A GLEANING SUBSYSTEM for CINDI

TONG ZHANG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE & SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

AUGUST 2004
© TONG ZHANG

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94759-9
Our file Notre référence
ISBN: 0-612-94759-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract
A GLEANING SUBSYSTEM for CINDI

By
Tong Zhang
Internet search engines typically use Internet crawlers, or robots, for the purpose of
constructing and maintaining a searchable index of resources on the Web. Most crawlers
such as Google, Alta Vista, Excite, HotBot, and Lycos are designed to build global (non-
topic-specific) indices of the resources on the Internet. Although the development of
storage technology has made it possible to store large amounts of on-line data, the
explosion of information available on the Web is overwhelming. Such search engines are
exacerbating the problem by indexing more and more irrelevant documents. Therefore,
topic specific robots will become popular in the next generation. They gather information
on the Internet in specific domains by means of information filtering technology. The

CINDI Robot System is such an application in academic domain.

This research is concerned with a structure-based gleaning subsystem for CINDI The
system separates theses, technical reports, academic papers, and FAQs as resources while
e-mails, letters, resumes, graphics, and discussion groups are considered as chaff. This
system makes decisions based on weight, which is carefully assigned to each resource by
matching its structure with predefined Document Type Definitions (DTDs). The DTDs
for the typical structure for the specific document types are built based on some
predefined profiles. The test results from extensive experiment show that DFS has good

performance.

The system also features conversion subsystem in Windows environment to unify
document formats for CINDI. This subsystem converts non-pdf documents retrieved by
the CINDI Robot into PDF. In this subsystem, a daemon was implemented to securely
monitor the CINDI Robot database, automatically transfer new document between a
Linux platform and a Windows platform, and maintain the converting information in the
CINDI Robot database. The CINDI Robot database was designed and developed to store

document information with other CINDI team members. .

11

Acknowledgements

I would like to express my great appreciation to my supervisor, Professor Bipin C. Desai,
for his thoughtful ideas, knowledgeable suggestions, and financial support. His extensive

knowledge and lively work team will never be forgotten.

1 would also like to thank the other members in the team, Hongbing Zhang, Cong Zhou,
and Furong Xue. Helpful discussions with them have undoubtedly benefited my thesis.

Their personalities make our cooperation effective and pleasant.

I would like to thank the staff on the helpdesk for their help in problem solving with the
techniques, and equipment administrators for their excellent service. I am also grateful to
the secretary of the department of Computer Science & Software Engineering, Halina

Monkiewicz, for her help and enthusiasm during my whole study.

My special thanks go to Mary O’Malley in Student Learning Service in Counseling and

Development for her impressive help in editing this paper.

I would also like to thank my parents although they are far from Canada. This thesis is

the result of their unselfish encouragements and supports beginning from my childhood.

Finally, my great thanks go to my husband, Lianzhong Li, for his patience, works in
household and continuous support and understanding. My gratitude also goes to my
lovely daughter, Jiameng Li, for her understanding when I had no time to accompany her

and to build a house with her.

v

Contents

LISE Of THGUIBS ettt ettt st s e s n et e e b e e nme et as e eeneeesessans vii
LSt OF TabBLES ettt e st st ne et b s e s e s e e s amceneesaneesneannenaneas xiil
AALCTOTIVIIIS c.crentenutcrereantteeiueantceesaeasaeaesesenasautsasaaesneaesessssassaseneassssaseessasassasssesasesossessessasssessncsn ix
CRAPIET 1 .ottt ettt et s bt et s ea s s e s e san e nanes 1
INETOGUCTION cvvvvererverertesseeesscsesssaesessssesesessseessesesassesesessesasssssesessesssasensassssnsasessssnssarssssssesassasens 1
1.1 Problem Statement .. .co..eaiierieeiieeierierteecteetesasesnes e eeseesssessreesssesstssosesssensasssesveses 1
1.2 Proposed SOIILION «...viiiieiieeieieir e ctceete e se e eerec et s st e nnesneeneseeseesnneanees 2
1.3 Organization Of this TRESIS .vocvertiererrereeenieriierrarsteesee st seseesaascreastaseneessesveessessnnans 3
CRAPLET 2 ottt e s be st s e e et senean e s se e ermeesan e maent e sobs st e entesnsesnss 5
Backgroundcccoiiioiie e ettt st st e e et s st 5
2.1 Typical RODOL ...ttt et see e e enmeenene JOTRR 5
2.2 Typical Documents 0n the WEDc.ovcruiueeeiierserensssssessssessssssssessssssssssssssssessssesanees 9
2.3 Filtering TeChnOIOZIES. ..cc.civiirirtirie ittt errecsest et eneesnesseenenaseacs 10
2.4 DBETINION c.eviiieiriiicitiecnteeterete e et et se e e tesseee s senenesenssaatesseesmnneaneeeseesenaen st eentesatanncenstens 12
CRAPLET 3 oottt et ce ittt s st et ae R e s e s s sae e 13
File Conversion Subsystem and Document Filtering Subsystemccoceevvviivnvnniniinnens 13
31 CINDI ettt et te b et serteene sttt e b st et e et e s b st b e naennesnesaeonns 13
3.2 The CINDI RODOt DABDASEccevrercmmnreeeerceseenssecsasarissssnesssssssssesanesessasssssessnecs 17
3.3 File Conversion SYStem (FCS)....uiiirmiicmiieeiriniiecsseisseeesssessenseesosasesseessnessesessases 19
3.3.1 PDF CONVETLETS ..cuureenirentiraerieeeesniaeireeiieeseeesateseresseasnesasneesssnesssesnnsersessssnnsessssns 19
3.3.1.1 CZ-DOCZPASeioreeirieieiireteseccne et se s st cesesrececsene s seeesesanensesnssane 19
3.3.1.2 PDEFCAMP c.vciteieeeeieeceeecrccineeneeneere e seesnesenneseteesaesnnessaeesmessbessssnsnnseons 20

3313 PDEFID c.tieccereeteerer et strecs e eresne s stesas e e sse et e st senosnen e e e seesanesessesmtesssans 21
B3TAPAIIDS ..ttt ettt e ane 21

3.3.2 Evaluation Of CONVEITETSccucveiecreeteenrreerienririceereeseereessarecneesstessesnssssonsesnesonsas 23
3.3.3 Configuration of FUS ...ttt st smessosat e ssresstssesaesanens 25
33.4Design OF FOS ...ttt e ee et e e e snaessascontsonnesone 30
3.3.5 Implementation of FCSooiriiiirrreieceetceteecccesrece et retcesaraens 32

3.4 Document Filtering Subsystem (DES) «.cccocivivivecinninicinicssnecscennanns 38
3.4.1 The APPIrOaCh..ccccciiiiicciciieciiiiiiiicie ettt ctenesnesseesnessncsnen s sssensesanssanon 38
3.4.2 Document Type Definition (DTD)...coviiviiiniivnirrtecienieneecereenceercneeescens 39
3.4.2.1 DTD 08 TRESES c.eeveienreiiieeeeeireecieeeteeteesteecnce e s s s cenene e saecssaesasasasssnss 40
3.4.2.2 DTD for Technical REPOItS....cccooveeuerveniivriniciiiiianieninteinnicssissseseeesannens 42
3423 DTD fOr FAQS iiiciiciiiiiiiectiiieiicctcctnetesreenteiecaenssee e sreressnosnassessnesanes 43
3.4.2.4 DTD for Academic Papersc.cceeeveererreecirnircineenincieneeceninessessessnensenane 44
3.4.2.5 DTD for E-mailS..ccceeeiieiiiieciireciecieeireecnrerncesseeecences e e siesemneecsnesnnsssesson 46
3.4.2.6 DTD fOr RESUIMES. ...cceveeiieiiiirrernienieoreccrenienteseesesme st eeiessnecaessesancssnenne 46
3.4.2.7 DTD for Lettersccovueenreerecceneenneesecenencnes eereeceeeseeeasrtennetsrneenrseneaeeneeeannen 47
3.4.2.8 DTD for Discussion GIOUPS......ceecveereeereerreecertesreenmerseesasecessassressessssesssins 48

3.4.3 Implementation of DES ...ttt recesescsssaessasens 48

3.4.3.1 Thesis/Report Structure EXtTractionovvervvenmicrnnininenesseieeisiereneinni 49

3.4.3.2 Academic Paper Structure EXtractionceeeecveeimrereiicceenienrenensnnressecreneee 56

3.4.3.3 FAQ Structure EXTaCtiOn ..ccccveeeciricirieieeeviereennreeeesraeeeienesscocnsessnesessnenssees 60

3.4.3.4 Overall Algorithm for DES ... 62

3.4.3.5 Data Structures for DES ...ttt enes 66
CRAPLET 4 ...ttt ettt et et se et sesees 71
Experiments and Evaluation......ccccociiiiiniiiicecinicieincieecccirenieie s ssesnne e 71
4.1 Experiment One on FCS ..ottt 71
4.2 Experiment Two 0n DES. ...ttt eeerececetesbeeenreese e sesaanes 74
4.2.1 Manual Test ..ot e 75
4.2.2 AULOMALIC TEST.evveitiiirereererrcrireeceeeenesereseeseereesteestreseess e beeseeseeneesaeenesnsecnseass 79
CRADIET 5 oottt sttt et e s st be st e be et ba e 85
Conclusion and FUtire WOTKcoc.oviiiiicioiicniceiet et nesesie e ecne e csaeeeeseessaesecneens 85
5.1 CONCIUSION cuvtrterririeeeeiieeeenteeete st eesteereeteaaressessesnnesteneesannessaeneessteatesaeeeentanasensesasenes 85
5.2 Contribution of this thesiS ...ccvireerieerie ittt crecee e neeeeeesseras 86
5.3 FUture WOTK (oot t ettt ettt sae e e nee 87
RETEIEIICES .eetiiitiiiieiie ettt ettt ee st et st e et st e e b st ne s s et et saee e eanesaneeneen 89
Appendix A Typical Document TYPES......ccccceurrnrirniecinieireniernieinceereensenscsntesesssessenans 93
Appendix B Source Formats Accepted by Omniformat and Pdf995cccecvvvveernann 98
Appendix C Original MS Word Document Used for PDF Conversion Test............... 103
Appendix D Converted PDF Document Using PDFcamp.......cccouieeiiiccininiincnnincns 105
Appendix E Converted PDF Document Using Omniformat and Pdf995 107
Appendix F Key Generation for the Communication between Windows and Linux..... 109

vi

List of Figures

Figure 2.1 Major Components of a Typical RODOtcccovvvecririciiiiiiininccicciiniicceiinenn 8
Figure 3.1 Architecture of CINDITcioieiiiiiriiiieccerneccter e ceneceressieestesesesessrassseansasnne 14
Figure 3.2 Amplification of the CINDI Robot database in CINDI Architecture............... 15
Figure 3.3 Communications between the Windows platform and the Linux platform.....26
Figure 3.4 User Data Source in Control Pane€l........cccveeceeeciieececiierccienesieneeeesnessvenenaenns 28
Figure 3.5 Configuration of MyODBCcc.coiiiiiieiierceeecne e estesee e eeee e eeaiee 29
Figure 3.6 Test Message of MYODBC . .ccoiiiiiiiiiiircirciieseseeeeciieee e sseesceeeesssessaeassae s 29
Figure 3.7 Architecture of File Converting System ereeeete e e tae st st st e s e e s et e arees 31
Figure 3.8 Components of FCSA ..ottt e 373
Figure 3.9 Data Structure of Document LiSt......cccoeiiimiiiiiiniiieniierieeceneeeenetecneeseeennens 37
Figure 3.10 Structure of a Block of BUffers.....c.ooiivirieiieniiciecccreeeeeccee e 676
Figure 3.11 Sample of a Block of BUTersccooieiirreiee e 67

Figure 3.12 Data Structure for the Body Structure of theses, technical reports, and

ACAAEIINIC PAPETS weeureeeiereeeearrereereanierteeresaneesssnaessassnsessecsassasassasasasessatsssessanessmesssessesss 68
Figure 3.13 A Sample of the Body Structure for a ThesSiScccecveecrrriniiiicnnennceceniineen 69
Figure 4.1 Conversion Flag in Database before PDF Conversionccocveevnineicccnnienenn 71
Figure 4.2 The Starting Interface of FCSd...c.ccoriivivriireiineinceerrcenecee e 72
Figure 4.3 Document Transfer from the Linux Platform to the Windows Platform......... 72
Figure 4.4 The Interface of Document CONVErSiON......coueicrirraeenereceeesseecoessrasesuesoneracenns 73
Figure 4.5 Conversion Flag after PDF Conversion....cc.cceeecveniinicnneeenenneinneninnenens 73
Figure 4.6 Conversion Information Recorded in the CINDI Robot Database................... 74

vii

List of Tables

Table 2.‘1&Development of Search Enginesc..ccvvmveeivemieniniiiiiinieniicenecieessesssncns 6
Table 3.1 Comparison Of CONVEITETSccccvivierticieinincee et essesessesassneaes 23
Table 3.2 Samples of Document LiSt...coccuiiiiiiieriieieiiiierincneccir e caceeeeees 34
Table 3.3 Sample of Accepted Documents in the DOWNLOAD_STATUS Table 64
Table 3.4 Sample of the Rejected Documents in the DOWNLOAD_STATUS Table..... 65
Table 4.1 Test Document Contents for Manual Test of DFS ..o 75
Table 4.2 The Results of Manual Test 0n DES ..ot 77
Table 4.3 Results of Automatic Test on DEFS ..o, 80
Table 4.4 The Filtering Accuracy of DFS from the Automatic Testcccconvecvrcniieniicnnns 81
Table 4.5 The Filtering Accuracy after Tuning DES ..ot 82
Table 4.6 Statistics on the precision of Relevant and Irrelevant Documents............cccu.. 83

viii

ASHG
BMP
CJK
CINDI
DFS
DOC
DSN
DTD
FAQ
FCS
HTML
HTTP
PG
MyODBC
NLPQC
ODBC
PDF
PPT
PS
RTF
SHDB
SQL
TEX
TXT
VQAS
WWW
XML

Acronyms

Automatic Semantic Header Generator

Bitmap format

Chinese, Japanese, and Korean

Concordia Indexing and Discovery system
Document Filtering Subsystem

Microsoft Word documents

Data Source Name |

Data Type Definition

Frequently Asked Question

File Converting Subsystem

Hyper Test Markup Language

Hyper Text Transfer Protocol (World Wide Web protocol)
Joint Photographic Experts Group

MySQL ODBC driver

A Natural Language Processor for Querying CINDI
Open Database Connectivity

Portable Document Format

MS PowerPoint documents

PostScript documents

Rich Text Format documents

Semantic Header Database

Structured Query Language

LaTex format

Text format

Virtual Query and Answering Subsystem for CINDI
World Wide Web

Extensible Markup Language

X

Chapter 1

Introduction

1.1 Problem Statement

As the rapid growth of the World Wide Web (WWW) is providing a vast amount of
information, Web search engines [1, 2] have become popular to provide information
search accessible to a large number of naive users. However, the difficulty for users is to
choose a good search engine to help them easily and quickly find relevant information.
Even Google, the most popular search engine among the top 10 search engines (HotBot,
AltaVista, Northern Light, Excite, Infoseek, Lycos, Snap, Microsoft, Google, and
Euroseek) [3], returns a large number of irrelevant pages. The problem is that Google
tries to build indexes of all documents on all topics on the Web retrieved by web robots
from Web servers. It returns the search results based on a few key words provided by the
users. The explosive growth of the Web has resulted in billions of multimedia pages of
information, including complete libraries of technical information, directories, personal
web sites, entertainment, and advertisements which continue to be évailable via the
Internet. Many of these pages that are not relevant to the user’s search focus could be in

the result of a search.

However, to produce more relevant search results, it is necessary to use a topic specific
robot agent that automatically builds and maintains indexes of targeted document types
on the Web. To focus on the significant documents, the system should be able to decide if
information is relevant among a vast, unstructured, unorganized, and ambiguous mass of

web pages. To solve this problem, we developed a Document Filtering Subsystem (DFS)

for CINDI (Concordia INdexing and Dlscovery system) [4, 5, 6, 7, 8§, 9, 10, 11, 12, 13,

141.

1.2 Proposed Solution

CINDI is a proposed digital library currently under development to provide fast and more
accurate search results for specific academic disciplines. The bibliographic database in
CINDI contains information either submitted directly by the authors or downloaded from
the WWW sites. To obtain accurate information from the web sites, CINDI Robot
gathers information from trusted web sites on specific topics. Then, DFS is employed to
filter out irrelevant information from the retrieved documents. As an academic digital
library, CINDI pays more attention to gathering academic documents such as theses,
technical reports, academic papers, and Frequently Asked Questions (FAQs) on selected
topics; CINDI’s current focus is in the area of computer science. To obtain these relevant
documents, DFS makes a filtering decision according to the document’s structure by
matching the candidate document with the predefined Data Type Definitions (DTDs).
The DTDs for the typical structures for the specific types of documents were built based
on the predefined profiles. DFS assumes the given document is a certain type of accepted
document and then carefully assigns weight to the document based on the presence of key
elements in it. The key elements are defined in the DTD for each relevant document type.

The higher the weight, the closer the document is to the predefined document type.

Documents downloaded by CINDI Robot from web sites exist in many formats such as
DOC, WPD, PPT, TXT, PS, HTML, RTF, XML, JPG, and LaTeX. Since DFS is based

on text files, the downloaded documents must be converted into plain text files; such

conversion to text results in the loss of most formatting information such as font style,
font size, and page layout. However, it is necessary for CINDI system to preserve the
original format. The Portable Document Format (PDF) [15] has been chosen as the single
document format supported by CINDI for two reasons. First, PDF is open standard and
open source code software such as Xpdf [16] is available to convert PDF documents into
plain text files. Second, PDF is portable across platforms. To convert documents that are
platform specific such as those in DOC format, we developed a File Converting
Subsystem (FCS) on a MS Windows platform. Cooperating with FCS, DFS is proposed
to filter documents in many formats, as will be described in Chapter 3. To test the
function of FCS, 194 non-pdf documents were converted by FCS. To measure the
effectiveness of DFS, DFS was both manually and automatically tested. The difference
between manual test and automatic test lies in the source data. In the manual test, the data
source are man-made incomplete documents. The data source for the automatic test is
from the Web, a real world. In the automatic test, 1003 documents retrieved by CINDI
Robot were applied to. Comparison of the automatic test results and the manually

checked results is discussed in Chapter 4.

1.3 Organization of this Thesis

This thesis is organized as follows. In Chapter 2, the concept of Web robots, typical
documents on the Web, and related filtering techniques are presented. Chapter 3
illustrates the detail design and implementation of the Gleaning Subsystem made up of a
document converter (FCS) and a filter (DFS). The experiments using FCS and DFS, and

the evaluation are presented in Chapter 4. In Chapter 6, we give our conclusion,

contribution of this thesis, and suggestions for future research related to Web-based topic

specific robot systems

Chapter 2

Background

2.1 Typical Robot

The Web search engine, as an information search tool, is primarily concerned with two
distinct processes: indexing and ranking [17]. Indexing of the available documents on the
Web makes information retrieval more efficient. Ranking returns a list of the most

relevant documents in response to a given query.

Document acquisition of a search engine can follow either a push or pull model [4]. In
the push model, contributors submit documents to a search engine for indexing. In the
pull model, search engines acquire documents through a robot. A robot [4, 18, 19, 20, 21,
22,23, 24, 25] is a program that traverses the Web’s hypertext structure by retrieving a
document, and recursively retrieving all documents that it references [18]. The program is
sometimes called spider, Web wanderers, web crawler, or web worms. Beginning with
the first Web worm in 1990, a large number of crawlers have been developed, as

described in Table 2.1 [26].

The common genesis of the robots listed in Table 2.1 is that all of them were initially
from university research. For example, Yahoo was primarily developed by David Filo
and Jerry Yang, two Ph.D. candidates in Electricél Engineering at Stanford University
[26]. They started their guide in a campus trailer in February 1994 as a way to keep track

of their personal interests on the Internet.

Table 2.1 Development of Search Engines

Foundational | Net-Oriented Spider Test-Content | Browsers | Directories Meta- Person | Qualifie
technology Access Indexing Search | alized | d Result
Organi
zation
Pre
ARPANet;
1990 AOL
HTTP,
URL;
1990 WWW,; Arxchie
HTML
1991
Gopher
1992 Veronica
Jughead; WWW Architext;
ALIWEB; Wanderer; exite Mosaic
Jumpstation WWW
1993 Worm;
RSBE Spider
Webcrawler; Galaxy,
Lycos; Netscape Yahoo!,;
1994 Infoseek; N.Light
Altavista
Savvy
1E Search;
1995 Meta-
crawler
HotBot; LookSmart Ask
Inktomi; Jeeves
1996 Infospace
1997 GoTo;
Overture
Open Google;
Directory Direct
1998 Project Hit
All the Web;
1999 FAST

Similarly, Google was developed by Sergey Brin and Larry Page, two Ph.D students at
Stanford University in1998 [27, 28]. The earliest crawlers mentioned in Table 2.1 that

still exist in some form as part of current search engines are listed as follows:

Excite (1993)

Galaxy (1994) directory

Yahoo (1994) directory

WebCrawler (1994) first full-text search

Lycos (1994)

Infoseek (1994)

Altavista (1995) first natural language queries, boolean operators, link search

Metacrawler (1995)
Inktomi/Hotbot (1996)
Google (1998)

The typical robot is implemented as a software system that retrieves information from
remote sites using standard HTTP protocols. The structure of the Web is similar to a
directed graph, so it can be traversed using graph-traversal algorithms. There are

currently three approaches for traversal [29]:

® Providing the robot a “seed URL” to initiate exploration. The robot retrieves
the seed documents and extracts URLs pointing to other documents. Each of
these URLs is used recursively in a breadth-first or depth-first fashion.

(i) Starting with a set of URLSs determined on the basis of a Web site’s status and
searching recursively.

(iii)y Partitioning the Web space based on the Internet names or country codes and
assigning one or more robots to explore the space exhaustively. This method

is more widely used than the first two.

A typical robot has the components shown in Figure 2.1.

Initial
URL(D) Initial
, URL(2)

Initial
-1 URL®)

URL Repository

il

extraction

Remove > Redundant
Retrieved HTMI tag URL check
Information

downloaded
documents

Figure 2.1 Major Components of a Typical Robot

From Figure 2.1, a robot downloads an initial set of URLs and parses the associated
documents to extract additional URLs pointing to other documents. Before the robot
downloads documents to the repository, it converts all relative URLSs hidden in tags, such
as <IMG...>, <A HRFF...>, <APPLET...>, and <AREA...>, to absolute URLs and
stores them in a URL repository. After that, the robot checks the extracted URLs to
determine if they were already visited and then try to access the ones that were not

previously retrieved.

Due to the fact that Web robots can place high demands on a Web server, many sites use
the Robot Exclusion Protocol to limit the use of automated retrieval tools. In practice,

Web sites place a robots.txt file in the site’s root directory specifying which areas of the

site are off limits to robots. Web robots in turn voluntarily abide by these restrictions

[30].

2.2 Typical Documents on the Web

Information on the Internet from commercial companies, government organizations,
research institutes, as well as personal websites are growing rapidly. Early in 1999,
Lawrence and Giles [31] estimated that the number of publicly accessible pages on the
Web was about 800 million (with a total of 6 terabytes of data) on about 3 million
servers. Today, the Web contains about 100TB of information [30]. Given the enormous
volume of Web pages in existence, it comes as no surprise that the data types for this
information is varied. The reason is not only almost all genre of documents shown in
Appendix A (237 types) can be found on the Web; additionally, many other genre of

documents such as FAQ and group discussion also exist on the Internet.

The typical documents on the Web include seminar announcements, job listings, Ads, e-
mails, forms, letters, pictures, group discussions, News, FAQs, as well as scientific
papers. Since CINDI concentrates on academic and learned resources, most of the above
documents and other non-desirable resources are excluded. In addition, since group
discussions typically contain repeated queries and unreliable responses, they are not a

good resource for CINDI.

2.3 Filtering Technologies

Filtering as applied to information specifically is a process of comparing an incoming
document to the profile of a user’s interests and ranking it according to that profile [2,
32]. A filter [23, 27, 32, 33, 34, 35, 36, and 37] can be implemented in three ways.

One way is by correlating users’ ratings of documents. In this approach, a document is
recommended to a user because it is highly rated byvother users with whom they tend to
agree. This can also work for negative ratings; an article may not be recommended
because some other “colleagues” did not like it. To make the system more precise and
useful over time, it is important to enrich the initial profile with user feedback. Examples

of such collaborative systems are GroupLens [33], Ringo [34], and WAIR [35].

Another way of filtéring is the content-based collaborative filtering technique {23, 32, 36,
37]. In this technique, document contents are utilized in filtering. Chun-sheng et al.[23]
present a content-based filtering technique, called Information Filtering (IF) agent, in
their information gathering system. The IF agent first determine information categories
according to an expression. The expression consists of some sequential words with logic
operators from the user’s query. The information categories are determined by the user
based on the frequency of his or her expression appearing in each category. Finally, IF
filters the rough documents based on the frequency of the expression appearing in the

documents in the selected categories.

The third way for document filtering is a structure-based filtering technique. Autonomous
Citation Indexing (ACI) system is an example of this technique [38]. It can automatically

create a citation index from literature in electronic format to allow the user to navigate

10

the literature backward in time (through the list of cited articles) or forward in time (to
find more recent, related articles). CiteSeer is an example of such a system; it collects
research documents from the Web and filters them for reference or bibliography sections.
Then, it parses each citation in the reference list using heuristics(syntax, position, and
composition) to extract fields such as title, author, year of publication, page numbers, and
the citation identifier. As a digital library, CiteSeer also uses other technologies for its
search purpose which is not discussed here because it is not related to the filtering

technology.

Recall that the purpose of DFS in CINDI Robot Subsystem is to filter out irrelevant
documents from a set of downloaded files. Unlike the content-based filtering in the IF
agent which needs to know the content of documents and make multiple decisions for
categorizing them, the decision process of DFS is binary: accept or reject. Therefore,

DFS was developed using a structure-based filtering technique.

Unlike CiteSeer whose purpose is to collect scientific articles with citation, the goal of
CINDI is to collect scientific documents including those without citation such as FAQs.
Therefore, DFS filters documents by extracting the whole document structure according
to predefined DTDs. The DTDs define the typical structure for each of the desirable
document types. DFS makes filtering decisions based on weight, which is carefully
assigned to each downloaded document by matching its structure with the DTDs. The

detail design and implementation of DFS is given in Chapter 3.

11

2.4 Daemon

A daemon is a background process ready to perform an operation when required.
Functioning as an extension of the operating system, the daemon is an unattended process
that usually is initiated at system startup. Typical daemons are print spoolers, e-mail
handlers, and a scheduler that starts up another process at a designated time. The teﬁn
daemon comes from Greek mythology meaning "guardian spirit.” Daemons spend most
of their time sleeping until something comes along which requires their help. A UNIX
system has a number of daemons. For instance, the cron daemon automatically runs shell
commands at specified dates and times. In order to automatically monitor the CINDI
database and securely transfer available documents between a Linux platform and a
Windows platform, a daemon called FCSd runs on a Windows platform. FCSd examines
the CINDI database every thirty minutes; it transfers a batch of the non-pdf documents
from the Linux platform to the Windows platform for conversion and sends the converted

PDF files from the Windows platform back to the Linux Platform.

12

Chapter 3

File Conversion Subsystem and Document Filtering Subsystem

3.1 CINDI

CINDI utilizes a robot to retrieve information from the Web for subsequent filtering.
After converting the documents to a single format and filtering out irrelevant documents,
the system populates the accepted documents into a repository for full indexing by
Virtual Query Answering Subsystem (VQAS), a subsystem of CINDI, and for indexing
carried out by another CINDI subsystem called Automatic Semantic Header Generator
(ASHG). ASHG indexes the primary information into the bibliographic database. The
architecture of CINDi is shown in Figure 3.1. The highlighted part, FCS and DFS, are the
main contribution of this thesis. Figure 3.2 is the amplification of the CINDI Robot

database in Figure 3.1.

As illustrated in Figure 3.1, CINDI accepts, via the CINDI Registration Subsystem,
documents in HTML, TXT, LaTeX, RTF, and PDF formats, contributed directly by
authors; it also uses a robot to find documents on the WWW. In addition, it uses papers
submitted to ConfSys, a conference management subsystem of CINDL The documents
directly registered by authors or through ConfSys are directly stored in the Document
Collection repositbry. To find documents on the Web, Seeds Finder extracts links (seeds)
from a search result of the AltaVista (Yahoo) search engine for queries such as
“computer science department”, “computer science research page”, or “computer science

publications”. Then, the Seeds Finder stores the extracted URLs in the SEED_URL table

as shown in Figure 3.2. These seeds are the starting URLs for the CINDI Robot. The

13

World Wide Web

non-PDF
Repository

Temp PDF
Repository

CINDI Robot Database

Document
Collection

& A 4

Text Repository

X A

Web Based User Interface

Figure 3.1 Architecture of CINDI

14

et

' SITE_STATISTICS
e

"

DOMAIN_WORDS

ke

Figure 3.2 Amplification of the CINDI Robot database in CINDI Architecture

15

CINDI Robot retrieves seeds from the SEED_URL table, downloads the corresponding
pages, and extracts and follows the links from these pages. It downloads the documents
from the visited pages to CINDI temporary repository, storing the visited URLs in the
VISITED _PAGES table, as well as the download status in the DOWNLOAD_STATUS
table as shown in Figure 3.2. The documents in PDF format are stored in the temporary
Temp_PDF Repository; the other documents are saved in the non-PDF repository. The
non-PDF documents are converted to PDF format by FCS and then passed to DFS for
filtering. DFS determines document quality by checking if it is accepted or rejected and
saves quality information in the DOWNLOAD_STATUS table. The irrelevant
documents such as emails, letters, news, pictures, assignments, application forms, slides,
and others are rejected and are thrown into the CINDI trash. Relevant documents such as
theses, technical reports, academic papers, and FAQs are accepted for CINDI and are
stored in the permanent PDF Repository. In the next version of CINDI, the PDF
Repository and Document Collection are to be merged. The CINDI Robot calculates the
scores for each major URL directory or server based on the number of valid documents
as determined by DFS and stores them in the SITE_STATISTICS table. This score
determines the frequency of the CINDI Robot if it revisits a given site. Before the next
crawling, the CINDI Robot also extracts key words from the relevant URLs with high
scores and stores them in the DOMAIN_WORDS table. In the consecutive crawling, a
URL not having high score but having high similarity to the key words in the

DOMAIN_WORDS table will be frequently visited by the CINDI Robot,

As shown in Figure 3.1, ASHG uses the accepted documents from the PDF Repository to

generate the corresponding semantic header [S, 14] which includes title, author, subject,

16

and abstract, and stores these into the SHDB database. In order to extract the semantic
header from the PDF documents, they are converted into plain text file. ASHG also saves
the converted text files in the Text Repository. These text files are used by the VQAS to
create indexes for virtual query and answer. A natural language processing interface to
users’ queries is provided by NLPQC (A Natural Language Processor for Querying
CINDI), another CINDI subsystem. VQAS has an interface to accept users’ queries
processed by NLPQC. VQAS returns the most relevant contents from the Text
Repository through the VQAS indexes. VQAS also provides a link for users to the PDF
version of the document in the Document Collection repository. Users can also query
SHDB using author, title, subject, or keywords utilizing the CINDI Search Subsystem,
another CINDI project. The CINDI Robot database stores information regarding the
retrieved documents, their URLs, locations, the format of the documents, and the
semantic headers for these documents. The CINDI Robot, FCS, DFS, ASHG, and VQAS

share the information in this database.

3.2 The CINDI Robot Database

MySQL is an open source relational database management system that uses SQL for
querying the data. MySQL, which is actively maintained, provides APIs for
programming languages such as C, C++, Eiffel, Java, Perl, PHP, and Python, while
having many features such as multi-users and multi-thread. Due to these attractive

features, CINDI uses MySQL as its database server.

The CINDI Robot database contains seven major tables: SEED_URL,

DOWNLOAD_STATUS, SITE_STATISTICS, DOMAIN_WORDS, VISITED_PAGES,

17

CONVERT_PDF, and ASHG. Information about the starting urls, file name, download
date, document format, statistics on page quality, domain key words, visited pages, PDF
conversion flag, date of conversion, and file location for each downloaded document are
recorded in these tables. The first five tables are created by the CINDI Robot and the
second table is shared by FCS, DFS, ASHG, and VQAS. The table CONVERT_PDF is
created by FCS and utilized by FCS, DFS, ASHG, and VQAS; the table ASHG is created

by ASHG and shared by ASHG and VQAS.

The Seeds Finder extracts links from AltaVista (Yahoo) search engine and stores the
links in the SEED_URL table. The CINDI Robot uses the links in SEED_URL as starting
points to download documents and record the file name, url, document type, and
temporary file location in the DOWNLOAD_STATUS table for each downloaded
document. At the same time, the CINDI Robot stores the visited URLs in the
VISITED_PAGES table. FCS sets the conversion flag in DOWNLOAD_STATUS to
“TRUE” and writes the file name of the document that is converted into PDF format, date
of conversion, temporary location of the converted document, and the document ID
referenced in DOWNLOAD_STATUS in the CONVERT_PDF table. DFS sets the final
location (the location after filtering) and filtering flag for each downloaded document in
the DOWNLOAD_STATUS table to indicate whether the document is accepted or not.
The CINDI Robot computes various statistics based on the result of filtering and writes
the results in the SITE_STATISTICS table. For the valuable pages with many accepted
documents, the CINDI Robot extracts key words from these pages and store them in the
DOMAIN_WORDS table. The Robot would avoid, for example, sites with a high

percentage of rejected documents. ASHG creates a semantic header for each accepted

18

document and stores the file name of the semantic header, time of creation, updating time,
the location of the semantic header, and the name and the location of the converted text

file in the ASHG table.

3.3 File Conversion System (FCS)

In this section, we first introduce and compare four PDF converters, and explain our
choice for use in FCS. Then, the configuration of FCS is introduced. Finally, the design
of FCS for CINDI is presented. The design and implementation of the FCSd daemon that

transfers files between a Windows platform and a Linux platform is given in section 3.3.5.

3.3.1 PDF Converters

PDF has become a popular portable e-document format [14] for which there are a number
of converters available. For our purpose, an ideal PDF converter for CINDI should have
the features of excellent converting quality, flexibility, the ability to convert different
document formats, as well as command line executability. Among current PDF
converters, typical examples that could be used for this project are CZ-Doc2PDF [39],
PDFcamp[40], Pdflib[41], and Pdf995[42].

3.3.1.1 CZ-Doc2Pdf

CZ-Doc2Pdf is a batch PDF creator that converts DOC, HTML, TXT, and RTF to PDF.
It can monitor the source file folder and convert MS word, RTF, TXT, or HTML

documents to PDF files automatically. CZ-Doc2Pdf has the following key features:

@ (Creates PDF in batch mode for DOC, htmi, text, and RTF files

19

e Preserves original document layout including URL links, bookmarks, images and

tables.
® Controls the settings for Distiller and/or PDFMaker.
® Supports command line arguments.
® Puts the files into subfolders for converting.
® Supports drag and drop of files.

® (Creates run log file.
3.3.1.2 PDFcamp

PDFcamp (PDF writer) is a product of Verypdf Company. It is PDF creation software
that converts a printable Windows document in DOC, XLS, PPT, TXT, or HTML format
to PDF format. The newest version of PDFcamp Pro (Ver 1.9) has the following features:
e Supports three modes for creating PDF files: user interface to manually select
output filename, automatic conversion of many files to PDF at one time, and
BatchToPDF software to create PDF files using command line input without
users’ intervention.
e Espouses Windows applications including Visual Basic, Visual C++, and Delphi,
in which the PDF file name can be managed without user intervention
e Supports Text Extraction from printable documents (except for graphics and PDF
files) and keeps the original page layout. The extracted text is independent of the
software that created the original document and can be used to re-construct the
document and/or be inserted into a searchable text database. Text Extraction is

ideal for archiving form documents such as invoices, statements, and reports.

20

o Integrates with Microsoft Office 2000 and creates toolbars and icons in Microsoft

Office 2000

3.3.1.3 PDFlib

PDFlib is a development tool for generating PDF documents on a server. It offers a
simple-to-use API for creating PDF files within a user’s server-side or client-side
software. In addition, it does not make use of third-party software for generating PDF,
nor does it require any other tools. The features of PDFlib are:
e Completely reworked font engine with full Unicode and CJK (Chinese, Japanese,
and Korean) support.
e BMP image support and image formatting options.
e Smooth shadings, transparency, blends, and overprint control to graphics.
e Hypertext including named destinations, bookmark targets, and improved
coordinate handling.
e 40-bit and 128-bit encryption for user and mastering password and permission

settings.
® New exception handling for C and consistent numbering of error messages.
3.3.1.4 Pdf995
Pdf99S makes it easy and affordable to create professional-quality documents in PDF
format. It offers the following features:
e Automatic insertions of the embedded links and hierarchical bookmarks.
e Supports for digital signatures and Triple DES encryption.

e Batch prints from Microsoft Office.

21

e Supports for large format architectural printing in XP Fast User Switching and
multiple user sessions, Optimized PDF, Citrix/Terminal Server, and Windows
2003 Server.

Apart from the features above, Pdf995 is also capable of carrying out the following
functions:

e Automatically generates Table of Contents.

e Appends and deletes PDF Pages.

e Supports Asian and Cyrillic fonts.

e Combines multiple PDF documents into a single one.

e Impositions Draft/Confidential stamps.

e Has standard PDF Encryption (restricted printing, modifying, copying text and
images).

e Has options to attach PDFs to email or automatically displays PDFs after creation.

e Automatically generates page numbering and text summarization of PDF
documents.

e Integrates easily with document management and Workflow systems.

e Simplifies programmer interface.

e Customizes sizes of PDF output.

e Configures Font embedding.

¢ Has an executable program to specify PDF document properties.

e Masters PDF opening mode.

e (Creates PDF documents without annoying watermarks.

e [s free with full functions but has sponsor pages.

22

Cooperating with Omniformat, which is another free software of Pdf995 Company,
Pdf995 can convert over 75 file formats including MS Office and Word Perfect formats
to PDF as described in Appendix B. Omniformat can monitor the specific folder and
automatically convert newly downloaded documents to PDF files at any time. Also, it
may be used to dynamically convert XML data to any supported output format including
PDF. In the process, a Microsoft Word file is utilized as a template to supply layout
information. Moreover, Omniformat replaces fields in the Word template with values

specified in the XML file and converts the document to the final format.

3.3.2 Evaluation of Converters

In FCS, the requirement for a converter is that it can automatically convert, with high
fidelity, a batch of files with many formats without user’s interaction. Each converter

above has its own features; the comparison of the four converters is presented in Table

3.1
Table 3.1 Comparison of Converters
Cz- PDFcamp PDFlib Pdf995+Omniformat
Doc2Pdf
doc, xls, html, doc, xsl, wpd, jpg, gif,
ppt,.html, .txt, tif, png, pcx, ppt, ps, xt,
Accept format Doc, html, txt, atf, .tif, Jjpg rtf, tte, ps, Photo CD, FAX and MPEG
rtf bmp See Appendix B.
Automatically Yes Yes Yes Yes
converting
Support command Yes Yes Yes Yes
line
Font embedding No No No Yes
Batch converting Yes Yes No Yes
Cobol, COM,
Support languages C, C++, Java,
C/IC++ VB, VC++, NET, Perl, C/C++, VB, NET
Delphi PHP, Python,
RPG, T¢cl
Open source No No No Yes
Free No No No Yes

23

It can be seen in Table 3.1 that PDFlib does not support batch converting; therefore, it
cannot meet one of the requirements of FCS. Even though CZ-Doc2Pdf can convert
batches of files automatically, it has the drawbacks of being able to convert only a
limited number of document formats, and being neither open source nor free. PDFcamp
converts more document formats than CZ-Doc2Pdf and supports automatic conversion of
batches of files. However, the source code of PDFcamp is not available. Thus, it is not
flexible to improve its functionality so as to integrate the converter into FCS. PDFcamp is
not free and the trial version creates a red watermark consisting of the company’s URL
address on each page of the converted PDF document. Significantly, PDFcamp’s
conversion quality is poor. This is demonstrated by the conversion of the document given
in Appendix C; the result of the conversion is given in Appendix D. To test the
conversion quality of PDFcamp, the test document of Appendix C was made up of five
components: a paragraph with table, figure, some special symbols, hyperlinks, as well as

a JPG image. First of all, as shown in Appendix D, some special symbols such as II, ©,
v, 6, 0, <,1,V, #,&,°., and ., could not be recognized in the conversion.
Pdfcamp replaced those unrecognized symbols with question marks “?”. Secondly, some
converted symbols were totally wrong, e.g. & was converted as d, and ¢ was converted
as s, while the symbol o in the given figure was lost. Finally, it could not identify

hyperlinks in the PDF document since it only converted hyperlinks to a plain text.

In contrast to PDFcamp, pdf995 has excellent converting quality as presented in
Appendix E. Based on the same test document of Appendix C, Pdf995 recognized and
converted special symbols correctly. Furthermore, Pdf995 can identify hyperlinks in the

converted PDF file. A user can connect to the link by clicking the hyperlink in the

24

converted PDF file. Also, there is a popup box to show the full URL address. Most
significantly, Pdf995 is open source with extensive documentation. Therefore, it is
convenient and flexible to improve its functionality to meet our needs. In addition,
Pdf995 has extra robust functionalities such as supporting Asian and Cyrillic fonts,
configurable font embedding, and standard PDF encryption, which are benefit for the

future improvement of CINDIL

Consequently, comparing converters based on conversion quality, accepted document
formats, flexibility, and availability, the cooperation of pdf995 and Omniformat is an
ideal choice for FCS due to its features of open source, low cost, convenient
functionalities, excellent converting quality and speed, and the number of source

document formats supported.

3.3.3 Configuration of FCS

The software OpenOffice can open and convert DOC documents into PDF on a Linux
platform. However, the conversion quality and ability of OpenOffice is often lays the
frequent updating of Microsoft Word. Therefore, FCS was built on a Windows 2000
Professional platform. Since CINDI is built on a Linux platform, non-PDF documents in
such a format downloaded by the CINDI Robot must be transferred to a Windows
platform for conversion. Then the converted files are sent back. Therefore, FCS uses a
daemon called FCSd, which is responsible for the file transfer. The detail design of FCS

and the implementation of FCSd is described in sections 3.3.4, 3.3.5, and 3.3.6.

To ensure that all documents are transferred securely across platforms, FCS is developed

as a secure server and employs a communication software for file transmission.

25

Communication software, such as ftp, is not secure for transferring files. In addition, the
user’s password is transmitted without encryption, and the communication requires user
interaction. In contrast to ftp, OpenSSH [43] is a free version of the SSH protocol suite of
network connectivity. It encrypts all traffic including passwords to eliminate
eavesdropping, connection hijacking, and other network-level attacks. Moreover, it

provides secure tunnel as well as authentication methods.

Since OpenSSH provides cryptography and authentication for secure Internet
communications, we complemented a secure environment in a Windows platform based
on OpenSSH server. Public key and private key were generated as illustrated in Appendix
F, and the public key was copied to the Linux platform so that the FCSd could
automatically communicate with other subsystems of CINDI without the requiremenf of
entering a password. In the environment illustrated in Figure 3.3, documents can be

securely and automatically transferred between the Linux platform and the Windows

platform.
Windows Linux
---4 non PDF Repository
;
5 i
.| OpenSSH ,
A B o <_ o be e v 0w aw o e mm we wm am an eo we D e e -
FCSd B S B Temp_ PDF Repository
4
MySQL server
Driver Manager CINDI Robot Database
&
Fe-q- -)I DOWNLOAD STATUS I
v :
]
MyODBC bl i e mhehahieiedes 4
R ok LE T ST -~ >l CONVERT PDF j

Figure 3.3 Communications between the Windows platform and the Linux platform

26

As shown in Figure 3.3, FCSd runs on the Windows platform, while the CINDI Robot‘
database described in section 3.2 was created on a MySQL server running on the Linux
platform. All non-PDF documents downloaded by the CINDI Robot are stored in the
non_PDF Repository. The Temp_PDF Repository holds temporary PDF documents
consisting of PDF files directly retrieved by the CINDI Robot and the converted PDF
files converted by FCS. Both non_PDF and Temp_PDF repositories are located on the
Linux platform; non-PDF documents from the non_PDF repository are safely transferred
to the repository on the Windows platform by FCSd through OpenSSH server using pscp
command and vise versa. Apart from file transaction, FCSd requires to record
information in the CINDI Robot database for the converted documents. In Windows 2000
environment, MS ODBC is available for APIs to directly communicate with Oracle, SQL
Server, Access, Excel, dBase, and FoxPro but cannot communicate with MySQL.
Fortunately, MySQL. supplies a convenient bridge, the MyODBC driver, between the
Driver Manager and MySQL server. The application FCSd communicates with the Driver
Manager and MyODBC driver directly using the standard ODBC calls. The FCSd only
needs to know the Data Source Name (DSN). Therefore, the MyODBC driver was
installed on the Windows 2000 platform and added into ODBC Data Source
Administrator shown in Figure 3.4. Before using MyODBC to access the databases on
MySQL server, MyODBC needs to be configured into ODBC Data Source Administrator
denoted in Figure 3.5. The following steps complete the configuration shown in Figure

3.5:

1. In the Data Source Name (DSN) box, type the name of the data source you want

to access. It can be any valid name.

27

In the Description box, type the description required for the DSN.

In the Host or Server Name (or IP address), type the MySQL server name. By

default it is local host'.

In the Database Name, type the name of the MySQL database to be the default

database.

In the User box, type database user name (database user ID).

In the Password box, type the user’s password.

In the Port box, type the port number if it is not the default (3306).

In the SQL Command box, enter the optional SQL command for testing to be

used after the connection.

{ dBASE Files Microsoft dBase Driver [*.dbf]
dBase Files - Word Microsoft dBase VFP Driver {*.dbf]
Excel Files Micrasaoft Excel Driver [* xls)
FouPro Files - Word Microsoft FoxPro VEFP Driver [=.dbf)
MS Access Database Microsoft Access Driver {*.mdb)

wodbe3-test MySOL ODBC 3.51 Driver

diEDE MySEL ODBC 3.51 Duiver
Wisual FoxPro Database Microsoft Visual FoxPro Driver
1 Visual FoxPro Tables Microsaft Visual FosPro Driver

Figure 3.4 User Data Source in Control Panel

28

HARRRRRRRUK

Figure 3.5 Configuration of MyODBC

Upon clicking OK, the Data Sources dialog box appears, and the ODBC Administrator
updates the registry information. The typed user name and connect string become the
default connection values for this data source. To make sure the connection between API
and MySQL database is correct, it is necessary to test by utilizing the button Test Data

Source. The successful connection returns the message shown in Figure 3.6.

Figure 3.6 Test Message of MyODBC

29

After successfully connecting to MySQL database, FCS can access the CINDI database

on the MySQL server using the information saved in MyODBC data source.

As mentioned in section 3.3.2, the cooperation of Omniformat and Pdf995 was chosen as
the converter in FCS. Therefore, Pdf995 and Omniformat were installed on the Windows

platform. The working principle of the converter will be described in the next section.

3.3.4 Design of FCS

The purpose of FCS is to provide a single document format to facilitate document
processing in the subsequent subsystems of CINDI. Since PDF is emerging as the current
favorite format for electronic documents, it was chosen as the single format for CINDL
Therefore, non-PDF documents such as TXT, PS, WPD, HTML, DOC, and LaTeX files

located and downloaded by CINDI Robot need to be converted into PDF format.

Based on the proposed solution, FCS was developed as an automatic file conversion
system. FCS checks the CINDI Robot database on the Linux platform every 30 minutes.
When new downloaded non-PDF documents are found in the database, it securely and
automatically transfers these documents from the non-PDF repository on the Linux
platform to the repository on the Windows platform for conversion. Moreover, FCS

employs Pdf995 and Omniformat to convert the downloaded documents into PDF files.

After conversion, FCS sends the PDF version of the documents back to the temporary

repository on the Linux platform for filtering and writes information about PDF file name,

conversion flag, conversion date, and file location into the CINDI database. Based on the

30

functionality, FCS is decomposed into three components: FCS Repository, FCSd, as well

as Converter. The architecture of FCS is given in Figure 3.7.

h
Documents not in PDF 1 Converted PDF documents

FCS

Omniformat FCS Repository
v
docl | doc2 | doc3 | i
\ 4
Pdf995
converter Converter

Figure 3.7 Architecture of File Converting System

From Figure 3.7, FCS Repository is a repository on the Windows platform to store the
downloaded non-pdf documents. FCSd is responsible for the automatic file transfer
between two platforms, while the Converter is responsible for the automatic file
conversion. The Converter is composed of Pdf995 and Omnifomat. Pdf995 is a PDF
converter, while Omniformat is a background process to find new non-pdf documents in

FCS Repository and send them to the converting queue for conversion by Pdf995.

The process starts with FCSd monitoring the CINDI Robot database. If non-PDF
documents are found, FCSd transfers them into the FCS Repository on the Windows

platform. Once non-PDF documents are downloaded into the FCS Repository,

31

Omniformat puts them in the converting queue. Next, Pdf995 obtains documents from the
queue and converts them into PDF according to the FIFO priority. The converted PDF
files are returned to the FCS Repository and the original files are deleted. After all non-
PDF documents are converted into PDF, FCSd sends them back to the temporary
repository on the Linux platform. Simultaneously, FCSd writes converting information
about conversion flag, conversion date, file name, and file location in the CINDI Robot
database. Once all converted documents are transferred back to the Linux platform, a
cycle of FCSd is finished. Another cycle will be executed after 30 minutes and FCSd

“sleeps” during this time.

3.3.5 Implementation of FCSd

FCSd is a program that integrates FCS into CINDI system. It has the function of securely
and automatically transferring files between the Windows platform and the Linux
platform. FCSd performs one cycle of jobs every 30 minutes. The detail implementation

of FCSd is given below.

Initially, FCSd checks non-PDF documents in the DOWNLOAD_STATUS table in the
CINDI Robot database. If non-PDF files are found, it transfers batch of the documents to
the FCS Repository, and then goes to sleep to wait for file conversions. The average PDF
conversion time for a document, using a set of 300 files, was found to be about 6 seconds.
Therefore, account for the variation of the conversion time, FCSd allows 7 seconds for
each file conversion during which time it is put in a “sleep” status. When FCSd wakes up,
it searches the converted PDF documents in the FCS Repository, sends them back to the

temporary repository on the Linux platform for filtering, and then FCSd deletes the

32

transferred PDF files from the FCS Repository. Finally, FCSd sets the conversion flag in
the DOWNLOAD STATUS table to “TRUE” and writes a record about file name,
conversion date, and location for each file in the CONVERT_PDF table. Eventually,
FCSd finishes this cycle and goes to sleep for 30 minutes. The ID in the
CONVERT_PDF table is updated by FCSd. To make sure FCSd sets correct IDs for
converted documents in the next cycle, the maximum ID used for CONVERT_PDF in

this cycle is stored in a ﬁle (maxID file).

FCSd consists of three main components: Document Fetcher (DF), Document Recognizer

(DR), and Document Sender (DS). The components of FCSd are shown in Figure 3.8.

FCSd
CINDI Document CINDI
non-pdf - - Fetcher il S Robot
repository (DF) database
J
v
Document > Document
Recognizer »| List table
OR) BL)
FCS 4 l
Repository Sleeping
AF/
X
Converter A maxID
(Omniformat + N Al > file
Pdfo9s)
Document .| Record
Sender A Detail file
CINDI Rail Dbt DS)
temperary
repositorv E CINDI
ity Robot
database
Sleeping
Figure 3.8 Components of FCSd

33

As depicted in Figure 3.8, DF is responsible for four tasks. When a new cycle starts, DF
initializes a Document List (DL) table to be used by DS. Then, it connects to the Robot
database on the CINDI MySQL server and searches for non-PDF documents in the
database. Lastly, DF fetches these documents from the location stored in the

DOWNLOAD_STATUS table and securely transfers them to the FCS Repository using

pscp.

DR stores the file name and the ID for each fetched document in the DL table. Later DS
will retrieve this information and save it in the CONVERT _PDF table. Also, DR saves
two file names with extension of pdf into the DL table. One file name has the same case
as the original name’s prefix, while the other is in lower case. The purpose of the first pdf
name is to store the prefix of the original file name prefix given by the CINDI Robot in
CONVERT_PDF, while the file name in lower case is utilized by DS to match’ the
converted file name in the FCS Repository. This is because Pdf995 converter is file
name insensitive, and the converted documents are named in lower case. For example,
the document “ABc.html” will be stored as “abc.pdf” after conversion. By matching the
prefix of the lower case name in the DL table with the converted PDF name, the original
file name with pdf extension is saved in the CONVERT_PDF table. The sample content
of the DL table is shown in Table 3.2

Table 3.2 Samples of Document List

Original file name IDin Converted pdf file name | Original file name with
DOWNLOAD _STATUS in lower case PDF extension
THESIS.doc 2655 thesis.pdf THESIS .pdf
advice-to-grads-fac.pdf 2602 advice-to-grads-fac.pdf | advice-to-grads-fac.pdf
68.html 1264 68.pdf 68.pdf
CS-TR-4527.pdf 1594 cs-tr-4527.pdf CS-TR-4527.pdf

34

As shown in Table 3.2, thesis.pdf is matched with THESIS.doc to rename it as

THESIS.pdf which is saved in CONVERT_PDF table.

After DR records the details for all fetched documents in the DL table, FCSd goes to
sleep. When the Converter finds the downloaded documents in the FCS Repository, it

begins to convert them into PDF.

When FCSd wakes up, DS prepares to transfer the converted documents back to the
temporary repository on the Linux platform, described as follows. First, DS looks for the
maxID file where the maximum ID in the CONVERT_PDF table is stored. If the maxID
file does not exist, which means the CONVERT_PDF table is empty, then DS will create
~ one and set the value to 0. The purpose of remembering the maximum ID is to make the
IDs in the CONVERTED_PDF table consecutive. Then, DS creates Record Detail file
containing a list of file name, file size, and conversion date and time for documents in the
FCS Repository. Next, DS takes the PDF documents listed in the Record Detail file from
the FCS Repository and sends them back to the temporary repository on the Linux
platform for filtering by DFS. The documents not converted at that time would be sent in
next cycle. Next, DS sets the PDF conversion flag in the DOWNLOAD_STATUS table
to 1 and stores conversion information in the CONVERT_PDF table. In order to save the
original file name in the CONVERT_PDF table, DS looks up the DL table using the
converted file name. The original file name with PDF extension for the matched file in
the DL table is stored in the CONVERT_PDF table together with conversion date and the

file location in CINDL To meet the requirement of SQL statement in MySQL, some data

35

types need to be processed. For example, date format needs to be changed from
“MM/DD/YY” to “YYYY-MM-DD”, the ID in the DL table needs to be cast from
integer to character string. Finally, DS locally saves the maximum ID from the
CONVERT_PDF table in the maxID file to be used in the next cycle. FCSd is then

suspended for thirty minutes until the next cycle.

FCSd is written in C++ and runs in the Windows environment. The overall algorithm of
FCSd is given below.

Input: non-PDF documents from the CINDI Robet System
Output: the converted PDF documents
Begin
while true do
begin
initialize an empty Document List table DL;
DF connects to the CINDI Robot database d;
DF selects a non-PDF document set S from d;
DF stores S in local as s;
while not end of s do
begin
DR takes a file f from s;
DR transfers f from the location displayed in s to the FCS Repository D;
DR cast the ID in s from integer to character string as docID;
DR tokenizes the prefix(fnf) of the file name in s as fn;
DR appends extension pdf to fnf as fn_pdf_uc;
DR changes fnf into lower case and append extension pdf to it as fn_pdf_lc;
DR stores fn, docID, fn_pdf__uc, and fn_pdf lc into DL;
End

sleep for 8 seconds for each file in s;

If there is no maxID file then
DS creates ID file;
DS sets ID as O;
DS gets maximum ID from the maxiD file;
DS creates Record Detail file I to store information for the files in the FCS Repository
while not end of I do
begin .
DS gets one PDF file'f from I;
DS searches table DL for f;
If fn_pdf_lc==f then
DS gets fn_pdf_uc;
DS gets docID;
DS gets date from I;
DS sets location;
DS sends f to the temporary repository in the Linux Platform;
DS updates pdf_flag in DOWNLOAD_STATUS to 1 ;

36

DS stores fn_pdf _uc, doclID, date, location into the CONVERT_PDF table;
End
FCSd stores present ID into maxID file;
FCSd sleeps for 30 minutes;

end //while (true)

end

The data structure of the DL table used in the algorithm is shown in Figure 3.9.

l head_ptr

name,char* |docID, char* | pdfname_lowes, char*| pdfname_orig, char* |next, docIDlist*

X

name,char* |docID, char* | pdfname_lowcs, char* |pdfname_orig, char* |next, docIDlist*

l I

name,char* |docID, char* | pdfname_lowcs, char* jpdfname_orig, char* mext, docIDlist*

‘L I

¥

name,char* (docID, char* |pdfname_lowcs, char* |pdfname_orig, char* |next, docIDlist*

T tail_ptr

Figure 3.9 Data Structure of Document List

As illustrated, this data structure is designed as a node list with two pointers: “head_ptr”

and “tail_ptr”. The “head_ptr” points to the first node, while the “tail_ptr” points to the

last node. Each node contains five members: “name”, “docID”, "pdfname_lowcs”,

“pdfname_orig”, and “next”, which is a pointer pointing to the next node. DL is a table in

memory to store the information for the transferred documents during a cycle. When the

37

next cycle starts, the DL table is automatically initialized as an empty table by pointing

the “head_ptr” and the *“tail_ptr” to NULL.

3.4 Document Filtering Subsystem (DFS)

3.4.1 The Approach

The function of DFS is to filter out irrelevant information from the documents retrieved
by the CINDI Robot. As introduced in Chapter 2, typical documents on the Web are e-
mails, news items, personal home pages, resumes, letters, group discussions, graphics,
and academic documents. Since the CINDI system is a digital library in the academic
area, scientific documents including theses, technical reports, academic papers, and FAQs
are the genre of documents in CINDI. Documents such as e-mails, resumes, group
discussions, letters, and other similar documents are considered irrelevant. Hence, the set
of documents downloaded from the Web by the CINDI Robot is processed by DFS into
two subsets: accepted and rejected as described in the following formulas; the former set
contains documents which are accepted and the latter set contains files which are

rejected.

downloads = accepted U rejected
accepted = {f: | f € downloads A (f € thesis \/ f & report \V f € paper V fe faq) }
rejected = {f: | f € downloads A (f & thesis A f & report A f & paper A f & faq) |

If DFS finds a document d € accepted, then d will be accepted; in contrast, if d ¢

accepted , then DFS will reject this document and put it into the CINDI trash.

DFS makes a filtering decision according to the document structure by comparing the

candidate document with the predefined DTDs to determine the types of acceptable

38

documents. Each element in the DTDs has certain weight. The weight assigned to a
candidate document depends on the presence of the DTD elements in this document. The

higher the weight, the closer the document is to the predefined document type.

3.4.2 Document Type Definition (DTD)

The purpose of a DTD is to define the legal building blocks of a document. It defines the
document structure with a list of legal elements. The building blocks of a semi-structured
document are made up of elements, tags, attributes, entities, Parsed Character Data
(PCDATA), and Character Data (CDATA). CDATA is text that will not be parsed by a
parser. Elements are the main building blocks of a document; they can contain text, other
elements, or be empty. For elements in a DTD order matters. Tags are used to markup
elements. Attributes provide extra information about elements; they are placed inside the
starting tag of an element and come in name and value pairs. Entities are the variables
used to define common text. Tags inside the text will not be treated as markup and
entities will not be expanded. Since the source documents of DFS are text files, we define
DTDs using elements, tags and CDATA building blocks. The question mark *“?” follows
an optional element. The plus sign “+” after an element means that there should be at
least one such element. The keyword #REQUIRED is used to define an element that has
to be present in its parent element; the keyword #IMPLIED defines an element that may
be included in its parent element. For DFS, an element has higher weight than an implied
element if it has #REQUIRED key words and none of its ancestors are optional. In
addition to the acceptable document types, the DTDs for documents which are not

acceptable for CINDI are also defined.

39

3.4.2.1 DTD for Theses

The DTD for theses consists of three main elements: front matter, body, and back matter.
The front matter has a title page, certificate of approval (certifapproval),
acknowledgments, abstract, table of contents (toc), list of tables, list of figures, and list of
symbol abbreviation. On the title page, the elements title, author, terms of submission,
and copyright are included. Since some theses include sentences such as “A Thesis in
Department of Computer Science” on the title page, the appearance of the string “Thesis”
is also deﬁned.as an element of DTD. The element “abstract” is defined as having the
keyword “Abstract” and its contents. “acknowledgment” is defined in the same way.
Table of contents, list of tables, and list of figures are in the form of ordered lists. Each

item in the list ends with a page number.

The body in the DTD of theses is its primary content. By common sense, some
documents cannot be considered as theses or technical reports. For example, we do not
consider a document that has only one chapter or has more than one chapter but most of
the chapters have at most one section as a thesis. Therefore, we specify that the body
structure of a thesis must have more than three chapters and each chapter must have at
least two sections. The chapter of a thesis may have one or more paragraphs before the
first section starts. In each section, there are subsections or paragraphs. Chapter title,
section title, and subsection title are included in the elements of chapter, section, and
subsection respectively. A paragraph should be defined on sentence level. Due to the fact
that analyzing the sentences of the converted text files is very complex and unreliable, we

define the text between two empty lines as a paragraph. The text should have more than 3

40

lines whose string lengths are more than 50 (This is the average line length in the

converted text files of 50 test documents).

The element “back™ consists of all the matter following the text proper; it includes the
bibliogréphy (bib), references, and appendix, if any. The element bib consists of the term
“bibliography” (bibtword) and its contents. Since the bibliography can be recognized
through checking the identifier such as “[*, the element bibword is defined as
#IMPLIED. The element “references” is similar to “bib”. In contrast to the element “bib”,
without the term “Appendix” (appword), an appendix is difficult to be identified.
Therefore, the element “appword” is #REQUIRED. All the “back” elements are defined

as #IMPLIED. The DTD for theses is presented below.

thesis.dtd

<?xml version="1.0" >

<IELEMENT thesis (front, body, back?) >

<IELEMENT front (#CDATA titlepage, copyright?, certifapproval, acknowledgments?,
abstract, toc, tablelist?, figurelist?, symbolabbrevlist?) >

<tELEMENT titlepage (title | author | thesis? | submission? | copyright?) >
<IELEMENT title (#CDATA)} #REQUIRED >

<IELEMENT author (#CDATA) #REQUIRED >

<tELEMENT thesis (#CDATA) # IMPLIED >

<IELEMENT submission (#CDATA) #IMPLIED >

<IELEMENT copyright (#CDATA} #MPLIED >

<tELEMENT certifapproval (#CDATA) #IMPLIED >

<IELEMENT acknowledgments (#CDATA ackword | ackparagraph™) >
<IELEMENT ackword (#CDATA) #REQUIRED >

<IELEMENT ackparagraph (#CDATA) #IMPLIED >

<IELEMENT abstract (#CDATA absword | absparagraph®) >
<IELEMENT absword (#CDATA) #REQUIRED >

<{ELEMENT absparagraph { #CDATA) #REQUIRED >

<IELEMENT toc (#CDATA tocword | tocontents) >

<IELEMENT tocword (#CDATA) #REQUIRED >

<IELEMENT tocontents { #CDATA) #REQUIRED >

<IELEMENT tablelist (#CDATA tlword | ticontents) >

<IELEMENT tlword (#CDATA) #REQUIRED >

<{ELEMENT tlcontents (#CDATA) #REQUIRED >

<IELEMENT figurelist (#CDATA flword | flcontents) >

<tELEMENT flword { #CDATA) #REQUIRED >

<IELEMENT flcontents (#CDATA) #REQUIRED >

<IELEMENT symbolabbrevlist (#CDATA abbrword | abbrcontents) >

41

<IELEMENT abbrword (#CDATA) #REQUIRED >
<IELEMENT abbrcontents { #CDATA) #REQUIRED >
<IELEMENT preface (#CDATA preword | precontents) >
<!ELEMENT preword (#CDATA) #REQUIRED >
<IELEMENT precontents (#CDATA) #REQUIRED >

<tELEMENT body { #CDATA chapter+) >

<IELEMENT chapter (#CDATA chtitle | section | chparagraph?) >
<IELEMENT chtitle { #CDATA) #REQUIRED >

<IELEMENT section { #CDATA sectitle | subsection? | secparagraph?) >
<IELEMENT sectitle (#CDATA) #REQUIRED >

<IELEMENT subsection (#CDATA subsectitle | subsecparagraph™) >
<IELEMENT subsectitle { #CDATA) #REQUIRED >

<IELEMENT subsecparagraph (#CDATA) #REQUIRED >

<IELEMENT secparagraph (#CDATA } #REQUIRED >

<!ELEMENT chparagraph (#CDATA) #REQUIRED >

<IELEMENT back (#CDATA bib? | references? | appendix?) >
<IELEMENT bib (#CDATA bibword? | bibcontents) >
<!ELEMENT bibword (#CDATA) #IMPLIED >

<IELEMENT bibcontents (#CDATA) #REQUIRED >
<IELEMENT ref (#CDATA refword? | refcontents) >
<IELEMENT refword (#CDATA) #MPLIED >

<IELEMENT refcontents (#CDATA) #REQUIRED >
<IELEMENT appendix (#CDATA appword | appcontents).>
<IELEMENT appword (#CDATA) #REQUIRED >
<IELEMENT appcontents (#CDATA) #REQUIRED >

3.4.2.2 DTD for Technical Reports

The structure of a standard technical report is similar to a thesis. Although the technical
report does not always have abstract, acknowledgment, bibliography, and appendix, they
are still included in the DTD of technical reports to avoid the loss of acceptable
documents. The appearance of the term “Report” on the front page is also defined in the

DTD. The DTD for technical reports is shown below.

report.did

<?xml version="1.0" >

<IELEMENT report (front, body, back?) >

<IELEMENT front (#CDATA titlepage, acknowledgments?, abstract?,toc, tablelist?, figurelist?) >
<IELEMENT titlepage (#CDATA title | author” | report? | copyright?) >

<IELEMENT title (#CDATA) #REQUIRED >

<IELEMENT author® (#CDATA) #IMPLIED >

<!IELEMENT report { #CDATA) #IMPLIED >

<IELEMENT copyright (#CDATA) #MPLIED >

<IELEMENT acknowledgments (#CDATA ackword | ackparagraph®) >

42

<IELEMENT ackword (#CDATA) #REQUIRED >
<!ELEMENT ackparagraph (#CDATA) #REQUIRED >
<!ELEMENT abstract (#CDATA absword | absparagraph™) >
<IELEMENT absword { #CDATA) #REQUIRED >
<IELEMENT absparagraph (#CDATA) #REQUIRED >
<IELEMENT toc (#CDATA tocword | tocontents) >
<IELEMENT tocword (#CDATA) #REQUIRED >
<tELEMENT tocontents (#CDATA) #REQUIRED >
<lELEMENT tablelist (#CDATA tlword | ticontents) >
<IELEMENT tiword (#CDATA) #REQUIRED >
<!ELEMENT ticontents (#CDATA) #REQUIRED >
<IELEMENT figurelist (#CDATA flword | flcontents) >
<IELEMENT fiword { #CDATA) #REQUIRED >
<tELEMENT flcontents (#CDATA) #REQUIRED >
<{ELEMENT preface (#CDATA preword | precontents) >
<tELEMENT preword (#CDATA) #REQUIRED >
<IELEMENT precontents { #CDATA) #REQUIRED >

<|ELEMENT body (#CDATA chapter”) >

<IELEMENT chapter (#CDATA chtitle | section | chparagraph?) >
<IELEMENT chtitle (#CDATA) #REQUIRED >

<IELEMENT section (#CDATA sectitle | subsection? | secparagraph?) >
<IELEMENT sectitle (#CDATA) #REQUIRED >

<!ELEMENT subsection (#CDATA subsectitle | subsecparagraph*) >
<!ELEMENT subsectitle { #CDATA) #REQUIRED >

<IELEMENT subsecparagraph (#CDATA) #REQUIRED >

<IELEMENT secparagraph { #CDATA) #REQUIRED >

<IELEMENT chparagraph { #CDATA) #REQUIRED >

<!ELEMENT back (#CDATA bib? | references? | appendix?) >
<IELEMENT bib (#CDATA bibword? | bibcontents) >
<tELEMENT bibword (#CDATA) #IMPLIED >

<{ELEMENT bibcontents (#CDATA) #REQUIRED >
<IELEMENT references (#CDATA refword? | refcontents) >
<IELEMENT refword (#CDATA)} #IMPLIED >

<IELEMENT refcontents (#CDATA) #REQUIRED >
<IELEMENT appendix (#CDATA appword | appcontents) >
<lELEMENT appword (#CDATA) #REQUIRED >
<IELEMENT appcontents (#CDATA) #REQUIRED >

* we look for a “slot” of author and not trying to identity one or more authors.

3.4.2.3 DTD for FAQs

The structure of FAQs is generally composed of a series of questions and the
corresponding answers. A document with solely questions cannot be considered as a
FAQ. Thus, paragraph is also a required key element in the element “answer” as

described below.

43

faq.did

<?xml version="1.0" >

<IELEMENT faq (title, content) >

<IEL EMENT title (#CDATAFAQ) >

<IELEMENT FAQ (#CDATA) #REQUIRED >
<IELEMENT content (#CDATA (question, answer)”) >
<IELEMENT question (#CDATA gueword? | quesentence) >
<!ELEMENT queword (#CDATA) #IMPLIED >
<IELEMENT quesentence (#CDATA) #REQUIRED >
<IELEMENT answer (#CDATA answerword? | paragraph®) >
<IELEMENT answerword (#CDATA) #IMPLIED >
<IELEMENT paragraph (#CDATA) #REQUIRED >

The DTD for FAQs consists of title and contents. The term FAQ is defined in the title.
The content of FAQ is made up of many pairs of question and answer. One question may
begin with the term “question”; it must end with a question mark “?”. The element

answer may start with the term “answer”; it should include at least one paragraph.

3.4.2.4 DTD for Academic Papers

The structure of an academic paper is different from any of the document types above.
Since different institutes and individuals use different formats of elements for the same
paper, the DTD for academic papers can only identify the main characteristics of
technical and scientific papers. The main feature of an academic paper is having a title
and body structure consisting of sections, subsections, and paragraphs. The DTD for

academic papers is defined as follows.
paper.dtd

<7xml version="1.0">

<IELEMENT paper { front, body, back?) >

<IELEMENT front (#CDATA title | abstract? | keywords? | contents) >
<IELEMENT title (#CDATA) #REQUIRED >

<IELEMENT abstract (#CDATA absword? | absparagraph™) >
<IELEMENT absword(#CDATA) #IMPLIED >

<IELEMENT absparagraph (#CDATA) #REQUIRED >

<IELEMENT keywords (#CDATA keyword | keylist") >
<IELEMENT keyword { #CDATA) #IMPLIED >

<!ELEMENT keylist (#CDATA) #REQUIRED >

<IELEMENT body (#CDATA section™) >

<IELEMENT section (#CDATA sectitle | subsection? | secparagraph™) >
<{ELEMENT sectitle (#CDATA) #REQUIRED >

<IELEMENT subsection { #CDATA subsectitle | subsecparagraph™) >
<IELEMENT subsectitle { #CDATA) #REQUIRED >

<IELEMENT subsecparagraph (#CDATA) #REQUIRED >

<IELEMENT secparagraph { #CDATA) #REQUIRED >

<IELEMENT back (#CDATA ack? | bib? | references? | appendix?) >
<IELEMENT ack (#CDATA ackword | ackcontents) >
<IELEMENT ackword (#CDATA) #REQUIRED >
<IELEMENT ackcontents (#CDATA) #REQUIRED >
<!ELEMENT bib (#CDATA bibword? | bibcontents) >
<IELEMENT bibword (#CDATA) #iMPLIED >

<IELLEMENT bibcontents (#CDATA) #REQUIRED >
<IELEMENT references (#CDATA refword? | refcontents) >
<IELEMENT refword (#CDATA) #IMPLIED >

<IELEMENT refcontents (#CDATA) #REQUIRED >
<IELEMENT appendix (#CDATA appword | appcontents) >
<IELEMENT appword (#CDATA) #REQUIRED >
<IELEMENT appcontents (#CDATA) #REQUIRED >

The DTD for academic papers contains three parts: front, body, and back. The back part
is optional. The front matter has title, abstract, keywords, and contents. Since the term
“abstract” is not denoted explicitly in some papers, the element absword is defined as
optional. Unlike the author of a thesis who is only one person who is listed immediately
after title, the author in an academic paper may be one or more persons who are listed in
one of several ways. For example, the three authors A, B, and C may appear in the form
of “ABC”,“AB & C”, “A;B;C”, “A, B, and C”, or “A & B & C”. Sometimes multiple
authors are followed by their address. The identification of multiple authors is more
complex and time consuming than for single author. However, author is not a major
concern in deciding if a document is an academic paper or not. Thus, the DTD for
academic papers does not define author as an element. Occasionally, table of contents is
also included in such papers. In order to preserve all academic papers, table of contents is

defined to be an implied element.

45

The body of the DTD for academic papers includes more than one section. Each section
should consist of a subsection or paragraphs. The back page is composed of
acknowledgments (ack), bibliography, and appendix. Most of the time, the element ack
appears in the back of a paper; thus, it is defined in the back of the DTD for academic

papers.

3.4.2.5 DTD for E-mails

An e-mail is composed of two parts: header and body. Header consists of date, from, to,
and subject elements of which date, from, and to are required. Considering that the
subject is often omitted by the writer in an e-mail, the element subject is defined as
#IMPLIED. The body of an e-mail contains the salutation to the receiver (begining), the
primary contents (paragraph), and the end matter (ending) which include the ending

words and the name of the sender.

e-mail.did:

<?xml version = "1.0">

<IELEMENT email (header, body)>

<!ELEMENT header (#CDATA date | from | to | subject)>
<IELEMENT date (CDATA) #REQUIRED>

<!ELEMENT from (CDATA) #REQUIRED>

<IELEMENT to (CDATA) #REQUIRED>

<IELEMENT subject (CDATA) #IMPLIED>

<IELEMENT body (#CDATA begining | paragraph+ | ending) >
<IELEMENT begining (CDATA) #REQUIRED>
<IELEMENT paragraph (CDATA) #REQUIRED>
<IELEMENT ending (CDATA) #REQUIRED>

3.4.2.6 DTD for Resumes

The DTD for resumes includes personal information, skills, experience, education,

personal portrait, and other elements as shown below.

46

resume.dtd

<?xmi version = "1.0">

<IELEMENT resume (header, objective, skills, language?, experience, education,
accomplishment?, personal traits?, academic project?, Activities?)
<IELEMENT header (#CDATA name | address | email | phone | date) >
<IELEMENT name (#CDATA) #REQUIRED>

<IELEMENT address (#CDATA) #REQUIRED>

<IELEMENT email (#CDATA) #iIMPLIED >

<IELEMENT phone (#CDATA) #REQUIRED>

<IELEMENT date (#CDATA) #IMPLIED >

<IELEMENT objective (#CDATA) #REQUIRED>

<lELEMENT skills (#CDATA} #REQUIRED >

<IELEMENT language (#CDATA) #IMPLIED >

<IELEMENT experience {({(#CDATA employer | from | to | responsibility | descrlptlon) >
<tELEMENT employer (#CDATA) #REQUIRED >

<IELEMENT from (#CDATA) #REQUIRED >

<lELEMENT to (#CDATA) #REQUIRED >

<IELEMENT responsibility (#CDATA) #REQUIRED >

<IELEMENT description (#CDATA) #IMPLIED >

<IELEMENT education (#CDATA) #REQUIRED >

<IELEMENT accomplishment (#CDATA) #IMPLIED >

<!ELEMENT personal traits (#CDATA) #iIMPLIED >

<IELEMENT academic project (#CDATA) #IMPLIED >

<IELEMENT activities(#CDATA) #IMPLIED >

3.4.2.7 DTD for Letters

A letter should have contact information and content. Therefore, the DTD for letters
includes at least one contact person, contact address, the destination of the letter, and at

least one paragraph in the body.

letter.did

<?xml version = "1.0">

<IELEMENT letter (contact+, body)>

<IELEMENT contact (#CDATA name | address+)>
<IELEMENT name (#CDATA) #REQUIRED>
<IELEMENT address (#CDATA toname | city | province | country? | zip code | e-mail? | phone? |
fax? >

<IELEMENT toname (#CDATA) #REQUIRED>
<IELEMENT city (#CDATA) #REQUIRED>

<IELEMENT province (#CDATA) #REQUIRED>
<IELEMENT country (#CDATA) #REQUIRED>
<IELEMENT zip code (#CDATA) #REQUIRED>
<IELEMENT e-maii (#CDATA) #IMPLIED>

<IELEMENT phone (#CDATA) #IMPLIED>

<IELEMENT tax (#CDATA) #iIMPLIED>

<IELEMENT body (#CDATA begin | paragraph+ | end) >
<IELEMENT begin (CDATA) #REQUIRED>

<!ELEMENT paragraph (CDATA) #REQUIRED>
<IELEMENT end (CDATA) #REQUIRED>

47

3.4.2.8 DTD for Discussion Groups

A typical discussion group gives the source of the message (from), the date, subject,
newsgroup, content, and attachment. A discussion group may also contain threads, links
to next message and previous message, receiver, newsgroup, attachment, and sorting
method. In the sort option, start and end date and time, author, subject index, and thread
index elements are included. Based on the above information, the DTD for discussion

groups is defined as:
discussiongroup.dtd

<?xml version = "1.0">

<IELEMENT discussiongroup (from+, date+, thread? next message?, previous message?,
subject+, newsgroup?, receiver?, attachment?, paragraph+, sort?)>

<IELEMENT from (#CDATA) #REQUIRED>

<IELEMENT date (#CDATA) #REQUIRED>

<IELEMENT thread (#CDATA) #IMPLIED>

<!ELEMENT next message (#CDATA) #IMPLIED >

<IELEMENT previous message (CDATA) #IMPLIED >

<!ELEMENT subject (#CDATA) #REQUIRED>

<IELEMENT recesiver (#CDATA) #REQUIRED >

<|ELEMENT attachment (#CDATA) #IMPLIED>

<IELEMENT paragraph (#CDATA) #REQUIRED >

<IELEMENT sort (#CDATA start? | end? | date? | author? | subject index? | thread index?) >
<IELEMENT start (#CDATA) #IMPLIED>

<IELEMENT end (#CDATA) #IMPLIED>

<|ELEMENT date (#CDATA) #IMPLIED>

<IELEMENT author (#CDATA) #IMPLIED>

<IELEMENT subject (#CDATA) #IMPLIED>

<IELEMENT thread index (#CDATA) #IMPLIED>

3.4.3 Implementation of DFS

Documents in CINDI are maintained in PDF format. Since PDF files present text and
graphics in Adobe imaging model, they are composed of non-displayable characters. In
order to extract the structure from a PDF document, the PDF file needs to be converted to
a plain text file. Therefore, the converter pdftotext from the open source package Xpdf is

employed to convert PDF documents into plain text files. After conversion, some

48

formatting of PDF documents such as font, font style, font size, and page layout are lost.
However, using what may be an incomplete text structure, DFS must extract a structure
in order to determine if a document is acceptable or not. DFS is implemented using

C/C++ and runs on a Linux platform.

3.4.3.1 Thesis/Report Structure Extraction

A thesis in original layout generally consists of many blocks of text (a block of text is a
piece of text separated from the other text by at least one empty line before and after it)
such as title block, author block, abstract block, acknowledgment block, section block,
and paragraph block. In a PDF file, all these blocks are arranged in the order of front,

body, and back. These features are basically preserved in the converted text file.

The front page of a standard thesis often includes blocks for title, author, terms of’
submission, copyright, certificate of approval, acknowledgments, abstract, table of
contents, list of tables, and list of figures. Title is the first sentence in the first block;
except for number and stop words, each term in a title begins with a capital letter. Author
is in the second block. Sometimes there is a phrase such as “A Dissertation Presented By”
or the term “by” before the author’s name. Some elements such as “Acknowledgment”
appears in one line in a document and are immediately followed by their content or after
several empty lines. Abstract is similar to acknowledgments but, in addition, the abstract
often has an additional block for the author information between the term “Abstract” and
its content. Table of contents is in the form of a list. Each item in the list begins with the

term “‘chapter” or a number and ends with a page number. Sometimes one long item

49

occupies several lines. A similar structure is applied for list of tables and list of figures.

The front matter of a technical report has a similar structure to the front matter of a thesis.

According to the defined DTDs, the body of a thesis or a report consists of chapters.
Chapters are composed of chapter titles, sections, and paragraphs; sections include
section title and may be made up of subsections. Chapter title, section title, and
subsection title are a sentence or a phrase, which consists of terms beginning with capital
letters except for stop words and numbers. These titles often begin with numbers in the
form of “17, “1.2%, or “1.2.3”. Chapter title number also has the variation “Chapter 1”.

After conversion by pdftotext, the following problems have to be addressed.

e At times there is no space between the section number and the section title. For
example, “lIntroduction” in the converted text file was “1 Introduction” in the’
original PDF document.

e Figures and tables in a PDF file cannot be correctly converted. Only labels are left
in the converted text file. Labels for a figure or a table are set into one block, line
by line. There are often empty lines between this block and the text before and
after it.

¢ An academic document often have numbered lists. After conversion, the list may
have the same format as a section title or subsection title.

e Formulas in converted text are similar to section titles, subsection titles, or
sentences. Continuous formulas often occupy one or several blocks in the

converted text file.

50

The back page of a thesis or a technical report contains bibliography, references, and
appendix. Bibliography and references are citation lists. The term “Bibliography” or
“References” is usually a single line and in front of the list. Each item in the list begins

with the author name, a number, the identifier “[* or “{*.

Thesis/report structure extraction is a module of DFS. Since theses and technical reports
have similar DTD and the DTD of technical reports is a subset of the DTD of theses, a
éandidate document is matched with the two DTDs in the same algorithm. The
differences between them lie in the elements and weight assignments. To extract the
thesis-like or report-like document structure from a candidate document, DFS divides this
document into three parts: front, body, and back, according to the identifiers. The
identifier for the beginning of body structure for theses is:

e A string beginning with a number in the form of “1. “ or a term “Chapter”.

e Each term in the string should begin with a capital letter except for numbers and

stopwords.

e The string should not be a formula, a label, or an item in a list.

The identifier for the beginning of back part for theses is the appearance of the back

element “References”, “Bibliography”, or “Appendix”.

DFS puts the front part, each section or subsection (if any) of the body, and the back part
sequentially into a block of buffers. DFS scans each block of buffers back and forth to
search for elements in the DTD. If DFS finds one element of a thesis, it assigns thesis
weight to this document; if it finds an element for both thesis and technical report, then it

assigns both thesis weight and technical report weight. When searching for paragraphs in

51

the body, DFS ignores the text blocks for labels and formulas between and in the
paragraphs. If the thesis weight or technical report weight is high enough, the module of
thesis/report matching will return 1 or 2, which means DFS will accept this document as
a thesis or a technical report; otherwise, it will return 0 to thrown this document into the
CINDI trash as shown in the following algorithm.

Input: a converted text document dy, from temporary repository
QOutput: 1if d1s a thesis
2 if dy, is not a technical report
0 if dy is not a thesis or a report
begin
initial body structure;
open di ;
//processing for front
pass empty lines;
ignore page number line;
ignore date line;
get one line [; from dy 5
if all terms except for stop words and numbers in /; begin with capital letter then
I;1s the title of d;
update 2 to thesis weight wt;
update 2 to thesis weight wr;
pass empty lines;

initial a block of buffers by;
while (lend of d and body not starts and back not starts)
begin
get one line [from dix ;
put ,; into one buffer of by;
if [, begins with “Chapter” or a number and the following several lines are not items in
Table of Contents, List of Table, or List of Figures then
body starts here;
if I; begins with “Bibliography” or “Appendix” then
back starts here;
end
print buffers;

//search for elements in buffers
scan from the head of buffers;
if one buffer stores “A Dissertation Presented By” or “By” then
//the following buffer stores the author

add 2 to wt;

add 2 to wr;
if find element “Report” in the buffers then

add 2 to wt;

52

if find element “Thesis” in the buffers then
add 2 to wr;
if find “Submission” then
scan back and forth of buffers;
if “Submission” in a block of text (there are empty lines with the last block of text and the
next block of text in the buffers) then
add 1 to wt;
if find “Abstract” then
if in the following text before the other elements start, there is at least one paragraph (a
piece of text has more than 3 lines and each line is equal to or greater than the normal line
length(55) then
add 2 to wt;
add 2 to wr;
if find “Certification of Approval” then
scan back and forth of buffers;
if “Certification of Approval” in a block of text (there are empty lines with the last block of
text and the next block of text in the buffers) then
add 1 to wt;
if find “Acknowledgments” then
if the following text has more than 3 lines and each line is equal to or greater than the
normal line length(55) in a converted text file then
add 1 to wt;
add 1 to wr;
if find “Table of Contents” then
if the following text before the other elements start is an item list and there are at least 3
items beginning with “Chapter” or number and ending with page number then
add 2 to wt;
add 1 to wr;
if find “List of Tables™ or “List of Figures” then
if the following text before the other elements start is an item list and there are at least 3
items ending with page number then
add 1 to wt;
add 1 to wr;
delete buffers;
//end of processing for front

/fprocessing for body
initial a temporary buffer tb for storing chapter title, section title, or subsection title;
while (lend of dy and body starts and back not starts) //1
begin
initial a new block b, of buffers;
add tb into a buffer of b,
while (lend of di and next section or subsection not starts) //2
begin
get one line [; from dyy ;
put ; into one buffer of by;
if ; begins with a number and each term except for stop words and numbers begins with a
capital letter and not a formula then
check the following several lines Is;

53

if Is is not an item list then
I31s a chapter title, section title, or a subsection title;
store I;into the temporary buffer tb;
next section or subsection starts here;
if I; begins with “Bibliography”, “Appendix” or a number and the following several lines
are not items in table of contents, list of table, or list of figures then
back starts here;
end //while 2

print buffers;
scan each buffer b to search for chapter title ct, section title st, or subsection title ut
if find ct then
extract chapter number cn from b;
if cn is a new chapter then
store ct into the body structure;
if find st then
if there is at least one paragraph under st then
extract cn from b;
extract sn from b;
store sn into the body structure under ct;
if find ut then
if there is at least one paragraph under st then
extract ct from b;
extract st from b;
extract ut from b;
store ut into the body structure under st of ct;
delete buffers;
end //while 1
//end of processing for body

//processing for back
initial a block of buffers bs;
while (lend of d)
begin
get one line /5 from dix ;
put /; into one buffer of bs;
end //while
print buffers;
scan buffers of bs;
if find “Bibliography” then
scan the following text t, before appendix;
if t; is an item list then
add 1 to wt;
add 1 to wr;
if find “Appendix” then
scan the following text t ;
if t;1s a piece of text then
add 1 to wt;
add 1 to wr;
delete buffers;
//end of processing for back

54

close dix;

check body structure;

if there is body structure then
add 4 to wt;
add 4 to wr;

delete body structure;

if wt>12 then
return 1;
else if wr>10 then
return 2;
else
return 0;
end //thesis/report_check
As shown in the above algorithm, except for the body elements of DTD for theses or
technical reports, for each element having #REQUIRED key word and none of its
ancestors being optional, DFS adds 2 to the weight; for each element with #IMPLIED, it
adds 1. For DTD of theses, the implied element “thesis” is a special case. When DFS
finds the term “Thesis” on the front page, it considers the document highly probable as a
thesis. Then, the weight is updated by 2. DFS add 4 to the weight of a thesis for a
document if it has the body structure of thesis. This also applies to the technical reports.

Therefore, the lower bound of the weight for a thesis is 12; the lower bound for a

technical report is 10.

Due to the fact that there are many ways to write a given element, DFS uses semantic
rules for a number of elements. The equivalent formats of some elements in DTD of
thesis and technical report are as follows:

Report :- A Major Report V' A Major Technical Report

Contents : - Table of Contents

List of Table : - List of Tables

List of Figure : - List of Figures \ Table of Figures

Acknowledgments :- Acknowledgements

References : - Resources \ Related resources \ Related Publications V Literature Cited

55

Appendix :- Appendices
3.4.3.2 Academic Paper Structure Extraction

Most academic papers, usually published by institutes or journals, have a layout much
different from theses and technical reports. In the front page of an academic paper, title is
in the first block, but it often follows page number, date, author’s name, and/or journal
information. As mentioned in section 3.4.2.4, the abstract in an academic paper
sometimes does not include the term “Abstract”. It is composed in bold or italics, and/or
in different font and size from the body text. However, these formats are totally lost in the

converted plain text files.

Different from theses and technical reports, an academic paper has fewer layers of body
structure. Sometimes the body is composed only of sections; sometimes a section also
contains subsections. Compared with a thesis or a technical report, the layout of section
title and subsection title in an academic paper has many variations as shown below.

a. Only the first word begins with a capital letter

b. All letters are in capital

c. There is no section number nor subsection number

d. There is space between every two letters in the section title. For example,

“TINTRODUCTION”

The most special feature of an academic paper is its complex body layout. The body may
have two or three columns. After conversion by pdftotext2.0, a paragraph in two columns
is separated into two text blocks. The converter pdftotext3.0 solves the problem of

dividing paragraphs. However, if a journal includes unrelated materials in the body of an

56

academic paper, then these materials appear as a part of the paper in the text file.
Moreover, if these materials include any elements from the back part of the DTD for
academic papers, these elements may be misunderstood as the back part of this paper
during document structure extraction. This leads to a wrong filtering result. An example
of a document with such a layout is presented in [44] in PDF and [45] in TXT format

converted by pdftotext 3.0.

The back page of an academic paper consists of references and appendices, and
sometimes also contains acknowledgments. Occasionally, these elements are composed
as sections in the body. For instance, they are denoted as “9. Acknowledgments” and “10.

References”.

To match a candidate document with the DTD of academic papers, it is separated into
three parts: front, body, and back (if any), and each part is stored in a block of buffers.
Next, the block is scanned back and férth to find elements of that part. Since some
academic papers have no explicit element “Abstract” for their abstracts, we assume that
the paragraphs after title and before the body are for the abstract. Due to the fact that
some papers identify section titles according to font, font size, and font style which will
be lost in the converted text file, the normal body structure extraction method of DFS
based on section number cannot extract body structure for all academic papers. Therefore,
we also utilize an optional method to extract body structure. In this method, DFS first
scans the text file for a section title. If it finds that a line begins with a capital letter and is
shorter than the next non-empty line, and the previous line is empty, the line is

considered as a section title. Then, DFS scans the following text before the next title. If

57

there is at least one paragraph, then DFS assumes this to be a section. If DFS finds at
least 3 sections, it considers that the document has the body structure of academic papers.
To extract the back part such as “9 Acknowledgment” and “10 References” from the
body, DFS extracts the first back element and stores it and the following text into the

back buffers. The algorithm for academic paper structure extraction is shown below:

Input: a converted text document dy, from the temporary repository
QOutput: 1 if d, is an academic paper
0 if dy is not an academic paper for CINDI
begin
initial body structure;
open di ;

//processing for front
pass empty lines;

initial a block of buffers by;
initial a temporary buffer tb for storing element in the back part or storing section title st, or
subsection title ut in the body part;
// put the front of di;into by
while (lend of dy and body not starts and back not starts)
begin
get one line I, from diy ;
put ; into one buffer of by;
if [, begins with a number and the first term after the number in /; begins with a capital letter
and the following several lines are not an item list then
begin
assign Ly as [, © after trimming the number;
if [, is “Bibliography” or “Appendix” or “Acknowledgments” then
back starts here;
store [, * into the temporary buffer tb which will be put into the back blocl;
/Icheck if the following lines are references without keyword “bibliography” or
“References”
else if most of the following buffers store strings beginning with ‘[
back starts here;
else
body starts here;
end
end
print buffers;

/{search for elements in buffers

scan from the head of buffers;
//check title after ignore page number line, date line, and journal info line

58

if (title_check (buffers)) then
add 2 to paper weight wp;
if find “Abstract” then
if in the following text before the other elements start, there is at least one then
add 2 to wp;
else
search for text in buffers;
if there is at least one paragraph then '
//we suppose the paragraphs before body and after title are abstract
add 2 to wp; '
if find “Keywords” then
if there are at least 3 terms under “Keywords” then
add 2 to wp;
if find “Table of Contents” then
if the following text before the other element “Abstract” or the end buffer is an item list and
each item begins with a number then
add 1 to wp;
delete buffers;
//end of processing for front

//processing for body
while (lend of di and body starts and back not starts)
begin
initial a new block b, of buffers;
add tb into a buffer of b, ;
store one section or one subsection into b, ; //similar with that in thesis/report_check()

search for body structure; //similar with that in thesis/report_check() except for having no
chapter layer
delete buffers;

end

/fend of processing for body

/fprocessing for back
initial a block of buffers bs;
if there is an element for back in the tb then
store the content of tb into one buffer of bs;
while (lend of di; and back starts)
begin
get one line [5 from diy ;
put /; into one buffer of bs;
end //while
print buffers;
scan buffers of bs;
if find “Acknowledgments” then
scan the following text t; before appendix;
if there is text before the next element starts then
add 1 to wp;
if find “Bibliography” then
scan the following text t; before appendix;

59

if t,is an item list then

add 1 to wp;
if find “Appendix” then

scan the following text t; ;

if t;is a piece of text then
add 1 to wp;

delete buffers;

//end of processing for back

close di;
check body structure;
delete body structure;
if there is body structure then
add 4 to wp;
else
if optionalstructure_check() then
add 4 to wp;

if wp>6 and there is body structure then
return 1;

else
return 0;

- end //paper_check

Using the same weight assignment principle as theses/technical reports, DFS treats a
document having the body structure of academic papers and the minimum weight of 6 as
an academic paper. Similar to the DTDs for theses and technical reports, the DTD of
academic papers also has equivalent formats for some elements as shown below.

Table of Contents : - Contents

Keywords :- keywords: ,

References : - Resources V Related resources V Related PublicationsV Literature Cited
Acknowledgments :- Acknowledgment \V Acknowledgements

3.4.3.3 FAQ Structure Extraction

According to the DTD of FAQs, a FAQ includes two parts: title and contents. Sometimes
title is followed by a block of text consisting of only questions. The body of a FAQ is
composed of many pairs of questions and the corresponding answers. A question and its

answer may be in different blocks or in one block. Each question normally ends with a

60

question mark. A question may be one or several lines long with possibly empty lines
between them. The answer to a question is usually immediately after the question.
Sometimes each pair of question and answer follows the words “Question:” and
“Answer:”. After each pair of question and answer, there are usually empty lines but this
is not always the case. To extract FAQ structure from a candidate document, DFS scans
this document from beginning to end. When DFS ﬁnds a question, a sentence ending with
“?”, it scans the following text before the next question. If the following text contains at
least one paragraph, then DFS considers the question and the following text as a pair of
question and answer. If DFS finds at least 6 pairs of question and answer, it treats this
document as an FAQ. The algorithm of FAQ structure extraction is shown below.

Input: a converted text document dy, from the temporary repository
Output: 1 if dy, is a FAQ for CINDI
0 if dygis not a FAQ
begin
open dx;
pass empty lines;

get title line It;

if title in several lines then
concatenate title lines as It’;

if extract “FAQ” or “Frequently Asked Questions” from 1t or it’ then
add 2 to weight of faq wf;

initial the count of pairs of question and answer ¢ as zero;
while (lend of dix)
begin
while (lend of dx; and next question not starts)
begin
get one line [from diy ;
if] begins with “Question” then
add 1 to wf;
if | ends with “?” then
begin
pass empty lines;
extract paragraphs; ‘
if meet next question, a sentence ends with “?” then
next question start;
if there is at least 1 paragraph then
update c;

61

end //if

end //while
end //while
if ¢>5 then

retun 1;
else

return O;

end

The equivalent formats of some elements for the DTD of FAQs is shown below.

FAQ :- Frequently Asked Questions
Answer :- A ~
Question : - Q

3.4.3.4 Overall Algorithm for DFS

When DFS starts processing a document, it makes no assumptions about its genre. It
assumes that it could be one of the acceptable types of documents and tries to match it to
its DTD. DFS matches the document one by one with the DTD of theses, technical
reports, academic papers, and FAQs. If the document matches with one of them, DFS
treats this file as an acceptable document and saves it into the permanent repository. if
this document fails all of these DTDs, it is sent to the CINDI trash. For those PDF
documents that cannot be converted into text files or whose converted text documents are
not printable, DFS will treat them as bad files and throw them into the trash. Finally, DFS
wirtes document quality (filter flag) in the DOWNLOAD_STATUS table. The overall
algorithm of DFES is presented below.

Input: a stream of documents from the CINDI temporary repository
Output: accepted documents to the CINDI permanent repository
rejected documents to the CINDI trash
filtering flags in CINDI database to show if one document is accepted or not for CINDI
begin
create a text file f;
create a name list fto all the files in the temporary repository;
while(fend of f)
begin
take a document dyg¢ from f;

62

if d, is a PDF document then
begin
//document processing
check the former format dg,, of dygf;
if dg,ris MS Power Point then
dpar 1s rejected; // slide 18 not acceptable for CINDI
else //1
begin
if cannot open dyq; then
sign dpgr as bad document;
else //2
- begin
convert dpgr into text file de;
check if dyg is printable;
if dpgr is not printable then
sign dyeras bad document;
else //3
begin
if (thesis/report_extract(dy,) then
dperis accepted;
else if (paper_extract(dy,) then
dpar 1s accepted;
else if (faq_extract(d,) then
dparis accepted;
else
dpgris rejected;
end //else 3
end //else 2
end //else 1
// end of document processing

//document filtering
remove dy; from the temporary repository;
check the CONVERT_PDF table;
if dpg¢ is in CONVERT_PDF then
//dggs 18 converted from the original document dg by FCS
get docID from CONVERT_PDF according to the name of dpgr;
/! to get the original name in DOWNLOAD_STATUS
if (dpqr is accepted) then
begin
store dy¢r into the permanent repository;
change the mode of dp¢ in permanent repository so than the following subsystem can
access it;
remove dygr from temporary repository
if dpgr is in CONVERT_PDF then
set filter flag in DOWNLOAD_STATUS as 1{accepted document) based on docID;
write final location into DOWNLOAD_STATUS table;
else
set filter flag in DOWNLOAD_STATUS as 1(accepted document);
write final location according to dper name;
.end /Af

63

else // dyais rejected or bad
begin
if dpur is in CONVERT_PDF then
put dysinto the trash in CINDI
remove dyqr from the temporary repository;
get the document location from DOWNLOAD_STATUS according to docID;
remove doe from the found location;
set filter flag to 2 (rejected document) and
set the final location to NULL according to doclD;
else
remove dpgr from temporary repository;
set filter flag as 2 (rejected document) and
write final location as NULL according to the name of doas;
end /lelse
/lend of filtering
end //if
end //while
end

It can be seen from the above algorithm that, if the candidate document d,4¢ is found to be
one of the acceptable types of documents, then DFS treats it as an acceptable document
and stores it in the permanent repository of the CINDI Robot System. At the same time,
the information in the DOWNLOAD_STATUS table is updated by setting the filter flag
to 1 and recording the final location for dy¢r as shown in Table 3.3 using the SQL

statement given below.

update DOWNLOAD STATUS set filter flag=1 final _location="/cndoclipdf]” where file_name= filename

Table 3.3 Sample of Accepted Documents in the DOWNLOAD_STATUS Table

D file name file type | pdfflag | filter flag | final directory
151 MUI_chapter_March8.doc doc 1 1 /cndocl/pdf/
152 gdb.pdf pdf 1 1 /cndocl/pdf/
161 webdb02.pdf pdf 1 1 /endocl/pdf/
162 concordia.final.pdf pdf 1 1 /endocl/pdf/
166 paper.ps ps 1 1 /cndocl/pdf/
170 report.txt txt 1 1 /endocl/pdf/
178 extract.pdf pdf 1 1 /endocl/pdf/
182 p57-quinn.pdf pdf 1 1 /cndocl/pdf/

64

On the other hand, if the document is rejected, DFS will put it into the trash in CINDI and
update the information in the DOWNLOAD_STATUS table by setting the filter flag to 2

and the final location to NULL using the following SQL statement.

update DOWNLOAD _STATUS set filter flag=2 final location= NULL where file_name= filename

A sample of the rejected documents having filter flag 2 in the DOWNLOAD_STATUS

table is shown in Table 3.4.

Table 3.4 Sample of the Rejected Documents in the DOWNLOAD_STATUS Table

ID file name file type | pdf flag | filter flag | final location
181 | Web%20Forms_SQL.doc doc 1 2 NULL
188 readme.txt txt 1 2 NULL
189 test.txt txt 1 2 NULL
191 appraisal.pdf pdf 1 2 NULL
92 pred.txt txt 1 2 NULL
194 week1.pdf pdf 1 2 NULL
195 cs335tutor.pdf pdf 1 2 NULL
198 CCSS_Budget_2003- pdf 1 2 NULL
2004.pdf

Whether the document is accepted or rejected, it will be removed from the temporary
repository. If the original document is in non-PDF format, the original document will also
be removed. DFS identifies if there exists an original non-pdf format for the document by
checking whether the PDF document dpgs has been converted by FCS. If it has, then there
is an original document in CINDI repository. DFS will delete the original file from the

location given in the DOWNLOAD_STATUS table.

65

According to the feedback of document quality set by DFS (good if the filter flag equals
1; poor if it is 2), the CINDI Robot calculates the values (gives scores) for each server or
Web server directory that has valid downloaded documents and then determines the
frequency of its visit to the sites. The CINDI Robot stores these information in the

SITE_STATISTICS table.

3.4.3.5 Data Structures for DFS

e Block of Buffers

A block of buffers is used to store parts of a document (front, body, and back). Each
block is a double linked list so that DFS can search for elements of DTDs back and forth.
A block represents a node in the list which store one line of the document. A double

linked list of such blocks is shown in Figure 3.10.

head

end
bufferl i buffer? < buffer3 [------ <4 buffern
P > e B

Figure 3.10 Structure of a Block of Buffers

The data structure of a buffer is shown below:

linestring, char*® next_buffer, buffer* prev_buffer, buffer*

As shown in Figure 3.10, DFS initializes a block of buffers by pointing the head pointer
and the end pointer to NULL. When DFS gets one line from a document, it adds a new

buffer and stores this line in this buffer. When DFS searches for elements in the block, it

66

scans the buffers back and forth through next_buffer and prev_buffer pointers. A sample

of the block of buffers displayed by DFS is presented in Figure 3. 11.

BUFFER:9.1Nain Contributions
BUFFER:
BUFFER:Much of the research described in this thesis started out by studying what lin-
BUFFER: gquists have dome to address the problems encountered when building Magic and
BUFFER: PLANDoc. Using linguists' observations as a basis, techniques were developed
BUFFER:and incorporated into Casper. The following are the dissertation's major contri-
BUFFER:butions:

BUFFER: - Incorperation of a wider range of domain independent clause ag-

BUFFER: gregation cperator® inte natural language generation systems than
BUFFER:previcusly possible. Hany aggregation operarors were snhalyzed and used
BUFFER: to combine propositions into one complex sentence, including guantification,
BUFFER: conjunction, adjective, prepositional phrase, and relative clause operators.
BUFFER: - Conjunction, gepping, and related ellipsis constructions are uni-
BUFFER:fied into a paradigm which is compatible with Systemic Functional

BUFFER: Grammar. Before my current conjunction slgorithm was developed, it was
BUFFER;not clear how non-constituent coordinations,such as "John flew to

| BUFFER: Maryland on Mondey and California on Tuesday,” cen be incorporated into

BUFFER: Systemic Functional Gremmar, one of the major formalisms used by text
BUFFER:generation community.In the sbowve sexsmple, the sentence contains non~

BUFFER: constituent conjunction hecause the underlined conjuncts are not basic con-
BUFFER; stituents. By using predicate arqument structure and directioneal constraints
BUFFER:proposed by Ro3s(1970} and Tal({l968}, our algorithm treats simple conjunc-
BUFFER: tion, dgapping, and related ellipsis constructions uniformly.ds & result of
BUFFER:developing this algorithm, Casper can gystematically determine which re-
BUFFER:peated constituents are redundant and delete them from the surface expres-
BUFFER:gion to make the generated sentence more concise.

BUFFER:+ A corpus-based approach is used to resolve adjective ordering de-
BUFFER:cisions in sentence generation., (rdering asggregatved constituents is a

BUFFER: task which nust be addressed in order to produce complex hut not awvkward
BUFFER: sounding sentences. This is an interesting point because awkward sounding
BUFFER:sentences are grammatically correct, but humans can easily detect such dig-

4 BUFFER:fluencies. Generating grammatically corract sentences i3 not good enough: a
BUFFER:new dimension, fluency, is shown to be important in NLG end was addressed.
BUFFER: - Discourse and contextual information are utilized to select universal

BUFFER: quantifiers to make text more concise. In most NLG systems, guanti-~
BUFFER:fiers are specified in the input representation. In the current work, uniwversal
BUFFER:

BUFFER: 186

BUFFER:quantifiers are deriwved from input representation, ontology, and discourse his-
BUFFER: tory. The proposed quantification algorithm incorporated findings from the
BUFFER: linguistic literature to ensure correct distributive reading or ceollective read-
BUFFER:ing i3 conwveyed in the aggregated sentence. In addition, embiguity related to
BUFFER: quantificartion operations is addressed.

BUFFER:- & corpus-based approach is used to analyze and study the sequential
BUFFER:ordering of aggregation aperators, This thesis provides evidence from

BUFFER:a corpus to demonstrate the general applicability of the proposed sequential
BUFFER:orxdering for aggregation operators. NLG researchers can be confident that
BUFFER:NLG systems that employ the aygregation operators in the same ordering a3
BUFFER:Casper will result in grammatical, fluent, and concise sentences.
BUFFER:9.2Revisiting Issues in Clause Aggregation

BUFFER

Figure 3.11 Sample of a Block of Buffers

e Body Structure
The data structure for body structure of theses, technical reports, and academic papers is a
complex linked list, which consists of two levels of linked lists, levell and Level II, as

shown in Figure 3.12.

67

levelll 1 71 levelll 2 Bt levelll3 > ... —¥ levell m
7y 2
levell 1
levelll 1 Pl levelll 2 Pt levelll3 P 3 levelll x
Y
X]
levell 2
levelll 1 "1 levelll 2 »1 levelll 3 —P . =2 levellly
4 {
levell 3
E levelll | [P} levelll2 > levelll3 —» ... ~—> levelll z
v r‘“““ﬂ
levelln

2

Figure 3.12 Data Structure for the Body Structure of theses, technical reports, and

academic papers

As shown in Figure 3.11 , the first level list of the data structure, levell, is for storing

major components and associated pointers such as chapter information for theses,

technical reports, or section information for academic papers. “levelll” in this figure

represents the second level of linked list is used to store lower level components structure

such as section information of theses, technical reports, or the subsection information of

academic papers. The data structure of the nodes in the first level list is presented below:

levell_num, char*

paragraph, int

head_levll, levelll*

end_levll, levelli*

next_levl, levell*

From Figure 3.12 and the above structure, it can be seen that each node in the first level

list points to a second level linked list using a head pointer (pointing to the first node in

68

the second level list) and an end pointer (pointing to the end of the second level list).

The data structure of the nodes in the second level linked list is shown below.

levelll_num, char* | paragraph, int levellll_num, char* next_levIl, levelll*

As shown in the above data structure, the data member levellll_num is used for storing

the number of subsections in a thesis, technical report, or an academic paper.

DEFS stores the extracted information of body structure from a document in this complex
linked list and then determine if this document has a normal body structure. A sample

body structure of a thesis [46] displayed by DFS is presented in Figure 3.13.

Figure 3.13 A Sample of the Body Structure for a Thesis

69

As shown in Figure 3.13, seven major components of the document under consideration
(assume to be a thesis) were stored in the linked list of “levell”; minor components of
each major components were stored in the linked list of “levelll”. When searching this
list, seven chapters were found and there are at least 3 sections in each chapter.
Therefore, DFS considered this document has the body structure of theses based on the

DTD for theses as described in section 3.4.2.1.

70

Chapter 4

Experiments and Evaluation

4.1 Experiment One on FCS

The FCS experiments were conducted to test its functionality. As mentioned in Chapter 3,
FCS runs on a Windows platform. It is composed of three components: FCSd, Converter,
and FCS Repository. The Converter consists of the Omniformat monitor and the Pdf995
PDF converter. FCSd is responsible for monitoring the CINDI Robot database and
securely transferring documents; Converter is responsible for document conversion.
FCSd is started after Converter runs to monitor FCS Repository. Before the experiment,
as shown in Figure 4.1, the pdf flag in the DOWNLOAD_STATUS table would be zero,

while the CONVERT_PDF table would have no records for the documents to be

converted.

Figure 4.1 Conversion Flag in Database before PDF Conversion
To begin the experiment, the monitor Omnifort was started to watch the FCS Repository
for PDF conversions. Then, FCSd was started. The starting interface is illustrated in
Figure 4.2. According to the records in the database at that time, there were 194 non-PDF
documents downloaded by CINDI Robot in the non_PDF repository on the Linux

platform.

71

FCS4 of 'CINDI systen
vevsien- 6.8
June 2884

Connecting to MuSQL ... successfullyt

:Eelect ID.prefix_url.file. nane.tenp location.file type.pdf flag from DOUNLOAD ST
[0 Ug phere IDME and ID1860 and File typel>'tex’ and file_typedi’zip’ and pdf £1
L ag =@

fiahle select successfully..

Figure 4.2 The Starting Interface of FCSd

After FCSd started checking the database, it found non-PDF documents. FCSd began to
transfer these documents from a Linux platform to a Windows platform, i.e. the forward
transfer. The interface of the transferred documents is presented in Figure 4.3. The

forward document transfer took a total of 12 minutes.

- 1

,flle url-.7“???“2E65?36@2E?3?4615EﬁﬁﬁF?ZﬁéZEﬁSﬁ4?52F?ﬁ£56F?l686 2FG46CHD2F786178
522732F646D6 36795696 E6ERE T3

b Pile pame s dincguinness—aaaiBB-camera-ready.doc
ile Iocationt sendoclisdownloadss

bfile typed doc

}PDF £flag: B

STranafer file from cindid: dmoguinness—aaaiBil-camera-peady.doc
Hncguinness—aaaibB-camera) 115 kB 1 145.5 kBrs i ETlfi: @E a@.gn 1 188k

Irile ID: 276

Pile url: 63732E73 74616 E606 72642 E6564752F 446507726505 732F6D7363732F 78726677201
6D7I6BANG574732738332D38342F

[t ile names HECE-BIB4-81.doc

le lorvation: Jendocirdownloads/
ile twypel doc :
PDF £lag: B

livansier file frop cindil: HSGB~B3E4 fil.doc
;ﬂSCS—ﬂ3BQ~9[.dﬁc i kBOL 14,8 KBss 1 ETA: 80:88:86 | 188

Figure 4.3 Document Transfer from the Linux Platform to the Windows Platform

While FCSd executed the forward transfer jobs, Omniformat continuously monitored the
FCS Repository receiving the non-PDF documents. The incoming documents in the FCS

Repository were put into the converting queue as shown in Figure 4.4.

72

c:homniformat\watch

PDF v F'rtable Dor:umnt ort

Figure 4.4 The Interface of Document Conversion

The conversion of the 194 non-PDF documents required 23 minutes.

The last task of FCSd in this cycle is to transfer the converted PDF documents back to the
temporary repository on the Linux platform. After one PDF document was transferred
back successfully, FCSd wrote the conversion flag in the CINDI Robot database. As
noted in Figure 4.5, the PDF conversion flag, pdf_flag, for the successfully converted
documents was set to 1 in the database, while the converting information was recorded in

the CONVERT_PDF table as shown in Figure 4.6.

2000-04~073

L

FOn4~ 05

{
i
|
|
|
!
{
{
|
i
+

Figure 4.5 Conversion Flag after PDF Conversion

73

3063 | 111 ¥ decguina spdE 2004

3617} 2761 MECS-03N4-AT pdf 2004-07

e g T e L

rows intsed (000

Figure 4.6 Conversion Information Recorded in the CINDI Robot Database

The total time of the transfer back to the Linux platform of the 194 documents was about

11 minutes.

After all the jobs in this cycle were finished, FCSd went to sleep for 30 minutes. Then, it
woke up to check the CINDI Robot database again and the next round began. The

experiment illustrated that FCS achieved the target of document conversion.

4.2 Experiment Two on DFS

Two separate tasks were conducted to test the effectiveness of filtering, that is, the ability
of DFS to make the right filtering decision. One task is to test the effectiveness of the
extraction of document structure through manual test. Another task is to test the
performance of DFS in the real world through automatic test. All the test documents for
the two tasks can be found in [47]. For a given document in either task, DFS first tries to
establish the structure of the document to be either a thesis or technical report. If DFS
finds this to be the case, it accepts the document for CINDI. If DFS fails to find either a
thesis or a technical report structure, it attempts to compare the structure to an academic
paper; if this fails, it tries FAQ structure. If the document has none of these structure,

DFS would return the filtering result: value of “rejected”.

74

4.2.1 Manual Test

In order to test the effectiveness of the extraction of document structure, we manually
produced a number of variations of scientific documents and then ran DFS, examined the
output of DFS for each candidate document. Since non-readable files that do not make
sense cannot be extracted by DFS, we did not try unreadable documents in the
experiments. For this experiment, two theses, two technical reports, a number of
academic papers, and five FAQs downloaded from the web sites were the raw
documents. Some of these were in MS Word or HTML formats so that théy can be used
to produce a number of test cases with only some components preserved. For example, an
incomplete thesis. fnay have only the front part or the body part; a FAQ may have only
questions. Since DFS recognizes PDF documents as input files, all non-pdf source
documents are converted into PDF by FCS; each corresponds to one test case. The 38 test

document contents are described in Table 4.1.
Table 4.1 Test Document Contents for Manual Test of DFS

4.1a Test documents with only some components of thesis or technical report DTDs

Test Descriptions
document
Document 1 having only title, author, abstract
Document 2 having only title, author, abstract, table of contents
Document 3 having only title, author, abstract, acknowledgments, and table of contents

Document 4 having only title, author, abstract, acknowledgments, table of contents, and
introduction

Document 5 having only body

Document 6 having only back part (bibliography, appendix)
Document 7 having only title, author, abstract and body
Document 8 having title, author, abstract, contents, and body

Document 9 having all elements with #REQUIRED keyword and none of their ancestors are
optional in the DTDs

75

4.1b Test documents with only some components of academic paper DTD

Test Descriptions
document
Document 1 having only title, author, abstract
Document 2 having only body
Document 3 having only back page
Document 4 having only title, author, and body
Document 5 having optional components in the body of the paper
Document 6 having back elements in the optional components in the body of the paper
Document 7 having page number before title
Document & having date before title
Document 9 having journal name before title

Document 10

having standard body structure (having section numbers before section titles),
title, abstract, and references.

Document 11

having no space between section numbers and section titles

Document 12

having item list in body

Document 13

having labels, page numbers, and formulas in body

Document 14

initial letters in section titles being not capitals

Document 15

having no abstract, keywords, back elements, and standard body structure (having
no section numbers. The difference between section titles and paragraph text is
font size. All letters of section titles are capital letters),

Document 16

making back page as sections (for example, “9. Acknowledgments)

Document 17

having references but no the word “References”

Document 18

having references but key element in the last paragraph before the references in
the converted text file

Document 19

having all elements include abstract but no the word “Abstract”

Document 20

having keywords but having no space between keywords and abstract

Document 21

having title, abstract, author, and references

Document 22

Layout in vertical version

Document 23

Elements are in the opposite order (back, body, and then front)

Document 24

The first page of the academic paper with total 11 pages

Document 25

having all key elements and body structure

4.1c Test documents with only some components of FAQ DTD

Test Descriptions
document
Document 1 having no key elements
Document 2 having only questions
Document 3 having some key elements of paper
Document 4 having additional information from the Web (for example, related links)

Document 5

having key elements, questions, and answers

According to the above test cases, two theses, two technical reports, one academic paper,
and 5 FAQs were saved as 86 non-pdf files [47] and then converted into PDF by FCS.

The test results of DES for these test cases are presented in Table 4.2.

76

Table 4.2 The Results of Manual Test on DFS

4.2a The test results for theses

Test Testresults | Correct Results (Y/N) Note
document from DFS by manual processing
Document 1 Rejected Y
Document 2 Rejected Y
Document 3 Rejected Y
Document 4 Rejected Y
Document 5 Rejected Y
Document 6 Rejected Y
Document 7 Rejected Y This test result is difference from
Document 7 in 4.2b table
Document § Accepted Y
Document 9 Accepted Y
4.2b The test results of technical reports
Test Test results | Correct Results (Y/N) Note
document from DFS by manual processing
Document 1 Rejected Y
Document 2 Rejected Y
Document 3 Rejected Y
Document 4 Rejected Y
Document 5 Rejected Y
Document 6 Rejected Y
Document 7 Accepted Y different result from the same case
of Document 7 in 4.2a
Document 8 Accepted Y
Document 9 Accepted Y
4.2c The test results of academic papers
Test Test results | Correct Results (Y/N) Note
document from DFS by manual processing
Document 1 Rejected Y
Document 2 Rejected Y
Document 3 Rejected Y only references
Document 4 Accepted Y
Document 5 Accepted Y Optional components are considered
as paragraphs of the body.
Document 6 Rejected N DFS puts all text after the first

“References”, which is in the
optional components, into back part.
Thus it cannot extract the correct
body structure.

Having optional structure

77

4.2c The Test Results of Academic Papers (Continued)

Document 7 Accepted Y

Document § Accepted Y

Document 9 Accepted Y

Document 10 Accepted Y

Document 11 Accepted Y

Document 12 Accepted Y A paper by Ullman, has too many
lists, no formal paragraphs, most
sections have only one or two
sentences plus lists.

Document 13 Accepted Y

Document 14 Rejected Y The normal body structure was not
extracted but it was extracted as
optional.

Document 15 Rejected N Having optional structure but not
enough elements

Document 16 Accepted Y

Document 17 Accepted Y

Document 18 Accepted Y The word “References” was not
found but the reference list was
found

Document 19 Accepted Y

Document 20 Accepted Y

Document 21 Rejected Y

Document 22 Rejected Y No element was extracted since each
word is in one line in the converted
text file,

Document 23 Accepted Y

Document 24 Rejected Y

Document 25 Accepted Y

4.2d The Test Results of FAQs

Test Testresults | Correct Results (Y/N) Note
document from DFS by manual processing

Document 1 Rejected Y

Document 2 Rejected Y

Document 3 Accepted Y Accepted as an academic paper.
Filtering result is correct but it was
misclassified

Document 4 Accepted Y/N Additional info such as related links
and resources has no effect to
extraction. Filtering 1s right but
classification not.

Document 5 Accepted Y

78

As shown in Table 4.2, all the test results for theses and technical reports have correct
filtering decision. There are abnormal results when filtering academic papers and FAQs.
In test document 6 for academic paper, the document is rejected when it should be
accepted because of its complex layout as shown in [44]. The document is an academic
paper from IEEE journal and has optional components in the front of the body;
additionally, it has references in these optional components. DFS considered the term
“References” appearing alone in a line and not in a list as the beginning of the back part
of an academic paper and hence treated all the text under it as the back part. Therefore,
the document structure could not be correctly extracted. Another abnormal case is for test
document 15. In this case, the document is rejected because its weight for paper is 2. It is
possible to force it to be accepted by adjusting the paper weight rule (wp>6) defined in
section 3.4.3.2 to wp > 2. However, this adjustment may result in accepting wrong type
of documents. For example, a proposal with title and body will be accepted as an
academic paper. It is a trade-off between accepting minimum number of wrong
documents and rejecting a minimum number of acceptable documents. In test document 4
for FAQs, the file was classified and accepted as an academic paper since it has key

elements of academic papers.

4.2.2 Automatic Test

In this experiment, 1003 source documents were processed by DFS and produced results
in one run. The source data were PDF documents directly retrieved by the CINDI Robot
(729) and converted by FCS (194). To test the filtering effectiveness of DFS, the source

data includes irrelevant types of documents. The test result is shown in Table 4.3.

79

Table 4.3 Results of Automatic Test on DFS

Total Test Documents 1003
Accepted by DFS 458
Verified to be correct 430

Verified to be wrong 28
Rejected by DFS 550

Unreadable 50
Normal 499
Verified to be correct 480

Verified to be wrong 19

In Table 4.3, “Accepted” refers to the number of documents accepted by DFS. These
documents were then checked manually and taken as either correct or incorrect. Rejected
documents were processed in the same way. “Correct” means the number of the filtering
results that correspond to the manually checked results, while “Incorrect” refers to
different results in the manually checked documents. “Unreadable” means the opened
document contains mixed unrecognizable symbols that could not be read. “Normal” is the

complement to “Unreadable” in “Rejected” category.

It can be seen from Table 4.3 that for accepted documents, a total of 28 incorrect filtering
results were produced. The primary reason for this is that the misclassified documents
were proposals (10), lecture notes (6), personal statements(5), discussion groups (4), non-
technical report (2), and student instruction (1) with the main features of academic papers
or FAQs. For rejected normal documents, 19 incorrect results were produced. The 19
incorrectly rejected documents are academic papers from journals. Since most incorrectly
rejected documents have optional components in their body, DFS could not extract the
correct body structure and they were rejected. The other documents were incorrectly

rejected because of limited number of components in the documents. This experiment

80

shows that most theses, technical reports, and FAQs have the main structure defined in
the DTDs. Consequently, they were filtered correctly. Most of the incorrectly rejected
results are due to complex layout by publishers for printed papers having side bars and

related articles embedded in pages of a technical paper.

To evaluate the performance of DFS, we evaluate the automatic test results, which are
more similar to a real-world context. The performance is measured by how well the
filtered documents match with the CINDI’s expectations. For N test documents, DFS
separates N into two subsets, m accepted documents and n rejected documents. Here, m
is composed of correctly accepted documents (a) and incorrectly accepted documents (b);
and, n consists of correctly rejected documents (¢) and incorrectly rejected documents
(d). So, the percentage of correct accept, Sa, is a/m; the percentage of incorrect accept,
Fa, is b/m; the percentage of correct reject, Sr, is ¢/n; the percentage of incorrect reject,
Fr, is d/n. From the test results shown in Table 4.3, the filtering accuracy of DFS is
calculated as shown in Table 4.4.

Table 4.4 The Filtering Accuracy of DFS from the Automatic Test

Total Test Documents, N 957(1003-46)
Accepted by DFS, m (a+b) 458
Correctly accepted by DFS, a 430
Incorrectly accepted by DES, b : 28
Percentage of correct accept, Sa 94% (430/458)
Percentage of incorrect accept, Fa 6% (28/458)
Rejected by DFS, n (c+d) 499
Correct rejected by DFS , ¢ 480
Incorrect rejected by DFS, d 19
Percentage of correct reject, St 96% (480/499)
Percentage of incorrect reject, Fr 4% (19/499)

Since the 46 unreadable documents in Table 4.4 were treated as bad files and were not

2
passed to the actual filtering processes (extracting document structure), the calculations

81

are based on the normal documents (957). As shown in Table 4.4, Fa is higher than the Fr.
However, the primary goal of DFS is to filter out as many irrelevant documents as
possible so that CINDI could return a user’s query with only acceptable information.
Thus, lower Fa value is more important. Hence, we tuned DFS using the following two
aspects:

1. Tuned the length of a line string in paragraph checking from 50 to 55. Three
lecture note and two discussion groups were filter out.

2. Tuned the weight for academic papers from 6 to 7, which means a document
having title, body structure, and at least one of the other elements can be treated
as an academic paper. Six proposals, four personal statements, one lecture notes,
one non-technical report, one discussion groups, and one student instruction were
filtered out. At the same time, three academic papers were rejected because of the

presence of limited number of elements.

After tuning, there are 9 incorrectly accepted documents, consisting of 4 proposals, 2
lecture notes, 1 personal statement, 1 discussion groups, and 1 non-technical report; these
have similar structure to academic papers. The filtering accuracy of DFS for the tuned

parameters are calculated and shown in Table 4.5.

Table 4.5 The Filtering Accuracy after Tuning DFS

Total Test Documents, N 957(1003-46)
Accepted by DFS, m (a+b) 436

Correctly accepted by DFS, a

427

Incorrectly accepted by DES, b

9

Percentage of success accept, Sa

98% (427/436)

Percentage of incorrect accept, Fa

2% (9/436)

Rejected by DFS, n (c+d) 521
Correct rejected by DFS | ¢ 499
Incorrect rejected by DFS, d 22
Percentage of success reject, Sr 96% (499/521)
Percentage of incorrect reject, Fr 4% (22/521)

82

From Table 4.5, the percentage of failure reject documents Fa, 2%, is much lower than
before (6%), which means, large number of irrelevant documents were filtered out and
‘much less irrelevant documents were stored in the CINDI permanent repository. After

tuning, DFS basically achieves its purpose.

To further assess the effectiveness of DFS, detailed statistics to the tuned DFS on the
filtering accuracy of the major types of documents are given in Table 4.6. “Others”
contains the irrelevant documents such as incomplete scientific papers, instructions,

outlines, empty files, schedules, and name lists.

Table 4.6 Statistics on the precision of Relevant and Irrelevant Documents

Total Accepted | Rejected | Accuracy
By manual checking | by DES by DFS (%)
Total 957
Relevant 449
Thesis 16 16 0 100
Technical report 27 27 0 100
Academic paper 398 376 22 94
FAQ 8 8 0 100
Irrelevant : 508
CvV 18 0 18 100
E-mail 15 0 15 100
Letter 14 0 14 100
News 40 0 40 100
Form 57 0 57 100
Shde 104 0 104 100
Assignment 78 0 78 100
Discussion group 18 1 17 54
Picture 16 0 16 100
Proposal 19 4 15 79
Lecture note 55 2 53 96
Non-technical report 16 1 15 94
Others 58 1 57 98

In Table 4.6, the 957 total readable documents for the test include 449 relevant files and

508 irrelevant documents processed through manually checking. “Accepted” and

83

“Rejected” columns refer to the number of documents accepted by DFS and rejected by

DES respectively. The recall for each type of document is calculated by “Accepted” over

“Total” of that type of document.

From the results of filtering the relevant and irrelevant documents as shown in Table 4.6,

we can draw the following conclusions:

®

Theses, feports, and FAQs were effectively categorized in accepted
documents with an accuracy of 100%. The filtering accuracy of academic
papers is 94%, which means a loss of 6% papers due to the complex layout

imposed by journals and less elements.

CVs, E-mails, News, assignments, letters, forms, pictures, and slides
(excluding lecture notes) were filtered out quite effectively; their accuracy is
up to 100%. The primary reason affecting filtering accuracy is that the
structure of the tested document is similar to the structure of academic papers.
Research proposals have the lowest accuracy, 79%, since they have very
similar document structure to academic papers. Some of them even have
totally the same structure including title, abstract, standard body structure, and

references.

84

Chapter 5

Conclusion and Future work

5.1 Conclusion

Due to the large volume of information on the WWW . the current global search engines
cannot respond to users’ queries with accurate information based on keywords or phrases.
The topic specific robot is an efficient solution to this problem. It constructs a topic-
specific index of Internet documents employing information-filtering technology. The
goal of filtering is to maximize the number of relevant documents recommended to the
repository, while miﬁjmizing the number of irrelevant ones. In the CINDI project, DFS is
an application of information filtering technology based on the structure of documents.
DFS selects documents of type thesis, technical report, academic paper, and FAQ, and
filters out irrelevant documents such as emails, resumes, discussion groups, news, letters,
and assignments. The structures for the relevant and irrelevant documents are predefined

by DTDs.

DFS makes filtering decisions about the PDF documents based on the weight obtained by
matching candidate documents with the DTDs of accepted types of documents. After
applying the DFS on 1003 PDF documents, the final results show significant accuracy.
The precision for successful reject and accept are 98% and 96% respectively. DFS
basically achieved the purpose of the CINDI Robot System, to maximize the relevant

documents and minimize the irrelevant documents in CINDI repository.

85

As a universal e-document format, PDF was chosen as the single document format in the
CINDI Robét System for two reasons. One reason is to store documents in their original
layout to be used by VQAS in CINDI system. Another reason is that the converter,
PDFTOTEXT, is available to convert PDF documents to text files, which can be
employed by DFS for extracting document structure and by VQAS for indexing. To
convert all non-pdf documents downloaded by the CINDI Robot into PDF format, FCS
was developed. Since CINDI was built in a Linux platform, and MS Word documents
cannot be converted into PDF with high quality in the Linux platform, FCS was
developed in a Windows platform. In FCS, a daemon named FCSd was implemented to
monitor the CINDI Robot database and securely transfer documents between the

repository in the Linux platform and the FCS Repository in the Windows platform.

5.2 Contribution of this thesis

The objective of this thesis project is to automatically filter out irrelevant documents
from the retrieved documents and unify these documents’ format with PDF. The design
and implementation of DFS and FCS are the main contributions made by this project to
the CINDI Robot System. In DFS, DTDs for theses, technical reports, scientific and
technical papers, FAQs, emails, letters, resumes, and discussion groups were defined.
Then, the algorithms of filtering were developed. These include overall filtering
algorithm, thesis/technical report structure extraction algorithm, academic paper structure
extraction algorithm, and FAQ structure extraction algorithm. FCS was designed as a
converting system running on a Windows platform. In FCS, FCSd was implemented to

monitor the CINDI Robot database and transfer documents between the Linux platform

86

and the Windows platform. To make sure FCSd automatically and securely
communicates with the CINDI Robot System, FCS was configured by installing the
OpenSSH server and setting MyODBC data source. To automatically convert the
downloaded LaTeX documents into PDF, a script called latexconverter was implemented -
on the Linux platform. The design and implementation of the CINDI Robot database are
composed of the efforts of several contributors. The maintenance of the converting and

filtering information is another contribution of this thesis to CINDI.

5.3 Future Work

Two subsystems of CINDI Robot System developed in this thesis, DFS and FCS,
basically achieved their primary purpose. However, they still need improving. DFS and

- FCS can be improved in several aspects.

First of all, it is necessary to improve the conversion performance of the text converter
pdftotext in the future. DFS makes filtering operations based on the structure of text files.
The text files are converted from PDF by the converter pdftotext. After conversion, the
layouts of the converted documents are different from the original documents. For
instance, sometimes there is no space between two paragraphs; two paragraphs in the
same horizontal level from different éolumns are combined together. Also, the font type,

font style, and font size are lost. These conversion problems affect the filtering effect.

Due to the fact that there exist many conventions in candidate documents corresponding
to the same element in a DTD, DFS defines semantic rules for each element in DTDs. It
is suggested to enrich semantic rules for each element in each type of expected

documents.

87

Since most of academic papers come from the publications of institutes and journals, the
names of publishers such as “IEEE” and “ACM?” often appear on the top or the bottom of
the papers. The names can be an important element for the DTD for academic papers. It
is suggested to set up an academic publisher dictionary so that DFS extracts this element

from documents.

Finally, FCSd in FCS was developed as a background process without users’ interaction.
If users want to convert a part of the documents from the CINDI database, FCSd needs to
be recompiled. To make it easy for users to choose documents, a GUI for FCSd should be

developed.

88

References

[1] Elizabeth Liddy, “How a Search Engine Works”, SEARCHER Vol. 9 No. 5, May
2001.

[2]1 M. Kobayashi and K. Tabkeda, “Information Retrieval on the Web”, ACM
Computing Surveys, Vol. 32, No. 2, June 2000, pp 144-173

[3] S. Lawrence, and C. Giles, “Accessibility of information on the web”, Nature 400, pp
107-109, 1999

[4] B. C. Desai, S. Rajjan, “A System for Seamless Search of Distributed Information
Sources”, May 1994, http://www.cs.concordia.ca/~faculty/bcdesai

[S] Zhan Z. “Porting the Automatic Semantic header Generator to the Web”, Major
report, Dept. of Computer Science, Concordia University, 2002

[6] Yuhui W. “Enhanced Web based CINDI system”, major report, Dept. of Computer
Science, Concordia University, 2002

[7] Niculae Stratica “A Natural Language Processor for Querying CINDI”, master thesis,
Dept. of Computer Science, Concordia University, 2002 . :

[81 Mohamed Amokrane Mechouet, “Web based CINDI system”, master thesis, Dept. of
Computer Science, Concordia University, 2001

[9] Zhenjia Bradley Z. “CINDI Book Bag System: Design and Implementation”, major
report, Dept. of Computer Science, Concordia University, 2001

[10] Xiaomer Y, “Web based CINDI system: graphical user interface design and
implementation”, major report, Dept. of Computer Science, Concordia University, 2001

[11] Wen Tian, “Web-based CINDI system: database design and implementation”,
report, Dept. of Computer Science, Concordia University, 2001

[12] Sami Samir Haddad, “Automatic semantic header generator”, master thesis, Dept. of
Computer Science, Concordia University, 1998

[13] Nader Rajabieh Shayan, “CINDI: Concordia Indexing and Discovery System”,
master thesis, Dept. of Computer Science, Concordia University, 1997

[14] Adobe PDF, Acrobat Company,
http://www.adobe.com/products/acrobat/adobepdf.html

[15] Youguan Zhou, “CINDL the virtual library graphical user interface”, master thesis,
Dept. of Computer Science, Concordia University, 1997

89

[16] Xpdf home page, Xpdf source code and software,
http://www.foolabs.com/xpdf/download.html

[17] Lawrence and C.L. Giles, :Accessibility of Information on the Web,” Nature,
vol.400, 1999, pp. 107-109

[18] Martijn Koster, NEXOR, “Robots in the Web: threat or treat?”, ConnecXions, Vol.
9, No. 4, April 1995. URL: http://info.webcrawler.com/mak/projects/robots/threator-
treat.html

[19] N.G. Shaw, A. Mian and S. B. Yadav, A comprehensive agent-based architecture for
intelligent information retrieval in a distributed heterogeneous environment, Decision
Support Systems, 32(4), pp. 401-415, 2002.

[20] M. Wooldridge, N. R. Jennings, and D. Kinny, A methodology for agent-oriented
analysis and design, In proceedings of the Third International Conference on
Autonomous Agents (Agents 99), Seattle, WA, pp. 69-76, 1999

[21] R. B. Yates and B. R. Neto, Modern Information Retrieval, Addison Wesley, New
York, 1999.

[22] Z. Zhang, An Agent-based hybrid framework for decision making on complex
problems. Ph. D. Thesis, Deakin University, Australia, 2001.

[23] Chun-sheng L., Cheng-qi Z., Zi-li Z., “An agent-based Intelligent System for
Information Gethering from World Wide Web Environment”, IEEE Proceeding of the
First International Conference on Machine Learning and Cybernetics, Beijing November,
2002. pp1852-1857.

[24] Y. Li, “Modem intelligent agents for Web-based information gathering”, Ph. D.
Thesis, Deakin University, Australia, 2000.

[25] Niran Angkawattanawit and Arnon Rungsawang, “Learnable Crawling: An Efficient
Approach to Topic-specific Web Resource Discovery”,
http://pindex.ku.ac.th/file research/Learnable Crawler ISCIT2002.pdf

[26] David Evans, Clairvoyance Corporation, Pennsylvania. “The Search Engines Decade
-- 1994-2003”,. SearchEngine Meeting, Boston, Massachusetts, April 7-8, 2003, also in
http://www.infonortics.com/searchengines/sh03/slides/evans.pdf

[27] Value Filtering at Stanford, 2004 Feb 20
http://www-diglib.stanford.edu/~testbed/doc2/ValueFiltering/valueFilter AdColor.htm

[28] Sergey Brin and Lawrence Page, “The Anatomy of a Large-Scale Hypertextual Web
Search Engine”, thesis, Stanford University, 2000,
http://www.db.stanford.edu/pub/papers/google.pdf

90

[29] Venkat N. Gudivada, Vijay V. Raghavan, William I. Grosky, Rajesh Kasanagottu,
“Information Retrieval on the World Wide Web,” IEEE Internet Computing, 1997.

[30] Dan Sullivan, “Eye on the Competition-Why text mining is the key enabler of
automated competitive intelligence”,
http://www.intelligententerprise.com/000908/feat ! .jhtml? Requestid=7495, Feb, 2004

[31] Lawrence, S. and Giles, C., “Context and page analysis for improved web search”.
IEEE Internet Compute. 2.4, 38-46. Aug, 1998

[32] Ian M.Soboroff, “Collaborative Filtering with LSI: Experiments with Cranfield”,
Technical Report TR-CS-98-01, University of Maryland, Baltimore County. November,
1998

[33] Joseph A. Konstan, Bradley N.Miller, David Maltz, Jonathan L. Herlocker, Lee R.
Gordon, and John Riedl. GroupLens: Applying collaborative filtering to Usenet news.
Communications of the ACM, 40(3):77-87, March 1997

[34] Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms for
automating “word of mouth”. In Proceedings of CHI’95-Human factors in Computing

Systems, pages 210-217, Denver, CO, USA, May 1885

[35] Byoung-Tak Z. and Yong-Woo Seo, “Personalized Web-Document Filtering Using
Reinforcement Learning”, CiteSeer, 2001. also in: http://citeseer.nj.nec.com/454621.html

[36] Marko Balabanovie and Yoav Shoham. “Fab: Content-based, collaborative
recommendation”. Communications of the ACM, 40(3):66-72, March 1997.

[37] Susan T. Dumais. “Using LSI for information filtering: TREC-3 experiments” . In
Donna K. Harman, editor, Proceedings of the Third Text Rrieval Confereence (TREC-3),
pages 219-230, Gaithersbuig, MD, Novemmber 1995. Also titled “Latent Semantic
Indexing (LSI): TREC-3 Report”.

[38] Steve Lawrence, C. Lee Giles, Kurt Bollacker, “Digital Libraries and Automomous
Citation Indexing”, IEEE Computer, Volume 32, Number 6, pp. 67-71, 1999.

[39] CZ-Doc2Pdf company, http://www.convertzone.com/doc2pdf/help.htm
[40] Pdfcamp company, http://www.verypdf.com/pdfcamp/pdfcamp.htm
[41] Pdflib company, http://www.pdflib.com/

[42] PAf995 company, http://www.pdf995 .com/

[43] OpenSSH homepage, http://www.openssh.com/

91

[44] An academic paper with complex layout in PDF format,
http://www.cs.concordia.ca/~bcdesai/grads/t zhang/docl.pdf

[45] The converted file to [43] using pdftotext 3.0:
http://www.cs.concordia.ca/~bcdesai/grads/t_zhang/doc2.txt

[46] A Sample Thesis for Extracting Body Structure:
http://www.cs.concordia.ca/~bcdesai/grads/t zhang/thesis.pdf

[47] Test Documents:
hitp://www.cs.concordia.ca/~bcdesai/erads/t zhang/document/

92

Appendix A Typical Document Types

Code Document Type

AA AREA ACCESS REGISTER

AB) ABSTRACT

AC ADMINISTRATIVE CLAIM

AD ADMISSION

AE AGREEMENT

AF AFFIDAVIT

AG AGENDA

AT APPLICATION

AL APPRAISAL

AM AUTHORIZATION FORM

AN ANSWER (SEE FCAP LIST)

AO AEC/ERDA MANUAL CHAPTERS
AP AEC STAFF PAPERS/REPORTS
AR ARGUMENT

AS ARCHER SUMMARIES

AT ACTION PAPER

AU ANNOUNCEMENT

AV APPROVL

AX APPENDIX, APPENDICES, OR ANNEX
BB BIBLIOGRAPHY

BF BRIEF

BG) BACKGROUND INFORMATION
BT BIOGRAPHY

BK BOOK

BL BILLS, FEES, CHARGES

BM BUDGET MEMO

BP BLUE PRINTS

BR BROCHURE

BT BUDGET

BU BULLETIN

CA CHANGE ORDER

CD COURT ORIGINATED (SEE FCAP LIST)
CE CERTIFICATE

CF CONFERENCES

CG CONGRESSIONAL RECORD

CH CONGRESSIONAL HEARING

CK CHECK, MONEY ORDER

CL CLATM FOR INJURY, DAMAGE, OR DEATH
CM COMMANDERS REPORT

CN CONTRACT

CO CORRESPONDENCE, LETTERS, MEMOS
cp COMPUTER PRINTOUT

CQ CHARTER

CR CHART

CS CENSUS FORMS

CcT COMPLAINT (SEE FCAP LIST)
CU COURT TRANSCRIPTS (SEE FCAP LIST)
cv COVER SHEET

Cw CHAPTER

CX CROSS REFERENCE SHEET

CcY CHRONOLOGY

93

CZ
DC
DD
DE
DG
DI
DK
DL
DN
DP
DR
DT
DW
DY
EA
EB
EC
ED
EE
EF
EH
ET
BL
EM
EN
EO
P
ER
ES
ET
EV
EW
EX
EY
FD
FI
FL
FM
FO
FP
FS
GJ
GL
GR
HB
HH
HN
I1c
IE
IJ
IN
IR
IT
Iv
IX
JA
JD

CATALOG

DEATH CERTIFICATE/AUTOPSY
DATA

DECONTAMINATION REPORT
DIAGRAM

DISCUSSION

DISK, DISKETTE WITH DATA
DOSIMETRY LOG, DOSIMETRY DATA
DECLARATION (SEE FCAP LIST)
DEPOSITION

DIRECTIVE

DRAFT

DRAWING/SKETCH

DIARY

EMPLOYEE ABSENCE REPORT
EXCERPT, PARTIAL DOCUMENT
EVENT CARD

EXPOSURE DATA (PERSONAL)
EMPLOYMENT OR UNEMPLOYMENT RECORD
EXAM FORMS, MEDICAL EXAM
EMPLOYMENT HISTORY FOR INDIVIDUAL
EMPLOYEE PERSONNEL INFORMATION
BEQUIPMENT LIST

ENVIRON MONITOR REPORT
ENDORSEMENT

EXECUTIVE ORDER
EPIDEMIOLOGICAL STUDY

ERRATA

ESTIMATE SHEET, JOB ORDER
EDUCATION, TRAINING
EVALUATION STATEMENT
EMPLOYEE WITHHOLDING RECORD
EXHIBIT

EMPLOYEE SERVICE RECORD
FOLDER, FOLDER COVER

FEDERAL INSPECTION REPORT
FIELD LOG BOCK, RAD LOGS
FORM

FIELD ORDER

FRC STAFF PAPERS/REPORTS
FACT SHEET

'GREAT JOB' LETTER
GOVERNMENT LAW/REGULATION
GRAPHS, FIGURES, VIEW GRAPHS
HANDBOOK

HEARING

HANDWRITTEN NOTE

INVOICE

INCIDENT REPORT (RADIATION)
ACCIDENT/INJURY CLAIM, REPORT
INSTRUCTIONS

INSPECTION REPORT
INTERROGATORIES

INTERVIEW

INDEX, -INDICES

JOURNAL ARTICLE

JOB DESCRIPTION

94

172

LA
LB
LD
LE
LG
LT
LL
LR
LS
LT
MA
MC
MD
ME
MFE
MI
MJ
ML

MN
MO
MP
MR
MS
MT
MU
NA
NB
NC
ND
NG
NL
NM
NO
NP
NS
NT
OB
ocC
OH
OM
00
oP
OR
oT
ov
PA
PB
PC
PD
PE
PF
PG
PH
PI
PL
PM

LABEL

LOGS OR LOGBOOKS

LEGAL DECISION

LEGAL (GENERAL)

LEGISLATION, CONGRESSIONAL BILL
LISTING

LISTING

LABORATORY SERVICES REQUEST
LEASE AGREEMENT

LABORATORY REPORT, LAB DATA
MAGAZINE ARTICLE

MINE LEASE OR CONTRACT

MINE CARDS

MEDICAL LOG

MINING FIELD REPORT

MAIN RECORD

MEMORANDUM (LEGAL) (SEE FCAP LIST)
MONITORING LOG

MEETING MINUTES

MANUAL

MILITARY ORDER 115

MAP

MEDICAL RECORDS)

MEDICAL SERVICES REQUEST

MOTION (SEE FCAP LIST)
MEMORANDUM OF UNDERSTANDING
NEWSPAPER ARTICLE

NOTEBOOK

CONFIRMATION NOTICE

NOTICE OF DEPOSITION (FCAP LIST)
NOTICE (GENERAL)

NEWSLETTER

NOTICE LETTER (PHS TO MINERS)
NOTIFICATION

NOTICE LETTER (PHS TO DR./HOSPITAL)
NOTES

NEWS TRANSMITTAL (NEWSTAB)
OBITUARY

ORGANIZATIONAL CHART, ORGANIZATIORN
OCCUPATIONAL HISTORIES
OPERATING MANUAL

OPERATION ORDER

OPPOSITION

COURT ORDER

OUTLINE

OVERFLOW RECORD

PATHOLOGY REPORTS

PUBLICATION

PICTURE (PHOTOGRAPH, MOVIE, ETC.)
PUBLISHED DOCUMENT

PROCEDURE

PATENT

PLEADINGS (SEE FCAP LIST)
CERTIFICATE FOR PATENT CLEARANCE
PRETRIAL ORDER (SEE FCAP LIST)
PERSONNEL LISTING

PERSONAL NOTE

95

PN
PO
PP
PQ
PR
PSS
PT
pPU
PX
PY
QA
QR
Qs
QU

RC
RD
RE
RF
RG
RH
PJ
PK
RL
RN
RO
RP
RQ
RR
RS
RT
RW
SA
sC
SE
ST
SL
SM
SN
S0
5P
50
SR
S8
ST
5U
SV
SW
B
TC
TE
TF
TG
TH
TI
TL
™

PLAN

OPS PLAN(S)

PROPOSAL

PRODUCTION REQUEST

PRESS RELEASE, PUBLIC ANNOUNCEMENT
PLAINTIFF MINE SUMMARIES
PERMITS

PURCHASE ORDER

PRESENTATION, PROGRAM, LECTURE
POLICY STATEMENT

QUALITY ASSURANCE

PROCEDURE QUALIFICATION RECORD
QUESTIONS/ANSWERS
QUESTIONNAIRE

REVIEW ACTION SHEET
RECOMMENDATION

RAD SURVEY

RESOLUTION

RADON SAMPLE FORM

REGULATIONS

RADTATION EXPOSURE HISTORY
PAPER, UNPUBLISHED RESEARCH
PROTOCOL

RADIO LOG

REQUEST FOR ADMISSION (FCAP LIST)
ROUTING SLIP

RECEIPT

REQUEST

REAL ESTATE RELATED

RESUME

REPORT

RELEASE FOR/FROM WORK, ASSIGNMENT
STATEMENT

SCHEDULE, CALENDER

SPEECH

STATE INSPECTION REPORT
SPECTAL INSTRUCTIONS

SUMMONS

SPECIFICATION

STANDARD OPERATING PROCEDURES
SUBPOENA

STIPULATION

SCIENTIFIC DIRECTORS REPORT
SOCIAL SECURITY SUMMARIES
STRIPCHART

SUMMARY

SURVEY

SWORN STATEMENT (SEE FCAP LIST)
TABLE

TIME CARD

TEST BULLETIN

TAX FORM

TELEGRAM

TELEPHONE CONVERSATION NOTES
TECHNICAL INSTRUCTIONS

TRIAL

TEST MANAGERS REPORT

96

(58)

TN
TP
TR
TS
TT
TY
uc
VO
VT
WC
WL
WO
WT
XY
27

TERMINATION

TRIP REPORT

TRANSCRIPT SPEECH, COURT STATEMENT
TRANSMITTALS

TABLE OF CONTENTS

TESTIMONY

UNEMPLOYMENT CLAIM

VERBAL ORDER

VIDEOTAPE

WORKER'S COMPENSATION CLAIM
WORKING LEVELS ESTIMATE
WORK ORDER

WITNESS RECORD

X-RAY, CAT SCAN
MISCELLANEOUS

Note: this table is from: http://worf.eh.doe.gov/ .

97

Appendix B Source Formats Accepted by Omniformat and Pdf995

Format Description Notes Export
ANS Text with Layout Available if Word2000 is installed”
ART PFS: 1st Publisher Format originally used on the Macintosh and later used
for PFS: 1st Publisher clip art.
ASC Text with Layout Available if Word2000 is installed”
AVl Microsoft Audio/Visual
Interleaved
AVS AVS X image
BMP Microsoft Windows bitmap v
CMYK Raw cyan, magenta, yellow, o
and black samples
CcuTt DR Halo
DCM Digital Imaging and Used by the medical community for images like X-rays.
Communications in
Medicine (DICOM) image
DCX ZSoft IBM PC multi-page
Paintbrush image
DIB Microsoft Windows Device {DIB is a BMP file without the BMP header. Used to support <
Independent Bitmap embedded images in compound formats like WMF.
DOC Word Document Available if Word2000 is installed*
DPX Digital Moving Picture
Exchange
EMF Microsoft Enhanced
Metafile (32-bit)
EPDF Encapsulated Portable v
Document Format
EPI Adobe Encapsulated -
PostScript Interchange
format
EPS Adobe Encapsulated b
PostScript
EPSF Adobe Encapsulated v
PostScript
EPSI Adobe Encapsulated
PostScript interchange
format
EPT Adobe Encapsulated v

PostScript Interchange

98

format with TIFF preview

FAX Group 3 TIFF See TIFF format. Note that FAX machines use non-square v
pixels which are 1.5 times wider than they are tall but
computer displays use square pixels so FAX images may
appear to be narrow uniess they are explicitly resized using
a resize specification of "150x100%".
FITS Flexible Image Transport
System
FPX FlashPix Format v
G3 Group 3 FAX v
GIF CompuServe Graphics 8-bit RGB PseudoColor with up to 256 palette entires. v
Interchange Format
GRAY Raw gray samples
HPGL HP-GL plotter language
HTML Hyper-Text Markup Available if Word2000 is installed”
Language
1CO Microsoft icon Also known as "lCON".
JBIG Joint Bi-level Image experts v
Group file interchange
format
JNG Multiple-image Network JPEG in a PNG-style wrapper with transparency.
Graphics
JP2 JPEG-2000 JP2 File Format v
Syntax
JPC JPEG-2000 Code Stream o
Syntax
JPEGAIPG |Joint Photographic Experts v
Group JFIF format
MAT MATLAB image format
MHTML Web Archive Available if Word2000 is installed”
MONO Bi-level bitmap in least-
significant-byte first order
MNG JPEG Network Graphics
MPEG/MPG |Motion Picture Experts ol
Group file interchange
format (version 1)
M2v Motion Picture Experts <

Group file interchange
format (version 2)

99

MTV

MTV Raytracing image
format

oTB On-the-air Bitmap

P7 Xv's Visual Schnauzer

thumbnait format

PAL 16bit/pixel interleaved YUV

PALM Palm pixmap

PBM Portable bitmap format

{black and white)

PCD Photo CD The maximum resolution written is 768x512 pixels since
farger images require huffman compression (which is not
supported).

PCDS Photo CD Decode with the sSRGB color tables.

PCL HP Page Control Language |For output to HP laser printers. Write only.

PCT Apple Macintosh

QuickDraw/PICT
PCX"~ ZSoft IBM PC Paintbrush
file
PDB Palm Database
ImageViewer Format
PDF Partable Document Format
PFA Postscript Type 1 font Opening as file returns a preview image.
(ASCIH)
PFB Postscript Type 1 font Opening as file returns a preview image.
(binary)
PGM Portable graymap format
(gray scale)
PICON Personal Icon
PICT Apple Macintosh
QuickDraw/PICT file
PiX Alias/Wavefront RLE
image format
PNG Portable Network Graphics
PPM Portable pixmap format
{color)
PPT PowerPoint Presentation | Available if PowerPoint 2000 or later is installed.
PS Adobe PostScript file

100

£

PS2 Adobe Level Il PostScript file
PS3 Adobe Level Hl PostScript -+
file
PSD Adobe Photoshop bitmap file 4
PTIF Pyramid encoded TIFF Multi-resolution TIFF containing successively smaller
versions of the image down to the size of an icon. The
desired sub-image size may be specified when reading
via the -size option.
PWP Seattle File Works muilti-
image file
RGB Raw red, green, and blue v
samples (8 or 16 bits,
depending on the image
depth)
RLA Alias/Wavefront image file
RLE Utah Run length encoded
image file
RTF Rich Text Format Available if Word2000 is installed”
SCT Scitex Continuous Tone
Picture
SFW Seattle File Works image
SGl irix RGB image
SUN SUN Rasterfile
SvG Scalable Vector Graphics -
TGA Truevision Targa image Also known as formats "ICB", "VDA", and "VST".
TIFF Tagged Image File Format | Also known as "TIF". <
TIM PSX TIM file
TXT Raw text file
VICAR VICAR rasterfile format
VIFF Khoros Visualization Image
File Format
WBMP Wireless bitmap Support for uncompressed monochrome only. o
WK4 Lotus 1-2-3 Available if Word2000 is installed. Reqguires Word Import
Converter”
WPD Word Perfect Available if Word2000 is installed. Requires Word Import
Converter”
WPG Word Perfect Graphics File

101

WRI

Microsoft Write

Available if Word2000 is installed”

XBM X Windows system bitmap, | Used by the X Windows System {o store monochrome
black and white only icons.

XCF GIMP image

XLS Excel Available if Excel2000 or later is installed.

XML Extensible Markup
Language

XPM X Windows system pixmap |Also known as "PM". Used by the X Windows System to

store color icons.
XWD X Windows system window

dump

Used by the X Windows System to save/display screen
dumps.

102

Appendix C Original MS Word Document Used for PDF Conversion Test

1. A paragraph with table

A B C D E
X1 X3 X2 Xg X4
X3 X2 X1 X4 X6
X2 X3 X6 X4 X1

Minimization: Note that u;and u;cannot be eliminated because every homomorphism
1s the identity on u and therefore on x; and x¢. However, the other 2 rows can be
eliminated using the homomorphism that maps xgto X, and X9 to X3 , and is the identity
everywhere else. Thus the minimal tableau looks as following:

A B C
X1 X2 X3
X4 X2 X6
X1 Xs

The equivalent SPJR query with minimal number of joins: IT. (TT.(R) > ITy (R))

2. Figure
€ OB=C
extend Ctoes

€3

5%} Y
e
er pamslr)

extend A, Btou
extend A, Btor extend A,Btos
r S u
r.a-—ra s:b—s:b wd — wd

103

3. Some Special symbols:

(ma(R)) 0 Y g § o © Freety) v X
11 6 P X Sbircctorsp (rename) X - |
A = c = € U V Z= = =
N 1= + + — X : ' o

4. A paragraph with hyperlink
Dr. Bipin C. DESAIL Web Publications
o Bevisited

e Indexing and Searching Virtual Libraries: CIC-Forum on America in the Age of Information

o Econsumer

o Econsumer Talk Slides

e ASHG: Automatic Semantic Header Generator: Report

o Think it over: Author Anonymous!

5. An image with JPG format

104

Appendix D Converted PDF Document Using PDFcamp

1. A paragraph with table

A B C D E
X1 X3). 9} X6 X4
X3). %) X1 X4 X6
X2 X3 X X4 X1

Minimization: Note that u; and u;cannot be eliminated because every homomorphism
is the identity on u and therefore on x; and xs. However, the other 2 rows can be
eliminated using the homomorphism that maps xg to X, and X9 to X3 , and is the identity
everywhere else. Thus the minimal tableau looks as following:

A B C
X1 X2 X3
X4 X2 X6
X1 X6

The equivalent SPJR query with minimal number of joins: TT.(ITs(R) DX ITx (R))

2. Figure ﬂ

€ Op=C
Water mark from the
converter PDFcamp extend C to e;
€3
€7 Y
/
er pas()
extend A, Btou
extend A,Btor extend A, Btos
r S u
ra—ra s:b—s:b ud — uwd

105

3. Some Special symbols:

(ma®R)) ¢ v g 6 o © free(y) v X4
IT 6 ¢ X SDirectorsp (rename) > -~ {
A = c 3 € UV e < =
N S + + — X :

4. A paragraph with hyperlink

Dr. Bipin C. DESAIL Web Publications
o Revisited

« Indexing and Searching Virtual Libraries: CIC-Forum on America in the Age of Information

o Econsumer

o Econsumer‘Talk Slides‘

o ASHG: Automatic Semantic Header Generator: Report

e Think it over: Author Anonymous!

5. An image with JPG format

Water mark from the
converter PDFcamp

106

Appendix E Converted PDF Document Using Omniformat and Pdf995

1. A paragraph with table

A B C D E
X1 X3 X2 Xs X4
X3 X2 X1 X4 X
X2) X3 X5 X4 X1

Minimization: Note that u, and u,cannot be eliminated because every homomorphism
is the identity on u and therefore on x; and x¢. However, the other 2 rows can be
eliminated using the homomorphism that maps xgto X, and X9 to X3 , and is the identity
everywhere else. Thus the minimal tableau looks as following:

A B C
X1 X2 X3
X4 X2 X6
X1 Xe

The equivalent SPJR query with minimal number of joins: 1. (ITTs(R) P Ty (R))

2. Figure
€ Op=C
extend Ctoes

€3

[+5) Y
/
€1 pams(®)

extend A, Btou
extend A, Btor extend A, Btos
r S u
ra—ra s:sb—sb wd - ud

107

3. Some Special symbols:

(ma(R)) ¢ Y g 6 o W Free(y) v),€
IT 6 o X Sbirectorp (rename) > -~ {
A - c 3 e vV # < >
N S + + — X +

4. A paragraph with hyperlink

Dr. Bipin C. DESAI Web Publications
Revisited

Indexing and Searching Virtual Libraries: CIC-Forum on America in the Age of Information

Econsumer

Econsumer Talk Slides

ASHG: Automatic Semantic Header Generator: Report

Think it over: Author Anonymous!

6. An image with JPG format

108

Appendix F Key Generation for the Communication between Windows and
Linux
1. Get pageant.exe and puttygen.exe from [1] and place them in C:\Program Files\Putty\

2. In a DOS shell, enter C:\Program Files\Putty, run puttygen, and finish key

generation according the following steps:

1). Press the Generate button and follow instructions.

2). Type in a pass word and press the Save private key button and provide the file
name identity.
3). Press the Save public key button and provide file name identity.pub

3. Send identity.pub to Linux (.ssh/) and change the name as authorized.keys

[17 http://www.chiark . greenend.org uk/~sgtatham/putty/download.html

109

