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Abstract

Image Denoising using Wavelet Transforms

Dongwook Cho

Image denoising is a fundamental process in image processing, pattern recognition, and
computer vision fields. The main goal of image denoising is to enhance or restore a noisy
image and help the other system (or human) to understand it better. In this thesis, we discuss
some efficient approaches for image denoising using wavelet transforms. Since Donoho
proposed a simple thresholding method, many different approaches have been suggested
for a decade. They have shown that denoising using wavelet transforms produces superb
results. This is because wavelet transform has the compaction property of having only a
small number of large coefficients and a large number of small coefficients. In the first
part of the thesis, some important wavelet transforms for image denoising and a literature
review on the existing methods are described. In the latter part, we propose two different
approaches for image denoising. The first approach is to take advantage of the higher or-
der statistical coupling between neighbouring wavelet coefficients and their corresponding
coefficients in the parent level with effective translation-invariant wavelet transforms. The
other is based on multivariate statistical modeling and the clean coefficients are estimated
in a general rule using Bayesian approach. Various estimation expressions can be obtained
by a priori probability distribution, called multivariate generalized Gaussian distribution
(MGGD). The method can take into account various related information. The experimen-
tal results show that both of our methods give comparatively higher PSNR and less visual

artifact than other methods.
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Chapter 1

Introduction

Image restoration and enhancement are fundamental problems in image processing. In
[47], Gonzales and Woods describe that the principal purpose of restoration is to improve
a corrupted image by using a priori knowledge of degradation rule while the goal of en-
hancement is to obtain a better image than the original one for a speci fic purpose. In brief,
restoration is an objective process whereas enhancement is a subjective process. In both
cases, image denoising, sometimes called noise removal or noise reduction, plays an impor-
tant role to achieve those purposes. Denoising is a procedure which removes the existing
noise in an image and minimizes the loss of information in a (supposed) clean image.

Wavelet transform has been a popular research subject in many science and engineering
areas as well as pure mathematics for the last two decades. In signal and image processing
field, wavelet transform tends to replace the role of Fourier transform. Since Mallat intro-
duces multiresolution analysis (MRA) theory [66, 67, 68], wavelet has been used in many
kinds of image processing applications such as compression, image analysis, computer
graphics and watermarking besides denoising. Those algorithms are served as low-level
processing units in computer vision and pattern recognition fields.

In a discrete domain, wavelet theory is combined with a filtering theory of signal pro-
cessing. The coefficients in the wavelet domain have the property that a large number of
small coefficients express less important details in an image and a small number of large

coefficients keep the information of significance. Therefore, one might suppose that the



Figure 1: DENOISING EXAMPLE OF Baboon IMAGE APPLIED BY DONOHO’S UNIVERSAL
THRESHOLD, Original image (top-left), noisy image with 0 = 30 (18.62 dB; top-right),
denoised image using soft-threshold (19.80dB; bottom-left), denoised image using hard-
threshold (20.32dB; bottom-right).

denoising in the wavelet domain could be achieved by killing the small coefficients which
represent the details as well as the noise.

Based on this simplé idea, Donoho proposed a neat procedure for denoising in the
wavelet domain, called wavelet thresholding [35, 33]. If we assume that A is a clean data
(signal or image) with size n and B is its noisy data with additive white Gaussian noise

(AWGN) N(0, 0?), then the denoising scheme is summarized in three phases as follows:

1. Decompose the noisy data B into an orthogonal wavelet do-
main.

2. Apply a specific thrésholding rule to the coefficients in
the wavelet domain by using a threshold like A =a+/2logn.

3. Reconstruct the denoised data using inverse discrete wavelet
transform from the thresholded coefficients.

Figure 1 shows an example of the denoised images when we use the universal thresh-

old A = o+/2logn. This shows that thresholding approach is helpful for desnoising and

2



smdothing, but, at the same time, it makes many of the details lost. Even though the de-
noised images produce better peak signal to noise ratio (PSNR), we can see that they lose
a lot of details.

For image denoising, the definition of noise is critical. In Figure 1, the original clean
image has a lot of details and so noise is not so clearly distinguishable from details after
adding noise, especially shown in the monkey’s hair. For example, it could be noise or
detail for the same spot by a subjective point of view.

Another definition about noise is its type if we assume that a desired clean image is
defined. There could exist numerous typés of noise models including AWGN, salt and pep-
per noise, correlated noise, and uniform noise. In this thesis, we mainly focus on Gaussian

additive white noise even though some other types of noise are also considered.

In this thesis, we measure the efficiency and capability of wavelet transforms as a
promising mathematical image processing tool in terms of image denoising. For the last
decade, there have been proposed many different methods based on the framework of the
wavelet thresholding approach described above. However, all the methods have the same
goal, that is to obtain an improved image which can satisfy the human visual system or the
sensory system of machine to get better features in an image. We introduce various existing
and new denoising approaches and evaluate them both visually and numerically.

The organization of this thesis is as follows. In the following chapter, the introductory
theory of wavelet transform is briefly described and various kinds of wavelet transforms
which are effective for denoising are presented. We categorize and review the existing de-
noising algorithms in Chapter 3. Several new wavelet shrinkage algorithms are proposed in
Chapter 4. These algorithms utilize the information of adjacent coefficients such as neigh-
bours or parent in the wavelet domain. Also the new estimating rule for wavelet coefficients
is presented based on multivariate statistical modeling using Bayesian estimator in Chapter
5. In Chapter 6 we present experimental results and performance evaluatién. And finally

we give the conclusion and future work to be done in Chapter 7.



Chapter 2

Wavelet Transforms

Wavelet transform is é great tool in image and signal processing. Many desnoising ap-
proaches using wavelet in the literature show that the wavelet is very efficient for image
denoising. Unlike the Fourier transforms, the wavelet transform decomposes input data
in terms of time and scale by basis wavelet function, called mother wavelet. So various
types of wavelets with different properties could be designed. In addition, researchers have
developed different types of approaches to reinforce the theory by filling up some possible
deficiencies. For example, MRA theory has been combined with discrete wavelet transform
(DWT) to play a critical role in image processing. Also filtering theory from signal pro-
cessing makes the theory more fruitful. As a reSult, there exist numerous kinds of wavelet
algorithms. |
In this chapter, we bn'eﬂy review the DWT which can be explained by filter banks and
is used much more than the continuous wavelet transform in image processing field. More
fundamental and broad theory about the wavelet transforms is well discussed in many books
[95, 24, 30, 68]. We also give short introduction to several types of wavelet transforms
~ which are effective and promising for image denoising. They include translation-invariant

wavelet, multiwavelet, complex wavelet and directional wavelet.
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Figure 2: 1D multiresolution wavelet transform.
2.1 Scalar Wavelet Transforms

Let x = (z1,%9, - ,2zn)! be a N-dimensional vector, which is one—dimensional (1D)
descrete signal with length V. Also suppose thath = (hy,--- ,h,)t and g = (g1, , )"
are low-pass (scaling) and high—pass (wavelet) filters respectively, whose length is p. By
filtering theory, note that h and g are equal length filters and have the following relation :
gp—i+1 = (—1)"*'h;. This kind of filter bank is called quadrature mirror filter (QMF). In
this case, the resulting transform can be performed by the conlvolution of the filters h, g

and input data x.

2.1.1 Multiresolution analysis

The idea of a multiresolution decomposition is based on the pyramid coding. In descrete
data domain, the resolution of the data is the level of detail. Since the wavelet transform can
be analyzed at differenet scales, the different resolution of wavelet domains can be obtained
and a shift-invariant interpretation can be performed. This idea draws the multiresolution
analysis. Figure 2 shows the whole process of MRA decomposition and reconstruction.
This representation enables us to interpret the input data by a simple hierarchical framework
and coarse-to-fine analysis.

In brief, forward wavelet transforms (FWT) for input signal x in j-th level by MRA and
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Figure 3: Two different 2D separable WT approaches (upper: square-shaped approach,
lower: rectangular approach).

its inverse wavelet transforms IWT) can be simply expressed using convolution as follows:
Wit = & * Vj; Vjp1 = h*v; ¢))

vy =h* Vi +gx Wiy, (2)

where w; and v; are vectors for wavelet and scaling coefficients in j-th level. w; and v,
can be down-sampled for FWT and up-sampled for IWT. As proven by Daubechies [30],

the input data x decomposed by downsampling can be reconstructed without any data loss.

2.1.2 Two-dimensional wavelet transforms

There are several ways to perform two-dimensional (2D) wavelet transform such as non-
separable transforms [90], rectangular separable transform [50], and square-shaped sepa-
rable approach. Among them, the most popular and useful way is square-shaped separable
approach by applying two 1D operations for all rows and then all columns for each decom-
position level. On the other hand, the rectangular separable transforms apply 1D WT to all
the rows of the scaling coefficients until the operations reach the last decomposition level.
Then it performs the same process for the column directions. The difference between these
two approaches can be found in Figure 3. We assume that the usual 2D wavelet transforms

mean square-shaped separable approach in this thesis.
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Figure 4: 2D separable wavelet transform.

2D FWT for j-th level can be obtained in the similar way to 1D FWT of equatibn (1):

_ cxlH ,

Vit1=h*xhxviw, =g+hxv;

HL _ wHH

Wi1 =hxgxviwi, =gxgxv;, (3)

where the superscripts LH, HL. and HH denote 2D combinations of low- and high-pass
filters.

Similarly, 2D IWT can be expressed as follows:
vj=vj+1*h*h+W]L.El*g*h—}—wﬂ“l*h*g—i—wﬁlfl*g*g. 4)

In 2D wavelet domain depicted in Figure 4, each square-shaped set of wavelet coef-
ficients is called a subband (each separate packet in Figure 2 is also a subband). In 2D
image, each decomposition level can have four filtered subbands, LL, LH, HL and HH.
The subbands labeled LH;, HL,; and HH, are sets of wavelet coefficients in the finest level.
The following coarser level of subbands, LH,, HL; and HH,, are obtained from the scaling
coefficents in the finer level LL;. We say that a subband and its adjacent coarser level of

subband generated by the same filters have the parent—'child relationship. For example, HH;



is a parent subband of HH, and the current subband HH, is a child. We also call a subband
in the finer level of the current one offspring subband. In the same example, HH; is an off-
spring subband of HH, accordingly. This type of multiresolution representation is called
subband coding. We use this scheme for 2D wavelet transforms of the image throughout

the thesis.

2.2 Translation-Invariant Wavelet Transforms

Translation invariant (TT) wavelet transforms perform MRA by filtering shifted coefficients
as well as the original ones for each decomposition level. TI WT is also known as shift-
invariant (SI) wavelet transform [15] or time-invariant [95]. This approach is redundant
since additional wavelet coefficients having different properties from the same source are
generated in terms of shifting. Therefore, more wavelet coefficients are acquired than the
usual decomposition, but this redundant analysis is useful for denoising. As a matter of fact,
Coifman and Donoho[27] showed that TI WT denoising method produces less mean square
errors (MSE) and visual artifacts than denoising method using the usual scalar wavelets.

Also more interesting results using TI approach can be found in Chen’s theses [16, 17].

2.2.1 1D TI wavelet transforms

TI FWT can be extended from FWT by shifting the scaling coefficients for each level. Let
RShift(-) and LShi ft(-) be circular shift functions to the right and the left, respectively.
For each level j, double size of wavelet coefficients are obtained from both shifted and
unshifted scaling coefficients at level j+1. Accordingly, 1D TI FWT and TI IWT can be

summarized as

wii = g*Vi; Wit = g* RShift(v}), (5)
, 1 . . . R
vio= 3 (h* v, +g*wi, + LShift(h« Vit +gxwiih), (6)
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Figure 5: 1D TI wavelet decomposition.

where wj. is 4-th wavelet packet in j-th level. Figure 5 shows multiresolution analysis of TI
FWT for 1D signal.
By observation, discrete TI FWT requires (J — L + 1) N length for the wavelet coeffi-

cients.

2.2.2 2D TI wavelet transforms

2D TI WT can be derived straightforwardly. The main idea of 2D wavelet decomposition
is to perform the transforms to an image in two directions, which are x and y direction, in
turn. Hence we utilize four different packets, which are unshifted, z-shifted (horizontal),
y-shifted (vertical) and zy-shifted (diagonal) wavelet packets. '

Let B be an N x N image. We suppose that RShi ft,(-) is a circular shifting function
to the right on the z-axis. Similarly we can define RShi fty(-) and RShifty, (). LShift



is also defined by the same analogy of RShift. Then we can get the following equations:

2h,2iHH __ hi 2h+1,2i+1,HH __ . h
Wil T EBXgFVy S Wiy —g*g*RShzftm(vj )

Wik = gx g« RShift,(vi®);  wiii Pt = gw g« RShift,, (vi), (1)

where W;.“’HH indicates a square matrix composed of wavelet coefficients in a level j which

is produced by high-pass filters for both directions and located in (A, 7)-th block. We can
acquire by analogy w", wi and v" by combining high- and low;pass filters. Then the
wavelet coefficients can be obtained like Figure 6. It should be noted that four scaling
subbands generated by the shift functions are used in each decomposition level and each
scaling subband is decomposed into four different subbands, LL, LH, HL, and HH, just
like the usual 2D wavelet transforms. Hence, each decomposition level for 2D TI FWT
generates 16 down-sampled subbands while the usual 2D FWT produces 4 down-sampled
subbands. This process for each decomposition level j is illustrated in the upper figure of
Figure 6. The scaling coefficients v except the last decomposition level are not stored as
shown in the lower figure of Figure 6.

2D TIIWT for reconstruction should be operated inversely using LShi ft. This can be

expressed as follows:

hgLL 1 2h,2i,LL 2h,2i,LH
\z = 3 h>|<h>i<vj+1 +h*g*wj+1
2h,2i,HL 2h,2iLL

+gxhxwi" T +g g wii
FLShift, (b s I L by gy bt
+g*xh w?i-lkl,%,HL Fgeg W?_}:_—i—l,Qi,HH)

+LShift, (h *h * v?i,121'+1,LL thg+ wjgi,lziﬂ,m
bW g gy )

+LShifty, (h *h * v?_}{b_-{l,21'+l,LL +hgs W?Tl'l’zi“’l‘ﬂ

2h+1,2i+1,HL 2h+1,2i+1,HH
+gxhxw; 7" +grgaw T )] (8)

In 2D, we can realize that shifting occurs in two different axes. Therefore, there exist
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Figure 6: 2D TI wavelet decomposition
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four different shifted packets. When we perform L steps of decomposition iteratively, the
required storage for TT wavelet coefficients of an image is (3L+1) N2 since wavelet packets

are quadrupled for each level but the LL packets only in the coarsest level are required.

2.3 Multiwavelets

Multiwavelets are the wavelets generated by more than one scaling function while the scalar
wavelet described in the previous section uses only one scaling function. This seems to
be simple, but this gives many advantages such as boundary improvement via linear-phase
symmetry, orthogonality which can provide the perfect reconstruction with the same size of
input data, and vanishing moments as pointed out in [96]. Also multiwavelets can preserve
good properties of scalar wavelet such as MRA.

The most popular multiwavelet system is GHM (named after the authors Geronimo,
Hardin and Massopust) proposed in [46]. They have used two symmetric scaling functions
and their wavelet functions which generate a symmetric/antisymmetric pair. Another im-
portant multiwavelet system is CL multiwavelet (named after Chui and Lian like GHM) )
[25].

We can describe generalized multiwavelets based on the scalar wavelet theory. If we
suppose downsampling in equation (1), it can be rewritten varying in time ¢ as w;11(t) =
> 6iv5 (2t — 4) and v;11(¢) = >, hiv;(2t — 1), where v(t) is a scaling function and w (t)
is a wavelet representation. Then the general multiwavelet decomposition can be extended

by matrix dilation as follows:

win(t) = ) Giv;(2t—1i);
i
vin(t) = Y Hiv,(2t—i), ©)
“where v;(t) is a vector composed of m scaling functions and G; and H; are m x m matrices.

In other words, the filter banks H and G consist of p mxm matrices each when p is the

length of each filter. In this case, the input data x needs to be changed in the form of a set
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of vector vy. In order to preserve the same length in the wavelet domain, this condition
requires prefilter and postfilter. In fact, the prefilter and postfilter design is an important
factor of the multiwavelet performance [103, 102].

Well-studied review for image processing applications of multiwavelets is described in

[96]. Also some denoising algorithms using multiwavelets are proposed in [9, 4, 5, 16, 18,

38, 63, 97].

2.4 Complex Wavelets

Complex wavelet transforms (CWT) are a comparatively recent addition to the wavelet
studies. Complex number includes some properties that can not be represented by real
number. The properties of complex number lead CWT to provide better shift-invariant
feature and directional selectivity. However, CWT with perfect reconstruction and good
properties of filter are difficult to develop. So some researchers have tried to find an effec-
tive way to design complex wavelets. Some of the early works can be found in [58, 62].
Since then, many researchers have paid attention to CWT t54, 43, 44]. In this section,
we introduce Kingsbury’s dual-tree complex wavelet transform (DT CWT) [54, 55, 56],
which can be easily extended using the conventional DWT algorithm and is used in our

experiments for denoising algorithms.

2.4.1 Dual-tree Complex Wavelets

In 1998, Kingsbury proposed dual-tree complex wavelet transforms (DT CWT) which can
overcome some drawbacks of his previous CWT approach in [64]. DT CWT have some
good properties such as reduced shift sensitivity, good directionality, perfect reconstruc-
tion using linear-phase filters, explicit phase information, fixed redundancy and effective
computation in O(N).

Design of CWT filters which can achieve prefect reconstruction with more than one
level of decomposition is difficult. Kingsbury proposed dual-tree approach to overcome

this problem by applying dual filters as shown in Figure 7.
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Figure 7: 1D decomposition by DT CWT.

Due to the property of the complex filters which emphasizes only positive (or negative)
frequencies, perfect reconstruction is not possible in single tree structure. In addition, it is
well-known that undecimated wavelet which does not perform down-sampling, can achieve
shift invariance.

We can achieve near shift-invariant when the sampling rate is doubled at each level of
the tree A in Figure 7 by eliminating the down-samplihg after the level 1 filter, And this
procedure is the same as the case we have dual decimated trees. In this case, we consider
uniform intervals between samples after the 1st level by changing filter lengths. This is key
idea of DT CWT. Figure 8 shows a simple example about effective sampling location for
each level when the 1D input signal x has 16 sample points. As shown in the example,
uniform interval between samples caﬁ be obtained by applying odd-length and even-length
filters for each tree alternatively.

2D DT CWT can be extended by applying the filters to column and row one by one like
ordinary DWT. Therefore, this produces four times of redundancy since 2:1 redundancy is
required for each as depicted in Figure 7. In general DT CWT requires 2™ : 1 redundancy
for m-dimensional transforms. This is performed by complex conjugates and achieves

great symmetry of CWT. For instance, if we assume that we get four-elements of complex
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Input x 1234567 8:910111213141516

(odd) vys|A A A A A A A A

Ist Level |(odd) w4 | A A A A: A A A A
(odd)vgy] B B B B: B B B B
(odd)wg; /B B B B :B B B B
(even) vyl A A A A

2nd Level| (odd) vp, B B: B B
W A2, WE2 * * . * *
(odd) v43| A T A

3rd Level |(even) vps B : B
W A3, Wp3 * *
(even) v 44 A :

4th Level | (odd) v, : B
W A4, WB4 *

Figure 8: Example of sampling points of odd and even filters for length 16 signal.

vector (a,b,c,d)* after a series of row and column filtering, then this can be expressed
as a + biy + cis + diip. This produces (@ — d) + (b + ¢)i and (a + d) + (=b + ¢)i by
complex operations supposing ¢; = 45 = ¢ and its conjugate pair 7; = —iy = —i. These
properties of complex filters yield good directional selectivity in multi-dimensional space.
Six different directions for real and imaginary parts are emphasized in 2D DT CWT while
DWT has only three directions as shown in Figure 9. Each directional element including

angles +n /12, £ /4 and £57 /12 is from each subband of real and imaginary parts.

2.5 Other effective wavelets for image denoising

The wavelet transforms that generate more wavelet coefficients than the size of input data
are called redundant or overcomplete. For the scalar wavelet transforms, downsampling
with subband coding and pyramid representation makes it possible that the size of coeffi-
cients in the wavelet domain is the same as in the spatial domain. On the other hand, TI
WT and CWT are overcomplete. Multiwavelet is not overcomplete except the case that
repeated signal prefilter is applied. The redundancy of the wavelet transforms is helpful

for the shift invariance property in the wavelet domain.
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(a) 2DDWT

(b) 2D DT CWT

Figure 9: Impulse response of 2D wavelets.

When we described the properties of CWT in the previous section, the directional selec-
tivity is also important for image representation. For 2D separable implementation of DWT,
only three directions can be considered as seen in Figure 9(a). But more directions can be
considered in DT CWT. These types of wavelets are called directional wavelets. Recently
many approaches including [12, 13, 31, 69, 91, 99] have been developed by emphasizing
directionality. Since directional wavelet transforms have more elemental directions, it is
possible to emphasize features along lines or curves which are important in processing nat-
ural images. These features are also useful in building an effective thresholding rule for
image denoising. Figure 10 illustrates one of the directional wavelet approaches developed
by Candes et al. [12, 13]. This is called curvelet, which gives good property to extract
lines (or curves) by combining wavelet transform and ridgelet transform based on Radon

transform. The denoising application using curvelet transforms can be found in [92, 93].
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Chapter 3

Review on Image Denoising using

Wavelet Transforms

3.1 Introduction

Various research works on image denoising using wavelet transforms have shown that
wavelet transform is an efficient tool for the enhancement of noisy images. This is be-
cause wavelet transform has the compaction property {67] of having only a small number
of large coefficients. All the rest wavelet coefficients are very small. These small coeffi-
cients keep detail information of the image. Therefore, we deal with the detail coefficients
in the wavelet domain for removing the noise which usually considered as the detail infor-
mation. |

As described in the first chapter, Donoho’s thresholding algorithm has three phases
including forward wavelet transfdrm, coefficient thresholding (or estimation in general) in

the wavelet domain, and reconstruction of the estimated wavelet coefficients. His idea can
be generalized and illustrated as shown in Figure 11.

This three-phase algorithm is very simple, but there exist numerous different approaches
to perform this simple procedure. In this chapter, we first categorize the existing approaches
and describe some representative works briefly. An extensive survey on image denoising

using wavelet transforms, which summarizes the existing approaches for a decade and give
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Figure 11: Image denoising procedure using wavelet transforms.

a critical review with wide and deep insight, to our knowledge, is not found yet, but there
are a few well-studied articles on wavelet thresholding [50] or simulation study [3]. Mallat
also describes some fundamental issues on denoising and wavelet estimation theory nicely
in terms of Bayes and minimax estimators in [68].

There are several ways to categorize the existing denoising methods. First of all, a
method can be classified by the wavelet transform as explained in Chapter 2. Some related
works for special wavelet transforms for denoising are listed in Table 1. Another way
to categorize the methods is by noise type. In most of works, they suppose zero-mean
AWGN as a noise type since Gaussian noise has some good properties such as symmetry,
continuity and smoothness of the density distirbution. However, there exist many other
types of noise in practice. For example, noise can be correlated even though they still keep
Gaussian dsitribution. Or noise can be distributed in different ways like Poisson, Laplacian
distribution, or non-additive salt-pepper noise. If we say more practically, scratches in an
image can be also noise. So it is not easy to define the noise itself. In addition, it may
be possible that a denoising approach depends on the noise type. The last categorization
method we can consider depends on the estimation approaches of the clean coefficients in
the wavelet domain. In Figure 11, the second phase can have different approaches and there
are many works to focus on this part. In this chapter, we also focus on this categorization
scheme.

For convenience’s sake, we divide the methods into three categories including thresh-
old, shrinkage, and other etimation approaches. Threshold approach is the way to get es-
timated clean wavelet coefficients by comparing a noisy wavelet coefficient with a certain
threshold and deciding the estimated value based on the threshold. Shrinkage approach is

to shrink noisy coefficients by certain shrinkage rule and consider it as the estimated values
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of clean coefficients. One problem for this categorization is that threshold and shrinkage
are ambiguous to divide them precisely. In fact, one can say that shrinkage is one type of
thresholding approaches, and vice versa in some sense. So we define them in the following
ways. Suppose that z is a clean wavelet coefficient and w is a given noisy coefficient. Then
our goal is to get an estimated coefficient £. The methods in the threshold approaches use
a threshold ), and they are classified by the way to obtain \;. For example, if we use a soft
thresholding approach (see the following section for detail), the threshold approaches have

the common form as follows:

& = sign(y) (ly| — M),

where sign(-) is a function to decide that the value is +1 if positive or -1 if negative and
(-)+ is afunction to set the value to zero if the value is less than zero, otherwise to keep the
original value. On the other hand, the methods in the shrinkage category have the following
form:

F=y1-2),, (10)

where a shrinkage constant )\, is between O and 1 (0 < )\, < 1).

We call both A\, and A threshold since equation (10) can be easily changed in the form
of thresholding approach. Most of the chapter is devoted to estimate the threshold. In
the next section, we define the problem set for denoising in terms of risk minimization in
the wavelet domain. Then various existing approaches shown in Table 1 are described by

abovementioned categorization scheme.

3.2 [Estimation and Denoising

Denoising is a procedure to calculate the estimators. The problem set for general denoising
can be expressed in the following. In the wavelet domain, suppose that y; ;. is a wavelet co-

efficient of a noisy signal B with length V and z;  is the corresponding wavelet coefficient
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Category | Approach | Related works

Thresholding|Universal thresholding {35, 37, 33]
Stein’s unbiased risk estimation (SURE) [94, 36]
Cross validation [72, 101, 52, 51]
BayesShrink [14]
Shrinkage |MMSE [70, 60]
Bivariate shrinkage using level dependency [84, 85]
Neighbour dependency [11, 18]
Adaptive Bayesian wavelet shrinkage (ABWS)|[19]
Markov Random Field _|[65, 74]
Hidden Markov Tree [29, 23, 41, 82]
Other Gaussian scale mixture [77, 78, 76]
Wavelet Type \ Related works
Orthogonal separable wavelet|Most of works
Translation-invariant wavelet |[27, 26, 9, 18, 15, 60, 6]
Multiwavelet [38,9, 18,97, 63, 4, 5, 49, 40]
Complex wavelet [23, 55, 61, 83, 84, 85]
Others|Curvelet [92, 93, 32]
Steerable pyramid [89, 78]
Brushlet [57]

Table 1: Categorization of image denoising methods by estimation approach of wavelet
coefficient (above) and wavelet type (below).

of the signal without noise, then

Yik = Tjk + Zj ks (11)

where z; ; is the noise with N (0, 02). Our goal for denoising is to obtain the estimate Z; 4
of z; for every level and position. When we suppose that x is a set of z, our goal can
be achieved by minimizing the difference between x and %, which is often called risk.

To measure the risk, we employ a loss function ¢ defined by Euclidean distance or 1.2
norm: € = [|x — %||?. Then the risk of the estimator % of x is the average loss : R = E(e).
Therefore, our problem set for denoising is to minimize the risk R. If we assume that %

is estimated by the transformation of the given noisy signal y using a decision operator D
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like X = Dy, we need to estimate the optimal operator D* as follows:
D* = argml%n R(D) = arg ml%n E[||% — x|]3). (12)

There are two main approaches to expand the risk R and to estimate the operator D by
using Bayes risk and minimax risk. Bayes risk assumes that we know a prior pdf. Minimax
approach uses prior set of the signals instead of using prior probability distribution.

Most of denoising approaches begin from this point of view. However, it is not possible
to calculate the general estimator which minimizes the risk R using Bayes or minimax ap-
proach due to the complexity and non-linearity of the equation. We review some important

image denoising algorithms in the rest of the chapter.

3.3 Threshold Approaches

Before we survey some representative works to calculate the threshold ), it should be
noted that there exist some different thresholding approaches to use \;. In his early works
like [35] and [33], Donoho defines two thresholding rules, called hard-thresholding and
soft-thresholding. Hard-thresholding kills all the coefficients smaller than the threshold
A¢ and leaves the others without changes while soft-thresholding shrinks the rest of the
coefficients by the threshold );. Mathematically these thresholding rules can be re-stated

respectively as follows:

0 iflyl <A
On(y, M) = o (13)
y otherwise

Hard-thresholding :

2>
il

Soft-thresholding : £ = ©s(y, Ay) = sign(y) (ly| — Ae), - (14)

Under these thresholding rules, our goal is to calculate the optimal threeshold ),. We
can choose the same value for ), and apply it to all the wavelet coefficients regardless

of subband. This way is called global thresholding. Another way to obtain ), is by the
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statistical characteristics in each wavelet subband. In this case, we can compute different
A for each subband, which is called subband thresholding. At last, the threshold could
be computed for each wavelet coefficient using adaptive approaches. Then a threshold for
each location will be different according to the wavelet coefficient. We call this approach

adaptive thresholding.

3.3.1 Universal threshold

Universal threshold proposed and proven in [35, 37, 33] is most widely used and well-
known in the wavelet denoising literature. It is probably the most popular global threshold-

ing approach. The threshold can be formulated as follows:

A = 0+/2log N, (15)

where N is the size of signal or image and ¢ is noise variance. When we decide the
threshold ), it should be just above the maximum level of noise but not be too large.
For instance, one can imagine that too many large coefficients should not be killed, e.g.
|zx| > o, which considers noise level. Also, the threshold ), increases with the length N
due to the tail of the Gaussian distribution.

More formally, it is possible to prove that the maximum amplitude of the noise has a

very high probability of being just below the universal threshold \,:

. ologlog N
I\P—I)rclx;P </\t T TTogN < 1I§ca§§v|zk| < At) =L

Universal threshold is nearly minimax for general function since it does not require
prior information like Bayesian approach. This threshold can be applied to all the smooth
data as Donoho and his collaborators have proven various optimal properties for this simple
threshold.

The universal threshold is a good choice when the size of input signal IV approaches

infinity. Also, the statistical smoothness which has asymptotic behavior is better considered
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than the minimization of the mean squared error. In practice, this approach is simple and
fast. However, when it is applied to an image, it produces a denoised image which loses

many of the details.

3.3.2 SureShrink

We can reduce thresholding risk by choosing a threshold smaller than universal threshold.
However, universal threshold can be applied for any input function regardless of the data
statistics of the function. It may be possible to calculate an adaptive threshold to the data
which can minimize the estimated risk.

An adaptive threshold, called SureShrink, was developed by Donoho and Johnstone
[36]. SureShrink is named from Stein’s unbiased risk estimation (SURE). Like the univer- .
sal threshold, the threshold by SureShrink achieves asymptotic minimax optimialities over
function spaces like Besov spaces. In addition, it is optimally smoothness-adaptive by the
statistics of the input data.

The threshold A; by SureShrink can be defined in the following.

A = argm}nSURE(A)

N
= argmin | N —2-#{k: |y <A} + > " min(jy;.l, \)?| - (16)
k

Since SureShrink is an adaptive approach, different threshold can be decided for each
subband. This type of threshold is called subband (or level) threshold. The threshold for
image denoising yields much better image quality and lower mean squared error (MSE)
than the universal threshold which produce.s too smooth function spaces by bigger thresh-
old and is not appropriate for the natural images having complicated structures. Also, it
produces the numerical results close to the minimum MSE of the optimal thresholding es-
timator. In spite of the high performance, however, Donoho and Johnstone in [36] pointed
out that SureShrink in extremely sparse wavelet representations might obtain an inadequate

threshold and they suggested hybrid approach as an alternative.
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3.3.3 BayesShrink

In the previous section, we have mentioned two main approaches to minimize the risk. The
prior probability should be known to minimize the risk R in equation (12) for Bayesian
approach. We introduce BayesShrink threshbld which minimizes the Bayes risk, unlike the
universal threshold or SURE threshold obtained by minimax rule.

From equation (12), Bayes risk can be written as
R(\) = E(|% — x|I*) = ExEyj(|I% — x[?),

where X = Og(y, As) and y|x ~ N(0,0?%). We also assume that the prior pdf of x is gen-
eralized Gaussian distribution (GGD; see the definition in Appendix). When 8 = 2, GGD
becomes Gaussian distribution. Then the optimal threshold can be obtained by solving
A} = argminy, R();). Then when 8 = 2 in GGD, |
R(\) = BxBy(ll%—x|*)
- [ / (05(oy) ~ = plyl)p(a)dyda

= ow ﬁ
- 02’0 ’

where

A
w(oZ, \) =024+ 2(\ +1-02)® (\/—ﬁ) —2X(1 + 62)p( A, 1 + 02)

when ¢(z,0%) is N(0,0%) and ®(z) = [ ¢(t,1)dt. By numerical calculation, the ap-

proximated threshold close to the opt1mal threshold A} is

BayesShrink is simple and effective. The experimental results show that it is compa-

rable to SureShrink. BayesShrink is also applied in [15] and combined with SI wavelet
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transforms and context modeling which considers the related coefficients to the coefficient
to be thresholded. This adaptive approach, called AdaptShrink, improves the denoising

results by the threshold in equation (18).

3.3.4 Cross-validation

Cross-validation (CV) is a classical yet effecitve method to estimate the smoothing pa- .
rameters which minimize MSE. CV has been widely used for evaluating the optimality

of a smoothing parameter such as linear regression of spline smoothing [28, 48]. It has

been employed for thresholding approach in the wavelet domain due to the properties of

minimizing MSE and the asymptotic behavior [72, 100, 101, 52].

The main idea is so-called leaving-out-one scheme, which means that we measure and
predict the value of one point by all the rest of points. For every element in noisy observa-
tion y, we predict §j,,, the estimate of y; as a measure for the optimality of the choice of
the threshold. In order to express the compromise for all the elements in y, CV function
can be defined as follwos: v

CV = %Z (e — x>
k=1

Then we can get CV =~ + S o2(\)(yx — G, )2 With a2(A) = 1/(1 — Au), where
~  YE—Ua o Wy L By
Ye —Yx, = Taihandak- WN %f‘ "'Ak}c-
By defining the cumbersome matrix A, we can define generalized cross validation
(GCV) function. In [101], Weyrich and Warhola defined the GCV criterion in a simple

formula as follows:

A = arg m/\in GCV())

ly — vall?/N
(#{k : lyx] < A}/N)?’

= arg m/\in

(19)

where y, is a modified wavelet subband by a threshold ) from y.

GCV threshold, A; is an asymptotically optimal procedure. In fact, Jansen proved the
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asymptotic behaviour

. R(M)
A ROW)

where \* = argmin MSE()). Like SureShrink, GCV is a threshold approach which

=1,

estimates the minimum MSE threshold by noisy observation and the threshold is cal-
culated in each subband. In fact, there is a relationship between SURE and GCV like
GCV(\) =~ SURE()) + 0% = MSE()) + ¢2. Also, it could achieve the fast tresholding
by formularizing CV in a general way as shown in equation (19). Computational complex-
ity is less than the orthogonal wavelet transforms. More GCV thresholding applications

can be found in [50, 51]

3.4 Shrinkage Approaches

As defined before, equation (10) is the form of shrinkage approaches. This can be simply

rewritten as

z =Y, (20)

where 0 < v < 11is a shrinkage factor. This means that a denoised coefficient is shrinked
by a linear operator 4.

We introduce some shrinkage algorithms having the form of £ = ~y. They include
linear minimum mean squared error (MMSE) approach with local variance [70], bivariate
shrinkage approach [84], NeighBlock based on neighbouring dependency [11], and the
approaches using geometric priors such as Markov random field (MRF) [65] and hidden
Markov models (HMMs) [29].

3.4.1 Linear MMSE estimator

Mihcak et al. in [70] proposed linear MMSE estimation procedure using maximum like-
lihood (ML) and maximum a posteriori (MAP) estimates for local variances. Under the

assumption of iid Gaussian noise and in the sense of MSE, the optimal predictor for clean
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wavelet coefficient in k-th location zy, is linear and given by

~9 2
~ Oxk _— o
= Y5a +02—y(1_6§ +02) ' @b
b +

The estimate of the local variance o2 , can be computed from an approximate ML estimator:

R 1
Oz, = argmax [ Pwlo,) = [M > :?/12“‘72}
+

%k jEN JENY

and an approximate MAP estimator:

5 M 8\
*\jEN JEN,

where the exponential prior distribution function p(02,) = Xe™" | which is empirically
chosen.

Linear MMSE is in fact equivalent to Wiener filter [59]. Li and Orchard also used
MMSE and overcomplete expansion of wavelet transforms to get better performance for
image denoising [60]. And there have been many discussions about Wiener filtering in the

wavelet domain such as [68, 22, 53, 105].

3.4.2 Bivariate shrinkage using level dependency

In [86], Shapiro proposed an image coding approach called zerotree. He observed the
parent-child dependencies of subbands in the wavelet domain and proposed the scanning
order of the subbands for encoding a significance map. This level dependency is useful in-
formation for MRA. We can see many wavelet-based image processing applications which
utilizes cross-scale dependecies such as image compression [8] and denoising [15, 74, 84].

Sendur and Selesnick in [84] proposed a bivariate shrinkage function using MAP es-
timator and the statistical dependency between a wavelet coefficient and its parent coeffi-

cient. If x, represents the parent of z, then y;, = z; + 2z, and y, = x5 + 2o, where Y1
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and y, are noisy coefficients of z; and z, and z; and 2, are noise. So y = x + z, where

x = (21,22)%, y = (y1,y2)t and z = (21, 23)%. By MAP estimator of x,

"
i

arg max pyy (x|y)

= argmax[pu(y — %) p(x)]

. 2 2‘2 . .
In this case, we can assume that p,(y — x) = 21;2 exp (—%) since z; and 2z, are iid

with N(0,0?). To find a prior distribution p,(x), they observed the empirical model and
proposed four different models for py(x). Among them, the models they could derive the

shrinkage functions are Model I:

which is circularly symmetric and related to the family of spherically invariant random

processes (SIRPs) [79, 106} and Model 2:

() = Cexp (= |ayfat 4.3 + 8|+ 52 ),

which is an extended version of Model 1 combining independent Laplacian model. C is

the normalization constant. By solving the equations, we can get the following shrinkage

V302
f=di=y (1- — T (22)

functions:

for Model 1 and

R
for Model 2, where soft(y, ) is a soft thresholding function with a threshold ) and R =

2
i = £ = soft(yi, bo?) <1 — ai) (23)
+

\/soft(y1, b02)2 + soft(ys, ba?)2. The bivariate shrinkage function can be given by a sim-
ple formula taking into account the interscale dependency. This approach achieves both
simplicity and efficiency. Later Sendur and Selesnick achieve better results by using local

variance estimation in the bivariate shrinkage function [85].
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3.4.3 Neighbour dependency

A large wavelet coefficient will probably have large wavelet coefficients at its neighbours
[86][88]. This is because even when the coefficients are uncorrelated, there are still sig-
nificant higher order correlations, like a strong positive covariance in amplitude between
neighbour coefficients. Many recent works for wavelet-based denoising such as [29, 70,
11, 87, 18] have paid attention to this point.

Cai and Silverman in [11] proposed a simple and effective approagh for a 1D signal
by incorporating the neighbouring coefficients. Their block thresholding method, called

NeighBlock and NeighCoeff, can be simply described in the following stages.

1. Decompose the noisy signal into the orthogonal wavelet domain.

2. For each decomposition level j, we define a small block whose length is My =
[log N/2] for each coefficient in the level j.

3. The block is extended to each direction by M; = max(1, [M,/2]) and therefore new
block lengthis M = Mg+ 2M;. The new block Ny, with the block length M consists
of the thresholded wavelet coefficient and its neighbours.

4. A desired estimate % of zj is defined as follows:
Bo=y (1—- MN/SF), (24)

where S? = Z s;,and A is a threshold.
81EN

5. Reconstruct the denoised data using inverse discrete wavelet transform from the
thresholded coefficients.

While NeighBlock uses an appropriate block length defined by the signal size N and
A = 4.50524..., which is the solution of A — log A = 3, NeighCoeff is a specific case
of NeighBlock when My = M; =1, M = 3, and A = 1/202log N. So NeighCoeff uses
three coefficients including the coefficient being thresholded itself and two adjacent coef-
ficients to both the left and the right. ) is obtained by Donoho’s universal threshold [27],
but it is different due to the block length.
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The experimental results showed apparent advantages over the traditional term-by-term
wavelet denoising. The 2D extension of NeighCoeff is straightforward. In Chapter 4, we

do not only extend but also improve the algorithm for image denoising.

3.4.4 Markov random field

Malfait and Roose proposed an image denoising algorithm using Markov random field
image model as a priori in 1997 [65]. Also Pizurica et al. considered a joint inter- and
intrascale statistical model in [74] and improved the approach by Malfait and Roose. Some
other approaches and application using MRF can be found in [80, 98, 104, 73]. In this
section, we explain the basic idea and algorithm by Malfait and Roose [65].

From equation (20), we can assume it as the binary operation when v = 0 if y is gov-
ermned by noise and v = 1 if y is clean enough. Under this shrinkage form, we consider
two measures : a simple approximation to the local Holder exponent and a priori geomet-
rical knowledge. These can be combined in a Bayesian framework. We assume that my, is
the measure that denotes the noisy level of the k-th wavelet coefficient g, defined by local
Holder exponent approximation and m is a set (vector) consisting of m,, in a subband. In
this case, we can upgrade equation (20) as £; = P(yx = 1|m)y; instead of the binary
operation. By Bayes’ rule, P(y|m) = P(m/|v)P(vy)/P(m), where « is a set (vector) con-
sisting of -y, in a subband. If we assume that P(m) is uniform, P(«|m) o< P(m|vy)P(¥).
Based on the relation between MRF’s and Gibbs probability functions, a priori probability
18

P(y)=1/Zexp (-V (7))

where Ny is the neighbourhood system of 7y, Z =3 exp (=V (%)), and V(v) = 3 Vi, ()
0 if = T

when Vi, (7) = > Via(vk, i) with Vi (e, 7)) = & W= ¢ is a parametr of
+e, iy #F

the a priori probability.

Based on these ideas, the MRF denoising algorithm can be summarized as follows:

1. Decompose the noisy image into the wavelet domain.

2. For each subband in the decomposition level j,
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(a) Compute approximations to the local Holder exponent m,,. For example,

1

my = i
K depth

Yi+1

j=J—depth—1

(b) Generate an initial mask by applying the threshold A to my, such that E()) ~

o?.

(c) Run the stochastic sampling procedure with as probability

P(~y|m) ocexp[ ( ZV mqu/k —i—ﬁZVNk )]

accounting for local Holder exponents and a priori model. Sampling yields
approximations to the marginal probabilities P(-y, = 1|m) for all .

(d) Estimate a clean coefficient z; by the following shrinkage rule :
Tk = yeP (76 = 1|m).

3. Reconstruct the denoised data using inverse discrete wavelet transform from the
thresholded coefficients.

Since MRF eyes geometrical dependency, it is also related the method which considers
neighbour dependency in the previous section. Also, the method uses Bayesian framework
using MRF prior models. In practice, the experimental results for the test images in [65]
and [74] show that this dependency helps the image quality to be improved and the image

details to be preserved better.

3.4.5 Hidden Markov models

There are some works based on wavelet—démain hidden Markov models (HMMs) such as
[29, 23, 41, 42, 82]. Based on HMMs theory, Crouse et al. in [29] proposed the hidden
Markov tree (HMT) framework which enables us to concisely model the non-Gaussian
statistics of individual wavelet coefficients and capture statistical dependencies between

coefficients.

The HMT framework has two main features of HMM s for richness and flexibility, called
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| @ wavelet coefficient O hidden state variable | | @ wavelet coefficient O hidden state variable |

(a) Independent mixture (IM) model (b) HMT model

Figure 12: Mixture density Models with hidden state variables for 1D signal

Levelj
® wavelet
coefficient
o hidden state
variable
Level j-1

Figure 13: Markovian dependency between levels in HMT model for 2D image (quadtree)

mixture densities and probabilistic graphs. Mixture densities are obtained in terms of the
marginal probability having non-Gaussian nature of wavelet coefficients. The probability
density is modeled with a hidden state variable for each wavelet coefficient. And Marko-
vian dependencies between the hidden variables are featured by the probabilistic graphs.

Figure 12 shows geometric ideas of HMT model. independent mixture (IM) model il-
lustrated in Figure 12(a) considers only the wavelet state variables regardless of Markovian
dependencies. HMT model is a tree-structured graph as shown in Figure 12(b), which con-
nects vertically the hidden state variables between the levels while hidden Markov chain
(HMC) model connects the state variables horizontally. When 2D image is used for input
data, a quadtree can be formed like Figure 13.

Based on the HMM scheme and Bayesian estimation, the estimate of clean wavelet
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coefficient can be formulated as folows:

2
& = E(zxly, 0) Zp Sk =mly, 8) x + Yk (25)

where 0 is a vector of HMM parameters that characterize the wavelet coefficients and
S; is a hidden state of a observed wavelet coefficient Yx. S0 it is important to obtain
the parameters 6 and then determine the most likely sequence of hidden states from 6.
The parameters can be estimated by ML principles and they can be obtained by a training
approach, called expectation-maximization (EM) (also called Baum-Welch) algorithm.

HMT method originally proposed by Crouse et al. is one of the methods which consdier
the interdependency in the wavelet domain. The experimental results of them and the
following works show that HMT method gives better results than IM approach. Choi et al
applied DT CWT to image and obtained higher PSNR values than usual wavelet transforms
in [23].

3.5 Other Estimation Approaches

If the denoising approaches are not classified in the thresholding or shrinkage rule, they are
included in this category. In this section, we present a recently proposed efficient algorithm

based on Gaussian scale mixtures [78].

3.5.1 Gaussian scale mixtures

For Bayesian denoising approaches, there have been many suggestions for prior distribu-
tion. One of them is Gaussian scale mixtures [2]. Gaussian mixture model has been used
for denoising by several researchers [19, 29, 23, 78]. This model is quite similar to the
empirical model of natural images in the wavelet domain.

In this section, we introduce the algorithm proposed in 2003 by Portilla et al. [78].
They have used multivariate model using neighbouring coefficients. In this case, a random

vector x of Gaussian scale mixture could be x = y/au, where u is a zero-mean Gaussian
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vector and +/a is an independent positive scalar random variable. So the d-dimensional

vector form of equation (11) becomes as follows:
y=xX+2z=+au+z. (26)

Based on this model, the algorithm obtains the estimate E(xz.|y), where c is the index of
the reference coefficient within the neighborhood vector. Their denoising algorithm can be
summarized as follows:

1. Decompose the noisy image into the wavelet domain.

2. For each subband in the decomposition level 7,

(a) Compute neighbourhood noise covariance, C,, from the image-domain noise
covariance.

(b) Estimate noisy neighbourhood covariance, C,,.

(c) Estimate C, from C, = C, — C, if E(a) = 1.

(d) Compute A and M by the following ways: A and Q are eigenvalue and eigen-
vector expansion of S7'C,S™?, where C, = SS*, and M = SQ.

(e) For each neighbourhood,

i. For each value ¢ in the integration range, compute F(z|y, a) and p(y|a) as
follows:

amcn)\ v

and

2
exp H S o]
V@mHCTTL, (ari + 1)

‘Where ™m;; represents an 4-th row and j-th column element of M, ); is a
diagonal element of A, and v; is an element of a vector v = M~ ly.

ii. Compute p(aly) = T&ﬂ% using p,(a) o 1 by Jeffrey’s prior [7].

o P(yle)
iii. Compute E(z|y) = ;" p(aly)E(z|y, a)da numerically.

p(yla) =

3. Reconstruct the denoised data using inverse discrete wavelet transform from the
thresholded coefficients.

To our knowledge, this approach gives the best image denoising results to date, espe-

cially in terms of MSE, when the steerable pyramid with 8 orientations is employed as
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the wavelet transform. However, the algorithm is not easy to implement and this requires
much more time and storage complexity than the simple thresholding approaches. Also
when other wavelet transforms such as Daubechies family are used, the results are not as

good as the steerable pyramid as illustrated in the later chapter.

3.5.2 Multiwavelet thresholding

As explained in the last chapter, multiwavelet has good properties the scalar wavelet does
not have. Multiwavelet transform generates multiple wavelet coefficients in the same lo-
cation. For example, if we apply GHM to 2D image, it produces four wavelet coefficients
having close dependency in the same location by the multiple filters (two in this case) when
the usual scalar WT generates one wavelet coefficient in a subband. So the approach us-
ing these multiple coefficients can be considered only for multiwavelet. Since Downie and
Silverman paid attention to this idea [38], there have been several approaches proposed for
both signal and image [9, 16, 18, 17, 97, 63, 4, 5, 49, 40]. We describe this method as an
extra approach because this approach is only for multiwavelet family.

The first and easy approach we can think is to apply the term-by-term threshold as we
described in the previous sections, e.g. universal threshold, SURE, etc. However, we need
to consider the correlated multiple coefficeients in order to take advantage of the filtering
dependency in the multiple wavelet domain. Downie and Silverman in [38] proposed a vec-
tor threshollding approach which considers the multiple coefficients in the same location as
the elements of a vector. As mentioned in the‘ previous chapter, the multiwavelet trans-
form with an appropriate prefilter generates the correlated multiple wavelet coefficients.
So equation (11) can be rewritten in a vector form as y; = x;, + z; and z;, has multivariate
normal distribution N (0, X), where 0 is a zero-mean vector and ¥ is a covariance matrix.

Then the quantity 62 can be defined as follows:

0 =yiV 'y 27
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62 has x% distribution. And 67 is compared with the threshold A; such as a universal thre-
hold or multivariate universal threshold defined as \? = 0%(21log N + (L — 2) loglog N),

where L is a number of filters in multiwavelet. In this case, the hard thresholding rule is

xk -, if 0 > Ay, . o A
Xy = and the soft thresholding rule is X, = x, {1~ —= | .
0, otherwise, Ok +

Bui and Chen in [9] extended this idea and performed various experiments. They
showed that multiwavelet thresholding approach is promising and better than the scalar
wavelet. They also improved the denoising performance by employing TI scheme to mul-
tiwavelet. In [18], they tried to use neighbouring coefficients by substituting the quantity
07 with the sum of the k-th and its adjacent quantities S} = 62_, + 67 + 62_,. And this
approach produces lower MSE values.

For 2D image, multiwavelet transform generates L? correlated wavelet coefficients in
the same location. Some extended approaches have been used in [97, 4]. Multiwavelet
thresholding approaches can maximize the merits of multiwavelet properties such as sym-

metry, orthogonality, and vanishing moments as described in the previous chapter.
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Chapter 4

Wavelet Shrinkage using Level and

Neighbour Dependency

In the following three chapters, we first propose two image denoising approaches and then
present various experimental results and performance evalutions. These approaches have
been submitted to journals in [21, 20].

In this chapter, we suggest simple but very efficient wavelet shrinkage rules based on
the correlations between the related neighbouring and parent wavelet coefficients and the

coefficient to be thresholded.

4.1 Shrinkage approach based on interdependency

In the spatial domain, it is well-known that an adaptive Wiener method based on estimation
from local information is very efficient for digital image enhancement [59]. In the wavelet
domain, despite the weak correlation properties of the wavelet transform, as pointed out in
the introduction, there still exist significant residual statistical dependencies between neigh-
bour wavelet coefficients. Our goal is to exploit this dependency to improve the estimation
of a coefficient given its noisy observation and a context (spatial and scale neighbours).

Recently, there have been several works which try to use the context in the wavelet
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domain [11][15][65][70][85]. Among them, Cai and Silverman in [11] proposed a sim-
ple and effective approach for a 1D signal by incorporating the neighbouring coefficients.
Their block thresholding method in [11], called NeighBlock and NeighCoeff, can be simply
described in the following.

Suppose that w;; is a wavelet coefficient of a noisy signal B with size N and z; is
the wavelet coefficient of the signal without noise, then w;, = z;x + 02, Where o2 is
the variance and z; 4 is the noise with N (0, 1). To get a desired estimate Z; 5, of z;, their

shrinkage rule is defined as follows:
Bip = wip (1 - MN/S3,), o (28)

where

2 2
Shk="> s

$1EN; &

N; i is a block consisting of the thresholded wavelet coefficient and its neighbours, M is
the block length and ) is a threshold. While NeighBlock uses an appropriate block length
defined by the signal size N and A = 4.50524..., which is the solution of A — log A = 3,
NeighCoeff is a specific case of NeighBlock when M = 3 and A = ,/ %aQ log N. So
NeighCoeff uses three coefficients including the coefficient being thresholded itself and
two adjacent coefficients to both the left and the right. A is obtained by Donoho’s universal
threshold [27], but it is different due to the block length. As shown by Cai and Silverman,
both NeighBlock and NeighCoeff have excellent asymptotic properties and attain the op-
timal rate of convergence in the Besov sequence space. This means that the least upper
bound of the expected denoised error is close to zero when the length of the signal tends to
infinity just like Donoho’s universal threshold.

In the next three sections, three different wavelet shrinkage approaches are presented
for a 2D image. We call them NeighShrink, NeighLevel and NeighSure. They are based on
Cai and Silverman’s shrinkage equation (28) combined with more enhanced factors such

as scale neighbours.
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Figure 14: Peformance change by a threshold A* = a for different kinds and sizes of
images when NeighShrink (M = b) is applied using dual tree complex wavelet (DT
CWT) proposed in [54].

4.2 Optimal Threshold and NeighShrink

One of the simplest wavelet shrinkage rules for an NV x N image is the universal threshold
A= \/MTg]\ﬁ suggested by Donoho in [33]. The universal threshold grows asymptot-
ically and removes more noisy coefficients as NV tends to infinity. The universal threshold
is designed for smoothness rather than for minimizing the errors. So X is more meaningful
when the signal is sufficiently smooth or the length of the signal is close to infinity. Natural
image, however, is usually neither sufficiently smooth nor composed of infinite number of
pixels. In fact, if we suppose that an optimal threshold which minimizes MSE (or max-
imizes PSNR), A*, is oA, o is always much less than 1.0 for natural image as shown in
Figure 14. Especially we got very similar « value for different kinds and sizes of images
when we applied soft thresholding rule.

We can extend NeighCoeff to 2D image in a straightforward way.

Bip=wyp | 1~ M2A%2 / AR (29)

SlENj,k
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where \* = aXand IV, is an M x M window which consists of the thresholded coefficient
and all its neighbours. and we call it NeighShrink. In the experiments, we investigate the

optimal threshold by varying o and M.

4.3 NeighSure

Although NeighShrink yields very good performance, a constant @ must be chosen empir-
ically. If we substitute o in equation (29) by an optimal threshold with minimum risk, we
may not need to use the universal threshold with a constant ¢ to build a robust shrinkage
method. One of the existing optimal thresholding methods is SureShrink, which uses an
adaptive threshold by minimizing SURE for each wavelet decompsition level [36]. When

w; is an . x n wavelet subband in level j, SURE threshold A\* is

A* = arg m/\in SURE(wj, \)

n?

= arg m/\in (n® —2-#{k: |wx| <A} + Zmin(|wj,k|, A2 (30)
k

Then a new shrinkage rule, called NeighSure, can be obtained from equation (29) by

substituting nonparametric threshold A* in equation (30) instead of the universal threshold.

4.4 NeighLevel

Here we suggest one more method, which is called NeighLevel so as to distinguish it from
the other two methods.

For previous two methods, we have considered neighbour dependency. There is an-
other possible correlation between the wavelet coefficients lying in different decomposition
levels. The statistical correlation between parent and child coefficients have been widely
recognized in image coding and denoising [15][29][78][84][85][86] since zerotrees were
introduced by Shapiro [86]. Parent and child have interdependency similar to neighbours.

Therefore, if we can utilize neighbours spreaded both vertically and horizontally as shown
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Figure 15: Context

in Figure 15, then a better performance can be expected.
According to this idea, we propose the following criterion by applying the coefficients

in the coarser level to equation (29):

; €2y
+

.'i'j,k = wj,k [1 - (M2 + 1)/\*2/( Z 8l2 +p2)

s,eNM

where \* = o) like NeighShrink, s; denotes the coefficient to be thresholded and its neigh-
bours in an M x M window, and p is a parent of the coefficient to be thresholded, which
is the coefficient matched in the coarser level (see Figure 15). In equation (31), it should
be noted that a normalized factor, M2 + 1, is used which is the number of correlated ele-
ments in the context. By this rule, the effect of the local variance from the parent level is

considered as well as from the current level.

4.5 Analysis of shrinkage functions

The three proposed shrinkage rules have a common feature: Local sample coefficients are
taken from an M x M window Nj ;, for NeighShrink and NeighSure and N;  and a parent
coefficient p for NeighLevel as shown in Figure 15. If we assume that the mean of the
sample coefficients is zero, the local variance of wj , can be defined as aﬁ)j,k => af /m,
where a; is sample coefficient and m is the number of local samples. In this case, we can

notice that both equations (29) and (31) become Z;; = w;4 (1 — 2/ a;‘:,j k) +
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~2

In [70], linear MMSE-like estimator of z; is given by Z; ;, = w; x &20

@ ',k ~ 2
—J—zj E where 0%k

is an estimated variance of z;;. They have computed an approximate ML estimator for

52 1 Z 2 _ 2 52— (g2 — 42 -

0% 88 ( i 5] o )+. In other words, 0% = (aijc o ) + Therefore, lin
SIEN; 1 .

ear MMSE estimator can be rewritten as £;; = w;x(1 — 02/ Jﬁ,j k) 4+ Since A* o o for

the universal threshold used in NeighShrink and NeighLevel, the shrinkage rule of linear
MMSE estimator is the same as that of NeighShrink and NeighLevel if we assume that
am = 1. In this sense, it could be said that NeighLevel uses the local variance
considering both neighbour and level dependency. And our thresholds have strong connec-
tion with the estimator based on the probability density of wavelet coefficients and prior

like linear MMSE estimator.
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Chapter 5

Multivariate Statistical Modeling for

Image Denoising

5.1 Introduction

In this chapter, we propose another new approach based on multivariate statistical modeling
in the wavelet domain of natural images unlike the approach in the previous chapter. Dif-
ferent statistical models can be applied according to image characteristics since the model
is from the probality density of natural images. Therefore, there could be many possible
denoising rules. We first generalize our shrinkage rule by multivariate modeling and try to
adapt the model to natural images. In addition, we present several rules as examples which
can be derived from our approach.

Our fundamental concerns for wavelet image denoising lie in finding a general way
to estimate the denoised coefficients. The classical yet powerful approach to estimate the
denoised coefficients is based on Bayesian statistics. Chipman et al.[19] proposed adap-
tive Bayesian wavelet shrinkage (ABWS) method by fitting a wavelet-based model into a
mixture of two Gaussian distributions. An adaptive wavelet thresholding method, called
BayesShrink, was derived in a Bayesian framework using GGD by Chang et al. [14].

Sendur and Selesnick estimated an optimal threshold using MAP estimator (see Appendix)
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by maximizing bivariate probability density function (pdf) whose elements include the par-
ent coefficients [84]. MAP estimator was also used by Mihcak et al. for estimating the
locally adaptive variance [70]. Very recently Portilla et al. presented an image denois-
ing algorithm which is based on a Gaussian scale mixture (GSM) model for zero-mean
Gaussian vector using an overcomplete multiscale oriented basis [78].

We describe here a general wavelet denoising approach which can estimate the opti-
mal wavelet coefficients using information based on the multivariate statistical theory. We
begin our derivation from MAP estimator used in [84]. Unlike their approach, we general-
ize our estimator in an arbitrary-dimensional space for any multivariate distribution model.
The multivariate distributions of the original image can be estimated empirically from the
sample image set. Then we define a specific multivariate pdf, called multivariate general-
ized Gaussian distribution (MGGD), which can closely fit into the sample distribution by
its parameters. Multivariate model makes it possible that the estimated wavelet coefficients
can be made correlated with related information such as their neighbours or coefficients in
a different subband. Also it can be shown that some of the existing methods based on sta-
tistical modeling are subsets of our multivariate approach by changing the related elements
and varying the distribution parameters. Experimental results show that our approach could
achieve high quality image denoising by proper setting of the parameters. Among the ex-
isting image denoising methods which use Daubechies 8 wavelet filter, our results produce

the highest PSNR values.

5.2 Bayesian Estimation for Multivariate Statistical Model

Let A be a clean natural image with size N X NV, B be a noisy image which can be expressed

as B = A + oC, and C be zero-mean Gaussian white noise with variance o2, where

C~N(0,1).
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After performing multiresolution wavelet decomposition on B, we get the wavelet co-

efficient y; , which is the k-th wavelet coefficient in j-th level for B. Then,

yjlk = mjak + O-Zj’k, (32)

where z; is the wavelet coefficient of A in the same location as y; k.

Let x be a d-dimensional wavelet coefficient vector, x = (z1, 29, -, Zq)’, where z;
is the wavelet coefficient under consideration and ; (i = 2, - - - , d) are related coefficient,
e.g. neighbours, parent and offsprings. Similarly a vector y can be defined for noisy image
B and we assume that z; and y; correspond to each other in both decomposition level and

location. So we can rewrite equation (32) in vector form:

yj,k; = xj,k: + O'Zj,k. (33)

For the sake of simplicity, we omit subscripts j, £ in equation (33) in the rest of this chapter.
Our concern lies mainly in estimating the unknown wavelet coefficient vector X, and X
should be obtained only from y of the noisy image B. One of the ways to estimate X is to

use MAP estimator to maximize p(x|y). MAP estimator for % can be obtained as follows:

P33
i

axIn p(x
argmax In p(x|y)

= argmaxln M_X_)?if)_

x€R4 p(y
= argirg{)g [Inp(y|x) + Inp(x) — In p(y)]

)
= argmax [Inp(y[x) + Inp(x)] (34)

In equation (34), p(y) does not affect the result since it is only a constant. Therefore equa-
tion (34) shows that the optimal value X with minimum probability error can be estimated
by p(y|x) and p(x),

First, from equation (33), p(y|x) is the multivariate Gaussian distribution with N(0, %, =

o?1) since Gaussian noise is independently and identically distributed for each element of
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the vector. Hence the logarithm of the conditional pdf, p(y|x), is

Inp(ylx) = Inp(z)
I 1 exp{_(y—X)Ez (y—X)}

CIEEARE 2
1 ¥ —x)'(y —x)
= In (@ro?)ir? exp {— 552 }
d — x)i(y -
= I (arer) - YWY (33)

Second, we need to find an appropriate statistical model for p(x). This can be ob-
tained empirically from the sample coefficients which are from the natural images in our
case. If we inspect the wavelet coefficients of the sample images, their distribution looks
close to Gaussian distribution. However, there exist better models which have closer ap-
proximation. In fact, many researchers suggested univariate probability model and even
bivariate model for natural images so as to get the closely approximated statistical model
[67][19][14][84]. p(x) might be varied depending on the type of sample images. We will
discuss more how to choose and measure the approximated model for p(x) later.

We consider the second term In p(x) in equation (34) as an unknown function g(x).

Then, from equations (34) and (35),

~ — F
%o e
d 2 =%y —x)
= argmax ——§ln (2mo*) — 552 +9(x)|, (36)

where F'(x) represents the term inside arg max.

In order to maximize F'(x), we suppose that F'(x) is continuous, differentiable in R4
and convex (we have to choose g(x) that can satisfy the conditions of F(x)). If there
exists X that satisfies F'(%X) > lim F(x), equation (36) is equivalent to the solution of

z;—+o00
the follwing equation:

VF(®) = =0 37)

when there exists one solution.
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Finally, we can simplify equation (36) by using equation (37) as follows:

VF(R) = —x;y +Vg(R) =0

Sx=y+0°Vg(R). (38)

5.3 Empirical Multivariate Models of Wavelet Coefficients

for Natural Images

In [67], Mallat proposed that the digital image histogram in the wavelet domain can be
modeled with GGD and Chang et al. [14] used it with specific parameters to derive their
Bayesian threshold. Another close statistical model for the original wavelet coefficients is
Gaussian mixture model which has been applied in [19][29][78]. Also Sendur applied a
circularly symmetric pdf for their bivariate threshold [85].

The existing models for wavelet denosing, however, are usually based on univariate
statistical model whereas p(x) is a multivariate pdf in our model. There are several mul-
tivariate functions which are symmetric spherically like multivariate Gaussian model. For
example, multivariate Cauchy distribution, Gaussian distribution, Laplacian distribution or
Gaussian mixture can be considered. Especially Gaussian mixture model shows various
possibility to construct the optimal model in the literature [81][19][29][78].

In our paper, we use extended GGD model for its simple form and to achieve good

fitting errors. We call this model multivariate generalized Gaussian distribution (MGGD):

— ) (x — B
p(x)=C’exp{—<(x el “)) } (39)

o

where o and 3 are parameters which can represent the spherical shape of the model and C
indicates a normalized constant defined by «, § and the covariance matrix .
When the dimension of x is one (scalar), the MGGD is still applicable and is denoted

by UGGD (univariate generalized Gaussian distribution). MGGD is a particular case of the
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v-spherical distribution defined by Fernandez [45].
Using MGGD model, we can derive more specific forms of equation (38).

Since we can assume that y = 0,

2
Vg(x) = —a—g(xtz;lx)ﬁ—lz;lx. (40)
From equations (38) and (40),
2 2
£ = y— _%é(itzgli)ﬂ—lzgli
o

33

202 -
<I+ "f (itE;Ii)ﬂ‘lz,;l) v
(8%

-1

) 2
= (zﬁ——zﬂﬂ (fctzglic)"‘lf) 21y (41)

To simplify equation (41) in terms of scalar variable, we define
g(%) = X'T "% (42)

If we substitute (42) into (41), we can get the following expression regarding ¢(%),

2 s\18—1 \ 2
g(%) =y* (E;H-% ﬁ{iﬁj‘)} I) Sy (43)

Hence, if we solve equation (43) and get the value of ¢(X), we can get the estimated
vector X using the equation (41).

However, there is no general solution for equation (43). To overcome this problem, we
can define a particular condition for , 8 and X or use a numerical method. We simply

use classical Newton’s method in our experiments [39].
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5.4 Model Selection

In the previous two sections, we have derived the general solution for the estimated original
coefficients based on MGGD model. But, we do not know which parameters are optimal
yet. In this section, we analyze the distribution of the wavelet coefficients for natural images

and get the optimal values for the parameters « and §.

5.4.1 Distribution in wavelet domain and approximation

It is well-known that the distribution of detailed wavelet coefficients from natural images
looks Gaussian-like with zero mean such as GGD [67]. We have tried to find the closest
MGGD model for each subband analytically. 20 test image.s1 with 512x512 size have been
inspected to extract enough sample coefficients. In this analysis, Daubechies 8 filter is
applied to the image set for the wavelet decomposition. The distribution parameters could

be slightly different depending on the mother wavelet.

' — Sample dilstribution P, (x) ' ' — Sample diétribution p1(x)
- - Gaussian distribution p,(x) - - UGGD p,(x)(a=1/4, B=1/2)
0.257 1 0.25¢
0.2f 0.2r
0.15¢ 0.15f
0.1} 0.1r
0.05f 0.05r
—?30 30 —%O -15 15 30

Figure 16: Distribution of sample coefficients and the estimated UGGD function (using
sample coefficients in HH subband of the 1st decomposition stage).

Figure 16 shows the difference between the sample distribution and its estimated pdfs.
As mentioned before, Gaussian distribution in the left figure does not fit the sample distri-

bution closely but UGGD model with particular parameters is better adapted.

Free images collected and offered by Computer Vision Group in University of Granada, Spain:
http://decsai.ugr.es/cvg
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Our issue that cacluates optimal parameters can be restated in terms of data-fitting prob-
lem. We apply nonlinear least squares fitting technique for our analysis.
If we consider mean squares between two distribution functions, the squared L2-norm

of the residual can be defined as follows:

R = |jp(xle, 8) — p1(x)]];
- Z(pz(xi|aa5)“171(xi))2 (44)

)

In this case, the closest po(x) to p;(x) and its parameters «, S can be obtained by minimiz-
ing R. In our analysis, this process is carried out by using 1sgcurvefit () function in
Matlab optimization toolbox. Table 2 includes a list of the optimal parameters for each sub-

band in UGGD model. The optimal parmeters vary by decomposition level and subband.

Subband Closest parameters| R Sample Statistics
Decomposifion Detajll o | B (x10~*)|mean (u,)|Stddev (o5)
1 LH |0.0368| 0.3359 1.1661| -0.0115 7.9642

HL |0.0276{ 0.3152 0.7654| -0.0333 7.7792
HH |0.1834| 0.4131 2.1585 0.0206 3.2922
2 LH |0.0098| 0.2788 1.3089| -0.0953 21.9288
HL {0.0078| 0.2632 1.4366; -0.1183 21.3319
HH |0.0675] 0.3558 0.7916| -0.0042 9.5786
3 LH {0.0074| 0.2650 1.5015 0.1610 54.9322
HL |0.0055] 0.2441 0.9591, -0.0497 51.1904
HH |0.0160| 0.2821 0.9977 0.0089 26.2107
4 LH (0.0057; 0.2382 0.7746 0.3035| 126.9218
HL. |0.0118] 0.2533 0.5633 0.5073| 121.9800
HH {0.0154| 0.2713 0.7513 0.0924 65.2276
Table 2: Appropriate parameters for MGGD model and L? norm of its resdual decided by
nonlinear curve-fitting of least-squares algorithm.

Practically, it is hard to find the optimal parameters for all the cases. Each image has
a different values although they are close to each other. Since we assume that the original

image is not offered, the parameters cannot be measured each time.
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5.4.2 pdf for multivariate distributions

It is not always easy to get multivariate distribution of wavelet coefficients from sample
images since the d-dimensional vector requires the d-th power of samples for the same res-
olution. If sample points are sparsely distributed in multi-dimensional space, the estimated
fitting function may not be accurate. Also, it is not easy to manage covariance matrix in
general case. Hence, instead of analyzing the multivariate model in our experiments which

uses ten elements, a bivariate model is analyzed as a specific example of multivariate model.

Figure 17: Sample distribution of bivariate model (left) and its fitting MGGD model (right)
when x = (1, 2)?, where z; is the coefficient from HHI and «, is its parent from HH2.

In Figure 17, we can see one example of bivariate distribution for the wavelet coeffi-
cients and its MGGD model fitted by nonlinear least-squares optimization. The cutway
view of left figure by the plane which is perpendicular to x;x» plane and passes through the
origin is close to the shape of univariate model. As a matter of fact, the multivariate model
of wavelet coefficient samples is spherically symmetric.

The optimal parameters for bivariate case are in a similar range, where mostly a € (0, 1]
and 3 € [0.2,0.5], but they are slightly different case by case. The optimal parameters of
MGGD model vary as the number of elements as well as the way to choose the elements.
Since we do not have the statistical properties of the clean image, we choose particular
parameters in a certain closed range to simplify our experiments. These parameter ranges

are based on the experiments using the sample images we have tested.
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5.4.3 Specific Examples

In this part, we inspect the specific cases of our multivariate approach. Since the statis-
tical model of the original wavelet coefficients is the main factor to decide the estimated
coefficient for denoising, the parameters of MGGD model strongly affect the denoising
performance of our approach. As shown in the last parts, optimal parameters could be de-
cided by certain data fitting rule. However, we can define the specific parameters for lower
computation because the multivariate estimator does not have general solution as shown
in equation (43) and this requires high computational complexity. In fact, there have been
used several models having specific solution and they can be included in UGGD or MGGD

model. We look through some of those special cases and obtain the solution of each case.

UNIVARIATE GAUSSIAN MODEL : MGGD model includes Gaussian distribution.
More specificially MGGD is multivariate Gaussian when o« = 2 and 8 = 1. For univariate
Gaussian distribution, the model is denoted by UGGD and we can estimate the wavelet

coefficient from equation (41) as follows:

0.2

: (45)

T = ——y.
02+ o?

Equation (45) is the same form as MMSE estimator used in [70].

UGGD MODEL WITH § = 1/2: UGGD model with 8 = 1/2 is related to Laplacian

distribution. When § = 1/2, the solution for the estimated coefficient is the form of soft

thresholding as follows:

3 = s9nty) (|v] - £0)+ @6)

We can notice that when . = 1, the threshold in equation (46) is equivalent to BayesShrink

proposed by Chang et al. [14].

MGGD WITH 8 = 1/2 AND COVARIANCE MATRIX ¥, = o2 I : If the covariance
matrix is assumed as a simple form especially when the correlation coefficient is close to
zero, it may be easier to simplify our matrix formula and obtain the solution for the esti-

mated coefficient. From equations (41) and (43) under the given conditions, the simplified
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solution for MGGD model with § = 1/2 is obtained in a shrinkage form as follows:

o2 1 >

x=(1-——7—] ¥y. 47
( vaos, |lyll/

Sendur and Selesnick proposed several bivariate fnodels in [84]. Among them, Model

1 is a specific case of MGGD model whend =2, =1/3, 8 =1/2and &, = JfBII. And

the derived solution can be expressed as equation (47).

In brief, there are numerous possibilities to derive the proper threshold or shrinkage rule
by varying the parameters of MGGD. These examples are only a few specific cases among
all the possibilities. For different types of sources of data such as astronomial images,
medical images or 1D signals, the statistical models which do not include noise could be

different. We can apply appropriate parameters for each case.
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Chapter 6

Experiments and Performance

Evaluation

In this chapter, we perforrh the experiments applying our proposed methods to various
images from different sources. We use several types of wavelet transforms. The ways
to choose parameters for our methods and practical configurations for our proposed al-
gorithms are discussed. Also, the experimental results are evaluated by comparing our

approaches with other existing methods both numerically and visually.

6.1 Testimages

The test images are 8-bit gray-level with 256 x 256 and 512 x 512 sizes. The types of images
include natural, medical and astronomial images. Among them we do more experiments
on three popular 512 x 512 images, which are Lena, Boat and Barbara, for comparison

purposes. All the images we use in our experiments are obtained from several different

sources [1, 34,75, 10].
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6.2 Wavelets for denoising

Before applying a shrinkage algorithm, selecting an effective wavelet transform for denois-
ing should be considered since wavelet transforms do affect the quality of a denoised image
as mentioned in Chapter 2. The quality of a denoised image, in fact, considerably depends
on the wavelet type even for the same kind of shrinkage algorithm as seen from the tables
in the last part of this chapter.

There exist mahy orthogonal wavelet families such as Daubechies, Coiflet and Symm-
let. We have chosen Daubechies wavelet D8 which is one of the most popular mother
wavelets for denoising and DT CWT used in [23] and [85]. In addition, TI CWT have been
used by combining both TI and DT CWT as described in Chapter 2. We have implemented
TI CWT based on the WaveLab software package [34] used by [27] and Matlab codes
used in [85] which is offered by Selesnick [10]. Since DT CWT has the near shift-invariant
property, TI CWT gives slightly better results than DT CWT. Wavelet decomposition levels
also affect the denoising performance. We have empirically set a satisfactory level L = 6

for 512x512 images.

6.3 Choosing parameters

6.3.1 Optimal threshold for NeighShrink and NeighLevel

For our proposed shrinkage algorithms NeighShrink and NeighLevel in Chapter 4, deter-
mining an optimal constant ¢ in equations (29) and (31) is required. « can be chosen
experimentally as shown in Figure 14. We found that the value is empirically similar to the
optimal value for universal soft-thresholding in [33] and located in a particularly narrow
range even for diverse types of images with different size and noise level.

We set o to 0.16 ~ 0.19 for both NeighShrink and NeighLevel depending on the
sizes of the neighbouring window and parent when we use DT CWT. From our experi-
ments, we found that « is slightly bigger if the neighbouring window becomes smaller.

In DT CWT, a threshold should be doubled since it is compared with the sum of the
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squares of the magnitudes calculated from both real and imaginary parts.

6.3.2 Parameters for multivariate model

For the proposed approach in Chapter 5, we need to choose the elements of vector x which
includes the estimated (thresholded) coefficient itself and other related coefficients. In
our experiments, we choose 10 elements as depicted in Figure 18. The elements should be

closely connected with the estimated coefficient, for example the neighbouring coefficients.

Levei j+1

Level j

Figure 18: Selected elements of vector x from wavelet coefficients in our experiments
(d =10).

As described in the previous chapter, the proper parameters for the statistical model
are necessary for better estimation. This could be difficult since they are decided case by
case empirically depending the type of images, the subband in the wavelet domain and the
chosen elements of vector x. For this combination of elements, we select the parameters of

MGGD model as o = 1/6 and 3 = 1/2 for simplicity in our experiments.

6.3.3 Variances and covarinaces

As mentioned in the introduction, the noise model in this thesis is zero-mean AWGN

N(0,0%). So the variance of the noise model is the only parameter we have. The noise
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variance o2 can be estimated by a robust median estimator from the noisy wavelet coeffi-

cients in HH; subband as follows [35]:

., _ median(jy,|

48
0.6745 48)

where yj, is an element in HH; and so the median(|yy|) is a median from all the absolute
values of the coefficients in HH;.

The variances in clean image and noisy image are important statistical information to
get our denoised wavelet coefficients as shown in the previous chapters. Especially our
multivariate approach requires the estimated covariance Sy of multivariate model as well
as the noise variance o2. Therefore, we have to choose ﬁx for a model. In our case, we use

the following estimation for 3 since the noise is independently distributed:
Se =Xy — 21 (49)

There are two ways to build the covariance matrix £y. One way is that &, is composed
by the subbands that each element of vector y belongs to. The other way is to use a M x M
local window which surrounds each element of y instead of each subband. This is on the
same line as the local variance which is empirically used in recent works [70][85]. In our
experiments, the local covariance produces higher quality of image when a 7x7 window is
applied for each element. Since the estimated correlation between different sources could
not be accurate due to the number of samples and correlation between elements are not so

big, we ignore them by using a diagonal matrix for the local covariance for the experiments.

6.4 Evaluations

To evaluate and analyze our proposed algorithms, we compared them with the existing
effective approaches introduced in Chapter 3. Denoised images can be compared both
visually and numerically. Representative numerical measures for image quality are MSE

and PSNR (see the definitions in Appendix). We use 255 as the maximum value of A since
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the 8-bit gray level value ranges [0, 255].

For different noise variances, the measured PSNR values are listed in Tables 3, 4 and
5 for our proposed and other methods. The results are categorized in terms of the type
of the wavelet used since denoising results are dependent on the wavelet transforms. We
have made use of some functions in WaveLab for VisuShrink and SureShrink. For
other existing methods, we use the experimental results from the original papers and the
PSNR table! in [85]. GSM results for Daubechies 8 filters are obtained from the software
offered by Portilla [78]. A comparison of selected methods is given in Figure 21 and 22 for
a 812 x 512 size Lena and Barbara images.

Wiener filter” [59] is also included since it considers the neighbouring dependency and
achieves efficacious performance with simple linear filter even if wavelet transforms are
not applied.

As shown in the tables and graphs, both of our proposed approaches present better or
comparable results compared to other existing methods.

In [78], an image denoising algorithm using Gaussian scale mixtures is proposed. In
their experiments, the results are only 0.1dB ~ 0.2dB better than NeighLevel as shown
in the tables. However, it may not be proper to compare our results with [78] because
Portilla et al. use a customized wavelet called steerable pyramid [91] while we use the
usual orthogonal wavelets and DT CWT. The emphasis of our paper is in the study of the
effects of neighbouring and level dependencies on thresholding the wavelet coefficients.
Moreover, our Matlab program takes 7 seconds for a 512x512 image with DT CWT on
1GHz Pentium III, whereas their Matlab implementation takes roughly 40 seconds for a
256x256 image on 1.7 GHz Pentium III according to [78]. Also our multivariate modeling
approach outperforms all other methods reported in thé literature when the scalar wavelet

transform is used, in particular Daubechies 8 filter.

!Since they assume that the maximum value for PSNR is 256, we subtract 0.03 dB, which is the approxi-

mate value of 20log; g—g‘g"

*We used wiener2 function in MATLAB image processing toolbox with a 5x5 neighbouring window
and unknown noise level.
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Since there is no general solution for equation (43), iterative numerical solution is ap-
plied for the multivariate approach. It takes about 30 seconds for a 512x512 image with
Daubechies 8 filter on 2.4 GHz Pentium IV PC when 10 elements are used. However, when
% can be calculated explicitly without Newton’s method in equation (41) like the examples
in Section 5.4.3, it only takes less than 3 seconds under the same condition.

In Appendix, more examples for image denoising are given for different types of images
such as astronomical image, satellite image, character image and biomedical image. We

believe the denoised images are helpful to recognize certain features in the images.
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Figure 19: Comparison graphs for some principal approaches from 512x512 Lena image
using Daubechies 8 filter.
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Figure 21: Denoised images using proposed algorithms for 512x512 Lena image
with ¢=30 : Original (top-left), Noisy (top-center; 18.60dB), VisuShrink soft (top-
right; 25.60dB), VisuShrink hard (middle-left; 26.33dB), Wiener filter (middle-center;
27.83dB), NeighSure (middle-right; 30.23dB), NeighShrink (bottom-left; 30.46dB),
NeighLevel (bottom-center; 30.76dB) Multivariate (bottom-right; 30.68dB).
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Figure 22: Cropped images (128 x 128) using proposed algorithms for 512x512 Boat im-
age with 0=25 : Original (top-left), Noisy (top-center; 18.60dB), VisuShrink soft (top-
right; 24.06dB), VisuShrink hard (middle-left; 25.03dB), Wiener filter (middle-center;
27.22dB), NeighSure (middle-right; 28.48dB), NeighShrink (bottom-left; 28.90dB),
NeighLevel (bottom-center; 29.11dB), Multivariate (bottom-right; 29.12dB).
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Approach Wavelet PSNR(dB) by noise level(o)
o =10[o = 15]0 = 20]0 = 25]0 = 30

[Noisy image [ - | 28.12 | 24.62 [ 22.14 | 20.16 | 18.60 |
|Wiener2 (5x5) | - | 32.67 [ 31.28 [ 30.03 | 28.85 [ 27.83 | -
Multivariate Scalar Daub. 8 | 34.55[32.71 | 31.44 | 30.46 | 29.64
NeighSure , wavelets 33.89 | 32.00 | 30.76 | 29.75 | 28.98
NeighShrink 34.49 | 32.57 | 31.25 | 30.20 | 29.38
NeighLevel 34.51 | 32.60 | 31.30 | 30.27 | 29.47
VisuShrink (soft) [33] 28.70 | 27.40 | 26.59 | 26.04 | 25.60
VisuShrink (hard) [33] 30.65 | 28.89 | 27.76 | 27.02 | 26.33
SureShrink [36] 33.42 | 31.50 | 30.17 | 29.18 | 28.47
BiShrink. [84] 33.91 | 32.03 | 30.70 | 29.78 | 28.91
Local BiShrink. [85] 34.33 | 32.48 | 31.16 | 30.12 | 29.38
HMT [29] 33.81 | 31.73 | 30.36 | 29.21 | 28.32
LAWMAP [70] 34.24 | 32.27 | 30.92 | 29.90

GSM [78] 34.23 | 32.35 | 31.03 | 30.23 | 29.21
BayesShrink [14] 33.29 | 31.38 | 30.14 | 29.19 | 28.45
NeighSure Symm.8 | 34.08 | 32.27 | 31.00 | 30.00 | 29.21
NeighShrink 34.65 | 32.77 | 31.48 | 30.41 | 29.62
NeighLevel 34.61 | 32.75 | 31.47 | 30.43 | 29.63
AdaptShr [15] (3236 | 31.04 | 30.04
Multivariate Complex| DT CWT |[35.35[33.70 | 32.46 | 31.48 | 30.68
NeighSure wavelets 35.17 | 33.31 | 31.92 | 31.02 | 30.17
NeighShrink 35.37 | 33.57 | 32.26 | 31.22 | 30.41
NeighLevel 3541 | 33.72 | 32.50 | 31.48 | 30.70
Local BiShrink. [83] 3531 [ 33.64 | 32.37 | 31.37 | 30.51
CHMT [23] 34.90 29.90
NeighShrink Over- TICWT | 35.41(33.62]3231]31.27 [ 30.47
NeighSure complete 35.22 | 33.33 | 32.01 | 31.05 | 30.23
NeighLevel wavelets 35.47 | 33.78 | 32.56 | 31.55 | 30.76
MMSE [60] OEB“ 10/18 | 34.93 | 33.01 | 31.69 | 30.60
SI-AdaptShr [15] SI Symm. 8 33.37 | 32.09 | 31.07

GSM [78] Steer. pyramid| 35.61 | 33.90 | 32.66 | 31.69

%0EB stands for overcomplete expansion biorthogonal filter

Table 3: Comparison table for proposed and existing methods with different Gaussian noise
(Lena 512 x 512).
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Approach Wavelet PSNR(dB) by noise level(o)

o =10|o = 15|0 = 200 = 25|0 = 30
Noisy image - 28.12 1 24.62 | 22.14 | 20.16 | 18.60
Wiener2 (5x5) - 28.05 | 27.16 | 26.28 | 25.47 | 24.73
NeighSure Scalar Daub. 8 31.94 | 29.54 | 28.03 | 27.05 | 26.16
NeighShrink wavelets 32.68 | 30.36 | 28.74 | 27.54 | 26.61
NeighLevel 32.67 | 30.36 | 28.75 | 27.56 | 26.63
VisuShrink (soft) 25.07 | 23.68 | 22.97 | 22.59 | 22.36
VisuShrink (hard) 27.46 | 25.25 | 23.93 | 23.16 | 22.74
SureShrink [36] 31.04 | 28.70 | 27.14 | 26.03 | 25.13
BiShrink. [84] 31.10 | 28.68 | 27.22 | 25.94 | 25.18
Local BiShrink. [85] 32.22 1 29.94 | 28.33 | 27.13 | 26.25
BayesShrink [14] 30.83 | 28.48 | 27.10 | 25.98 | 25.13
HMT [29] 31.33 | 29.57 | 2791 | 26.72 | 25.77
LAWMAP [70] 32.51 | 30.13 | 28.57 | 27.40
NeighSure Symm. 8 | 32.19 | 29.85 | 28.40 | 27.45 | 26.45
NeighShrink 32.98 | 30.67 | 29.04 | 27.45 | 26.86
NeighLevel 32.88 | 30.61 | 29.01 | 27.82 | 26.87
AdaptShr [15] 29.92 | 28.33 | 27.20
NeighSure Complex| DT CWT | 33.36 | 31.22 | 29.61 | 28.48 | 27.22
NeighShrink wavelets 33.79 | 31.60 | 30.02 | 28.84 | 27.88
NeighLevel 33.78 | 31.64 | 30.08 | 28.89 | 27.93
Local BiShrink. [85] 33.32 |1 31.28 | 29.77 | 28.58 | 27.62
NeighSure Over- TICWT 3340 | 31.28 | 29.69 | 28.58 | 27.38
NeighShrink complete 33.87 | 31.68 | 30.10 | 28.92 | 27.95
Neighlevel wavelets 33.87 | 31.72 | 30.15 | 28.97 | 27.99
SI-AdaptShr [15] SI Symm.8 31.11 | 29.49 | 28.30
MMSE [60] OEB 10/18 | 33.32 | 31.06 | 29.41 | 28.20
GSM [78] Steer. pyramid| 34.03 | 31.86 | 30.32 | 29.13

Table 4: Comparison table for the proposed and existing methods with different Gaussian
noise (Barbara 512 x 512).
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Approach Wavelet PSNR(dB) by noise level(c)

o = 10|o = 15|0 = 20[o = 25|0 = 30
Noisy image - 28.13 | 24.63 | 22.10 | 20.18 | 18.59
Wiener2 (5x5) - 30.02 | 29.04 | 28.09 | 27.22 | 26.40
Multivariate Scalar Daub. 8 32.54 | 30.69 | 29.38 | 28.34 | 27.56
NeighSure wavelets 32.17 | 30.25 | 28.85 | 27.80 | 26.87
NeighShrink 32.67 | 30.63 | 29.23 | 28.17 | 27.31
NeighLevel 32.67 | 30.65 | 29.25 | 28.21 | 27.37
VisuShrink (soft) [33] 26.64 | 25.34 | 24.59 | 24.06 | 23.68
VisuShrink (hard) [33] 28.61 | 26.90 | 25.82 | 25.03 | 24.46
SureShrink [36] 31.83 | 29.88 | 28.55 | 27.50 | 26.73
HMT [29] 32.25 | 30.28 | 28.81 | 27.65 | 26.80
LAWMAP [70] 32.22 | 30.37 | 28.97 | 27.88 | 27.03
BiShrink. [84] 32.22 | 30.22 | 28.90 | 27.88 | 27.08
Local BiShrink. [85] 32.39 1 30.52 | 29.15 | 28.11 | 27.26
GSM [78] 32.39 | 30.41 | 29.03 | 27.99 | 27.15
BayesShrink [15] 31.77 | 29.84 | 28.45 | 27.37 | 26.57
NeighSure Symm. 8 | 32.31 | 30.40 | 28.99 | 27.85 | 26.97
NeighShrink 32.78 | 30.75 | 29.35 | 28.26 | 27.40
NeighlLevel 32.76 | 30.75 | 29.36 | 28.29 | 27.45
Multivariate Complex| DT CWT | 33.31 | 31.46 | 30.14 | 29.12 | 28.24
NeighSure wavelets 33.24 | 31.31 | 29.74 | 28.48 | 27.55
NeighShrink 33.30 | 31.31 | 29.94 | 28.90 | 28.04
NeighLevel 33.36 | 31.46 | 30.11 | 29.11 | 28.25
Local BiShrink. [85] 33.07 | 31.33 | 30.05 | 29.03 | 28.28
NeighSure Over- TICWT 33.25 | 31.34 | 29.81 | 28.54 | 27.57
NeighShrink complete 33.32 1 31.33 | 29.97 | 28.93 | 28.08
NeighLevel wavelets 33.41 | 31.51 | 30.17 | 29.15 | 28.30
GSM [78] Steer. pyramid| 33.58 | 31.70 | 30.38 | 29.37

Table 5: Comparison table for proposed and the existing methods with different Gaussian
noise (Boat 512 x 512).
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Chapter 7

Conclusion and Discussion for Future

Work

In this thesis, image denoising using wavelet transforms has been discussed. In the first part
of the thesis, we have introduced some important wavelet transforms for image denoising.
These include translation-invariant wavelets, complex wavelets, multiwavelets, directional
wavelets, and other overcomplete wavelets. Then the existing denoising algorithms using
various different approaches have been described as a literature review.

In the latter part of the thesis, we have proposed two different approaches for image
denoising. The first approach is the specific shrinkage algorithms which take advantage
of the higher order statistical coupling between neighbour wavelet coefficients and their
corresponding coefficients in the parent level with effective translation-invariant wavelet
transforms. Also the multiplying constant of a threshold which produces lower MSE for
image denoising has been introduced and chosen empirically. The other image denoising
method is based on the multivariate statistical model and estimates the clean wavelet coef-
ficients using Bayesian probability solution. This method can produce more accurate esti-
mation using various related information. The main advantage of the coefficient estimation
method based on the multivariate theory is its generality. Various estimation expressions
and different experimental results can be obtained by statistical modeling and parameteriz-

ing models. Both of our methods give fairly satisfying results in both visual and numerical
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aspects. They outperform most of the existing algorithms as listed in the experimental re-
sults. In addition, the shrinkage algorithms in the first approach are considerably fast and
effective in the aspects of both time and storage complexities. Even though the multivariate
approach which does not have a general solution causes heavier computational complex-
ity in general, it can be fast and effective in some specific cases. In this case, both of the
proposed approaches are easy to implement.

Although our proposed approaches give the encouraging denoising results, we believe
that there is more room of improvement to achieve high quality images. For example, it
may be possible to develop other thresholding functions which are more coherent, bet-
ter related to the neighbouring coefficients, and also representing better the hierarchical
dependency between different wavelet decomposition levels. Furthermore more adaptive
thresholds other than SURE threshold used in NeighSure algorithm may produce better re-
sults. For the multivariate statistical modeling approach, we can choose some different
elements and parameters of our model.

Finally, it is also possible to combine our methods with the others to achieve high qual-
ity image restoration. In [92], Starck et al. reported that the combined method of curvelet
and undecimated wavelet generates much higher quality of image by applying matching
pursuit (MP) and basis pursuit (BP) algorithms. When they use noisy Lena image with
o = 20, the combined method yielded 32.72dB while undecimated wavelet and curvelet
separately can only improve the noisy image to 32.10dB and 31.95dB respectively. In fact,
we did a simple experiment which combines our proposed methods as a simple example. In
our experiment, we combine the proposed multivariate method with NeighLevel. We sim-
ply take the average of two denoised images and achieve higher PSNR value. For example,
when we use the same Lena image with 0 = 20, NeighLevel and our proposed meth-
ods produce 32.54dB and 32.50dB respectively. By averaging these two images, we could
obtain 32.61dB. This is a simple test, but we can see that combining different methods is

probably very promising.
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Appendix A

Mathematical Preliminaries

A.1 Convolution

Let f(z) and g(z) be two functions of z € R. which map f,g : R — R. Then a convolution

of f(z) and g(x) can be defined as a production of two functions over a finite range [0, z:

¢
frxg= / f(z)g(t — z)dx. (50)
0

In an infinite range, the convolution is expressed by a function of time :

frg= /oo f(z)g(t — z)dz. (51)

In descrete domain, f and g can be considered as vectors, which consist of n; and ng

elements respectively. Then colvolution of f and g are defined as follows:
y(t) =) flglt—i+1) (52)

In this case y (¢) is a ¢-th element of output vectory = f g, wheret = 1,--- ,n; +ng — 1.
Convolution satisfies a commutative property f * g = g * f, associative proerty f * (g *

h) = (f * g) * h and distributive property f * (g + h) = (f x g) + (f  h).
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A.2 Definitions for numerical evaluation

Image denoising results can be measured numerically. We introduce some common defi-
nitions for the measurement of the image quality. Suppose that A is a desired image with
N x N size, A is an estimated image from a noisy image B. Then mean squared error
(MSE) 1s expressed as follows:

A AlP

MSE = | 7 (53)

Root mean squared error (RMSE) is the square root of MSE. MSE is noted for a good
way to represent the error of a signal (or image). In fact, our fundamental goal for image
denoising is to minimize MSE.

There are also the other ways to measure the error of the image, called signal-to-noise
ratio (SNR) and peak signal-to-noise ration (PSNR). The unit for both of them is a decibel
(dB). SNR and PSNR are defined in the following.

| A/ N?
SNR(dB) = 10 logy, NRE (54)
(maximum value)?
PSNR(dB) = 10log;, (55)

MSE ’
where the maximum value is the possible maximum value of A. For 8-bit gray level image,
the maximum value is 255. Note that the bigger value, the better image quality for SNR and
PSNR whereas the smaller value, the better image quality for MSE. Both SNR and PSNR
are related to MSE, especially PSNR can be obtained only from MSE. PSNR is a popular
way to measure the image quality in image processing field. For example, it is often used

for compression performance. We mainly use PSNR in this thesis.
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A.3 Bayes rule and MAP/ML estimator

Bayes rule is the way to calculate a posterior probability from the prior probability. This

can be expressed as follows:

P(Y|X)P(X)

P(XIY) = =5

(56)
where X, Y are sets. In equation (56), when X is a hypothesis and Y is given as the
observed data, P(X) is the prior probability of X, the conditional probability P(Y|X) is
likelihood, and P(Y) is the evidence [39].

Maximum a posteriori (MAP) estimator is one of the conventional ways of Bayesian
solution and widely used for machine learining and pattern classification [71]. The main
goal is to find the hypothesis which is maximally probable by using Bayes rule. Therefore

such a hypothesis xp4p can be expressed as follows:

TMAP = argmea}?cP(X = z|Y)
_ aremax PY|X =z)P(X = z)
- & rzeX P(Y)
= argme%?cP(Y|X =z)P(X = z). (57)

In this case, the P(Y") is dropped since it is an independent constant of X.
Another classical method by maximizing a given probability is maximum likelihood

(ML). This is because we get zyy, by maximizing the likelihood probability P (Y| X).
vy = argmax P(Y|X = z). (58)
rzeX

As we can see, xy, is one specific case of zyap when P(X = z) is a constant.
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A.4 Probability density functions.

Probability density function p(z) (pdf) is the function to express the probability in terms of
variable z. p(z) is described as the derivative of the cumulative distribution function. So

the probability function has the following property:

/oo p(z)dr = 1. (59)

In this thesis, we use only continuous pdf rather than discrete pdf. We introduce some

important continuous pdfs.

(Univariate) Gaussian (or normal) distribution is probably the most popular prob-
ability function since it has natural properties such as symmetry, continuity and smooth-
ness. Gaussian distribution is simply written N (u, 02), where u is mean and o2 is variance.

pdf of Gaussian distribution can be expressed as follows:

ps) = —= exp{—M}. (60)

T V2ro 202

Generalized Gaussian distribution (GGD) is generalized form of univariate Gaus-
sian distribution with one more parameter. GGD is a good pdf to represent the wavelet

coefficients [67]. If the mean 1 = 0 and ¢? is variance,
p(a) Cexp{ H} 61)

where o = %%a and the normalized constant C = Therefore, GGD has one

_ B
2a0(1/4)"
parameter 5 and § > 0.

Multivariate Gaussian distribution is an extended distribution of Gaussian distri-
bution to the multidimensional space. So pdf p(x) can be distributed in terms of a vector x.
Like univariate Gaussian distribution, multivariate Gaussian distribution is simply written

N(p, %), where p is mean vector and ¥ is covariance matrix. pdf of multivariate Gaussian
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distribution for d-dimensional vector x can be expressed as follows:

) = G o0 { 30— WS - ©)
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Appendix B

More Examples for Image Denoising

Figure 23: Denoised images using proposed algorithms for 512x512 Baboon image
with =50 : Original (top-left), Noisy (top-right; 14.15dB), NeighLevel (bottom-left;
22.41dB), Multivariate (bottom-right; 22.21dB).
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Dear Pam,
I was delighted to hear from you last week, Patti and I had &
wonderful time during cur ueek-long sumeer vacation, The wea-
ther was excellent, and the food was absolutely exquisite, 1

hope that we can repeat this next year and that wou will join

us too.

We came back with a lot of fantastic memories, which we would

like to share with wou through some snepshots that we took.

Figure 24: Denoised images using proposed algorithms for 512x 512 image including char-
acters with ¢=60 : Original (top-left), Noisy (top-center; 12.57dB), VisuShrink soft
(middle-left; 16.98dB), Wiener filter (middle-right; 20.99dB), NeighLevel (bottom-left;
21.66dB), Multivariate (bottom-right; 21.68dB).

76



Figure 25: Denoised images using proposed algorithms for 512x512 Brain image with
0=255 : Original (top-left), Noisy (top-right; 0.00dB), VisuShrink soft (middle-left;
17.06dB), Wiener filter (middle-right; 11.51dB), NeighLevel (bottom-left; 20.02dB),
Multivariate (bottom-right; 19.78dB).
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Figure 26: Denoised images using proposed algorithm for 512x512 fish image with
0=100: Original (left), Noisy (right; 8.13dB), Denoised by NeighLevel (right; 21.57dB).

R 4 A . - KRy B

Figure 27: Denoised images using proposed algorithm for 512x512 satellite image with
0=30: Original (left), Noisy (right; 18.59dB), Denoised by NeighLevel (right; 22.83dB).

Figure 28: Denoised images using proposed algorithm for 512x512 astronomical image
with =50 : Original (left), Noisy (right; 14.15dB), Denoised by NeighLevel (right;
28.48dB). '
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