SPEECH PROCESSING USING THE EMPIRICAL
MODE DECOMPOSITION AND THE HILBERT
TRANSFORM

Ke Gong

A Thesis
in
The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Québec, Canada

September 2004

© Ke Gong, 2004



Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94739-4
Our file  Notre référence
ISBN: 0-612-94739-4

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[ b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



ACKNOWLEDGMENTS

I wish to express my sincere appreciation and thanks to my advisor, Dr. T.D. Bui, for his
continued guidance and unwavering support during the course of this thesis. I am forever
grateful to him for giving me an opportunity to finish my study as well as the freedom to

explore the areas of research opened up to my curiosity.

A special thanks to my wife, Zhen Li, for her love, encouragement and support when it was

most required. I am also grateful to all my other family and friends for their love and support.



TABLE OF CONTENTS

LISt Of FIGUIES c.cvvvveuurererensimmmssssseneseesssssnsssssssssessssssssssssssssssssssssssssesssssssssssens ernereensesarens i
List of Tables........... esea e R AR R R RS R it
ADDIEVIALIONS «.cvvonnreeensrersseseresssnneresssseseanss - v
Chapter 1: INTRODUCTION ......couuumssrermmesmsmsssssssassssmssassssessesesssessassssssssseess 1
1.1. The Empirical Mode Decomposition and The Hilbert Transform 1

1.2. Text-Independent Speaker Identification... N 2

1.3. Contributions Of THiS TRESIS c..c.uuurereeussererssssmseseresmasnessesesssssessesessssssssesessssssssesssssssssssessaasess 3

1.4. Thesis Layout......cceeceemresreerccrsseeenne 4
Chapter 2: THE EMD & THE HILBERT TRANSFORM ... 5
2.1. Instantaneous FrequenCy ... ticssssesccscssssssanns 5
2.2. The Empirical Mode Decomposition Algorithm.................eee.. 8
2.3. The Hilbert Transforms...... , , v esesessesnseseseaasees 13
2.4. Various Definitions........c...eeeeeseeseeresasenssecens ereessaees s sanaseces 14
2.5, SUIMMALY ..ot sssssisssssssssss st ssssssssssssssssss s s ssnssssassssasssbasens 18
Chapter 3: APPLICATIONS OF THE EMD & THE HILBERT TRANSFORM.d.......... 19
3.1, Freak Wave AalYSis.......cccccomrummesmnsesmsmssssmsssssessssesssssssssssessissmsssssnssssassasssssssesssssesssssassns 19
3.2. Artifact Reduction in Electrogastrogram ...................... W21
Chapter 4: PARTITION PROBLEM AND MARGINAL SPECTRUM UTILITY............. 23
4.1. Partition Problem in the EMD and the Hilbert Transform .........coeeceeerenees .23
4.2. Marginal Spectrum vs. FOUHET SPECUUML..u....vceuueereremmeserseesssssesesssssssessssessasesessessnness 29
Chapter 5: APPLICATIONS IN SPEECH PROCESSING......vcerreemmescsssssnassereesssssssssssenss 33
5.1. Acoustics Model of Speech PrOQUCTON ..uuucrveesenerssssesnssssssssmmsssssessesssmsssssssssssaseesessasass 33
5.2, PIECH e eeeteertssseecenessasseeseeesssssesssssssssssssssssssesssssssessssssassssssessssassss - 35
5.2.1. Voiced/Unvoiced Detectlon .......... sttt ‘ - 36

5.2.2. Autocorrelation MEthOd ......c.cceecvesseeeserereeesessseissesesssesessssesesssessssssssssesses 38

5.2.3. Pitch Used in Speaker RECOGAIHON uvvuvuvursrinrsencesensssssssssissssensssssssssssssssssssnsssssesssass 39

5.3, FOIMANLS ...ttt ssscssesssssssssssss s sasssassssssssbssssssssasssisssssasssssssssssasssasssans 42
Chapter 6: SPEAKER RE(I)GNITION ...................................... R .1
6.1, CepSTIAl COCTTICIENTS .vvuveererrresuasscereesmsmseserasssssseesisisssesessssssssnsesssssssssssesesessssssssesssssassissssesensss 45
6.2. Mel-Frequency Cepstral COELfICIENES ... cvuuecrerrerssmsserssseseesssssesesmasssssssssesessssessessases 47

6.3. PIeproCeSSINg .....u.ecremecemseercrmnsermasesessssessasasssanes crestra st b e aar s 48

6.4. Calculating MEQGC......ccuorerernreemassrsissssssssssssssssssssssssssssessssssssssssssssesssssssssssssesssssassssssasens 51

6.5. Gaussian Mixture Models...........crerreenee. , ereesesesasas s s snenes 54

6.6. Speech Database: TIMIT ........cocuumeremrenmeremsesssrmssesessssssesesmasesessssassssssssarsessanaseress .56

6.7. Experiment ReSults.........ocreummereesnseesisssessenssessssesescsass eeesasessssssesassserens 56
Chapter 7: CONCLUSIONS AND FUTURE WORKS.......ccoceuumressersessarssesesessassesesessensneseess 58
7.1. Conclusions..........ce.... crreeeasesnaas - 58
7.2, FULUIIE WOLKS c.ovvrurneeresmaseeseesesssanesesesssssnesersssssssessssssssssessssssssssessesessssssssssssssassssossssssassessssessas 59
BIbLOZIaPhY .....ovvveusmmeseesersressesisssnnseseseesessssmasssssssessssssssssssnsssssssssssessasannns 62




LIST OF FIGURES

Nuniber Page
1. Figure 2.1: Instantaneous frequencies.. 7
2. Figure 2.2: Flowchart of the EMD algorithm.......... 10
3. Figure 2.3: Signals y,, 3,, 3; and corrupt signal . ersssasmensosssssssssasaees 11
4. Figure 2.4: Original signal, residue and all the IMFs......ccoevercercssessrnsnnne 12
5. Figure 2.5: The first five IMFs and related Marginal Spectrum. ............... 15
6. Figure 2.6: The Marginal Spectrum vs. Fourier spectrum.........cooccccuummmnene. 15
7. Figure 2.7: Flowchart of the EMD and the Hilbert Transform ............... 18
8. Figure 3.1: Narrow banded freak wave .......cccoovveeeesrmnrrrrrenrenecen 20
9. Figure 3.2: Empirical Mode Decomposition of a typical EGG................. 22
10. Figure 4.1: Partition Problem in the EMD and the Hilbert Transform .. 24
11. Figure 4.2: Partition EMD ... rccccriconecneresneseaeressssssssessmsssesssssassssassnns 29
12. Figure 4.3: Fourier spectrum vs. marginal SPECtIUM ... .. cecveeurusnsereeessernaces 30
13. Figure 5.1: Human Vocal SYSteIm......cwcuuureeesmmmsceressssssesssssisssnsesssisssasnans 34
14. Figure 5.2: CompariSOn Of PIICRES .....cuumrrreceesemsssmsresssecsssesssssessessesessesens 36
15. Figure 5.3: Voiced/ Unvoiced DEtECHON «..ureeeereeuussssssereressssasemsnssessessseseess 37
16. Figure 5.4 Combine pitch and MFCC as the features ..........cosscssssrens 40
17. Figure 5.5: DS of the wav file: 25133.wav, Fj: 268.562 Hz......cccovvcrrererennen. 42
18. Figure 5.6: DS of the wav file: 28014.wav, Fj: 496 Hz......coorcvcrermrrererersnnes 42
19. Figure 5.7: Peak frequencies of each IMFs.........uuuoonecremermmmmmmmensnsssssisinns 43
20. Figure 6.1: Mel Frequency Scale ... ccevucccrurssnneecnmmsssescsisssasssssssssenss 47
21. Figure 6.2: Preprocessing of speaker reCOgRition. .........rercceesesesssnennenens 48
22. Figure 6.3: Steps Of MFCCS EXIIACHON cvvvvvvuuunnreresessseneresssasseseresessesssesessssanes 51
23. Figure 6.4: An example of Mel-spaced filter banks........ccooeveveeeeeeereenerarencee 53
24. Figure 7.1: Keele pitch database: signals and pitch .......ccivcienreieneconecs 59

-11 -



LIST OF TABLES

Number Page
1. Table 4.1: Computation of two sections of the signal 25

2. 'Table 4.2: Comparison of marginal spectrum and Fourier spectrum in text-indecent
speaker identification .........ceccceeveevnuenen, eneemanesnasenaseaes 30
3. Table 5.1: Autocorrelation method compare with DS method................ 41
4. Table 5.2: Reference formants ..........ooeuevrrerrrecnen errve s as e 44

- 1il -



ABBRE VIATIONS

EMD: E mpirical Mode Decomposition
HT: Hilbert Transform

IMF: Intrinsic Mode Function

DS: Degree of stationanty

DDS: Degree of Statistic Stationarity

IE: Instantaneous Energy density level
EGG: Electrogastrogram

MEFCC: Mel Frequency Cepstral Coefficient
GMM: Gaussian Mixture Model

FFT: Fast Fourier Transform

LPC: Linear Predictive Coding

IDFT: Inverse Discrete Fourter Transform
DFT: Discrete Fourier Transform

DCT: Discrete Cosine Transform

FIR: Finite Impulse Response Filter
LMMD: Local Mean Mode Decomposition

HT: Hilbert Transform

-1V -



Chapter 1

INTRODUCTION

Most of the signals in practice are time-domain signals in their raw format. When we plot the
signal, the x-axis usually is time (independent variable) and the y-axis is for the amplitude
(dependent variable). But, in many cases, the most important information is hidden in the
frequency domain. Historically, there are methods to obtain the frequency content from the
raw signal. In these methods, Fourier analysis and Wavelet analysis are the most famous ones.
Very recently, Huang et al (1998) [1] introduced a new tool called Empirical Mode
Decomposition (EMD) associated with the Hilbert transform to perform comprehensive

analysis of nonlinear and non-stationary data.

In this thesis we discuss the EMD and the Hilbert transform and propose to use the new

method to solve some problems in speech processing.

1.1. The Empirical Mode Decomposition and The Hilbert Transform

In the real world whether from physical measurements or numerical modeling, most signals
are nonlinear and non-stationary. Facing such data, we have limited options to use in the
analysis. Historically, Fourier spectral analysis has provided a general method for examining
the global energy-frequency distributions. Although the Fourier transform is valid under
extremely general conditions, there are some crucial restrictions of the Fourier spectral

analysis: the system must be linear, and the data must be strictly periodic or stationary,
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otherwise, the resulting spectrum will make little physical sense. In 1998 Huang et al [1]
proposed a new method to analyze nonlinear and non-stationary signals in time and frequency,
which only uses the signal itself and describes the frequency along the characteristic functions
obtained from the signal. This method requites two steps. In the first step the signal is
decomposed into a finite and often small number of “Intrinsic Mode Functions” that admit
well-behaved Hilbert transforms. This decomposition method so-called Empirical Mode
Decomposition 1is an iterative and adaptive process that uses only the signal itself. In the
second step with the Hilbert transform, the “Intrinsic Mode Functions” yield instantaneous
frequencies as functions of time that give sharp identifications of imbedded structures. The
final presentation of the results usually is an energy-frequency-time distribution, designated as
the Hilbert spectrum. In this method, the main conceptual innovations are the introduction of
“Intrinsic Mode Functions” based on local properties of the signal, which makes the
instantaneous frequency meaningful; and the introduction of the instantaneous frequencies for
complicated data sets, which eliminate the need for spurious harmonics to represent nonlinear
and non-stationary signals. The new method would be ideal for nonlinear and non-stationary

data analysis.

1.2. Text-Independent Speaker Identification

Speech signal is typical nonlinear and non-stationary data. Speech processing is a diverse field
with many applications. In this thesis, enlightened by the successful applications, we try to test
the EMD algorithm and the Hilbert transform in some speech processing; it includes pitch

detection, formant detection and text-independent speaker identification. Here we must
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emphasize that in this thesis the purpose of the speaker identification system is just for testing
and comparison of the new method, not for improvement of the performance of the speaker
identification system itself. The reasons why we choose a speaker recognition system to test
the EMD and the Hilbert transform include: firstly speaker recognition system is a complete
and independent practical application. The recognition rate usually can directly indicate the
performance of the new algorithm. Second, the experimental requirement of speaker
recognition is not too high, especially for a text-independent speaker recognition system. In
this thesis we select a subset of speech sentences from TIMIT speech database [21] and all the

development work are performed in MATLAB environment.

Speaker recognition is classified into two specific types: speaker identification and speaker
verification. Speaker identification is to determine which speech in a known group of speeches
best matches the speaker, whereas the speaker verification is to determine if the speaker is who
he or she claims to be. In speaker recognition, speech can be constrained to be a known
phrase (text-dependent) or totally unconstrained (text-independent). Text-independent means
that the identification procedure should work for any text in either training or testing. In this

thesis, attention is focused to the text-independent speaker identification problem.

1.3. Contributions of this Thesis
The contributions of the thesis are threefold:
1) Explore the full interpretations of the EMD and the Hilbert transform for complicated

data. Associated properties of the Marginal spectrum and various definitions of the



Degree of Stationarity also are explored and some practical problems are pointed out

i the thesis.

2) In the scope of speech processing applications, as a new technique, the EMD method
and the Hilbert transform are used in the pitch and formant analysis. Positive and

negative remarks are discussed with the experiment result.

3) For extensive testing, a text-independent speaker identification system is developed to
test the performance of the new methods in two aspects: one is marginal spectrum
instead of Fourter spectrum being used in feature extraction and the other one is new

pitch detection method by using the Degree of Stationarity.

1.4. Thesis Layout

The structure of this thesis is as follows: Chapter 2 contains a general discussion and analysis
of the EMD and the Hilbert transform including implementation details. Chapter 3
mntroduces two successful applications of the EMD and the Hilbert transform. Chapter 4
points out the partition problem and compares the marginal spectrum with Fourier spectrum.
Chapter 5 describes some of background information of speech processing and discussion
the utility of the EMD and the Hilbert transform in pitch and formant analysis. Details of
the comparison are presented along with the discussion of their advantages and limitations.
Additionally, the details that use the EMD and the Hilbert transform in a text-independent
speaker identification system are introduced in chapter 6. Finally, in chapter 7, some closing
remarks about the utilities of the EMD and the Hilbert transform techniques as well the

future works are proposed.



Chapter 2
THE EMPIRICAL MODE DECOMPOSITION AND THE HILBERT TRANSFORM

Before introducing the EMD and the Hilbert transform, let’s briefly review the definitions of
nonlinear and non-stationary here. According to the traditional definition, a time series, x(), is

stationary (or periodic) in the wide sense, if, for all ,

E(|x(#"]) <eo, E(x(t) = mand Qix(t), x(5)) = Gty + 9 xtt, + 7) = G, — 1),

in which E() is the expected value defined as the ensemble average of the quantity, and (7)) is
the covariance function [1]. Therefore, a time series q#) is non-stationary if, for some 7 the
joint probability distribution of ¢, c;,, ... , G, i dépendent on the time index 7 [45]. Nonlinear
time series is a natural extension of linear time series. A nonlinear time series is one that is not
linear, and the equation is not linear if it has nonzero coefficients on the higher-order terms
[46]. An ideal analysis technique for nonlinear, non-stationary signals should be local (to tackle
non-stationarity) and adaptive (to tackle nonlinearty). Empirical Mode Decomposition

algorithm was proposed specially for the study of nonlinear and non-stationary signals.

2.1. Instantaneous Frequency
The starting point of the Empirical Mode Decomposition is to clarify the definition of the
instantaneous frequency. Instantaneous frequency is interpreted in the time-frequency

literature as the average frequency at each time in the signal [2]. Common definition of

instantaneous frequency w(#) is the denvative of the phase 4% of the analytic signal

Z() =a(t)e’® "



o(t) = dO(t)/ dt

The analytic signal Z(2) is computed via the Hilbert transform of the orginal signal, which will

be explained in the section 2.3.

With such definition of instantaneous frequency, at any given instant, obviously, there is only
one frequency value; therefore, instantaneous frequency is valid only for mono-component
signals. Unfortunately, there is no clear definition of the “mono-component” signal to judge
whether a function is or is not “mono-component”. For lack of a precise definition, “narrow
band” was adopted as a limitation on the data for the instantaneous frequency to make sense
[30]. In the study of the probability properties of the signals and waves, the processes are
assumed to be stationary and Gaussian. Then, the bandwidth can be defined in terms of
spectral moments as follows. In [31]32]33][34]35), 2 parameter, 4 was defined to offer a

standard bandwidth measure:

2
mym, —m PR
v= [+ —2% =7,/N]-N,
m,m,

1 m . . o
where N, = —(—2)"? is the expected number of zero crossings per unit time,
my

N, = 1 Zay2 i the expected number of extrema per unit time and 7z is the 7th moment of
o m,

the spectrum.

Through the definition of 4 we can easily find that for a narrow band signal ©=0, the expected

numbers of extrema N, and zero crossings N, have to be equal.
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Another restrictive condition to obtain meaningful instantaneous frequency was proposed by a

simple example in [1]. Let us consider a simple sine function, x(2)=sin). Its Hilbert transform
is -cos(t). So z()=sin(t)-icos(t) is a unique analytic signal of x and can be rewnitten as z(z)=¢".
From this notation we directly see that the phase is the linear function §%=t72/2. So the
instantaneous frequency is a constant, which was also to be expected. If we move the mean off

by an amount ¢, then, x()= a+siqt). Then the analytic signal of x is given by

z(t) = a +sin(t) —icos(t) = a(?)e”®” with amplitude a(t) = \/ a’+2asin(?)+1 and phase

—cos(?)

——<— . The corresponding instantaneous frequencies w(?) = 46(t) / dt are
a +sin(t)

6(t) = arctan

shown in figure 2.1. In the figure, we can see that the instantaneous frequencies of 0.5+sinf?) is
non-constant; and the instantaneous frequencies of 1.5+sint) even is sometimes negative,

which is meaningless.
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Figure 2.1: Instantaneous frequencies of a-+sit)-ians(t), with a=0 (solid), a=0.5(dash-dot), and
a=1.5 (dashed).

This example illustrates physically that, for a simple signal such as a sine function, the
instantaneous frequency can be defined only if we restrict the function to be symmetric locally
with respect to the zero mean level. For general data, any riding waves would be equivalent to
the case of a>1 locally; any asymmetric waveform will be equivalent to the case of a@<Z, but

non-zero, locally [1].

Based upon the above explanations, Huang et al [1] proposed two precise conditions of certain

kind of functions, based on its local properties, to define meaningful instantaneous frequencies

everywhere:

1) In the whole data set, the number of extrema and the number of zero crossings must

either equal or differ at most by one;

2) At any point, the mean value of the envelope defined by the local maxima and the

envelope defined by the local minima is zero.

The kinds of functions that can satisfy the upper two conditions are called as Intrnsic Mode

Functions (IMFs).

2.2. The Empirical Mode Decomposition Algorithm
Hilbert et al [1] ntroduced the Empirical Mode Decomposition (EMD) method to decompose

the nonlinear non-stationary signals into Intrinsic Mode Function (IMF) components.
-8-



Given an arbitrary signal x(2), the effective algorithm of EMD can be summarized as follows:

1) Initialize: 74%) = x(2) (the residual), i =  (index number of IMF);
2) Extract the i-th IMF:
(a) Inalize: by =7,,(2),7 = I (index number of the iteration),
(b) Extract the local extrema of b, (1),
(c) Interpolate the local maxima and the local minima by cubic splines to form
upper envelope e7272) and lower envelope emux(t) of b, (1),
(d) Galculate the mean of the upper and lower envelopes
() = (eminf) + emec())/2,
(©) Update hfg) = b, (9 - m. {9,
(®) If 1) is a IMF then set ¢(2) = h(3) else go to (b) withj =; + 7,
3) Update residual r{t) =7,,(¥) - ¢);
4) If 7{t) still has at least two extrema then go to 2) with 7 = 7 + 1 else the
decomposition is finished and 7 (%) is the residue.

In the EMD algorithm, the method for decomposing any general signal into a set of IMFs is
also called sifting. The sifting process serves two purposes: to eliminate riding waves and to
make the wave profiles more symmetric. But too many sifting cycles, taking the mean and
subtracting could reduce all components to a constant amplitude signal with frequency
modulation only. Then the IMF components would lose all their physical significance [4]. To
guarantee that the IMF components retain enough physical sense of both amplitude and

frequency modulations, the number of times that the sifting process repeats has to be limited.

7 h . _ h ) 2
Therefore, Standard Deviation ( SD, =Z’ E10) ’Et)l
o (hi,(@)

) computed from the two

consecutive loops results replaces the two conditions of IMFs as stopping ctitetion in the step

2-(f). The flowchart of the practical EMD process is given as Figure 2.2.



(1) =x(t),i=1

hft) =7 (,j =1 i=i+1

Extract the Ilyoc(i)l extrema of i<+

f

form upper envelope emin(f) and lower
envelope emax(f) of b, (1)

9 =(emil) + emax(y) )/

%
b9 =hl)-m )

r |h+ O-h,OF No
D= 2

0. of extrema - no. of zero
ossings| =1 or =0

) = hfY
I
W) =700 oY

Yes

7(t) has at least two extrema

Figure 2.2: Flowchart of the EMD algorithm.
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A standard deviation value of 0.2-0.3 for the sifting procedure is a very rigorous limitation for
the difference between siftings. So usually the threshold value € for SD can set between 0.2

and 03 [1].

Thus, the original signal x(7) can eventually be expressed as follows:

X0 =Y e+,
pan
where n is the number of IMFs, ¢ft) is the IMF and 7,(%) is the residue.

To illustrate the whole EMD and the Hilbert transform, consider the following example. Let
y; and y, be given by y, = 5sin(607¢) and y, = 7sin(407z) . Concatenate v, and , to yield y,
ie. y; =[y, »,]. Then corrupt y, with some zero-mean random noise, we get a nonlinear and
non-stationary signal y that is noisy, narrow band oscillation around central frequencies,
modulated both in amplitudes and frequencies. The signal y can be implemented in MATLAB
by the following codes:

yl = 5%sin(2*pi*30*t(1:halfIndex));

y2 = 7*sin(2*pi*20*t(halfIndex +1:end));

3=yl y2}
randVal=2;
y =y3 + randVal*randn(size(t));

-11-
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Figure 2.3: Signals y,, 3, 7; and corrupt signal y.

Figure 2.3 shows the original signals y,, 3, 7; and y. After performing the EMD algorithm, all

the IMFs, residue and the signal y are shown in figure 2.4.

IMF3

(MF2
200 400 600 800

200 400 600 800

800 800

200 400

IMF7

IMFS

@ N O = N®

o N = o - N ®
o O O 000_

IMF4

200 400 600 800

200 400 600 800

800

200 400 600

200 400 600 800

Figure 2.4: Ornginal signal, residue and all the IMFs
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2.3. The Hilbert Transforms

For a given real signal q%) we look for a decomposition into simpler signals (modes)
M

()= a,(t)cosp,(t) , where aft) is the amplitude and #(1) is the phase of the jth
j=1

component. Each of the components has to have physical and mathematical meaning. Let ¢%)
be “mono component” signal, i.e. we can find representation of the form ¢#)=a(t)oxs¢ (2) that is
both physically (¢ {2)>= 0) and mathematically meaningful. There are infinitely many ways to
construct such representations but it is often advantageous to write the signal in complex form
Z(9)~q9)+icft)=a(t) ¢"” and to take the actual signal to be the real part of the complex signal
The imaginary part ¢{#) of Z(1) has to be chosen to achieve a sensible physical and mathematical
description . If we can fix the imaginary parts we can then unambiguously define the amplitude
and the phase by 4(t) = /(1) + () ] ¥, 1) = artan[ ) / (9 ]. There are many ways of

defining ¢(2); the Hilbert transform of (%) is one of definitions.

In the past, applications of the Hilbert transform have been limited to narrow band data;
otherwise, the results are only approximately correct [4]. After the IMFs are extracted by using
EMD method, because each IMF component admits well-behaved Hilbert transforms, to
analyze arbitrary nonlinear and non-stationary signals in both time and frequency domain, the
Hilbert transform was used as a tool to obtain the instantaneous frequency of each IMF
component. This is the most direct method for determination of instantaneous frequency, and

is easy to implement [29].

Given a time series data ¢, the corresponding analytic signal that still retains the same

amplitude and frequency content as the original real data is defined to be:
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20 =9 + i H(q9) =al) %
in which

Hle@=—P[ ),

at) =[ () + H{( ) ]",

0(t) = arctan[ H( (1)) / ¢(2) ],

off) = dog) | ds
Here, the imaginary part Hf q%) ] in the analytic signal is the Hilbert transform of ¢%), the
notion P indicates the Cauchy principal value of the integral. 4%, 6% and w() are the

instantaneous amplitude, phase and frequency of the original data q%).

2.4. Various Definitions

After decomposing an arbitrary signal into a number of IMF components, instantaneous
frequency values can be assigned to each IMF by using the Hilbert transform. For emphasis
here, we must point out that for a complicated signal there is more than one instantaneous

parameter at an instant.

The Hilbert Spectrum
With these instantaneous parameters defined, the frequency-time distribution of the amplitude
in a three-dimensional space is designated as the Hilbert amplitude spectrum, H( w(), ¢ ), or

simply Hilbert spectrum.

The Marginal Spectrum

By adopting the Hilbert spectrum, the marginal spectrum, Aw), can be defined as:
T
W)= [H(o().t)dt .
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The marginal spectrum offers a measure of total amplitude (or energy) contribution from each
frequency value. It represents the cumulated amplitude over the entire data span in a
probabilistic sense. As pointed out by Huang et al. [1], the frequency in either H( w(z), #) or
h(w) has a totally different meaning from the Fourier spectral analysis. Moreover, it should be
pointed out that the marginal spectrum should not be used for any non-stationary data, for the
marginal spectra are the projections rather than the substance of the real frequency-energy-

time distribution [4].

After performing the Hilbert transform on the IMFs of the signal y, figure 2.5 shows the first
five IMFs and related marginal spectrum of each IMF. From accumulating all the marginal
spectrum of each IMF, the marginal spectrum of the original signal yis shown in the figure 2.6,

comparing with the Fourier spectrum of the same signal.
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Figure 2.5: The first five IMFs (left column) and related Marginal Spectrum (right column).
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Figure 2.6: The Marginal Spectrum vs. Fourier Spectrum.

The Instantaneous Energy Density Level

Similar to the marginal spectrum, we can also define the Instantaneous Energy density level

(IE) as IE(r) = .[Hz(a),t)da) .

Obviously, this IE also depends on time; it can be used to check the energy fluctuation.

The Degree of Stationarity

For arbitrary non-stationary signal, it is possible that certain frequency components can be
non-stationary while other components remain stationary. Having established the Hilbert
spectrum, Huang et al [1] introduced a new definition, degree of stationarity, to quantify the

stationarity of nonlinear non-stationary signal.
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Degree of stationarity, DS{w), is defined as

; TTJ'Hz(a),t)dt
DS(w) = 1 J'(l —M)Zdt =0
T, h(w)/T h* (o)

where H(aw(t), t) is Hilbert amplitude spectrum and (@) is marginal spectrum.

Huang et al [1] referred to the intermittency, used in the turbulence analysis [36] to define the
degree of stationary. Therefore the definition of degree of stationary is very similar to the
intermittency. As a function of frequency, degree of stationarity is an index in frequency
domain that gives a quantitative measure of how far the process deviates from stationarity. The
closer to zero the DS(w) value, the more stationary is the process. Because of this character of

Degree of Stationarity, We proposed to use this new definition in pitch detection.

The Degree of Statistic Stationarity

Sometimes signal can be piecewise stationary. For example, date can be locally stationary while
in a long time sense non-stationary; likewise, for a singular outburst in an otherwise stationary
signal, the process can be regarded as almost stationary in a long time sense, but locally non-
stationary near the outburst. To reflect the fact that signal can be piecewise stationary, Huang

et al [1] also introduced another definition to quantify the stationarity of signal on a certain

time scale: Degree of Statistic Stationarity, DSS(w, AT), which is defined as

I . H(w(),1) D),

DSS(w, AT) = o )/T
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where the over line indicates averaging over a definite but shorter time span, A7, than the
overall time duration of the data, T. Even with the difficulty to choose the time scale A7,
the definition for DSS(w, AT) could be more useful in characterizing random variables

from natural phenomena.

2.5. Summary
As a summary here, now we can use the following flowchart to illustrate the whole EMD

method and the Hilbert transform:

Hilbert transform| Instantaneous parameters: Hilbert spectrum: o

IMF: ¢ — -
! a,(t), 0,(1) & ,(¢) r H(w(),1) = a(t) J.
: : Marginal spectrum: -

o) = [ H(@(0),0dt
EMD Method ’ :

n — . — I
Original | (1) = > c() +1, IME: ¢ Hiibert transform| |, s1antaneous parameters:
N i=1 — . G o -]
signal: > ! a,(1),8,(1) & o,(2)
x(t) SN :

7
h 4

Instantaneous Energy
- Density: IE(t):JHZ(w,t)da)

Degree of stationarity:

_H((t),1)

Ydt

DS(@)= }1;_[(1
0

. - W)/ T
—JIMF' c Hilbert transform| ,gtantaneous parameters: :
L o a,(),6,()&w, (1) Degree of statistic
— L stationarity:
1t He®n.n,
Residue: DSS(w, AT) = ((J,.(l -h(a))/—r) d'J

Ta

Figure 2.7: Flowchart of the EMD and the Hilbert transform.

As showed 1n the figure 2.7, after performing the EMD and the Hilbert transform, the input
arbitrary signal x(t) can be represented as a three-dimensional distribution plot: Hilbert
Spectrum. With the Hilbert Spectrum defined, Marginal Spectrum, Instantaneous Energy
Density, Degree of Stationarity and Degree of Statistic Stationarity are defined for descriptions
of different natures of the original signal. We expect that these meaningful descriptions can be

used 1n various signal-processing applications.
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Chapter 3

APPLICATIONS OF THE EMPIRICAL MODE DECOMPOSITION AND THE
HILBERT TRANSFORM

As a pretty new technique specifically designed for analysis of nonlinear non-stationary data,
the EMD algorithm and the Hilbert transform can be used in plenty of areas that include
earthquake engineering [6] [7], damage detection in structures, fluid dynamics [4] [8], economic
data analysis and biomedical engineering [5] etc. In this chapter, two successful applications are
introduced: one is Freak Wave Analysis by using the Hilbert spectrum [8]; the other one is

Artifact Reduction in Electrogastrogram by using the marginal spectra [5].

3.1. Freak Wave Analysis

Water wave are a non-stationary and non-linear physical phenomenon. Freak waves, as a
special water wave, are defined as transient waves existing in one particular location in one
certain instant in time [8]. Due to the superposition of a finite number of dispersive wave
components, a freak wave occurs and is characterized by an enormous wave height and high

velocities underneath the crest of the wave.

In Schkurmann et al’s paper [8], freak waves were generated in laboratory. A narrow banded

freak wave with its corresponding Wavelet Morlet and Hilbert spectra from [8] are shown in

figure 3.1.
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Figure 3.1: Narrow banded freak wave. a) Water surface elevation, b) Morlet amplitude
spectrum, c) Hilbert amplitude spectrum. (Reprinted from Schlurmann et al. [8])

In figure 3.1 ¢, comparing the waves before and after the freak wave, there is no difference
concerning the amplitude but a significant difference in the frequency domain. The frequencies
of the wave following the freak wave are lower than those of the wave before. This effect has
never been mentioned before, as the classical Fourier analysis is not able to resolve such non-
stationary phenomena. The Motlet spectrum (in figure 3.1 b) also foreshadows this effect, but

due to the difficulty to localize the energy to one frequency, it is not so obvious like in the
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Hilbert spectrum. Hilbert spectrum gives a much sharper resolution in frequency and a more
precise location in time. As a summary, Schkurmann et al [8] concluded that comparing with
Fourter analysis and Wavelet analysis, the Hilbert spectrum based on the EMD algorithm is
the only way to focus energy sufficiently in the frequency domain and interpret freak wave

effects physically correct.

3.2. Artifact Reduction in Electrogastrogram

Electrogastrogram (EGG) is a cutaneous measurement of electrical activity of the stomach.
Severe contamination of gastric signal in the EGG by respiratory, motion, cardiac signals and
possible myoelectrical activity from other organs remains a serious problem for EGG
interpretation and analysis. So without appropriate artifact/noise reduction it is almost

impossible to extract a clean gastric signal from EGG [5].

Using conventional frequency filtering based on Fourier analysis cannot eliminate these artifact
contaminations without affecting the gastric signal. Because at first, the conventional filtering
is hardly capable to separate signals from broadband signals, e.g. motion artifact; secondly, the
conventional filtering may also distort waveforms of the gastric signal by filtering out

harmonics of the fundamental frequency of the gastric signal.

Liang et al [5] presented a successful application in artifact reduction in cutaneous EGG by
using the EMD algorithm and the Hilbert transform. At first, the given EGG data is
decomposed into a finite and often small numbers of IMFs. Then the next step is to perform

the Hilbert transform to each of the decomposed IMF component to obtain their
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instantaneous frequencies. Based on the prior knowledge about the frequency range of the
gastric signal, it is easy to extract the clean gastric signal from the IMF components of the
EGG data. Liang et al’s experiments [5] on real EGG data showed that the EMD method
does yield more efficient artifact reduction in the EGG and keep the gastric signal less
affected.

Figure 3.2 [5] illustrates the schematic diagram of this application.
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Figure 3.2: Empirical Mode Decomposition of a typical EGG recording (top) into nine
components (C1 to C9), each with clear physically meaning. Left & right panels: the marginal
spectra of the first four components. The peak frequencies of components Cl to C4 are
successively 1.02 Hz, 0.2 Hz, 0.1 Hz and 0.05 Hz, which correspond to the heartbeat,
respiratory artifact, harmonic signal and gastric slow wave, respectively. (Reprinted from

Liang et al. [5])

This application shows that the IMF components carry physical significance. However, as we
can find in the section 4.2, due to the IMF components overlap in frequency domain,

individual IMF does not guarantee a well-defined physical meaning,
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Chapter 4

PARTITION PROBLEM AND MARGINAL SPECTRUM UTILITY

After implementing the EMD algorithm and the Hilbert transform, two problems arise when
we attempt to use the new techniques in speech processing. At first, if we partition the signal
into smaller sections, will the sections still retain the properties of the original data? The
second question is whether marginal spectrum better then Fourier spectrum in these

applications? In this chapter we try to find the answers to these questions.

4.1, Partition Problem

Performing the EMD algorithm on a long serial data is extreme time-consuming. For example,
it could cost 3 hours to compute a 30-second speech signal that the simple frequency is 8000
kHz in MATLAB environment. Therefore, partitioning original signal into smaller sections
and performing the EMD in each section is an intuitive choice. However, after partition, for
the same certain instant in both oniginal signal and truncated signal, the number of IMFs could
be different consequently. Figure 4.1 illustrates this phenomenon. In this figure, after the
EMD and the Hilbert transform, for the same particular instant, there are 7 relevant
instantaneous parameters in truncated signal, but m relevant instantaneous parameters in

onginal signal (could be different from 7).
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Figure 4.1: Partition Problem in the EMD and the Hilbert Transform

To examine this problem, we use the following experiment to compare the marginal spectra

derived from the original signal and truncated signal. The testing signal is yielded in MATLAB
defined by the function y = 1552 7100¢) +8sin(2760t) +12sin2x10¢) and corrupted with some

zero-mean random noise as follow:

¥ = 15%5in(2%pi*100%)+8sin2pi*60%) + 12 5in 2*0i*10%0);

randVal=8;

y =y + randVal*randn(size(t));
Partition this nonlinear quasi-periodic signal y into two same-length sections (ie. Original
signal= Section 1 + Section 2). The first section and original signal y are shown in the figure
4.2-(a). After EMD, original signal y generates eight IMPFs, but the first section generates seven
IMFs. Both of them are shown in the figure 4.2-(b) and figure 4.2-(c). Correspondingly, the
first five IMFs and their marginal spectra also are shown in the figure 4.2-(¢) and figure 4.2-(f).
The marginal spectra of the two signals are compared in the figure 4.2-(d). Moreover, table 4.1

compares the computational time on the signal y and their sections. From this table, we can

find the computational time really improves 33.67% after partition. Next, let us examine the
=24



validation of the partition in the EMD and the Hilbert transform. Obviously, we find that the
number of IMFs of the first section is not equal to the number of IMF of original signal.
However, from the Marginal Spectrum in Figure 4.2-(d), we observe that the two spectra are
similar even they are derived from different IMFs. Another observation shows that the
individual marginal spectra of the first five IMFs of the two signals also have very similar peak
frequencies (the frequencies that take the maximum power value). Furthermore, Hilbert
spectrum was calculated for comparison. The results showed in figure 4.4 indicate that even
the numbers of IMFs and related instantaneous parameters are different; however, the
spectrum characters almost have no change between the truncated signal and the original
signal. Therefore, we conclude that partitioning a signal into smaller sections and performing
the EMD and the Hilbert transform on the each section still preserve the main characters of
the original signal. At the same time the efficiency of the algorithm increases. In the later

applications, we use this approach to facilitate the computation.

Original signal
Original signal : :
Section 1 Section 2
Number of IMFs 8 7 8
Computational 467 1.16 1.93
Time (second) ' 3.09

Table 4.1: Computation of two sections of the signal

Additionally, comparing the individual marginal spectra of IMFs in figure 4.2-(¢) and figure
4.2-(f) with the accumulated marginal spectra in figure 4.2-(d), we can find that the individual
marginal spectrum of each IMF has better frequency resolution than the accumulated marginal
spectrum of the original signal. In the accumulated marginal spectrum some important

frequency components are submerged by the other harmonic components. However, in the
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individual marginal spectrum of each IMF, because the EMD has decomposed the signal into
IMF components in frequency domain, the peak frequencies in the marginal spectrum of the
first several IMFs are easily located and carry well-defined physical meaning. In this example,
the peak frequencies in the marginal spectrum of the first three IMFs are approximately 100,
60 and 10 kHz (in the figure 4.2-(¢) and figure 4.2-(f)). Obviously, these peak frequencies
correspond with the basic frequencies of the original signal that are very difficult to locate in
the accumulated marginal spectrum. Therefore, roughly speaking, the first several IMFs do

carry physical significance.

Original Signal

i I 13 1 i 1 3 3
100 200 300 400 500 600 700 800 900 1000
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20

-20+1
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Marginal Spectrum of the Original Signal
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Figure 4.2: Partition EMD (for all marginal spectrum in this figure, the X-axis is frequency and
Y-axis is power)

4.2. Marginal Spectrum vs. Fourier Spectrum

Some applications [8] [1] have shown that marginal spectrum has better performance then
Fourier spectrum in frequency domain. However, if we try more examples to compare
marginal spectrum and Fourier spectrum, we get different result. For example, using another
function: y =3sin(2750¢) + 5sin(27120¢) , the result is not exciting. Figure 4.3 shows the

Fourier spectrum and marginal spectrum of the signal yielded by the above function.
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Figure 4.3: Fourier spectrum vs. marginal spectrum.

This example shows that comparing with Fourier spectrum, marginal spectrum not always has
more precise presentation of the signal in frequency domain. The experiment of replacing
Fourier spectrum by marginal spectrum in text-independent speaker identification also
indicated that marginal spectrum has worse performance compare with Fourier spectrum.

Here is the comparison table:

Conventional approach New approach (EMD and
Hilbert Transform)
Features MFCC MFCC
Speaker Mode GMM GMM
Recognition rate 90.3% (28 speakers) 82.7% (28 speakers)
Table 4.2: Comparison of marginal spectrum and Fourier spectrum in text-independent

speaker identification.

In the table 4.2: a text-independent speaker recognition system that uses Mel Frequency
Cepstral Coefficients (MFCCs) as feature and Gaussian Mixture Model (GMM) as

classification model is used to test the new method (more details will be given in chapter 6).
-30-



The recognition rate decreases when marginal spectrum is used in MFCCs extraction instead
of the Fourter spectrum. In fact, in [4] the authors pointed out that the marginal spectrum
should not be used for any non-stationary data, for the marginal spectra are the projections
rather than the substance of the real frequency-energy-time distribution. In [1], another simple
explanation is that marginal spectrum represents the cumulated amplitude over the entire data
span in a probabilistic sense and the frequency in the marginal spectrum indicates only the
likelihood that an oscillation with such a frequency exists. The exact occurrence time of that

oscillation is given in the full Hilbert spectrum.

From another point of view, we propose another explanation. As discussed before,

instantaneous frequency is computed by the formula:

o(t) = dOt) ] di
where g7 is the instantaneous phase.

The reverse equation of it is: O(¢) = Iw(t)dt. However, because negative frequency has no
physical meaning, df?) in the equation @(¢) = d@(t)/dt must add 2k 7 to make sure that no
negative frequency exists. Hereby, the result of equation of 9(¢) = I @(t)dt 1s not the original

instantaneous phase €%). In another word, in the real applications, the equation
o(t) =dé(t)/dt is not reversible. Instantaneous frequencies and instantaneous amplitudes

cannot uniquely deduce the original signal without instantaneous phases. That is

x(t)#Za } (t)eijw"(t)dt . Consequently, marginal spectrum derived from instantaneous
j=1

frequencies and instantaneous amplitudes cannot precisely describe the properties of the
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original signal due to the uncertainty relation between the instantaneous frequencies and the

instantaneous phase.

Additional explanation is about the Hilbert transform. Because the numerical method to

implement the Hilbert transformation is based on the Fourier transform, the practical

implementation of the Hilbert transform bears some intrinsic disadvantage of the Fourier

transform, for example, the end effects and Gibbs phenomena. In MATLAB environment, to

approximate the analytic signal, the Hilbert transform function calculates the Fast Fourler

Transform (FFT) of the input sequence, replaces those FFT coefficients that correspond to

negative frequencies with zeros, and calculates the inverse FFT of the result. In detail, the

Hilbert transform function uses a four-step algorithm:

)

2)

3)

Calculates the FFT of the input sequence, storing the result in a vector x.
Creates a vector b whose elements /3) have the values:
o l1fori=1,(n2)+1,
o 2fori=23..,(n72),
o Ofori=m2)+2,..,n
Calculates the element-wise product of x and 4.
Calculates the inverse FFT of the sequence obtained in step 3 and returns the first »
elements of the result. :

Using this algorithm, after the EMD and the Hilbert transform, the marginal spectrum can

only approximate the theoretical values. This is another reason that why marginal spectrum

can’t have stable performance in different applications.
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Chaprer 5

APPLICATIONS IN SPEECH PROCESSING

Examples from the numerical results of the classical nonlinear equation system and data
representing natural phenomena are given to demonstrate the power of the EMD and the
Hilbert transform [1]. A number of successful applications ([4]5]61718]) using this new
method have been published recently. Speech signal is a typical nonlinear and non-stationary
signal. Intuitionally, we expect the EMD and the Hilbert transform can perform well on

speech processing.

5.1. Acoustics Model of Speech Production

An understanding of speech production mechanism will help us to analyze the speech sounds.
To find acoustic measurements from a speech signal, people use the acoustics model of speech
production to extract and represent the desired information. The observation about how
speech is produced will motivate the features commonly used in speech processing. Vocal tract
is generally considered as the speech production organs that mainly consists of pharynx, nasal
cavity and oral cavity, which is shown in figure 5.1. An adult male vocal tract is approximately
17 cm long. Another important acoustical organ is glottis. Glottis is the opening between the

vocal cords.
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Figure 5.1: Human Vocal System (Reprinted from Flanagan [23))

Utterances are initiated by the excitation that is generated by airflow from lungs through
glottis. As the airflow passes through the vocal tract, its frequency content is altered by the
resonances of the vocal tract. To produce different sounds, the vocal tract moves into different

configurations that change its resonance structure.

Mathematically, this model can be described as follows: s(¢) = g(£) ® v(¢), where s2) is the
speech signal, g#) denotes the excitation signal, 7(7) denotes the vocal tract impulse response,
and “®” denotes convolution. After taking Fourier Transform of both sides, the frequency
domain representation of this process is: S(f) = G(f) eV (f) In this equation, multiplication

replaces convolution operation. If we take the logarithm of both sides, we have:
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Log(S(f)) = Log(G(f) *V(f)) = Log(G(f)) + Log(V' (1))

Because the excitation g) varies much more quickly than the vocal shaping v(t), in the log
domain, the excitation and the vocal tract shape can be separated using conventional signal

processing .

This model is sufficient for most speech processing applications, but we also need to know
that this model can only model part of phonation. For example, fricatives and nasals are the

exception of this model.

5.2. Pitch

Formant analysis and Pitch analysis are the basic and most important problem in speech
processing. Formant analysis help to identify the word being uttered since it is heavily based on
the resonances of the vocal tract and shape of the vocal tract creation. Pitch analysis makes it
possible to recognize the speaker and to recognize the expressive way of speaker speaking,
Firstly, we explore pitch detection and then the EMD and the Hilbert transform were applied

in these two basic speech analysis problems.

The frequencies at which the vocal cords vibrate during a voiced sound are called pitch (or
fundamental frequency or F). Pitch is the smallest unit modeled by impulse response [43]. In
atonal languages like English, pitch does not carry information about phoneme identity,
although it does carry prosodic information about questions or emphasis [10]. Pitch can take

values from 50 to 800 Hz and fluctuates according to the stress the speaker poses to his
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phrasing. Pitch is an independent parameter so that it can be used jointly with other spectral

features. Three typical speakers’ pitches are shown in figure 5.2.
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Figure 5.2: Comparison of pitches.

5.2.1. Voiced/Unvoiced Detection
Unlike speech recognition system which make use of both voiced and unvoiced portions of
speech, it is sufficient for speaker recognition systems to rely on voiced portions only, since

they are robust to additive noise [11].

All voiced speech originates as vibrations of the vocal cords. Its primary characteristic is its
periodic nature. Vowels sounds are one example voiced speech; for example, the /aa/ sound
in father or the /ow/ sound in boat. Unvoiced speech does not have the periodicity associated

with voiced speech. The vocal folds are held open for these sounds. For example, /{/ in fish,
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and /s/ in sound. Roughly speaking, many vowels are voiced sounds and many consonants are
unvoiced sounds. The conventional voiced/unvoiced speech detection algorithms are similar

to the end point detection algorithm that will be discussed in section 6.3.

Pitch is dependent on the size and tension of the speaker's vocal folds at any given instant.
Pitch indicate whether the phone is voiced or unvoiced, but do not contain any other phone
specific information. Everyone has a "habitual pitch level", which is a sort of "preferred” pitch
that will be used naturally on the average. In the paper [24], the author indicated that the pitch
varies between 90 and 175 for male sounds, 185 and 320 for female sounds and 350 to 440 for
children sounds. Therefore we plan to use pitch as an additional feature and combine it with
Mel Frequency Cepstral Coefficients (MFQCs) features in speaker recognition system. A

Voiced/Unvoiced Detection sample is showed in the following Figure.
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Figure 5.3: Voiced/ Unvoiced Detection. Divide the speech into two classes: voiced speech
and unvoiced speech. Then combine the voiced speech into a new speech signal.
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5.2.2. Autocorrelation method

Autocorrelation method is a conventional approach for pitch detection. The basics idea of this

method is how to reliably extract the periodicity of quasi-periodic signals.

The autocorrelation function of a deterministic sequence is given by:

P(k) = i x(m)x(m+ k) . If the signal is periodic with period P, then x() = x(m+p) and so

m=-w

the autocorrelation function is also periodic with period P:

p(k+P)= ix(m)x(m +k+p)= i x(m)x(m+k) =p(k)

m=—w m=—0

Also, &fk) has a maximum at £ = 0. This fact, together with the fact that the autocorrelation of
a periodic signal is also periodic, suggests that the autocorrelation function has peaks at each
integer multiple of the period P. Therefore, any autocorrelation-based pitch estimator simply
chooses the period as the lag (over all possible pitch periods) which maximizes the
autocorrelation function. When dealing with speech signals, one typically calculates a short-

term autocorrelation function (Le. on a frame-by-frame basis) according to:

o0

Y- s(m)a(n—m)s(m +k)a(n~m—k)

R,,(k>=%

where w(#) is a window of length N. For a symmetric window centered on the origin, the

short-term autocorrelation can be written as:
N-k-1

R (k)= -]1{; D s(n+m)a(m)s(n+m+k)o(m+ k)

m=0
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When calculating the short-term autocorrelation of a speech signal, it is important to include at
least two full pitch periods to allow for accurate estimation of the period. Because as the lag
increases there are fewer terms involved in the summation. To remedy the problem, the

unbiased short-term autocorrelation function was introduced:

= N_ll - Ng;(n +m)o(m)s(n+m+k)w(m+k)

R, (k)

The lag that maximizes R (k) over all possible pitch periods is chosen as the pitch estimate for

the frame centered at time 7.

5.2.3. Pitch Used in Speaker Recognition

Due to physiological considerations such as the length and thickness of the vocal folds, and
respiratory muscle patterns, the phonation of a particular vowel with “normal effort” may
result in differing rates of vocal fold vibration (corresponding to the acoustical correlate of
fundamental frequency) for different speakers. For example, a child will have a high

fundamental frequency compared to an adult because of the child’s smaller vocal folds.

Recent work carried out on gender identification indicates that a speaker's gender can be
identified with 98% accuracy using the mean pitch parameter alone [22]. This led us to
believe that useful information about a speaker's identity may be contained in the speaker's
mean pitch, even the use of pitch features alone could not give enough recognition
performance [44]. From another point of view, although fundamental frequency, along with
intensity and duration, is a controllable attribute of stress and intonation which may vary

widely, each person appears to have a mean fundamental frequency value which, if averaged
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over a sufficiently long period of time, is relatively constant over a reasonable time span and
is independent of linguistic content [12]. In addition, the standard deviation of the
fundamental frequency over a long interval of time may carry important speaker-dependent
information. For example, if the speaker were judged to be a monotone speaker, then the
standard deviation would be expected to be relatively small. However, if the speaker were
thought to be an “expressive” or “forceful” speaker, it would be expected to be relatively
large. Reference to these proposed methods; a log pitch was appended to the conventional

feature MFCC to make the feature vector in our project, which is showed in Figure 5.4.

Voiced/Unvoiced Detection Voiced
Frames > ™
Frames
— Pitch <
Combination
Features
MFCC Features =

Figure 5.4 Combine pitch and MFCC as the features of speaker Identification system.

The Microsoft .wav files of vowel speeches that come from Dieter Maurer's research [18] are
analyzed to test the new method that uses Degree of Stationarity. The main experimental
approach of Dieter Maurer's research was to investigate the spectrum and the spectral
envelope of isolated sound fragments of vowels. A large sample of the Swiss German vowels
/u, 0, 3,3, 6, e, Ui, / was investigated in the research, which include approximately 18,700
recordings that were made of 35 men, 44 women, and 20 children. In Dieter Maurer's
research, Fourier and Linear Predictive Coding (LPC) analysis were performed and the spectra
and their envelopes were visually inspected for pitches analysis. The Internet presentation of
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the research including part of original sounds can be found in the Internet [18]. The pitches in

this research are considered as the baseline of comparison. Table 1 shows the comparison of

results of difference methods as follow:

£,

No| Fie Speaker Refe;ence (Autocorrelation Emor | £, g)i Error rate
) method) rate | method)
1 |10881.wav |/a/ |woman (176 173.9 1.19% [185 5.11%
2 123591.wav [/o/|child  [261 250 4.21% |268.6 2.91%
3  [28014.wav |/u/ |child 497 470.6 531% 1496 0.20%
4 |16794.wav |/o/ |woman [355 1739 51.01% |366.9 3.35%
5 |17690.wav |/i/ (woman {713 666.7 6.49% [683.7 4.11%
6 [12387.wav |/e/ |[woman [207 205.1 0.92% [218.1 5.36%
7 |12815.wav |[/V/ {woman (368 347.8 5.49% |367.6 0.11%
8 |11185.wav |/a/ |man 151 148.148 1.89% [159.059 |5.34%
9 [21656.wav |/a/ |child 500 470.588 5.88% 51071 [2.14%
10 23737.wav |[/o/ |child (390 190.476 51.16% |396.785 |1.74%
11 |15163.wav |/u/ |[woman [400 380.952 4.76% 1409.998 12.50%
12 |15477 . wav |/a/ |man 146 145.455 0.37% [153.513 [5.15%
13 |20720.wav |/u/ |woman (219 210.526 3.87% [222.018 11.38%
17 |10128.wav |/i/ [woman (302 285.714 5.39% |287.519 [4.80%
18 [10135.wav |/1/ |woman (405 380.952 5.94% [405.733 [0.18%
19 [25133.wav |[/o/ |child  |262 250 4.58% [268.562 [2.50%
20 [25135.wav |/o/ |child  [299 285.714 444% [299.945 (0.32%
9.58% 2.78%

Table 5.1: Autocorrelation method compare with DS method.

Refer to the table the conventional method: Autocorrelation method yields 9.58% error rate,

but for the new method the error rate just has 2.78%. The error rate has reduced. The Degree

of Stationarity (DS) method is proved to be a more accurate method than the autocorrelation

method.

Figure 5.5 and Figure 5.6 depict the DS of the two vowel speeches:
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Figure 5.5: DS of the wav file: 25133.wav, F,: 268.562 Hz (In this figure the X-axis is
frequency and the Y-axis is the value of DS)

5000+

4500

4000+

3500

3000

2500

2000 -

1500 -

1000 |-

500 - # X
. N e A//\v\ "r("‘* "”\h ‘
0 100 200 300 400 500

ey S

Figure 5.6: DS of the wav file: 28014.wav, F,: 496 Hz (In this figure the X-axis is frequency
and the Y-axis is the value of DS)
5.3. Formants
In Linear acoustics model of speech production, speech sounds are the product of an airflow

passed through the glottis, producing resonances in the vocal tract. To produce different
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sounds, the vocal tract moves into different configurations that change its resonance structure.
The resonance frequencies of the vocal tract are called formants. Voiced sounds, especially
vowels, generally have three formants, which are called the first, second and third formants,
beginning with the lowest frequency component. They are usually written as F ,, F, and F,.
Formant frequencies usually appear as peaks in the spectrum and take values from 250 to 5000

Hz.

Some successful applications, especially the application: Artifact Reduction in EGG that we
mentioned in chapter 3, encourage us to utilize the EMD and the Hilbert transform in formant
detection. We try to locate peak frequencies in Marginal Spectrum of each IMF to indicate the
formants of the speech. Table 5.2 and table 5.3 show that the peak frequencies (bold font in
table 5.3) can generally indicate the F, (bold font in table 5.2) but can’t indicate the other F,

and F,
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Figure 5.7: Peak frequencies of each IMFs
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File Gender|F, F, F,
10881.wav |/a/|Woman(559.00 [2014.00 {2971.00
23591.wav |/o/|Child [517.00 [2012.00 [2941.00
28014.wav |/u/|Child [499.00 {1982.00 [2979.00
17690.wav |/V/ [Woman|714.00 [2853.00 [3572.00
12387 .wav |/e/{Woman(398.00 [2649.00 |3334.00
12815.wav |/1/ [Woman|369.00 [2587.00 [3290.00
Table 5.2: Reference formants

Table 5.2 is the reference F,, F, and F; formants from Dieter Maurer’s research [18]. Table
5.3 indicates the peak frequencies of the accumulated marginal spectrum and the peak
frequencies of the marginal spectrum of the first five IMFs for the same vowel files in the
table 5.2. Compare the two tables, we cannot find the necessary relationship between the

peak frequencies of each marginal spectrum of the IMF and formants.

File IMFL | IMF2 | IMF3 | IMF4 | IMF5 g‘:;‘
10881.wav |/a/|2856.92 (222031 (536.26 [297.92 |185.03 |185.03
23591.wav |/0/|2205.27 1516.03 |540.32 [267.12 (83.48 1541.83
28014.wav |/u/|2766.44 [517.37 |495.99 |239.44 |132.55 [495.99
17690.wav |/1/ 3440.22 |1530.38 |705.61 |332.42 [144.26 |3440.22
12387 .wav |/e/[2856.99 [1443.46 |414.86 (209.57 1220.26 [211.71
12815.wav |/i/ 283771 |358.76 1367.58 [202.90 [89.69 |367.58
Table 5.3: Comparison of peak frequency of each IMF and formants
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Chapter 6

SPEAKER RECOGNITION

Speaker recognition is classified into two specific types: speaker identification and speaker
verification. Speaker identification is to determine which speech in a known group of speeches
best matches the speaker, whereas the speaker verification is to determine if the speaker is who
he or she claims to be. In speaker recognition speech can be constrained to be a known phrase
(text-dependent) or totally unconstrained (text-independent). Text-independent means that the
identification procedure should work for any text in either training or testing. In our project,
we focused our attention to the text-independent speaker identification problem. For extensive
testing, we try to use pitch combined with Mel Frequency Cepstral Coefficients (MFCCs) as
feature in a complete text-independent speaker identification system. As we mentioned in
chapter 1, the purpose of the speaker identification system is just for testing and comparison
of the new method, not for improvement of the performance of the speaker identification
system itself. We hope to use the recognition rate of the speaker recognition system to indicate

the performance of the new algorithm.

6.1. Cepstral Coefficients
Cepstral coefficients are derived from an Inverse Discrete Fourier Transform of logarithm of

short-term power spectrum of a speech segment s(2) as:

C(q)=F'(log| F(s(1)])
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where F( ) denotes the discrete-time Fourier transform, F’( ) denotes its inverse,

s(t)=g(®)®w(t), (1) is the speech signal, g¥) denotes the excitation signal, 4% denotes the

vocal tract impulse response, and “®” denotes convolution,

The cepstral features contains the information due to the slowly varying vocal shaping #f#) in its
first coefficients and the information due to the faster varying excitation impulses g#) in its

later coefficients.

Since the physical characteristics of the vocal tract vary from person to person, parameters that
are dependent on the vocal tract shape can be considered as features in speaker recognition.
Cepstral features are the kind of parameters that can be used to get the shape of the vocal

tract.

For example, consider the signal {3 = as(501) + axs(5007). Obviously, the cs(500¢) term varies
much more quickly than the as(50¢) term. In order to get rid of the as(500t), we could

perform a Fourler transform to get rid of the higher frequency terms, and then transform

back.

Acoustics model equation (Log(S(f)) = Log(G(f)) + Log(V(f))) is similar in form to ffz)
= ar(501) + as(5008) in the upper example. There is a sum of two terms where one term
(lo/G{f})) varies much more rapidly than the other (log'V(f})). A similar operation can be
performed to filter out the faster varying component. Then taking the IFFT gives the
“cepstrum” (the reason this is called “cepstrum” is because the first four letters of the word

“spectrum” were transposed) ¢7).
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c(n) L jlog | X(@)| ™ dw

27
The cepstral features contain the information due to the slowly varying vocal shaping in its
first coefficients and the information due to the faster varying glottal impulses in its later
coefficients. Therefore, generally only first few (perhaps 12) low cepstral coefficients of the

cepstrum are retained.

6.2. Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFQOCs) are a variant form of cepstral coefficients.

C(q) = F ™ (Log (T (| F(s() "))
where T,,, Denotes Mel Frequency Warping
Acoustic Researches have shown that humans pay relatively more attention to the lower

frequencies than the higher ones.

The Mel frequency scale can be understood approximately as linear frequency spacing below
1000 Hz and a logarithmic spacing above 1000 Hz. We can use the following approximate

formula to compute the Mels for a given frequency f in Hz
Mel frequency = 2595 loglo(l+%) . Figure 6.1 shows the relation between the Mel

frequencies and regular frequencies.
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Figure 6.1: Mel Frequency Scale
There are a number of variants of cepstral coefficients. The most common choice is Mel

Frequency Cepstral Coefficients that is based on a filter bank model.

6.3. Preprocessing

Before calculating the MFCC features, some preprocessing algorithms usually impose on the
speech signal, so that the feature extraction module performed in the next can be more
accurate. These preprocessing algorithms include: End Point Detection, Pre-emphasis and

Frame Blocking, which ate illustrated in Figure 6.2.

End Point . N Frame |
Detection Pre-emphasis Blocking Frames-p

Continue speech signal —p»

Figure 6.2: Preprocessing of speaker recognition
End Point Detection

Reducing the frontal and appended non-voiced parts is the first step for an efficient speech-

processing algorithm. The main motivation behind endpoint detection is that the processing of
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these non-voiced parts is bound to undermine the performance of our system. The features
extracted from these segments cannot characterize the speaker’s identity and can mislead the
recognizer. Moreover, we reduce the total processing time of the system by removing these

unwanted parts.

There are two parameters that are normally used to identify a spoken utterance from the
background noise present in a recorded utterance x(7). The first one is the logarithm of the

frame’s energy and the other one is the number of zero-crossings.

e Logarithm of the frame’s energy

N
The log energy of each frame is obvious by the equation: LE = Log(} x(n)*) . The

n=1
logarithm function makes a non-linear compression to the amplitude of the signal and the

weak portions of the signal have the opportunity to reveal their details sufficiently[12].

o Number of zero-crossings

The following equation gives the mathematical definition of the number of zero-crossings:

N
CX =Z|sgn(x(n)—-sgn(x(n—l))| . Actually, we use zero-crossings rate to correct the

n=1
endpoints defined by the energy criterion and correctly depict the unvoiced phonemes. The
zero-crossings rate can be an efficient tool for that operation, as we know that unvoiced

phonemes feature greater high frequency terms.
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The endpoint detection algorithms employ the above two parameters to define the endpoints
of an utterance. Normally we can use successive tests to choose the thresholds of them. It

depends much on the noise level in the input speech waveforms.
Pre-emphasis

Because hearing is more sensitive above the 1 kHz region of the spectrum, the pre-emphasis
filter amplifies this area of the spectrum, assisting the spectral analysis algorithm in modeling
the most perceptually important aspects of the speech spectrum [14]. From another point of
view, pre-emphass is similar to the auricle (pinna) does in the human auditory system. A Finite
Impulse Response (FIR) high pass filter described by the following transfer function is applied

to increase the relative energy of the high-frequencies spectrum.

H_ (z)=1+ amz‘1

pre

Normally, 4, takes values from -1.0 to -0.9.
Frame Segmentation and Overapping

The input signal is segmented into frames of constant length that overlap each other. In these

frames, the parameters of the vocal tract model stay unchanged.

The overlapping of speech frames is used in order to increase the redundancy of the input
signal, so as to provide more speech data to the feature extraction algorithm. Moreover, we
can capture the changes in the vocal tract more accurately. A common choice for overlapping

is 50%.

-50-



6.4. Calculating MFCC

After preprocessing, a block diagram of the structure of an MFCC processing is given in
Figure 6.3. 'The speech input is typically recorded at a sampling rate above 10000 Hz. This
sampling frequency was chosen to minimize the effects of aliasing in the analog-to-digital
conversion. These sampled signals can capture all frequencies up to 5 kHz, which cover most
energy of sounds that are generated by humans. As has been discussed previously, the main
purpose of the MFQOC processor is to mimic the behavior of the human ears. In addition,

rather than the speech waveforms themselves, MFFCs are shown to be less susceptible to

vanations.
. Discrete
L Hamming : 2
Frame-p» Window Fourier —> ||
Transform
Power Spectrum
. § Discrete
i k ~
Mel-Filter Log,( ) Cosine | —MFCCs (C.)»
Bank 10 n
Transform
Figure 6.3: Steps of MFCOCs extraction
Windowing

The first step for frames in the processing is to window each individual frame so as to
minimize the signal discontinuities at the beginning and end of each frame. The concept here
is to minimize the spectral distortion by using the window to taper the signal to zero at the

beginning and end of each frame. If we define the window as w(n),0<n< N —1, where N is

the number of samples in each frame, then the result of windowing is the signal
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¥, () =x,(m)w(n), 0= n < N —1. Typically the Hamming window is used, which has the

form: w(n) = 0.54—0.46 cos(

2 o<n<N-1.

N-1
Fast Fourier Transform

The next processing step is the Fast Fourier Transform (FFT), which converts each frame of
N samples from the time domain into the frequency domain. The FFT is a fast algorithm to

implement the Discrete Founer Transform (DFT) that is defined on the set of N samples

N-1
{x,},as follow: X, = Zxke‘z"ik”/N, n=0,1,.., N-1
k=0

In general x,’s are complex numbers. The resulting sequence {x,} is interpreted as follow:
the zero frequency corresponds to 7 = 0, positive frequencies 0 < f < F/2 correspond to
values 1<n<N/2-1 , while negative frequencies —F/2< f<0 correspond to

N/2+1<n<N-1. Here, F denotes the sampling frequency. The result after this step is

often referred to as Fourier spectrum.
Mel Frequency Wrapping

As mentioned above, psychophysical studies have shown that human perception of the
frequency contents of sounds for speech signals does not follow a linear scale. Thus for each
tone with an actual frequency, f, measured in Hz, a subjective pitch is measured on a scale
called the ‘Mel’ scale. 'The Mel Frequency scale is linear frequency spacing below 1000 Hz and
a loganithmic spacing above 1000 Hz. As a reference point, the pitch of a 1 kHz tone, 40 dB

above the perceptual hearing threshold, is defined as 1000 Mels.
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One approach to simulating the subjective spectrum is to use a filter bank, spaced uniformly
on the Mel scale (see Figure 6.4). That filter bank has a triangular band pass frequency
response, and the spacing as well as the bandwidth is determined by a constant Mel frequency
interval. 'The modified spectrum of S(z thus consists of the output power of these filters
when S(x) is the input. 'The number of Mel spectrum coefficients, K, is typically chosen as 20.
This filter bank is applied in the frequency domain; therefore it simply amounts to taking those
triangle-shape windows in the Figure 6.4 on the spectrum. A useful way of thinking about this
Mel-wrapping filter bank is to view each filter as a histogram bin (where bins have overlap) in

the frequency domain.

Fiter Banks

Figure 6.4: An example of Mel-spaced filter banks (K=20)

Cepstrum

In this final step, we convert the log Mel spectrum back to time. The result is called the Mel
Frequency Cepstral Coefficients (MFQC). The cepstral representation of the speech spectrum
provides a good representation of the local spectral properties of the signal for the given frame
analysis. Because the Mel spectrum coefficients (and so their logarithm) are real numbers, we

can convert them to the time domain using the Discrete Cosine Transform (DCT). Therefore
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if we denote those Mel power spectrum coefficients are S, k =1,2,...,K we can calculate the

K ~
MFCGs, €,, as ¢, = »_(log,, S, )cos(n(k —1/2)z/K), n=1,2, ..., k
k=1

Note that we exclude the first component, ¢,, from the DCT since it represents the mean

value of the input signal that carried little speaker specific information.

The main advantage of DCT is that it is an orthogonal transformation, which decorrelates the
spectral coefficients very efficiently, that is, converts statistically dependent spectral coefficients

into independent cepstral coefficients.

By applying the procedure described above, for each speech frame with overlap, a set of Mel
Frequency Cepstral Coefficients is computed. These are result of a cosine transform of the

logarithm of the short-term power spectrum expressed on a Mel frequency scale.

6.5. Gaussian Mixture Models
The Gaussian model is a basic parametric model that has merit by itself and can be the basis of

the other more sophisticated models.

The use of the Gaussian mixture density for speaker identification is then motivated by two
interpretations. Furst, the individual component Gaussian in a speaker-dependent Gaussian
Mixture Models (GMM) are interpreted to represent some general speaker-dependent vocal
tract configurations that are useful for modeling speaker identity. Second, a Gaussian mixture
density is shown to provide a smooth approximation to the underlying long-term sample

distribution of observations obtained from utterances by a given speaker. Finally, the
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maximum-likelihood parameter estimation and speaker identification procedures are described

[16].

A Gaussian mixture density is a weighted sum of M component densities given by the

equation: p(x|2) =Y. p,b,(x)

i=1

where x is a D-dimensional random vector, b(x) are the component densities and p; are the

mixture weights. Each component density is a D-variate Gaussian function of the form:

b,(x) = exp(— (v ) 27 (5= 14)

1
(27[)D/2 !E, |1/2
with mean vector z and covariance matrix ¥, The mixture weights satisfy the constraint that

M
ZP;‘ =1.
i=1

The mean vectors, covariance matrices and mixture weights from all component densities
parameterize the complete Gaussian mixture density. The notation collectively represents these
parameters: A ={p,, u;, .} i =1,..., M. For speaker identification, each speaker is represented

by a GMM and is refetred to by his/her model A.

The GMM can have several different forms depending on the choice of covariance matrices.
The model can have one covariance matrix per Gaussian component (nodal covariance), one
covariance matrix for all Gaussian components in a speaker model (grand covariance), or a
single covariance matrix shared by all speaker models (global covariance). The covariance
matrix can also be full or diagonal. In this thesis, nodal, diagonal covariance matrices are

primarily used for speaker models, except as noted for some experiments. This choice is based
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on initial experimental results indicating better identification performance using nodal,
diagonal variances compared to nodal and grand full covariance matrices. In our project, we
utilized GMM functions from Data Clustering and Pattern Recognition Toolboxes [37] for

implementations in MATLAB,

6.6 Speech Database: TIMIT

We applied the method to a number of speech utterances from TIMIT database [27]. TIMIT
contains broadband recordings of 630 speakers of 8 major dialects of American English, each
reading 10 phonetically rich sentences. The TIMIT corpus includes time-aligned orthographic,
phonetic and word transcriptions as well as a 16-bit, 16kHz speech waveform files for each
utterance. The performance was studied on speakers from the TIMIT database. The files were
down sampled to 8kHz from the original 16kHz for accommodating real world situations and
reducing the processing time. Considering the fact that only voiced sections were being used
for training and testing, a 28-speaker subset was considered. All the speech files from a speaker
were concatenated for this purpose. The first 5 sentences of individual speakers were used to
model the GMMs using the MFCC and logarithm of pitch. The last 5 sentences were used for

test.

6.7. Experiment Results
Firstly, we attempt to use Marginal spectrum instead of Fourer spectrum in the feature
extraction modules. The result (Table 4.2) shows that Marginal spectrum has poorer

performance than the Fourier spectrum. As mentioned in chapter 3, one of the reasons is the
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instantaneous parameter; especially instantaneous frequencies and instantaneous amplitudes
have an uncertain relation with the marginal spectrum. Marginal spectrum only represents the
cumulated amplitude over the entire data span in a probabilistic sense and can’t ensure to have

satisfied performance in every practical application.

When use degree of stationarity (DS) in pitch detection, the result is exciting. Therefore, as an
independent feature, we can use pitch derived from DS combined with conventional MFCC
features in text-independent speaker identification. In the experiment, 28 speakers were
chosen; each speaker has 10 sentences for training and testing. Without pitch feature, the
average recognition rate is 83.57% for 14 MFQCGs, then use additional pitch feature, the

recognition rate increased to 88.57%.
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Chapter 7

CONCLUSION AND FUTURE WORKD

7.1. Conclusions

In this thesis we discussed a new method for time-frequency analysis: the Empirical Mode
Decomposition and the Hilbert transform. Two typical successful applications were
introduced in chapter 3. At the same time, two practical problems and related explanations
were pointed out in chapter 4. Next, in chapter 5 applications in pitch and formant detection
by using the new method were proposed. Correspohding expenment results were discussed.
For extensive testing of the new methods, a text-independent speaker identification system

also was tested in chapter 6. The results include negative and positive areas.

Comparing with Foutier transform and Wavelet transform, the EMD and Hilbert transform
only involves the signal itself; there are no analyzing functions used in the Fourier transform
and the wavelet transform. However, comparing with Fourier Transform and Wavelet
Transform, the EMD and Hilbert transform are highly non-linear methods that are very time-

consuming.
Additional, we get the following conclusions:

o The individual marginal spectrum of each IMF has better frequency resolution

than the accumulated marginal spectrum of the original signal.
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o In most cases, the first several IMFs contain certain physical significance.
However, these meaningful content cannot ensure to demonstrate the whole

physical significance each time.

o Degree of Stationarity can be used successfully in pitch detection and have

promising experimental results.

7.2. Future Works

Keele pitch extraction reference database [25] is a small database that was used widely for pitch
tracking. For example, in [26][27][28] Keele pitch database was deemed as “ground truth” for
the evaluation of the pitch-tracking algorithm. Keele pitch database can be downloaded from:

ftp://ftp.cs.keele.ac.uk/pub/pitch. We plan to use Keele pitch database to test our pitch

detection method for further analysis and estimation.

Keele Pitch Database: Signals and Pitch
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Figure 7.1: Keele pitch database: signals and pitch
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Because this thesis focus on the application aspects of the EMD and the Hilbert transform,
future work will continue on finding sophisticated mathematics to describe the EMD

procedure and to come to a more efficient algorithm.

As we mentioned 1n section 2.4, the definition of degree of stationary is very similar to the
intermittency used in the wavelet analysis proposed in [36]. But Huang et al [1] didn’t give a
detailed description of the intermittency. In fact, Wavelet Intermittency 7 (x.r) defined in

turbulence analysis [36] measures local deviations from the mean spectrum of fx) at every

position x and scale »

| fanf
[l Fen P a’x

7 (xr)=

where 7 (x.r)is the two-dimensional wavelet transform of %)

T
T jHZ (w,1)dt

7 2
Comparing the two definitions, DS(®) = —————-1 and T(xr)= |~f (x,7r) | ,
h™(w) _ﬂ fO,r) P d*x
mZ

the similarities of them are obvious. Consequently, further study about the intermittency in
turbulence analysis would be an assistance to improve the definitions of the Degree of
Stationarity (DS) and the Degree of Statistic Stationarity (DSS), which can hopefully be a more
accurate analysis method to explore arbitrary nonlinear non-stationary signal. In addition, more
comparison work needs to be done in speech processing area, for example, comparing EMD

with methods using the wavelet transform.
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The EMD combined with Hilbert fransform is a highly non-linear method that is very time-
consuming. Therefore, improving the efficiency of EMD is what is most important step. Some
job has been done, for example in [38], a quicker method called Local Mean Mode
Decomposition (LMMD) was introduced to calculate the mean value of the upper and lower
envelopes by a two-tap adaptive time-varying filter. It would be interesting to study this in
tuture work. This might gain a further understanding of the EMD method and may assist to

prove 1t.
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