VIRTUAL QUESTION ANSWERING SYSTEM FOR CINDI

Hong Bing Zhang

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada

August 2004

© Hong Bing Zhang, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94758-0
Our file Notre référence
ISBN: 0-612-94758-0

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract
Virtual Question Answering System for CINDI

Hongbing Zhang

Modern information retrieval technology is playing an increasingly important
role in our daily life. Keyword based search engine system and question
answering system are the two main technologies of text information retrieval on
the Internet. Current search engine systems do not give enough contexts for their
search, and users have to go through the documents to find relevant information.
Due to their complexity, question answering systems typically have slow

response time.

The Virtual Question Answering System (VQAS) presented in this thesis aims to
provide a method to retrieve full-text information from a digital library by targeting
the gap between a true question answering system and current search engines. It
retrieves the paragraphs where the possible response corresponding to the user’s
query appear, not just a few words before and after the search terms. In most cases,
the user would be able to find the answer directly in the paragraphs of the query

result.

iii

Acknowledgements

I express deep gratitude to my supervisor Professor B.C.Desai for his extraordinary
and continuous support throughout my studies at Concordia University. Like many
others, I consider myself blessed to be under his supervision. He was always

gracious in giving me the time and strength even amidst tight schedule.

I would also like to thank all the members in CINDI group and all my friends for
their support, patience, encouragement, and understanding throughout my academic

endeavors. Without them this thesis would have been impossible.

Last but not the least, I express deep veneration to my dearest parents for teaching

me the importance of good education, from which everything else springs.

v

List of Contents

T INEEOAUCHION.......c.vieeieeeie et ae st s s st s b e b e 1
LT OVEIVIEW ...ttt sae e s e sa e s rssne s |
L2 The probBlem...............cocenreniiiiiiiniiiiniiniiccicsae et 2
1.3 The Goal of this TRESISc.cccoooureeeeceiiiciriiciriniecsieii et 3
1.4 The Thesis QULIINGEccovevcueeeiiiieirieiieeeteeee et 3

28tate 0f the ATtc.oooeeieeeeeee e 5
2.1 Early Information Retrieval SyStem...............ccccccovvvviiirivininncnnnnnicinniniins 5
2.2 Search ENGine SYSTENNooeeveerirerireiiiiinieentenaeienie et sssnsesessessenes 8
2.3 Question AnSwering SYSIEMLcccoovviniciiinicicniine e, 15
2.4 CINDI SYSTEHLooeeevieeeeeeeteeeeectee st 21

3 Virtual Question Answering System (VQAS)c.ccovrivivviniiien. 25
3.1 System ArcRIteCturec.ccooevevieveneiciiciiieicnictiscses e 25
3.2 Document processing module...................c.c.occcocciiciivinniiiniii 26

3.2.1 Lexical analysis of the textcccooiinnivn 27
3.2.2 Content Filtering...........ccooveeeieiiiinniccrcieeer e 29
3.2.3 Elimination of stopWOrdscccccoovvicvicnrnnininniniieci 29
3.2.4 WordId J0oKUPcocoviiieiiiiiictctcc s 29
3.3 Index creation moduleccoccoviiviiiiniiiiiiiiieic 32
3.3.1 B-tree Creation........c.cooeevveiiieeiiiiiciicee e 33
3.3.2 Forward index €reator............cocceovnirriiiineicniececncinresenni e snnenens 37
3.3.3 Inverted index Creator..........ccooceveiiiniiinieniicii e 39
3.4 Search module...............oooooreveeeniiiiieiiieeieee e 43
3.4.0 QUErY IIMPUL.......ocvieieieiieceie et e s 43
3.4.2 TOKENIZE QUETYooveeriiriciiiiiiiiinitcti e s 45
3.4.3 Analyze QUErY termScovvvevieriienierrieceiieere et eneste s cne s 46
3.4.4 Load the lexicons and the index part of inverted index 46
3.4.5 Retrieve paragraphs for a single word.............ccccooccoccevnninnnnn 47
3.4.6 Retrieve paragraphs for phrase queries...........cccceviiiiiiinninnnnn. 50
3.4.7 Intersect query results of single words and phrases in a subquery.. 53
3.4.8 Merge query results of all subqueries................ccocvvnnivnnnnnn 53
3.4.9 Rank the final query resultc.cocoooininiivcniin e 54

3.5 Userinterface module...................coocovviiviiniiiiiiiiniiiiircineceeceeeeees 55
4 Experimental ResultS..........oooveiiiieii e 59
4.1 SyStem Performanceooevveereeesieiieeeiiierieeerieeaseeesseessesessaesanesesnens 59
4.2 Performance of the in-memory phrase indexccocccovevvuvenvcnencnne. 63
5 Conclusion and Future Work ... 68
5.1 CORCIUSION ...ttt eb et sae s 68
S 2 FULUIE WOTK ...ttt sttt st enes 69
REFEINCEeeoeeieereeie e ae s e et e e e 70

vi

List of Figures

Figure 2.1: Google Architecture [18]ooovivmiiiiiiiiii 11
Figure 2.2: Search result for query “biggest country in the world” in Google........ 13

Figure 2.3: The architecture for the general approach to answer passage and factoid

questions in TREC QA SYStEMS........covviviiiiiiiiiiieeecicncn e 20
Figure 3.1 System diagramccceviiieiiiiiiiiinieiiciee st e 25
Figure 3.2 Major data structures used in the B+-tree index creatorcccceeee. 34
Figure 3.3 A forward index eXample........cocooivvviriniiniiininiinice e 38
Figue 3.4 Inverted file after inserting document 001............ccoccovinniiniiinnn, 40
Figure 3.5 Inverted file of Figure 3.4 after inserting document 002 41
Figure 3.6 Inverted file of Figure 3.5 after inserting document 003 42
Figure 3.7 Processing step of the search module.........ccooeiiiiniiniciiiiiinn. 44
Figure 3.8 B-tree used to store the index of inverted filecooooinnnnnn 47
Figure 3.9 Data structure of match_liStccooccoivivinininii, 48
Figure 3.10 Data structure for phrase indexcccooevcerievreeniccennnciennececnnanenes 52
Figure 3.11 Main page of VQAS ..o 56
Figure 3.12 QUETY TESUIL .c..coiiiiiiiiiciiiicr e e 57

Figure 3.13 Synchronization between the interface module and the search module58

vii

List of Tables

Table 2.1 Component scores and final combined scores for main task runs 18
Table 3.1 Schema of relation “ASHG ... v rrnrcirirrerrere e e ressesrnrerees 27
Table 3.2 Schema of relation CUITENt_GUETY......ccocevriiiniciiiiineniiniiie e 45

Table 4.1 The test of system performance for a collection of 1000 documents...... 60
Table 4.2 The test of system performance for a collection of 5000 documents...... 61

Table 4.3 The test of system performance for a collection of 10000 documents.... 62

Table 4.4 System PerfOrmancecoeeeeieeeiiieniiiier e 63
Table 4.5 Examples of retrieved paragraphscocceeveviiieinininneininnneenienneen 64
Table 4.6 The performance test of phrase index for 1000 documents..................... 65
Table 4.7 The performance test of phrase index for 5000 documents..................... 65
Table 4.8 The performance test of phrase index for 10000 documents................... 66
Table 4.9 Performance of the in-memory phrase indeX........ccoccovvvirvevninevcnrceenee 66

Viii

Chapter 1

Introduction

1.1 Overview

Information retrieval is the art and science of searching for information from
document collections by scanning the documents, searching for metadata which
describes the documents, or searching for documents’ text. For approximately
4000 years, mankind has organized information for later retrieval and usage [1].
Until recently, information retrieval had been seen as a narrow area of interest
mainly for librarians and information experts. The importance of information
retrieval has grown dramatically during recent years due to the rapid increase of
available storage capacity, increased performance of all types of processors and
increased capacity and reliability of networks. This in turn has created an

exponential growth of the Internet.

Internet is becoming a universal repository of human knowledge and information,
which has allowed unprecedented sharing of ideas and information on a scale
never seen before. Despite the many successes, Internet has to face new problems
of its own. Finding useful information on the Internet is frequently a tedious and
difficult task. These difficulties have attracted renewed interest in information
retrieval and its techniques as promising solutions. As a result, information

retrieval plays an increasingly important role in modern life.

The most important measures of information retrieval are the quality of the result
and the search speed. In order to achieve good performance, a lot of research has
been done [1]. This research includes indexing, modeling, classification and
categorization, systems architecture, user interfaces, data visualization, filtering,

and nature language processing.

1.2 The problem

Currently, keyword based search engine systems and question answering systems
are the two main methods of information retrieval on the Internet. Many search
engine systems, such as Google, Yahoo and AltaVista, are widely used daily by
web users. There are not many question answering systems widely used yet,

however many such systems are under development [2].

In search engine systems, an index term is a keyword that has some meaning of
its own. Both documents and queries are considered as a set of keywords, and it
is assumed that if keyword x occurs in the document, the document is about x.
The search engine systems extract all the keywords occurring in the document
collection to create an index for them. When a query is made, the index is
searched to return a ranked list of documents that contain query keywords.
Current search engine systems usually return too many results, and each result
only shows several words near the position where the query keyword occurs in
the document and a link to that document. Since there is no context in those
snippets of text with respect to the query word, users have to go through the

document to find whether it contains relevant information; this is extremely time-

consuming.

In question answering systems, users make queries in natural language, and the
system gives brief answers to the specific question. There are many ways to ask
the same question. Likewise, there are many ways of delivering the answer. Such
variations form a semantic equivalence class of both questions and answers;
many forms of a question can be answered by many forms of the answer. So, the
question answering system has to recognize all forms of the question, create a
query, retrieve pertinent documents, and find the answer in all possible forms.
That is a very difficult task. Current question answering systems seem to

typically have slow response time and low accuracy rates [2].

1.3 The Goal of this Thesis

This thesis presents the Virtual Question Answering Subsystem (referred to
hereafter as VQAS) of the Concordia Indexing and Discovery System (referred to
hereafter as CINDI). VQAS attempts to provide a method to retrieve full-text
information from a digital library by targeting the space between a true question
answering system and current search engines. VQAS is implemented as a search
engine system that supports user queries expressed as one or more words, phrases,
and sentences. The difference between VQAS and traditional keyword based
search engine systems is that VQAS will retrieve as result the paragraphs where
the possible response corresponding to the user’s query appear, not just a few
words before and after the search terms. In most cases, the user would likely find

the answer directly in the paragraphs of the query result.

1.4 The Thesis Outline

Chapter 2 introduces the background information on search engine systems,

question answering systems and the CINDI system. Chapter 3 introduces the

system architecture of VQAS and discusses in detail its major components, their
inter-operations, algorithms, and its integration into the CINDI system. Chapter 4
discusses the results achieved by VQAS and how these results compare with
other search engine systems. Chapter 5 concludes the thesis and discusses the

implication for future work in the field.

Chapter 2
State of the Art

2.1 Early Information Retrieval System

Since 4000 years, people have organized information for later retrieval and
usage[1]. A typical example is the table of contents of a book. Since the volume
of information eventually grew beyond a few books, it became necessary to build
specialized data structures to ensure easy access to the stored information. An old
and popular data structure for faster information retrieval is a collection of
selected words or concepts with associated pointers to the related information (or
documents). This structure is called an index. Indexes are at the core of every
modern information retrieval system. They provide faster access to the data and
allow the query processing task to be speeded up. For centuries, index cards and
catalogs were created manually for all the information resources in libraries; the
users of a library can use different kinds of index cards to search the information
resources by title, author, etc.; the users can also use the catalogs to search the
information resources by the catalog number. Currently, most libraries still use
the catalog number to classify their documents. Such catalogs have usually been

conceived by human subjects from the library science field.

In the early 1990s, a single fact changed the history of information access — the
introduction of the World Wide Web (referred to hereafter as WWW). WWW
development began at CERN (Geneva) in 1989 [3]. It is defined as an

information service on the Internet that has the following properties:

e It uses a common addressing syntax in the form of a Universal Resource

Locator (URL).

e It uses Hypertext Markup Language (HTML), a document formatting
language. HTML is a language used to describe hypertext resources, in
which links with other resources can be defined. It can also describe
hypermedia resources, wherein the links are not associated with textual

information, but with other resources such as images or sounds.

e]t uses the HTTP protocol (HyperText Transfer Protocol) in order to
transfer information resources between two computers (a client and a
server) on a network. These resources could be texts, menus, hypertexts,

images, etc.

WWW makes it possible to access a document anywhere on the Internet using a
URL. People can share their ideas and information on the web. The web is
becoming a universal repository of human knowledge and culture. Its success is
based on the use of a standard user interface no matter what computational
environment is used to run the interface. As a result, the user does not need to
know the details of communication protocols, machine location, and operating
systems. Further, any user can create his’her own web document and make them
point to any other web document without restrictions, which turns the web into a
new publishing medium accessible to everybody. It is causing a revolution in the
way people use computers and perform their daily tasks. It is changing the way
that people access information, and has opened up new applications in areas such
as digital libraries, general and scientific information dissemination, education,

commerce, entertainment, government, health care, etc.

Despite its success, the Web has introduced new problems of its own. The
problems include the following:
e Distributed data: Due to the nature of the Web, data spans over many
computers and platforms. These computers are interconnected with no
predefined topology, and the available bandwidth and reliability on the

network varies widely.

e Volatile data: Due to Internet dynamics, new computers and documents
can be added or removed easily. It is estimated that 40% of the Web
changes every month [4]. We also have dead links and relocation

problems when URLs disappear or change.

e Unstructured and redundant data: Web pages are not well structured,
and much Web data is repeated (mirrored or copied) or very similar.
Approximately 30% of Web pages are duplicated [5]. Semantic

redundancy can be even larger.

e Large volumes: The Web is huge and challenging to deal with. Several
studies have estimated the size of the Web, and while they report
slightly different numbers, most of them agree that over a billion pages
are available [6, 7, 8]. Given that the average size of a Web page is
around 5-10K bytes, just the size of the textual data is at least tens of

terabytes.

e Quality of data: The web can be considered as a new publishing
medium. However, documents are not filtered. So, data can be false,

invalid, out of date, poorly written, or with many errors. Studies show

that the number of words with typos can range 1 in 200 for common

words to 1 in 3 for foreign surnames [9].

e Heterogeneous data: On the Web, data can be of multiple media,

multiple formats, and different languages.

Finding useful information on the Web is frequently a tedious and difficult task.
For example, to find the information he/she needs, the user might navigate the
hyperspace searching for information of interest. However, since the hyperspace
is vast and almost unknown, such a navigation task is usually inefficient. For
those users who are not good at searching, the problem becomes harder, which
might waste their efforts. The main obstacle is the absence of a well defined
underlying data model for the web, which implies that information definition and
structure is frequently of low quality. These difficulties have attracted people’s
interest to find new solutions. One of these solutions was the introduction of

search engine.

2.2 Search Engine System

A search engine is a web-based software tool that enables the user to locate sites
and pages on the web based on the information they contain. With a search
engine, keywords related to a topic are typed into a search "box." The search
engine scans its document collection and returns a ranked list of documents
containing the word or words specified with links to the websites of these
documents. Search engine system uses statistical methods that rely on the
frequency of words in query and document collection. Most search engine

systems process search based on the assumption that the more frequently a

keyword occurs in a document, the more relevant the document is to the query.
Since these databases are very large, search engines often return thousands of
results. Without search strategies or techniques, finding what you need can be

like finding a needle in a haystack.

In the days before the introduction of World Wide Web, searching for information
on the Internet could be quite difficult. One common method was through FTP. In
the beginning, FIP files were publicized and found by word of mouth, email
messages, or on message boards. In 1990 Alan Emtage improved FTP search
capabilities with a database client called Archie [10]. Archie was able to obtain
site listings of FTP files by scouring FTP sites across the Internet and indexing all
the files found.

Soon the first robot came. It was called World Wide Web Wanderer [11] and its
job was to track the web's growth. Initially it only counted web servers but later it
began to gather URLs as well and stored them in the first web database, Wandex.
The term robot here is referring to automated computer program that performs an
automated task on the Internet. A search engine spider is a type of robot. The
Wanderer led the way for programmers to improve upon the idea of robots and
spiders. Spiders start on a starter site and begin exploring all of the links from that

site.

In October of 1993 Martijn Koster created Archie-Like Indexing of the Web,
called ALIWEB [12]. ALIWEB allowed users to submit their pages they want to
index with their own page description. This meant it did not need a robot to
collect data and was not using up excessive bandwidth. The downside of
ALIWEB is that many people did not know how to submit their information

resource or were not willing to do so.

In December of 1993, three robot-powered engines are created - JumpStation,
World Wide Worm and Repository Based Software Engineering Spider [13].
JumpStation gathered information about the title and header from Web pages and
retrieved these using a simple linear search. The WWW Worm indexed titles and
URLSs. The problem with JumpStation and the World Wide Web Worm is that
they listed results in the order that they found them, and provided no
discrimination. The RSBE spider did implement a ranking system. Brian
Pinkerton of the University of Washington released the WebCrawler on April 20,
1994 [14]. WebCrawler was the first full-text search engine on the Internet.

Lycos [15] was the next major search engine, having been designed at Carnegie
Mellon University around July of 1994. On July 20, 1994, Lycos went public with
a catalog of 54,000 documents [15]. In addition to providing ranked relevance
retrieval, Lycos provided prefix matching and word proximity bonuses. But
Lycos' main difference was the sheer size of its catalog: by August 1994, Lycos
had identified 394,000 documents; by January 1995, the catalog had reached 1.5
million documents; and by November 1996, Lycos had indexed over 60 million
documents -- more than any other Web search engine [16]. In 1995, another
search engine, named AltaVista, was created by scientists at Digital Equipment
Corporation; it devised a way to store every word of every HTML page on the
Internet in a fast, searchable index [17]. AltaVista had led the search engine
industry in many areas. It was the first search engine to offer translation services

and localize its site for Chinese, Japanese and Korean searchers.

In 1998 the last of the current search super powers, and the most powerful to date,
Google, was launched [19]. The Google search engine has two important features

that help it produce high precision results. First, it makes use of the link structure

10

of the Web to calculate a web page’s “PageRank”, an objective measure of its
citation importance that corresponds well with people’s subjective idea of
importance. Second, Google utilizes link to improve search result. Google

improved the quality of web search engines. It has become so popular that major

portals such as AOL and Yahoo have used Google.

Figure 2.1 gives a high level overview of how Google system works. Several
distributed crawlers download web pages synchronously. There is a server that
sends lists of URLs to be fetched into the crawlers. The web pages that are

fetched are then sent to another server called the store server. The store server

Figure 2.1: Google Architecture [19]

11

then compresses and stores the web pages into a repository. Every web page has
an associated ID number called a docID that is assigned whenever a new URL is
parsed out of a web page. The indexing function is performed by the indexer and
the sorter. The indexer performs a number of functions. It reads the repository,
decompresses the documents, and parses them. Each document is converted into
a set of word occurrences called hits. The hits record the word, its position in the
document, an approximation of font size, and capitalization. The indexer
distributes these hits into a set of "barrels", creating a partially sorted forward
index. The indexer performs another important function. It parses out all the links
in every web page and stores important information about them in an anchors
file; the information includes where each link points from and to, and the text of
the link. The URLresolver reads the anchors file and converts relative URLSs into
absolute URLs and in turn into docIDs. It puts the anchor text into the forward
index, associated with the docID that the anchor points to. It also generates a
database of links that are pairs of docIDs. The links database is used to compute
PageRanks for all the documents. The sorter takes the barrels, which are sorted
by docID, and resorts them by wordID to generate the inverted index. This is
done in place so that little temporary space is needed for this operation. The
sorter also produces a list of wordIDs and offsets into the inverted index. A
program called DumpLexicon takes this list together with the lexicon produced
by the indexer and generates a new lexicon to be used by the searcher. The
searcher is Tun by a web server and uses the lexicon built by DumplLexicon

together with the inverted index and the PageRanks to answer queries.

12

Advanced Sewch Preferences Lanousoe ng.t §egmh T QS

- Seerch £ the web U7 pages from Canada

THe t@idwi wrords re very oommen snd were not included it your sesroht in the . [details]

3 i - BEIC News B hours ago
or the b vi - The Scoteman - 24 Feb 2004
Trv Goagle News: S newes 51 Lo in the world or hrowse the lstest headlines

tis the bil Inthe world?
- Dear Yahnoo! What is the biggest country in the world? My dad says
it's Canada. Is he right? Riley San Jose, California. Deer Riley: ...
ask yahoo.comfask20000310 Mmi - 3k - Cached - Sinfiar pases

TidEsurape com: Foll ~ The Bigsest Threat To Peace

e Advenced Search. The Biggest Threat T Peace Yhich country really poses

the grestest danger to world pesce in 20037 TIME asks for readers’ views. ..

yewsewe fime comtimelauropaiidmlipaace 2003 Mmil - 41k - 25 Feb 2004 - Cache - Similar panes

Alas List of 25t I0west bi atlesita "
- Yolcano Mauna Kea (on the Big island of ... 2,538 meters Highestd ovwest Points Countries,
lslands Oceans here ... 178" LARGEST DESERTS OF THE WORLD (SUBTROP'CAL) Sahara ..
Wy weoridaties comégeoguizihelist i - 421 -

EAQ: Sunetiaives Bingest, Fastest Sroaliest Riches), Hinhest,,

« Weterfalle of the World, World Land Areas and Elevetions (for biggest and smaliest
countries and highest points), Principal Deserts of the World (for largest ...

spepessy tactmonstar comhomewariisupsriativestsd biml - 28k - Cached - Similsr paass

The higgest stand in the world Danlsh Ervironmentsl Protection ..

Figure 2.2: Search result for query “biggest country in the world” in Google

Google has indexed a large number of web pages; and is one of the largest in the
world, with approximately 3 billion pages [19]. Currently, nearly half of the
traffic of the Internet generated by all of the search engines and directories is
generated by Google [19]. Despite the big success, current search engine systems
have two limitations. Search engine systems answer question indirectly. Search
engine systems have traditionally focused on returning reference to URL of the
documents that contain the query keywords rather than returning pertinent part of
the document. Figure 2.2 shows an example of the search result from Google.
Each search result shows a snippet of text in which search terms occur and also a
link to the document. In this example, the user wants an answer to the question:

“which is the biggest country in the world?”. Obviously, the user cannot have the

13

answer from the snippets of text; he/she has to access the likely documents using
the links to find out whether the documents actually contain the answer, which is

time consuming.

Search engine systems do not attempt to understand the meaning of user’s query
and the meaning of documents in the collection. They retrieve document based on
term frequency, location of terms, link analysis, popularity, date of publication,
length of the document, and proximity of query terms. This usually results in
reference to irrelevant documents being returned. A sample query can return
thousands or millions of documents, many of them have low relevance to the
query and the desired documents may not appear near the top of the list. The
main problem is the criteria used by the search engines to rank the relevance of
search results; also they always display the paid advertisements on the top of the
results. Another problem lies in the unrestricted data source. Google tries to
improve the relevance of search result by using a ranking algorithm called
PageRank that iteratively uses information from the number of pages pointing to
each page. This algorithm works to a certain extent, but there are still a lot of
irrelevant results in Google search. One common situation in Google search is
that many entries in search result are the e-mails sent by other users who were
asking the question with the same terms; this kind of result does not make any

S€nsE.

For certain types of questions, users would prefer the system to answer the
question than be forced to go through a list of documents looking for the specific
answer. This requirement has attracted researches’ interest in Question
Answering [20]. As a result, question answering has gained a place with other

technologies in information access.

14

2.3 Question Answering System

Question Answering (referred to hereafter as QA) aims at identifying the answer
of natural language questions from a large collection of on-line documents.
Instead of extracting all related information, a QA system extracts only a short
piece of text, accounting for the answer. QA is a resource to address the problem

of information overload.

QA research dates back to the 1960s, and has often been confined to domain-
specific expert systems [21]. Researchers have experimented with QA systems
based on closed, pre-tagged corpora [22], or knowledge bases [23]. Many of
these systems focus on Text Retrieval Conference (TREC) tasks. Researchers
also have attempted to build QA systems on large collections of documents on
the Web by combining information extraction and most advanced information
retrieval technology [24]. Recently, researchers’ interest has been attracted to the
development of open-domain QA systems based on collections of real world

documents, especially the WWW [25].

TREC is a series of workshops aiming at developing technologies for information
retrieval. The QA track was started in 1999 (TREC-8); it focuses on the
evaluation of QA systems, in a competition-based manner that answers questions
in unrestricted domains. The TREC QA track is an effort to bring the benefits of
large-scale evaluation to bear on the QA problem. The track has run five times so
far. The overall goal has remained the same in each of the TREC competitions,
which is to retrieve small snippets of text that contain the actual answer to a
question rather than a document list. Each TREC QA track introduced new

conditions to increase the realism of the task. The latest TREC competition

15

(TREC-12) includes two separate tasks: the passages task and the main task. The

main task consists of the factoid task, the list task, and the definition task.

The passages task tested a system’s ability to find an answer to a factoid question
within a relatively short (250 characters) span of text. Each text span returned by
the system was required to be an extract from a document in the corpus. All
processing was required to be completely automatic with no changes to the
system permitted once the test questions were released. A passages task run
consisted of exactly one response for each of the test questions. A response was
either a specification of a document extract or the string “NIL”. “NIL” was used
to indicate the system’s belief that there was no correct answer in the collection.
The fraction of questions judged correct, called accuracy, is the main evaluation
score for a passages task run. The recall and precision of recognizing no answer
are also reported. Precision of recognizing no answer is the ratio of the number of
times NIL was returned and correct to the number of times it was returmed; recall
is the ratio of the number of times NIL was returned and correct to the number of

times it was correct,

The factoid task was very similar to the passages task. However, systems were
required to return an exact answer rather than an extract containing an answer.
The answer strings returned by the systems were not required to be an extract
from a document; the response for a question was of the form “query-id run-tag
doc-id answer-string”. If the system believed there was no correct response in the
document collection, doc-id was set to NIL and answer-string was empty. The
score for the factoid component of the main task was accuracy, the fraction of

responses judged correct.

16

In the list task, systems assembled a set of instances as the answer from
information located in multiple documents. A list question asks for different
instances of a particular kind of information to be retrieved, such as “List the
names of universities in Montreal”. List questions can be thought of as a
shorthand for asking the same factoid question multiple times; the set of answers
that satisfy the factoid question is the appropriate response for the list question. A
system’s response to a list question was an unordered set of [document-id,
answer-string] pairs such that each answer-string was considered an instance of
the requested type. The score for the list task was the combination of the instance

precision and the instance recall.

Definition questions are questions such as “What is Ph in biology?” Definition
questions occur relatively frequently in logs of web search engines; this suggests
that they are an important type of question. However, evaluating systems that
answer definition questions is much more difficult than evaluating systems that
answer factoid questions because we can not judge a system’s response as simply
right or wrong. It requires some mechanism for matching the concepts in the
desired response to the concepts present in the system’s response. The system
returned an unordered set of [document-id, answer-string] pairs as a response for
a definition question. The judging of the systems’ responses was designed in a
way to make the evaluation depend only on the content of a system response, and
not on the particular structure of a system’s response. Assessors ignored wording
differences, making conceptual matches between the system’s responses and the
desired responses, not syntactic matches. The final score for a definition response

was computed using the same measure as it was for list questions.

17

The final score of the main task for a QA system was computed as a weighted

average of the factoid task score, the list task score, and the definition task score.

Since each of the component scores ranges between 0 and 1, the final score is

also in that range. The final score emphasizes the factoid task since it represented

the largest number of questions and is the task people are most familiar with. The

weight for the other tasks was made large enough to encourage participation in

those tasks. Table 2.1 shows the combined scores for the top 15 groups.

The document collection used as the source of answers was the same for all task

evaluations. TREC-12 used the AQUAINT Corpus of English News Text. This

Table 2.1 Component scores and final combined scores for main task runs

Run Tag Submitter Component Score Final
Factoid | List pet | Seore

LCCmainS03 |Language Computer Corp. 0.700 0.396 0442 | 0.559
nusmml03r2 National University of Singapore 0.562 0.319 0473 | 0479
lexiclone92 LexiClone 0.622 0.048 0.159 | 0.363
18i03a University of Southern California, ISI 0.337 0.118 0.461 0.313
BBN2003C BBN 0.206 0.097 0555 | 0.266
MITCSAILO3a |Massachusetts Institute of Technology | 0.293 0.130 0309 | 0.256
irstqa2003w ITC-irst 0.235 0.076 0317 | 0.216
IBM2003¢c IBM Research (Prager) 0.298 0.077 0.175 | 0.212
Albany(0312 University of Albany 0.240 0.085 0.146 | 0.178
FDUTI12QA3 |Fudan University 0.191 0.086 0.192 | 0.165
UAmsTO3M1 | University of Amsterdam 0.136 0.054 0.315 0.160
shefl2simple University of Sheffield 0.138 0.029 0236 | 0.135
CMUJAV2003 |Carnegie Mellon University 0.133 0.052 0216 | 0.134
ICTQA2003C |Chinese Academy of Sciences 0.145 0.091 0.149 | 0.133
uwbqitekat03 | University of Wales, Bangor 0.259 0.000 0.000 | 0.130

18

collection consists of documents from three different sources: the AP newswire
from 1998-2000, the New York Times newswire from 1998-2000, and the
(English portion of the) Xinhua News Agency from 1996-2000. There are
approximately 1,033,000 documents and 3 gigabytes of text in the collection
[26]. The test set of questions contained 413 questions drawn from AOL and
MSNSearch logs. Thirty of the questions have no known correct answer in the

document collection.

Most TREC QA systems used a general approach for the past several years.
Figure 2.3 shows the system architecture for the general approach for answering
passage and factoid questions. In the Question Analysis module, the system
attempts to classify a question according the type of its answer as suggested by
the question word. For example, a question beginning with “who” implies a
person or an organization is being sought, and a question beginning with “when”
implies time or date is being sought. Simultaneously, in the Information Retrieval
module, the system retrieves a set of possible relevant documents using standard
text retrieval technology and the question as the query. In the Answer Candidate
Search module, the system performs a shallow parse of the returned documents to
detect entities of the same type as the answer. If an entity of the required type is
found sufficiently close to the question’s words, the system returns that entity as
the response. If no appropriate answer type is found, the system falls back to
best-matching-passage techniques. While the overall approach has remained the
same, individual groups continue to refine their techniques, increasing the

coverage and accuracy of their systems.

19

Answer type Candidate Ranked

answers Candidates

Question

Documents
Answer
strings

Figure 2.3: The architecture for the general approach to answer passage and factoid

questions in TREC QA systems

A similar approach is used to answer list questions. Most groups used their
factoid-answering system for list questions; the only difference is the number of
responses returned as the answer. The main issue was determining the number of
responses to return. Systems whose matching phase creates a question-
independent score for each passage returned all answers whose score was above
an empirically determined threshold. Other systems returned all answers whose

scores were within an empirically determined fraction of the top result’s score.

Answering definition questions generally involved using different techniques
than those used for factoid questions. Since the definition task did not require
“exact” answers, most systems first retrieved passages about the target using a
recall-oriented search. Subsequent processing reduced the amount of material
returned. Many systems used pattern matching to locate definition-content in text.

These patterns, such as looking for copular constructions and appositives, were

20

either hand-constructed or learned from a training corpus. Systems also looked to
eliminate redundant information, using either word overlap measures or
document summarization techniques. The output from this step was then returned

as the definition of the target.

Despite the positive results that have been gained in QA research, current QA
systems seem to typically have slow response time, low accuracy rates,
incomplete answers, and irrelevant answers [2]. QA systems are facing big
challenges. Researchers are trying hard to improve the current QA systems in the
following aspects:
e Timeliness: answer question in real-time, instantly incorporate new data
source.
e Accuracy: return exact answer but nothing else; detect no answer if
nothing is available.
e Usability: mine answers regardless of the data source format; deliver
answers in any format.
o Completeness: return complete answers, not just part of answers.
e Relevance: return relevant answers in context; interactivity to support

dialogs.

2.4 CINDI System

CINDI (Concordia Indexing and Discovery System), proposed by Desai et al

[18], is a system that enables resource providers to catalogue their own resource

21

and users to search for documents. For cataloguing and searching, a meta-data
description called Semantic Header [26] is used in CINDI to describe an
information resource. The intent of the Semantic Header is to include those
elements that are most often used in the search for an information resource, such
as title, name of the authors, subject, annotation, etc. The creation of Semantic
Header solves problems caused by differences in semantics and representation,
incomplete and incorrect data cataloguing. The Semantic Header of each
document could be either entered by the primary resource provider or by the
ASHG (Automatic Semantic Header Generator) [7], a software system that

automatically generates the meta-information of a submitted document.

The overall CINDI system includes following subsystems: CINDI Robot system,
a Converter and Filter system [35], the ASHG system [26], and the Search
system. The data of CINDI system comes from two sources: documents
submitted by users and documents download from the Web by the Robot. Before
storing into the CINDI system, all documents are converted into PDF format by a
Document Converter System (DCS) and filtered by a Document Filter System
(DFS). Only theses, academic papers, technical reports and FAQs (Frequently
Asked Question) remain in the document collection after the processing by the
DFS. Next, the ASHG generates a Semantic Header for each document and
informs the primary resource provider to verify the result. If the primary resource
provider does not agree with the Semantic Header generated by the ASHG,
he/she can log into the system to modify it. Verified semantic header will be
inserted into the CINDI database. Using the information in the CINDI database,
users can search for documents using typical search items such as author, title,

subject, keywords etc.

22

In addition to the bibliographic search, for pertinent documents users sometimes
want to search for answers to their questions. So we need a search system that
can retrieve answers based on user queries from the full text of documents in
CINDI. Based on this need, VQAS 1is built. VQAS retrieves as result the
paragraphs where the possible response corresponding to the user’s query appear,
not just a few words before and after the search terms. Similar information
retrieval systems have been developed, such as Nova [17] by Sun Microsystems

Laboratories, LASSO [18] by Southern Methodist University.

VQAS is a keyword and phrase based search system, and differs from traditional

web search engine system in the following two aspects:

® Data source

Traditional web search engine system: The system only stores the URLs of
source documents. This causes some problem. First, since the source
documents are distributed over remote web servers, it is slow for users to
access the source documents through the URLs according to the Internet traffic.
Second, the documents could be of any kind; however, many of these
documents are useless for most users; examples are: e-mail, advertisement.
Third, some URLs may no longer exist, however traditional search engines

may maintain a cached version.

VQAS: Since documents are stored in the local server of CINDI system, they
can be accessed rapidly. Since the system converts all the documents into PDF
format and filters out documents other than theses, academic papers, technical
reports and FAQs, the low quality of data source in traditional web search

engine system will be avoided.

23

e Search strategy

Traditional web search engine system: Search results show a snippet of text in
which search terms occurs and also a link to the document. Since results do not
show the context of search words, it is impossible for users to find answers
from those snippets of text, and it is even impossible to know whether the
result document is relevant to the user’s query. To find the answer of the

question, users have to go through the links to the web documents.

VQAS: Documents are broken into semantically coherent segments
(paragraphs), and the index is created based on paragraphs. The search result
shows paragraphs in which search words occur, therefore gives the context of
search words. From the text in the paragraphs of the result, users can
understand the semantic meaning of the result, judge the relevance of the result;
in most cases, the user would likely find the answer directly in the paragraphs

given in the result.

24

Chapter 3

Virtual Question Answering System (VQAS)

3.1 System Architecture

The VQAS system consists of the following four fundamental modules:
document processing module, index creation module, search module, and query

interface module. This is demonstrated in the system diagram (Figure 3.1).

Other CINDI Subsystem

Document Collection

R

v
Document Processing Module

A
Index Creation Module

Inverte
index
A 4
Search Module
result ! query
User Interface Module

Figure 3.1 System diagram

25

The document processing module lexically analyzes the text of the document, filters
the content of the document, breaks the document stream into paragraphs, identifies

potential index terms, and extracts the information of index entries.

The index creation module uses a B+ tree data structure to temporarily store and
manage the index entries provided by the document processing module for each
document, and finally creates an inverted index for all documents in the collection.
In order to get better search result, complete information of search terms is included

in the index.

The search module tokenizes the query stream, parses the query stream into query
terms, matches the query terms to the inverted file generated by the index creation
module to get search result, and stores the search result by the relevance of the
paragraph to the query. Single term query, multiple term query and phrase query are
supported in this module. In order to speed up phrase query, a B-tree phrase index is

created for frequently searched phrases.

The user interface module provides users a graphical web interface, passes users’

queries to the search module, and displays the search result to users.

3.2 Document processing module

As mentioned in section 2.4, the CINDI system stores all the documents in PDF
format. Documents with other formats are converted into PDF format before being
put into the CINDI document collection. Therefore, before analyzing documents in
word, phrase and sentence levels, VQAS has to convert the documents from PDF

format to text format. The ASHG [26] subsystem for CINIDI had already done this

26

conversion for automatic semantic header generation. So we integrated VAQS with
this subsystem using a table called ASHG, one of the relations of the CINDI

database that maintains the information about documents conversion. Details are in

Table 3.1.

Table 3.1 Schema of relation “ASHG”

Attribute Name | Attribute Type Comments

ASHG_ID integer The id of semantic header generated.

DocID integer The id of source PDF document.

create_time date The date when the semantic header is generated.
update_time date The date when the semantic header is updated.
Ashg_directory string The pdf file directory.

txt_directory string The text file directory.

Ashg_filename string The filename of the pdf file.

txt_filename string The filename of the text file.

Index_flag boolean Indicate whether the document has been indexed

Only those documents that have not yet been indexed will be processed in
document processing module where the processing procedure can be divided into
four steps: lexical analysis of the text, content filtering, elimination of stopwords,

and wordld lookup of words.
3.2.1 Lexical analysis of the text

Lexical analysis is the first step of document processing. It converts a stream of
characters, which are the texts of the documents, into a stream of words, which are

the candidates to be adopted as index terms. The major objective of the lexical

27

analysis phase is the identification of the words in the text. Several operations are

done in this phase.

First, punctuation marks are replaced by spaces. However, there are some
exceptions. Usually, a period is used to finish a sentence. But the period can also be
part of a search word, such as “java 1.4.1”. The replacement of the period in the
documents will affect the accuracy of information retrieval. Therefore, in VQAS,
we only replace those periods followed by the space. Another exception is a hyphen.
Hyphens are used very often to connect a word split into two lines. However, there
are words that have hyphens as an integral part. For example, gilt-edge, B-49, etc.
Hence, in VQAS, we only remove those hyphens occurring at the end of lines. After
removing, we also join the two split parts into one word. There might be the case
that the hyphen appears at the end of one line and it is also the integral part of a
word. In this scenario, VQAS could mistakenly generate a new word and produce a
wrong analysis. To avoid this error, before joining two split parts that are separated
by the hyphen at the line end, we check the two parts in the VQAS lexicon. If these
two parts have been verified as two words, the hyphen between these two parts is

kept.

Second, all the texts are converted into lower cases for the document processing.
There might be some case sensitive words, such as China and china. Since VQAS
mainly deals with technical articles, this condition seldom happens. Therefore, this

approach is still valid.

Third, words are extracted by using spaces as word separators, in which case,
multiple spaces are reduced to one space. In this step, some of the word information,
such as the word position, the word length and the start position of the paragraph

are stored and will be used in the index creation module.

28

3.2.2 Content Filtering

Some parts of the document cannot give an answer to user’s query, such as title,
subtitle, table of content, keywords list, acknowledgements, and references. Users
do not want to see them in the search result. Therefore, we have to eliminate them
to save system resources and to decrease the size of the search result. In this step,
VQAS does a filtering of document content by analyzing the document layout and
keywords. For example, the reference list of a document usually appears at the end

of the document and follows the keyword “references” or “bibliography”.

3.2.3 Elimination of stopwords

This step aims to eliminate terms that have little value in finding useful documents
in response to a user's query. Since stopwords may comprise up to 40 percent of
text words in a document, elimination of stopwords has values in real applications
to save system resources [31]. In VQAS, a stopword list is loaded at the beginning
of the program. It consists of those word classes known to convey little substantive
meaning, such as articles (a, the), conjunctions (and, but), interjections (oh, but),
prepositions (in, over), pronouns (he, it), and forms of the "to be" verb (is, are). The
contents of the stopword list used in VQAS are taken from Google’s
implementation choice [27] and have been described in Appendix A. Each word in
the document is compared with the stopword list and will be removed if it is in the

list.

3.2.4 Wordld lookup

In VQAS, a word is uniquely represented by its id, which has been used in

document processing module, index creation module, and search module. A word in

29

the document may appear in different forms such as singular, plural, tense, etc., but
all these forms stand for similar semantics. Therefore, query result should be
flexible of word forms. For example, if users query for computer, they may also
want documents that contain computers as well; here, computer is the base form of
computers. Traditional stemming might be used for this task since it removes the
affixes of words [32]. However, this approach reduces the precision of search since
all the forms of a stem will be matched. For example, the word comput is the stem
for the variants compute, computation, computing, computer, computers, etc. When
we query for the word computer, documents that contain computers may be
acceptable but documents that contain compute, computation, and computing are
unlikely in the required set. However, applying the traditional stemming technique,
documents that contain compute, computation, and computing will be fetched since

the system will do the word matching with the stem comput.

In VQAS, we developed an algorithm to get the base form of a word. It takes over
the role stemming acts in traditional search engine and at the same time reduces the
shortcoming of traditional stemming approach. Converting words into their base
form reduces the number of unique words in the index, which in turn reduces the

storage space required for the index and speeds up the search process.

In order to look up and match the words, a B-tree lexicon called main lexicon is
built in VQAS to contain the pairs of a word in base form and its id, denoted as
wordld. The wordId starts from 1 and will be increased by 1 when a word is
inserted into the main lexicon. Each word and its variants are given the same
wordld. For those regular words, a series of rules are applied to retrieve their base
form. However, for those irregular words, such as give, gave and given, applying

transforming rules cannot work at all. So, another B-tree lexicon called exc_lexicon

30

is built to contain the pairs of words and their exceptional word forms. Words in
main lexicon and exc_lexicon are extracted from the WordNet online lexical

reference system [33] by an automatic selection and filter program written in C++.

The algorithm of the wordld lookup process in VQAS is as shown below:

Stepl: For a given word, look up the wordld in the main lexicon
If it is found, return its wordld, done.

Else, go to step 2.
Step2: Look up the base form of the word in the exc_lexicon

If it is found, look up its wordId in the main lexicon using the base form and

return its Wordld, done.

Else, go to step 3

Step3: Apply the following rules to replace the suffix of the word by a string to get
the base form of the word, then look up the wordld in the main lexicon

using the base form.

If it is found, return its wordld, done.

Else, go to step 4.

Rules: s2@, es>@, d2>0, ed>0, ing>@, ing~e, ies2y
men->man, er-> @, er>e, est=> @, est>e

s—>@ means to remove letter ‘s’ if it appears at the end of a word.

31

men->man means to replace suffix “men” by “man”.

Step 4: Assign the maximal wordld plus one to the wordld of the word, then insert
the pair of the word and its wordld into the main lexicon, and return its

wordld.

3.3 Index creation module

VQAS aims to retrieve paragraphs that contain query words or phrases. Therefore
we need to create an index of word occurrences. For each word, the index contains
a number of entries that includes the identification of a document, the position of
the paragraph in the document, and the position of the word in the paragraph. The
identification of a document, denoted in VQAS as docid, is used to locate the
document. The position of the paragraph records the position where the paragraph
starts in the document so that we can locate it. The position of the word is used to
highlight the query word in the result. Since the position of a paragraph and the
position of a word indicate their significance to the document, they are also used to

calculate the rank of a retrieved paragraph.

There are a number of indexing approaches that have been used in different search
engines, such as inverted index [28], bitmaps [29], signature file [30]. None of them
is optimal for all applications. For large text collection, [28] stated that the inverted
index provides reasonably better performance than any other index approaches.
Therefore, we choose the inverted index as the approach to create the index

structure for VQAS.

The index creation module can be divided into three sub-modules that are the B+-
tree creator, the forward index creator, and the inverted index creator. The B+-tree

creator creates a B+-tree in the memory to temporarily store the word occurrences

32

for a particular document. In the forward index creation, the information of word
occurrences for a particular document stored in the B+-tree is appended to the
forward index file. Afterwards the B4-tree is cleaned and prepared for processing
another document. The forward index will be created when all the documents are
processed. Finally the inverted index creator creates an inverted index based on the

forward index.
3.3.1 B+-tree creation

In this module, we use a B+-tree to temporarily store the information of word
occurrences for a document, such as the identification of the word, the position of
the paragraph and the position of the word. This information is provided by the
document processing module described in section 3.2. After the system scans all
words in the document, the information stored in this B+-tree will be appended to

the forward index file, and the B+-tree will be initialized for next document.
Data structures

The data structure of B+-tree, as demonstrated in Figure 3.2, has the following

major components:

B+-tree: B+-tree is a balanced search tree in which the real data is stored in the
leaf nodes, and the internal nodes are used to store the keys for navigation. This
B+-tree is used to store the word occurrences in a given document being
processed. The word occurrences in a document are stored in the leaf node of the
B+-tree. Once all the word occurrences are stored, they will be appended to the

forward index file, and the B+-tree will be reset for the next document.

33

B+-tree:

NN N TN

start
T~ N > N > > > > >
internal node:
wordid wordid || @ —————— wordid
v v v

. v .
pointer {o another internal
node or leaf node

leaf node:

Wordid item| Wordid ittem| .___.. Wordid item| Pointer to next leaf node
wordld item: wordid Number of hits pointer to actual hit list
hit List: hit » hit T — —»{ hit —(
hit: Paragraph position Word position | pointer to the next hit

Figure 3.2 Major data structures used in the B-+-tree index creator

34

Internal node: Internal nodes in B+-tree are used to store keys to navigate to the
leaf nodes. Each internal node contains an array of selected keys and an array of
pointers. In our B+-tree, each internal node contains an array of size 128 for
wordIds and an array of size 129 for pointers. The ith pointer in a internal node
will point to those nodes whose wordIds are less than the ith wordld in this

internal node but greater or equal to (i-1)th wordld in this internal node.

Leaf node: Leaf nodes contain the real data. Each leaf node contains an array of
items and a pointer to the next leaf node by the order of the key of the item. In
our B+-tree, the leaf nodes contain all the information being used to build the
forward index. Each leaf node contains an array of of size 128 for wordld items

and a pointer to the next leaf nodes by order of wordId.
Start: Start is a pointer that points to the first leaf node in the B+-tree.

Wordld item: Wordld item is used to store the id of the word, which is the only
identification of a word, the number of occurrences of this word in a particular

document, and a list of those occurrences.

Hit list: A hit list corresponds to a list of occurrences of a particular word in a

particular document.

Hit: A hit corresponds to one occurrence of a particular word in a particular
document. It includes the position of the paragraph in the document that contains

the word, the position of the word in the paragraph, and a pointer to the next hit.

35

Advantage of this data structure

The advantages of choosing the B+-tree structure over other structures (such as

sorted array, hash table, B-tree, etc.) lie in the following three aspects:
® Search and insertion operation

Search and insertion are used very frequently. For every occurrence of a word,
the system needs to determine if the word is already in the B+-tree. If the answer
is yes, the new hit will be added into the hit list of this word. If the answer is no, a
new wordld item will be created and inserted into the B+-tree. For both search
and insertion, the system needs to locate the appropriate leaf node, which is very
efficient for a B+-tree. If there are N words in the lexicon and each leaf node can
contain at most 128 wordld items, since each node is usually 2/3 full, each leaf
node will contain |—256/3-| wordld items; then there will be r3N/256-| leaf
nodes. If each internal node can also contain at most 128 words, there will be at most
129 points in each internal node. Since each node is usually 2/3 full, there will be 86
points in each internal node. So by using a B+ tree structure, the system only needs
[logs3N/2567 accesses to locate the leaf node. For example, if there are 500,000

words in the lexicon, it only needs 2 accesses to locate the leaf node.

e The way to write the information of word occurrences into the forward

index file

In the B+-tree we constructed in VQAS, all the information that is required to
create the forward index is stored in the leaf nodes. A pointer called start is used
to point to the first leaf node in the tree, and each leaf node has a pointer to its

next leaf node in the order of wordld. Since the forward index uses exactly the

36

same order to store the information of word occurrences in a particular document,
we can easily access all the leaf nodes to create the forward index by following

the szart pointer and the next pointer in each leaf node.
e Use of memory

For some structures, such as array and hash table, the memory allocation is static;
we have to give the length of the array or the hash table. Since the number of
words in documents varies a lot and is unpredictable before the document is
processed, it is difficult to choose the length of the array or the hash table to store
the information of word occurrences. In B+-tree, the memory is dynamically
allocated to create a new node as needed and is released when all the information

in the leaf nodes is written to the forward index.
3.3.2 Forward index creator

In the B+—tree creator module, all the information of word occurrences for a
particular document is stored in the B+-tree after the system finishes scanning the
document. The main task of the forward index creator module is to create a
forward index using the information stored in the B-+-tree. As mentioned in
section 3.3.1, we can easily access all the leaf nodes to create the forward index
by following the start pointer and the next pointer in each leaf node. During the
creation process, the identification of the current document (known as docid), a
list of words and their hit lists in the document are appended to the end of the

forward index file.

Figure 3.3 shows an example of forward index. In this figure, the number in the

third column indicates the number of times the word appears in the document

37

while each hit consists of the start position of the paragraph that contains the

word and the position of the word in this paragraph. The line in which both

Doc 001 Word 001 61 hit hit hit hit
Word 002 50 hit hit hit hit
Word 005 4 hit hit hit hit
Word 008 hit hit
Word 010 15 hit hit hit hit
Word 517 51 hit hit hit hit
Word 980 41 hit hit hit hit
0 0

Doc 002 Word 001 31 hit hit hit hit
Word 002 hit
Word 003 4 hit hit hit hit
Word 008 5 hit hit hit hit hit
Word 057 11 hit hit hit hit
Word 110 3 hit hit hit
0 0

Doc 003 Word 001 5 hit hit hit hit hit
Word 002 2 hit hit
Word 003 1 hit
Word 007 4 hit hit hit hit
Word 110 10 hit hit hit hit
0 0

Figure 3.3 A forward index example

wordld and number of hits are equal to 0 indicates the end of the forward list for
the document. In this example, there are three documents in the document
collection. Doc 001 contains 7 words, in which word 001 appears 61 times in the

document, and word 002 appears 50 times in the documents.

The forward index file is stored as a binary file in VQAS; in this file, we use 6
bytes for document id, 4 bytes for wordld, 2 byte for number of hits, and 5 bytes
for each hit. For the hit, we use 3 bytes for position of paragraph and the other 2
bytes for position of word. The forward lists of documents are written to the
forward index file in the order that the documents are processed, while in the
forward lists of a particular document, the word and its hit list are written to the

forward index file in the order of wordld.
3.3.3 Inverted index creator

The task of this module is to create an inverted index for all documents in the
collection. The input of this module is the forward index file created in the
forward index creator module, and the output is the inverted index. An inverted
index consists of an inverted file and an index for inverted file. In VQAS, the
inverted file contains a list of units that includes the identification of a document
(denoted as docid), number of hits in this document for a particular word, and a
hit list. The index of the inverted file is a linked list in which each element
contains the identification of a word (denoted as wordld), number of documents
in which this word occurs, and a pointer to the inverted list of this word in the

inverted file.

Recall the forward index example in Figure 3.3; the following steps explain how

an inverted index is created based on this example. First, an index and an inverted

39

file are created based on the data stored in the forward list of document 001; the
result is shown in Figure 3.4. Next, the forward list of document 002 is merged
into the index and the inverted file as shown in Figure 3.4, which creates the
index and the inverted file for document 001 and 002; the result is shown in
Figure 3.5. Next, the forward list of document 003 is merged into the index and
the inverted file as shown in Figure 3.5, which creates the index and the inverted

file for document 001, 002 and 003; the result is shown in Figure 3.6. Since there

Index part Inverted file
Word number of pointer documentID number of hits hit list
documents

Word 001 1 »Doc 001 61 hit hit hit...hit
Word 002 1 »Doc 001 50 hit hit hit ...hit
Word 005 1 »Doc 001 4 hit hit hit hit
Word 008 1 »Doc 001 2 hit hit

Word 010 1 »Doc 001 15 hit hit hit .. .hit
Word 517 1 »Doc 001 51 hit hit hit .. hit
Word 980 1 »Doc 001 41 hit hit hit .. hit

Figue 3.4 Inverted file after inserting document 001

40

are only three documents in the collection for this example, we are done; if there are
more documents, we continue the merge process until the end of the forward index

file. Finally, the index part is stored in a disk file. The detailed algorithm can be

found in Appendix B.
Inverted file
Index part wDoc001 | 61 | hithit hit...hit
Word001 | 2 | / Doc002 | 31 |hithithit...hit
Word002 | 2| | ™ Doc001 | 50 |hithithit...hit
Word 003 1| _] Doc 002 I | hit
Word 005 | 1 \\$DOC 002 | 4 | hithithit hit
Word 008 | 2 *DOC 001 4 | hit hit hit hit
Word 010 | 1 *Doc 001 2 | hithit
Word 057 | 1 | - Doc 002 5 | hit hit hit hit it
Word 110 | 1 \\‘Doc 001 | 15 | hithithit...hit
Word 517 | 1 \\‘DOC 002 | 11 | hithithit .. hit
Word980 | 1 \\\Doc 002 3 | hit hit hit
\\Doc 001 | 51 | hithithit.. hit
aDoc 001 | 41 | hit hit hit ...hit

Figure 3.5 Inverted file of Figure 3.4 after inserting document 002

41

71\

Index part
Word001 | 3 ||
Word 002 3 |
Word 003 2 N
Word 005 1 .
Word 007 1 \:
Word 008 2 N
Word 010 1 \\
Word 057 1 \\
Word 110 2 \\
Word 517 1 \
Word 980 1)

/

7

Inverted file

Doc 001 |61 hit hit hit .. hit
Doc 002 |31 hit hit hit .. hit
Doc003 |5 hit hit hit hit hit
Doc 001 | 50 hit hit hit...hit
Doc 002 |1 hit

Doc 003 |2 hit hit

Doc002 |4 hit hit hit hit
Doc003 |1 hit

Doc 001 |4 hit hit hit hit
Doc 003 |4 hit hit hit hit
Doc 001 |2 hit hit

Doc002 |5 hit hit hit hit hit
Doc 001 |15 hit hit hit .. .hit
Doc 002 |11 hit hit hit .. hit
Doc 002 |3 hit hit hit

Doc 003 | 10 hit hit hit .. .hit
Doc 001 | 51 hit hit hit ...hit
Doc 001 | 41 hit hit hit ...hit

Figure 3.6 Inverted file of Figure 3.5 after inserting document 003

42

New documents are put into the collection continuously. To make the new
documents searchable by users, the inverted index has to be updated frequently;

the inverted index creator is run automatically once a week.

3.4 Search module

The objective of the search module is to retrieve the relevant paragraphs for user
queries. The input of this module is the query stream from a user, and the output
of this module is a file that contains a ranked list of the metadata of the paragraph
relevant to the query; this metadata includes the identification of the document
(denoted as docid) that contains the paragraph, the position of the paragraph in
that document, and a hit list of those query terms in the paragraph. The

processing steps of this module are described in Figure 3.7.
3.4.1 Query input

In the user interface module, a query is input by a user via the web interface.
After getting this query, VQAS will insert this new query into a table called
current_query in CINDI database for backend processing. Different users may
have the same query input; therefore, we have to distinguish query input from
users. Since VQAS uses the HT TP protocol, each request from a web client has a
unique number called session id that is used to distinguish different user requests.
The user interface module inserts a user’s query along with a session id in the
current_query table. There is a daemon called search on the server side,
monitoring the current_query table; once it detects a new entry in the table, it will
fetch the query, start the search process, send the result to the web client, and
finally delete this entry from the table when the search process terminates. The

schema of table current_query is shown in Table 3.2.

43

Input query

A 4

Tokenize query

.

Analyze query terms

}

v

Load the lexicon and the
index of inverted file

Retrieve paragraphs for a single Retrieve paragraphs for a phrase

word in a subquery

in a subquery

\1/

Intersect query results of each word and
phrase in a subquery

l

Merge query result of all subqueries

l

Rank final query result

Figure 3.7 Processing step of the search module

44

Table 3.2 Schema of relation current_query

Attribute Name | Attribute Type Comments
sessionID integer The session id of the user who inputs the query.
query string The query string.

3.4.2 Tokenize query

In VQAS, a query is a disjunction of a number of subqueries, and a subquery is a
conjunction of keywords and phrases. A query is input as a set of terms separated
by | (OR) and + (AND). A term can be a single word or a phrase distinguished by
quotation marks. Since the AND operator has a higher precedence, a query is
considered to be a set of subqueries separated by the OR operator. The OR
operator implies that retrieved paragraphs have to satisfy at least one subquery.
Each subquery is a set of keywords, and the AND operator is used to separate
keywords. The AND operator implies that the result of a subquery has to contain
all the words or phrases in the subquery. For example, the query "search engine"’
+ system | "question answering'' + system contains two subqueries: ''search
engine'' + system and ''question answering'' + system, and each subquery
contains a phrase and a word. The result of this query are those paragraphs that
satisfy the Boolean query ("search engine” AND system) OR ("question
answering” AND system). This step aims to break down a query into subqueries
and then divide each subquery into a conjunction of words and phrases. A phrase
is defined as a token between left quotation and right quotation marks while a
word is defined as a token between spaces. After tokenizing, the query words and

phrases in each subquery are stored for further processing.

45

3.4.3 Analyze query terms

This process includes three steps: removal of punctuation marks, conversion of
all characters to lowercase, and elimination of stop words. These three steps share
the same algorithms and approaches as those in the document processing module.
Since stop word is a part of phrase, for example “theory of database”, we do not
eliminate stop words in phrases. The detail of the algorithms is given in section

3.2
3.4.4 Load the lexicons and the index part of inverted index

As mentioned in section 3.2.4, the main lexicon and exc_lexicon used in the
document processing module are stored in disk after the inverted index is created.
Since the search module is run as a daemon, the main lexicon and exc_lexicon are
reloaded into the memory using the same B-tree structures when the daemon is

started. They will be used to look up the wordID of query word.

The index part of inverted index is loaded into the memory using the B-tree
structure shown in Figure 3.8. In this structure, each node contains a set of
index_items and pointers; each index_item contains an identification of a word
(denoted as wordld), number of documents that contain this word, and the offset of
the inverted list of this word in the inverted file. Given a wordld, this B-tree index
is used to get the word occurrence from the inverted file. If this B-tree (the index
part of the inverted index) can not be entirely loaded in the memory, we have to
create a multi-level inverted index and only load the top level index into the

memory.

46

B-tree

Figure 3.8 B-tree used to store the index of inverted file

index index index
item item item
4 v v
pointer to its child node
node
) Number of offset in the
wordid documents inverted file
index_item

3.4.5 Retrieve paragraphs for a single word

VQAS uses a linked list structure called match_list to store the metadata of

retrieved paragraphs that includes the identification of the document, the position of

the paragraph in the document, the hit list of the query word in the paragraph, and

the relevance of the paragraph to the query. The details of this data structure are

shown in Figure 3.9.

Data structure of match _list

Match_list is a linked list that stores the hit lists of a word for all paragraphs in the

document collection. Its components are described below.

47

match_list:

match:

hit list:

hit:

word || match M mach |7 ™ match _’O
pointer to next
docid paragraph | rank hit list match
e [BO
position length | pointer to next hit

Figure 3.9 Data structure of match_list

Match: A match is used to store the hit list of a word in a specific paragraph. A

match contains a docid, the start position of the paragraph in this document, a rank

of this paragraph based on the relevance to the query word, and the hit list of the

query word in this paragraph. The docid and start position of the paragraph are used

together to identify a paragraph.

Hit list: A hit list is a linked list of all the hits of a word in a particular paragraph.

Hit: A hit contains the position and the length of the word in a particular paragraph,

and a pointer to the next hit. The position and the length of the word are used to

highlight the query word.

48

Algorithm for single word query

Step1: look up the wordld of the query word in lexicons;

Step2: Search for the wordld in the B-tree index to get the offset of inverted list of

the query word in the inverted file;

Step3: retrieve the inverted list of the query word from the inverted file;

Step4: divide the hit list of the word foreach document into the hit lists for each
paragraph in the document;

Step35: store the hit lists of this query word in paragraphs to a match_list;

Calculation of rank

How frequently a query word appears in a paragraph is one of the most
understandable ways to determine a paragraph's relevance to a query [1]. At the
same time, we perceive that the location of a paragraph indicates its significance to
the document. Query words occurring at the beginning of a document may be more
likely to be relevant than query words occurring later in the document. Based on
this idea, we use the formula suggested by Salton and Buckley [34] to calculate the
rank of a paragraph for a query word. During the implementation, we tested several
variations of this formula while changing the parameters. The experimental results

show that this formula can achieve better result,

Let N be the total number of documents in the system and n; be the number of
document in which the index term ki appears. Let freq;; be the frequency of term k;
in the paragraph p; (i.e., the number of times the term k; is mentioned in the text of

the paragraph p; for a given document d;), and maxy(freqi)) be the maximum

49

frequency of term k; in all paragraphs in the document d;. Let w; be the weight of
the paragraph in the document based on the position of the paragraph. Then, the
rank of paragraph j for query word i is given by

R;7=(0.5 + 0.5 freq;; / max(freq;;)) * logN/n; * w; [34]
where w; is defined as
wi=1/m, if paragraph j is mth paragraph in the document.

The motivation for usage of the factor logN/n; is that words appearing in many
documents are not very useful for distinguishing a relevant document from a non-

relevant one.
3.4.6 Retrieve paragraphs for phrase queries

Phrase queries only return paragraphs that contain the exact phrase. For each phrase
query, all the words in the phrase must occur in a paragraph in the same order

without any intervenient word.

For a phrase query, VQAS uses the algorithm for single word query to retrieve
paragraphs for each word in the phrase and stores them in a match_list. Then it
intersects the retrieved paragraphs for all words in the phrase using a function called
phrase_intersection. For the phrase without stop words in it, only those paragraphs
that contain all the words in the phrase and in the same order without any
intervenient word will be chosen as the result for the phrase query. Since stop words
are not indexed, for the phrase with stop words in it, only those paragraphs that
contain all the non-stop words in the phrase and the distance between these non-

stop words equals to the length of the stop word between them plus 2 (2 for 2

50

spaces before and after the stop word) will be chosen as the result for the phrase
query. This 1s done by checking the position and the length of the word in the hit
list. The detailed algorithm of function phrase_intersection can be found in

Appendix C.
Phrase index tree

The processing of a phrase query is much slower than the processing of a single
word query. The most time consuming part in processing a phrase query is to
intersect the search results of the words into a phrase. In order to speed up a phrase
query, an in-memory B-tree index is created to store the search results of most
frequently searched phrases. A table is created in the CINDI database to store the
frequency of phrases being searched. The number of phrases stored in the B-tree
index depends on the size of memory. In VQAS, the search result of the top 1000
frequently searched phrases are stored in the B-tree index. For the frequently
searched phrases, VQAS first uses the intersection process to get the search result;
afterwards the system inserts this phrase and the search result into the phrase index
tree. When this phrase is queried next time, VQAS can search the phrase index tree
and get the result directly from the tree, which makes the query process much faster.

The data structure of this B-tree index is shown in Figure 3.10.

Calculation of rank for phrase query

In a document, a phrase can be considered just as a single word; a paragraph’s
relevance to a phrase also depends on the frequency of the phrase and the location
of the paragraph. So, we use the same function R;; used in the rank calculation of a

single query to calculate the rank of paragraph j for phrase i.

51

B-tree index for phrase:

node:

phrase item :

match_list:

match:

hit list:

hit:

phrase item

phrase item

phrase item

. ; .
pointer to its child Sode

phrase pointer to its match_list
match | match > ™| match O
docid paragraph| rank hit list | Pointer to next match
hit i hlt _—’ _...’ hlt _O
position length | pointer to next hit

Figure 3.10 Data structure for phrase index

52

3.4.7 Intersect query results of single words and phrases in a subquery

Once we get the query results for all single words and phrases in a subquery, we
have to intersect them to get the result for the whole subquery. The retrieved
paragraphs for a subquery should contain all the words and phrases in the subquery,
which means that all the words and phrases in the subquery are connected by
“logical and”. So only those paragraphs that contain all the words and phrases in a
subquery will be stored in the match_list as the final result of the subquery. The hit
list of a retrieved paragraph will contain all the hits of the words and phrases in the
subquery in that paragraph. A function called intersection is used to intersect the
query results of the words and phrases in a subquery. The detailed algorithm of

function intersection can be found in Appendix E.
Calculation of rank

Each retrieved paragraph has its rank in the match_list that is used to store the meta
data of this paragraph. When the query results of single words and phrases in a
subquery are intersected, only those paragraphs that contain all the words and
phrases in a subquery will be stored in the match_list as the final result of the
subquery, and the average of the ranks of the retrieved paragraph for all the words

and phrases in the subquery is taken as the rank of this paragraph for the subquery.
3.4.8 Merge query results of all subqueries

In the previous step, the search result of each subquery is stored in a match_list. In
order to generate the result for the combined query of these subqueries, we need to
merge these results for the subqueries. The retrieved paragraphs for a query should

satisfy at least one of its subqueries. Since the connection of the subqueries is

53

“logical or”, the set union of the retrieved paragraphs for the subqueries are in the
result of the query. If some subqueries have the same paragraph in their result, the
union of the hit lists of these subqueries is generated. A function called union is
used to merge the query results of subqueries in the query. The detailed algorithm

of function union can be found in Appendix D.
Calculation of rank

Each retrieved paragraph has its rank in the match_list that is used to store the meta
data of this paragraph. When the query results of subqueries are merged, those
paragraphs that satisfy one of the subqueries will be stored in the match_list as the
final result of the query. If some subqueries have the same paragraph in their result,
the maximum rank of the paragraph for all subqueries is taken as the rank of this
paragraph for the whole query; for those paragraphs that satisfy only one of

subqueries, we just keep the rank of this subquery as the rank for the whole query.
3.4.9 Rank the final query result

In this step, the meta data of retrieved paragraphs stored in a match_list is sorted
by the rank of paragraphs respect to the query. Afterwards, the meta data of
paragraphs in the match_list are exported and stored in a disk file, which will be
used in the user interface module to generate the web page as the response to the
user’s query. In order to communicate with the user interface module, the name of
this file is the same as the user’s session id that is stored along with user’s query

in table current_query shown in Table 3.2.

54

3.5 User interface module

The user interface module provides users a graphical web interface, passes users’
queries to the search module, and displays the search result. The input of this
module are the user’s query and the disk file created at the end of the search
module that stores the meta data of retrieved paragraphs, and the output of this

module is the web page that displays the query result to users.

The main page of the interface is shown in Figure 3.11. In this page, the user can
input his’her query in the search “box”; once he/she clicks the search button, the
query will be passed to the server and inserted into the table current_query shown
in Table 3.2. Then the search module fetches this query as input, processes the
search, and stores meta data of retrieved paragraphs in a disk file, in which the
identification of the document and the start position of the paragraph are used to
locate the paragraph, and the positions and length of the words are used to
highlight the query words in the displayed paragraphs. This disk file will be

removed after the result page is displayed.

The page of a query result is shown in Figure 3.12. Each page displays ten
paragraphs in the order of the relevance to the query. Users can click the NEXT
button in the bottom of the page to go to the next ten paragraphs or the
PREVIOUS button to go to the previous ten paragraphs. Users can also click the
number in between to go directly to the Nth page. Users may go to the next page
after waiting for a long time, but if we keep the result file in the disk, it will use a
lot of disk resource when the number of users is large. In VQAS, the disk file that
stores meta data of retrieved paragraphs will be removed after the result page is

displayed. The request for the next page will be considered as a new query; the

55

same result file will be created, but different parts will be displayed. A link to the

original document in PDF format is available at the bottom of each paragraph.

THE Yirkua] Libarsy

CINDI Virtnal Qestion Answering System

Usevy Format: sbpmrrl dnaipmil § ¥ nhoiedl

Beirianed meraprapher will caticty all the mibouicics
Sabavery format: poeid) bl el
Tesult of suiyuery mll contain at Jexst one leyword
Fack Bormord cun be & phrase distiapmishe b quinbion mrs o sinple word

Huery emmmple: “sonrch sugine’ | “mmstion moering 4 oywlen

Copyright 2004, CIND! growp of coneordia university. All richts reserved

Figure 3.11 Main page of VQAS

56

CrpT VAl Lisaray CI el oo mwvmine bosom

11ieigrps Mx

systeen tht uses evpiicelly emidted i b covlnt nni cosigy sltronls sgh s (o pliommant, ool s by decign oaturerof s pe. Than docips ontims oot with svpovefinl sies ex monsume b ok ol s e fhon vl
Hagstuing sheks fon i b i pagedosions. Wl Targn Yo o ool poge . o v them ibrstion ocrlectins e, o, 50 1.5 vl Aoty v ot ey WebCiora e P 2 el softs tpenis
sucgsle wots Yt e Wl o i dores varins ity weloe o vaied wfing The sbonlates bbwsing ages prrt ¢ s vl ofthe W it oot cimalees s with specif st ot non s whos s preive
sevigetinual choiees il ke vt deckong Thioo = soms velh koo g vessy scunouneing fhe it of this ayston 15, 2 CW, on Y o b, st Ltend Somaabic i ok o sttt oo of st svlonte e
by oalation of mfbraaton sent ok each ik 1), How. e this ok ik wol ot e conletely ot o the o o ol o the pages o i st 13 plid mall % i g o e ol sl vting e cunbete
ot O work o Tnfarion Soea evion [7 3l e b gevent infenation potiotal oo b o ot otk bt il eod ot unpioed e ot of Bavesian etk o sl nbaration il prolons 1] Moe
Teosnly, & nuober o affls 1 the Wel - s comnity b coeniate o o i il Tonation with v eries v cr v sl . s Mt sl f0 e Efbomation Soent sppronh, Chakraburtial o [5 e St o 18]
st com b Y e Ve s o e . el sl il wel Dbk syt weste it sl ok e by ol s o s i Tk el T
shooes o il ot s of e e This it s e e o oo g of theotrieal ol i 1 i oo of Ve ooy extfonty bt 1] Pyl e e ool ofn ot ity
sorviceaing nfopati S it seoms e U appoarh. Whik et frstation seirieval ki e infemetod i vy Bagesiun etwvorks) oeee nfmstion Y 1h-ank senreh st v e ot et et there
e mi et oo gt vt sitions -
!

eyetem thel wos el vaidoed by cormiale spuint iom eoments surhos He plvetoeot sl s eiber oo oabons of 8 pae. Thon dasign foabes Ut comolets st snccensi s & e by s ks e fhen vl
ety stk o1 Sufue el it decms Wb Tangs ot o tivchd e . o s et e oo it ol e o, 0 2t it v ot gy Webitrs S Profle (2] s b oo
stmogett moes o v o Web il wl S arions sy vt fr ot sfing T stmdaed o et et etk o Yo Vi s 1 e it o with spentsintiuanation e, i s who i pecaive
il chins i st el dectinne, Thae smw walLnown scntm very stommding he vty of s sytom (16, 2] OV, o e ot oo we Lot ot Db oot ot the G o ettt sty
he chizaion of mibnutton soe o el 14 B e 11 Gchoie b ot gt b compatoly anowedfe fhe el of il o the e o e et i 1 moptid mouely b oy of e hfely, safvg o ibeo b~
roosét, Ot wobk i Inffrmation Soen! stwcitine (7] & alio sl Yo several inbimmation retrimon oloriShns based on pet- wrk idbwnces. Tl and Usoff propose the use of Baysiot netviorks ' o indbrouatont eiriowtl vasbines (1] Mo
memly, atemberaffde b the Wes . omuvd comuntaity lave eoncenent o coining kg iation with wer quecie otk to vk e sl oot s o the vl Boene sppmeck Chakedbwti o I md St £ 19
‘posd e b ke vk Byworbsed i ofwideoe sl nfmatin resone skl Chabndents vt st st Bk i Hvont e e 0 o g i ek iy Thess o
ety vl fo the iontof tvorinad o Thic gty st v o compte kit o et esels v & e vensio of he Xl anthonity aorihos (18 Fussuentally, the v demdopmend of o anfomitad . ity
sorvioy ustne nfovrobion Sosnd simnlatie st w1 5 anpsech. Whils st indbrmation vetreral bttty am mbvested i s Baeios tefrks and Hkage Tlorrstim o s ank s el vosabets e it indimelen i il L .
aigorths {0 meyuss heer woons g vk lhess destinations .
e

Moteoser, the aret manba o g starch s sl e itogetion of et el G o nflrwatins il starchwiththe ancess otk on otiesof s DBMES Infomesiion vevtews] b ot priily with.
mpreis ueros wud e i b ferytafion b detocmds soess o ol base o e e oo of v Databags svctems ave bl with Pl oteses and et alohing of e vy apifoation, Proposls exfo
ok bl st s i eblions a1 s s il ol o ey Ly b ol with e checlristios o e dtbeses 4.5 Ot oo i cesiprng this protolygs was e e gt of the POSTORES DANS o8
infrmatiog el el ofe 1 the oeing gt of the DBV ThiswetonGocshte e e e e oot ype s of e sk g o e o nd s e o o g debment sk,
{omrd gz the Sochion of wivarad informafien wviriecsl methok n (R EBNE 6 ‘o
R

RELATED WORK In 2 provays geges (7, e dnserio s viowsbation system Lt wes et somi gl desord hom it mpsction with he Lotgest Repiate Subsentencs (.55) it vt et (1] Bocatios b bl of il
e, s e i el b Semnptions of et el o hong el et s i T s, st s e s of s et Tt s T sy b et Wi e
1t on bty b o Yl s s WAk SoPoofl 26] sl oo wam ot o ol s b tvonss s W il and G venous bty i e st e T suttedbonsig vl semie n W
st vl o) e ard othec i The el s gt i Tty tht we: (o the o s wssccmbel wilh pege st s e () U ecpsssolity o comind fse o Ening ottt Howoons, s sl s e~
v walk of the Wi Tho woashy et i oned oo the et stostom of the e and te i o conlend, wheressan syt of the ool coptens e ot porfbmutls mflor evdates s with speste Mol sl s el
o et il i oy enton! s oo, Wit v et hows s s e s comtion il b 2] The st s it Ao (WUEI, Wk U o by oot
S, s il b ndrtion g on, e vl ot otionleoethos ot o v s, it O oot the vt of Sk oo o el Tnfematios el prklns 11 They
mpmsent glers and doenents pe ko et Setwork, whieh i sty fo o apponch. Mo el e of et i the W raach copeamily b conveninled on et dn Tt nfimstion Wi e et i o 4 Yok e
el 63,1144 Mool ol o apomneh, Cliistarti o of 11 il bt o F4 g ot Ul wh oo s it of v il et ion il], Ot ssptom wes U ot e ek -+
e oy oo e o i weght e kv Tt mehin i 4 ot ks of i el sl o 3 ot o e b et 19 Wil thss i s il o i oo
L e e e
Swon slopn n e st el il et i s ot o et oo o Sontal o e, g ol b Yovine fo o s e ol ap e, e heve e it shop b e this Moo in
bt et b, o ot o i s ool s of v st ot ok with s amponh o eyt s roment oo, s o we o et o o
St (TS, v U ooy nfotmtion S o et vt e o of sl sl i s i o dbmmtmaseed. Them e ¢ icbenof isons why o o o e bt e Fon emmpe Uil
s et o o on s o1t to o b o e vl Bty g ¢ byt e eolbaton Ml by, S o prvtes "Wt Robted" et o e Hotnsge o

Figure 3.12 Query result

57

After passing a user’s query to the search module, the user interface module will
wait for the search module to create a disk file that contains the search result.
Once the file is created, the user interface module continues its processing.
Therefore, system synchronization must be included in this module. The

synchronization strategy used in VQAS is shown in Figure 3.13.

The user interface Module The search module

' while(no query in table current_query)
Insert query Q into table current_query; E { wait; }
~L -
5 fetch Q from table current_query;

while(Q is still in table current_query) search for query Q;

{ wait;} store the search result into disk file F;

e delete Q from table current_query;

E
'
)
1
i

Display search result in F to user;

Remove disk file F;

Figure 3.13 Synchronization between the interface module and the search module

58

Chapter 4

Experimental Results

VQAS is implemented in C++ on Linux, and the user interface is written in PHP.
Also Mysql is used as database management system. Two kinds of test have been
done on VQAS; one is to test the system performance, and the other is to test the
performance of the in-memory phrase index. Both tests have been performed for a
collection of 1000 documents, a collection of 5000 documents, and a collection of

10000 documents. The highlights of test results are given below.

4.1 System performance

The system performance is evaluated by the relevance of search results and the
response time. Twenty queries of various types are chosen as sample queries. To
evaluate the relevance of the search result, the first ten paragraphs in the result of
each query are evaluated by colleagues who determine if each paragraph actually
does contain relevant information. Next, we calculated the percentage of
paragraphs judged as relevant to the query. To evaluate the response time, we
record the search time for each query and calculate the average. Table 4.1, 4.2,
and 4.3 shows the detailed results of system performance test, and Table 4.4

shows the statistics.

59

Table 4.1 The test of system performance for a collection of 1000 documents

Query input Number of relevant Response
paragraphs out of 10 | time(second)

OLAP 9 0.03
Multimedia 7 0.03
Clustering 9 0.05
Animation 8 0.01
Graphics | animation 9 0.02
OLE | OLAP 10 0.02
security | network 10 0.08
“data mining” 9 0.54
“query processing” 9 0.61
“information retrieval” 9 0.17
“logic programming” 9 0.02
“query optimization” 10 0.57
"data mining" | "data warehousing" 10 1.06
OLAP + benchmark 9 0.03
Network + security 9 0.03
“query optimization” + database 9 1.57
text image + "information retrieval” 10 0.21
"logic programming" + application 9 0.3

Text + “information retrieval” + web 10 0.24
"database system" + "query processing" 10 1.56

60

Table 4.2 The test of system performance for a collection of 5000 documents

Query input Number of relevant Response
paragraphs out of 10 | time(second)
OLAP 10 0.02
Multimedia 8 0.04
Clustering 9 0.08
Animation 9 0.02
Graphics | animation 10 0.03
OLE | OLAP 10 0.02
security | network 10 0.21
“data mining” 9 0.54
“query processing” 9 0.69
“information retrieval” 9 0.54
“logic programming” 10 0.05
“query optimization” 10 0.58
"data mining" | "data warehousing" 10 1.05
Network + security 9 0.07
OLAP + benchmark 10 0.03
“query optimization” + database 9 1.58
text image + "information retrieval” 10 0.61
"logic programming" + application 9 0.65
Text + “information retrieval” + web 10 0.63
"database system" + "query processing” 10 1.7

61

Table 4.3 The test of system performance for a collection of 10000 documents

Query input Number of relevant Response
paragraphs out of 10 | time(second)
OLAP 10 0.03
Multimedia 9 0.11
Clustering 9 0.21
Animation 10 0.04
Graphics | animation 10 0.05
OLE | OLAP 10 0.04
security | network 10 0.97
“data mining” 9 0.58
“query processing” 10 1.08
“information retrieval” 9 1.51
“logic programming” 10 0.54
“query optimization” 10 0.86
"data mining" | "data warehousing" 10 1.06
Network + security 9 0.31
OLAP + benchmark 10 0.07
“query optimization” + database 10 1.84
text image + "information retrieval” 10 0.97
"logic programming" + application 9 1.05
Text + “information retrieval” + web 10 0.94
"database system" + "query processing” 10 2.06

62

Table 4.4 System performance

Percentage of retrieved | Average response Size of the
paragraphs judged as time (second) index (M)
relevant
For 1000 92% 0.3575 15
documents
For 5000 95% 0.457 26
documents
For 10000 97% 0.716 64
documents

From the experimental result, we can see that VQAS can achieve a high accuracy
and a short response time. The time and space complexity in an inverted index is
liner with a variation due to the size of the documents [1]. Therefore our
experimental result clearly matches the theory and it proves to be a good
implementation. However, VQAS still retrieves some irrelevant paragraphs,
although those paragraphs contain all the query words. The reason is that some
paragraphs in which the query words occur frequently may not under the topic of
those query words. Table 4.5 shows an example of relevant paragraph and an

example of irrelevant paragraph.

4.2 Performance of the in-memory phrase index

As mentioned in section 3.4.6, an in-memory phrase index is used to speed up the
phrase query for top 1000 frequently searched phrases. To evaluate the
performance of the in-memory phrase index, the response time of phrase search
that use the phrase index is compared to the response time of phrase search that

do not use the phrase index. Ten phrase queries are chosen as the sample queries.

63

In the beginning, since all the sample phrases are not in the top 1000 frequently

searched phrases, the system will not use phrase index to process the search. We

Table 4.5 Examples of retrieved paragraphs

query “information retrieval”

Moreover, there are a number of interesting research issues involved in the
itegration of methods of text retrieval derived from information retrieval
research with the access methods and facilities of a DBMS. Information
retrieval has dealt primarily with imprecise queries and results that require
human interpretation to determine success or failure based on some specified
notion of relevance. Database systems have dealt with precise queries and
relevant exact matching of the query specification. Proposals exist to add probabilistic
weights to tuples in relations and to extend the relational model and query
paragraph language to deal with the characteristics of text databases. Our approach to
designing this prototype was to use the features of the POSTGRES DBMS to
add information retrieval methods to the existing functionality of the DBMS.
This section describes the processes used in the prototype version of the
Lassen indexing and retrieval system and also discusses some of the ongoing
development work directed toward generalizing the inclusion of advanced
information retrieval methods in the DBMS.

The main focus of this research group is the development of methods to
improve today's infermation retrieval systems. Besides the design of the user
interface itself, the focus is on the development of methods to adapt a retrieval
system dynamically to the needs and interests of the user.

Irrelevant

paragraph

record the search time for all sample queries and take the average. Then we
repeat querying the sample queries. Finally, all the sample queries will be in the
top 1000 frequently searched phrases, and the system will use phrase index to
process the search. Then we record the search time for all sample queries and
take the average. Table 4.6, 4.7, and 4.8 shows the detailed results of
performance test for phrase index, and Table 4.9 shows the average response time

for both cases.

64

Table 4.6 The performance test of phrase index for 1000 documents

Phrase query Response time without Response time using

using phrase index(second) | phrase index(second)
“data mining” 0.54 0.02
“query processing’ 0.62 0.02
“information retrieval” 0.17 0.02
“logic programming” 0.02 0.01
“query optimization” 0.57 0.02
“information system” 0.61 0.01
"data warehousing" 0.52 0.01
“file system” 0.52 0.02
"database system" 1.01 0.04
“question answering” 0.03 0.01

Table 4.7 The performance test of phrase index for 5000 documents documents

Phrase query Response time without Response time using

using phrase index(second) | phrase index(second)
“data mining” 0.54 0.01
“query processing”’ 0.69 0.02
“information retrieval” 0.54 0.01
“logic programming” 0.05 0.03
“query optimization” 0.58 0.02
“information system” 1.04 0.02
"data warehousing" 0.52 0.01
“file system” 0.62 0.02
"database system” 1.05 0.04
“question answering” 0.03 0.01

65

Table 4.8 The performance test of phrase index for 10000 documents

Phrase query Response time without Response time using
using phrase index(second) | phrase index(second)
“data mining” 0.55 0.02
“query processing”’ 1.04 0.02
“information retrieval” 0.68 0.02
“logic programming” 0.54 0.04
“query optimization” 0.84 0.02
“information system” 1.05 0.02
"data warehousing” 0.53 0.02
“file system” 1.04 0.02
"database system" 1.07 0.05
“question answering” 0.12 0.02
Table 4.9 Performance of the in-memory phrase index
Average response time Average response time
for phase queries that do | for phase queries that use
not use phrase index phrase index
For a collection of
0461 0.018
1000 documents
For a collection of
0.566 0.019
5000 documents
For a collection of
0.746 0.025
10000 documents

66

From the experimental result, we can see that the phrase index can raise the speed
of the phrase search up to 30 times. As the number of documents in the collection

increases, the phrase index plays a more important role for phrase search.

67

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The VQAS system presented in this thesis aims to provide a method to retrieve full-
text information from a digital library by targeting the need between a true question
answering system and current search engines. It retrieves as result the paragraphs
where the possible response corresponding to the user’s query appear, not just a few
words before and after the search terms. In our experiments, the user would be able

to find the answer directly in the paragraphs of the query result.

The VQAS system consists of four modules: document processing module, index
creation module, search module, and user interface module. The document
processing module scans the documents and extracts index entries from them. The
index creation module creates an inverted index for all the documents in the
collection. The search module matches the query terms to the inverted file
generated by the index creation module to get search result. The user interface

module provides users a graphical web interface of the system.

The implementation of VQAS shows promising results from the statistical tests
performed. This system can be incorporated into various application areas,

especially in digital library.

68

5.2 Future work

Future work for VQAS leads to the following directions:

e Introduce spelling correction for query input.

e Introduce format checking for query input.

e Introduce new features to capture the notion of relevance of a paragraph to a
query.

e When the size of document collection goes to 10° or 107, the response time
of VQAS will become very slow. Then we can store the hit lists of some
frequently used query words in memory to speed up the search. The number
of query words whose hit lists will be stored in memory will depend on the

size of free memory. The proposed algorithm can be found in Appendix F.

69

Reference:

[1] Ricardo Baeza-Yates, Berthier Bibeiro-Neto, “Modern Information Retrieval”,
ACM press, New York, 1999.

[2] Ellen M. Voorhees, “Overview of theTREC 2003 Question Answering Track”,
Proceeding of TREC-10 QA track, 2001.

[3] Bemners-Lee T., Caillian R., Luotonen A., Frystyk Nielsen H., Secret A, “The
World Wide Web”, In Communication of the ACM, vol 37-8, p76-82, August 1994.

[4] B. Kahle, “Archiving the internet”. Scientific American, Mar. 1997.

[5] N. Shivakumar, H. Garcia-Molina, “Finding near-replicas of documents on the
Web”, In Workshop on Web Databases, p204-212, Valencia, Spain, March 1998.

[6] Bar-Yossef Z., Berg A., Chien S., Weitz, J. F. D, “Approximating aggregate
queries about web pages via random walks”, Proceeding of the Twenty-sixth
International Conference on Very Large Database, p535-544, 2000.

[7] Lawrence S., Giles C. L, “Accessibility of information on the web”, Nature 400,
1999,

[8] Bharat K., Broder A, “Mirror, mirror on the web: A study of host pairs with

replicated content”, Proceedings of the Eighth International World-Wide Web
Conference, 1999.

[9] G. Navarro, “Approximate Text Searching”, PhD thesis, Dept. of Computer
Science, Univ. of Chile, December 1998.

[10] A. Emtage, P. Deutsch, “Archie -- an electronic directory service for the
internet”, In USENIX Association Winter Conference Proceedings, p93-110, San
Francisco, 1992.

[11] Matthew Gray, “Internet growth summary”. http://www.mit.edu/people/
mkgray/net/internetgrowth -raw-data.html, 1997.

[12] M. Koster, “Aliweb - Archie-Like Indexing in the Web”, In Proceedings of the
First International World Wide Web Conference, p175-182, Amsterdam, 1994.

70

[13] Eichmann, D., "The RBSE Spider - Balanching Effective Search against Web
Load", In Proceedings of the First International Conference on the World Wide
Web, P113-120, Geneva, Switzerland, May 1994.

[14] Brian Pinkerton, “WebCrawler: Finding what people want”, PhD thesis,
University of Washington, November 2000.

[15] Mauldin, M. L, “Lycos: Design Choices in an Internet Search Service”, IEEE
Expert, 12(1): p8-11, 1997.

[16] “History of Search Engines & Web History”, http://www.search-
marketing.info/search-engine-history/index.htm, January 21,2004.

[17] B. Morrissey, "Overture to Buy AltaVista", vol. 2003: Internet Advertising
Report, 2003.

[18] Bipin C. Desai, Rajabihan Shayan Nader, R. Shinghal, Youquan Zhou, “CINDIL:
A System for Cataloging Searching and Annotating Documents in Digital
Libraries”, Library-trend, Vol. 48-1, Summer 1999.

[19] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search
engine”. Computer Networks and ISDN Systems, vol. 30, no. 1.7, p107-117, 1998.

{20] Ellen M. Voorhees, “The TREC-8 Question Answering Track Report”,
Proceeding of TREC-8 QA track, 1999,

[21] Cody C. T. Kwok, Oren Etzioni, Daniel S. Weld, “Scaling Question
Answering to Web”, Tenth World Web Conference, p150-161, Hong Kong, China.
Mayl1-5, 2001.

[22] Sanda Harabagiu, Marius Pasca, Steven Maiorano, “Experments with open-
domain textual question answering”, COLING-2000, p292-298, Association for
Computational Linguistics/Morgan Kaufmann, Aug 2000.

[23] Boris Katz, “From sentence Processing to Information Access on the World

Wide Web”, AAAI Spring Symposium on Natural Language Processing for the
World Wide Web, Stanford, California. 1997.

71

[24] Sanda Harabagiu, Dan Moldovan, Razvan Bunescu, “Answering Complex,
List and Context Questions with LCC’s Question-Answering Server”, Tenth Text
Retrieval Conference (TREC-10), Gaithersberg, MD. November 13-16, 2001.

[25] Eduard Hovy, Laurie Gerber, Chin-Yew Lin, “Question Answering in
Webclopedia”, Ninth Text Retrieval Conference (TREC-9), Gaithersberg, MD.
November 13-16, 2000.

[26] Bipin C. Desai, Sami S. Haddad Abdelbaset Ali, ” Automatic Semantic Header
Generator", ISMIS2000, Springer-Verlag, Charlotte, NC, 2000.

[27] Google, http://www.google.com/help/basics.html, February 03, 2004.

[28] J. Zobel, A. Moffat, R. Sacks-Davis, “An efficient indexing technique for full-
text database systems”, Proceedings of the International Conference on Very Large
Database, p352-362, 1996.

[29] P. O'Neil, “Model 204 Architecture and Performance”, in Proceedings of the
2nd International Workshop on High Performance Transactions Systems, p40-59,
1987.

[30] C. Faloutsos, S. Christodoulakis, “Signature files: an access method for
documents and its analytical performance evaluation”, ACM Transaction on Office
Information System, p267-288, 1984.

[31] Steve Jones, Sally Jo Cunningham, Rodger McNab, Stefan Boddie, “A
transaction log analysis of a digital library”, International Journal on Digital
Libraries, Vol. 3, p152-153, 2000.

[32] J. B. Lovins, "Development of a stemming algorithm". Mechanical Translation
and Computational Linguistics 11, p22-31,1968.

[33] WordNet online lexical reference system, http://www.cogsci.princeton.edu/
~wn/, July 16, 2004.

[34] G. Salton, C. Buckley, "Term-weighting approaches in automatic retrieval”.
Information Processing and Management, p513-523, 1988.

[35] Tong Zhang, "Gleaning subsystem for CINDI". Master’s thesis, Dept. of
Computer Science, Concordia University, August 2004.

72

Appendix A: Stop word list

A

after
almost
always
and

are
away
between
by

do
each
from
have
here

if

it

may
moreover
no

on

our

she
such
their
therefore
those
to

upon
were
where
who
without
you

about
again
already
am
any
as
be
both
can
does
either
further
having
his
in
its
me
must
now
only
out
should
than
them
these
though
too
us
what
whether
whose
within
your(

abs
against
also
among
anyone
aside
because
briefly
cannot
during
etc
had
he
how
into
itself
mine
my
of
or
refs
since
that
then
they
through
under
was
whatever
which
will
would

accordingly
all
although
an
apparently
at
been
but
could
e.g
for
has
her
however
is
just
more
need
often
other
shall
SO
the
there
this
thus
until
we
when
while
with
yet

73

Appendix B: The Algorithm for inverted index creation

void create_ib()

{
int i=0,j=0,k,tem1,tem0;
long I;
unsigned long doc{;
char filename1[128]="/cndhm/cindindx/fb";
char filename2[128]="/cndhm/cindindx/ib";
char filename3[1281="/cndhm/cindindx/ind";
fstream fptO("/cndhm/cindindx/temp1",ios::outlios::binary);//open a temp inverted file
fstream fromfb1fpO(filenamel, ios::injios::binary);//open the forward index file
ofstream outin(filename3,ios::out); //open the file to store the index of inverted file
if(fromfb1fp0.eof()) //if forward index is empty
return;
fromfb1fp0.read((char *)&doc0,4);//read a docid from forward index
fromfblip0.read((char *)&wh0,8);//read a wordid and its number of hits
i=0;
/l create the inverted file and its index array for the first document
while(!((wh0.wordid==0)& &(wh0.hits==0))) //while it not the end of forward list
{
/Istore the wordid, number of documents and the offset in inverted file
lex1[i].wordid=wh0.wordid;
lex1{i].docs=1;
lex1{i].offset=fpt0.tellp();
i++;
dh0.hits=wh0.hits;
dh0.docid=doc(;
fpt0.write((char *)&dh0,8);//write the docid and number of hits into inverted file
/fwrite the hit list into inverted file
for(int k1=0;k 1 <int(dhO.hits);k1++)
{
fromfb1fp0.read((char *)&oh,8);
fpt0.write((char *)&oh,8);
}
fromfb1fp0.read((char *)&wh0,8);//read next wordid and its number of hits

fpt0.close();

lex1fi].wordid=0;

lex1[i].docs=0;

/lcopy the index array to a temporary array
for(int k1=0;ki<=i;k1++)

74

{
lex[k1].wordid=lex1[k1].wordid;
lex[k1l.docs=lex1{k1].docs;
lex[ki].offset=lex1{k1].offset;
.).
=L
fromfb1{p0.read((char *)&doc0,4);//read the next docid
fromfb1fp0.read((char *)&wh0,8);//read wordid and number of hits
// merge the forward list of next document into the inverted index
while(!fromfb1fp0.eof()) //while it is not the end of forward index file
{
fstream fpt1("/cndhm/cindindx/temp1",ios::infios::binary);
fstream fpt2("/cndhm/cindindx/temp2” i0s::out|ios::binary);
i=0; j=0;
teml=lex1[i].wordid;
temO=wh0.wordid;
while(!((tem1==0) && (tem0==0))) //while it is not the end of forward list
{
if(temO==tem1)// if wordid is already in the index array
{
lex[j}.wordid=wh0.wordid;
1=fpt2.telip();
lex[j].docs=lex1[i].docs+1; //increase the number of document by 1
lex[j].offset=l;
k=lex1[i].docs;
bool flag=1;
// merge the hit lists of the word in the two documents
while(k>0)
{
if(dhl.docid>doc0 && flag)
{
dh0.docid=doc0;
dh0.hits=wh0.hits;
fpt2. write((char *)&dh0,8);
for(int k1=0;k1<int(wh0.hits);k1++)
{
fromfb1{p0.read((char *)&oh,8);
fpt2.write((char *)&oh,8);
}
fromfb1fp0.read((char *)&wh0,8);
flag=0;
}
fptl.read({char *)&dh1,8);

75

}

fpt2.write((char *)&dh1,8);
for(int k1=0;ki<int(dh1.hits);k1++)
{
fptl.read((char *)&oh,8);
fpt2.write((char *)&oh,8);

k--;
}
if(flag)
{
dh0.docid=doc0;
dhO.hits=wh0.hits;
fpt2.write((char *)&dh0,8);
for(int k1=0;k1<int{(whO.hits);k1++)
{
fromfb1fp0.read((char *)&oh,8);
fpt2.write((char *)&oh,8);
}
fromfb1{p0.read((char *)&wh0,8);
flag=0;
}
i++; j++; //go to next word
teml=lex1[i].wordid;
temO=wh0.wordid;

// if the wordid in the forward list is less than the current wordid in the index

array, or the end of index array has been reached.

else if((temO<tem] && tem0!=0) || tem1==0)

{

lex[j].wordid=wh0.wordid;
I=fpt2.tellp();
lex[jl.docs=1;
lex[j].offset=l;
j++;
dhl.docid=doc0;
dhl.hits=wh0.hits;
fpt2.write({(char *)&dhl1,8);
// insert a new inverted list to the inverted file
for(int k1=0;k1<int(whO.hits);k1++)
{
fromfb1£{p0.read((char *)&oh,8);
fpt2.write({char *)&oh,8);
for(int k1=0;k1<int(wh(Q.hits);k1++)

76

{
fromfb1{p0.read((char *)&oh,8);

fpt2.write((char *)&oh,8);
}
fromfb1fp0.read((char *)&wh0,8);
temO=wh{.wordid;
}
// if the wordid in the forward list is greater than the current wordid in the
index array, or the end of forward list has been reached.
else if((temO>tem] && teml!=0)|| tem0==0)
{
lex[j].wordid=lex 1[i].wordid,;
1=fpt2.tellp();
lex[j].docs=lex1][i}.docs;
lex[j].offset=l;
k=lex1{i].docs;
/lcopy the inverted list to the new inverted file
while(k>0)
{
fptl.read((char *)&dh1,8);
fpt2.write((char *)&dh1,8);
for(int k1=0;k1<int(dhl.hits);k1++)
{
fptl.read((char *)&oh,8);
fpt2.write((char *)&oh,8);

k-~
v } .
i++; j++;
teml=lex1[i}.wordid;
}
}
lex{j].wordid=0;
lex{j].docs=0;
fptl.close();
fpt2.close();
// replace old inverted file by the new one
remove("/cndhm/cindindx/temp1");
rename("/cndhm/cindindx/temp2”,"/cndhm/cindindx/temp1");
/lcopy the new index array to lex1
for(int k1=0;kl<=j;k1++)
{
lex1{k1].wordid=lex[k1].wordid;

77

lex1[k1}.docs=lex[kl].docs;
lex1[k1].offset=lex[k1].offset;
}
fromfb1fp0.read((char *)&doc0,4); //read the next docid
fromfb1fp0.read((char *)&wh0,8); //read a wordid and its number of hits
}
/! replace old inverted file by the new one
remove(filename?2);
rename("/cndhm/cindindx/termpl”, filename2);
/1 store the index array to a disk file
for(int k1=0;ki<=f;k1++)
{
outin<<lex[kl].wordid<<" "<<lex[kl].docs<<" "<<lex[kl].offset<<end];
}
outin.close();
fromfb 1fp0.close();
return;

78

Appendix C: The Algorithm for the phrase_intersection function

The phrase_intersection function is used to intersect the match_lists of two words in

the same phrase.

phrase_intersection(tl, 2, €3)
{
define two pointer pl and p2 with type of match;
let p1 point to the first match object in t1, p2 point to the first object match in t2;
while (pl!= NULL || p2 !=NULL)
{
if (pl->docid == p2->docid && pl->paragraph == p2->paragraph)
{
create a match object m3;
define two pointer hl and h2 with type of hit;
let hl point to the first hit in t1, h2 point to the first hit in t2;
while(h1!=NULL && h2!=NULL)
{
if (h1->position < h2->position)
{
if (h2->position — h1->position == (hl->length +1))
{
m3.docid=p1->docid;
m3.paragraph=pl->paragraph;
calculate a new rank using the ranks of p! and p2;
assign the new rank to m3.rank;
create a hit object h;
h.position=h1->position;
h.length= hl->length + h2->length +1;

add h to the hit list of m3;
h2=h2->next;

}

hl=hl->next;

79

else
h2=h2->next;

}
add m3 to t3;
move pl to the next match in t1;

move p2 to the next match in t2;

}
else if(pl->docid>p2->docid || (pl->docid==p2->docid && pl->paragraph>p2-
>paragraph))
move p2 to the next match in €2;
else

move pl to the next match in t1;

80

Appdix D: The algorithm for the union function

The union function is used to merge the match_lists of two words in a subquery.

union(tl, t2, t3)

{

define two pointer p1 and p2 with type of match;
let p1 point to the first match in t1, p2 point to the first match in 2;
while (pl!= NULL || p2 !=NULL)
{
create a match object m3;
if (p1->docid == p2->docid && pl->paragraph == p2->paragraph)
{
copy the docid and the paragraph of p1 to m3;
calculate a new rank using the ranks of pl and p2;
assign the new rank to m3.rank;
merge the hit list of p1 and the hit list of p2 to the hit list of m3 in the
order of position;
move pl to the next match in t1;
move p2 to the next match in t2;
}

else if(pl->docid>p2->docid || (pl->docid==p2->docid && pl->paragraph>p2-
>paragraph))

{
copy the match object pointed by p2 to m3;
move p2 to the next match in t2;

}

else

{
copy the match object pointed by pl to m3;
move pl to the next match in t1;

}
add m3 to t3;

}
while (pt!=NULL)

81

create a match object m3;
copy the match object pointed by p1 to m3;
move pl to the next match in tl;

add m3 to t3;
}
while (p2!=NULL)
{

create a match object m3;
copy the match object pointed by p2 to m3;
move p2 to the next match in 2;

add m3 to t3;

82

Appdix E: The algorithm for the intersection function

The intersection function is used to intersect the match_lists of two subqueries in a
query.

void intersection(match* ml,match* m2,match* m3)
{
hit_list *p1,*p2,%p3;
int i=0,j=0,k=0;
clean_table(m3, 5000);
while(m1[i].docid!=0 && m2[j].docid!=0)
{
if(m1[i].docid==m2[j].docid && ml[i].paragraph==m2[j].paragraph)
{
pl=ml{i}.hits;

p2=m2{j}.hits;
while(p1!=NULL && p2!=NULL)
{
if(pl->position < p2->position)
{
if(m3[k].docid==0)
{
m3[k].docid=m1l{i].docid;
m3{k].paragraph=m1{i].paragraph;
m3{k].rank=m1[i].rank+m2[j].rank;
m3{k].hits=(hit_list*)malloc(sizeof(struct hit_list));
p3=m3[k].hits;
p3->position=p1->position;
p3->length=pi->length;
p3->next=NULL;
}
else
{

p3->next=(hit_list*)malloc(sizeof(struct hit_list));
p3=p3->next;

83

p3->position=p1->position;
p3->length=p1l->length;

p3->next=NULL;
}
pl=pl->next;
}
else
{
if(m3{k].docid==0)
{
m3[k].docid=ml{il.docid;
m3[k].paragraph=ml[i].paragraph;
m3[k].rank=m1[i].rank+m2[j].rank;
m3[k].hits=(hit_list*)malloc(sizeof(struct hit_list});
p3=m3[Kk].hits;
p3->position=p2->position;
p3->length=p2->length;
p3->next=NULL;
}
else
{
p3->next=(hit_list*)malloc(sizeof(struct hit_list));
p3=p3->next;
p3->position=p2->position;
p3->length=p2->length;
p3->next=NULL;
}
p2=p2->next;
}
Hlend of while
while(p1!=NULL)
{
if(m3[k].docid==0)
{

m3{k]}.docid=m1[i].docid;

84

m3[k].paragraph=m1[i].paragraph;
m3{k].rank=m1[i].rank+m2(jl.rank;
m3[k}.hits=(hit_list*)malloc(sizeof(struct hit_list));
p3=m3[k].hits;

p3->position=pl->position;
p3->length=p1->length;

p3->next=NULL;

}
else
{
p3->next=(hit_list*)malloc(sizeof(struct hit_list));
p3=p3->next;
p3->position=p1->position;
p3->length=p1->length;
p3->next=NULL,;
}
pl=pl->next;
}
while(p2!=NULL)
{
if(m3[kj.docid==0)
{
m3[k].docid=ml{i].docid;
m3{k].paragraph=m1[i].paragraph;
m3[k].rank=m1[i].rank+m2[j].rank;
m3[k].hits=(hit_list*ymalloc(sizeof(struct hit_list));
p3=m3[k].hits;
p3->position=p2->position;
p3->length=p2->length;
p3->next=NULL;
}
else
{

p3->next=(hit_list*ymalloc(sizeof(struct hit_list));
p3=p3->next;

85

p3->position=p2->position;
p3->length=p2->length;
p3->next=NULL;
}
p2=p2->next;
}
i++;
j+H+s
k++;
} /lend of if
else if((mlfil.docid < m2[jl.docid) ||
(ml[i}.paragraph < m2{j].paragraph)))
{ i++;}
else if(m1[i].docid>m2(j].docid
ml[i].paragraph>m2[j].paragraph))
{ j++ }
}/end of while loop
clean_table2(mi, 5000);
¢lean_table2(m2, 5000);
return;

(ml[i].docid==m2{j].docid &&

I (m1[i].docid==m2[j].docid &&

86

Appendix F: The proposed algorithm for scale up

In order to speed up the search, an in-memory B-tree is created to store the search

results of most frequently searched words. A sorted array is created in memory to

store the search frequency of all words. The number of words stored in the B-tree

index depends on the size of memory. Assume the search result of the top N

frequently searched words are stored in the B-tree, when a query word becomes one

of the top N frequently searched words, we insert this word and its search result into

the B-tree. When this word is queried next time, VQAS can search the B-tree and

get the result directly from the tree, which makes the query process much faster.

The data structure of this B-tree is shown below.

B-tree index for the top N frequently searched words:

node: word item word item

word item

word item : wordld pointer to its match_list

87

pointer to its child 1

4
iode

match_list:

match:

hit list:

hit:

match ™ macch |7 7 ™™ match —O

docid paragraph| rank hit list | Pointer to next match
hit e — i NG
position length pointer to next hit

88

