Convergence Rate Estimation Through Subsampling

Paul Popadiuk

A Thesis
in
The Department
of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Science at
Concordia University

Montreal, Quebec, Canada
September 2004

(©Paul Popadiuk, 2004



3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94673-8
Our file  Notre référence
ISBN: 0-612-94673-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol ]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.






Abstract

Convergence Rate Estimation Through Subsampling

Paul Popadiuk

This thesis presents an investigation into the estimator for the rate of con-
vergence of a sequence of distribution functions given by Bertail, Politis and
Romano (1999, Annals of Statistics). The motivation behind the estimator
is outlined in detail and subsequently a simulation is carried out in order to
validate the results in the above paper. It is brought out through the simula-
tion results that the constants involved in subsampling has to be chosen with
care as subsample size affects the results wildly. In order to understand the
disparity between the published results and our initial simulation results, the
estimator was deconstructed and the results were reinterpreted. The basic
reason for disparity is found in the fact that subsample sizes must be much
smaller than the size of the sample from which the estimator is constructed,

a fact not apparent in the original paper.
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Chapter 1

Introduction

Let 4, = 0,(X1, ..., X,,), based on a random sample (X3, ..., X,,) be a con-
sistent estimator for some quantity 6 and let 7,, be a sequence of positive
numbers tending to co. Let J,,(z|7) = Pr{7,(d,, — ) < z} and suppose that
Jn(z|7) converges weakly to a nondegenerate distribution function J(z). We
will call 7,, the rate of convergence of the estimator 4,,.

It is not at all evident that such a sequence 7,, should even exist, however

we will take it as fact that such sequences are ubiquitous.

Lemma 1.1. Assume that J,,(z|7) — J(z) and that J(x) is nondegenerate.

Let a,, be another sequence of positive numbers tending to oo. Then
o if a,, = o(7,) then J,(z]a) — 1

o if 7, = o(ay,) then J,(z]a) — 0



A proof can be found in Lehmann(1998). An immediate consequence is,

Corollary 1.1.1. If a sequence T,, exists for which J,(z|T) — J(z) and J(z)

1s nondegenerate, then 7, is defined uniquely only upto an order of magnitude.

We should state, at least in passing, that the principal motivation for
determining a sequence T, is to facilitate approximations of the quantities

Jn(z|1), due to the following proposition:

Proposition 1.2. J,(z|7) — J(z) with J(x) nondegenerate if f J,(z|1) —

J(T.z).

In what follows we will attempt first, in Chapter 2, to describe how one
may determine the sequence 7, when one is given the sequence J,(z|1) =
Pr{(4, — 0) < z} and one assumes that a nondegenerate (and, in particu-
lar, a continuous and monotonic) limiting distribution J(z) exists. This is
foundational. It allows one to understand the methods given in Bertail et al.
(1999) and described in Chapter 3. In Chapter 4 we undertake the study of
the properties of the convergence rate estimator in the context of finite sam-
ples through simulation. We compare our results with those given in Bertail
et al. and find that their results as stated were not reproducible. Through
further simulations we provide reasons for the disparity between their results
and ours. One basic finding is that the subsample sizes must be much smaller
than the size of the sample from which they are constructed.This basic fact

was not apparent in the original work of Bertail et al. (1999).



Chapter 2

Deterministic Evaluation Of

Rates Of Convergence

2.1 Ad Hoc Methods

Lemma 2.1. Assume that there is a sequence 7, for which J,(z|17) — J{(z)
and J(z) is nondegenerate. Moreover assume that E[J,(z|7)] — E[J(z)] #

0. Then

1

Tp OC =mr—————= S Tl — 00.
E[/.(2|1)]

Proof. Observe that E[J,(z|7)] = 7, E[J.(z]1)]. Consequently,

ElJ(z)]

Tn=m+0(l), as 1 — oo.

The result is immediate. O



In a not surprisingly similar vein, one also has,

Lemma 2.2. Assume T, satisfies J,(z|7) — J(x) and J(x) is nondegenerate.

Moreover assume that Var[J,(z|7)] — Var[J(z)]. Then

1
72

nxm as n — oQ.

This Lemma appears in Lehmann(1998). The result is obtained in the

same way as Lemma 1.1.

Example 2.1. Let X; LI U(0,8). Based on a sample of sizen, the MLE of
8 is given by X(,), the largest element of the sample. Elementary computation
gives Var(Xmy) = % ~ #, and the above heuristic suggests we take
Tn =n. Let J,(z) = Prin(@ — X)) < a] =Pr[Xpy 2 0-2]=1-(1- %)™

Asn — 00, J(2) = 1 — €7, an exponential distribution with mean 6.

While the above results are nice due to their simplicity they suffers from
the possibly heavy restrictions of requiring convergence of moments or, in the
case of Lemma 2.1, prior knowledge that the limit law J(z) has a nonzero

mean. A more general approach would be helpful.

2.2 A General Approach

To any distribution function J(z) one may associate a (generalized) inverse

distribution, J~1(t) for ¢t € (0, 1), by setting J~1(t) = inf{z|J(z) > t}. In the



case where J(z) is continuous and monotone, the inverse distribution will
be the usual Euclidean inverse of J(z). Obviously, to a sequence J,(z) of
distribution functions converging weakly to a distribution function J(z) one
may associate a sequence J7!(¢) and a function J~!(t) and ask whether the
weak convergence of distribution functions has any bearing on whether the

inverse functions converge. The result is affirmative.
Theorem 2.3. J,(z) — J(z)iff J;1(t) — J7'(t).

A proof of this result can be found in van der Vaart(1998).
To exploit the duality between distribution functions and their inverses

we will need a simple lemma.
Lemma 2.4. J'(t|7) = 7,,J 1 (t]1).

Proof. By definition, J1(¢|7) = inf{z|J(z|7) > t} = inf{z| Pr(7,,(6, — 0) <
7) 2 t} = inf{z| Pr((4, — 6) < 5/7.) > 1}

= inf{ur,| Pr((6, — 0) <u) >t} = 7,,J;71(t|1). O

Corollary 2.3.1. Assume that J,,(z|7) — J(x) and that J(z) is continuous

and monotone. Then

Tn X , for any t € (0,1) as n — oo.

1
S (1)
Proof. By assumption we have that J'(t|7) — J~!(¢t) for each t € (0,1)

from Theorem 2.3. Combining this with Lemma 2.4 we see that

T (t1) — J7(t) for any t € (0,1).

5



We can rewrite this as

Tp = J (1) + 0(1), for each t € (0,1) (2.1)
"7 T T Y |
and the result follows. O

It will be advantageous at this time to assume a specific form for 7,,. In
many practical situations we will have 7,, = n? for some 8 > 0, and we
henceforth adopt this assumption.

Now suppose that there exists ¢ € (0, 1) for which J=1(¢) > 0. One may

then take logarithms in (2.1) to obtain
Blogn = log(J 7 (t)) — log(J; " (¢1)) + o(1).

If one takes positive integers m > n sufficiently large, one may solve for

[ to obtain

_ log(J;1(¢]1)) — log(J,,' (¢[1))
- logm — logn

p

+ o(1).
We can generalize this result somewhat to eliminate the condition that

one must find a particular ¢ for which J=1(¢) > 0.

Theorem 2.5. Assume that J,(z|7) — J(z) and that J(z) is continuous
and monotone. Further suppose that 7, = nP for some 3> 0. Let 0 < t; <
.. <tp <1 and define some linear function u(ty,....t) = 3. o J71(t;) with

the o chosen so that u(ty,...,tx) > 0. Analogously, let u,(t1, ..., t|7,0) =



S o J7 ()7, 0) and let m > n. Then

_ log(un(t1, ..., tel1)) — log{tm, (t1, ..., te|1)
logm — logn

1Y

+0(1) as m,n — oo.

Proof. The result follows immediately from Corollary 2.3.1 coupled with lin-

earity. O

There are many specializations of the functions « which are of value.
For instance, u(t1) = £J'(t1) # 0, depending on the polarity of J~'(¢,) is
the most simple function, while u(t,t2) = J(t2) — J~1(¢t1) will always be
positive if t; < ty, assuming that J(z) is monotone.

At the risk of generalizing for no apparent purpose we can extend the
above to into a regression-like scenario. Although it seems rather pointless

it will be of value in the next chapter.

Corollary 2.5.1. (Least Squares) Assume everything as in the previous The-
orem. Let by, ..., b, be a collection of distinct positive integers exceeding some
fized N. Set log = 1> log(b;) and let Tog, = 1 3 log(us, (81, .., tl1)). Then

> (log b; — log)(log us, (¢4, ..., te|1) — log,,)
- = +0
>_(log b; ~ log)?

This is a standard type of result in numerical analysis. See, for example,

/B:

(1) as N — oo.

Rudin(1976) for details.

Remark 2.2.1. While we have chosen the functions u() to be positive finite
linear combinations of quantiles of J~!, one can also define more exotic func-
tions provided that the analogously defined functions u,() converge to u(). We

7



give 2 examples. First, consider u(J71(t)) = [ J~'(t)dt. By a simple change
of variable we find in this case that uw(J~'(t)) = E[J(z)]. An application of

Theorem 2.4 yields

log(E[Ju(z|1)] — log(E[Jm(=[1)]
logm — logn

g = + o(1). (2.2)

Similarly, if one defines u(J71(t)) = [[J71(t)]?dt, then one sees that this
is the second moment of J(x), which we denote by u2(J(z)). We can apply

the same methodology as above to obtain

o = 08((Un(211))) — log(tta(Jn(2]1)))
logm — logn

+o(l). (2.3)

The least squares versions are defined analogously.

2.3 Examples

Consider first the case where X «~ N(0,1), and let _)-(—,:2 be a consistent es-
timator of 0. It is known that E[X_nz] = 1/n. We assume that the limiting
distribution J(z) has a positive mean. By using the estimator in the pre-
ceding remark, that is selecting the function u() to implicitly define E[J(z)],
we find for any choices m > n that = 1 + 0(1), so that § = 1 identically.
We point out that this is less than surprising since one can determine by

elementary means that nmz = 0)~ x3y,



One may similarly use the Least Squares analog to obtain the identical
result independent of the choices b;.

Now consider the case where X «~ N(2,1) and X, is a consistent esti-
mator of 4. For this case we will use the second formula from the preceding
remark. One finds, by elementary means that us(J,(z|1)) = 16/n + 3/n2.

By plugging this into the formula (2.3) we have

log(1+ &) —log(1+ &)

20~ 1
g + logm — logn

, form >n,

so that 7 — 1/2.



Chapter 3

Stochastic Estimation Of Rates

Of Convergence

3.1 Bootstrap and Subsampling

As we have seen one typically approximates the error distribution J,,(z|7) by
appealing to the limit law J(z). There are however other approaches which
can be used to approximate this quantity. The bootstrap estimate for J,,(z|7)

based on a sample X; X, is given by

(@) = = S 1r(0; ~0) < o)

-~

where 8 = 6(X1,..., Xy) is the value of the estimator taken over the entire
original sample, 67 is the value of the estimator taken over a multiset of
size n (that is, a sample of size n drawn with replacement from the original

10



sample), and the sum is taken over all possible n"™ multisets of the data.
The bootstrap estimate is said to work if H**(z) converges to the limit
law J(z) (actually this is not entirely correct - usually the supremum norm
metric is used, but there is no great loss in our restriction). While in practice
the bootstrap often works quite well, (that is, at least as well as the usual
approach of appealing to the limit law, and sometimes better), it is rather
difficult to analyze, with lots of funky analysis coming into play. Moreover,

it is not a universally consistent estimator of J,(z|7).

Example 3.1. The extreme order statistic:

We pick up again with the previous example and let X(ny be the estima-
tor for 0 when the observations are U(0,8). Our bootstrap estimate will be
HioNz) = 237 1[n(@ — 6) < z]. In particular, H?*!(0) = = (the number
of boostrap samples that X, appears in) = ﬁ—ié?,#t =1-(1-3) >

1 —e~'. On the other hand, J(2) = 1 — e = J(0) =0, and it follows that

HY(0) » J(0) so that the bootstrap is not consistent in this case.

To remedy the problem of consistency one may use Subsampling. On the
face of things Subsampling looks rather like Bootstrapping with the Subsam-

pling approximation to J,(x|7) is given by

1 ~ —~
L’n,b(xlT) = "—(7,{)_ Z 1{Tb(01t,b,a - on) S x}
b

o~

where 8, = 6(X1, ..., X,) is the value of the statistic taken over the entire
sample, @\n,b,a is the value of the statistic taken over a subset a of size b <n

11



of distinct elements from the original sample, the sum being taken over all
subsets of size b.We note that there is some ambiguity here. On the one hand
we are claiming that L, ;(z) is an approximation to J,(z|7,8), but really it

is more naturally viewed as an approximation to Jy(z|7, 8).

Example 3.2. The subsampling analog to the previous example is

Lna(alr) = (1—) S 10 (X = Busa) < 7}

b

so that,

b
L. (0|7) = =— =0, for fized b as n — oo,

and the particular difficulty encountered in the bootstrap is alleviated. The
fact that subsampling works is given by the following result of Politis et

al. (1999).

Theorem 3.1. Assume that Jy(z|7) converges weakly to a nondegenerate

J(z). Moreover suppose that ;f; — 0 and ;”L — 0, as b and n tend to co. Then
o Lnp(@) D Jy(@) asn — oo
o If x is a continuity point of J then L, ;(z) 5 (z).

Proof. Let U, p(z|7,0) = (IT)ZI{TI,(@,I,,G — @) < z}. Observe first that
b
this is an idealized version of L, ;(z|7). In addition we see that it is also a

U —statistic of degree b with kernel h(X,,, ..., X;,) = I{Tb(é\nyb@(Xil, ey Xy ) —

12



6) < z},whose expectation is Jy(z|7, #), and which takes values in the inter-
val [0,1]. By applying Hoeflding’s Theorem ( see Serfling(1981) )we have
that P(U,p — Jo(z) > t) < exp{—2[%]t?}. If one applies the theorem to
—U,4() one obtains a similar result implying that P{|U,, — Jy(z)| = t} <
exp{—2|%]t*},s0 that U, ,(z) LA Jp(x). One may now write the estimator
Ly s(z|T) as é; > l{Tb(b\n,b,a —0) +7(6 — (’J\n) < z}. If z is a continuity point

of Jy(z|7,6) then for every ¢ > 0
Un,b(x - E)l(En) S Ln,b("I"'T)](En) S Un,b(m + 6)1(En)

where E,, is the event {Tb@n —0) < €}. Now this event has probability

tending toward 1 as n — oo if 2 — 0. Thus with probability tending to 1
Unp(t — €) < Lypp(2]7) < Upp(z + €) for every € > 0 as n — oo,

so that Ly ;(2|7) converges to un,s(x) and thus to Jy(x) in probability.
The second assertion follows immediately by definition of convergence in

distribution. O
We will need analogous results for the inverse distribution functions.

Corollary 3.1.1. Let L, (t|7) be the inverse distribution function of Lnp(z|7).

Then L, }(t|7) converges in probability to J; ' (t|7) and thus to J71(t).

The proof is uninteresting and can be found in Bertail et al.(1999) or

Politis et al. (1999).

13



Remark 3.1.1. There is a rather large practical detail to be worked out. The
quantity (’g) can become enormous very quickly, making a complete enumera-
tion itmpossible. Fortunately, one does not need to do o complete enumeration
to know which way the wind is blowing. One may use a stochastic approxi-
mation for Ly, (x|7) by selecting some sufficiently large number B of random

subsets and considering the quantity

1 -~ ~
Ln,b(m|7) = E Z 1{Tb(0n,b,a — Hn) < .'L'}

3.2 Constructing Convergence Rate Estima-

tors

Having determined a consistent estimator for error distributions one may
adapt the methods of the previous chapter to cook up a collection of esti-
mators. The approach is simply to use the functions L;},(tll) in place of

J;1(t|1) and hope that things work out.

Theorem 3.2. (Nondeterministic analog of Corollary 2.5.1) Assume that
Ju(zlT,0) — J(z) and that J(x) is continuous and monotone. Let X, ..., X,
be an i.i.d. sample. Let Ly,(z|7) and L;},(th) be the subsampling approx-
imations to Jy(z|7) and J; ' (t|7) respectively. Let 1 > v > ... > v, > 0,
and set b; = en™ for some positive constant c. Let log = 13 log(h:). Let
0 <t < .. <t <1, and define Uy, (ts,...,t|1) = YL} (t:|l). Let

14



log, = 1 3" log (i, (t1, ..., tk|1)). Then

3 (log(b:) — Tog) (log (@, (1, -, 1)) — T08,) _ .
3 (log(b:) — log)? =B+ o5

F=_

The proof appears in Politis et al. (1999).

Some comments are in order here. First we note that block sizes b; are
constructed to ensure that the requirements of Theorem 3.1 are met. Sec-
ondly, we have a potential difficulty in that the functions %, may take on
negative values. It should be clear that if n is taken large enough that this
problem will disappear. However, one is usually faced with the cumbersome
detail of having a tragically small sample size. One can work around this in a
couple of ways. First one can use a judicious choice for the function, such as
a difference of quantiles. Alternately, one may take absolute values of either

Uy, or of its individual components. In any case, there is room for discretion.

15



Chapter 4

Simulations

4.1 Design of Simulation and Results

Simulations were done on a Thinkpad T20 running the Solaris 9 operating
system. The programs were written using the native Sun C compiler. The
sundry mathematical functions used, for example random number generation,
covariance calculation, and the like were from the GNU Scientific Library.
Stress tests included with the GSL were done to ensure the Library’s fitness.

We attempted to replicate the simulation results of Bertail et al.(1999).
To this end we describe the simulations done in their paper and dutifully

reconstructed here.

Two situations were examined. In the first instance data was generated

according to a Normal Distribution having mean 0 and variance 1. We con-

16



sidered the estimator 4, = Ezfor the quantity E[X]%. It is known that
Jo(z|7,0) = Pr(n(d, — 0) < z) converges to a nondegenerate limit law (in
fact it is exactly distributed as a chi-squared random variable with one de-
gree of freedom). Consequently the actual value of 3 is 1 in this case. The
number of blocks, r, used was either 3 or 20, and the block sizes were given
by the formula b; = [n%{”[?‘i‘f]}], where n denotes the sample size, and [|
denotes the nearest integer function. For example, if r = 3 and n = 100 the
block sizes were 18,32,56. Approximations to the functions L, ,(z|7) were
generated by using a fixed number of 3000 points.

The number of elements in the sample were taken to he 100, 1000, and
10000. For each sample size a collection of 11 different functions wu(t1, ..tx)
were used to estimate 3. Ostensibly the idea was to determine what sort of

function u() worked best. The functions u() considered were given as follows.
o up:u(t)=J"1(.99)
o uy: u(t) = J1(.95)
o uz:u(t)=J1(.75)
o ugiulty, .., tis) = 5 > J (75 + 4, k=0..14
o Us:ulty, .., ta) = 3> JH(T5+ X)), k=0.29

® Ug . U(tl, ...,t(;()()) = -6_(1)6 E J_1(75 -+ %%3), k =0..599

17



o uz:u(ty,tz) = J1(.99) — J1(.01)
o ug:u(ty,ty) = J-1(.95) — J-1(.05)
o ug: u(ty,ta) = J71(.75) — J71(.25)
o U0 u(ty, .y tio) = 5 AT (TE+ &) —JI(01+ £)} k=0.9

o uir Uty .. te00) = gog SAS (754 55 ) — J (01 +5055)} k = 0..599

sample data generated were Normal with mean 2 and variance 1. In
this case J,(z|7,0) = Pr(n3(s, — 4) < z) converges to the nondegenerate
law whose distribution is asymptotically Normal(0,16), a consequence of the
Delta Method (see van der Vaart(1998) for details). Hence in this case 3 = 3.

We break down the simulation algorithm as follows.

e Generate N random variables from a Normal distribution.
e Evaluate the test statistic, _X'_A?z, based on the generated data.

e For each block size b;, take 3000 subsamples of size b;,and evaluate the

test statistic on each subsample, and store this data in a vector.

e Sort each vector(corresponding a particular b;) of data points in in-
creasing order. Observe that the t** quantile is just the (3000t)** value

in our sorted arrays.

18



e Evaluate the estimate ﬁ based on each of the u functions above

o [Iterate this procedure 1000 times, and provide summary statistics for

the estimates.

The results of simulations are summarized in Tables 4.1-4.4.

4.2 Discussion

Our results do not mirror those of Bertail et al. (1999).In every instance
our estimates tended to overstate the actual value of 4 while the original
published results only overstated in the case where E[X] = 2, and even then
their results showed marked improvement as the sample size N grew. On the
other hand, in the case where E[X] = 0 their results tended to understate
the actual value of 3.

To explain the disparity between our results and those of BPR we need

to understand the possible sources of error in the estimator.

e The first is the intrinsic error of the approach. In the idealized situation
of Chapter 2 the estimate of § was realized by passing to a limit. In the
stochastic version one is bound generally by the amount of available
data and specifically by the block sizes used. In the smallest case
considered N = 100, the block sizes b; were 18,32, 56. While this might
explain some of the difficulty in the small sample behavior we note that

19



Table 4.1: A comparison of simulation results found in Bertail et al.(1999)

B=3 E[X] = 2
N=100 N=1000 N=10000
u BPR. US BPR US BPR Us
uy || 567+ .052 | .830 +.040 || .526 % .032 | .660 % .152 || 509 & .022 | .586 + .020
uy | 552+ .042 | 817 +.032 || 520+ .024 | .655 + .019 || .507 + .018 | .582 & 015
us | 546 £ .042 | 792 +.048 || 516+ .025 | .642 & .030 || .505 = .018 | .580 + .022
ug || 516 +.042 | .802 +.032 || .503 & .015 | .648 £ .020 || .499 + .011 | .580 = .014
us | 541+ .04 | 803 £.099 || 514 £.025 | .648 +.019 || .505 £ .018 | .580 = .014
us | 551+ .042 | .803 £.031 || 513 £.025 | .648 +.019 || .505 £ .019 | .580 =+ .014
wr || 5174023 | 771 £.026 || 504 £ .021 | .637 + 017 || .499 + 016 | .576 % .012
us | 516+ .025 | 773 £.020 || 504 £ .016 | .637 +.013 || .499 +.012 | .575 + .010
ue | 518 +.032 | 773 £.027 || 504 £ .022 | .636 &+ .017 || .499 + .016 | .576 + .013
wyo || 517 £ .023 | 768 +.017 || .504 % .015 | .631 £ .011 || .499 £ .011 | 575 + .008
upy || 517 4 .023 | 766 +.017 || 504 & .015 | .633 £ .012 || 499 £ .011 | .574 £ .009

BPR: The results given in Bertail et al.(1999)

US: Our simulation results

20




Table 4.2: A comparison of simulation results found in Bertail et al.(1999)

B=3, E[X]=0
N=100 N=1000 N=10000

u BPR US BPR US BPR US

up || 933+.109 | 1.34 4 .153 || 932+ .083 | 1.16 £.102 || .943 + .062 | 1.08 % .071
up || 928 +.107 | 1.324+.169 || .924 + .085 | 1.15 + .113 || .941 £ .063 | 1.07 & .076
ug || 927+ 113 | 1.33 4+ 208 || 924 + .088 | 1.17 +.126 || .942 £ .066 | 1.10 £ .071
ug || 9314111 | 1.324.189 || 928 +.087 | 1.15+ 121 || .943 + .064 | 1.08 % .076
us || 9324 .114 [ 1.32 4 .188 || 929+ .088 | 1.15 &+ .121 || .950 £ .061 | 1.08 £ .076
ug || .928 4 119 | 1.32 4+ 187 | 9124+ 089 | 1.15 4+ .121 || .947 £ .064 | 1.08 £ .076
wr || .908 +.128 | 1.28 + 202 || 912+ .098 | 1.13 +.130 || .931 £ .073 | 1.06  .086
ug || 8894 .139 | 1.24 + 235 || 895+ .111 | 1.10 +.154 || .921 + .082 | 1.05 £ .101
uo || .852 4 .176 | 1.16 +.294 || 869 + .143 | 1.06 .200 || .908 £ .103 | 1.03 % .130
ugo | 8714 .156 | 1.21 +.262 || 882+ .125 | 1.08 £ .173 || .915 4 .091 | 1.04 & .111
wiy || 864 .167 | 1.19+.273 || 873+ .136 | 1.08 £ .180 || .912 4 .095 | 1.04 & .115

BPR: The results given in Bertail et al.(1999)

US: Our simulation results
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Table 4.3: A comparison of simulation results found in Bertail et al.(1999)

B=20, E[X]=0
N=100 N=1000 N=10000
u BPR US BPR USs BPR us
Uy || 9274100} 1.49+.166 || 9344+ .084 | 1.26 - .109 || .944 &£ .054 | 1.15 4+ .075
Ug || 909 £ .097 | 1.46 £ .189 || .931 & .083 | 1.24 &+ .125 || .941 + .060 | 1.14 &+ .084
us || 910+ .101 | 1.46 + .233 || .927 £ .085 | 1.26 £ .139 || .957 4+ .056 | 1.16 &+ .087
Ug |[ 900+ .100 1 1.45 £ .212 || 935+ .083  1.24 &+ .135 || 948 + .056 | 1.15 £ .088
us [ 902+ .103 | 1.45 +.212 || 927 £ .084 | 1.24 + .134 || .941 4+ .060 | 1.15 & .088
Ug || -906 & .105 | 1.45 £ .211 [ 923 £ .084 | 1.24 £+ .134 || .933 4+ .062 | 1.15 £+ .088
ur || 881 £ .106 | 1.41 £ .228 || .905 £ .108 | 1.21 & .146 || .931 £ .068 | 1.12 4 .098
ug || .808 £.130 | 1.35 +.261 | .871 £ .129 [ 1.18 £ .171 || .920+ .081 | 1.10 £ .115
Ug | .820 £ .170 | 1.27 £ .307 || 858 £.143 | 1.13 £ .207 || .904 £+ .114 | 1.07 £+ .139
Uro || 840 £ .149 | 1.31 + 286 || .875+.123 | 1.16 +£.189 || .913 4+ .090 | 1.09 £+ .127
Uyp || 8354+.154 [ 1.30 +.295 || .872 4 .127 |1 1.15 £ .195 || .905 4+ .103 | 1.08 & .131

BPR: The results given in Bertail et al.(1999)

US: Our simulation results
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Table 4.4: A comparison of simulation results found in Bertail et al.(1999)

B=20, E[X]=2
N=100 N=1000 N=10000
u BPR US BPR US BPR US
up || 549 £ .018 | .940 +.020 || 5104 .011 | .731 4+ .008 || .501 £ .006 | , 638 % .006
uy || 537 .017 | 924 £ .013 || .509 +.009 | 724 £ .006 || .501 £+ .005 | .635 £ .005
ug || 534 % 018 | .898 £ .015 || .504 £ .009 | 713 £.009 || .501 £ .006 | .630 £ .008
ug || 519 +.022 | 910 £ .009 || .502 +.009 | 718 £ .006 || .500 + .005 | .632 £ .005
us | 527 +.025 | .910 £.009 || .503 +.009 | .718 £ .006 || .501 & .006 | .632 % .005
ug || .534 4 .024 | 911 +.009 || 513 +.009 | .718 & .006 || .505 £ .006 | .632 + .005
wr || 507 +.008 | .879 & .008 || .502 + .007 | .706 & .005 || .500 & .005 | .627 & .004
ug || .507 +.007 | .879 £ .006 || .502 £ .007 | .706 % .004 || .500 £ .004 | .628 +.003
uo || .508 +.009 | .880 % .008 || .502 + .007 | .706 £ .006 || .500 +.004 | .627 + .004
o || 507 £ .006 | .874 = .005 | .502 £ .004 | .703 £ .003 || .500 £ .003 | .626 & .002
uyy || 507 £ .007 | 872 4 .005 || 502 £ .004 | .703 £ .003 || .500 £ .003 | .626 £ .002

BPR: The results given in Bertail et al.(1999)

US: Our simulation results
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the results when N = 10000, while in the appropriate neighborhood,

are still not entirely satisfactory.

e The random error, or noise inherent in the random data. While one can
not control this we note that this is likely a rather small component
of the problem since there is very little variability in our estimates.
Moreover with a sample size of 10000 it appears unlikely that this

should be a significant issue.

e The last possibility is that the estimator L, ,(z|1) for Jy(z|1) may be

at fault. We shall see that this is precisely where the problem lies.

We will examine the 2 cases corresponding to the different means of the

generated data.

Case 1, X ~ N(2,1)

If X ~ N(0,1) then bJ,(z]1) is distributed as a x} random variable. By
appealing to Theorem we find that E = 1 identically for any choices ¢; and any
pair m, n of positive integers. Consequently any problem with the estimator
will be either due to the estimates L, ;(z|1) or random error. We can examine
the behavior of L,, 3(z|1) by equivalently looking at the values of L;j)(t|1) for
various values of b, and t and fixed n, chosen for our example to be 100. We
obtain approximate values by running 100 simulations and taking the mean
of these values given in Table 4.5.
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Table 4.5: A comparison of approximation of F~1(t) by simulation

F(t) t=.01[t=.05|t=.5(t=.95|t=.99
X2 (1) 0002 | .004 | 455 | 3.84 | 6.64
Ligoo(t1) | —02 | —02 | 45 3.85 | 6.61
Liws(tll) | =03 | —.03 | 44 | 384 | 657
Ligos1) || —04 | —04 | 43 | 3.82 | 6.55
Ligo(1) | —17 | —16 | .31 3.63 | 6.21
Lot | —18 | —17 | .31 3.61 6.18
Liosl) | —18 | —18 | .30 | 359 | 6.14
Ligoe(til) | —20 | —19 [ .29 3.58 6.11
Ligoge(tll) | —32 | =31 | .21 3.30 5.60
Lioogs(tll) | =55 | —52 | .10 | 259 | 429
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The result is apparent. Even with only 100 points we see a reasonably
good fit between the actual inverse chi-squared distribution and the estimated
versions, bL;}},(t|1), for b = 2,3,4 although even at this point we begin to
spot a trend. The quantile estimates are systematically understated as the
block size increases. While this exhibits the difficulty it is instructive to view
the problem in a way that quantifies how the estimate E begins to blow up
as the block size increases.

Rather than choose some simple function «() of quantiles we look instead
at an implicitly defined u() on J,*(¢|1) which corresponds to the expected
value E[J,(z|1)]. We find by elementary means that E[L, ;(z|1)] = 1/b—1/n.
We can compute the exact values of our estimators based on these values.

Table 4.6 illustrates the results.

Case 2, X ~ N(2,1)

This case is significantly tougher to analyze than the previous since we don’t
have a nice closed form for the distributions J,(x|1), although we do know
that vbJy(z|1) is asymptotically N(0,16).Unlike the previous example we
can’t appeal to taking the function w() as implicitly defining expectation
since the limiting law has mean 0 and our method only works when u() is a
positive function of J(z). We can however consider defining u() so that its

action on J(z) gives the second moment of J(z). In this way we obtain that
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Table 4.6: A comparison of simulation approximation for ﬁ by the first mo-

ment
Case A by 1t Moment of Ly (x|1) A by 1t Moment of Jy(z|1)
N=100,B =3 1.547 1.0
N =100,B=20 1.759 1.0
N = 1000, B = 3 1.272 1.0
N = 1000, B = 20 1.412 1.0
N =10000,B =3 1.15 1.0
N =10000,B =20 1.254 1.0
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Table 4.7: A comparison of simulation approximation for ﬁ by the second

moment
Case B: 2 Moments of Lny(2|1) | B 2 Moments of J,(x|1)
N=100,B=3 776 503
N =100,B = 20 .882 003
N =1000,B =3 637 601
N =1000,B =20 706 501
N =10000,B =3 .b76 .500
N = 10000, B = 20 627 500

the second moment of J,(z|1) is given by 16/b+3/b%. On the other hand one

can compute the second moment of L, ;(z|1) via the theory of symmetric

functions to give (16/b + 3/b?) + (—16/n — 1/n? — 2/bn + 112/n?). We

summarize the results in Table 4.7.

For the sake of comparison consider what happens when one evaluates ﬁ

based on the 2" moment of L, ;(x|1) when one selects B = 2, based on block

sizes {2,3}. Even with only 100 points one arrives at an estimate 5 = .548.

For 1000 or more points one stabilizes at the value .536, which is the value

of the estimator 3 evaluated on the 2" moments of Jy(z|1).

This is somewhat surprising for the simple reason that even though one
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would think that the smallest block size used should be at least a little larger
than 2, we find that the estimator based on the 2 smallest block sizes yields

the best result.

4.3 Conclusion

It should be clear from the examples that the approximations L,, p(z|1), al-
though consistent for J,(z|1), can behave quite poorly even if b << n, so that
their use in estimating the rate of convergence must be a cautious one. This
fact was apparently known by Bertail et al.(1999) so it is curious that they
discount this behavior in both their choices of block sizes and the number of
blocks used. Indeed, the idea that one should use many blocks with increas-
ing block sizes is specious precisely because the errors in the approximations
greatly exceed any benefit one might hope to obtain by removing "noise” in
the regression equations. In both cases examined one saw that the summary
statistics corresponding to the first and second moments depended on both

the sample size n as well as the block size b used.

In the end one has to be aware that the family of estimators given by
Bertail et. al (1999) are not of the "plug and chug” variety where one indis-
criminately selects arbitrary block sizes and functions u(). In the examples

given it was possible to obtain reasonable estimates with just 2 blocks with
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smallest possible size. Although we doubt that this will be uniformly applica-
ble it seems a more prudent initial first step than blindly bashing away and
coming up with a dubious result. It should be stated, somewhat as an after-
thought, that among the functions u() considered in the simulations that the
function uy, given by u(ty,ts) = J~(.75) — J71(.25), performed the best in
our simulations. However we can’t conceive why this would be a universally

good choice for any instance of the problem.
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