VISUALIZATION ANIMATION FOR REAL-TIME
REACTIVE SYSTEMS SIMULATION

MUBARAK SAMI MOHAMMAD

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

SEPTEMBER 2004

(© MUBARAK SAMI MOHAMMAD, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94749-1
Our file Notre référence
ISBN: 0-612-94749-1

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Visualization Animation for Real-Time Reactive Systems Simulation

Mubarak Sami Mohammad

Simulation results form basis for the validation and verification of Real-Time Reactive
systems design. The high complexity of such systems brings sophisticated simulation
results that are difficult to understand. The way of presenting those results will have
a great effect on the usability of the simulation tools.

This thesis addresses the design and implementation of a visualization animation tool
that will improve the usability of TROMLAB Framework, a rigorous real-time reac-
tive systems development environment being built in the Department of Computer
Science, Concordia University. The new tool uses graphical representation and an-
imation to present the simulation results produced by TROMLAB tools. Also, The
thesis introduces new guidelines for improving the understandahbility of real-time reac-
tive simulation results. Furthermore, the thesis presents a sclution for the Steam
Boiler Controller case study, a benchmark problem for Real-Time Reactive studies,

for the first time using TROMLAB formalism.

it

To Allah.

v

Acknowledgments

I would like to express my profound thanks to my supervisors, D. V.S. Alagar and
Dr. Olga Ormandjieva, for their help and guidance through the stages of work on
this thesis. Their technical and financial support motivated me to work hard and
produce high quality results.

On a personal level, I would like to thank all my family members for their endless

support and prayers; specially, my brother Mohsen.

Contents

List of Figures
List of Tables

1 Introduction
1.1 TROMLAB Related Work
1.2 Major Contributions
1.3 The Scope of the Thesis

2 TROMLAB Environment - a brief review
2.1 TROM Formalism
2.1.1 The First Tier: Data Abstraction Tier

2.1.3 The Third Tier: Subsystem Tier.
2.2 TROMLAB Components
2.2.1 The Interpreter
222 TheSimulator L

3 TROMLAB Understandability Guidelines
3.1 Imtroduction
3.2 Understandability
3.3 Understandability Guidelines for TROMLAB Tools

3.4 Understandability Evaluation of the Simulator’s User Interface

vi

xii

W W =

Ne = N B) |

10
10
10

14
14
15
16
18

3.5 A New Way for Representing Simulation Results 20

3.6 General Principles for Usable Visualizations 21
Visualization Animation Tool’s Architecture 23
4.1 Architecture 23
411 Introduction 23
4.1.2 Purpose and Context 23
413 Tool Interface L 25
4.1.4 Non-Functional Requirements 25
4.2 Architectural Overview, 26
4.2.1 Pipes and Filters Architecture 26
4.2.2 Rationale Behind Selection 27
4.2.3 Architecture Diagram 28
43 Components 29
43.1 XML Producer 30
432 XMLFile 30
4.3.3 Parser Component 32
434 Analyzer 33
4.3.5 Visualizer Component 36
4.3.6 Animator Component, 39
4.4 Development Platform 42
4.5 Dynamic Behavior : Scenario 42
Steam Boiler Case Study 44
5.1 Introduction 44
5.2 Problem Description 45
5.2.1 Informal Problem Definition 45
5.2.2 Characteristics of system components 46
5.2.3 Assumptions. 48
5.2.4 Safety Property 48

vii

5.3

5.2.5 Liveness Property

Formal Solution
5.3.1 Class Diagram for Steam Boiler
5.3.2 Level Measuring Class
53.3 Controller Class
534 PumpClass
53.5 ValveClass
536 TimerClass
5.3.7 SubSystem Configuration Specification (SCS)
5.3.8 Sample Simulation Event List

6 Visualization Animation Tool

6.1 VAT . . .
6.1.1 TheStart Page
6.1.2 The Simulation Details
6.1.3 The TROM Objects Section
6.1.4 The Current Status Section
7 Testing
7.1 Testing Case Studies
7.2 Railroad Crossing Case Study
7.3 Robotic Assembly Case Study
7.4 Traffic Control Case Study

8 Related Work

8.1
8.2
8.3

CD++ Real-Time Simulation
Simulation of Steam Boiler

Rational Rose RealTime

9 Conclusion

9.1

Future Work

65
65
65
66
67
68

72
72
72
74
75

77
77
78
79

83

9.1.1 Simulator,

9.1.2 VAT
Bibliography

Appendix A

ix

List of Figures

© o g O Ol R W N e

[N R N N T e T T o e e S S Sy G G
N = O O 0O s W N R, D

The Architecture of TROMLAB 2
The Three Tiers of TROM Formalism 6
Architecture of the Interpreter 11
Architecture of the Simulator 12
Snapshot of the Simulator’s simulation result 19
4+ 1ViewModel 24
VAT Context Diagram 25
Pipe and Filter Architecture 27
Components Diagram for VAT Architecture 28
Analyzer Component class diagram, 34
Visualizer Component class diagram 37
Animator Component class diagram 40
VAT Sequence Diagram 43
Steam Boiler Controller 45
Steam Boiler Controller class diagram 50
Level Measuring class diagram 51
Level Measuring state chart diagram 52
Controller class diagram 53
Controller state chart diagram 55
Pump class diagram 57
Pump state chart diagram 57
Valve class diagram 58

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Valve state chart diagram 59

Timer class diagram 60
Timer state chart diagram 60
Steam Boiler collaboration diagram 62
Sequence diagram 64
VAT start page 66
Simulation Visualization Animation 67
TROM object state chart diagram 68
TROM object state chart diagram 69
TROM object state chart diagram 70
Railroad Crossing Visualization Animation 73
Robotic Assembly Visualization Animation 74
Traflic Control Visualization Animation. 75
Simulation Qutput 78
Steam Boiler Simulator L 79

xi

List of Tables

S O = W N

Tool Interface 25
XML Producer Component Description 30
Parser Component Description 32
Analyzer Component Description 33
Visualizer Component Description 36
Animator Component Description 39

xii

Chapter 1

Introduction

Reactive systems are the type of Real Time systems that maintain an ongoing con-
tinues interaction with their environment through stimulus and responses. This type
of interaction is governed by timing constraints. Examples of such systems can be
found in areas like: Transportation such as Train gate controllers, Workshop automa-
tion such as in Robotics, and Strategic defense systems such as Nuclear power plants.
There are several factors that affect the complexity of such systems like size, timing

constraints, criticality, and heterogeneity.

The major issue in the development of Real Time Reactive Systems is to produce
a design with correct functional and temporal properties. In order to achieve success
in this complex domain, the design process should be supported by a formal basis
for specification, analysis, and refinement. A formal object oriented model (TROM)
was invented to assist the formalization of Real-Time Reactive Systems specifica-
tions. Along with the model, a framework for practicing the language and methods
of TROM and integrating formal methods with several phases of the development
life cycle was created. This framework is called TROMLAB, and it consists of many
components that take the system design from UML Rose model, translate it into
TROM formalism, compile the formalism, analyze it, and finally produce simulation

results that show the expected behavior of the system based on its design. Figure 1

shows the Architecture of TROMLAB [Liu03]. The results are presented in a tabular

form and can be interpreted only by simulation experts.

“y
o

Graphical User EInderface

4

] i T

N
ENT INTERFRETER
oR SIMULA THON TOOL
Spess Levieal
OBIECT MODEL
Subaystem Analyzer
Aoty | SURORT

Batcb-E ode - Tree Clazs
- Semantic Port Part
)

|
|

SIMUTATOR

Definitions TODLSET
™ .
e I Event Toteractive/
} g Handler Bateh Viode
LSL TRAITS TARCH AXTON e | 7] e nager
C+ IIBRARY GENERATOR Wanager
— SYSTEW MODEL — -
ibrary YERIFICATION UFFP -
Wanager WANAGER SUEEE ORT Scheduler (itomr)
mstantiate e _
Liok to PVE [(TROM][C‘“'ﬁ‘“"]
< . PortLioks
p] Obhject

Figure 1: The Architecture of TROMLAB

No matter how excellent and accurate the simulation tools are, if they have poor
usability, they will face difficulties in exposing their powerful functionalities. In the
current developments of TROMLAB Tools, only those who were behind the develop-
ment of the components are able to understand the results. Hence, there is a great
need for improving the usability and making the results perceivable by other users

from the same domain of research.

The purpose of this thesis is to improve the usability of TROMLAB tools by build-
ing a visualization animation tool that will take the simulation results as input and

visualize and animate the expected behavior of the system. The user will be able to

2

see how the system objects will be created and how they interact with each other in

an understandable easy to grasp visual model.

1.1 TROMLAB Related Work

This thesis is related to the work done by [Mut96], Simulator for executing the formal
design specifications . That work had been improved by [Hai99], who added the
reasoning system to the simulator. Then the work had been again improved by
[Bha99], who improved the Graphical User Interface for TROMLAB environment.
And finally, the latest version was updated by [Liu03], who improved the simulator

and introduced parameterized events into it.

1.2 Major Contributions

This thesis offers the following contributions:

e Designs and Implements a Visualization Animation Tool for TROM simulation

results.

e Solves a simplified specification of the Steam Boiler Controller case study prob-

lem using the TROM formalism and TROMLAB environment.

Defines understandability guidelines for TROMLAB tools.

Introduces portability capability to the simulation results by exporting simula-

tion results to XML.

1.3 The Scope of the Thesis

Chapter 2 briefly reviews the TROMLAB environment including both TROM formal-
ism and TROMLAB components. New understandability guidelines for improving the
understandability of TROMLAB tools are introduced in Chapter 3 along with an as-
sessment, to the current usability of the simulation results. Chapter 4 introduces the
architectural design of the new Visualization Animation Tool(VAT). A solution for
simplified specifications of the Steam Boiler Controller case study is provided by the
TROM formalism and compiled by the TROMLAB components in Chapter 5. The
developed VAT is presented in Chapter 6. As proof of having achieved the goals of
this thesis, three cases studies along with the Steam Boiler are visualized using VAT
and the results are presented in Chapter 7. After that briefs about similar related
works are presented in Chapter 8. Finally, chapter 9 offers the conclusion of the thesis

and the research directions.

Chapter 2

TROMLAB Environment - a brief

review

This chapter reviews the TROMLAB environment by giving a background about the
work done by the previous research studies in TROMLAB.

2.1 TROM Formalism

The TROM formalism is a layered model that consists of three formal tiers shown
in Figure 2 [AAM96]. In this model, each layer interacts only with its immediate
upper layer. This architectural pattern creates independence between the three tiers
resulting in the benefits of having modularity, reuse, encapsulation, and hierarchical
decomposition. The three-tier structure describes the system configuration, reactive
classes, and relative Abstract Data Types. The upper-most tier is the subsystem
configuration specification. It specifies objects definitions, their collaboration, and
the port links that controls the communication between objects. The middle tier is
the TROM class. TROM class is a hierarchical finite state machine extended with
ports, attributes, logical assertions on the attributes, and time constraints. The third
tier is the Larch Shared Language (LSL) trait that represents Abstract Data Type
used in the TROM classes. Figure 2 shows the three tiers [AAMO96].

Aniniation Reguirenients spocification in Larch

Tool Allen’s Temporal Logic{A'TL) - Proaver

Validation Formal Verification

o g o o o 8 2, 4 o . g o e o o s o o b s i e e N o B e

3]

3 1

+ !

]]

! |

. ! Bystem Confipurition Theory: !

Subsystem ! Sp&riﬁual‘i‘un | * Syj tem Theory . |

Computations : i Synch, Axfomsin AFL | !

1 # ¥

: ! i

) * i

' ' ; !

i 1 # t

| ! : , !

TREOM - : Timed Resctive : TROM thoory: '

Computations | | Olsject Muoded : Axioms in ATL |

' | : !

i 1 7 i

1 H]

L) ¥ 1

1 & 1

] 3 1

: : :

[i Larch Shaved * ft e 1

! Datia Model X First order i

' E Language (LSL) g Logic i

: { i

] H]

|] : i

!...‘...«...““-.ug + BM(I,i d i)egign | PRGN PR Sy ..x._,__-.‘..«._.‘. '
Operational Semantics Specification Logical Semantics

Figure 2: The Three Tiers of TROM Formalism

2.1.1 The First Tier: Data Abstraction Tier

The Data Abstract Tier encapsulates the Abstract Data Types. This tier uses the
LSL trait, The Larch Shared Language [GH93], to define all data types used in the
middle tier. The following example shows the Integer LSL trait :

Trait: Integr(I)

Includes: Boolean

Introduce:
succ : I -> 1I;
pred : I -> I;

end

plus I, I > I;
subt I, I ->1;
mult I, I ->1;
quot : I, T ->1;
remn : I, I > 1;
imin I, I ->T1;
imax I, I ->1;

2.1.2 The Second Tier: TROM Tier

A TROM is a Generic Reactive Class (GRC), an extended finite state machine with

port types, attributes, hierarchical states, events triggering transitions and future

events constrained by strict time intervals [AAM96]. Brief summary of TROM ele-

ments as stated in [Hai99] is:

A set of events partitioned in three sets: input, output, and internal events.
A set of states: A state can have substates.
A set of typed attributes. The attributes can be one of the following:

- primitive data types,
— abstract data types,
— port reference type.

An attribute function which defines the mapping of the set of attributes to the

set of states.

A set of transition specifications. Each transition specification describes the
computational step associated with the occurrence of an event. The transition
specification has three assertions: a pre- and post-condition, as in Hoare logic,

and the port-condition specifying the port at which the event can occur.

7

e A set of time-constraints. Each time constraint specifies the reaction associated
with a transition. A reaction can fire an output or an internal event within a
defined time period, and is associated with a set of disabling states. An enabled
reaction is disabled when an object enters any of the disabling states of the

reaction.

The language for describing a generic reactive class, derived directly from the formal

definition, is shown in the following example:

Class Pump [@P]

Events: OpenPump?@P, ClosePump?@P, open
States: *closed, toopen, opened

Attributes:

Traits:

Attribute-Function: closed -> {};toopen —> {};
opened -> {};

Parameter-Specifications:

Transition-Specifications:
R1: <closed,toopen>; OpenPump[](true); true => true;
R2: <closed,closed>; ClosePump[] (true); true => true;
R3: <toopen,opened>; openl[](true); true => true;
R4: <opened,closed>; ClosePumpl[](true); true => true;
R5: <opened,opened>; OpenPump(] (true); true => true;
Time-Constraints:
TCvarl: R1i, open, (0, 5), {};

end

2.1.3 The Third Tier: Subsystem Tier

The subsystem configuration is specified in the subsystem tier. The configuration
specification uses objects instantiated from classes defined in the TROM tier. An ob-
ject is instantiated from a class by defining a finite number of ports for each port type
in the class specification, and by initializing the attributes included in the class. Each
instantiated object will carry its own set of attributes. A port link is an abstraction of
a communication medium between two objects. A port link is established between a
port of one object and a compatible port in another object. Objects communicate by
exchanging messages (external events) through the port links [AAM96]. An example

for the syntax of a subsystem specification is :

SCS SteamBoiler

Includes:

Instantiate:
pumpl::Pump[@P:1];
controllerl::Controller[@CP:1, @CV:1, @CL:1, @CT:1];
levelmeasuringl::LevelMeasuring[@L:1];
timerl::Timer [@TC:1];
valvel: :Valve[@V:1];

Configure:
controllerl.@CP1:QCP <-> pumpl.@QP1:@P;
valvel.@V1:QV <-> controller1.@CV1:@CV;
levelmeasuringl.@L1:@L <-> controllerl.@CL1:@CL;
controllerl.@CT1:@CT <-> timer1.@TC1:@TC;

end

The Includes section lists imported subsystems. A reactive object is created in the

I[nstantiate section, with parametric substitutions to cardinality of ports for each

port type. The Configure section defines a configuration obtained by composing ob-
jects specified in the Instantiate section and in the subsystem specifications imported
through the Include section. The composition operator < sets up communication
links between compatible ports of interacting objects. Two ports are compatible if
the set of input message sequences at one port is a subset of the output message

sequences at the other port.

2.2 TROMLAB Components

In this section, the functionalities of two TROMLAB components, the Interpreter

and the Simulator, are briefly reviewed.

2.2.1 The Interpreter

The interpreter was the first tool to be implemented in TROMLAB by [Tao96]. It
takes as input the specifications of the three TROM tiers in one source file and
performs syntactic and semantic analysis and produce an internal representation of
the well-formed TROM formal specification of the corresponding reactive system.
The advantage of the three-tiered design was not realized in this implementation. The
work had been improved by Haidar [Hai99] and Sriniva [Sri99] to include incremental
and independent compilation of specifications and enhanced error reporting. Figure

3 shows the architecture of the Interpreter [Liu03].

2.2.2 The Simulator

The simulator is an animation tool that was implemented by Muthiayen [Mut96]. It
worked with the first interpreter. Then the simulator was reengineered, designed and

implemented, by Haidar [Hai99] by adding a reasoning capabilities. Figure 4 shows

the simulator architecture [Liu03]. The simulator has two working modes:

¢ Debugger mode: In this mode, the user can perform debugging tasks and query

10

User Iyt
File

Parser
&

& S
Build the Asg;/ N
p uses,

., LISEH
e s
-

Abstract Syntax Tree (ASTY I Clenerate) ‘ -~ iises

;
&
uses,
&

/
s Generale
Java Semantic Validation \ / Jene
uws"x% \ /

. y ’
] |

Semantic analyser o l Error messages |
- | Generate

Figure 3: Architecture of the Interpreter
the system after the end of each event.

e Normal mode: In this mode the simulator will perform complete simulation

according to the given scenario.
The simulation tool consists of the following components as described in [Liu03]:

e Simulator :It consists of an event handler, a reaction window manager, and an

event scheduler.
— The event handler is responsible for handling the events that are due to
occur and detects the transition to be trigger by the event.

— The reaction window manager is responsible for activating the computa-

tional step to handle the transition causing events.

— The event scheduler causes an enabled event to occur at a random time
within the corresponding reaction window. It schedules output events

through the least recently used port using a round robin algorithm.

o Consistency checker: It detects deadlock configurations in order to maintain

the continuous flow of interactions.

11

0BJECT MODEL VALD ATION
SUPDORT SBAULATOR TOOLSET
Beractive fBach
Mode
Peat Type Chss;madgr
D efirdtion s
Defindtion
Evert Hardler Debugger
Consistency Tine
checker Ilarager
Reaction Trace
Window
SUBSYSTEM MODEL Marager aalyzer
SUPPORT
b tardiate Corfigre
TROM Port Lk
Objects £ Event Schedulkr Query handler

Figure 4: Architecture of the Simulator

e Validation tool: It consists of a debugger, a trace analyzer, and a query handler.

— The debugger supports system experimentation by allowing the user to
examine the evolution of the status of the system throughout the simula-
tion process. It also supports interactive injection of simulation event, and

simulation rollback to a specific point in time.

— The trace analyzer includes facilities for the analysis of the simulation
scenario. It gives feedback on the evolution of the status of the objects in

the system, and the outcome of the simulation event.

— The query handler allows examining the data in the AST for the TROM
class to which the object belongs, and supporting analysis of the static

components during simulation.

e Object model support: It supports the specification of the TROM classes and

the evaluation of the logical assertions included in the transition specifications.

e Subsystem model support: It creates subsystems by instantiating the included

12

subsystems with its objects and port links.

e Time manager: It maintains the simulation clock and updates it regularly. It
allows setting the pace of the clock to suit the needs of analysis of simulation
scenarios. It also allows freezing the clock while analyzing the consequences of

a computation.

The brief overview that was presented in this chapter introduced the TROM Formal-
ism and the TROMLAB tools that allow developers to practice the formalism. The
tools take the formalism as input and do syntactic and semantic analysis, compila-
tion and simulation operations, and finally produce a simulation result that shows the
expected behavior of the formalized system design. Those simulation results are im-
portant for validating the correctness and completeness of the corresponding system

design. The next chapter inspects the understandability of the simulation results.

13

Chapter 3

TROMLAB Understandability

Guidelines

3.1 Introduction

The process of implementing the TROMLAB framework tools took several stages of
iterative development, incremental design, validation, and formal verification of de-
sign models. It started with implementing a compiler for formal design specification
[Ta096] and [Sri99]. The concentration was on having a working product that can
compile and test formal specifications according to TROM formalism. At that time,
functionality had higher priority than usability of tools. Gradually over time, more
tools were added for simulating, debugging and querying design specifications to as-
sist the analysis of the design and the requirements [Mut96] and [Hai99]. Because of
the complexity included in such tools, graphical user interface was recognized as an
important requirement for the usability of the entire system. Therefore, a graphical
user interface was implemented to facilitate the interaction with the different compo-
nents of TROMLAB [Sri99]. The research continued to improve the functionality and
produce accurate simulation results that can verify the correctness of the formalized
design. However, those simulation results remain presented in a way that is only

understandable by TROMLAB experts; specifically, only the ones who implemented

14

the tools were able to understand the output.

Because of the increase in TROMLAB research studies and because it has become a
mature project and got recognized by other research groups in the same field of study,
usability and portability of simulation results have become important requirements

having the same criticality as functional requirements.

This chapter introduces understandability as an important factor for satisfying us-
ability of simulation results. It defines understandability, presents new guidelines for
the TROMLAB Tools understandability, gives understandability evaluation of the
current Simulator results, and introduces a new way to present simulation results
based on guidelines and principles set by experts in usability. Finally, it presents

general principles for usable visualizations.

3.2 Understandability

Usability research studies and standard models have recognized understandability as
one of the most important factors that affect the usability and hence the quality of
any software product. For example, ISO/IEC 9126-1 defines usability in terms of
understandability, learnability, operability and attractiveness. According to [Cio91],
one of the most important attributes of understandability is Comprehension. It is
defined as the degree or ease to which the user of a particular software system grasps

the information mentally.

Testing and validating the correctness of any system’s TROM formalism relies mainly
on the simulation results. Therefore, the correct and easy comprehension of those
simulation results is very important for any TROMLAB practitioner. Consequently,
improving the appeal and mental comprehension of simulation results will have a

great impact on the understandability and productivity of TROMLAB users.

15

For software specification methods, [Wil94] details three indicators of understand-
ability: notation, organization, and level of abstraction. Notation is the way of
presenting information to the user. It should be straightforward; therefore, the infor-
mation presentation should use different types of notations in order to most naturally
convey different types of information. Organization is the way of structuring those
notations in the user interface design. Information should be well organized so that
it can be found easily in the provided interface. Abstraction is the way of presenting
the necessary and important information pieces. It eliminates any irrelevant details

that might distract user’s focus.

Applying those understandability indicators to the simulation results will improve
the usability of TROMLAB tools which will improve, consequently, the learnability
and user satisfaction that will result in the increase of the utilization of those resources

and, finally, the increase of research in this area.

3.3 Understandability Guidelines for TROMLAB
Tools

The Object Model of TROM consists of the following important types:

e TROM object: Generic Reactive Class that forms the basic abstract structure

of a reactive system [AM98].
e State: a situation during the life of an object.

e Events: messages that cause transition of objects from one state to another.
Those events can be input, output, or internal. Input and output events are
shared events because they cause the two objects to change their state simulta-

neously.

16

e Time: the time constrained for the objects response to a stimulus.

TROMLAB Simulation results contain combination of those types that explain the
expected behavior of the system when it runs under specified simulation event list.
Therefore, the way of presenting those types will have a great impact on the under-

standability of the simulation results.

This thesis suggests the following guidelines to achieve the goal of having an un-

derstandable simulation results:

1. Every TROM Object and State should be presented in a way so that it is clearly
identified and perceived by the user. Different types of graphical notations
should be used to differentiate the presentation of a TROM Objects or a State.
The user should be able on the glance to tell where are the TROM Objects and
the States.

2. The relationship between TROM Objects and their corresponding states should
be made clear. Organization structuring can be used to group the related states

together under the frame of the corresponding TROM Object.

3. States of a particular TROM Object should be presented in the same sequence of
execution that happened during the simulation process. Source and destination
states should be clearly grouped together in a way that make the transition

clear to the user.

4. The Type of event should be identified. The user should know whether the event
is internal or shared. Internal events will cause the TROM object to change
state internally from one to another. Shared events, on the other hand, not
only will make transition internally but also will affect another TROM Object
and make it change state accordingly. Also, shared events could be input or
output. In order to achieve this, internal and shared events could be presented
with different notations, or labels should be added to the presented transition

specification to clarify the type of event.

17

. The causing event should be mentioned. For each event, if there is a causing
event that synthesized the current event to occur, that causing event should be

clarified in the presented transition specification.

. Time should be always presented. During the simulation method, the user
should be able to see the change of system states and firing events along with

the current time and constrained time for those events and state transition.

. System’s current status and history should be always available to the user. At
any time, the user should know where in the simulation process he is now. Also,
he should be able to see the previous states for each object to aid in validating

the sequence of execution for that object.

. Help and support should be available to the user. The user should have help
facilities to aid grasping the meaning of the different notations and grouping
presented in the simulation results. Also, to help him understand the current

process of simulation.

3.4 Understandability Evaluation of the Simula-

tor’s User Interface

In this section, the current simulation results of TROMLAB simulator are examined

to evaluate the understandability of the presented simulation result. Figure 5 shows

an example simulation result displayed in a graphical user interface.

When evaluating the simulation results that are presented in the Simulator’s user

interface, the following understandability problems are found:

1. Where are the TROM objects in the interface? The expert users only know

that the listed names in the header of the table represent the TROM objects.

2. TROM objects that have long names are misrepresented in the header row. The

names appear incomplete as some characters are missing.

18

[Yisteam_paraiss)
o T6c
i e TeC Para

Figure 5: Snapshot of the Simulator’s simulation result

3. All the data in the simulation results are presented in the same way, textual
words inside table cells. There is no way to differentiate between TROM Ob-

jects, States, or events.

4. Where are the states that belong to a certain objects in the presented results?
The expert users only know that the listed names inside the table represent the

states for the corresponding header TROM objects.
5. There is no way of knowing the relationship between states.

6. Where are the TROM events in the presented results? The expert users only

know how to locate the names of events.

7. The size of the cells that contain the TROM Object, Time, and Event name
is very short. Therefore, in many cases the event name is not displayed in the

interface.

19

8. In the event transition, the state from which the TROM object is changing is

not shown in the interface.
9. The type of event is not made clear to the user.
10. The cause of the event is not displayed in the interface.

11. Because of the limited fixed size of the first column, the Time is not displayed

in many cases.

12, There is no help or guidance provided to the user to describe the results or the

presented information.

These problems make perceiving TROMLAB simulation results a difficult task to any
one other than TROMLAB experts. Hence, they limit the usability of the powerful
tools included in the TROMLAB framework. Therefore, there is a need for a better

way of presenting the simulation results.

3.5 A New Way for Representing Simulation Re-
sults

For the users to get the maximum benefit from the TROM simulator, the simulation
results should be easy to understand. Therefore, the way of presenting data has a

key role in making data understandable and perceivable by users.

There are two major ways of presenting data: the tabular form and the graphical
visualized form. The Tabular form is static; it doesn’t communicate with the user
in any way other than the presentation. Moreover, for tables to be understood well,
the number of dimensions should be kept as minimum as possible, preferably two.
Furthermore, in the tabular form, data reside inside rows and columns with limited
abilities to give self-descriptions because of the limitations of interface size and to

avoid complexity.

20

On the other hand, representing data graphically makes it easy to understand and
grasp by the user. Graphics speeds up the communication of data and makes it ac-
cessible to users. It gives more dimensions to the presented data and allows it to
describe itself by attributes like color, shape, size, or thickness. Hence, graphically
visualizing data will improve the understandability of the presented data and make
the user understand the simulation results at a glance. Therefore, this thesis presents
the implementation of a visualization tool that will present the simulation results in

a more appealing way.

3.6 General Principles for Usable Visualizations

This thesis is going to follow general principles of perception that appeared in [Mir98]

when visualizing simulation results. The adopted principles are:

1. "Focus on the data”: make the user’s mental thinking and focus on the pre-
sented data by avoiding any unnecessary additional graphical items or dialogues.
Therefore, our visualization avoids any distracting unnecessary information and

presents information in one screen.

2. "Users perceive relationships between data in close proximity. Yet this percep-
tion of relationship due to proximity is overridden by physically distant points
that have links drawn between them”. Therefore, relationships between TROM
objects and state transitions should conform to this principle and related objects

should be visualized near each other.

3. "When data is densely displayed, users may fail to see some information due
to occlusion or over plotting, causing them to misinterpret what the display is
saying.” In our implementation, the screen that displays the simulation results
will be partitioned into three containers and each container will have a different

view and does not affect the display of the other container.

21

4. ”People remember the outline of a graphic or image more than what is inside
of it.” Therefore, the visualization tool implemented by this thesis will show a
partial presentation of TROM Objects state chart diagrams to show the overall
behavior of each TROM Object during the execution. The presentation will

include only the states that exist in the simulation results.

5. "Icons facilitate interaction best when their appearance distinctively represents
their function.” Therefore, proper icons will be used for commands to give a

good affordance to users.

6. ”Users tend to invert the figure and ground when they experience excessive per-
ceptual cueing or perceptual overload.” Users have limited perceptual processing

capabilities; therefore, this thesis will emphasize on simplicity of representation.

7. "The effect of users’ prior knowledge and expectations on their interpretations
of what they see”. Users are accustomed to UML diagram notations; therefore,
the same UML notations are used to represent Objects, rectangles; States, round

rectangles; and Transitions, arrows.

After inspecting the understandability of the simulation results and defining under-
standability guidelines for the visualization of simulation results, we are ready to

implement those guidelines in the visualization Animation tool.

22

Chapter 4

Visualization Animation Tool’s

Architecture

4.1 Architecture

4.1.1 Introduction

This chapter is intended to present the design of the Visualization Animation Tool
(VAT). The reasoning behind the chosen architecture for the system will be detailed.
The 4+1 view model of Kruchten for documenting architectures is used in this chapter
[Kru95]. This model agrees with the draft recommended practice for architectural
description IEEE P1471/D4.1 prepared by the Architecture Working Group of the
Software Engineering Standards Committee [IEE98]. The template applied by this
thesis for documenting such model view is introduced in [OCBO00]. Figure 6 shows
the 4+1 View Model. The Views that are presented are: the Logical View and the

Scenarios. Only one scenario is provided in this chapter.

4.1.2 Purpose and Context

Real-time simulations are used to assist the validation of the correctness and com-

pleteness of the proposed real-time reactive system’s design specifications. The design

23

End-user Programmers
Functionality Software management

Development
View

l (&eaarios) 1

Process View »| Physical View

Logical View i

Integrators System engineers
Performance Topology
Scalability Communications

Figure 6: 4 4+ 1 View Model

specifications are converted to a TROM specification language and executed to in-
spect the predicted behavior of the system before the development stage begins. This
helps improving the quality of the design. Visualizing and animating the simulated
designs improves the understandability of the simulation result. Consequently, it aids
in improving the testability of Real Time designs and eventually improves the quality

of the design.

In TROMLAB, the Simulator tool produces a simulation event list describing the
behavior of a specified TROM system. After verifying the usability of the resulting
simulation output, it was decided that a tool is needed to visualize and animate it
to maximize the benefit of the simulation process. The new tool will transform the
simulation results into an XML format and export it to an XML file. The file will
be parsed and processed in order to visualize the simulation result in the screen and
animate it. The user will see a visualized and animated form of the predicted behav-

ior of the specified TROM system on screen. Figure 7 shows the high level context

24

of the tool.

Simulator

Simulation
rasuft

1

|

Visualization
Animation
Tool

Screan

I nimated
esults

Figure 7: VAT Context Diagram

4.1.3 Tool Interface

This section introduces the services that VAT provides:

Service

Description

Export simulation results

This service extends the functionality of the simulator
tool and allows it to export the simulation results as an
XML file that can be used by any other tool.

Parse Simulation results

This service starts the collaboration of the VAT with
other TROMLAB tools. VAT shall be able to parse any
simulation result based on a specified XML schema

Analyze the parsed results

This service shall analyze the parsed simulation results
and restructure it in memory so that it will be ready for
use by any other tool.

Visualize simulation results

This service shall visualize the information analyzed from
the simulation results and display it in the user screen

Animate visual information

This service shall animate the visualized simulation
results.

Table 1: Tool Interface

4.1.4 Non-Functional Requirements

e Usability: the tool should provide an understandable representation of the sim-

ulation result. The objects, events, and states should be clear to the user. The

25

tool should inform the user about the current state of execution.

e Portability: the resulted animation should be able to be used by both web and

windows application for different operating systems.

e Dxtensibility: the design should allow additional functionalities and components

to be added to the tool.

4.2 Architectural Overview

The following section describes the logical view of the tool. It details the static struc-

ture of the proposed design.

Software Architecture is defined as a collection of computational building blocks
(Components) along with the description of the relationships and interaction between
these blocks (the connectors) [GS94]. In Addition, Software Architecture contains the
rationale behind the specified architecture. The rationale explains the motivation and
reasons for the selected Architecture style, the choice of components and connectors
and the constraints of the system. Another definition by [AAG93] is : ” At the soft-
ware architectural level of abstraction, a system is typically described as a collection
of interacting components. Components perform the primary computations of the
system. Interactions between components include high level communication abstrac-

tions such as pipes, procedure calls, message passing, and event broadcast.”

4.2.1 Pipes and Filters Architecture

The selected architecture type for the design of the Visualization Animation tool is
the Pipes and Filters Architecture. In this architecture style, the system consists of
several components connected in a series of pipes. The first component produces the
input and the last component renders the output in the required format for the user.

Each component in between receives input from the component preceding it and filters

26

this input by performing the required data transformation so that it will be ready for
consumption by the following component. Each component in this architecture style

is called a filter, and each connector is called a pipe. The pipes serve to deliver input

N

Figure 8: Pipe and Filter Architecture

from one component to another.

h 2
Y
Y

In Figure 8, the Filters (Components) are represented as rectangles and the Pipes

(Connectors) are represented as arrows.

4.2.1.1 Advantages

Some of the advantages of this architecture type are listed in [GS94]:
e It helps understanding the overall input/output behavior of the system.
e It allows reusability of filters.

e It eases maintainability of the system by treating each filter separately.

It facilitates some types of specialized analysis.

It supports concurrent execution.

4.2.2 Rationale Behind Selection

The structural organization (architectural style) of the components and their connec-
tions that is used in the design is the Pipes and Filters. This style provides increased
flexibility, maintainability, reusability, and scalability. First, flexibility provided in

this design will result in benefits for the development phase as Filters can be built

27

separately with different programming languages. Second, maintainability will in-
crease productivity in work because each Filter can be treated alone, tested, and
maintained without affecting the work of other Filters. Third, the Pipes and Filters
architecture provided in our design will make it easy to reuse the components in other
designs. Finally, this style provides scalability as more filters can be added without

affecting the existing ones. Hence, this style was selected to structure our design.

4.2.3 Architecture Diagram

]

Simulator
XML
Producer

|
|
!
}
f|
|
{

Visualization Animation

-
S~
7 ™~

.
N
XML Parser % Analyzer Visualizer % Anirnator
% L .>$ - - % >~

Figure 9: Components Diagram for VAT Architecture

Figure 9 shows the packages and components forming the VAT. It shows two
packages, the Simulator package and the Visualization Animation package. The two
packages communicate throw pipes that deliver the XML format of the Simulation

result from the first package to the second package. The Simulator package consists of

28

many components that work together to produce at the end the simulation event list.
In this thesis, another component was added to the Simulator, which is the XML pro-
ducer component. The output of this component is received by the Parser component
in the Visualization Animation package. After filtering the information, the output is
passed through the pipe to the Analyzer component. The Analyzer component does
the necessary transformations and passes the output to the Visualization component
through the connecting pipe. The Visualization component transforms the output to
a format ready for the Animator component to execute and produce the final result.
At the same time the Animator component receives the analyzed output from the
Analyzer to aid in performing its functionality. The final result after applying all the

filters is displayed in the user interface.

4.3 Components

This section describes each component in the architecture diagram. Each component
is described in terms of its responsibilities, the interfaces that it provides for inter-
action with it and the rationale for the component. As well, the other components
that the component requests services from in order to fulfill its purpose are listed as
collaborators. There are also notes that provide information on constraints or other
useful information about the component, such as the main classes in the components
and the patterns that may have been used within the component. Finally, any issues

that are unresolved may be listed.

29

4.3.1 XML Producer

Component

XML Producer

Responsibilities

This component is part of the Simulator package, which is
the package responsible for building the simulation event
list. The simulation result contains information about
Trom Objects, Event specifications, States, and Tran-
sition information.There are two types of simulation re-
sults: Normal Mode Simulation Debug Mode Simulation-
The Normal Mode results in having the whole simulation
process as one shot, whereas, the Debug Mode compiles
the simulation event by event.The purpose of this com-
ponent is to expose the Simulation result in XML format
and store it in an XML file. This is done during the
simulation process while the simulator is compiling the
simulation event list along with the TROM and System
Configuration Specification of a specific Timed Reactive
system.

Collaborators

Collaborates with Simulator Package components.

Notes

This Component will run each time the Simulator sim-
ulates any TROM specifications system.The produced
XML file should conform to a specific schema that will
be discussed later in the next section.

Issues

Table 2: XML Producer Component Description

4.3.2 XML File

The simulation result will be transformed to an XML file. The reason why XML was
used is because it has become a standard for data representation and communication.
Its extensibility and platform independence are among the most favourable character-
istics that make it a good solution for any textual representation need. Extensibility
will make communication between Simulator and other tools that will use its simu-
lation results in future very flexible for any additions or updates as more details can
be exported with time. Platform independence, also, will make the simulation results
portable to different applications running in different operating systems or using dif-

ferent types of technologies. It has been agreed by the TROMLAB members to use

30

the following XML schema for exchanging the simulation result:

<?7xml version="1.0" encoding="UTF-8"?7>
<!ELEMENT cause (#PCDATA)>
<VATTLIST cause
trom (#PCDATA) #REQUIRED
time (#PCDATA) #REQUIRED
causing (#PCDATA) #REQUIRED>
<!ELEMENT event (name, state-set, cause)>
<IATTLIST event
trom (#PCDATA) #REQUIRED
time (#PCDATA) #REQUIRED>
<!ELEMENT event-set (event+)>
<!ELEMENT initial (#PCDATA)>
<!ATTLIST initial
trom (#PCDATA) #REQUIRED
state (#PCDATA) #REQUIRED>
<!ELEMENT initial-states (initial+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT simulation (initial-states, tromevent)>
<!ELEMENT state (#PCDATA)>
<'ATTLIST state
trom (#PCDATA) #REQUIRED>
<1ELEMENT state-set (state+)>

<!ELEMENT tromevent (event-set)>

31

4.3.3 Parser Component

Component

Parser

Responsibilities

This component is part of the Visualization Animation
Tool. The main purpose of this component is to parse
the XML file that contains the simulation result, which
is produced by the XML Producer component during the
simulation process. The Parser will extract all the infor-
mation and passes it to the Analyzer component.

Collaborators

Collaborates with the Analyzer Component

Notes

The Parser will be able to parse the simulation result that
is produced from the Simulator directly at the simulation
process. Also, it can parse any old simulation result by
allowing the user to browse and select any available sim-
ulation result and then it start parsing it and sending it
to the Analyzer component.

Issues

Table 3: Parser Component Description

32

4.3.4 Analyzer

Component

Analyzer

Responsibilities

This component is part of the Visualization Animation
Tool. The main purpose of this component is to analyze
the parsed simulation result and build the data structures
necessary for the visualization and animation of the sim-
ulation result. The Analyzer will build a list of events
containing the details of each event, a list of TROM Ob-
jects containing details about each TROM Object, and a
list of states for each TROM Object.

Collaborators

Collaborates with: Parser, Visualizer,and Animator
Components

Notes

The built data structures will be stored in the Main Mem-
ory so that the other components can read them and
utilize them in order to do the visualization for each an-
alyzed object or animation for each analyzed event.

Issues

Table 4: Analyzer Component Description

33

— ActionCandtion
GuardC ondition from Logical View
om Logical View,

\\
n ¢
EventsAnalyzer Eventlist Evert
Y trom Logical View>—————rom Logical View)
Parser StatesAnalyzer

{(from-Parse
\ State

(from Logjcal View)

ChjectsAnalyzer TromList
{from touical Viev

—

~~{ TromOQhject
(from Loglcal View)

Figure 10: Analyzer Component class diagram

Figure 10 shows the class diagram of the Analyzer component. There are three

analyzer classes each of which is responsible for a different TROM concept.

e Events Analyzer: this class is responsible for building the Events list data struc-
ture. It will read events from the parser and build a node inside the event list

for each event.
o Eventlist:this data structure contains list of simulation result events.
e Event: this class maintains details about each event such as:

— Source TROM Object issuing the event.

— Destination TROM Object receiving the event.

— Source State issuing the event.

— Destination State that the system will go to after issuing the event.
— Event Time: the time at which the source object raised the event.

— Causing event: the event that caused this event to happen.

34

— Shared event: whether this event is shared or not

e State Analyzer: this class is responsible for building a list of states and associate
each one with the corresponding TROM object. Also, it is a base for the

visualization of states in the Visualizer Component.

e Object Analyzer: this class is responsible for building the list of TROM objects.
It will extract the object details from the parser and maintain the list by adding
new nodes of TROM objects or adding details for each object.

e Trom Object: class representing each TROM object. It contains the details

about each object such as States, Transitions , and Attributes.

35

4.3.5 Visualizer Component

Component

Visualizer

Responsibilities

This component is part of the Visualization Animation
Tool. The main purpose of this component is to visual-
ize the simulation result elements. This component will
partition the user interface screen into several parts and
distribute the simulation result elements in an under-
standable way. It will load all the TROM objects and
construct a partial representation of the state chart di-
agram for each object with only the active states that
participated in the simulation result.

Collaborators

Collaborates with the Analyzer and Animator
Components.

Notes

The visualized objects will be loaded into the interface
screen and will be ready for play and animation that will
be controlled by the Animator.

Issues

Visualized objects will be in a two dimensional view.

Table 5: Visualizer Component Description

36

StateChart | .

Drawing

Screen

LayoutManager

n
MavieClip

/ T

Container

NS

\

| N RN

Scrallbar

{from Logical View

Figure 11: Visualizer Component class diagram

37

TromsCantainer SettingsContainer InteractionContainer | | FutireWarkCantainer|
{
} LFil
Tromdbject (frommc:la\/iew)
Contginer d
=
T
TromQbject| |StateClip | {TransitionClip
Clip Can\;giner Con}:{iner
[f
StateClip || TransitjonClip
\\\,\ Event
- &/~ fﬁﬂ_ﬁﬁ_ﬁ__,_.iirom Logical View)
romObject T
(for Logical Vel . e
T N e
— e
T State

Figure 11 shows the class diagram that contains details about the components
inside the Visualizer component. The classes are: Layout Manager: this class is
responsible for managing the whole interface screen. It partitions the screen into 4
main containers: Troms Container, Settings Container, Interaction Container, and
Future work Container. Furthermore, the layout manager will load the contents of

each container.

e MovieClip: this is the system base class for any visualized element. It has the
attributes and functions necessary to locate and interact with the visualized

element.

o Container: this class inherits from MovieClip and has the common layout for

any container that will hold any simulation result element.

e State Chart Drawing: this class is responsible for constructing the state chart
diagram for all the TROM objects. It will display only the active transition

routes that happened during the simulation process.

e TROM Container: this class manages the screen part that will host the list of
TROM object containers. Each TROM object Container will contain the state
chart diagrams for that specific TROM object. It will include the states and
transitions the correspond to the events that happened to this TROM object

during the simulation process.

e Settings Container: this class manages the screen part that will contain the
settings for playing the animation, selecting the source XML file, and displaying
the Timer.

o Interaction Container: this class manages the animation of the simulation result.

More details are provided in the next section.

38

4.3.6 Animator Component

Component

Animator

Responsibilities

This component is part of the Visualization Animation
Tool. The main purpose of this component is to animate
and play the visualized simulation result elements. It
shows the interaction between TROM objects and event
transitions between states. The animation starts from
the initial state where all the TROM objects are ready
and continues event by event in the same order that
happened during the simulation process until the sys-
tem reaches the ready state at the end of the simulation.
Therefore, this Animator takes control over the visual-
ized elements.

Collaborators

Collaborates with the Analyzer and Visualizer
Components.

Notes

Issues

Table 6: Animator Component Description

39

TimeAnimation

A

InteractionAnimationM anager

AN
SN

OhjectAnimator

StateAnimator

StateTransitionAnimator

CondtionAnimator

/'

RN

\ \"
\
AN S
SourceObject| | DestinationCbject| | SoyrceState | | Destination | | SharedEvent TransitionClip
Clip Clip Clip StateClip Animator from Visualizer)
)\\‘\
TromChject State /
{from Logical View} {irom Logical View)
'_‘\ ..
~—
\ Event
(from Logical View)

Figure 12: Animator Component class diagram

40

Figure 12 shows the class diagram of the Animator Component. It contains the

classes that manage the animation process of the simulation result.

o Interaction Animation Manager: it manages the animation by controlling the

stop and play, and the load and unload of visualized elements.

Object Animator: animates the TROM object interactions and shared events.

State Animator: animates states load/unload and user interaction.

State Transition Animator: animates the state transition when an event hap-

pens at a specific state and changes the TROM object to another state.

41

4.4 Development Platform

The development environment used to develop the VAT is Macromedia Flash MX
Professional 2004. It is a powerful development platform that has the strength of
being an authoring tool for building graphics and interactive animation to web appli-
cations. In addition, it has an Object Oriented scripting language called ActionScript
that has all the powerful features of OO languages. ActionScript enables developers
to visualize, animate, process data, create dynamic content, and manipulate visual

components.

The advantages of Flash MX Professional 2004 that motivated the selection of it

are:
1. Browser independent.
2. Platform independent.
3. Screen Resolution independent.

4. Loads fast on the internet.

4.5 Dynamic Behavior : Scenario

The dynamic behavior of the VAT is described in terms of scenarios that are derived
from the use cases defined in the tool interface.

Figure 13 shows one possible high level scenario for the execution of the VAT tool.
The simulator triggers the XML Producer to start exporting the simulation result
into an XML file. The XML Producer will translate the results and at the same time,
if the running mode is Debug, or after finishing, when the running mode is Normal,
it will trigger the Parser to start parsing the simulation results. During parsing, the
Analyzer will restructure the information to build data structures that are ready for

being visualized by the Visualizer. After finishing the analysis, the Visualizer will

42

i i e | il Ml

k

ex port results |
H I

SE\VB simulation resu

|
|
|
|
Analyze Visualize |

Animate

animate jimulation resuits

|
|
|

_—— e e T — e

Start Parsing \T‘
|
|
I
|
|
l
l
]

Figure 13: VAT Sequence Diagram

visualize the data and trigger the Animator to start animating it.

Another possible scenario is that the user can load any XML file that was produced
in a previous simulation process or by any other Real Time Reactive Framework, pro-
vided that it conforms to the defined schema, and starts visualizing and animating
the simulation results.

The introduced VAT architecture should be able to visualize the simulation results
of any real-time reactive system provided that it conforms to the specified XML
schema. In the next chapter, a solution for a simplified specification of the Steam
Boiler Controller case study is introduced using TROM Formalism. The simulation

result of this case study will be used to test the VAT.

43

Chapter 5

Steam Boiler Case Study

5.1 Introduction

Many case studies have been proposed for testing and evaluating semantic methods
in computer science with respect to their abilities to solve real time embedded control
system design problems. One of those case studies is the Steam Boiler Control Spec-
ification Problem of J.-R. Abrial and E. Brger [Abr91]. This specification problem
has been derived from an original text that has been written by LtCol. J.C. Bauer
for the Institute for Risk Research of the University of Waterloo, Ontario, Canada.
The original text has been submitted as a competition problem to be solved by the
participants of the International Software Safety Symposium organized by the Insti-

tute for Risk Research.

This chapter introduces a formal specification solution for a simplified model of the
problem. The purpose is to provide specification design that assures safe operation
of a steam boiler by maintaining the ratio of the water level in the boiler and the
amount of steam emanating from it with the help of the corresponding measuring
devices. The requirements have been reduced to include only the normal mode of
working where the boiler has been initialized successfully and all the physical units

of it are functioning properly.

44

5.2 Problem Description

5.2.1 Informal Problem Definition

The Steam Boiler System consists of the following physical units:
e Steam Boiler: the container that keeps water inside it.
e Pump: to pour water inside the steam boiler.
e Valve: to evacuate water from the steam boiler.

e Water Level Measuring: a sensor to measure the quantity of water q (in liters)
and inform the system whenever it risks the minimum or maximum allowed

amounts.

Steam Exit

=
Fa

prd
a2

Controller

M1
M1

Figure 14: Steam Boiler Controller

Figure 14 shows the Steam Boiler and the relations between its components. The

Steam Boiler is assumed to start up with a safe amount of water and the Controller

45

runs a controlling cycle each 5 time units to check the current amount of water. It
triggers the Water Level Measuring device to measure the level and send it to the
Controller. Then the Controller receives the current level and checks if it is in the
normal level, above, or below: if the water is in the normal level, it will not do any
thing; if the water level is risking to the minimum safe level, it will trigger the Pump
to pour water; and if the water is risking above the normal limits, it will trigger the

Valve to evacuate water.

5.2.2 Characteristics of system components

Steam Boiler is characterized by the following:

e The total Capacity C (in liters)

e The minimal limit quantity M1 (in liters), below which the steam boiler would

be in danger after 5 time units.

e The maximal limit quantity M2 (in liters), above which the steam boiler would

be in danger after 5 time units.

e The minimal normal quantity N1 (in liters) to be maintained by the program

during normal operations (N1 is greater than M1).

e The maximal normal quantity N2 (in liters) to be maintained by the program

during normal operations (N2 is less than M2).
The Pump is characterized by the following;:

e The main program will control the pump.

e The Controller sends an Open Pump message to trigger the pump to pour water

inside the boiler.

e The Pump needs five time units to start pouring water into the boiler, which
is the amount of time needed to balance the pressure of the steam inside the

steam boiler.

46

e As soon as the level reaches N2 the pump should be closed.

e The Controller sends Close Pump message to trigger the pump to close instan-

taneously.
Valve is characterized by the following:

e The Controller sends an Open Valve message to trigger the valve to open and

evacuate water.
e The Controller sends Close Valve message to trigger the valve to close.
The Water Level Measuring sensor is characterized by the following:

¢ Initially the water level measuring will send the current water level; assuming
that every thing is ok, the 5-second cycle is starting, and it got the request from

the Controller.

e This device will continue to measure the quantity of water whenever it gets a

request from the Controller.

e It will send a message that contains the current measured quantity of water (in
liters) in less than one time unit.
5.2.2.1 Controller Operations

The program should follow a cycle that takes place each 5 time units and consists of

the following functionality:

e The Controller is going to communicate with the physical units through dedi-

cated lines where the time of message transmission is ignored.

e After each 5 time units, the Controller will request the current level of water

from the Water level measuring unit.

47

e When the Controller receives the current level, it should maintain a safe level
of water between N1 and N2, assuming that all the physical units are operating

without any deficiency.

o if water level is more than N2 and the pump is opened, it should command the

pump to switch off.

o If the water level is more than N2 and the pump is closed, it should open the

valve.

o if the water level is lower than N1, it should command the pump to switch on

and pour water.

o If the water level is between N1 and N2, nothing will happen.

5.2.3 Assumptions
o The system starts with its water quantity q within safe ranges [M1, M2| and
the water measuring device work well.
TR=M1l<q>M2AS
where R: means that the boiler system is running and S stands for the water-measuring
device.
e There is enough space between N1 and N2 so that it takes at least 10 time units to
fill up such space.

(fill(N2-N1) > 10timeunits)

5.2.4 Safety Property

The water quantity q in the steam boiler can never exceed the safe bounds for more
than 5 time units continuously.
((a <M1 AR)=t<5)A((g>M2AR) =t <5)

where:

48

M1 refers to Minimal limit of water quantity.

M2 refers to Maximal limit of water quantity.

t refers to operational time.

R means the boiler system.

5.2.5 Liveness Property

Liveness property ensures that if the water level goes beyond the limits, it would
eventually come back to normal level. In terms of formal language, it can be written
as:

(WaterLevel (q < M1, t1) V WaterLevel(q > M2,t1)) => 3t2.(Water Level(q >
M1,t2) A\WaterLevel (g < M2,t2) A(12 > t1))

where: WaterLevel(P, t) is true when a condition P is true at time t.

5.3 Formal Solution

The following subsections introduce the formal specification and design of the Steam

Boiler problem.

5.3.1 Class Diagram for Steam Boiler

Figure 15 shows the GRC classes and PortTypes of the solution:

The Controller class is an aggregation of port types QCP, @QCV, @QCT, and QCL.
Also, it contains one parameterized attribute, which is quantity. This attribute con-
tains the current quantity of water inside the Steam Boiler, the Pump class is an
aggregation of port, type @P, the Valve class is an aggregation of port type @V, the
Level Measuring class is an aggregation of port type @L. Also, it contains one param-
eterized attribute, which is quantity. This attribute contains the current quantity of

water inside the Steam Boiler, and the Timer class is an aggregation of port type @QT.

49

<<PortType>>
QP

<<GRC>>

events | Set = {OpenPump?,ClosePump?}

<<PortType>>
@CP

events : Set = {OpenPump! ClosePumpl}

<<PortType>>
@Cv

avents : Set = {Openvalel,CloseVavel}

<<PortType>>
av

Pump

<<GRCe>
Cantraller

<<GRC>>
LevelM easuring

<<Parameter>> quantity . Integer

[}

<<PortType>>
@L
events: Set = {GetLevel? Level}

<<PortType=>

<<Parameter>> quantity : Intege

@CL

events : Set = {Gettevell,Level?}

<<PortType>>
CT

<<PortType>>

«<<GRC>>
Q@Tc » Timer

events : Set = {Cycle?}

ewents : Set = {Cycle}

<<GRC»>
Vave

events : Set = {OpenValve? CloseValve?}

Figure 15: Steam Boiler Controller class diagram

the Level Measuring through its port QL.

50

The link between the port type @CL of the Controller and the port type QL of

the Level Measuring means that the Controller uses port @CL to communicate with

The link between the port type @CP of the Controller and the port type @QP of
the Pump means that the Controller uses port @QCP to communicate with the Pump

through its port @P,

The link between the port type @CV of the Controller and the port type @V of
the Valve means that the Controller uses port @CV to communicate with the Valve

through its port @V.

The link between the port type @CT of the Controller and the port type QT of
the Timer means that the Controller uses port @CT to communicate with the Timer

through its port @T.

5.3.2 Level Measuring Class

<<GRC>>
LevelMeasuring
<<Parameter>> guartity : Integer

<<PortType>>
@L
events : Set = {Getlevel? Levell}

Figure 16: Level Measuring class diagram

The Level Measuring class is an environmental class in the system, and all its
output events cannot be constrained. Each 5 time units, it receives a GetLevel event
message from the Controller through the port @L. after that it will transit to state
Send or informController and issue the shared event message Level that has the
parameter quantity, which is the current water level. This message will go to the
Controller through the port @QCL. Finally, the Level Measuring will return back to
its measuring state. Figure 17 shows the state chart diagram for the Level Measuring

Class.

51

send

/gveﬁ;ntity)

Sendlevel

rigasuring

Level(quantity
Y
{ informCantroller]

Figure 17: Level Measuring state chart diagram

The TROM formal specification description for the Level Measuring class is:

Class LevelMeasuring [@L]
Events: Level!QL, GetLevel?@QL, Sendlevel
States: *measuring, informController, send
Attributes: quantity:Int
Traits:
Attribute-Function: measuring -> {quantity};
informController-> {};send -> {quantity};
Parameter—Specifications:
Level: quantity;
Transition-Specifications:
R1: <measuring,informController>; Level[quantity] (true);
true => true;
R2: <measuring,send>; GetLevel[] (true); true => true;
R3: <informController,measuring>; Sendlevel[] (true);
true => true;
R4: <send,measuring>; Level[quantity] (true); true => true;

Time-Constraints:

end

92

5.3.3 Controller Class

<<PortType>>
@CP
events ; Set = {OpenPump!,ClosePumpl}

.
<<GBRC>> <<PortType>>
Contraller - @

<<Parameter>> quantity ; Integer events: Set = {Getlevell Lewel?}

ey b
/‘/
el
<<PortType>>
@cv
events : Set = {OpenValvel CloseVaivel}
<<PartType>>
@cT

events : Set = {Cycle?}

Figure 18: Controller class diagram

The controller class communicates with the environmental classes in order to main-
tain safe water level. Each 5 time units, it sends the shared event message GetLevel
and receives the shared event message Level from the Level Measuring unit through
the port @CL. Depending on the quantity attribute, the Controller will change state

to high, low, or safe.

If the state is high, which means the current quantity of water is above the allowed
normal limit, the controller will issue the internal event decrease and establish a tim-
ing constraint to decrease the amount of water by opening the Valve and closing the
Pump in a time period between [1,4] time units. During this period, the Controller
changes state to handleHigh, at which it issues OpenValve shared event message. This
message will go to the Valve through the port type @CV. After this the Controller will
go to state evacuate, at which the valve will be opened and the class will issue a shared
event message ClosePump. This message will go to the Pump through the port type
@QCP. Then the Controller will change state to endHighControl and issue the internal
event endHigh. Finally, the Controller will get back to its normal state control and

get ready to another controlling cycle. The whole cycle takes between [1,4] time units.

53

If the state is low, which means the current quantity of water is below the allowed
normal limit, the controller will issue the internal event increase and establish timing
constraint to increase the amount of water by opening the Pump and closing the Valve
in a time period between [1,4] time units. During this period, the Controller changes
state to handleLow, at which it issues OpenPump shared event message. This mes-
sage will go to the Pump through the port type QCP. After this the Controller will go
to state pourwater, at which the Pump will be opened and the class will issue a shared
event message CloseValve. This message will go to the Valve through the port type
@QCV. Then the Controller will change state to endLowControl and issue the internal
event endLow. Finally, the Controller will get back to its normal state control and

get ready for another controlling cycle. The whole cycle takes between [1,4] time units.

The last possibility is that the state is safe, which means the current quantity of
water is within the allowed normal limit, the controller will issue the internal event
closeAll and establish timing constraint to ensure the amount of water is safe by
closing the Pump and the Valve in a time period between [1,4] time units. During
this period, the Controller changes state to handleSafe, at which it issues ClosePump
shared event message. This message will go to the Pump through the port type @QCP.
After this the Controller will go to state close, at which the Pump will be closed and
the class will issue a shared event message CloseValve. This message will go to the
Valve through the port type @CV. Then the Controller will change state to endSafe-
Control and issue the internal event endSafe. Finally, the Controller will get back
to its normal state control and get ready for another controlling cycle. The whole
cycle takes between [1,4] time units. Figure 19 shows the state chart diagram of the

Controller class.

54

inisateCycle

......... By —
Cycle 7
.\\ %Le\el

\.\ Level(quantty)| true &8 quanity>200 &&true |
- Lewl{ quartty) e 88 quantty 100 85 e h f“%%l‘") \ @
- 7 “—/*\——J(“

/ endLow(tue 88 true 8& TCvari :1 &I,Cwﬁ«i] / \ endHIgh[tﬂk&&j{ue &8 TCvar2>1 & TCrar2<d | detrase/ true && TCvar2=0

Increase/truq/ﬁ& Toval=a ey T

................... K. - \
| enclowContol 1\ ooy quantity)] true s7éuanny> 140 & quantity <=200 84 rue]
‘bpgnpump Clnse%
. { sare] endSafe Ke 88 Tue 8& TOvard>1 BTCAar3<4 |

:msemltru 88 TCvar3=0

hani dIaSa‘e
Q\S ePump G
close

Figure 19: Controller state chart diagram

T

The TROM formal specification description for the Controller class is:

Class Controller [@CP, @CV, @CL, @CT] Events:
Cycle?@CT,Level?@CL,GetLevel !@CL, decrease, increase, ClosePump!@CP,
CloseValve!@CV, closeAll, OpenPump!@CP, endLow, OpenValve!@CV,
endHigh, endSafe States: *control, initiateCycle, high, low,
evacuate, pourwater, safe, close, handleLow, endLowControl,

handleHigh, endHighControl, handleSafe, endSafeControl

Attributes: quantity:Int

Traits:

Attribute-Function:

control ->{quantity};initiateCycle -> {};high -> {};low —> {};
evacuate ->{};pourwater -> {};safe -> {};close -> {};
handleLow ->{};endLowControl -> {};handleHigh -> {};
endHighControl ->{};handleSafe -> {};endSafeControl -> {};
Parameter-Specifications:

Level: quantity;

95

Transition-Specifications:
R1: <control,initiateCycle>; Cycle[] (true); true => true;
R2: <control,high>; Level[quantity] (true); quantity>200 => true;
R3: <control,low>; Level[quantity](true); quantity<100 => true;
R4: <control,safe>; Level[quantity] (true);
quantity>=100&quantity<=200 => true;
R5: <initiateCycle,control>; GetLevel[](true); true => true;
R6: <high,handleHigh>; decrease[](true); true => true;
R7: <low,handlelow>; increasel[](true); true => true;
R8: <evacuate,endHighControl>; ClosePump[](true); true => true;
R9: <pourwater,endLowControl>; CloseValve[] (true); true => true;
R10: <safe,handleSafe>; closeAll[](true); true => true;
R11: <close,endSafeControl>; CloseValve[] (true); true => true;
R12: <handlelow,pourwater>; OpenPump[](true); true => true;
R13: <endLowControl,control>; endLow[](true); true => true;
R14: <handleHigh,evacuate>; OpenValvel[l (true); true => true;
R15: <endHighControl,control>; endHigh[](true); true => true;
R16: <handleSafe,close>; ClosePumpl[] (true); true => true;
R17: <endSafeControl,control>; endSafe[] (true); true => true;
Time-Constraints:
TCvarl: R7, endLow, (1, 4), {};
TCvar2: R6, endHigh, (1, 4), {};
TCvar3: R10, endSafe, (1, 4), {I};

end

5.3.4 Pump Class

The Pump class is an environmental class in the system. In each cycle of execution,
this class receives controlling message from the Controller class according to the

current level of water. If the level is low, Pump will receive a shared event message

56

<<PortType=>>
@P -

<<GRC=>>
Pump

events . Set = {OpenPump?, ClosePump?}

Figure 20: Pump class diagram

OpenPump from its port type @P. Then Pump will change state to toOpen and issue
the internal event open. This event is time constrained, which means that the Pump
should be opened in a time period between [0,5]. The Pump will remain in this state

until it receives the shared event message ClosePump. Then it will return back to its

close state. Figure 21 shows the state chart diagram for the Pump class.

. ClosePump

closed OpenPump / true && TCvart=0 toopen
) i]

h,

~
AN /

ClosePump

open] true && trL?R(& TCvari=0 & TOwar1<5]
/

/
N,

opened ™,
OpenPump
Figure 21: Pump state chart diagram

The TROM formal specification description for the Pump class is:

Class Pump [@P]

Events: OpenPump?@P, ClosePump?@P, open

57

States:*closed, toopen, opened

Attributes:

Traits:

Attribute-Function:closed

Parameter-Specifications:

Transition-Specifications:

R1i:
R2:
R3:
R4:
Rb:

<closed, toopen>;
<closed,closed>;
<toopen,opened>;
<opened, closed>;

<opened,opened>;

Time-Constraints:

-> {};toopen -> {};opened -> {};

OpenPump [] (true); true => true;

ClosePumpl[] (true); true => true;

open[] (true); true => true;

ClosePump[] (true); true => true;

OpenPump [] (true); true => true;

TCvarl: R1, open, (0, 5), {};

End

5.3.5 Valve Class

<<PortType>>
@v

events : Set = {OpenValve? CloseValve?}

<<GRC=>
Valve

Another environmental class in the Steam Boiler system is the Valve class. During
the control cycles of execution, this class receives controlling shared message from the
Controllér class based on the current measured level of water inside the steam boiler.
If the level is high, the Valve will receive a shared event message OpenValve through
its port type @V. Then the Valve will change state to opened. The transition will

happen instantly at the receive of the shared event. The Valve will remain in this

Figure 22: Valve class diagram

o8

state until it receives the shared event message CloseValve. Then it will return back

to its closed state. Figure 23 shows the state chart diagram for the Valve class.

‘ CloseValve

\\
closed Cpenvalve opened
\ CloseValve \
OpenValve

Figure 23: Valve state chart diagram

The TROM formal specification description for the Valve class is:

Class Valve [@V]

Events: OpenValve?@V, CloseValve?@V
States:*closed, opened

Attributes:

Traits:

Attribute-Function: closed ->{};opened -> {};

Parameter-Specifications:

Transition-Specifications:
R1: <closed,opened>; OpenValve[] (true); true => true;
R2: <closed,closed>; CloseValvel] (true); true => true;
R3: <opened,closed>; CloseValvel] (true); true => true;
R4: <opened,opened>; OpenValve[] (true); true => true;

Time-Constraints:

99

End

5.3.6 Timer Class

=<PorType== 22GRC=»
@Tc Lol Titrier
events : Set = {Cyclel}

Figure 24: Timer class diagram

This class is an external component attached to the Controller class. Its main
purpose is to initiate the controlling cycle after each 5 time units by triggering the
Controller to start a new cycle. It sends a shared event message through its port type
@T. then the Timer returns back to its idle state and wait for the second cycle time.

Figure 25 shows the state chart diagram for the Timer.

Cycle
—
idle e startCycle
P
u—""ﬂ’/"’_’d’-"
endCycle

Figure 25: Timer state chart diagram

The TROM formal specification description for the Valve class is:

Class Timer [QTC] Events: Cycle!Q@TC, endCycle
States:*idle,startCycle

Attributes:

Traits:

Attribute-Function:idle->{};startCycle -> {};

60

Parameter-Specifications:

Transition-Specifications:
R1: <idle,startCycle>; Cycle[](true); true => true;
R2: <startCycle,idle>; endCycle[] (true); true => true;

Time-Constraints:

End

5.3.7 SubSystem Configuration Specification (SCS)

A System Configuration Specification provides the specification for a system or a
subsystem by composing reactive classes. A subsystem specification consists of three
sections: Includes, Instantiate and Configure. The Includes section imports other
systems. The Instantiate section defines objects by parametric substitutions to the
cardinality of ports for each port type. The Configure section defines the configuration
of the systems architecture by composing the specified objects. The composition
operator < sets up a communication link between compatible ports of interacting

objects.

61

pump1:
Pump.

@P1:

@CP1:
_@CP

valvel : @vil: @cvt: controliert. @cL1: @Lt: | | levemeasuringt:
Vale @V @CV. Cortroller _@C | @l LevelMeasuring

@cn .
@act

@Tct:
@rtc

timer1 :
Timer.

Figure 26: Steam Boiler collaboration diagram

Figure 26 shows the Collaboration diagram of the Steam Boiler system. There is
one instance of Controller called controllerl, Pump called pumpl, Valve called valvel,
Level Measuring called levelmeasuringl, and Timer called timerl. Also, there is one
instance of each port type that functions as a communication media between any two
system objects.

The subsystem TROM configuration specification of the Steam boiler is:

SCS SteamBoiler
Includes:
Instantiate:
pumpl: : Pump [@P:1];
controllerl::Controller[@CP:1, @CV:1, @CL:1, @CT:1];
levelmeasuringl: :LevelMeasuring[@L:1];

timerl: :Timer [QTC:1];

62

valvel::Valve[@V:1];

Configure:
controller1.@CP1:@CP <-> pumpl.@P1:@P;
valvel.@V1:@QV <-> controller1.@CV1:@CV;
levelmeasuringl.QL1:@L <-> controllerl.@CL1:@CL;
controller1.@CT1:@CT <-> timerl.@TC1:QTC;

end

5.3.8 Sample Simulation Event List

The event list provides a timeline of external stimuli used in the Steam Boiler system.
Two execution cycles are listed in this simulation sample. 2 Level shared events are
issued by the level measuring object that is instantiated in the SCS. These events
simulate a scenario involving 2 execution cycles at 2 different times. At each time
cycle (0 and 5), the level measuring measures the current quantity of water and send
it to the controller through the shared event Level at port QL. The quantity of water

is sent as a parameter in the event (90 and 120).

SEL: SteamBoiler
levelmeasuringl, Level[quantity=90], @L1, 0;
levelmeasuringl, Level[quantity=120], @L1, 5;

end

Figure 27 shows the sequence diagram for the sample simulation event list.
The formal solution of the Steam Boiler Controller case study is entered processed
by the TROMLAB framework tools, the Interpreter and the Simulator, to produce

simulation results. Those simulation results are used to test the VAT.

63

- Tirret . Controller l o L Pume Close : Vale
LevelM easuring
| 0: Cycle | Q GetLevel\| | |
1: Level | I
| |
1: QOpenPurmp | |
4. Open
I | 1: Closevalve !
1 1 2wl Cloge
| | | Lz:j
5. Cycle | 5 GetLEve| ! I :
| |
. B Level | |
6: ClosePump |6' Clase |
| = |
| 6. Closevalve I
i 6. Close
1 | <
|
|
I

|
I

Figure 27: Sequence diagram

64

Chapter 6

Visualization Animation Tool

This chapter introduces developed Visualization Animation. It gives an overview
about the graphical user interface and gives examples of different real-time reactive

case studies used to test the tool.

6.1 VAT

There are two different ways to run the Visualization Animation Tool. The first way
is during the simulation process when the simulator instructs VAT to visualize and
animate the current simulation results. The second way is disconnected from the sim-
ulator and allows the user to run different kinds of real-time reactive case studies that
were designed using TROM formalism and simulated using the TROMLAB Frame-
work previously. In this chapter, only the second way of running VAT is presented
because the concentration is on VAT and not on the simulation process; also, all that
presented applies to the connected mode where the same interfaces and components

are used to visualize and animate in both modes.

6.1.1 The Start Page

When the user opens the tool’s web page, he will get the interface shown in Figure

28. The interface includes a list box and command button. The list box contains four

65

TROMLAB Framework

Visualization Animation for
Real-Time Reactive Systems Simulation

Select a case study:

Steam Boiler Controller
Train Gate Contralier
Robotics

Traffic Controller

§§ Start Simudlation

Blbiasiaiii s

Figure 28: VAT start page

case studies that the user can select any one of them to see a visualization animation
of their simulation. After selecting the case study, the user should press the Start

Simulation command button to start the visualization process.

6.1.2 The Simulation Details

Figure 29 shows a snap shot of the visualization animation tool. The interface is
divided into several parts each of which is presenting different type of information
and contributes to painting the big picture of the simulation status. The rules of
notation, grouping, and abstraction that aids in achieving the highest possible degree
of understandability are applied in the design. Different notations are used to present
different types of information. Also, related information are grouped into relatively
closed and framed sections and separated from the others. Moreover, abstraction
is used and only the important and relative information are presented and any un-

necessary distracting things are avoided. Details about these will be clarified in the

66

following parts of this chapter. The interface consists of three sections: TROM ob-
jects with their sequence of active states that participated in the simulation results,
current interaction part, and details section. Details about each section are described
next. The Details section is provided for any future improvement to display details
about the current event or any help information regarding what is displayed in the

current status section.

Object Nanis: prompl
closed toopen qpened cloged]
o - g

Current stalug:

TROM: controller]

Object Name: controllerl .
conitiol low handlsLow pourwter endbowContrel
|

Event: endSafe

e

SowrceTime: 10
SourgeFvent:: claseAll

0

Time :

Details:

apdSqfeComml clogs handleSafe saj’e contl
i e L

Olijéct Nawis: levehmeasuring]l
; ing nformControll gl Momcantm%%%gqum\g}‘ .
i m{‘:‘ o Ea
e

Object Nars: -thmerl

Objoct Nazg: valvel Casé Study Datiils
closed closed] closed?

Figure 29: Simulation Visualization Animation

6.1.3 The TROM Objects Section

The interface consists of two parts divided by the scrollbar. The left part contains the
TROM Objects participating in the simulated scenario of the presented case study.
For each one of those objects, the active part of the state chart diagram is presented
to describe the behavior of that object using the state transitions happened during

the simulated scenario. Figure 30 shows a sample object state chart diagram.

67

Object Name: controllerl

control low handleLow pourwater endLowControl
o & e o
endSafeControl close handleSafe safe contnjll

contlgﬂ

Figure 30: TROM object state chart diagram

The name of the TROM object is printed in the left most top part of each section.
States are visualized as yellow rectangles. Each state has its name printed right on
top of it. The state transition is visualized as an arrow starting from the source
state and ending at the destination state. The use of those notations helps the user

understand the presented information easily.

The first state in each section represents the initial state of the relative TROM object
and the last state represents the current object state. The current state is always
blinking so that the user can on the glance know in which state the relative TROM

object is.

If there are more TROM objects than what the interface can present, the scrollbar

can be used to navigate between the state charts up and down.

6.1.4 The Current Status Section

On the right hand side of the scrollbar, the current interaction during the system
simulation is presented. There are two different possible types of interaction: object

interaction through shared events and state transition.

68

Current status:

Ewvent: Level

lewelmeasuring controller]

|

SourceTime: ()
SourceBvent: Lewel

Time :

Figure 31: TROM object state chart diagram

Figure 31 shows two TROM objects, levelmeasuringl and controllerl, interacting with
each other by the shared event ”Level”. The interaction details presented along with

the two objects are:

e Event name: the shared event that is sent from the source to the destination

object.

e Source Time: the time at which the source event synthesizing this event hap-

pened.

e Source Event: the source event that caused this event to happen, more details

will be provided in the state transition.

69

e Time: the current time. Because the time plays an important role in the in-
teractions of real-time reactive systems, the time is presented in a big font.
Concept of color contrast, using black box and white colored number, is applied

in the presentation of time to make it clear and hence grasped at a glance.

Three buttons are provided to pause, play, and stop the interaction in order to give

the user controllability over the animation process.

Current status:

TROM: controller]

Event: end=afe

endSafeC Uflﬁm controld

SourceTime: 101

SourceFvent: clozedll

Time :

Figure 32: TROM object state chart diagram

The second type of interaction is the state transition and is shown in Figure 32.

The transition consists of source and destination states along with textual descriptions

70

to present the details of the transition event. The text includes:
o TROM: the object at which the current transition is happening.
e Event: the event that is causing the transition to happen.

e Source Event: the event that triggered the current event to happen. This
means that the after the source event happened at the source time, this event
was triggered to happen as a consequence. For example, if the event CloseAll

happens at time 10, the endSafe event will be triggered to happen at time 14.
e Source Time: the time at which the source event occurred.

After introducing the VAT, 4 case studies will be used to test the functionality of the
VAT and prove its capability in visualizing the simulation results of different types

of real-time reactive systems.

71

Chapter 7

Testing

7.1 Testing Case Studies

The main purpose behind the design and implementation of this tool is to create
a general mechanism to visualize and animate simulated real-time reactive systems
using TROMLAB. This goal motivated the consideration of having the flexibility of
handling different kinds of case studies with different complexities and specifications.
Beside the Steam Boiler Controller case study, VAT has been tested on visualizing
and animating the simulation of 3 other well known real-time reactive case studies:
Railroad crossing, Robotic Assembly, and Traffic Control. The following sections will
introduce briefly each case study and show a sample VAT snapshot during the process

of visualizing and animating it.

7.2 Railroad Crossing Case Study

This problem was introduced by [HL94] as a benchmark for comparing different ap-
proaches for specifying and verifying real-time systems. A modeling solution for this
case study was introduced by [MAKSO00]. The problem definition includes trains pass-

ing through gates by coordinating with controllers. The trains communicate with the

72

controllers by sending messages, and the controllers control the gates by issuing com-
mands. When a train approaches a gate, it sends a message to the controller of that
gate. The controller, in turn, instructs the gate to close. After the train has passed
through the gate, it sends another message to the controller, who then commands the
gate to open. Timing constraints are defined for the communication messages and
event firing. The complexity of this problem lies in the system configuration. The
solution allows different numbers of trains to be defined interacting with different
number of controllers and gates. This flexibility hides a relative complexity in the

design. By running this model in VAT, it proves its ability to handle and process

idle toCross cross leave idle]
toCmﬂ‘sl Current status:
TROM: t3
Object Name: t3 Event: Clut
idle toCross cross
e
Object Name: ¢1 SourceTime: IJ.
idle activate roonitor monitor] mpnitor2 SowrceEvent: internal
e - »
idlel dsactgute
rR— .
Time : 1 3
Object Narae: £2
idle activate activatel
e Details:
! = CaseStudy Detalis
| e
Object Nare: gl Homa
apened toClose closed toOpen openedl

Figure 33: Railroad Crossing Visualization Animation

any real-time reactive system no matter how complex the system configuration is in
its formalized model. Figure 33 shows a screen shot of the visualization animation of
the simulation of the Railroad Crossing problem for a configuration of three trains,

two controllers, and two gates.

73

7.3 Robotic Assembly Case Study

A design for this problem was introduced in [AMO0} and reviewed in [Liu03]. The

assembly unit consists of a user, a conveyor belt, a vision system, a robot with two

arms, and a tray for assembling. The user places two kinds of parts: a dish and a cup

onto the conveyor belt. Then the belt conveys the parts toward the vision system.

Whenever a part enters the sensor zone, the vision system detects it and informs the

belt to stop immediately. Next, the vision system recognizes the type of the part and

communicates to the robot so that the robot can pick it up from the stopped conveyor

belt. After the robot picks up a part, the belt resumes moving. The assembly finishes

when a dish and a cup are separately placed in the tray by two arms of the robot.

Figure 34 shows the simulation of the Robotic Assembly.

Oliject: Name! UL
idle ready place idlet readyl Current status:
idle3 plec2 ready2 idled phcei TROM: R1
s 2 % S g
Bvent: RightPick
read place3 idled teadyd placs4
; " * m:} Fesn
readys st places toadyS s .
‘ e
SourceTime: 15
SowceEvent: RecD
Object Nate: V1 m
Monitor active idanti{y Monitor] activel

Time :

Details:

identifyd identify3 active2 identify2

Objact Name:: B1
active stop activel stapl active2
stppi

Figure 34: Robotic Assembly Visualization Animation

74

7.4 Traffic Control Case Study

A model for Autonomous Traffic Control systems was described in [AMO03]. The traf-
fic model consists of divided highways running in perpendicular directions. At the
proximity of the intersection between any two highways, each road is divided into
several lanes. There are three lanes for incoming traffic in each of the northbound,
southbound, eastbound, and westbound directions, and three such lanes for outgoing
traffic. In every direction, vehicles in the right lane turn right, vehicles in the middle
lane go straight, and vehicles in the left lane turn left. The intersection is a shared
resource that is allocated by the traffic controller to vehicles in such a way that every
vehicle at the intersection obtains the resource within a finite amount of time; there
is neither deadlock nor starvation and vehicles do not collide while crossing the in-
tersection. The complexity of this model lies in the design that handles a dynamic

resource allocation for vehicles. By being able to visualize and animate such case

Object Nome: A) '

idle allgcate allocatel busy: allscate2 Current status:
B R s R e, U —

gﬂ

walt allocates allocated busy| alloc TROM:CHMI
- = SR
Event: GoAhead
allocajed busy2 allocate? allocated busy3
- W busy [mositr]
SowrceTime: 31
S t;
Objéet Name; CL1 aurceBvent; TurnOn
ule activate reqjusst dllocate bisy:
o T% P P @08
release deactivate mnni@r

MQ’M

Time :

Details:

Object Nawie LL1
el geen yellow redt 7

| {case Bludy Detalls

Object Newe: V1
idle request toCross cross ddlel

Figure 35: Traffic Control Visualization Animation

75

study, VAT is proving to be able to handle any real-time reactive system simulation
no mater how complex the design is. Figure 35 shows a snapshot of the visualization

animation of the Traffic Control case study.

After testing the VAT, it will be compared to related works in the same field.

76

Chapter 8

Related Work

The domain of Real-Time reactive systems has become a rich area for research and
study because of the vast development and usage of such systems in the daily life.
Therefore, many institutes and research labs have been working on the validation
of real-time system design. The interest resulted in the development of different
tools to simulate the expected behavior of the produced design before implementing
it. This section introduces two examples of related work in the areas of simulation
and visualization of real-time reactive systems along with comparison with VAT.
Furthermore, the understandability guidelines provided in this thesis are applied to

the Rational Rose Real-Time visual modeling.

8.1 CD-++4 Real-Time Simulation

CD++ is a toolkit developed to implement specifications of DEVS formalism, Discrete
EVents Systems specifications [CWO?)]. DEVS formalism provides a framework for
building layered real-time models. Beside the toolkit, simulation mechanisms were
developed to execute the DEVS independent from the models. During the execution of
simulation processes, models receive external events within a given deadlines from an
external event file through input ports. The simulator keeps track of missed deadlines

and worst case response time of the specifications. Finally, the simulation results are

77

produced in an output file. Figure 36 shows an example simulation result output

file taken from [GWO03] for an Alarm Clock model. The abstraction of simulation

aoctnal message port ralis
time time

0L:0%:000 G1:00:000 DISPLAY TIME Q
02:00:000 $Z2:00:000 DISPLAY TIME Gd:
Q3:00:000 63:00:000 DISPLAY TIME o

. I
Los 8 e T e}
) B =

30: 032000 30:00:000 DISPLAY TIME 00:30
30:00:000 30:00:000 BUZZER ON i

31:00:000 31:00:000 DISPLAY TIME 00:31
32:06:000 32:00:000 DISPLAY TIME 00:32

Figure 36: Simulation Output

result representation makes the tool capable of simulating various real-time models.
However, the usability of the results is very low compared with the usability of VAT

that uses graphical metaphors to represent the interaction between entities.

8.2 Simulation of Steam Boliler

A simulation with graphical visualization for the steam boiler was implemented by
[Lot96]. The tool simulates the behavior of the simulator while reacting to different
messages that can be controlled by the user. The Tool Command Language (Tcl)
and the Widget Toolkit were used to implement the simulation. Control panels are
provided to allow the user to control and direct the execution of the simulation.

Figure 37 show a snapshot of the steam boiler taken from [Lot96].

78

§ steam measurement

NZ

water level
display

Figure 37: Steam Boiler Simulator

From the Figure we can see that the usability and understandability of the tool is
very high; the user can perceive easily the status of the system. However, this tool is
very specific and is used only to visualize the steam boiler while VAT, on the other

hand, is very general and can be used to visualize and animate any real-time system.

8.3 Rational Rose RealTime

IBM Rational Rose RealTime is a software development environment developed to
model real-time system designs using the Unified Model Language(UML), generate
implementation code using several programming languages such as C++ and Java,
run the system, and debug the whole system application with visual presentation.
Hence, it supports the whole system development life cycle. Some of the types in-

cluded in Rational Rose RealTime are:

e Capsules: the fundamental modeling basis of UML2.0 ”classes with structure”

79

that encapsulates all its attributes and operations and keep them logically pro-

tected [Wor03].

¢ Ports: the medium for communication between capsules. Ports connect capsules

together allowing messages to be sent from one capsule to another.
e Protocols: interaction messages are defined in protocols.
e States.
e Transitions.
¢ Events.

By applying the understandability guidelines that are introduced in this thesis to

the visual modeling of Rational Rose RealTime, we got the following results:

e "Every TROM Object and State should be presented in a way so that it is clearly
identified and perceived by the user.”: Each type is presented in a different
visual notation than the other. Rational Rose RealTime uses the standard
UML notations to present each type. Therefore, it supports the guideline of
using different notations for different concepts so that the user can understand

the presented information easily.

e "The relationship between TROM Objects and their corresponding states should
be made clear.”: States for a particular capsules are grouped in state chart di-
agrams which support the guideline of easing the perception of the relationship
between objects and states. VAT, on the other hand, groups the states of each
object in one frame so that the user can on a glance understand the relationship

between the states and the TROM Object.

e ”States of a particular TROM Object should be presented in the same sequence
of execution that happened during the simulation process.”: During the exe-

cution of the model, all the states of a particular capsule are presented. The

80

execution shows the transition from one state to another. The difference be-
tween this presentation and the one provided in the VAT is that the Rose
RealTime shows all the states while the VAT shows only the active states that
participated in the sequence of execution. The tradeoff is that showing only
the active states reduces the mental overhead on the user while monitoring the
state transitions. On the other hand, showing all the states will allow the user

to see the other transition possibilities that didn’t happen in the execution.

"The Type of event should be identified.”: Rose RealTime allows the user
to debug through multiple capsules using a debugging facility; therefore, the
user can monitor the shared events that allow the communication between two

capsules through the defined ports.

"The causing event should be mentioned.”: Rose RealTime has event traces that
allow the user to trace message transmission; hence, it facilitates the identifica-
tion of the causing event. In VAT, the causing event is clearly presented with a
caption titled SourceEvent so that it will be easy for the user to understand it

from the presentation.

"Time should be always presented.”: Rose RealTime allows the user to know
the time at which each event has happened during the model execution using
the tracing facilities. On the other hand, VAT clearly presents the time in a

clear format to enable the user to find it easily.

”System’s current status and history should be always available to the user.”:
The debugging and tracing facilities allows the user to know the current status
of the model and the history of interactions between objects. Also, the current
state is displayed with a frame to help the user identify it easily. In VAT, the

current state is presented using blinking colors.

"Help and support should be available to the user.”: Help and support are

provided through tutorials, examples, and animated demos to aid the user in

81

understanding the presented information. In VAT, help facility is provided by

giving a legend page that describe the different notations used.

From the previous results we conclude that the stated understandability guide-
lines are applied in Rational Rose RealTime. Differences of applying the guide-
lines are found between Rose RealTime and VAT due to the differences in the
complexity of the two applications. The debugging and tracing facilities that
are provided in Rose RealTime do exist in the TROMLAB framework Simulator

tool.

82

Chapter 9

Conclusion

This thesis worked on improving the usability of TROMLAB tools. General
guidelines for solving the understandability problems for real-time reactive sys-
tems simulation results were introduced. Those guidelines can be used not
only for TROMLAB environment but also for any other Real Time Reactive

environment.

A new Visualization Animation tool was designed and implemented by this
thesis to complete the TROMLAB Framework architecture and to aid in the
improvement of TROMLAB quality in use. This tool can be used to simulate
the results of any Real Time Reactive simulation provided that it conforms to
the defined XML schema for translating simulation results. Hence, the imple-
mentation of this tool will take TROMLAB steps forward to communicate with
other research labs in the same field of study. Also, the work produced in this
thesis will encourage further utilization of TROMLAB simulation because of

the usability improvements achieved.

83

9.1 Future Work

9.1.1 Simulator

The current version of Simulator contains a very powerful simulation, querying,
and reasoning facilities that were developed iteratively by TROMLAB research
members. The limitation of it is that it can be used only through the defined
GUI. This means that in order to get use of those tools the Real Time Reactive
practitioner should have the source code of those tools in hand and run it
on windows environment. This thesis suggests converting those powerful tools
into web services that can be used by any other tool or user. This can be
done by building a web service interface that can handle any request from
any source. The interface should be able to receive input TROM formalism
and produce output XML simulation results remotely from any web source.
This improvement will take TROMLAB steps ahead for internationalizing its

components and benefiting other labs from its resources.

9.1.2 VAT

When the suggested work in the previous section is built, VAT can serve as the
GUI interface that can be used by both web and windows users to interact with
the back end TROMLAB tools. Additional functionalities such as querying the
simulation and getting more details about the current interaction and event

specification can be implemented.

84

Bibliography

[AAG93)]

[AAMO6]

[Abr91]

[AMO9S]

[AMOO]

[AMO03]

[Bha99]

[Cio91]

G. Abowd, R. Allen, and D. Garlan. Using style to understand

descriptions of software architecture., 1993.

V. S. Alagar, R. Achuthan, and D. Muthiayen. Tromlab : A software
development environment for real-time reactive systems. October

1996.

J.-R. Abrial. Steam boiler control specification problem, August

1991.

V. S. Alagar and D. Muthiayen. Specification and verification of
complex real-time reactive systems modeled in uml. Submitted for
publication in IEEE Transactions on Software Engineering (Being

revised), July 1998.

V.S. Alagar and D. Muthiayen. Towards a mechanical verification

of real-time reactive systems modeled in uml, 2000.

V.S. Alagar and D. Muthiayen. A rigorous approach to modeling

autonomous traffic control systems. 2003.

V. Bhaskaran. Graphical user interface for tromlab environment.
Master’s thesis, Department of Computer Science, Concordia Uni-

versity, Montreal, Canada, December 1999.

Frank A. Cioch. Measuring software misinterpretation. Journal of

Systems and Software, 14(2):85-89, 1991.

85

[GHO3]

[GS94]

[GW03]

[Hai99]

[HL94]

[IEE9S]

[Kru95]

[Liu03]

[Lot96]
[MAKS00]

[Mir98]

[Mut96]

J. V. Guttag and J. J. Horning. Larch: Languages and Tools for
Formal Specifications. Springer Verlag, 1993.

D. Garlan and M. Shaw. An introduction to software architecture,

January 1994.

Ezequiel Glinsky and Gabriel Wainer. Definition of real-time simu-

lation in the cd++ toolkit, 2003.

G. Haidar. Simulated reasoning and debugging of tromlab environ-
ment. Master’s thesis, Department of Computer Science, Concordia
University, Montreal, Canada, December 1999.

C. Heitmeyer and N. Lynch. The generalized railroad crossing:
A case study in formal verification of real-time systems. volume
RTSS94, pages 120-130, San Juan, Puerto Rico, December 1994.
15th IEEE Real-Time Systems Symposium.

Draft for Standard IEEE. Ieee p1471/d5.1 draft recommended prac-
tice for architectural description, December 1998.

Philippe Kruchten. Architectural blueprintsthe 4+1 view model of
software architecture, November 1995.

S. Liu. Simulated validation of real-time reactive systems with pa-
rameterized events. Master’s thesis, Department of Computer Sci-
ence, Concordia University, Montreal, Canada, August 2003.
Annette Lotzbeyer. Simulation of a steam-boiler, 1996.

D. Muthiayen, V.S. Alagar, F. Khendek, and A. Sefidcon. An ap-
proach to a synthesis of formal and visual description techniques for

the development of real-time reactive systems, 2000.

B. Mirel. Visualizations for data exploration and analysis:a critical

review of usability research. Technical Communication, 45(4), 1998.

D. Muthiayen. Animation and formal verification of real-time re-

active systems in an object-oriented environment. Master’s thesis,

86

[0OCB00]

[Sri99]

[Tao096]

[Wil94]

[Wor(03]

Department of Computer Science, Concordia University, Montreal,

Canada, October 1996.

M. A. Ogush, D. Coleman, and D. Beringer. A template for docu-

menting software and firmware architectures, March 2000.

V. Srinivasan. An intelligent graphical interface system for trom-
lab. Master’s thesis, Department of Computer Science, Concordia

University, Montréal, Canada, March 1999.

H. Tao. Static analyzer: A design tool for trom. Master’s thesis,
Department of Computer Science, Concordia University, Montreal,

Canada, August 1996.

Lloyd G. Williams. Assessment of safety-critical specifications.

11(1):51-60, 1994.

Developer Works. Ibm rational rose realtime: A guide for evaluation

and review, 2003.

87

Appendix A

Simulation Results in XML Formt

the following example presents the XML format for the Steam Boiler Controller
case study’s simulation results for the scenario of having a alow level of water

at the first cycle of execution and a safe water level in the second cycle.

<?7xml version="1.0" encoding="UTF-8" 7>
- <simulation>
- <initial-states>
<initial trom="pumpl" state="closed" />
<initial trom="controllerl" state="control" />
<initial trom="levelmeasuringl" state="measuring" />
<initial trom="timerl" state="idle" />
<initial trom="valvel" state="closed" />
</initial-states>
- <tromevent>
- <event-set>
- <event trom="levelmeasuringl"time="0">
<name>Level</name>
~- <state-set>
<state trom="pumpl">closed</state>
<state trom="controllerl">control</state>
<state trom="levelmeasuringl">informController</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="user" time="0" causing="" />

</event>

88

- <event trom="levelmeasuringl" time="0">
<name>Sendlevel</name>
- <state-set>
<state trom="pumpl">closed</state>
<state trom="controllerl">control</state>
<state trom="levelmeasuringl'">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="" time="0" causing="intermal" />
</event>
- <event trom="controlleri" time="0">
<name>Level</name>
- <gtate-set>
<state trom="pumpl">closed</state>
<state trom="controlleri">low</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel'>closed</state>
</state-set>
<cause trom="levelmeasuringl" time="0" causing="Level" />
</event>
- <event trom="controllerl" time="0">
<name>increase</name>
- <state-set>
<state trom="pumpl">closed</state>
<state trom="controller1">handleLow</state>
<state trom="levelmeasuringl">measuring</state>

<state trom="timerl">idle</state>

89

<state trom="valvel'">closed</state>
</state-set>
<cause trom="" time="0O" causing="internal" />
</event>
- <event trom="controllerl" time="0">
<name>0penPump</name>
- <state-set>
<state trom="pumpl">closed</state>
<state trom="controllerl">pourwater</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="controllerl" time="0" causing="increase" />
</event>
- <event trom="pumpl" time="O0O">
<name>0penPump</name>
- <state-set>
<state trom="pumpl">toopen</state>
<state trom="controllerl">pourwater</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel'>closed</state>
</state-set>
<cause trom="controllerl" time="0" causing="OpenPump" />
</event>
- <event trom="controllerl" time="0">
<name>CloseValve</name>

- <state-set>

90

<state trom="pumpl">toopen</state>
<state trom="controlleri">endLowControl</state>
<state trom="levelmeasuringl'">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="controlleri" time="0" causing="OpenPump" />
</event>
- <event trom="valvel" time="0">
<name>CloseValve</name>
- <state-set>
<state trom="pumpl">toopen</state>
<state trom="controlleri">endLowControl</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="controllerl" time="0" causing="CloseValve" />
</event>
- <event trom="pumpl" time="1">
<name>open</name>
- <state-set>
<state trom="pumpl">opened</state>
<state trom="controllerl">endLowControl</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>

<cause trom="pumpl" time="0" causing="OpenPump" />

91

</event>
- <event trom="controllerl" time="3">
<name>endLow</name>
- <state-set>
<state trom="pumpl">opened</state>
<state trom="controllerl">control</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timer1">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="controllerl" timé="0“ causing="increase" />
</event>
- <event trom="levelmeasuringl" time="10">
<name>Level</name>
- <state-set>
<state trom="pumpl">opened</state>
<state trom="controllerl">control</state>
<state trom="levelmeasuringl">informController</state>
<state trom="timeri">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="user" time="0" causing="" />
</event>
- <event trom="levelmeasuringl" time="10">
<name>Sendlevel</name>
- <state-set>
<state trom="pumpl">opened</state>
<state trom="controllerl">control</state>

<state trom="levelmeasuringl">measuring</state>

92

<state trom="timeri1">idle</state>
<state trom="valvel”>closed</state>
</state-set>
<cause trom="" time="Q" causing="internal" />
</event>
- <event trom="controllerl" time="10">
<name>Level</name>
- <state-set>
<state trom="pumpl">opened</state>
<state trom="controllerl">safe</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="levelmeasuringl" time="10" causing="Level" />
</event>
- <event trom="controllerl" time="10">
<name>closeAll</name>
- <state-set>
<state trom="pumpl">opened</state>
<state trom="controlleri">handleSafe</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="" time="0" causing="internal" />
</event>
- <event trom="controllerl" time="10">

<name>ClosePump</name>

93

- <gstate-set>
<state trom="pumpl'>opened</state>
<state trom="controllerl">close</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel'">closed</state>
</state-set>
<cause trom="controllerl" time="10" causing="closeAll" />
</event>
- <event trom="pumpl" time="10">
<name>ClosePump</name>
- <state-set>
<state trom="pumpl">closed</state>
<state trom="controllerl">close</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="controllerl" time="10" causing="ClosePump" />
</event>
- <event trom="controllerl" time="10">
<name>CloseValve</name>
- <state-set>
<state trom="pumpl">closed</state>
<state trom="controlleri">endSafeControl</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timer1">idle</state>
<state trom="valvel">closed</state>

</state-set>

94

<cause trom="controllerl" time="10" causing="ClosePump" />
</event>
- <event trom="valvel" time="10">
<name>CloseValve</name>
- <state-set>
<state trom="pumpl">closed</state>
<state trom="controllerl">endSafeControl</state>
<state trom="levelmeasuringl'">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="controllerl" time="10" causing="CloseValve" />
</event>
- <event trom="controllerl" time="14">
<name>endSafe</name>
- <state-set>
<state trom="pumpl">closed</state>
<state trom="controllerl'">control</state>
<state trom="levelmeasuringl">measuring</state>
<state trom="timerl">idle</state>
<state trom="valvel">closed</state>
</state-set>
<cause trom="controllerl"” time="10" causing="closeAll" />
</event>
</event-set>
</tromevent>

</simulation>

95

