE, is created. The other
agent containers, instead, connect to the main container and provide a complete run-

time environment for the execution of any set of JADE agents.

- 16 -

Host | Host2 ' Host 3

{IRE 12

Netwark protocol s

Figure 2-2 JADE Agent Platform distributed over several containers

2) Agent Management System

The Agent Management System (AMS) in Jade is the agent who exerts supervisory
control over access to and use of the Agent Platform. Only one AMS will exist in a
single platform. The AMS provides white-page and life-cycle service, maintaining a
directory of agent identifiers (AID) and agent state. Each agent must register with an
AMS in order to get a valid AID.

3) Agent

An agent is a computational process that implements the autonomous,
communicating functionalities of an application. Agents communicate using an Agent
Communication Language(ACL). An Agent is the fundamental actor on an agent
platform that combines one or more service capabilities into a unified and integrated
execution model. Each agent has a unique Agent Identifier (AID) labelling it so that it

may be distinguished unambiguously within the Agent Universe.

-17 -

4) Directory Facilitator

The Directory Facilitator (DF) in Jade is the agent that provides yellow pages
services to other agents. Agents may register their services with the DF or query the
DF to find out what services are offered by other agents.

5) Message Transport Service

The Message Transport Service (MTS) in Jade, also called Agent Communication
Channel (ACC), is the software component controlling all the exchange of messages
within the platform, including messages to/from remote platforms.

6) Software

- Software describes all non-agent, executable collections of instructions accessible
through an agent. Agents may access software, for example, to add new services,
acquire new communications protocols, acquire new security protocols/algorithms or
new negotiation protocols, etc.

2.2.4 Jade agent programming model

To design application level fault tolerance features, we need to clearly understand
the model for programming Jade agents. This involves Agent class, computational
model, agent life cycle control, agent communication, and agent migration.

1) Agent class

The Agent class represents a common base class for user defined agents.
Therefore, from the programmer’s point of view, a JADE agent is simply an instance
of a user defined Java class that extends the base Agent class. This implies the
inheritance of features to accomplish basic interactions with the agent platform, e.g.,
registration, configuration, remote management, etc., and a basic set of methods that
can be called to implement the custom behaviour of the agent e.g., send/receive
messages, use standard interaction protocols, register with several domains, etc.

2) Computational model

The computational model of an agent is multitasking, where tasks (or behaviours)

are executed concurrently. Each functionality/service provided by an agent should be

-18 -

implemented as one or more behaviours, represented by Behaviour classes. A
scheduler, internal to the base Agent class and hidden to the programmer,
automatically manages the scheduling of behaviours. However, Jade agent
scheduler doesn’t support this concurrency transparently. The developer is required
to design the semantics of concurrency among behaviours for an agent.

3) Behaviour class

The Behaviour class is a common base class that can be extended by users to
program user defined agent behaviours.

The detailed behaviour action is programmed into the action() method, that is
invoked each time this behaviour is scheduled to execute by the agent internal
scheduler, until this behaviour is removed from the agent internal scheduler.

As soon as the action() method returns, the scheduler will invoke another method:
done(), which returns a Boolean value, to decide whether to remove this behaviour
from the internal scheduler.

Therefore, to extend a Behaviour class, the developer is required to
implement/override the two methods: action() and done().

The action() method is in fact the atomic action block for the agent scheduler. In
other words, once a behaviour is schedule to run, its action() method will be
executed completely. There is no interleaving among different behaviours within any
action() method. Therefore, we can name one run of action() method as atomic
behaviour action (ABA). Figure 2-3 An agent runs with concurrent behaviours
shows an example of an agent with three behaviours: b1, b2, and b3, and illustrates
how the agent scheduler works.

From this programming model we can see that the developer role is in deciding when
to terminate an atomic behaviour action at design time. The developer should also
carefully design some state variables to remember and control the progress of each

behaviour so that the atomic behaviour action does not always repeat the same

-19-

action if it is not designed to do so. The length of an atomic behaviour action should

be carefully designed to avoid starving some agent behaviours.

Start > |
bl b2 b3
/ <’""’“‘: atomic behaviour action
<] f - D defined by action method()
m_§ : /)J = S [J system tasks, scheduling
|| < 7
— f[] Jj —¥ execution order
w“_}z /
] '_‘] & —> message
A A |
3 / s b1,b2,b3: behaviours
- JAD
/ Pad
V[
End >

Figure 2-3 An agent runs with concurrent behaviours

4) Inter-agent communication.

Jade agents communicate with other agents through the Jade Agent Communication
Channels. The Agent class provides a set of methods for inter-agent communication.
According to the FIPA specification, agents communicate via asynchronous
message passing, where objects of the ACLMessage class are the exchanged
payloads. The Agent.send() method allows to send an ACLMessage. The value of
the receiver slot holds the list of the receiving agent IDs. The method call is
completely transparent to where the agent resides, i.e. be it local or remote, it is the

platform that takes care of selecting the most appropriate address and transport

mechanism.

-20 -

5) Accessing the private queue of messages

The platform puts all the messages received by an agent into the agent’s private
queue. Several access modes have been implemented in order to get messages
from this private queue.

The message queue can be accessed in a blocking (using blockingReceive()
method) or non-blocking way (using receive() method). Both methods can be
augmented with a pattern-matching capability where a parameter is passed that
describes the pattern of the requested ACLMessage.

6) Mobility

Jade platform implements weak migration to support agent mobility.

2.3 Rollback-recovery fault tolerance techniques

Fault tolerance is an important strategy to build dependable systems. In this section,
we introduce some basic fault tolerance concepts and techniques that are related to
our work.

2.3.1 Faults, failures, and fault tolerance techniques

Fault-tolerance is the property of a computer system to continue operation at an
acceptable quality, despite the unexpected occurrence of hardware or software
failures. As illustrated in [Tanenbaum02] faults are generally classified as transient,
intermittent, or permanent. Transient faults are non-repeatable faults. Intermittent
faults periodically and unexpectedly. Permanent faults are the faults that continue
exist until they are fixed. A program bug in an agent is a typical permanent fault.

A fault may lead to a failure. Failures are various, such as crash failure, response
failure, arbitrary failure. The failures we are dealing with in this work are fail-stop
failures caused by transient faults. For example, an agent may crash or a agent node
(éontainer) may crash.

The key technique for fault tolerance is to use redundancy. As illustrated in

[Tanenbaum02] there are three types of redundancy:

-21 -

e Information redundancy:

With information redundancy, extra information is used so that the garbled
information can be recovered when failures present. A Hamming code applied in
data transmission is a typical example of this type of redundancy.

* Time redundancy:

With time redundancy, an action is repeated when a failure occurs. Typical examples
are transactions, in which aborted transaction can be redone with no harm.
Rollback-recovery via checkpoints and event log is an example that use both
information redundancy and time redundancy.

¢ Physical redundancy:

With physical redundancy, extra processes or equipments are used so that when a
failure partially affects system’s functionality, the remaining system can continue to
function. Replicating software processes is a typical use of this type of redundancy

and is widely used.

2.3.2 Rollback-recovery

There are different techniques to handle faults, such as masking, recovery, self-
stabilization. The current version of our framework provides fault tolerance support
that is based on rollback-recovery technique.

Rollback-recovery is a backward error recovery technique. The main idea of this
technique is to bring a system from a failure to a previous correct state when the
failure presents. To recover a failed system, some recovery related information such
as checkpoints, i.e. program states, is required to reconstruct the system state.
Recovery related data are recorded during failure free execution and they should be
saved in a stable storage that can survive the failures to be tolerated.

Figure 2-4 illustrates a checkpoint and failure recovery scenario during an

application’s lifeline. At runtime, the application takes three checkpoints. When a

_922.

failure occurs, the application is recovered from the most recent checkpoint state

(C3).

fail

ecover
to C3

Figure 2-4 Checkpoint and rollback-recovery of an application

A successful recovery depends on whether the necessary information is available to
reconstruct the program. The application characteristics determine what information
is necessary and sufficient to be saved in order to support a failure recovery.

2.3.3 Rollback-recovery for distributed message-passing systems

2.3.3.1 Issues in distributed systems

A multi-agent system is a distributed system involving many processes (agents)
running at different locations and communicating across the network. When dealing
with distributed applications, rollback-recovery techniques become relatively

complicated and should be carefully applied.

PO

P1

P2

Figure 2-5 Checkpoint and rollback-recovery on distributed application

-23 -

Figure 2-5 illustrates a checkpoint and recovery scenario of a distributed application.
There are three processes in the application and they communicate through
message passing. At run time, they take checkpoints according to certain schemes.
When a failure occurs, the recovery action may have different choices based on the
available checkpoints. In this example, L1 and L2 are two possible global states,
each of which is constructed by a set of local states composed of checkpoints at all
processes. L1 is an inconsistent global state, in which process PO has not sent
message m1 but process P1 has already received it. L2 is a consistent global state.
However, there is a message (m3) in-transit in L2, in which PO has sent a message
of m3 but p2 has not received it yet. This leads to missing of m3 at the recovery if it
is not saved since PO will not send it again.

Inconsistency and message in-transit are two main issues that need to be
considered in the design of a message passing based distributed checkpoint and
recovery algorithm.

2.3.3.2 Protocols

There are quite a few distributed checkpoint-recovery protocols (algorithm). In
general, as illustrated in [EAWJ02], they can be classified into two categories:
checkpoint-based protocols and log-based protocols.

1. Checkpoint based rollback-recovery

Checkpoint-based rollback-recovery relies only on checkpoints to achieve fault
tolerance. Upon a failure, checkpoint-based rollback-recovery restores the system
state to the most recent consistent set of checkpoints, which form a recovery line
[Randell75].

As illustrated in [EAWJO02], checkpoint-based rollback-recovery techniques can be
classified into three categories: uncoordinated checkpointing, coordinated

checkpointing, and communication induced checkpointing.

_24 -

1) Uncoordinated checkpointing

Uncoordinated checkpointing, also known as independent checkpointing, allows
each process to record its local state from time to time in an uncoordinated fashion.
This technique has the advantage that each process has maximum autonomy to take
checkpoints. However, this approach may lead to possible domino effects, in which
large amount of checkpoints are useless so that processes have to be rolled back to
the beginning of the computation. Those useless checkpoints incur overheads and
cannot contribute to the recovery. Since a recovery line is not known at runtime,
each process is required to maintain multiple checkpoints that consume large
storage space.

In this technique, if a failure occurs the recovery process has to collect all checkpoint
dependency information, which is recorded in each checkpoint, in order to determine
a consistent recovery line for recovery. Construction of recovery line is usually
complicated.

Some techniques in constructing recovery lines for uncoordinated checkpointing are
provided in [EAWJ02].

2) Coordinated checkpointing

In coordinated checkpointing, all processes are synchronized to take checkpoints in
order to form a consistent global state during failure free executions. When a failure
occurs, each process is rolled back to its most recent checkpoint.

The main advantage of coordinated checkpointing is that the saved checkpoints are
automatically consistent. It makes the recovery process easier than uncoordinated
checkpointing and is not susceptible to the domino effect. However, coordinated
checkpoint may incur overhead caused by checkpoint coordination.

There are generally two ways of checkpoint coordination:

¢ Blocking checkpoint coordination

_925.

This technique use block communications for checkpoint coordination.

[TamSeq84] is a typical example that applies a two phase commit protocol when

taking checkpoints.

o Non-blocking checkpoint coordination

This technique tries to avoid large coordination overhead by applying non-block

communication when taking checkpoints.

Typical examples of this type are described in [ChanlLamp85], [LaiYang87],

[EInZwa92], [Silva97], etc.
Some protocols such as [CriJah91] [TongKT92] apply synchronized clock
mechanism as an assistant to achieve checkpoint coordination with reduced
overhead.
3) Communication induced checkpointing
Communication induced checkpointing, also known as quasi-synchronous
checkponiting [ManSing99], tries to avoid the domino effect without requiring all
checkpoints to be coordinated. In this technique, processes take two kinds of
checkpoints:

e Basic checkpoints: They are taken independently.

e Forced checkpoints: They are message induced.
Forced checkpoints are taken to prevent the creation of useless checkpoints, which
will never be part of a consistent global state. Communication induced protocols do
not exchange any special coordination messages to determine when forced
checkpoints should be taken. Instead, they piggyback protocol specific information
on each application message. Then the receiver uses this information to decide if it
should take a forced checkpoint.

[ManSing99] and [EZWJ02] systematically present details of this technique.

2. Log-based rollback-recovery
Checkpointing is an expensive operation that involves blocking the process’s

execution, serializing the state of the process and its data, and saving them into

276 -

stable storage. Log based rollback-recovery is the technique that tries to reduce
checkpoint overhead.

Log-based roliback-recovery relies on the assumption based on the piecewise
deterministic model (PWD) [StroYam85], which postulates that all nondeterministic
events that a process executes can be identified and that the information necessary
to replay each event during recovery can be logged in the event’s determinant.
During failure-free execution, each process logs the determinants of all the non-
deterministic events on to stable storage. It also takes checkpoints to reduce the
roliback distance during recovery. After a failure is detected, the failed processes
recover by using the checkpoints and logged determinants to replay the
corresponding nondeterministic events precisely as if they occurred during the pre-
failure execution.

In message-passing systems, message events are regarded as main non-
deterministic events in log-based rollback-recovery. Message logging is the key
technique for log-based rollback-recovery protocols. Messages can be logged at
sender side or receiver side, which leads to the difference during recovery.
Messages can be logged synchronously or asynchronously, which leads to the
difference on system performance. Detailed techniques for log-based rollback-

recovery can be found in [EZWJ02].

_27 -

Chapter 3 Overview of the framework
This chapter gives an overview of FATMAD, including generic framework

requirements, user perspectives, and design strategy.

3.1 Objectives of FATMAD

3.1.1 Failure model

The eventual objective of FATMAD is to handle application level failures of an agent-
based system. There are different types of agent failures such as crash failure,
omission failure, Byzantine failure, etc [Tanenbaum02]. The current version of
FATMAD is aimed at handling fail-stop type agent crash failure.

As illustrated in Figure 3-1, an agent system can be divided into several layers. An
agent crash may be caused by faults occurring at any layer. For example, some
timing error occurred at a lower layer may cause an agent crash. An agent container

crash will lead to a crash on all agents in that container.

Agent platform

Operating Operating Operating
system system system
Hardware Hardware Hardware
Network

Figure 3-1 A layered view of an agent system.

We position FATMAD as an add-on layer that exists between agent layer and agent
container layer. In general, FATMAD should be aimed at handling agent crash
caused by faults occurring at any layer under the following assumptions:

1) The required network services can survive;

2) The agent platform can survive;

_78 -

3) The FATMAD can survive.
3.1.2 Framework objectives
As we have already introduced in chapter 1, FATMAD is a framework that is aimed
at building fault tolerant multi-agent applications, based on roliback-recovery fault
tolerance techniques. Another goal of FATMAD is to serve as a test-bed to try out
variant rollback-recovery techniques.
We chose Jade as our targeting agent platform. FATMAD is designed to be an
extension or an add-on feature to Jade. It provides application level fault tolerance
development support.
The main objectives of FATMAD are twofold:
1) FATMAD can be used to easily incorporate fault tolerant features into Jade agent
applications.
2) FATMAD itself as a reusable and extensible system can be enriched by protocol
developers so that they can try out and implement innovative fault tolerance

protocols with minimum effort.

3.2 User requirements

Based on our objectives, FATMAD is targeted for two different groups of users:
application developers and protocol developers. We briefly describe the perspectives
of these two different user groups in the following:

3.2.1 Application developer

Application developers focus on agent application development. Fault tolerance for
them is an add-on feature that can be incorporated into their applications. We don’t
assume that application developers have enough knowledge on detailed fault
tolerance schemes. They should be relieved from the responsibility of implementing
distributed fault tolerance schemes. What they ought to do is to select an available
scheme (e.g., protocol in FATMAD) and use it correctly according to some relevant

usage guides.

-29.

Accordingly, an application developer should not know about implementation details
of FATMAD. When programming with FATMAD, they should only be concerned with
how the applied fault tolerance features can be used and what is the expected
behaviour and performance.

Hence, from an application developer’s perspective, we can identify the requirements
for FATMAD as follows.

- FATMAD is a middleware system that sits between Jade platform and Jade
application. FATMAD provides a set of rollback-recovery fault tolerance
schemes that allow application developers to select and apply to their
applications.

- FATMAD should be as transparent as possible to application developers. In
other words, coding with FATMAD should require minimal knowledge on the
internal details of FATMAD.

- FATMAD APIs should be easy to use.

Agent application

FATMAD

Jade platform

Java VM

0s

Hardware

Figure 3-2 FATMAD as a middleware

In addition, FATMAD should provide the following flexibilities to the developer:
- An application developer should be able to define fault tolerance boundary so

that only selected agents are fault tolerant.

230 -

- An application developer should be able to choose her own deployment plan
so that she can address different failure assumptions or even optimize the
performance.

The typical usage scenario of FATMAD for application developers should be the
following:

1. Develop an agent application;

2. Analyze application characteristics and select a suitable protocol from
FATMAD protocol library;

3. Refactor the agent application so as to incorporate the selected protocol into
it;

4. Decide on proper deployment configuration and deploy the application.

3.2.2 Protocol developer

Unlike the application developers, protocol developers focus on designing fault
tolerance schemes. As designers, they are assumed to have detailed knowledge of
fault tolerance techniques. They bear the responsibility to guarantee that the protocol
will behave correctly under their intended assumptions.

From the protocol developers’ perspectives, the FATMAD framework is a set of
reusable components that capture some common features of various rollback-
recovery algorithms. Developing a specific protocol with FATMAD should not require
implementing generic functions that also appear in other protocols. Instead, the
development effort should focus on the protocol specific functionalities.

Hence, from a protocol developer’s perspective, the requirements are as follows:

- FATMAD should provide functions that are common to different protocols and
those functions should have an easy-to-use interface for protocol developers.

- FATMAD should provide effective support for implementing protocol specific
functionalities.

When programming with FATMAD, the protocol designer must understand the

framework structure and the framework model before implementing her own protocol.

-31-

Moreover, the protocol designer needs to clearly understand the semantics behind
each interface she uses so that the invoked service behaves exactly as desired.
The typical usage of FATMAD for protocol designers in developing a specific
protocol should be as follows:
1) Design the protocol;
2) Analyze the feasibility of implementing the protocol using FATMAD by looking
at its design constraints;
3) Decompose the protocol into sub-protocols and identify those generic sub-
protocols that are already available in FATMAD;
4) Implement the rest of the functions and integrate them with FATMAD:
5) Test the protocol;
6) Write the documents of the protocol including user’'s manual.

3.2.3 Relationships between the two user groups

FATMAD | Extended
Protocol ! Protocols ‘
Library cmcceeeee |
FATMAD Runtime

Figure 3-3 FATMAD framework
Apparently, the two user groups are related to each other since they all aim at
making agents to be fault tolerant and they share responsibilities towards this
common goal. One way of viewing the relationship between the two user groups is
like “producer and consumer”. The protocol designer delivers a usable protocol
package and its relevant documents regulating how to use the package. The
application developer can select that protocol and integrate it with her application.
The application developer must conform to the usage constraints of the integrated

protocol so that the hard coded fault tolerance mechanisms can function correctly.

_32.

3.3 framework design approach

The framework development, especially in this case, is a complex task since it
involves many design variables. The following discussion gives a brief overview of
the framework from the software engineering perspective.
3.3.1 What is a framework?
A framework is a generic application that allows a set of specific application
variations to be extended. In general, a framework should contain the following:

1) An generic application model, usually an abstract algorithm, that makes

framework generated applications functional;
2) Frozen spot functions that are immutable in different framework applications
[Pree9d];

3) Hot spot functions that vary in different framework applications. [Pree94]
By plugging in the hotspot functions, a concrete framework application can be
generated.
3.3.2 Framework design path
Based on the above understanding of a framework, our framework design mainly
follows the following design procedures:
1) Specify a generic application to establish the framework model:
By analyzing the requirements, we can specify the generic application that covers all
the framework requirements in an abstract level. This generic application establishes
the behavioural model of the framework. It tells how the framework application
behaves in general. We apply a role model technique in modeling our requirement.
2) Design the system architecture:
Since the generic application illustrates the behavioural model of the framework, a
set of framework components can be defined by decomposing the application

functionality. In our case, these components are agents.

-33 .

3) Design “FATMAD runtime”:

From architecture design, we can identify those components and services that are
immutable and are required for all protocol variations and for all applications. These
components and services form a runtime environment that provides support for
protocols and applications.

4) Build up a common protocol and application skeleton:

A framework, as a semi-complete application [JohFoo88], has hard-coded
functionality (frozen spots) and some blank spaces to be filled in. Based on the
runtime services, we can design the application functional structure to organize those
frozen spot functions and hot spot functions. In our case, we designed a protocol
skeleton and an application skeleton.

The protocol skeleton captures the common functions in different protocols. The
application skeleton allows application developers to integrate their agent application
with a FATMAD protocol. These issues are discussed in detail in the following

chapters.

-34

Chapter 4 Framework model and architecture
4.1 Generic application - framework model

Designing a framework is to design a generic application. Regardless of the
variations in different framework-extended applications, the framework itself can be
regarded as a semi-complete application at the abstract level. Any potential
application should be able to be mapped into the framework. In our current version of
FATMAD, the general application for FATMAD framework is a fault tolerant Jade
agent application that implements a distributed rollback-recovery protocol. The
generic distributed rollback-recovery protocol captures the framework functionality,
which represents a large set of applications.

As we already discussed, a common Jade application is usually composed of a set
of Jade agents, each of which is a single Java thread running in a Jade agent
container. Jade agents are treated as distributed processes so that the distributed
rollback-recovery protocol can be easily applied. At runtime, a concrete FATMAD
supported rollback-recovery protocol serves as a middleware system providing fault
tolerance services to a set of agents sitting on the Jade platform. The protocol
functionality should be able to survive tolerated failures so that it can function

whenever a tolerated failure occurs.

oo
o
TR
o

-
-
-
-
-
o

- -

FATMAD supported protocol

Jade agent platform

Figure 4-1 FATMAD supported fault tolerance

_35.-

The generic rollback-recovery protocol is a protocol set that consists of three sub
protocols: checkpoint/logging protocol, failure detection protocol, and recovery
protocol.

A checkpoint/logging protocol is responsible for recording runtime information of a
set of agents that need to be fault tolerant. The recorded information, which may be
agent states, i.e. agent checkpoints, events, as well as other recovery related
information, can be used by a recovery process to reconstruct agents’ execution
whenever a tolerated failure occurs and is detected. The recorded information should
be saved in some stable storage that can survive tolerated failures.

A checkpoint/logging protocol runs when agents are in failure-free execution. It
usually includes a checkpoint algorithm, which specifies when and how to take
checkpoints of a set of agents at runtime, and an event logging algorithm, which
specifies what runtime events such as ACL message events should be recorded.

A failure detection protocol is responsible for monitoring agents that need to be fault
tolerant in order to detect tolerated failures and triggering recovery protocol if a
failure is detected. Similar to checkpoint/logging protocol, failure detection protocol
runs when agents are in failure free execution. Whenever a failure is detected, this
protocol should stop its service until the failed agent is recovered. Apparently, the
service component that carries failure detection task should be able to survive
tolerated failures.

Recovery protocol is responsible for recovering failed agents and rolling back some
related agents to assist the recovery. The recovery protocol is triggered by the failure
detection protocol when a failure is detected. Then it utilizes the checkpoints, events,
and other relevant information, which are produced by the checkpoint/logging
protocol, to decide and roll back a set of related agents to a recovery line. When
recovery process is done, the failure detection protocol and checkpoint/logging

protocol can resume their execution.

-36 -

Checkpoint/logging protocol ‘”“”\m\sifi\

trig%' Recovery protocol

Failure detection protocol] esume

Failure free Failure detected

Figure 4-2 Rollback-recovery protocol set
These tree protocols must work together to make agents to be fault tolerant. The
diagram in Figure 4-2 illustrates the relations among the three protocols. In general,
the FATMAD framework is designed to build such a protocol set and that can be

transformed into different variations.

4.2 Role model analysis

With the understanding of the model of the framework, we need to further analyze
the functional requirement so that we are able to build a sound architecture. Role
modeling provides a way of abstracting a design from the original problem. In our
case, the framework application can be represented in a corresponding agent role
model. We follow the role model proposed by E. A. Kendall [Kendall00] to illustrate
our solution.

Roles represent certain functionality and interaction parties. Therefore, an application
can be decomposed into a set of roles. First of all, we need to identify roles that are
involved in the three-protocol set.

4.2.1 Checkpoint/logging protocol

In checkpoint/logging protocol, we identified four roles: application role, checkpoint

controller, message event logger, and storage manager.

An application role is the application part in an agent that needs to be fault tolerant

and therefore it has no fault tolerance functionality. An application role represents all

-37-

application functionalities within one agent. It might communicate with other
application roles in other agents.

The other three roles are all fault tolerance function roles. Checkpoint controller is
responsible for taking checkpoints for an agent. Message event logger is responsible
for logging agent messages. Storage manager is responsible for maintaining
recovery related information such as checkpoints and message logs.

At runtime, the checkpoint controller needs to communicate with a storage manager
to save checkpoints. It might need to talk to the message event logger to change
logging policy. It might also need to talk to the checkpoint controller of other agents
for checkpoint coordination.

For a specific fault tolerant agent, the checkpoint controller and the application role
don’t communicate with each other. However, the two roles are closely related since
the checkpoint controller is responsible for taking checkpoints for the agent that
includes its application role state. In addition, some constraint relation is required to
be maintained between the two roles so that checkpointing actions can be performed
cotrectly.

The message event logger also has a special relation with application role. It
captures all necessary message events that are related to the application role and
send logged information to a storage manager. It might also talk to the checkpoint

controller of either the same agent or other agents and/or other agents’ message

event logger according to the specific protocol.

o

message

< storage
event logger manager

checkpoint
controller

{application role

Figure 4-3 Role model for checkpoint/logging protocol

_38 -

The role diagram in Figure 4-3 illustrates role relations in a checkpoint/logging
protocol. We use rounded rectangles to represent roles, and lines to represent
relations among roles. A directed line connecting two roles represents
communication from one to the other. The communication may be either messaging
or procedure call. An undirected line connecting two roles represents a non-
communication relation between the two roles.

4.2.2 Failure detection protocol

In a failure detection protocol, we identified four roles: application role, FD (failure
detection) reporter, FD monitor, and failure reactor. The role diagram in Figure 4-4

illustrates roles and their relations in a failure detection protocol.

reactor

Figure 4-4 Role model for failure detection protocol

The application role is the same as the one in checkpoint/logging protocol. 1t is the
part to be monitored. FD reporter is short for failure detection reporter. It is the part in
an application agent that reports its relevant state to a FD monitor. The reporting
information should reflect whether the application role has a failure occurring.
Therefore, the FD reporter role and the application role are usually closely related.
FD monitor role is short for failure detection monitor. An FD monitor is responsible for
collecting reporting messages from application agents, namely FD reporter roles in
those agents to be monitored. In addition, by checking collected data, the FD monitor
can identify those failed agents and inform the relevant failure reactor to react upon a
failure.

Failure reactor role is responsible for triggering relevant reaction process whenever a

failure is detected.

-30

4.2.3 Recovery protocol

In failure detection protocol, we identified seven roles that are involved: failure
reactor, recovery manager, Storage manager, recovery executor, post-recovery
controller, execution controller, and application role. The role diagram in Figure 4-5
illustrates these roles and their relations in a recovery protocol.

The failure reactor here is the same as in the failure detection protocol in which it
triggers relevant failure reaction, e.g., failure recovery. The role of a recovery
manager is to handle the following recovery procedure after being triggered by failure
reactor. The recovery manager needs to talk to the storage manager to get recovery
related information including checkpoints and message event logs in order to decide
a recovery line. Once the recovery line is decided, the recovery manager needs to
dispatch the recovery actions and some recovery executor roles carry out these
actions. Recovery executor role is responsible for recovering a failed agent from a
checkpoint or rolling back a running agent to a checkpoint. To rollback a running
agent, the recovery executor needs to inform the execution controller role of an

agent so that the agent's execution can be frozen and then wait for a recovery

storage
/ manager
failure
reactor

executor to roll it back.

execution
controller

post recovery
controller

recovery
manager
recovery
<
executor

Figure 4-5 Role model for recovery protocol

[application role

When an agent is rolled back to a previous checkpoint, the post recovery controller

role is going to control the subsequent agent execution and it also handles some

- 40 -

remaining actions such as recovery coordination, channel flushing, message event
handling, service resumption etc.

Both execution controller role and post-recovery controller role have non-
communication relations with the application role so that they can control its

execution.

4.3 Architecture

4.3.1 Design issues

The above analysis of the generic framework application discusses a role model for
our fault tolerance framework. Based on that, we can design the system architecture
by mapping these roles into different physical components.

Since the Jade platform provides a set of useful services, such as naming service
and communication mechanism for agent development, our system design is agent
based. In other words, all framework components in FATMAD are implemented as
agents and the roles are appropriately mapped to these agents.

Mapping fault tolerance roles into agents requires us to consider the following issues:
1) Locality constraint:

Some roles heive some locality constraints on the role assignment. In our case, the
following roles have to coexist with the application role in the application agent.

- Checkpoint controller: A checkpointing action has to access the state of the
application agent (where the application role resides) and during
checkpointing the application role has to be frozen.

- FD responder: This role has to be mapped to the application agent in order to
provide effective application agent state to the relevant FD monitor role.

- Agent execution controller. Similar to checkpoint controller, this role has to be
allocated onto the application agent in order to control the agent execution.

- Post recovery controller. This role also needs to control application’s

execution and therefore, it has to be in the application agent.

_4] -

2) Failure survivability:

Whenever an agent crashes, all functional roles within that agent can not survive the
crash failure. To make an agent to be fault tolerant, some roles in the rollback-
recovery protocol should be able to survive the tolerated failure. These roles include:
storage manager, FD monitor, failure reactor, recovery manager, and recovery
executor.

Usually these roles should be mapped to agents that are outside of the failure
domain. For example, to tolerate a node failure, the agents encapsulating these fault
tolerance roles should be deployed on different nodes.

3) Performance:

Fault tolerance feature usually generates a lot of overhead, such as consumption of
resources including CPU cycles and memory, extra message communication. A
good architectural design should minimize overhead and avoid performance
bottleneck as much as possible.

4) Flexibility:

Different agent application may have different deployment requirements for the fault
tolerance support. The architecture of the framework should provide some flexibility
to allow developers to adapt FATMAD for their specific application needs.

4.3.2 Architecture design

Based on the role model of the framework and the above concerns, we design a
framework architecture, in which five agent types are designed to realize the role
model for rollback-recovery protocol. The diagram in Figure 4-6 illustrates the role
mapping strategy in our architectural design. We briefly discuss these architectural
agent components as follows:

1) FT application agent

This agent is designed to augment application agents with some additional
functionalities so that they can become fault tolerant. In other words, application

agents that need to be fault tolerant should extend this agent type. An agent of this

_42 -

type should encapsulate application role, checkpoint controller role, FD responder

role, execution controller role, and post-recovery controller role.

message
event logger

storage

manager

application
role

checkpoint
controller

)

X
)
[]
t
)
)
(]
H 1
H +
' i
' t
H t
H t
' i
1
: 3
1
H t
| FD reporter failure |1
]
! ‘ reactor |
1 e ' !
' ¢ :
N 1
§ ’
] ' 1 !
; . post : :
' ! recovery : i recovery
1
' ;o controller : ' manager
: P : :
1
{
E I’ Il (_—_—ﬁ i ! : '
’ i 1
: AN execution ' : recovery || :
!
: ;] controller [~ ! 7| executor |, :
R) b ! :
' / / / /s ! ! L ’ ' ! Rol
VoL : L ! p ore
' ’ { ’ Vi 1) v i]]
I R A ' A ! ! space
e,) [! 1
A j 4 ! ! j
'll ,’ I’ /’ ! ,”' l’ : H Agent
' : ;
(LK ,’ /’ 1 z " ,I'\ f E Space
. . . & 3 i 2 .
{ FT Application o | Container + { | §Repository manager i
agent proxyagent [%, agent '
‘ :
]
]
]
]
:
t
)
1)

{ FD monitor
agent

¥ Recovery manager
agent

Figure 4-6 Role mapping strategy

_43 -

2) Container proxy agent

This agent type, also named as Container FT proxy agent, is designed as a service
agent to delegate some fault tolerance tasks at each node, i.e., Jade agent
container. Each Jade agent container will have exactly one agent of this type.

At runtime, a container proxy agent serves as the message logger roles for all FT
application agents in that container. It captures message events related to each FT
application agent and sends necessary information to a repository manager agent
according to predefined scheme. In addition, a container proxy agent also serves as
a recovery executor role to in some recovery protocol to recover an agent to a
checkpoint state.

3) Repository manager agent

This agent type is designed as a service agent to provide data service for FT
application agents. It maintains recovery related information for a set of FT
application agents and serves as storage manager role in the rollback-recovery
protocol.

One agent of this type can serve many agents. Application developers can decide
where to create the repository manager agents and which set of FT application
agents can be served by each repository manager agent.

4) FD monitor agent

This agent type is designed as a service agent to play FD monitor roles in failure
detection protocols for a set of FT application agents. One FD monitor agent can
monitor many FT application agents. Application developers can decide where to
create FD monitor agents and which set of FT application agents can be monitored
by each FD monitor agent.

In addition, one FD monitor agent also plays the failure reactor role for each FT
application agent. Once a failure is detected, the FD monitor agent will decide what

reaction should be taken according to preconfigured protocol action scheme.

- 44 -

5) Recovery manager agent

This agent is designed to play the recovery manager role in the recovery protocol. A
recovery manager agent should be dynamically created when a failure is detected, if
such an action is configured in the relevant FD monitor agent. The recovery
manager agent may access relevant repository manager agents to get recovery
related information, compute a recovery line, dispatch recovery tasks for each agent

involved, and synchronize post-recovery execution.

4.4 Framework layers

Up to now, we have introduced the generic framework application, the role model
analysis, and the physical design of the framework application. However, a
framework is not a specific application and it is designed to be extended. The
development of a concrete framework application is a combinational effort from
different groups working at different layers. Before we go into the design details of
the framework, we first elaborate the multiple layers of our framework topology.

As we already discussed, the FATMAD framework serves two user groups: agent

application developer and protocol developer. Figure 4-7 Layered view of

FATMAD framework illustrates a layered view of FATMAD and the different

Application developer i Agent application

Protocol developer ﬁ Protocol extension lib.

FATMAD

Protocol skeleton

FATMAD developer ﬁ

FATMAD Runtime

Jade agent platform

Jade developer f

developer groups involved in each layer.

Figure 4-7 Layered view of FATMAD framework

- 45 -

As the diagram illustrates, FATMAD framework consists of three layers: FATMAD
runtime, protocol skeleton, and protocol extension library.

1) FATMAD runtime

The FATMAD runtime is composed of a set of architectural agent components (that
we discussed before) that form a runtime environment running on the Jade agent
platform and providing fundamental services to the application agents that need to
be fault tolerant.

In general, FATMAD runtime should provide some basic services that are required
by fault tolerant application agents in different rollback-recovery protocols. These
services include monitor service for failure detection, data services for storing and
accessing recovery related information, message intercepting services for logging
message events, and agent control services for recovering agents and rolling back
agents on the Jade platform.

2) Protocol skeleton

The FATMAD runtime provides some basic services for rollback-recovery protocol.
To make an agent application fault tolerant, we need to implement and deploy a
detailed plan, e.g., a protocol, to serve the application. FATMAD intends to support
different protocol variations. We extract common protocol features and design a
protocol skeleton that serves as a template to help protocol designers develop
various concrete protocols.

The protocol skeleton not only provides a protocol template for protocol developers,
but also implements some common functionalities of the generic rollback-recovery
protocol.

From protocol-development point of view, FATMAD runtime and the protocol
skeleton together implement the frozen spot functionality of the framework, and the
protocol skeleton also provides hotspot adaptation methods to allow protocol

developers to plug in their protocol details.

- 46 -

3) Protocol extension library

This is the part that protocol developers should work on. To design a concrete
protocol, a protocol developer needs to extend the protocol skeleton by filling its
hotspots. This results in a protocol extension, which is intended to be applied to an
agent application that needs to be fault tolerant.

All workable protocol extensions form a protocol extension library that offers a set
of choices to an application developer for developing fault tolerant agent applications
on Jade.

We can summarize the relationships among different layers in FATMAD and an
application as follows.

1) Protocol skeleton + protocol extension = protocol kernel;

2) Protocol kernel + agent application = fault-tolerant agent application;

3) A fault-tolerant agent application requires Jade and FATMAD runtime as runtime
environment.

In the following chapters, we elaborate the detailed design of each layer.

-47 -

Chapter 5 FATMAD runtime

A FATMAD runtime provides runtime environment for application agents that need to
be fault tolerant. Whenever a tolerated failure occurs to an application agent, as long
as its relevant FATMAD runtime service can survive the failure, the agent should be
able to be recovered. Therefore, a FATMAD runtime should carry all necessary
services dealing with tolerated failures.
Agents may apply different checkpointing/logging schemes which lead to differences
on agent recovery. Therefore, the required fault tolerance services can be classified
into two categories: protocol dependent services and protocol independent services.
Protocol independent services are generic while protocol dependent services usually
change with different protocols. In FATMAD runtime, we hardcode the functionality of
protocol independent services and provide interfaces to allow protocol dependent
services to be integrated dynamically. In this chapter, we introduce the components
in FATMAD runtime as well as their services.
As already mentioned in last chapter, a FATMAD runtime consists of a set of agent
components providing the following services:

¢ Monitor service

This service plays the FD monitor role in a failure detection protocol.

e Data service

This service plays the storage manager role in both a checkpoint/logging protocol

and a recovery protocol.

¢ Message interception and logging service

This service plays the message event logger role in checkpoint/logging protocol.

e Agent control service

This service plays the recovery executor role in a recovery protocol.
From the role mapping strategy diagram in Figure 4-6, we can figure out that these

services are provided by different agent types in our generic framework architecture.

~48 -

A FD monitor agent can provide monitor service. A repository manager agent can
provide repository service. A container proxy agent can provide message logging
service and agent control service. Hence, we can see that a FATMAD runtime
consists of three types of agents: FD monitor agent, repository manager agent, and

container proxy agent.

5.1 FD monitor agent

FD monitor agent is designed to play the FD monitor role, which is for detecting a
failure, and the failure reactor role, which is for reacting to a detected failure, in any
FATMAD supported rollback-recovery protocol. Hence, its duty includes two parts:
failure detection and failure reaction.

1) Failure detection

In the current version of FATMAD, we assume that tolerated failures are of progress
failure type. We implemented a heartbeat detection method to detect progress
failures. With this method, an application agent on the platform advertise to a FD
monitor agent that it is alive, every prescribed interval of time (by using timers). If the
heartbeat is missed, the path, the agent or the node is declared as failed and a
failure reaction is performed.

The implementation of this protocol involves two parts: FD reporter role that should
reside in an FT application agent, and FD monitor role that should reside in FD
monitor agent. An FT application agent advertises “alive” message to an FD monitor
agent at a prescribed interval of time. The FD monitor agent receives “alive”
messages and examines if the elapsed time since receiving last “alive” message has
exceeded a timeout value so that a failure is going to be declared.

Before executing such a protocol, each FT application agent needs to know the
following values:

e A heartbeat interval value,

-49 .

e The Agent ID (AID) of the FD monitor agent that monitors it.

. FT application : FD monitor
agent agent
setup()
register
Ycreate a registration
ack pa—
[I
| alive |
alive ‘
T alive]
1 I
g
! alive ‘
! |
| takeDown() ‘
< deregister
1
1-(removetl"e registration

Figure 5-1 A failure detection protocol scenario in the absence of failures

And for each FT application agent to be monitored, an FT monitor agent needs to
know the following:

e The agent ID (AID) of the FT application agent,

¢ Atimeout value that determines a failure,

¢ An event reaction object that defines relevant failure reaction.

-50 -

Except for the event reaction object, all these parameters should be specified when
each FT application agent is deployed. We will explain the event reaction object later
on.

Since an FD monitor agent serves a set of agents, each FD monitor agent maintains
a registration table for agents that need to be monitored. Each registration in the
table is associated with an agent that needs to be monitored and contains
parameters that should be known by the FD monitor agent in relevant failure
detection protocol.

The registration table in an FD monitor agent changes dynamically. At runtime, an
FT application agent needs to register itself to an FD monitor agent by sending it a
message containing necessary parameters before it can be monitored. The FT
monitor agent then saves the registration to the table and starts to monitor the agent.
When the FT application agent removes itself from the platform, it needs to inform
the FT monitor agent to deregister it. Upon receiving a deregistration message, the
FD monitor agent will remove the relevant item from the registration table and stop
monitoring it. The sequence diagram in figure 5-1 illustrates a scenario of the failure
detection protocol in the absence of failures.

2) Failure reaction

When an FD monitor agent detects a failure, it should trigger relevant reaction
dealing with the failure. A recovery protocol as reaction process is usually initiated for
it. However, detailed recovery reaction may vary in different protocols. This needs to
be specified in a protocol design in upper layers.

In order to implement a generic failure reaction mechanism, we designed a Java
interface EventRecovery, which defines a method: void reactToEvent(...). To specify
relevant failure reaction, a concrete class should be defined to impiement
EventRecovery interface by providing implementation of the reactToEvent() method.
When an FT application agent registers to an FD monitor agent, an object of this

class as a parameter will be passed to the FD monitor agent and saved during the

-51 -

registration. Whenever a failure is detected, the FD monitor will get the relevant
reaction object from the registration table and invoke its reactToEvent() method that
triggers the recovery process. The sequence diagram in figure 5-2 illustrates one

scenario of failure detection in the presence of a failure.

. FT application . FD monitor failure reaction : |
| agent ! agent EwentReaction

register I

create a registratior

le—1

ack

I

alive I

|
|
|
g |
|
|

tlmeout

‘ reactToE\ent(
| 7l
| |

Figure 5-2 A failure detection protocol
scenario in the presence of a failure

3) After failure recovery

When an agent is declared as failed by its FD monitor agent, its monitor service is
then suspended. However, we still need this service to be resumed when the failed
agent is recovered. The recovered agent should notify its relevant FD monitor agent
to resume the monitor service. The post-recovery controller role is responsible for
this action.

Except for the reaction process that may vary in different rollback-recovery protocols,

the failure detection sub protocol remains the same in all protocol variations that deal

-52

with progress failure. Therefore, we hard code this service into the FD monitor agent

and provide APls to allow the service to be customized and altered at runtime.

5.2 Repository manager agent

Repository manager agent is designed to provide data services in variant rollback-
recovery protocols. As its name suggests, it maintains a data repository to store
agent recovery related information. Similar to FD monitor agent, a repository
manager agent can serve a set of FT application agents.
5.2.1 Repository structure
The data repository of a repository manager agent stores recovery related data
including agent checkpoints, ACL message event log, etc, on its local hard disc. By
applying proxy [GOF94] design pattern, we designed an AgentStorage class that
provides a set of operations to query and manipulate repository data on hard disc.
An AgentStorage object is in fact a storage manager and it is responsible for
manipulating and querying repository data that are only related to one particular FT
application agent.
In order to serve more agents, a repository manager agent maintains a storage
manager (AgentStorage object reference) table in order to manage agent data
respectively. In the table, each agent storage manager can be identified via its
related agent ID (AID). Therefore, in order to perform a data operation, the reference
to relevant storage manager must be retrieved from the storage manager table. The
data operation can be done by invoking relevant methods of the retrieved
AgentStorage object. These methods are provided in the AgentStorage class API.
5.2.2 Data services
Based on such a repository structure, a repository manager agent provides FT
application agents with the following services:
1) Accept registration and deregistration

Each FT application agent is required to register to the repository manager agent

in order to be served. Upon receiving a registration message from an FT

_53 -

2)

3)

application agent, the repository manager agent records this registration
information and creates a storage manager for this newly registered agent. Then
it replies to the FT application agent via a message to inform that it is registered.
After being registered, any data service request related to the registered agent
can be served by the repository manager agent.

Whenever the FT application agent no longer needs this service, it should
deregister the service by sending a deregistration message to the repository
manager agent. Upon receiving such a message, the repository manager agent
will remove the relevant storage manager as well as all data related to this
deregistered agent from the repository and stop providing data services related
to this agent.

Receive and save related information

A FT application agent can send agent checkpoints to the repository manager it
registered with. A container proxy agent can also send logged message event
data as well as other recovery related data to repository mangers accordingly.
Upon receiving a data message from an FT application agent or a container
proxy agent, the repository manager agent will identify the |D (AID) of the agent
that the message belongs to, get the agent’s storage manager according to the
agent ID, and save the data that the message carries to the repository via the
storage manager.

Accept query and manipulation to the repository

Data saved in the repository of a repository manager agent is mainly used for
agent recovery. A repository manager agent allows recovery manager agents to
make queries to the repository so that they can retrieve checkpoints and
message log to recovery failed agents.

In addition, a repository manager agent also allows recovery manager agents or
some predefined action to manipulate repository data, e.g., trimming off some

useless data.

-54 -

Data query and manipulation can be done directly by invoking the repository AP,

or indirectly by sending ACL messages, depending on the runtime locality

condition.
$ Repository manager agent
- . Services
 FT application agent o Registration Agent
e Deregistration storage
Container proxy agent » Receiving data manger
table
< p| * Query
 Recovery manager agent ¢ Manipulation
Repository

Figure 5-3 Repository manager

The diagram in Figure 5-3 illustrates the structure of a repository manager agent as

well as its services.

5.3 Container proxy agent

Container proxy agents are designed to be working closely with each Jade agent
container and provide FATMAD system services that are related to Jade agent
containers. Only one container proxy agent is deployed in one Jade agent container,
providing services that are limited to be within its riding container. As its name
suggests, each container proxy agent serves as a proxy to local FT application

agents for message logging, and to recovery manager agents for agent recovery
control.

5.3.1 Message logging service

A message logging service involves two types of actions:

1) Message event interception

This is to capture concerned message events for a specific FT application agent.

-55.

On Jade platform, a message transmission relies on platform system services and it
includes three actions: send, deliver, and receive.
e Send
The application behaviour object in the sender agent invokes send() method to
send a message.
e Deliver
The underlying system, namely the sender agent’s riding container, takes the
message and sends it to the container where the message receiver agent
resides. The receiver container then delivers it to the receiver agent's message
queue.
* Receive
The application behaviour object in the receiver agent invokes receive() method

and get the message from its message queue.

Jade Agent Container —1 Jade Agent Container-2

i agent 1 1. send i agent 2

App. Behaviour

3. receive

- | Msg. L Msg.
| App. Behaviour i service N | service
@ RL2 dm

Figure 5-4 Message transmission mechanism

The diagram in Figure 5-4 Message transmission mechanismillustrates the message

transmission path.

From the message transmission path, we can identify three important message

event types for each agent:
* Message-sent event, means a message has been sent by an agent;

» Message-posted event, means a message has been delivered to an agent's

message queue, but not received by the agent yet;

- 56 -

* Message-received event, means a message has been picked up from the
message queue by the agent program.

In order to capture these types of events, we designed container proxy agents to be
working closely with each Jade agent container. By applying a notification
mechanism, as soon as a message event occurs in an agent container, the container
proxy agent in that container will be notified for further processing.
2) Message event logging.
When a message event is captured, the container proxy agent is required to take
further action to deal with such an event according to certain logging policy. The
message event information may be logged and sent to relevant repository manager
agent, it may be discarded, or some other actions may be taken. This should be
specified by each individual protocol and FATMAD runtime should not hard code it.
We designed a LoggingAction class that can be used to define logging policy as
well as logging related functions. A protocol designer can customize it or extend it in
each individual protocol. This class will be explained more in the next chapter, since
it is part of protocol skeleton.
A container proxy agent can serve multiple agents in its riding container. Each
container proxy agent maintains a registration table, in which each item is a
LoggingAction object that encapsulates relevant logging function for a specific agent.
Whenever the container proxy agent is notified of a message event, the container
proxy agent will retrieve the relevant LoggingAction object from the table and invoke
a relevant method of the object with the parameter of this message event data.
Similar to the repository manager agent, a container proxy agent requires FT
application agents in its riding agent container to register to it in order to be served
and deregister the service when it is no longer needed. The
registration/deregistration process is merged with the registration/registration

process for the repository manager agent.

-57 -

An FT application agent needs to register only to the local container proxy agent by
passing a set of necessary parameters including a LoggingAction object and the
agent ID (AID) of a repository manager agent. The container proxy agent will then
save the LoggingAction object into its registration table and forward the registration
message to the repository manager agent. When the agent deregister the service,
the container proxy agent will remove its relevant item from the registration table and
forward the deregistration message to the relevant repository manager agent.
5.3.2 Agent control service
A Jade agent can only be deployed on an agent container of a Jade platform. Jade
containers as well as the platform manage and control the life cycle of each agent. In
order to recover an agent from a checkpoint or roll back a running agent to a
previous checkpoint, we have to embed some functions that directly control agents’
execution at platform level.
Since Jade platform doesn't provide APls to allow us to directly control agents at
platform level, we modified Jade source code to insert some necessary functions that
are required in all rollback-recovery protocols.
These functions include:
1) Isolate and kill failed agent
This is to kill an agent executing on the platform. The killing action includes two
parts: remove the agent from the platform and trigger the failed agent inner
mechanism so that it can terminate itself automatically.
We also implemented a reincarnation control mechanism to isolate the failed
agent from the outside world. We will explain reincarnation control in the next
chapter.
2) Create an agent
This function is to create an agent on the agent platform by using a checkpoint so

that the new agent can run starting from the checkpoint state.

-58 -

This is a useful service when we intend to recover an agent provided the failed
agent has been already eliminated from the platform.
3) Replace an agent
If we intend to recover an agent on the same agent container, we can simply
replace the old agent with a new one without notifying the Jade agent
management service (AMS).
This includes three actions:
i) Replace the reference of the current agent object in the container with a new
agent object reference;
i) Recover the runtime configuration state of the new agent;
iii} Isolate and kill the old agent object.
In each agent container, these agent control services are accessible by the container
proxy agent. Therefore, recovery actions in a recovery protocol can be done by

sending a message to container proxy agents to invoke these services.

5.4 Communication mechanism

In previous sections we have introduced three system agents in FATMAD runtime. At
runtime, a rollback-recovery protocol involves FATMAD runtime agents, FT
application agents as well as other fault tolerance related agents such as recovery
manager agent. The collaboration among these agents is crucial. The
communication mechanism should be supportive of system coliaboration.
5.4.1 Collaboration methods
In general, there are two ways of communication among these agents:
1) Method invocation :
This is an efficient and synchronous communication method. However, it is
limited to the condition that communicating agent components are locally
accessible from one to another. For example, if a recovery manager agent is in
the same container where a repository manager agent resides, it can access the

repository API directly to query recovery data. An FT application agent can

~59

directly register itself to the local container proxy agent by invoking its registration
method.
2) Message passing :
As we already know, the Jade platform implements an asynchronous message
passing mechanism, by which an agent can transmit FIPA compliant ACL
messages. The FIPA ACL message format is implemented inside the
ACLMessage class in Jade. All Jade agents can communicate via ACL
messages.
5.4.2 FATMAD messaging mechanism
ACL as a high-level agent communication language is designed especially for agent
communication. However, this message format is not very supportive in fault
tolerance protocol development. We designed and developed a special messaging
mechanism, which is implemented on top of an ACL message, to support distributed
collaboration among different FATMAD components effectively. We applied a visitor
[GOF94] design pattern in the design so that dynamic behaviours can be supported.
We define a FATMAD system message format, which can be applied to compose
FATMAD system messages in order to communicate among different FATMAD
agents. An FATMAD system message is wrapped by an ACLMessage object so that
it can be transmitted as an ACL message by the Jade message transmission
system.
FATMAD system message format is implemented as a Java interface
RRFTMessageObject, which defines a method signature:
void processThisMessage(Agent receiver_agent, Behaviour receiver_behaviour)
This message type can be recognized by all FTMAD agent components, including
FATMAD runtime agents, FT application agent, etc., and they are always ready to
receive this FATMAD system message automatically. Whenever a FATMAD system
message is received, the receiver component will unwrap the ACL message to get

the FTMAD system object and invoke its processThisMessage() method so that the

- 60 -

code inside this method can be executed. The runtime parameter of this method is
the reference of receiver agent or receiver agent Behaviour object, using which this
method can invoke the receiver agent’s services.

In order to program with FATMAD system message, one can design a message
class to implement RRFTMessageObject interface and processThisMessage(). Note
that, in order to transmit such a message, one only needs to program the sender
side and not the receiver side since it is received and processed automatically.
Through this mechanism, a system message object can be used to transmit not only
data but also dynamic behaviour. This enables some distributed collaboration to be
coded with ease.

The sequence diagram in Figure 5-5 FATMAD messaging mechanism illustrates

a scenario where a system message is transmitted between two FATMAD agent

components.

FATMAD agent FATMAD agent
. a: Agent b Agent

! m.
sendm | ACLMessage

getContentObject()

i
o]

mObj
mObj :
processThisMessa‘ge () RRFTMesiaqeObwct
I senice(...)

Figure 5-5 FATMAD messaging mechanism

5.4.2 Two options of system message transmission

There are generally two ways of transmitting a FATMAD system message:

-6l -

i) Transmitting via a dedicated system message:

This mechanism can be applied in all occasions.

ii) Piggybacked by an application message:

For some checkpoint/logging protocols, the designer can use agent application

message as a carrier to transfer protocol messages.

5.5 Deployment

FATMAD runtime provides flexibility on the deployment of its agent components.
Except for the container proxy agent, that each agent container should have exactly
one container proxy agent deployed, the locality and the quantity of FD monitor
agent and repository manager agent are allowed to be configured by a system
deployment manager.

Usually a deployment strategy should be carefully designed based on the
characteristics of the application agents, e.g., failure assumption, locality and

performance issues.

_62 -

Chapter 6 Protocol skeleton

In the last chapter, we introduced the FATMAD runtime. The FATMAD runtime
provides basic services and a runtime environment that allows an application
developer to deploy a fault-tolerant application with an embedded rollback-recovery
protocol. In order to provide support towards protocol development, we design a
protocol skeleton that can help protocol designers to implement a protocol with much

reduced workload. In this chapter we introduce the protocol skeleton in detail.

6.1 The generic roliback-recovery protocol

The objective of the protocol skeleton is to provide a template that outlines the
generic rollback-recovery protocol and can be easily extended to implement a broad
range of protocol variations.
In general, the checkpoint/logging protocol for an agent can be viewed as a
sequence of atomic actions combined with coordination actions. There are two types
of atomic actions: checkpointing actions and message logging actions. All actions
are triggered when some particular conditions are satisfied. A policy hence can
generally refer to an action and its triggering condition. Coordination actions induce
dependencies among agents. These features can be supported as a generic
checkpoint protocol (i.e., a generic behavioral pattern) by the framework, which is
shown in a high level of abstraction as follows:
Upon checkpoint event for agent a;:

Take a local checkpoint;

Update logging policy locally;

Send checkpoint request to a subset of agents;

Wait for feedback from a subset of agents;

Send checkpoint commitment to a subset of agents;

Do logging coordination with a subset of agents

and update group logging policy;

-63 -

A specific checkpoint protocol is a refinement of the generic protocol (by the protocol
designer). In general, in a checkpoint protocol, the designer needs to specify the
following for an agent:

i) The checkpoint policy: When a local checkpoint is taken (i.e. triggered by some
specific checkpoint events like application’s flag-to-checkpoint) and optional
checkpoint actions (e.g. whether the mailbox is included in a checkpoint);

ii) The message logging policy related to that agent as well as changes to the policy
(e.g. start or stop logging a channel);

iy Dependencies among checkpoint and logging events taken at different agents, if
any;

iv) Defining the coordination group and the coordination method.

The action of message event logging is implemented as a FATMAD runtime service

that is governed by a logging policy. All logged messages and checkpoints are

retrievable from some storage manager that can survive node crash.

When an agent failure has been detected, a recovery protocol will usually perform

the following:

i) Gather necessary information (checkpoints and message logs) from the
repository manager and decide on a recovery line involving one or more agents
that should rollback. This is protocol specific.

ii) Enforce the roliback with an appropriate recovery policy such as replay and
discard of messages.

The above two steps can be modeled as a sequence of two atomic actions. Hence

the framework involves a simple abstract recovery protocol. While a checkpoint

protocol involves a logging policy, a recovery protocol similarly involves a message
handling policy upon agent recovery. In addition, the recovery policies may also
include recovery synchronization, message channel flush, and reincarnation control.

The generic checkpoint/logging and recovery protocols can be refined to many

different rollback-recovery protocols. For example, during failure-free execution,

-64 -

uncoordinated checkpoint protocols only involve checkpoint actions, while
coordinated checkpoint protocols may involve all types of atomic actions but differ in
their policy control and coordination schemes.

As we already introduced, FATMAD runtime implements the essential framework
services supporting all protocols. The protocol skeleton actually implements the

atomic action control and the policy triggering mechanism for the generic protocol(s).

6.2 Structure of the protocol skeleton

The protocol skeleton is designed with a set of classes including FTAgent class,
FTBehaviour class, LoggingAction class, AgentStorage class, and RecoveryManager
class. Designing a concrete protocol requires a protocol designer to extend or

customize these classes in order to implement protocol specific behaviours.

$ FT anplication acent |

§ FT application agent
] (FT Agent class)

......................

App. behaviour SISO
] container _ : R U o :

~ ~ -.| Agent storage controller :

- FT behaviour W~ | s iy S (AgentStorage class) |1
(FTBehaviour class) .10 ragent controt module: . .

§ Recovery Manager agent
(RecoveryManager class)

TTCOTr yr O TIVIOY T CITOTY I

.........................

H FATMAD runtime
component

‘: Protocol entity

Figure 6-1 Protocol skeleton structure
Each FT application agent embedded with a concrete rollback-recovery protocol is

associated with a set of protocol entities, i.e., a set of objects instantiated from the

_65 -

protocol skeleton classes or their subclasses. Each protocol entity is integrated into
the FT application agent or the relevant FATMAD runtime component accordingly
when the associated agent is launched into the platform. Protocol entities are
unloaded when the FT application agent is removed from the Jade platform. The
diagram in Figure 6-1 Protocol skeleton structure illustrates a refinement of the
FATMAD architecture, which shows a set of FATMAD runtime components and the
deployed protocol entities. The directed lines in the diagram illustrate the
communication among different protocol entities.
In the following we introduce these protocol skeleton classes:
1. FTAgent class
This class defines the structure of an FT application agent that integrates
application behaviours, namely application code, with fault tolerance behaviours,
namely fault tolerance code. In addition, FTAgent class is designed to integrate a
rollback-recovery protocol, taking into account all relevant protocol entities, and
deploy them to FATMAD runtime at runtime.
2. FTBehaviour class
This class is designed to construct fault tolerance modules, which are embedded
into each FT application agent, namely an FTAgent object. An FTBehaviour
instance, integrated into each FT application agent, carries out fault tolerance
roles as illustrated in the diagram in Figure 4-6 Role mapping strategy. With the
FTAgent class support, an FTBehaviour object is able to perform functions such
as checkpointing, transmitting “alive” report, execution control, etc.
3. LoggingAction class
As was already mentioned in the last chapter, this class is designed to play the
message event logger role in a checkpoint/logging protocol. When an FT
application agent registers to the system, a relevant LoggingAction object will be

set into the local container proxy agent. It is removed when the agent deregisters.

- 66 -

At runtime, this object will be notified whenever a related message event occurs.
LoggingAction class provides a set of options to allow protocol designers to
specify their own logging policy, such as what message events should be logged
or should not be logged. The specified logging policy can also be updated
dynamically. Protocol designers can either customize existing options provided by
this class or even override relevant message event processing methods to write
their own options.
4. AgentStorage class

This class is designed to play the storage manager role in a checkpoint/logging
protocol. It manages recovery related data for one registered agent in a repository
manager agent and provides interface for other components to access its stored
data. An AgentStorage class object is automatically generated by a repository
manager agent when an agent registers to it. It is removed automatically when the

agent deregisters.
5. RecoveryManager class

This class is designed to play the recovery reactor role and recovery manager role
in a recovery protocol. When an FT application agent registered to a FD monitor
agent, a RecoveryManager object should be supplied to encapsulate a predefined
failure reaction scheme. Whenever a failure is detected, this object will be notified
and the predefined action will be triggered by the FD monitor agent.

Upon triggering, the RecoveryManager object is transformed into an active agent
on the agent container that allows it to directly access the failed agent’s storage
manager. However, the detailed recovery plan must be specified by a protocol

designer in the recoveryAction(..) method of a subclass of RecoveryManager

class.

The detailed functionality of the protocol skeleton classes will be explained in section

6.3.

~67 -

6.3 FT application agent skeleton

Designing a fault tolerant application requires a concrete rollback-recovery protocol
to be integrated with the application agents. FATMAD provides an application
skeleton class, i.e. FTAgent class, which can be used to construct FT application
agents and perform this kind of integration. As a skeleton, it is expected to be
extended in different protocol extensions. In this section, we briefly introduce the FT
application agent skeleton.

6.3.1 Super class of FT application agents

The class diagram in Figure 6-2 Class diagram of the FT application agent
illustrates the design of the generic FT application agent. A generic FT application
agent is defined by FTAgent class that extends the Jade Agent class. FTAgent class
is designed to be a super class for all application agents that need to be fault tolerant.
In other words, all FATMAD supported fault tolerant application agents must inherit
FTAgent class. FTAgent class is usually extended in different protocol extension.
Hence, the extension class must be inherited by the application agent classes in

order to apply the fault tolerance protocol to an application using FATMAD.

o Agent .
A
l_r
FTAgent
1
- 1
A - 1
1 \\—\
FTBehaviour ParalleiBehaviour
Y ,
AN T 1
1.*
Protocol -
Behavour App Behaviour

Figure 6-2 Class diagram of the FT application agent skeleton
6.3.2 Internal structure of an FTAgent object

An object inheriting FTAgent class should contain an FTBehaviour object and a

ParallelBehaviour object. An FTBehaviour object encapsulates fault tolerance roles

- 68 -

in an FT application agent. ParallelBehaviour class defined in Jade is a composite
behaviour class that can contain many application behaviour objects and execute
these behaviour codes concurrently. The ParallelBehaviour object in an FTAgent
object is designed as an application behaviour container that contains all application
behaviour objects. Under such a structure, both fault tolerance roles and application
roles are integrated into an FT application agent.

6.3.3 Concurrency mechanism

As was introduced in chapter 2, a Jade agent executes its contained behaviour
programs concurrently. The concurrency mechanism in the application behaviour
container, i.e., the ParallelBehaviour object, is similar to the counterpart in the Jade
Agent class. They all implement a scheduler that rotates behaviour programs based
on atomic behaviour action blocks defined by the developer.

Since an FTAgent object only has two behaviour objects, according to Jade agent
scheduler mechanism, the FTBehaviour object always has a chance to execute
before or after any atomic behaviour action of application behaviours. By this way,
some necessary fault tolerance actions can be inserted into the agent’s execution.
6.3.4 Agent registration

FTAgent class implements a registration mechanism that allows FT application
agents to request FATMAD runtime services. When an FT application agent is
loaded to a Jade platform, the agent will register itself to the local container proxy
agent, a FD monitor agent, and a repository manager agent. A deregistration action
is automatically performed when an FT application agent is removed from the
platform. During agent registration these FATMAD runtime components require
relevant protocol entities as parameters. For example, a LoggingAction object is
required when registering to the local container proxy agent, a RecoveryManager
object is required when registering to a FD monitor agent.

FTAgent class provides a interface to allow protocol developers to specify these

parameters.

- 69 -

6.3.5 API

FTAgent class is expected to be extended by protocol developers to construct their
own protocol extensions. The extended class can then be used by application
developers to construct FT application agents.

FTAgent class provides APIs for protocol development, application development,
and agent deployment. The relevant APIs will be explained when we introduce how
to use FATMAD to develop protocols and fault tolerant applications in the next two

chapters.

6.4 Functional design of the Protocol skeleton

The design of the protocol skeleton focuses on outlining generic protocol patterns
and providing methods to allow protocol-specific behaviour to be integrated.

In this section, we introduce the functionalities of the protocol skeleton and how it
can support protocol development in detail.

6.4.1 Checkpoint/logging protocol

The diagram in Figure 6-3 illustrates a static view of a checkpoint/logging protocol
supported by the protocol skeleton. A checkpoint/logging protocol executed by a set

of agents can be modeled as the following:
Checkpoint Message Checkpoint Message
controller logger controller logger
\ Collaboration

Checkpoint Message Checkpoint Message
controller logger controller logger

Figure 6-3 Checkpoint/logging protocol over a set of agents

7

(i) For each agent, there are two concurrent and correlated roles involved:

checkpoint controller and message event logger.

-70 -

The checkpoint controller role is implemented in the FT application agent

skeleton (FTAgent class and FTBehaviour class) that encapsulates the

functionalities of a checkpoint action and its triggering mechanism. The message
event logger role is implemented in LoggingAction class that encapsulates the
functionalities of a logging action and its triggering mechanism (in the form of
logging policy).

(i) In a checkpoint/logging protocol, checkpoint controllers and message event
loggers of different agents execute collaboratively.

When designing a checkpoint/logging protocol, one should specify the checkpoint

scheme as well as how logging actions and collaboration actions are involved.

The specification includes:

(a) How to take a checkpoint;

(b) How to trigger a checkpoint protocol;

(c) How logging action and collaboration action are involved:;

(d) Initial logging policy or logging policy that is unrelated to checkpoint actions.
The protocol skeleton implements the above mechanisms and allows protocol
developers to specify these details in their protocol extensions. We will examine
these issues in the remaining of this subsection.

1) Checkpoint action

In FATMAD, the checkpoint controller, namely an FTBehaviour object, in each FT
application agent performs checkpoint actions for an agent. Once a checkpoint is
taken, it will be sent to a repository manager agent that it has registered to.
Checkpoint = Agent object state

In FATMAD, an agent checkpoint is a snapshot of an agent state, which can be used
to reconstruct an agent’s execution. Since the Java implementation of Jade doesn't
allow us to capture the Java thread execution state, we cannot checkpoint an agent

state at arbitrary point of the agent program. In other words, checkpoints should only

-71 -

be taken in the code where the agent can be restarted without loading the execution
context and the stack of the threads.

In FATMAD, we utilize the Jade agent programming model, as illustrated in chapter
2, to checkpoint only those agent states that satisfies the following conditions:

i) The object state is a consistent state involving all application roles in the agent.

i) All application roles in the agent can be reconstructed and resumed by restoring
from the checkpoint.

If the above conditions can be satisfied, the thread execution state of an agent is not
required to checkpoint.

Checkpoint timing constraint

However, conforming to the above conditions leads to an implementation constraint
that a checkpoint can not be created in the middle of an atomic behaviour action.
Checkpoints can only be taken between any two consecutive atomic behaviour
actions. The FT application agent skeleton implements a checkpoint controlling
mechanism to guarantee that all checkpointing actions satisfy these conditions.
However, this assumes that no additional thread is generated by application agents.
This method has the following consequences:

i) The states of all application behaviours objects are saved into a checkpoint;

iiy FTBehaviour object state must be ignorable.

By this way a checkpoint can only be taken either before or after each atomic
behaviour action of an agent.

The checkpoint timing constraint must be carefully considered when designing a
checkpoint protocol. For instance, some protocol, such as the protocol specified in
[ChanLamp85], must be modified in order to adapt to this implementation constraint.
Implementation condition

When taking a checkpoint for a process, usually we need to freeze the process
execution in order to create a checkpoint correctly. Under the structure of an FT

application agent, checkpoint actions implemented in FTBehaviour class is handled

-T2 -

in the agent native thread. This condition is automatically guaranteed if no any
application behaviour in the agent spawns additional thread.

Take message queue with checkpoint

As we already introduced in chapter 2, each agent in Jade has a message queue
that stores incoming messages of this agent. From Jade programming AP!, we found
that application developers are allowed to selectively pickup incoming messages
from its message queue. This kind of message picking actions may violate FIFO (first
in first out) message delivery order, which is required by many distributed protocols.
In order to solve this problem, we provide an option to allow the message queue to
be included into an agent checkpoint, since message delivery path from message-

sent event to message-posted event conforms to the FIFO ordering rule.

Container-1 Container-2

f agent A § agent B

)

€<-—~— FIFO —>
<—— Non FIFQ ———>

Figure 6-4 FIFOness of message delivery

By this way, an agent’'s message queue becomes a part of its checkpoint state and
the message delivery path is shortened to the segment from sending a message by
an agent to posting it to the receiver agent’s message queue by the platform. The
diagram in Figure 6-4 illustrates the differences between the two message delivery
paths. FTBehaviour class provides an interface to allow protocol designers to specify

this option.

-73 -

2) Checkpoint triggering mechanism

A checkpoint action is triggered by a checkpoint event. Upon receiving a checkpoint

event a specific checkpoint protocol at each individual agent will start. The

checkpoint triggering mechanism is implemented in FTBehaviour class in the

protocol skeleton, where the following types of checkpoint events are defined:

a)

b)

Application-alerted checkpoint event

Events of this type can be generated by an agent application in which the
application developer can decide when to trigger a checkpoint.

FTAgent class provides a flagToCheckpoint() method so that application
developers can invoke it from their program. Invoking this method does not
trigger a checkpoint action right away. Instead, it sets a flag to notify the
underlying checkpoint controller so that a checkpoint action will be triggered
when the current atomic behaviour action is done.

Timer-alerted checkpoint event

Events of this type are generated by the checkpoint timer service implemented in
FTBehaviour class. When an FT application agent is loaded into a Jade
platform, the checkpoint timer service will start to count number of atomic
behaviour actions and check if the number satisfies predefined timing condition.
Whenever the condition is satisfied it will generate a checkpoint event.

The timing condition can be specified either by programming it into application
code or by setting it through the deployment tool provided in FATMAD when the
agent is loaded. FATMAD provides a deployment tool that can be used for this
purpose. |
Message-alerted checkpoint event

A message-alerted checkpoint event is generated upon receiving an alert-to-
checkpoint message. An alert-to-checkpoint message is usually sent from other

agents by the relevant checkpoint controller or message event logger.

-74 -

d)

A checkpoint alert message can be either transmitted as a system message or
piggybacked by an application message.

Predicate-alerted checkpoint event

FATMAD allows protocol developers to define some complex checkpoint events
by specifying predicate conditions on triggering checkpoint events. The
predicates can be specified by extending FTBehaviour class and overriding a

Boolean method evaluateCheckpointPredicate() in the subclass.

3) Checkpoint related action

In a generic checkpoint/logging protocol, a checkpoint action is usually combined

with logging policy change and some collaboration actions. FATMAD skeleton

divides these related actions into two parts:

i)

Actions that must be combined with the checkpoint action atomically

For example, some protocol requires that a checkpoint action must be combined
with updating logging policy and notifying other agents to checkpoint atomically.
To support this atomicity, the protocol skeleton implements an atomic action
block for each checkpoint action. Such an atomic block includes a sequence of
actions: invoke the preCheckpointAction(...) method, take a checkpoint, and
invoke the postCheckpointAction(...) method. Protocol developers can override
the two methods in a sub class of FTBehaviour class to incorporate those actions
that must be tightly combined with a checkpoint action.

Whenever a checkpoint event occurs, the preCheckpointAction(...) method will
be invoked before the checkpoint action and the postCheckpointActiony...)
method will be invoked after the checkpoint action. They are executed atomically.
The atomicity guarantees that no other program in this agent is executed and no
incoming message is posted to the agent’s message queue during the execution
of this atomic action.

Actions that are not required to be combined with the checkpoint action

atomically

~75 -

These actions may involve checkpoint/iogging collaboration or logging policy

change. They are usually executed in an asynchronous manner.
Agent collaborations in a checkpoint/logging protocol are implemented through
message communication, in particular, via FATMAD system messages defined by
RRFTMessageObject interface. FATMAD protocol skeleton provides some
predefined message formats for some particular purposes. For example,
AlertToCheckpoint class defines alert-to-checkpoint message that can be used to
generate message-alerted checkpoint events. When an agent receives an
AlertToCheckpoint object, it will automatically trigger a local checkpoint action.
The protocol skeleton also provides a LoggingMessage interface that defines
collaboration message format for sending a message to the event logger of an agent.
4) Logging policy
As we already mentioned, message event logging in FATMAD is implemented as a
service that is governed by the relevant logging policy. FATMAD implements a set of
optional logging policy control in the LoggingAction class. The LoggingAction class
and the container proxy agent together realize the logging mechanism. A protocol
designer can specify the logging policy by instantiating the LoggingAction class,
customizing the instantiated objects, and integrating the objects with relevant agents,
so that message events related to the agent can be logged according to the
predefined policy.
The logging policy for an agent is usually initialized when an agent is loaded into a
platform and/or can be updated dynamically.
Logging policy for message recording can be classified into two categories:
i) Checkpoint related message logging

In a checkpoint protocol, logging actions are usually regarded as recording
channel state, which is part of a checkpoint.

ii) Non-deterministic message logging

-76 -

This type of message logging is used to record messages from outside world

process [EAWJ02].
LoggingAction class provides a set of methods to allow protocol developers to
specify the logging policies. Such as:
i) What types of message events should be recorded:

- message-sent: sender side logging

- message-posted: receiver side logging with FIFOness messaging,

- message-received: receiver side logging without FIFOness messaging.
i) Which message channel should be logged or which message channel should not

be logged.
Some protocol may require an agent’'s message event logger to record the number
of messages that have been sent to some particular channels since last checkpoint
so that these numbers can be used to avoid duplicate messages being sent after
recovery. LoggingAction class can also be specified to record messages that should
be blocked from sending out after recovery.
Many logging policies including those mentioned above can be specified through the
LoggingAction class. However, the available logging control options provided in the
LoggingAction class may not be adequate for some protocols. The protocol designer
can extend LoggingAction class and override some methods to implement her
specific logging policy.
5) A generic checkpoint protocol illustration
The diagram shown in Figure 6-5 illustrates a generic checkpoint/logging protocol as
well as separated responsibilities among the FATMAT kernel (including FATMAD
runtime and protocol skeleton), protocol extensions and application behaviour for
each agent. In the diagram, there are two rectangle blocks, each of which represents
an agent. The left agent takes an independent role in a checkpoint-logging protocol,

which means that the agent itself generates checkpoint events, and the right agent

-77 -

takes dependent role in the protocol, which means that checkpoint actions of this

agent are triggered by message-alerted checkpoint events.

Application FATMAD agent kernel behaviour FATMAD agent kernel behaviour Application
behaviour behaviour
kernel extension extension kemel

Take a
checkpoint

Take a

Update togging |
checkpoint

policy

Update logging
| policy
Post processing kef——- —~- ~

\

— Timer alert Predicate atert [I Message alert
Application alerty} { 5 ghecipoint to checkpoint 0 to checkpoint
to checkpoint :)
Lo
I
7 =Z | " T T T T AT T
Freeze . Freeze
execution | i i | execution
-1~ 1
Pre processing |—-—— -}¥~ M Pre processing
Atomic|biock I | Atom|c block
1
|
l
I
I
[}
|

Release
execution

Release
execution

\.'

<
!
—
/
7/
\
AY
AY
AY
I—'\

l
l
I
|
I
l
I
I

\
{ I S N —_ N T
Checkpoint : - i : Checkpoint
_ Logging Y} __ | Logging]
end & ready f_or — coordination end & ready (or
ext checkpoin ext checkpoin
__—_% controf flow -———— optional cail
—» callback = ———-- - optional asyn.

message
——> asynchronous
message action state

I I I

Figure 6-5 A generic checkpoint/logging protocol

6) Distributed timing service

There is no global clock in distributed systems. Some checkpoint/logging protocols
may need to implement distributed timing scheme, such as logical clock [Lamport78]
or vector clock [SchMat92], to implement synchronous actions among distributed
agents.

FATMAD skeleton implements a message tagging mechanism in order to provide
timing services.

The distributed timing service in FATMAD is designed as follows:

(i) Each agent in a protocol maintains a clock.

-78 -

(i) Whenever an agent sends a message, it is tagged with the local clock
value and then the local clock value increases by one.

(iii) When the message is posted to the receiver agent’s message queue, the
tagged clock value will be merged with the receiver agent’s clock value
and the merged value increases by one. Then the receiver agent’s clock
value will be updated with the new clock value.

The diagram in Figure 6-6 illustrates this mechanism. By modifying the source code
of the Jade ACLMessage class, FATMAD allows application messages (ACL) to be

tagged with a clock value defined by Clock class.

Container-1 i Container-2

§ agent A L agent B
\ e Il

Figure 6-6 Distributed-timing service

We design the Clock class as an abstract class to represent clock values and apply a
strategy pattern to implement this mechanism so that different clocking schemes can

be easily applied to adapt to different protocol requirements.

| % compareTaf) : int
% equals() : boolean

% getCopy() : Clock

| % increase() : Clock

| metgeincrease() : Clock

| % setClockVatue() : void

Ll:;gicaICIock T

VectorClock

Figure 6-7 Class diagram for distributed timing service

-79 -

To design a clocking scheme, a protocol designer needs to design a subclass of
Clock class and implement a set of methods, such as increase(), which defines how
a clock clicks, i.e. increases its value, mergelncrease(..), which defines how a clock
merges with other clock value and increases the merged value, etc.

FATMAD protocol skeleton currently provides two built-in clocking schemes: logical

clock and vector clock.

6.4.2 Recovery protocol
1) Recovery procedure
As was introduced in the last chapter, the FD monitor agent triggers a recovery
protocol whenever an agent failure is detected. The preconfigured recovery scheme
is encapsulated into a RecoveryManager object. Upon triggering, it will be
transformed into a recovery manager agent on the agent container where the failed
agent's storage manager is locally available.
The protocol skeleton leaves the remaining implementation to the protocol developer
when designing a protocol extension. The remaining action should be implemented
in a sub class of RecoveryManager class by overriding the method:
public abstract void recoveryAction(...)
As discussed in section 6.1, a generic recovery protocol includes three actions:
i) Gather necessary information:
The recovery manager agent needs to access recovery related information of the
failed agent as well as other related agents.
Recovery related data for a set of agents can be either centralized or distributed.
For centralized data, the recovery manager agent may directly access the local
repository via each agent’s storage manager's API. For distributed data, it needs
to access remote data by sending messages.
Protocol designer can utilize FATMAD messaging mechanism to design protocol-

specific system messages to access distributed data.

-80-

ii) Decide on a recovery line:
Based on collected recovery-related information, the recovery manager agent
needs to decide on a recovery line involving a set of agents.

iii) Enforce the rollback:
Once a recovery decision is made, it should be implemented right away. The
failed agent need to be recovered, other related agents should be rolled back.

The first two actions are to be implemented by protocol developers. Since the third
action involves a set of complex recovery options, the protocol skeleton
encapsulates the complex recovery functionalities and provides a customizable
service to the protocol developer. By this way, the protocol developer can implement
her recovery decision by specifying necessary recovery parameters in recovery
messages (defined by RecoveryMessage class). The protocol developer is not
required to be involved in detailed implementation.

After dispatching the customized recovery messages, the rest of work will be
handled by FATMAD automatically.

2) Agent recovery options

One recovery message can be used to roll back only one agent. The dispatched
recovery message will be sent to the container proxy agent in the container where
the agent is to be rolled back. Upon receiving the message, the recovery plan
specified in the recovery message will be executed by the container proxy agent. It
will automatically set up post recovery options for the agent to be rolled back
according to the recovery plan, and then reincarnate the agent.

Atfter agents in the recovery line are reincarnated on the platform, there are still some
problems that should be handled.

Since agents are reincarnated in distributed location concurrently, old agents and
new agents may coexist for a period of time. Such coexistence may cause messages

to be messed up and lead to inconsistency. The diagram in Figure 6-9 illustrates two

_81-

possible scenarios that messages may be incorrectly delivered it we don’t handle

them well. The two scenarios are:

Scenario 1: A message sent from an old agent may be received by a new one.

Scenario 2: A message sent from a new agent may be received by an old one.

A

f agent A.old f agent B.old

§ agent A.new f agent B.new

Figure 6-8 Messages may mess up

To solve such a problem, several techniques may be applied.

(a)

(b)

(c)

Flush message channel

In this method, we request each recovered agent to flush its outgoing channels
with a marker message before sending any new messages. Each newly
recovered agent will discard messages from each incoming message channel
until receiving a marker from that channel.

This method can eliminate the problem in scenario 1.

Recovery synchronization

All recovered agents freeze their execution until they are all synchronized. In the
protocol skeleton, the synchronizer is designed to be played by the recovery
manager agent. _

This method can eliminate the problem in scenario 2.

Reincarnation control

As we mentioned in last chapter, Java VM doesn’t allow a Java thread to be
killed right away by other Java threads. After reincarnating an agent, the old
agent and the new agent with same identity may coexist for a period of time.
Therefore, the old agent must be isolated from its environment. For example, it

should not be allowed to send a message out to any other agent.

-8 -

FATMAD utilizes reincarnation number to identify old agents. Each agent has an
initial incarnation number when it is loaded to the platform. When it is
reincarnated, that number will be increased by one. The FATMAD runtime
environment always keeps the up-to-date reincarnation number value for each
FT application agent. Whenever an agent sends a message, the reincarnation
number will be validated if it is identical to the one stored in the FATMAD runtime
system. If the result is false, the message will be blocked and the agent will

trigger a self-deletion mechanism automatically.

Besides the above actions, an agent has to handle messaging actions invoked by
the application behaviours. This involves the following message handling policy to be
specified:

i) Some logged messages need to be replayed when the application behaviour
invokes receive() method,

ii) Some duplicated messages to be sent by the new agent should be blocked and
discarded.

Moreover, a recovered agent needs to notify the repository manager agent and the
FD monitor agent, to which it has registered, so that their services for the agent can
be resumed. Upon receiving such a notification, the repository manager agent will
continue to accept new checkpoints and new message events related to this agent,
and the FD monitor agent will continue to detect failures for this agent. This is the

default action implemented in the protocol skeleton.

All the above functionalities are common to different recovery protocols. These
services are already implemented in FTBehaviour class. Protocol developers can

specify these options in the recovery messages to be dispatched.

_83-

Chapter 7 Protocol extension and case study

in the last chapter, we have introduced FATMAD protocol skeleton, which provides
support for protocol development. In this chapter, we introduce how to develop

specific rollback-recovery protocols with FATMAD.

7.1 Protocol extension

As we already discussed in chapter 4, a protocol extension is a concrete protocol
implementation that can be applied to agent applications in order to achieve fault
tolerance. The reason why we name it as protocol extension is because the
implementation of a protocol is an extension of our protocol skeleton.

The protocol skeleton provides a generic structure that can be applied to variant
protocols. Moreover, it provides customizable services that can significantly reduce
implementation time in protocol development. Developing a protocol using FATMAD,
in fact, is to develop a protocol extension, which concretizes the protocol skeleton by
filling in protocol-specific behavioural details and providing an interface for
application developers so that the protocol can be integrated into agent applications.
Developing this protocol in FATMAD involves the following steps:

1) Protocol decomposition

The protocol can be decomposed into a set of actions or decision points as follows:
a) How checkpoint action is triggered?

b) What checkpoint option should be applied?

¢) How checkpoint affects logging?

d) How different agents are collaborated in terms of checkpointing and logging?

e) What is the initial logging policy?

f) How to decide a recovery line?

g) How recovery of each agent should be performed?

-84 -

2) Design and code extension classes

The designer needs to analyze each decomposed protocol actions to see if they can

be implemented by customizing relevant protocol skeleton classes. If a protocol

action is not customizable, an extension of relevant skeleton class might need to be

created so that the protocol designer can implement the protocol action into it.

Agent

i

FTAgent - i 4

-

RecoweryManager

<9 \~ e
[& \‘1\ """ . 1,
1

LoggingAction

FTBehaviour
__________________________ Fo
Extended Extended
FTBehaviour LoggingAction

Extended
RecoweryManager

App Agent

App Behaviour

Protocol extension

Figure 7-1 Class diagram for protocol skeleton and generic protocol extension

The following protocol skeleton classes are generally related:

FTBehaviour class

With this class or its subclass we can specify checkpoint triggering mechanism,

checkpoint option, checkpoint related action, agent post-recovery control, etc.

LoggingAction class

With this class or its subclass one can specify logging policy as well as logging

related collaboration among a group of agents.

RecoveryManager class

With this class or its subclass one can specify recovery line decision and

recovery plan for each agent.

-85-

o FTAgent class
The subclass of FTAgent class plays a wrapper role for an FTBehaviour object.
We may utilize this in protocol action implementation.
In addition to the above classes, a protocol designer may design other classes to
assist implementing protocol actions. For example, the protocol designer may design
some message class to utilize FATMAD messaging mechanism to implement
checkpoint collaboration. A protocol designer may need to implement his/her own
clocking scheme for the checkpoint/logging protocol.

The class diagram in Figure 7-1 Class diagram for protocol skeleton and generic

protocol extension illustrates the relationship between protocol skeleton classes

and generic protocol extension classes.

3) Integration
The designer needs to integrate all implemented protocol actions and provides an
interface that can be used by application developers.
The integration job should be done by designing a subclass of FTAgent class. In the
subclass, the protocol designer needs to override the method: ftSetup(), in which
protocol entities are instantiated, customized, and integrated.
In the ftSetup() method, the protocol designer may use the following methods to
specify protocol entities that are to be used at runtime.
setFTBehaviour(...); -- This method is used to specify an FTBehaviour object.
setlLoggingAction(...); -- This method is used to specify a LoggingAction object.
setEventReaction(...); -- This method is used to specify a RecoveryManger object.
The ftSetup() method in an FT application agent is invoked when the agent is
launched into the platform. The protocol designer can also provide some protocol

specific initialization code in this method.

- 86 -

The protocol designer can also override ftTakedown() method in a sub class of
FTAgent class to implement some protocol-specific clean-up action if necessary.
This method will be invoked when an agent is removed from a platform.

In addition, we must be aware that the subclass of FTAgent class in a protocol is the
only interface that application developers need to know and work with. Therefore, a
protocol designer needs to clean up the necessary interface for application

developers.

7.2 Case study: Log-based rollback-recovery protocol

In this section, we exemplify the design of a protocol using FATMAD. The protocol
example is Log-based rollback-recovery protocol.
7.2.1 Protocol description
The Log-based protocol is suitable for implementing fault tolerance features for
individual agents. By recording all ACL message events, log-based rollback-recovery
protocol enables a failed agent to be recovered to the most recent message event
without requesting other agents to roll back. It can largely reduce recovery cost
compared to checkpoint based rollback-recovery protocols. However, recording all
message events is a considerable overhead during error free execution and it could
lower the application performance if the agent has large volumes of message events
with high frequency.
In this example, we implement the pessimistic logging algorithm [AIMa98], which can
be decomposed into the following actions:
1) Triggering checkpoint:
A checkpoint action can be triggered automatically in a periodical pattern or
triggered from the application code written by an application developer.
Periodically triggered checkpoint action can be implemented by timer-alerted
checkpointing service provided by FTBehaviour class. FTAgent class also
provides a wrapper method: flagToCheckpoint(), that can be used to trigger

checkpoint action by application developers.

-87-

2)

Checkpoint action option:
A checkpoint includes the agent’s message queue. FTBehaviour class provides a

method to specify this.

3) Message logging policy:
All message-sent events should be counted and all message-posted events
should be recorded. Whenever a checkpoint is taken, message-sent event
counter should be reset to 0. These actions must be executed in a blocking

mode, which means the agent application must freeze its execution when a
message is recorded.

This is already implemented in LoggingAction class. We can simply customize
the provided service to implement this policy.

4) Recovery line decision:
The failed agent should be recovered to the most recent checkpoint and rolled
forward with all events recorded since the most recent checkpoint.
We should implement this action in an extension of RecoveryManager class.

5) Post recovery control:

Logged incoming messages since last checkpoint will be played back while the
agent application invokes receive() method. Duplicate messages will be
discarded when the agent invokes send() method.

The implementation of this action is provided in FTBehaviour class. We can
simply specify it in a recovery message (RecoveryMessage object) that will
forward the directive to the recovered agent.

7.2.2 Design

Based on the above protocol actions, we implemented a protocol extension for log-

based rollback-recovery protocol. The protocol extension includes two classes:

LogBasedFTAgent class

This class is designed to integrate the following protocol entities: an FTBehaviour

object, a LoggingAction object, and a LogBasedRecoveryManager object (see Figure

-88-

7-2 LogBasedFTAgent class source code). In this class, we implement a method:
ftSetup(), in which these three classes are instantiated, customized, and integrated

into LogBasedFTAgent class.

public abstract class LogBasedFTAgent extends FTAgent
{
public void ftSetup()
{
try

FTBehaviour rrcb = new FTBehaviour(this);
rrcb.setTakeMsgqueueWithCheckpoint (
FTBehaviour. CHECKPOINT_WITH_WHOLE_MESSAGE

QUEUE);

super.setFTBehaviour(rrcb);

LoggingAction la = new LoggingAction(){};

la.disableCacheCounters();

la.startLogAllPosted(null);

la.startCountAllSent(null);

super.setLoggingAction(la);

EventReaction reaction =
new LogBasedRecoveryManager();
super.setEventReaction(reaction);

catch (Exception ex1)

{
ex1.printStackTrace();

}
}

}

Figure 7-2 LogBasedFTAgent class source code

L.ogBasedRecoveryManager class

This is a subclass of RecoveryManager class, in which we implement recovery
protocol actions. In the recoveryAction() method, the supplied argument provides a
way to allow us to access the failed agent’s storage manager, by which we can get
the agent’s most recent checkpoint as well as recorded messages and message sent

event counters.

_89.

To recover the failed agent, we create a RecoveryMessage object and we customize
it by specifying recovery checkpoint, messaging control policy, and the agent
container to be recovered. Finally we dispatch the message. The Figure 7-3 shows

the detailed code of this method.

public class LogBasedRecoveryManager extends RecoveryManager

{

public void recoveryAction(RepositoryManagerBehaviour storage)
throws Exception

// 1. get failed agent’s storage controller:
AgentStorage as = storage.getAgentStorage(super.getAgentToRecover());

// create a recovery message
RecoveryMessage rmsg = new RecoveryMessage(as.getRegistration());

// 2. set last checkpoint to this message
if (as.getNumberOfCheckpoints()>0)
rmsg.setCheckpoint(as.getAgentCheckpoint(0));

// 3. specify message blocking for duplicated message-sent events
AgentEventBag aeb = as.getAgentEventBag(0);
rmsg.enableBlockSendMessages(aeb.getSentCounterTable());

// 4. specify message replay of recorded message-posted events
Vector playbackmsgsV = new Vector(aeb.size());
for(int i=0; i< aeb.size(); i++)

ACLMessageEvent ae = (ACLMessageEvent)aeb.getAgentEvent(i);
if(ae.getACLMessageEventType()==ACLMessageEvent.POSTED)
playbackmsgsV.add(ae.getACLMessage());
}
ACLMessage playbackmsgs|] = new ACLMessage[playbackmsgsV.size()];
playbackmsgsV.toArray(playbackmsgs);
rmsg.setPlaybackMessages(playbackmsgs);

// check available agent container
if (super.isContainerAlive(as.getAgentContainer()))
rmsg.dispatch(this, as.getAgentContainer());

else
{ String[] containers = super.getBackupContainers();
String ¢t = null;

for(int i=0; i<containers.length && ct == null; i++)
if (isContainerAlive(containers][i]))
ct = containers]i;

// dispatch the recovery message
if(ctl=null)

-90 -

{

rmsg.dispatch(this, ct, true);
lelse
{
System.out.printin("Recover process for agent "+
super.getAgentToRecover()
+" fail since no predefined container is reachable.");

Figure 7-3 Source code of LogBasedRecoveryManager class

The class diagram in Figure 7-4 illustrates the design of the protocol extension for

log-based rollback-recovery protocol.

Agent
A\
FTAgent |1 11 RecoweryManager
; | LoggingAction |
/\\ 1 A

LogBasedRecoveryManager

i Protocol extension

App Agent App Behaviour

Figure 7-4 Class diagram for Log based rollback-recovery protocol extension

7.3 Case study: synchronized checkpoint protocol

Log-based rollback-recovery protocol can be applied on individual agent and doesn't

involve collaboration among different agents. In this section, we introduce another

_91 -

a

protocol design that involves collaboration among a group of agents. The protocol is
a synchronized checkpoint-recovery protocol based on [TamSeq84]. We made some
modifications to reduce messaging cost.

7.3.1 Protocol description

This protocol scheme provides fault tolerance based on a predefined group of agents
running cooperatively via message passing. We checkpoint the group at runtime
synchronously and periodically so that whenever an agent failure is detected the
whole group of agents are rolled back to their most recent checkpoints. Message
logging in this protocol is minimal during failure free execution. During failure
recovery process, no roll forward recovery control is required in this scheme.
However, checkpoint coordination and recovery coordination are certainly required.
The protocol is detailed into the following actions:

1) Triggering checkpoint:

In this protocol, the agent group members are static and are known before execution.
A checkpoint coordinator is elected in advance to be in charge of checkpointing
coordination. A checkpoint protocol on the coordinator agent is triggered
independently by either an application-alerted checkpoint event or a timer-alerted
checkpoint event. These two services are already provided in FATMAD.

A checkpoint protocol on each non-coordinator agent is triggered by message-
alerted checkpoint event sent by the coordinator. FATMAD provides a message type
AlertToCheckpoint class that can be used to generate message-alerted checkpoint
event by sending this type of messages.

2) Checkpoint action option:

In this protocol, each checkpoint should include the agent's message queue.
FTBehaviour class provides a method to specify this.

3) Checkpoint collaboration action:

The checkpoint protocol implements a logical clock mechanism, in which each agent

message is labelled with a logical clock. With this clocking mechanism support, a

-92 -

two-phase synchronous checkpointing protocol is implemented as follows: i)
Whenever the coordinator starts a checkpoint protocol, it will notify all group
members to be ready to checkpoint; ii) Upon receiving the checkpoint message,
each non-coordinator agent acknowledges the coordinator that it is ready to
checkpoint; iii) After collecting Ack messages from all group members, the
coordinator sends a checkpoint message to all group members, takes a checkpoint,
and resumes its execution; iv) Upon receiving this checkpoint message, each
member agent takes a checkpoint including its mailbox and excluding all messages
with a clock value larger than the checkpoint message’s clock value. It also starts to
log all messages with a clock value smaller than the checkpoint message’s clock
value. Then it will resume its execution.
These actions can be implemented in two methods: preCheckpointAction() and
postCheckpointAction(), which will be invoked and executed atomically with
checkpointing action.
4) Recovery line decision:
When a failure is detected, the failed agent as well as its group should be rolled back
to their most recent checkpoints with message queue restored. Any incomplete
checkpoint should be removed from storage.
We implement this action in a subclass of RecoveryManager class.
5) Post recovery control:
Messages coming with each checkpoint should be restored into relevant agent
message queue (queue) before the agent’s execution is resumed.
There are some additional actions to be performed before resuming the execution of
each group member that has rolled back:

¢ Recovery process among the group should be synchronized.

* Message channel should be cleared.
The implementation of this action is provided in the FTBehaviour class. We can

simply customize it via a recovery message (RecoveryMessage class object).

-93

7.3.2 Design

Six classes are designed to implement the protocol extension for synchronized

checkpoint protocol. The diagram in Figure 7-5 illustrates the class design of the

protocol extension of the synchronized checkpoint protocol.

1| RecowryManager
"' e -] LoggingAction
1 //\\
FTBehaviour A\ a
L) |
Y1 |
s S R bt b Ll T Tupuup———
1 1
' SynFTBehaviour | SynRecoveryManager
t SynFTAgent ; ;
: - N SynloggingAction
t 7
: /\\ L N
: SynMessage CheckpointAck
]
E Protocol extension
1.
App Agent App Behaviour

Figure 7-5 Class diagram for synchronized checkpoint protocol

SynFTAgent class

This class is designed to integrate protocol entities: a SynFTBehaviour object, a

SynLoggingAction object, and a SynRecoveryManager object that are configured in

the ftSetup() method.

Since ftSetup() is the initiation method, we setup the timing service with logical clock
option and implerﬁent the coordinator selection in this method. If the agent is

selected to be a coordinator, it is set to allow for triggering checkpoint protocol

independently, otherwise it is set to be prohibited.

The source code is shown in Figure 7-6.

-9 -

package jade.fatmad.rrft.protocol.syncheckpoint;

public class SynFTAgent extends FTAgent
{
public final static String protocol = "synchornized checkpoint protocol®;
private AlD coordinator;
private boolean isCoordinator = true;
private boolean protocol_state = false;
public boolean isCoordinator () { return isCoordinator;}
public AID getCoordinator(){ return coordinator; }

pubtic void ftSetup()

{
// set up protocol entities
setFTBehaviour(new SynFTBehaviour(this));
setLoggingAction(new SynlLoggingAction());
setEventReaction(new SynRecoveryManager());

// enble timing service with Logical clock option
super.enableTimingService(super.CLOCK_ON_POST, new LogicalClock());

I/ elect a coordinator among group members
AgentGroup g = getAgentGroup();
if (g'=null&&g.size()>1)
{
AID memberlist[] = g.getGroupMemberList();
if (memberlist[0].equals(getAlD()))
{ isCoordinator = true;
}
else
{ coordinator= memberlist[0];
isCoordinator = false;

}
}

// Only allow coordinator to initiate checkpoint protocol independently

if (lisCoordinator)

{ super.disableFlagToCheckpoint();
super.disableFrequentCheckpoint();

}

else

{ super.enableFlagToCheckpoint();
super.enableFrequentCheckpoint();

}

}
}

Figure 7-6 SynFTAgent class source code

_95 .-

SynFTBehaviour class
This class is designed to implement checkpointing control, especially checkpoint
coordination for our synchronized checkpoint protocol. The two-phase checkpoint
coordination protocol is mainly implemented in the preCheckpointAction(...) method
since this method will be invoked before checkpoint is taken. In other words, once
the coordination is done the checkpoint will be immediately taken.
We setup the checkpoint option in the class constructor: SynFTBehaviour(...), in
which messages in each agent’'s message queue (message queue) are selectively
recorded when taking a checkpoint. The selection criteria is evaluated by the
Boolean method:

public boolean takeWithCheckpoint(ACLMessage m).
We override this method for non-coordinator agents to filter out messages with clock
value bigger than the checkpoint message clock value.

The source code is shown in Figure 7-7.

package jade.fatmad.rrft.protocol.syncheckpoint;

@blic class SynFTBehaviour extends FTBehaviour
{
LogicalClock synchrony;
public SynFTBehaviour(SynFTAgent owner)
{
super(owner);
/I set the option that when taking a checkpoint messages
// in message queue will be selectively recorded.
super.setTakeMsgqueueWithCheckpoint (
FTBehaviour. CHECKPOINT_WITH_SELECTED_MESSAGES);
}

public void preCheckpointAction(LoggingAction la)
{ // the agent is triggered to take checkpoint by a checkpoint event

if (1{((SynFTAgent)myAgent).isCoordinator())
{ synchrony = null;
((SynLoggingAction)la).reset();

}

if(((SynFTAgent)myAgent).isCoordinator())

{ // send alert-to-checkpoint message to group members
AlertToCheckpoint m = new AlertToCheckpoint(myAgent.getAID());
AgentGroup g = ((SynFTAgentymyAgent).getAgentGroup();

_96 -

AID mlist[]=g.getGroupMemberList();
for(int i=1; i<mlist.length; i++)
sendSysMessage(m, mlist[i],SynFTAgent.protocol);

// waiting for Ack messages from each group memeber
for(int j=1; j<mlist.length;j++)
blockingReceiveSysMessage("CheckpointACK");

Il send synchorny message to group memebers to commit checkpoints
SynMessage sm = new SynMessage();
for(int i=1; i<mlist.length; i++)
sendSysMessage(sm, mlist[i],"Checkpoint commit");
lelse
{
// send Ack message to the coordinator
SynCheckpointAck m = new SynCheckpointAck();
sendSysMessage(m, ((SynFTAgent)myAgent).getCoordinator(),
“CheckpointACK");

// waiting for checkpoint synchrnonization message(commit)
blockingReceiveSysMessage("Checkpoint commit");
synchrony = (LogicalClock)getClock();
}
}

public void postCheckponitAction(LoggingAction la)
{ // non-coordinators need to log messages with clock value smaller than
/1 that of the synchrony message.
it ({((SynFTAgent)myAgent).isCoordinator())
{ ((SynLoggingAction)la).stopLoggingAfterClock(super.getClock());
la.startLogAllPosted(null);
}
}

public boolean takeWithCheckpoint(ACLMessage msg)
{ if ({(SynFTAgent)myAgent).isCoordinator())

{ try{

return synchrony.compareTo(msg.getClock())>0;
} catch (Exception e) { e.printStackTrace(); }

}

return true;
}

}

Figure 7-7 SynFTBehaviour class source code

SynLoggingAction class

This class is designed to support message logging in a checkpoint protocol, in which

messages with clock value smaller than the clock value of the checkpoint message

-97.-

should be recorded. Three methods are implemented: stoplLoggingAfterClock(...)
method is designed to set the logging policy, logPosedPredicate(...) method is
designed to return a Boolean result that will be used to decide if a message is to be
logged, and reset() method is designed to initiate the setting when a checkpoint
protocol starts.

The source code is shown in Figure 7-8.

package jade.fatmad.rrft.protocol.syncheckpoint;
b.ijblic class SynLoggingAction extends LoggingAction
LogicalClock clock;

public void stopLoggingAfterClock(Clock clock2)
{

if (clock2 instanceof LogicalClock)

clock = (LogicalClock)clock2;

}

public void reset(){ clock = null; }

public boolean logPostedPredicate(ACLMessage msg)
{
if (clock!=null && clock instanceof LogicalClock)
{
try {
return msg.getClock().compareTo(clock)<0;
} catch (Exception e) {
e.printStackTrace();

}
}

return false;

}

}

Figure 7-8 SynLoggingAction class source code

SynRecoveryManager class

This class is designed to implement the recovery process of the protocol, in which a
triggered recovery manager object needs to decide recovery line and dispatch
recovery task for each agent in the group. We override the method: recoveryAction(),

in which we implemented the following:

.98 -

1) Check the completeness of the last available checkpoint group. If the last
checkpoint group is not complete, then remove it from the repository. The last
complete checkpoint group can be used to form a recovery line.

2) Create a recovery message (RecoveryMessage class object) for each agent,
configure the message to specify recovery options, and dispatch them.

In each recovery message, we specify the following:
e The checkpoint that will be used for recovery;
e Channel messages that will be restored;
e The agent container where the agent will be recovered;
e Enable synchronization process so that all group members are synchronized
before resuming their execution;
e Enable the agent group to flush message channels after recovery.

The source code is shown in Figure 7-9.

package jade.fatmad.rrft.protocol.syncheckpoint;

public class SynRecoveryManager extends RecoveryManager

{

private int nSeqNo;

public void recoveryAction(RepositoryManagerBehaviour rm) throws Exception
{

I get the storage info of the failed agent
AgentStorage a_storage = rm.getAgentStorage(super.getAgentToRecover());

//Get group IDs
AID[] a_list= a_storage.getAgentGroup().getGroupMemberList();

/I physical checkpoint sequence # of the failed agent
nSeqNo=a_storage.getNumberOfCheckpoints();

/[Determine a valid recovery line
//Determine the min seq # that everybody should get back
if (a_list.length > 1)
{
for (inti=0; i< a_listlength; i ++)
{
a_storage=rm.getAgentStorage(a_list]i]);
a_storage.suspend();
if (nSeqNo > a_storage.getNumberOfCheckpoints())
{

-99

nSeqNo=a_storage.getNumberOfCheckpoints();
System.out.printin("NEW MIN CHK-PNT # : " + nSeqNo);

}
}

//Delete incomplete checkpoint group if exists
for (inti =0; i < a_list.length; i ++)
{
a_storage=rm.getAgentStorage(a_list[i]);
if (nSegNo < a_storage.getNumberOfCheckpoints())
a_storage.removelastCheckpointWithBag() ;

}
}

//end of recovery line determination

// Cerate recovery meassages for all the agents
RecoveryMessage rMsg ;
AgentCheckpoint last_Chkpnt ;
AgentEventBag last_Eventbag;
Vector playback_MsgsV ;
ACLMessageEvent msg_Event;

RecoveryMessage[] rmg = new RecoveryMessage[a_list.length];

// Customize each recovery message
for (inti=0;i<a_listlength; i ++)
{

// set checkpoint
a_storage=rm.getAgentStorage(a_list[i]);
rmg[i] = new RecoveryMessage(a_storage.getRegistration());
last_Chkpnt = a_storage.getAgentCheckpoint(0);
rmg[i].setCheckpoint(last_Chkpnt);

// set channel messages

last_Eventbag= a_storage.getAgentEventBag(0);

playback_MsgsV=new Vector();

for(int j=0; j< last_Eventbag.size(); j++)

{
msg_Event = (ACLMessageEvent)last_Eventbag.getAgentEvent(j);
if(msg_Event.getACLMessageEventType()==ACLMessageEvent. POSTED
|Imsg_Event.getACLMessageEventType()==ACLMessageEvent.INQUEUE)
playback_MsgsV.add(msg_Event.getACLMessage());

}

ACLMessage playback_Msgs[] = new ACLMessage[playback_MsgsV.size()];
playback_MsgsV.toArray(playback_Msgs);
rmgfi].setPlaybackMessages(playback_Msgs);

// enable flushing message channels all channels
rmg[i].enableFlushChannels(a_list);

- 100 -

// request each agent to be synchronized during post-recovery
rmgli].enableRecoverySynchronization(this.getAlD());

// specify agent container for the agent
if (super.isContainerAlive(a_storage.getAgentContainer()))
rmg[i].setAgentContainer(a_storage.getAgentContainer());

else
{ String[] containers = super.getBackupContainers();
String ct = null;

for(int i=0; i<containers.length && ct == null; i++)
if (isContainerAlive(containersli]))
ct = containersfi];

if(ctl=null)

rmg[i].setAgentContainer(ct.getContainerName());
else
{

System.out.printin(“No predefined recovery container alive. Recovery action

aborted”);
return;

}
}
}

// dispatch recovery messages
for (int i=0; i<=rmg.length; i++) rmg[i].dispatch(this);

// set the this agent to be a synchronizer for the recovery synchronization
super.enableRecoverySynchrony(a_list);

Figure 7-9 SynRecoveryManager class source code

CheckpointAck class and SynMessage class are designed to define checkpoint Ack
message and checkpoint message that are used in checkpoint collaboration in

SynFTBehaviour class (see Figure 7-7).

- 101 -

Chapter 8 Fault tolerant application development and
deployment

Although FATMAD provides comprehensive support to enhance fault tolerance
protocol development, its ultimate objective is to achieve application level fault
tolerance. In this chapter we introduce how to use FATMAD to develop a fault
tolerant agent application and deploy it.

Unlike protocol designers who need to understand protocol skeleton in order to
develop a protocol, application developers are required to know very little about
internal structure of FATMAD. From application developer’s perspective, FATMAD
is a fault tolerance extension to Jade agent platform. It consists of a fault tolerance
protocol library, which can help us build up fault-tolerant agents, and a set of

Runtime components, by which we can deploy fault tolerant agents.

8.1 Developing fault tolerant agents

8.1.1 Approach

Developing a fault-tolerant application with FATMAD does not require an application
developer to do fault tolerance design from scratch. Each protocol provided in
FATMAD allows an agent application to be easily transformed into a set of fault
tolerant agents. The only development effort towards fault tolerance for an

application developer is to do the required transformation.

Transformation

Application agents » FT application agents

Figure -1 'I'ranstormation

Suppose an application is well developed and tested, the application developer

needs to do the following in order to achieve fault tolerance:

-102 -

1) Protocol selection
FATMAD has a protocol (extension) library that archives a set of rollback-recovery
protocols. The application developer needs to select a protocol that is deemed to
be suitable for his/her application, based on the characteristics of the agent
application and the characteristics of the protocol.
2) Application transformation
Once a protocol is selected, the application developer needs to perform an
application transformation, i.e. integrate the selected protocol into his/her
application by applying the API of the selected protocol extension.
In order to properly use a FATMAD supported protocol, the developer needs to
understand the following: i) important characteristics of the selected protocol,
including the protocol scheme, suitability for specific application types, benefits, etc,
and ii) the programming interface for the selected protocol.
8.1.2 Framework protocol API
FATMAD has simple APls for application developers. This makes application
transformation work easy. Although different protocols have different characteristics,
APIs of different protocols are very similar from the programming perspective.
Usually to transform a normal application agent into a fault-tolerant agent, a
developer needs to do the following:
* Extend protocol specific agent class: Programming in Jade involves creating
an application agent class by extending the Jade agent class. Similarly, to create
a FATMAD supported fault-tolerant application agent, one needs to extend a
protocol-specific FATMAD agent class (which is in fact a sub-class of the Jade
agent class).
* Replace a set of agent class methods: In Jade agent programming, users
need to override methods, such as setup() and takedown(), which perform user-
defined application-specific initialization/clean-up operations. In using FATMAD,

these methods are replaced by appSetup() and appTakeDown().

- 103 -

* Replace messaging function calls: In Jade, a developer needs to use
methods such as send(...) and receive(...), to do messaging. In FATMAD, these
methods are replaced by sendMessage(...) and receiveMessage(...), which
augment Jade messaging services with system controlled and user-transparent
message handling services.

* Flag to trigger checkpoint/logging: Some protocols require the application to
set flags at desired points in order to trigger a checkpoint. Application designers

should program accordingly by calling some pre-defined methods provided

{ e (13 3y
public void appSetup() Replacement of “Agent”.
{ (13 t2)
// initialization code. Replacement of “setup()”.
}

public class OEBehaviour extends SimpleBehaviour
// Behaviour class conforming to Jade
{

either by the kernel or by the protocol.

public class SMTAgent extends StaggeredFTAgent

" public void action()
{ // Action performed by the application agent

This is newly inserted.
if(chpt_condition) ,

flagToCheckpoint(); // set flag to trigger checkpoint service

;éndMessage(msg);

Replacement of
“send(msg)”

Figure 8-2 Transformed code example

Figure 8-2 shows code fragments of an agent application named SMTAgent, which
employs the staggered checkpointing protocol [Vaidya99] by extending the protocol-
specific class named StaggeredFTAgent. It also demonstrates how the code is
modified for the transformation. Bold words in the code are the modified parts, e.g.,

the calling of the flagToCheckpoint() method, as is required by the protocol.

104 -

8.2 Deploying a fault-tolerant application

Once an application is transformed and complied, we are ready to deploy it.
Deploying FT application agents requires a runtime environment providing system
services to support embedded protocol entities to be deployed and be active. The
required runtime environment should be composed of Jade (modified) platform and
FATMAD runtime. Therefore, a complete deployment process involves the following
three steps:
1) Start the modified version of Jade platform
As we discussed before, during the development of FATMAD we modified the
source code of Jade to implement some services that cannot be implemented
directly on top of original Jade framework. Therefore, we need to run the modified
version of Jade platform.
2) Start FATMAD runtime
A FATMAD runtime consists of three types of service agents: container proxy
agent, FD monitor agent, and repository manager agent.
Since container proxy agents are automatically loaded to each agent node
(container) during node start-up, we only need to consider loading FD monitor
agents and repository managers. Two factors should be considered for setting up
the two types of service agents: quantity and locality of each type of service agent
that should be loaded.
3) Launch FT application agents
Since some parameters are required to be specified in deployment phase, we
developed a deployment tool, using which those parameters can be specified
before loading agents into Jade platform.
The following are the deploying parameters that are required to load FT
application agents:
¢ Agent name: the ID of the agent to be loaded;

e Agent class: the Java class that defines the agent to be loaded;

- 105 -

Container: the agent container that will accommodate the agent to be loaded;

* Backup containers: the backup agent containers that could be used during

recovery, especially when a container crash occurs;

RM(repository manager) server: the repository agent that is selected to serve

the agent to be loaded;

¢ Periodic checkpointing option: whether periodic checkpointing should be
applied; and the frequency parameters;

o FD (failure detector) server: the FD monitor agent that is selected to serve the
agent; and the monitor parameters;

¢ Arguments: the application arguments for the agent to be loaded;

¢ Group information: which set of agents should be launched as a group.

Figure 8-3 FT agent deployment tool: FT Agent Launcher

Figure 8-3 shows the interface of our deployment tool: Fault-tolerant agent

launcher.

~ 106 -

Chapter 9 Evaluation

In this chapter, we detail our evaluation of FATMAD.

9.1 Usability evaluation

In order to evaluate the usability of FATMAD, we invited three students to develop a
rollback-recovery protocol as well as a test agent application using FATMAD. They
built up a protocol extension based on the staggered protocol [Vaidya99], and a test
application to test the protocol. By reviewing the test results, we verified that the
protocol and the application were correctly implemented.

By talking to the developers, we received the following feed back:

e FATMAD provides many useful services and greatly reduced their development
work:

o Many services have been provided, such as checkpointing, data service,
message intercepting service, monitor service, failure triggering service,
etc.

o Some protocol-specific behaviour can be implemented by customizing
existing services in FATMAD, such as message logging and recovery
execution, which are very handy and easy to apply.

e Using FATMAD, developers can focus on protocol design instead of spending
time in building some fundamental services. The implemented protocol extension
classes are more like design specification, in which they specify protocol
behaviours and decisions. This leads to a much-reduced implementation with
only six small classes, which are easy to examine and debug.

e Using FATMAD, it's easy to transform a normal application into a fault tolerant
one. It is also easy to replace a protocol with another one on the same

application.

- 107 -

e The deployment of FATMAD runtime and fault-tolerant agents is quite flexible.
Developers can customize the deployment plan to satisfy their performance

requirement.

9.2 Performance evaluation

Performance is another factor in evaluating FATMAD. By evaluating performance,
we can deduce how much overhead is incurred to add a fault tolerance feature using
FATMAD.
During error free execution of an FT application agent, the checkpoint/logging could
impose additional overhead on an application agent during the following functions:
¢ Eventlogging
o Message events are intercepted and logged into stable place
e Checkpointing
o Agent object serialization and checkpoint delivery
¢ Protocol coordination
o This is protocol dependent
¢ Notifying monitor
o Notify the monitor agent of “alive” messages
e Protocol initialization

o Registering to relevant FATMAD runtime services

However, these overhead factors do not fully affect an agent’'s performance if the
agent is idle. For example, taking a checkpoint when an agent is waiting for a
message may not incur visible overhead.
The previous overhead can be further refined and categorized as the following:

¢ Object serialization

¢ Data transmission

e Data storing

- 108 -

e Synchronization
Certainly computer speed, memory size, hard drive speed, 1/0 throughput, and
network speed are important hardware factors that affect FATMAD performance.
Performance test
In order to implement a meaningful performance test, we designed a test application
to evaluate FATMAD overhead. The test application performs frequent computational
job combined with messaging actions and a log-based protocol. As a result, most of
the above overhead factors could be involved, except for protocol coordination,
which is protocol dependent.
The test application ran in a LAN environment with a group of machines running

Windows2000/XP operating systems. The following are the configurations:

PC1:

CPU: Athlon 800MHz

Memory: 512 MB

Hard drive: 30G 5400 RPM

Operating system: Windows 2000

Software: Sun JDK 1.4.2, Modified Jade 3.01b plus FATMAD

PC2:

CPU: Celeron 2.4GHz

Memory: 256 MB

Hard drive: 40G 7200RPM

Operating system: Windows XP

Software: Sun JDK 1.4.2, Modified Jade 3.01b plus FATMAD

PC3:
CPU: Pentimum4 2.6GHz

- 109 -

Memory: 1GB

Hard drive: 80G 7200RPM

Operating system: Windows XP

Software: Sun JDK 1.4.2, Modified Jade 3.01b plus FATMAD

Network: 10 Base T Eithernet

We arranged the application agents to run on two machines, and FATMAD
components to run on a separated machine.

By providing different parameters, we wanted to see how checkpointing and logging
impose visible overheads to overall execution of an agent application. The
parameters include event logging frequency, checkpoint frequency and checkpoint
size.

Table 9-1 illustrates four groups of testing results categorized by the different
parameters. All the four groups take minimum checkpoint, which is one, and have
different message event frequencies. For each group, we first ran the application
without applying fault tolerant protocol, and then we ran the same application
embedded with log-based protocol.

In group 1, each FT application agent takes 1 initial checkpoint and logs 1.088
event(s) per second. The average overhead is 2.9% of the additional computation
time.

In group 2, 3, and 4, we adjust the parameters so that message event frequencies
become 2.471 events/second, 4.365 events/second, and 9.561 events/second
respectively. The overheads incurred on relevant FT application agent are increased
to 6.05%, 7.40%, and 19.29% respectively. The diagram in Figure 9-1 illustrates that
the more frequently the events are logged the more overhead is generated.

Under such a runtime environment, if a fault tolerant protocol embedded in an

application agent incurs event logging action below 5 events per second, then the

- 110 -

overhead should be acceptable in general. Here we assume that the general
message size is less than 20 KB. Certainly the larger the size of the message is, the
more overhead the logging incurs.

Since a checkpoint-based protocol usually requires much less messages to be
logged than a log-based protocol, we predict that a checkpoint based protocol will be

more scalable than a log-based protocol in terms of number of message events

occurring at each agent.

average average average
events execy tior? time event execution average
/process : frequency time (s, overhead
(s, Without FT) (events/s) with FT)
Group 1 50 45.946 1.088 47.278 2.90%
Group 2 100 40.463 2.471 42.911 6.05%
Group 3 300 68.723 4.365 73.811 7.40%
Group 4 500 52.295 9.561 62.385 19.29%
Table 9-1
25.00%
20.00% -

) /

P

£ 15.00%

o

3 /

[

9 10.00%

o

s

5.00% —
0.00% :
1.088 2.471 4.365 9.561
events occurence frequency (events/second)

Figure 9-1 FATMAD performance chart - |

Table 9-2, 9-3, and 9-4 illustrate test cases focusing on how checkpointing imposes

overhead on application agents. In the collection of test cases shown in table 9-2, we

-111-

fixed the event frequency to 1.088 events per second (same as group 1 in above test
case), and then adjusted checkpointing frequency to observe the average overhead.
Obviously, overhead is directly proportional to the frequency of checkpointing. The
test cases shown in table 9-3, and 9-4 did the same test except that the checkpoint

sizes are different in these test cases, i.e., 12 KB, 108KB, and 1MB.

. average average
checkpoints execut?on checkpoi%ting average
/process time (s) period (s) overhead
1 47.278 47.278 2.90%
3 47.335 15.778 3.02%
6 47.595 7.933 3.59%
9 47.908 5.323 4.27%
19 49.571 2.609 7.89%

Table 9-2 Test cases with average event interval = 1.088 events/s
and checkpoint size = 12 KB

checkpoints | . C2 ion | cheokpointing | 2V0ra9°
/process time (s) perig d (s) 9 overhead
1 47.7783 47.77 3.98%
3 48.294 16.10 511%
5 48.421 9.68 5.39%
8 48.61 6.08 5.80%
22 51.573 2.34 12.25%

Table 9-3 Test cases with average event interval = 1.088 events/s
and checkpoint size = 108 KB

checkpoints average average average
Jprocess execution check_pom’nng overhead
time (s) period (s)

1 53.427 53.43 16.28%

3 57.137 19.05 24.36%

5 59.375 11.88 29.23%

7 62.254 8.89 35.49%

15 78.978 5.27 71.89%

Table 9-4 Test cases with average event interval = 1.088 events/s
and checkpoint size = 1013 KB

The diagram in Figure 9-2 illustrates how checkpoint size and checkpoint frequency

affect average overhead on an application agent.

- 112 -

From the test results we can conclude:

Overhead is directly proportional to checkpoint frequency.

The more frequent it takes checkpoints the more overhead generated

The bigger the checkpoint size the more overhead is generated. As we
observed, most agents have a checkpoint size of less than 50 KB.

With a small size of agent checkpoint, increasing checkpoint frequency leads
to slower performance degradation than larger sizes of agent checkpoints.
Since this application is a computationally oriented, we predict that non-

computationally oriented applications would have smaller performance

degradation.

average overhead

80.00%

—e— Checkpoint size: 12 KB

70.00% ~u— Checkpoint size: 108 KB .

—a— Checkpoint size: 1 MB

60.00% — 2 per. Mov. Awg. (Checkpoint
size: 1 MB)
e 2 per. Mov. Avg. (Checkpoint
50.00% size: 108 KB)
——2 per. Mov. Awg. (Checkpoint
size: 12 KB)
40.00%
30.00%

20000/0 //

—

10.00% /"

— - ‘Li/f

O.OOO/O LN T A S A A S 1 N A I RO A S B Bt e B A 2 |
PR RN R PR R P PPN N2 6

average checkpoint period (second)

Figure 9-2 FATMAD performance chart - ||

-113 -

Chapter 10 Conclusions

In this thesis, we have presented a fault-tolerant multi-agent development framework
(FATMAD). Based on checkpoint/recovery techniques, FATMAD is aimed at
providing application level fault tolerance development support to both application
developers and fault tolerance protocol developers. Using FATMAD, application
developers can easily build up fault tolerant applications with minimum
implementation efforts and minimum knowledge on fault tolerance design except for
necessary APls. FATMAD provides a protocol library that allows application
developers to select a protocol suitable to their applications. Using FATMAD,
protocol designers can design new protocols so that FATMAD can be enriched.
FATMAD provides many useful services that make protocol developers’ work easy.
In addition, FATMAD provides flexibility on deployment of FATMAD runtime to allow
application developers to easily adapt to their needs.
However, there are still many valuable features that should be further developed to
enhance FATMAD. We list them in the following:
e FATMAD API should be further enriched to support various protocols;
e FATMAD needs a rich protocol set and hence more protocols should be
developed,;
e FATMAD itself should be desighed to be fault tolerant so that it can handle
failures that cause FATMAD service crash.
e Failure detection that goes beyond crash failure, such as safety failure,
should be included;
e Protocol test-bed issue needs to be explored further;
e More usability experiments need to be conducted to improve the ease of use

of FATMAD.

-114 -

Bibliography

[Adina98]

[Agentcities]
[Agentlink]
[AGJ04]

[AGKSWO1]

[AIMag8]

[ArLa98]

[BePR9Y]

[BMOO1]

[CaSiog]
[ChanLamp85]
[CM-MAS]

[CoLe98]

[Cridah91]

[DelLoach99]

[DiWo003]

[EAWJ02]

Adina Magda Florea. iIntroduction to Multi-Agent Systems. International
Summer School on Multi-Agent Systems, Bucharest, 1998

Agentcities, http://www.agentcities.net/

Agent Link http://www.agentlink.org/

M. M. Akon, D. Goswami, and S. Jyoti. Routing in Telecommunication
Network with Controlled Ant Population, in Proceedings of the IEEE
Consumer Communications and Networking Conference (CCNC), Las Vegas,
Nevada, USA, January 2004.

Josef Altmann, Franz Gruber, Ludwig Klug, Wolfgang Stockner, and Edgar
Weippl. Using Mobile Agents in Real World: A Survey and Evaluation of
Agent Platforms. in Proceedings of the 2nd International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS at the 5th International
Conference on Autonomous Agents, Montreal, Canada, May 28-31, 2001,
ACM Press 2001.

L. Alvisi, and K. Marzullo. Message logging: pessimistic, optimistic, causal
and optimal, IEEE Trans. Software Eng. 24(2) (1998) 149-159.

Y. Aridor, and D.B. Lange. Agent design patterns: elements of agent
application design, in Proceedings of the Agents’98, Minneapolis, Minnesota,
May 1998, pp. 108-115.

F. Bellifemine, A. Poggi, and G. Rimassa. JADE --- A FIPA-Compliant Agent
Framework, in Proceedings of the PAAM'99, London, UK, 1999. The
Practical Application Company Ltd, pp. 97-108.

(See http://sharon.cselt.it/projects/jade/ for latest information)

B. Bauer, J.P. Miiller, and J. Odell. Agent UML: a formalism for specifying
multiagent interaction, in: P. Ciancarini, M. Wooldridge, (Eds.), Proc. Agent-
Oriented Software Engineering, May 2001, Springer-Verlag, Berlin, 2001, pp.
91-103.

G. Cao, and M. Singhal. On coordinated checkpointing in distributed systems,
IEEE Trans. Parallel and Distributed Systems, 9(12) (1998) 1213-1225.

M. Chandy, and L. Lamport. Distributed snapshots: determining global states
of distributed systems, ACM Trans. Computing Systems, 3(1) (1985) 63-75.
Carnegie Mellon University. Multi-Agent Systems
http://www-2.cs.cmu.edu/~softagents/muiti.html

J.C. Collis, and L.C. Lee. Building electronic market-places with the ZEUS
tool-kit, in Proceedings of the AMET-98 workshop, Autonomous Agents’98,
pp. 17-32.

F. Cristian, and F. Jahanian. A timestamp-based checkpointing protocol for
long-lived distributed computations. In Proceedings, Tehth Symposium on
Reliable Distributed systems, 12-20, 1991.

Scott A. DelLoach Multiagent Systems Engineering: A Methodology and
Language for Designing Agent Systems. In Proceedings of Agent Oriented
Information Systems, pages 45~57, 1999.

tan Dickinson, and Michael Wooldridge. Web technologies: Towards
practical reasoning agents for the semantic web, in Proceedings of the
second international joint conference on Autonomous agents and multiagent
systems table of contents, Melbourne, Australia, Pages: 827 - 834, 2003.

E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. A survey of Rollback-Recovery Protocols in Message-Passing
Systems. ACM Computing Surveys, Vol.34, No.3 September 2002, pp. 375-
408.

- 115 -

[Elnozahy93]
[EInZwa92]
[FiLa97]

[FIPA]
[GIMPO2]

[GOF94]
[GuSc98]

[HaMuO1]

[Jade]
[Jalote94]
{JohFoo088]

[Johnson97]

[JSMMO03]

[JuPS02]

[Kendalloo]

[Kendali98]

[KiGR96]

[KMMK+03]

[KoTo087]

E.N. Elnozahy Manetho: Fault Tolerance in Distributed Systems using
Rollback-Recovery and Process Replication, Ph. D. Thesis, Rice University,
Department of Computer Science, 1993.

E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel. The performance of
consistent checkpointing, In Proceedings, Eleventh Symposium on Reliable
Distributed systems, 39-47, 1992.

T. Finin, and Y. Labrou. KQML as an agent communication language, in
Software Agents. Bradshaw, J.M.(ED.), MIT Press, Cambridge, MA, 1997.
Agent Communication Language, FIPA 97 Specification, http://www.fipa.org/.
Fausto Giunchiglia, John Mylopoulos, and Anna Perini. The Tropos
Software Development Methodology: Processes, Models and Diagrams In
Proceedings of the first international joint conference on Autonomous agents
and multiagent systems: part 1 table of contents, Bologna, ltaly, Pages: 35 -
36, 2002.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software

R. Guerraoui, and A. Schiper. Fault-tolerance by replication in distributed
systems, in Reliable Software Technologies - Ada-Europe'96, LNCS 1088,
pp. 38-57. Springer-Verlag, June 1996.

M. Hannebauer, and S. Muller. Distributed constraint optimization for medical
appointment scheduling, in Proceedings of the Agents 2001, Montreal,
Quebec, Canada, May 2001, pp. 139-140.

Jade Agent Development Framework, http://jade.tilab.com/

P. Jalote. Fault Tolerance in Distributed Systems. PTR Prentice Hall

R. Johnson and B. Foote, Designing reusable classes, Journal of Object-
Oriented Programming, vol. 1, pp. 22-35, June 1988.

Ralph E. Johnson Frameworks = (Components + Patterns), Communications
of The ACM, October 1997/ Vol. 40, No.10

Thomas Juan, Leon Sterling, Maurizio Martelli, and Viviana Mascardi.
Software engineering: Customizing AOSE methodologies by reusing AOSE
features, Proceedings of the second international joint conference on
Autonomous agents and multiagent systems table of contents, Melbourne,
Australia, Pages: 113 - 120, 2003.

Thomas Juan, Adrian Pearce, and Leon Sterling. ROADMAP: Extending the
Gaia Methodology for Complex Open Systems. In Proceedings of the first
international joint conference on Autonomous agents and multiagent systems:
part 1 table of contents, Bologna, Italy, Pages: 3 - 10, 2002.

E.A. Kendall. Agent software engineering with role modeling, in: P. Ciancarini,
M. Wooldridge, (Eds.), in: Proc. the First International Workshop (AOSE-
2000), Springer-Verlag, Berlin, Germany, Jan. 2000, pp. 163-170.

E.A. Kendall. Agent roles and aspects, in: S. Demeyer, J. Bosch, (Eds.),
Proc. ECOOP Workshops, Springer-Verlag, LNCS 1543 (1998) 440.

D. Kinny, M. Georgeff, and A. Rao. A Methodology and Modeling Technique
for Systems of
BDI Agents, In W. Van de Velde and J.W. Perram, editors, Agents Breaking
Away: Proceedings
of the 7th European Workshop on Modeling Autonomous Agents in a Multi-
Agent World
(LNAIL 1038), pp 56-71. Springer Verlag, 1996.

Salim Khan, Ravi Makkena, Foster McGeary, Keith Decker, William Gillis,
and Carl Schmidt. Simulation: A multi-agent system for the quantitative
simulation of biological networks, in Proceedings of the second international
joint conference on Autonomous agents and multiagent systems table of
contents, Melbourne, Australia, Pages: 385 - 392, 2003

R. Koo, and S. Toueg. Checkpointing and rollback recovery for distributed
systems, |EEE Trans. Soft. Eng., 13(1) (1987) 23-31.

- 116 -

[KSTV+01]

[LaiYang87]
[Lamport78]

[Lind00]

[Liu01]

[LIWG04]

[MaDN02]

[MaFu01]

[ManSing99]

[MBBC+98]

[MiGa01]

[Mols02]

[NeiTou87]

[OdPBOO]

Yiannis Kouroupis, Yiannis Stavroulas, Katerina Tsiara, Theodora
Varvarigou, Aarno Lehtola, Kuldar Taveter, Victor A. Villagra, Jorge E. Lopez
de Vergara, and Christophe Duhem. Technology Review and Selection.
Project Deliverable D51 in the project of Multilingual Knowledge Based
European Electronic Marketplace.

T.H. Lai, and T. H. Yang. On distributed snapshots, Information Processing
Letters 25, 153-158,

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System, Communication of the ACM 21(7), 558-565, 1978.

Jurgen Lind Issues in Agent-Oriented Software Engineering The First
International Workshop on Agent-Oriented Software Engineering (AOSE-
2000), 2000.

J. Liu. Autonomous Agents and Multi-Agent Systems: An Introduction, World
Scientific, Singapore, 2001.

H.F. Li, Z. Wei, and D. Goswami. Quasi-atomic recovery for distributed
agents, under journal revision.

Philippe Massonet, Yves Deville, and Cédric Néve. From AOSE
methodology to agent implementation, In proceedings of the first
international joint conference on Autonomous agents and multiagent systems:
part 1 table of contents, Bologna, ltaly, Pages: 27 - 34, 2002,

Yasuo Matsumoto, and Satoru Fujita An Auction Agent for Bidding on
Combinations of Items in Proceedings of the fifth international conference on
Autonomous agents table of contents, Montreal, Quebec, Canada, Pages:
552 - 559, 2001.

D. Manivannan, and Mukesh Singhal. Quasi-Synchronous Checkpointing:
Models, Characterization, and Classification. IEEE Transactions on Parallel
and Distributed Systems. 10-7 July 1999.

D. Milojicic, M. Breugst, |. Busse, J. Campbell, S. Covaci, B. Friedman, K.
Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J.
White. MASIF The OMG Mobile Agent System Interoperability Facility,
Proceedings of the International Workshop on Mobile Agents (MA'98),
Stuttgart, September 1998. It also appeared as Personal Technologies,
Springer Verlag, (1998), 2:117-129.

N. Mittal, and V.K. Garg. On Detecting Global Predicates in Distributed
Computations, in: Proc. IEEE ICDCS, Phoenix, May 2001, pp. 3 - 10.
Antonio Moreno, and David Isern A First Step Towards Providing Health-
Care Agent-Based Services to Mobile Users in Proceedings of the first
international joint conference on Autonomous agents and multiagent systems:
part 2, Bologna, ltaly. Pages: 589 - 590, 2002.

G. Neiger, and S. Toueg. Substituting for Real Time and Common
Knowledge in Asynchronous Distributed Systems(preliminary version),
Proceedings of the Sixth ACM Annual Symposium on Principles of
Distributed Computing, Schneider, F.B., ed., Vancouver, BC, Canada, 281-
293, 1987.

J. Odell, H.V.D. Paranak, and B. Bauer. Extending UML for agents, in Proc.
AOIS Workshop at AAAI 2000, Mar. 2000, Austin, TX, USA, pp. 3-17.

[OMG-MASIF] OMG MASIF, OMG TC Document ORBOS/97-10-05.

[Pawi02]

[PiGa00]

[PPGOO]

Lin Padgham, and Michael Winikoff. Prometheus: a methodology for
developing intelligent agents, In proceedings of the first international joint
conference on Autonomous agents and multiagent systems: part 1 table of
contents, Bologna, Italy, Pages: 37 - 38, 2002.

A. Pivk, and M. Gams. Intelligent Agents in E-Commerce. Electrotechnical
Review, 67(5)(2000) 251-260.

H. Pals, S. Petri, and C. Grewe. FANTOMAS: Fault Tolerance for Mobile
Agents in Clusters, J. Rolim, et al., (Eds.), Parallel and Distributed

- 117 -

[Pree94]

[Preist99]

[Randell75]

[SaSh00]

[SchMat92]

[ScSc83]

[SDPW+96]

[ShSt01]

[Silvag7]

[SSS+99]

[StroYam85]
[StYe85]
[TaKo99]

[TamSeq84]

Processing — Proc. 15th IPDPS 2000 Workshops, Cancun, Mexico, May
2000, Springer-Verlag, LNCS 1800 (2000) 1236-1247.

Wolfgang Pree. Meta patterns - a means for capturing the essentials of
reusable object-oriented design, in M. Tokoro and R. Pareschi (eds),
Springer-Verlag, proceedings of the ECOOP, Bologna, ltaly: 150-162.

Chris Preist. Comodity Trading Using An Agent-Based lterated Double
Auction in Proceedings of the third annual conference on Autonomous
Agents table of contents, Seattle, Washington, United States, Pages: 131 -
138, 1999.

B. Randell. System structure for software fault tolerance, IEEE Transaction
Software Engineering 1, 2, 220-232, 1975.

J. Saldhana, and Sol M. Shatz. UML diagrams to object petri net models: an
approach for modeling and analysis, in: Proc. Intl. Conference on Software
Eng. and Knowledge Eng. (SEKE), Chicago, July 2000, pp. 103-110.

R. Schwarz, and F. Mattern. Detecting causal relationships in distributed
computations, In search of the Holy Gralil, Department of Computer Science,
University of Kaiserslautern, Technical Report SFB124-15/92, Kaiserslautern
Germany, 1992.

R.D. Schlichting, and F.B. Schneider. Fail-stop processors: an approach to
designing fault-tolerant computing systems, ACM Trans.Computer Systems,
1(3)(1983) 222-238.

K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed
intelligent agents, Distributed intelligent agents, IEEE Expert, 11(6) (1996)
36-46.

Onn Shehory, and Arnon Sturm. Evaluation of modeling techniques for
agent-based systems, in Proceedings of the fifth international conference on
Autonomous agents table of contents, Montreal, Quebec, Canada, Pages:
624 - 631, 2001

L.M. Silva. Checkpointing Mechanisms for Scientific Parallel Applications,
Ph.D.Thesis, University of Coimbra, Department of Computer Science, 1997
L.M. Silva, P. Simdes, G. Soares, P. Martins, V. Batista, C. Renato, L.
Almeida, and N. Stohr. JAMES: A Platform of Mobile Agents for the
Management of Telecommunication Networks, in Proc. 3rd International
Workshop on Intelligent Agents for Telecommunication Applications
(IATA'99), Springer-Verlag LNCS 1699 (1999) 76-95.

R. E. Strom, and S. Yamir. Optimistic recovery in distributed systems. ACM
Trans. Comput. Syst. 3,3, 204-226, 1985.

R.E. Strom, and S.A. Yemini. Optimistic recovery in distributed systems,
ACM Trans. Computer Systems, 3(3) (1985) 204-226.

H. Tai, and K. Kosaka. The Aglets project, Comm. of the ACM, 42(3)(1999)
100-101.

Y. Tamir, and C.H. Sequin. Error recovery in multicomputers using global
checkpoints, In Proceedings of the International Conference on Parallel
Processing, 32-41.

[Tanenbaum02] Andrew S. Tanenbaum. Distributed Systems: Principles and Paradigms,

[TongKT92]

[Tveit01]

[Vaidya99]

2002

Z. Tong, R. Y. Kain, and W. T. Tsai. Rollback-recovery in distributed
systems using loosely synchronized clocks. |IEEE Transactions Parallel and
Distributed system, 3, 2, 246-251, 1992.

Amund Tveit. A survey of Agent-Oriented Software Engineering. in
Proceedings of the First NTNU Computer Science Graduate Student
Conference. Norwegian University of Science and Technology, May 2001.
N.H. Vaidya. Staggered consistent checkpointing, IEEE Trans. Parallel and
Distributed Systems, 10(7)(1999) 694-702.

- 118 -

[VeCo02]

[WaPW98g]

[WoJK00]

Mario Verdicchio, and Marco Colombetti Commitments for agent-based
supply chain management, ACM SiGecom Exchanges archive Volume 3 ,
Issue 1 Winter, 2002, Pages: 13 - 23

T. Walsh, N. Paciorek, and D. Wong. Security and reliability in Concordia, in
Proc. 31th Annual Hawaii International Conference on System Sciences
(HICSS31), 7(1998) 44-53.

Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The Gaia
Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems, 3,
285n312, 2000 © 2000 Kluwer Academic Publishers. Manufactured in The
Netherlands.

-119 -

