Investigation of tail probability using a
smooth estimation of a survival function

Serge Thiffeault

A Thesis
in
The Department
of

Mathematics and Statistics

Presented in partial fullfillment of the requirements
for the degree of Master of Science at
Concordia University

Montreal, Quebec, Canada

August, 2004
(©Serge Thiffeault, 2004



3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94674-6
Our file  Notre référence
ISBN: 0-612-94674-6

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol ]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.






Abstract

Investigation of tail probability using a smooth
estimation of a survival function

Serge Thiffeault

Since the publication of their truncated smooth estimator of a survival
function in 1996, Chaubey and Sen continued investigation into its statistical
properties under various conditions. The authors had identified a problem of
convergence of their estimator when estimating the mean residual life function.
To overcome this problem with the convergence, they proposed an untruncated
version of their smooth estimator. Nevertheless, in fear of oversmoothing with
the untruncated version, the authors did not pursue research on this estimator
much further.

This thesis deals with the investigation of some statistical properties of
the untruncated version of the smooth estimator and studies the problem of

oversmoothing by using simulations.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

In many situations, it may be desirable to estimate the entire cumulative
survival function of a random variable T. Most of the time, however, we do
not have knowledge about the underlying density. Instead we are given a set
of n observations {t1,ts, - ,t,} of which we assume that they are realizations
of independent, identically distributed random variates with the same density
as of T. Tt is our goal to estimate the cumulative survival function on the basis
of these observations.

Knowledge of the survival function helps in many aspects. In reliability
theory, for example, it is used to determine the probability of success of a
unit, in undertaking a mission of a prescribed duration. Pharmaticeutical
studies employ the survival function as a basic quantity to describe time-to-
event phenomena, the probability of an individual surviving beyond time ¢
(experiencing the event after time z). Interpreting and analyzing the survival
function provide a way to obtain many more structural elements such as its
density, hazard function, etc.

Let f and F denote the density and distribution function of the random
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variable T, respectively, then
¢
F#)=P(T<t)= / f(z)dz, t2>0,defined on R". (1.1)

The survival function is defined as the complement of the distribution function.

That is
o0
SH)=P(T>t)=1—-F() = / f(z)dz, t>0,defined on R". (1.2)
t

Given a random sample {t,...,t,} from the distribution for F', the usual
estimator of the unknown probability of the event {T" < t} is given by the ob-

served frequency of its occurrence, known as the empirical distribution function
(edf)

<
F,(t) = Number of t; < t’

n

n (1.3)
=n"'Y It <4, teR*
i=1

where I[-] is the indicator function defined as
[ = {1 ff [ fs true, (1.4)
0 if [[] is false.
Therefore, the empirical survival function (esf) is
Sp(t) =P (T >t),
=1-P(T <t)=1-Fut),

] (1.5)
=n'> 1>, teR"
=1
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Note that:

e The esf is a step function that decreases by % just after each observed ¢

if all observations are distinct.

o If we let t,, denote the r*(r = 1,2,... n) order statistic from the
random sample {t,--- ,%,}, then we have
Sp(t)=(n—k)/n, fortpr <t <tnir+t, (1.6)
where k =0,--- ,n, t,o =0 and t,.,41 = 00.

o Sp(t)=1, for 0 <t <tn;and Syp(t) =0, VL > tnn.

e F,(t) and S,(t) are nonparametric estimators of F'(t) and S(t) respec-

tively.

Since S,(t) is a step function, it is not smooth enough to estimate the corre-
sponding density. Moreover, estimation of a smooth distribution function by a
step function may not be particularly attractive. The idea of studying smooth
estimator of density and considering problems of accuracy of the estimation
were originally posed and studied in the Soviet Union. The results obtained
on this subject were due to Glivenko (1934) and Smirnov (1951) who used
histograms for estimators. Rosenblatt (1956), Parzen (1962) and Chentsov
(1962) made further contributions to the theory of nonparametric estimation
of probability densities. In their works, these authors introduced new classes
of estimators which generalize histograms. The idea of constructing new non-
parametric density estimators is as follows:

Let z1,z2, - - - , Zn be a sequence of independent identically distributed ran-
dom variables with the distribution law F(-). The empirical distribution Fy(-)
constructed from the sample z;, z3, - - - , I, is a discrete distribution with atoms

of weight 1/n located at each one of the observed points. Associated with
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each observation z; is a delta-measure d;,(-) concentrated at point z; and with
a sequence of independent observations z;, s, - ,Zn, the histogram is the

arithmetic mean of these measures, i.e.
1 n
fn() = ; Z‘szg() (17)
i=1

The above function gives discrete measures concentrated at the sample
values 21, Zg, -+ - , Tn. However, if the unknown distribution possesses a smooth
density f(z), it is natural to spread out each observed measure d,(-) replacing
it by a measure with a certain density concentrated at z in order to estimate
it at this point. In practice, we choose this density to be symmetric around

the point z and arrive at the following class of estimators:

hior= 2ok (52). (18)

where k(u) is a symmetric density, called the kernel, around 0. For the asymp-

totic theory to hold for this class of estimators, A must tend to 0 and nh — oo
as n — 0o.

The choice of the kernel function is not as important as the choice of h.
Various methods of determining h have been proposed in the literature along

with many kernel functions as given below [see Hardle(1991)].

Kernel k(u)
Uniform $1(lul <1)
Triangle (1= |uDI(jul £1)
Epanechnikov  3(1 —u?)I(ju| < 1)
Quartic B1-u?)(ul <1)
Triweight $5(1 —u?)3I(ju < 1)
Gaussian 712—7:6.’1,‘]7 (—3u?)
Cosinus Z cos(Fu)I(ju| < 1)

Among the various approaches studied in the past, their main objectives

were to smooth the histogram. Chaubey and Sen (1996), on the other hand
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suggested to smooth the empirical survival function directly as given in the

next section.

1.2 Smooth Estimator of a Survival Function

Chaubey and Sen (1996) formulated an alternative approach based on the clas-
sical Hille’s theorem (1948) on uniform smoothing in real analysis and obtained
some smooth estimators of S(t) and f(t) which may have some advantages over
their counterpart based on the usual kernel method of estimating.

Here, let us illustrate how the classical Hille’s theorem (1948) has been
incorporated into the new smoothing formulation.

For every t € R™ and y € R*, we consider an array {wnk(t,9);

0 <k <mn;n>1} by letting
Wk (t,y) = {(ty)k/k!}/{io(ty)i/i!}, (1.9)
so that wnk(t,y) is nonnegative and
Zn:wnk(t,y) =1, VtyeR". (1.10)
k=0

Now by letting {\,;n > 1} be a sequence of (possibly stochastic) positive
numbers, such that as n — 00, A, — 00 almost surely (a.s.), but n7tA, — 0
(a.s.), enables us to adapt the Hille’s theorem (1948), albeit in a stochastic

setup. The proposed smooth estimator of S(-) is defined as
- i k
So(t) =) W (t,A)Su|— ], tERT, 1.11
0= w0 (57) (L)

It has been shown by Chaubey and Sen (1996) that as n increases, for
every fixed t € RT, wyi(t,y) behaves like e~ (k!)~1(tA,)F, for k < n, so that

for large n, this adaptation is essentially a Poisson mixture of S,(-) with the
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Poisson probabilities adapted to the parameter t),. In this sense, the adapted
parameter t), is made to depend on t as well as A,, and it monotonically
increase as t increases (for a given A, or n). The right tiltedness of the Poisson
distribution, in its parameter and the monotonicity property of S,(-), makes

S,.(+) monotone as well.

1.2.1 Asymptotic Properties of 5,(t)

In this section, we will show that S,(t) — S(t) as A, — oo and as n — oo.

We have
Sa(t) — S*( t)’+!S* — 5@, (1.12)

Sa(t) - S t)l

where S*(t) = [ S(z)dGin(z) — S(t), as n — oo. Also for every t

5u(t) — 5°(1)] < maz |Su(x |/ dCun(z (1.13)
It follows that

5u(t) ~ (0] < [8u(t) - 5°(0)| < maz |5, () - w)!/ dCon(z). (1.14)

Since by Gilvenko-Cantelli theorem (see Rohatgi (2001), pp. 311)

Galt) — S(¢ )j -0 a.s. (1.15)

the results is confirmed.

The main consistency results are stated in the following theorem:

Theorem 1 [Chaubey and Sen (1996)] If S(t) is continuous (a.e.), A\, — 00
and n~*\, = 0 then

19 — S|l = sup[|Sa(t) — S(t)| : t € R*] a.s.,  asn — oo. (1.16)

Furthermore, because S, is strongly consistent for S and so is S, the following

theorem depicting their interrelationship was established.
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Theorem 2 [Chaubey and Sen (1996)] Under the hypothesis (on A,) of the
previous theorem, whenever f(t) is absolutely continuous with a bounded deriv-

ative f'(*) a.e. on R,
18 = Sa)|| = O (n_T3 (logn)H&) a.s.,  asm — 00, (1.17)

where §(> 0) is arbitrary.

We may note that for every t € R,
E{Sa(t) — S(t)}* = E{Sa(t) — Sa(t)I(1Sa(t) — Sn(®)| < en™*/*)} (118)
+ E{8a(t) = Sa®I(15n(®) = Salt)] > e/},

for a suitable ¢ : 0 < ¢ < co. Using the basic exponential rates of convergence

relating to the Bahadur representation (1971), we have
P{||S(-)n = Sa()| > en™¥*} = O(n”7/*). (1.19)

Therefore by Eq.(1.18) and Eq.(1.19), we have
E{(Sn(t) — Su())?} < 732 4 O(n~"/)

o), (1.20)

The kernel method, on the contrary, yields the order of the residual term
in Eq.(1.20) as O(n~%/3) (viz. Agzzalini (1981)) so that in this respect, the
proposed smooth estimator fares better.

We may define the usual quantile process @, = {@Qn(t) : 0 < t < 1} by letting
Qn(t) =sup{z: S,(z) >1—-t}, 0<t<1. (1.21)

Then, for every t : 0 < t < 1, the improved order of approximations in the
preceding discussion also pertain to Q,(t). It may be noted that Sy(-), being

differentiable, smooth,and hence in Eq.(1.21), we may as well replace ”>” by

»__»
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In 1999, Chaubey and Sen studied a mean residual life estimator using
their smooth estimator. In their study, the authors point out that the smooth
estimator is not appropriate to estimate the mean residual life because S'n(t)
diverges. By altering the weight function, Chaubey and Sen proposed a mod-

ified estimator as following:

N
g'g(t) = ngk (tv ’\n) Sn (Xk‘> ) (1.22)
k=0 n
where
(Ant)*

wly ( An) = €™M 2 (1.23)

andNBSn(§)=0fork>N.

This can be called untruncated version of the Chaubey and Sen’s original
estimator. The limiting distribution of the weights of truncated version is the
Poisson distribution. Therefore, all the asymptotic properties of the truncated

version will still apply to this new formulation.

1.3 Overview of the Thesis

This thesis is intended as a qualitative numerical study of the untruncated
version of the Chaubey and Sen smooth estimator S%(t). We attempt to
analyze some important properties such as bias, standard errors and confidence
intervals. We also attempt to investigate the tail behavior in detail.

Chapter 2 presents the statistical distributions that are used to describe
survival times. These distributions will be used throughout the rest of the
thesis. Chapter 3 deals with the numerical estimation of the smooth estimator
S9(t). This subject is extended into Chapter 4 to present some of the statistical
properties of $9(t). The confidence intervals and the tail behaviors are assessed

and discussed in this chapter.



Chapter 2

Standard Survival Distributions
and Their Properties

2.1 Introduction

This chapter introduces some of the statistical distributions that are used in
this thesis. They are the Exponential, Gamma, Weibull and Lognormal. These
distributions have been chosen because they represent the most frequently
used distributions in the reliability engineering and survival analysis fields.
Moreover, all distributions except the Exponential attain a wide variety of
shapes for various values of their parameters. Thus they can model a great

diversity of data and life characteristics.

2.2 Exponential Distribution

Historically, the Exponential distribution was the first widely used lifetime
distribution model. This was partly because of the availability of simple sta-
tistical methods for it (e.g., Epstein and Sobel (1953)) and partly because of
its suitability for representing the lifetimes of many things. The Exponen-
tial distribution has been used in areas ranging from studies on the lifetimes

of manufactured items (e.g., Davis (1952); Epstein (1958)) to researches in-
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volving survival or remission times in chronic diseases (e.g., Feigl and Zelen

(1965)).

2.2.1 Properties

The probability density function of the single-parameter Exponential distrib-

ution is defined as
1 t
6:6) = gex (~3). 2.1)

where 6 > 0 is known as the scale parameter. Its cumulative density function

and survival density function are respectively
F(t;6) =1—exp (—-%) , (2.2)
t
S(t;0) = exp (—-0-) . (2.3)

Some of the specific characteristics of the single-parameter Exponential pdf
are the following:

Mean: 6,

Standard deviation: 6,

Median: 0.693 - 6,

Mode: 0,

Quantiles: —6log.(1 — p),

Moments: For integer m > 0, E [(T)™] = m!§™.

Then E(t) = 8, Var(T) = 62

2.2.2 Motivation for the Exponential Distribution
The motivation for the Exponential distribution is summarized as follows:

o Simpiest distribution used in the analysis of survival or reliability data.

e Popular distribution for some kinds of electronic components (e.g., ca-

pacitors, high-quality integrated circuits).
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e Has the important characteristic; its hazard function is constant (does

not depend on time t).

2.3 Weibull Distribution

The Weibull distribution is perhaps the most widely used lifetime distribution
model in present. Its application in connection with lifetimes of many types of
manufactured items has been widely advocated (e.g., Weibull (1951); Berre-
toni (1964)). And also the distribution has been used as a model in biomedical
applications such as the studies on the time to the occurrence of tumors in hu-
man populations (Whittemore and Altschuler (1976)) or in laboratory animals

(Pike (1966); Peto et al. (1972)).

2.3.1 Properties

The probability density function of the Weibull distribution is defined as
f(t) = 4 (f’.ﬂ)ﬂ—le(tﬁ)ﬁ, (2.4)
n

where f(t) >0,t >+, 8>0,7>0, —00 <7 < 00, and 3, n are respectively
the shape and scale parameters. Its cumulative density function and survival
density function are respectively

F(t;8,m,7) =1—exp l— (E;—Fy)ﬂ] ) (2.5)

S(t; B,m, ) = ezp [— (Q-)ﬁ} : (2.6)

n

Some of the specific characteristics of the Weibull pdf are the following:

Mean: v+ gl (% + 1),
Standard deviation: 7 [P (% + 1) — [I‘ (% + l)r] 1/2,
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Median: v+ 7 (loge2)1/ﬂ,
1/8
Mode: fy+n(1 _%> ’
Quantiles: 7[log, (1 — p)]'/*,
Moments: For integer m > 0, E (I™) = "I (1 + m/3). Then
B(T) =l (1+4),Var(T) = [T (1+3) -2 (1+3)],

where I'(k) = [;° w*~! exp(—w)dw is the gamma function.

Note: When 3 = 1 then T ~ EXP(n).

2.3.2 Motivation for the Weibull Distribution

The theory of extreme values shows that the Weibull distribution can be used
to model the minimum of a large number of independent positive random

variables from a certain class of distributions.

e Failure of the weakest link in a chain with many links with failure mech-
anisms (e.g. creep or fatigue) in each link acting approximately indepen-

dent.

e Failure of a system with a large number of components in series and with

approximately independent failure mechanisms in each component.

The more common justification for its use is empirical. The Weibull distri-
bution can be used to model failure-time data with a decreasing or increasing

hazard function.

2.4 Gamma Distribution

The Gamma distribution is used as a lifetime model (e.g., Gupta and Groll
(1961)) although not as widely as the Weibull distribution. This is partly

because the survivor and hazard functions of the Gamma distribution are
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not expressible in a simple closed form and hence are more difficult to work
with than with those of the Weibull distribution. The Gamma distribution,
however, does fit a wide variety of lifetime data adequately, and there are

failure process models that lead to it (see Buckland (1964), Sec.1.7).

2.4.1 Properties

The general form for pdf of the Gamma distribution is defined as

£(t) = ﬂarl(a)

(t—r)*texp [—(tgr)], fort>r,a>0,8>0 (2.7)

where «, 3 and r are shape, scale and location parameter respectively. The
standard form of this distribution is obtained by putting 3 =1 and r = 0
which is given by

ta—le—t

f(t)=-i:(&7-,

If « = 1, the Gamma distribution reduces to the Exponential distribution.

fort > 0. (2.8)

The cumulative distribution function and survival distribution function are
respectively

F(t;a,B) = I‘_(ZS /0 e~tto 14, (2.9)

S(t;a,8) =1—-F(t;a,B). (2.10)

The Gamma distribution with positive integer a can be derived as the dis-
tribution of the waiting time to the ath arrival from a Poisson source with
parameter c. It is apparent that the sum of k¥ independent exponential vari-
ates with failure rate o has the Gamma distribution with parameters o and
k. The continuous random variable ¢t which is distributed according to the
probability law,

e—tyo—1

ft)= T (o) for @ > 0,0 < t < o0, (2.11)
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is known as a Gamma variate with the parameter o, and its distribution is
called the Gamma distribution. The mean and variance of this distribution are
equal to o, like in a Poisson distribution. The density function which can be
seen to be a member of the exponential family is unimodal, positively skewed
and Leptokurtic, with its mode at t = a—1 if @ > 1. But distribution Eq.(2.7)
hasamode at t =7 + B(a —1). If & < 1, f(t) tends to infinity as ¢ tends to
zero, also if a = 1, limgy f(¢) = 1.

The m.g.f. for the Gamma distribution Eq.(2.8) is

My(t) = (1—t)"2, |t| <1. (2.12)

Thus the cumulant generating function K (t) is given by

K, (t) = InM,(t) = In(l —t)™* = —alog(l — t), (2.13)
2 3t
=qa|t 2.14
alt+mtgtgt: (2.14)
from which we can derive
Mean = K, = coefficient of ¢ in K,(t) = a, (2.15)
2
u2 = Ky = coefficient of% in K,(t) = a, (2.16)
3
us = K3 = coefficient of% in K,(t) = 2a, (2.17)
) !
K4 = coefficient of -fi-'- in K,(t) = 6q, (2.18)
Therefore ud = K4+ 3u2 = 6a + 3o, (2.19)
pi_4 )
Hence, 8 = =% = —, 2.20
A /13 o (
and Gy = — =3+ E (2.21)
#2

The moments can be found from either the m.g.f., c.f. or directly by inte-
gration. From distribution Eq.(2.8), the rth moment about the origin zero
is

F'(a+r)

() forr=1,2,--- (2.22)

= (Ta)™ / totr=le~tdt =
0
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Hence the distribution Eq.(2.8) has a mean = variance = a.

2.4.2 Motivation for the Gamma Distribution

The Gamma distribution gives useful representation of many physical situa-
tions. It is used to make realistic adjustments to the Exponential distribution
in representing lifetimes in life testing situations. Also the sum of independent
exponentially distributed random variables represents a Gamma distribution
which leads to the appearance of the theory of random counters and other re-
lated topics in association with random process in meteorological precipitation

pProcess.

2.5 Lognormal Distribution

The Lognormal distribution, like the Weibull distribution, has been widely
used as a lifetime distribution model. It has been used in diverse situations
such as the analysis of failure times of electrical insulation (Nelson and Hahn
(1972)) and the study of times to the apparency of lung cancer in cigarette
smokers (Whittemore and Altschuler (1976)). The distribution is most eas-
ily expressed by saying that the lifetime T is log-normally distributed if the
logarithm Y = log T of the lifetime is normally distributed with mean y and

variance o2.

2.5.1 Properties

The two-parameter Lognormal distribution pdf is given by

1 e..%(t*_—e.)z

o

1) == ,

where t* = log.t, f(t) > 0,t >0, —oo < t < 00, ¢ > 0. Its cumulative density

(2.23)
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function and survival density function are respectively

F(t,p,0) =2 [@—(—ty] : (2.24)
St p o) =1-F(tp,0), (2.25)

where @ is the cdf for a standardized normal and o > 0 is a shape parameter.

Some of the specific characteristics of the Lognormal pdf are the following:
Mean: e#39"
Standard deviation: [(e2“+°2> (e"2 - 1)] 1/27
Median: e,
Mode: et~
Quantiles: exp (u + c®1(p)), where ®~1(p) is the p quantile for a
standardized normal.
Moments: For integer m > 0, E (T™) = exp (mp + m?0?/2),
E(T) = exp (u+ 0%/2),Var(T) = ezxp (2u + 0?) [exp (0?) — 1].

2.5.2 Motivation for the Lognormal Distribution
The motivation for the Lognormal distribution is summarized as follows:
e The Lognormal distribution is a common model for failure times.

o It has been suggested as an appropriate model for failure time caused by
a degradation process with combinations of random rates that combine

multiplicatively.

o Widely used to describe time to fracture from fatigue crack growth in

metals.

e Useful in modeling failure time of a population electronic components
with a decreasing hazard function (due to a small proportion of defects

in the population).
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o Useful for describing the failure-time distribution of certain degradation

processes.



Chapter 3

Numerical Investigation of the
Smoothing Parameter

3.1 Introduction

This chapter proposes a qualitative numerical é,nalysis of the Chaubey and Sen
(1996) smooth estimator 59(t). The goal is to investigate the behavior of the
estimator particularly in its tail region with various underlying distributions
mentioned in chapter 2. Also we will examine techniques to obtain an optimal
value of the smoothing parameter c.

In respect of Hille’s theorem (1948), we need to choose A, so that A, — 00

a.s. as n — oo. Intuitively we can define

n

T (3.1)

-

where T,., denotes the largest order statistic corresponding to {Th,..., T}

We will show that A, meets the required regularity assumption using the

following lemma:

Lemma 1 Given X has support on [0,00). If E|X| < oo then

-1
n 1121%57(1( 1 X );—s)O as n — 00. (3.2)

18
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Proof
Note that Vc > 0 & Y; = | Xi],

P[max(Yy, - ,Yo)>c]=1-[F(c)]" (3.3)
Since F(c) <1, Ve > 0then [ F(c) |* = 0 and
P[max(Y},---,Y,)>c]—=1 Ve>0. (3.4)

Hence we conclude that

glgl | X;] ;—; 00 as m — oo. (3.5)

Also, we conclude that V¢ > 0 that

I(Tpn >c) =1 asn — oo, (3.6)

where T,,., = max (Y}, -+ ,Y,).

Thus n
0 o (Tun > €) <n72Y T (T > ¢). (3.7)
i=1
But
nYY LI > o) < [nt ) T (T > ¢) +/ tdS(t)| + / tdS(t)l .
i=1 i—1 c c
(3.8)
Taking the limit of both sides as ¢ — oo and using the facts that
lim tdS(t) =0, (3.9)
c—oo f .
and
T YL T (T > 0) = [t > o f() = - [ tdS(), (3.10)
we conclude from Egs. (3.7) and (3.8) that
lim n™!'Tnd (T > ¢) =0 a.s.. (3.11)

n—ro0
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Since I (Tp.n > ¢) = 1 a.s., the above implies that lim,_co n~ T, =0 a.s.
Now, what happens if the above requirement is not met? In other words, if
one chooses a ), that does not asymptotically converges to co. The proposed

estimator Eq.(1.22) is defined as
. \K
30 & tA ()‘nt) k +
S0(t) = ;e "S5 (Z) t € RY, (3.12)
= ’U)n;()(t, Xn)sn(o) +--+ wn:N(t’ S‘n)Sn(n/;\n)

Case 1: Suppose that A = 0 as n — oo. It implies that for V¢ > 0, we have

e—Ant (j\nt)o

at k=0, limwno(t,\,) = o =1,
An 0 R (3.13)
A g~ nt ()\nt>
at k> 1, lim wni(t,Ay) = ———— = 0.
Xn—0 k!

The behavior of the weights wy,.x(¢, j\n) is asymptotically the same as S, (0) = 1.
This indicates that S%(t) - S(t) as n — oo.

Case 2: Suppose that A\, — A as limit(< oo) as n — oo in probability. It
implies by the Gilvenko-Cantelli lemma, which says that the empirical survival
function of a one dimensional random variable converges uniformly to the true

survival function in probability, that

max Sn (:\k:) -8 (f)‘ — 0, a.s., as n — oo. (3.14)
Hence N .
S0(t) —» S_: e-“%s G\-) , te R". (3.15)
=0 ’

Unless ¢t is large, the consistency of S’g(t) may not hold since the Poisson
mixture on the right side of Eq.(3.15) need not to be close to S(t). Thus by

contradiction, we must have A, — oo as n — oo.
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Modified ),

It is clear from Eq.(1.22) that only the first N + 1 values of the Poisson
probabilities are used in the S%(t) estimations. It implies that some of the
weights will be distributed beyond the largest order statistic of the sample
data. This results in shortening the right tail, and it may cause oversmoothing
in some cases.

To prevent or at least minimize this undesired effect, we need to alter the
weights’ shapes in such way that we bring some of the discarded weights back.
This can be accomplished by making the maximum weights of the distribution
occur earlier. The adjustment of the weights is possible by considering a

smoothing parameter ¢, namely

dn=c where ¢ > 0. (3.16)

nn
This choice of ), is parallel to the bandwidth selection in kernel method of
estimation. By using the smoothing parameter ¢, we can influence the degree
of smoothness of $%(t). The effect of ¢ will be illustrated in the section 3.2

through a numerical study.
Choice of N

The estimated value of N is defined as the smallest value of & so that

Sn (f;) = 0. That is

) 0}, (3.17)
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Since S, (-:\k:) = (0 when :\-k: = T,.n, then

k= S‘nTn:m
= ¢c=—Th.n, (318)

Therefore N = cn (keep only the integer value).

3.2 Analysis of Weight Distribution of S9(t)

The smooth estimator S9(t) is based on the sum of the product of the two
main components. First, on the right side of Eq.(3.19) we have S,(-). It is
computed for a set of equally spaced points from 0 to Tr.,. These points are
evaluated at k/\, where k varies from 0 to cn. The estimates of Sy (-) are not

dependent on any choice of ¢.

Sot) = iwgk (t, xn) S (Ai) , t€R". (3.19)
k=0 n

The other main component of S(t) is the weight function w3, (t, :\n)
The function is also computed at the same equally spaced points as in Sy(-).
However, the weights have been adjusted to surround ¢. Referring to section
1.2, the weight distributions are based on the Poisson probabilities adapted to
the parameter tA,. Therefore, the occurrence of the maximum weights always
appear around the value of ¢ for t < T,

The weight function is analogous to the kernel function in the conventional
kernel smoothing method. That is, a weight function w2, (t, :\n) is centered
around each observation ¢. In contrast to the ke-ael, the weight function is
not necessary symmetric but still integrates to 1. To illustrate the different
forms of the weight distribution, we take a sample of size n equal to 10 and

the largest order statistic T}, ”fixed” to 5. Then, we take three values of
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¢ = {0.833,2.5,5.0} and a fix value of ¢ = 1.0. Next, we compute the weight
distributions for each t.

Recall that the maximum number of points k used in the sum of Eq.(3.19)
is equal to cn where we only keep the integer part of cn. Consequently the
number of points is fixed for any given ¢ but varies either by changing n or c.

The effect of ¢ on the weight distributions is displayed in the figure 3.1.
Note that the line-graph format is used here only to make the display less clut-
tered. The weight distribution is not continuous, rather it gives probabilities

for discrete value of k. In other words these graphs only ” connect-the-dots”.

< < ] <
o c <
o ] @ @
= S S
" 2
g 8- B
4 2 1
b S ;‘—_/
S = o
P c =]
4 [ 8 10 2 4 [ [] 10 2 4 [ [ 10
Kk [t= 0.833,c=1) K ft= 25,¢=1] Klt=5,c=1)

Figure 3.1: Variation of the weight distributions with various ¢ (¢ = 1, Tp:n = 5, n = 10).

It appears that the weights shift from a right-skewed distribution to a
symmetric bell shape then to a left-skewed distribution. Also, note that the
maximum weight in each panel gradually decreases, and the occurrence of
maximum weight moves to the right as the value of t increases. We can see
that starting at the left panel at t = 0.833, the maximum weight reaches up to
0.314. At t = 2.5 the maximum reduces to 0.175, and the value of maximum
weight is 0.125 at £ = 5 as seen in the right panel.

To see this behavior in more detail, table 3.1 shows the weight values for
the three values of £. Under our conditions, we have 11 equally spaced points

(k/\,) in the estimation. As mentioned previously, the maximum weight at
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Valuesofk

0 1 2 3 4 5 6 7 8 9 10

Equally spaced points: /A,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.9 4.0 4.5 5.0

Weight function

wl, (t=0833,3n)

0.189 0.314 0.262 0.145 0.060 0.020 0.005 0.001 2.7e-4 5.le-5 8.5e-6

wly (t=25,7)

0.006 0.033 0.084 0.140 0.175 0.175 0.146 0.104 0.065 0.036 0.018

wl, (t = 5.0,5\,,)

4.5e-5 4.5e-5 0.002 0.007 0.018 0.037 0.063 0.090 0.112 0.125 0.125

Table 3.1: Detailed information about the weight distributions with various ¢ (¢ = 1,
Thn =5, n=10).

t = 0.833 is 0.314. This maximum occurs when k/\, is in the neighborhood
of 0.833. Similarly, when t = 2.5, the maximum weight is achieved when &/ An
is in the same magnitude of ¢.

All values of S,(-) contribute to the estimation of S2(t) but with different
level of importance. The farther the points are from ¢, the lesser importance
is given to S,(-) at these points.

The behavior of the weights when t increases can possibly creste over-
smoothing. The continuous reduction of the weight as ¢ increases may alienate
the contribution of each Sn(-) in the estimation of SO(t) and consequently

generate oversmoothed results, particularly at the right tail region.
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In fear of oversmoothing, we should use the smoothing parameter ¢ to
control the level of smoothing. The figure 3.2 shows the effect of ¢ on the
weight distributions. The graphs on the horizontal lines represent the effect
of ¢ on the distribution while ¢ remains the same. The graphs on the vertical
columns display the impact of changing c on the weight distributions while ¢
is fixed.

We observe, for a given ¢, that the increase of c shifts the distributions to
the right and reduces the individual weight values. This behavior is common
among all values of t. It also appears that the effects of ¢ generates similar
behaviors on the weights as the effect of ¢.

The figure 3.3 further expands the effect of ¢ on the weight distributions,
even beyond the largest order statistic.

On each panel, the systematic reduction of the weight distribution is ob-
served as c increases. Even though this reduction appears less significant in
the tail region (t > T, = 5) compared to lower values of ¢, we are still able
to observe the effect of the smoothing parameter.

The variation of the weights in the tail makes the adjustment of the thick-
ness in tail possible. In some situations, it might be quite useful to have a
set of estimates corresponding to different ¢. Those estimates can highlight
different aspects in the structure of the data. However, the presentation and
interpretation of such curves are quite subjective. Thus, it is necessary to

evaluate an approxpriate value of c.
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Figure 3.2: Variation of the weight distributions with various t and ¢ (T, = 5, n = 10).
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3.2.1 Effect of ¢ on the Smooth Estimator

To get a feel for the Chaubey and Sen S9(t) estimator, let’s consider its es-
timation with different population distributions. For this study, we choose
random samples from the Exponential(1) because of its thin right tail, the
Gamma(1,4) and Weibull(1,4) for their moderate tails and the Lognormal(0,1)
for its thick tail. Figures 3.4 to 3.7 illustrate the estimated 59(t) with ¢ =
{0.25,0,5,1.0,1.5,2.0,2.5,3.0,4.0} and n. = 10 for these random samples.

Exponential(1),n=10

<
. - ¢=025 -~ ©=2
- =05 -~ 0=25
---e=1 c=3
— c=15 --- c=4
@ 4
o
£ o |
g o
k] .
°
é <
%) [=]
N
<
==
o

05 1.0 1.5

Figure 3.4: Chaubey and Sen smoothed survival function estimations for the Exponen-
tial(1) sample.
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Gamma(1,4),n=10

1.0
1

[13.]
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Figure 3.5: Chaubey and Sen smoothed survival function estimations for the Gamma(l,4)
sample.

Welbull(1,4),n=10
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Figure 3.6: Chaubey and Sen smoothed survival function estimations for the Weibull(1,4)
sample.
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Lognormal( 0,1),n =10

0.6 0.8 1.0
1

Survival estimates

0.4

0.0

1.0 1.5 2.0 25 3.0 35

Figure 3.7: Chaubey and Sen smoothed survival function estimations for the Lognor-
mal(0,1) sample.

In all random samples, the thickness of the tail gradually becomes thinner
as c increases. The increase in c shifts the weight distributions toward right
and reduces the weight values. As a result, only few larger order statistics will
contribute to the estimate S9(t). Consequently, the tail will have a propensity
to lower. As seen in the previous section, the effect of ¢ diminishes as ¢ becomes
larger. In particular, when c is larger than 2.5, the change in the tail is quite
small. This may indicates that ¢ may not be so effective beyond certain values.

The range of the estimates derived from the various c at the tail (t = Tp.n)
seems to be wide enough to cover the true tail thickness. This brings the
question of what could be the best choice of c. The following sections present

some techniques for obtaining a reasonable value of c.
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3.3 Optimum Value of c

The choice of ¢ is crucial for the smooth estimator $%(t). The qualitative
behavior of the estimator described in the last section highlights the need for
finding an optimum c in a more systematic approach. Mainly, we have to use
a strategy that helps minimizing oversmoothing and yet provides a smooth
estimation of the empirical survival function.

In this study, we adopt a global measure estimate for finding an optimum

value of the smoothing parameter c.

3.3.1 Mean Squared Error

The basic approach considered here is to apply a global measure of closeness
between S%(-) and S,(-). This methodology has the advantage of not focusing
on particular region of the function. Rather it emphasizes on the overall
appropriateness of the smooth estimates.

We propose to find the value of ¢ which minimizes the mean square differ-

ence of the smooth estimator and the empirical survival function.

i (52 (t:) — Sn (tz‘))2

MSE, ;mp.(c) = -

(3.20)

Clearly, the function M SE,n, (c) is not a smooth function of ¢ since Sy, (-) is
a step function. Therefore, we must use a numerical search algorithm to obtain
the value of ¢ that minimizes MSE,,, (c). To achieve reasonable accuracy,
we consider a sequence of 500 sub-intervals of ¢ in ]0,U] where U is dependent
of the sample size. As seen before, the maximum k is derived from cn. If
the sample size and c are large, then k will be very large. Consequently, the
portion of the Poisson weights (/\t)k /k! may overflow. For this reason, ¢ should
be restricted up to certain value U in practical application.

Using our foregoing samples, we evaluate the smooth function for each of



3.3 Optimum Value of c 32
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MSE
0.00 0.10 020 0.30

MSE
0.00 0.10 0.20 0.30

1 |} l | t

-—

1 1 | I

0 1 2 3 4 0 1 2 3 4
C C
Optimal : C = 3.992 , MSE = 0.0047 Optimal : C = 2.472, MSE = 0.004
Welbull(1,4),n=10 Lognormal(0,1),n=10
- (=]
[} M
g S
N -]
8 ] 3 S -
= :‘2 - = .
© e
T S
8 - 8 -
o | I I | i [~} I | ] 1 I
0 1 2 3 4 0 1 2 3 4
(o] C
Ogptimal : C=3.176 , MSE = 0.0041 Optimal : C = 2.752 , MSE = 0.0037

Figure 3.8: Typical optimal search path of the smoothing parameter c. Each panel indi-
cates for the optimal ¢ along with the corresponding M SFEep,;. (c) of the running samples.

the sub-intervals with c in ]0,4]. The value of U was set to 4 to enable the use
of the maximum spectrum for ¢ of the distributions. Figures 3.8 shows typical
searching paths of c. It is clear that MSE(c) decreases with as c increases
and it appears that the minimum M SE values lie in the region with ¢ greater
then 1.0 in all cases.

The table 3.2 summarizes the investigation of the optimum c value for
different sample sizes. It appears that the Gamma sample in general has the
smallest values of optimum c among the distributions. The M SE(c) diminishes

significantly as n increases in all samples except the Lognormal in which the
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MSE seems to remain constant.

33

Summary
Exponential(1) Gamma(1,4)

n c¢ MSE() ¢ MSE(c)
10 3.992 0.0046 2.472  0.0040
15 3.808 0.0027 3.216  0.0019
20 3.776 0.0012 3.352  0.0013
30 3.776  0.0006 3.824  0.0008

Weibull(1,4) Lognormal(0,1)
n ¢ MSE(c) ¢  MSE(c)
10 3.176  0.0040 2772 0.0037
15 3.864 0.0023 3.792  0.0016
20 3.688 0.0019 3.944 0.0018
30 3.864 0.0011 3.968 0.0017

Table 3.2: Summary of optimum c values.

Continuing with our random samples, figure 3.9 to 3.12 display the estima-

tor SO(t) at optimum c with sample sizes n = 10, 15,20 and 30. At optimum

¢, the smooth estimator in general appears to be in accordance with Sp(-);

smoothing the bumps and valleys of the S,(-). Their closeness is even more

apparent as n increases.
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3.3.2 General Model for Optimum c

The computational effort required by the search algorithm of an optimum
value of ¢ could be time consuming when the sample size becomes very large.
For this reason, we investigate an approximate method to obtain the optimum
value of ¢ with less effort.

To proceed, twenty five samples of sizes n = 10(5)50(10)100 are considered.
For each sample, the mean squared error algorithm is applied. The figure 3.13
illustrates the possible relation between the optimum c values and the sample
sizes. The variation in the optimum c is wider when n is small. This is because
smaller n allows using higher values of c¢. It appears that a polynomial model
may be suitable. A tentative modeling process has been performed, using

polynomial regression in 1/n to obtain a general expression of the form of

c(n) =Bo+%+-§-§-+...+%, (3.21)

where p is any positive integer.
Table 3.3 contains the coefficients of such models applied to the four run-
ning distributions. It is interesting to observe that the coefficients values
among the distribution models are similar in magnitude. In fact, we may

postulate the formula as

3.5497 —8.1581e03 + 7.7560e04  2.6235€05

~ —~ — (3.22)

c(n) = —1.6085 +

The coefficients were obtained by computing an overall model for all the
distributions together. The figure 3.14 gives a visual representation of the
model. The above formula seems appropriate for the populations considered
in this thesis. However, it provides ¢mly crude estimates of optimum smoothing
parameter ¢ when time and resource are limited, and it may not be appropriate

for other distributions.
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Coefficient values of the polynomial models

Exponential(1)
Bo B, B, Bs B,
-1.6609 3.6322¢02 -8.6074e03 8.5657e04 -3.0586e05

Gamma(1,4)
Bo B1 B2 B3 B4
-1.7124  3.6925¢02 -8.7907e03 8.7221e04 -3.0987¢05

Weibull(1,4)
Bo B, B, Bs B,
“1.5211 3.4236e02 -7.5976e03 6.8722¢04 -2.1765¢05

Lognormal(0,1)
Bo B1 B2 Bs B4
-1.5397 3.4502¢02 -7.6368¢03 6.8639¢04 -2.1604e05

Table 3.3: This table contains the coefficient values of the polynomial of degree 4 created
for each distributions.
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Chapter 4

Statistical Properties of S\ (t)

4.1 Introduction

In this chapter, we investigate the statistical properties of the untruncated
estimator S°(¢) using simulations. In particular, we apply Monte Carlo and
Bootstrap simulations to obtain estimates of the bias and the variance. We
also investigate the construction of confidence intervals for S9(t) estimates.
Another important aspect investigated in this chapter is the tail behavior of
the smooth estimator.

For simulations, we selected the Exponential, Gamma, Weibull and Log-
normal. These families are known to generate a variety of shapes of distribu-
tions with non-negative support. Therefore they provide a broad spectrum of
choices for the properties to be studied.

Section 4.2 presents a strategy to assess the oversmoothing in tails. In

section 4.3, we study the appropriateness of severa! confidence intervals for

SO(t).
4.1.1 Monte Carlo Simulation

The sampling distribution of a statistic 6 can be considered as the distribution

of the values of that statistic calculated from an infinite number of random

40



4.1 Introduction 41

samples of size n for a given population. Monte Carlo simulation takes this
concept literally, building an estimate of the sampling distribution by draw-
ing a large number of samples of size n randomly from a population, and
calculating the statistic for each of these samples.

For our simulation study, we draw R samples each of size n from Exponen-
tial(1), Gamma(1,4), Weibull(1,4) and Lognormal(1) distributions. For each
of the samples we calculate S0(t) at optimum c. To help the comparison of
the results, three t values are chosen to correspond to S(t) = 0.9, S(t) = 0.5
and S(t) = 0.1 for all distributions.

The Monte Carlo S9(t) estimates are calculated for each trial, and the

summary statistics are computed as following;:

mean = S9(t) = Zf: [Sgg)]i, (4.1)
min = mm{[ (t)]i}, for i = {1,2, .., R}, (4.2)
maz = max{[ (t)] }, fori={1,2,.., R}, (4.3)

1/2

se={3Y [50 t)] XR: = R-1) (4.5)
j=1

i=1

We start with R = 1,000 random samples drawn from our four populations.
The sample sizes investigated are n = 10, 15, 20, and 30. The summary
statistics over the 1,000 estimates are reported in Tables 4.1 and 4.2.

As seen in the tables, the results indicate that the averages of the S9(t) are
in general positively biased for the Exponential, Gamma and Weibull samples.
The Lognormal samples seem to have negative biases for all n when £ is small

(t = 0.2776).
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The standard errors seem to be lower with small values of ¢ and remain
relatively constant from the midrange t to the tail. In fact, the errors on
average reduce slightly in the tail. Asymptotically, the standard errors of all
distributions reduce significantly and present similar estimates, in particular
when { increases.

It appears clearly that the Exponential, Gamma and Weibull sample results
are comparable in their biases and standard errors. The Lognormal samples
show higher biases and standard errors among all distributions. It is a known
fact that the Lognormal distribution has a heavy tail. Thus we should expect
more variability in its tail than in the other distributions.

We should stress that the values of the biases are significantly large in
the tail area, but more importantly when n is small. Although we observe a
constant reduction in the bias values as n increases, all values remain positive.

The frequency distributions and normality plots of the figures 4.1 to 4.16
illustrate the variability of the estimates. As it may be seen, the distributions
are right skewed when ¢ is small, nearly symmetric in the mid ¢, and left
skewed when t if large. These patterns could be explained partly by the
positive biases of S’g(t) and the lower and the upper bound of the survival
function. In addition, the propensity of the smooth estimator to lift up the
tail result in higher values of S9(t) in this area, and thus more estimates are

expected to be above the theoretical survival probabilities.
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Monte Carlo Simulations
So(t)

n t S(t) mean Dbias se min  max

Exponential(1)

10 0.1054 0.9 0.9226 0.0270 0.0287 0.7565 0.9882
0.6931 0.5 0.5955 0.0921 0.1053 0.1663 0.8337
2.3026 0.1 0.1860 0.0799 0.1006 0.0001 0.5079

15 0.1054 0.9 09173 0.0214 0.0265 0.7405 0.9813
0.6931 0.5 0.5732 0.0743 0.0886 0.1830 0.7983
2.3026 0.1 0.1644 0.0642 0.0779 0.0001 0.4115

20 0.1054 0.9 09142 0.0173 0.0248 0.7952 0.9894
0.6931 0.5 0.5623 0.0618 0.0781 0.2980 0.7708
2.3026 0.1 0.1542 0.0536 0.0669 0.0063 0.3979

30 0.1054 0.9 0.9100 0.0109 0.0239 0.8011 0.9709
0.6931 0.5 0.5470 0.0463 0.0691 0.3155 0.7463
2.3026 0.1 0.1409 0.0403 0.0545 0.0071 0.3469

Lognormal(0,1)

10 0.2776 0.9 0.8729 -0.0227 0.0501 0.6505 0.9832
1.0000 0.5 0.6154 0.1213 0.1256 0.1855 0.9409
3.6022 0.1 0.2036 0.1013 0.1426 0.0001 0.8048

15 0.2776 0.9 0.8698 -0.0271 0.0417 0.6925 0.9740
1.0000 0.5 0.6042 0.1034 0.1013 0.2051 0.9097
3.6022 0.1 0.1868 0.0835 0.1099 9.7e-5 0.7136

20 0.2776 0.9 0.8671 -0.0308 0.0358 0.7022 0.9702
1.0000 0.5 0.5942 0.0943 0.0854 0.2882 0.8970
3.6022 0.1 0.1755 0.0712 0.0907 0.0015 0.6785

30 0.2776 09 0.8647 -0.0338 0.0310 0.7623 0.9579
1.0000 0.5 0.5807 0.0803 0.0710 0.3687 0.8568
3.6022 0.1 0.1593 0.0556 0.0698 0.0064 0.5757

Table 4.1: Estimates of $%(t) obtained from the Monte Carlo simulations of the Exponen-
tial(1) and Lognormal(0,1) random samples (trials = 1,000).
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Monte Carlo Simulations
S4(t)

n t S(t) mean Dbias se min max

Gamma(1,4)

10 0.0263 0.9 0.9207 0.0204 0.0292 0.7156 0.9886
0.1733 0.5 0.5869 0.0869 0.1072 0.0666 0.8084
0.5756 0.1 0.1806 0.0797 0.1012 2.5e-6 0.4748

15 0.0263 09 09169 0.0143 0.0263 0.7816 0.9861
0.1733 0.5 0.5721 0.0699 0.0897 0.2241 0.8284
0.5756 0.1 0.1652 0.0623 0.0804 0.0002 0.4247

20 0.0263 0.9 0.9148 0.0148 0.0250 0.8037 0.9813
0.1733 0.5 0.5633 0.0594 0.0787 0.3023 0.7912
0.5756 0.1 0.1558 0.0533 0.0678 0.0092 0.3916

30 0.0263 0.9 09105 0.0093 0.0237 0.7968 0.9711
0.1733 0.5 0.5473 0.0452 0.0668 0.3256 0.7300
0.5756 0.1 0.1428 0.0397 0.0534 0.0041 0.3079

Weibull(1,4)

10 04214 09 09232 0.0215 0.0280 0.7487 0.9837
27726 0.5 0.5944 0.0902 0.1054 0.1435 0.8419
9.2103 0.1 0.1853 0.0893 0.1025 8.8e-5 0.4897

15 04214 09 09179 0.0175 0.0260 0.8143 0.9891
27726 0.5 0.5758 0.0719 0.0890 0.2524 0.8396
9.2103 0.1 0.1680 0.0612 0.0805 0.0007 0.4263

20 0.4214 09 0.9152 0.0153 0.0250 0.8180 0.9781
27726 0.5 0.5636 0.0607 0.0790 0.3112 0.7651
9.2103 0.1 0.1555 0.0507 0.0667 0.0017 0.3447

30 04214 09 09113 0.0123 0.0232 0.8308 0.9736
2.7726 0.5 0.5483 0.0461 0.0668 0.3210 0.7425
9.2103 0.1 0.1417 0.0378 0.0534 0.0068 0.3200

Table 4.2: Estimates of 52(t) obtained from the Monte Carlo simulations of the
Gamma(1,4) and Weibull(1,4) random samples (trials = 1,000).



4.1 Introduction

150
100

~BBERYE
2888
o8

@ —~

8_‘/ °:/ ;-

s ] w 7

- < o

1 © |

o 1 o T o

5 T @ ST o TTTTY
30 8 -3 0 3 -3 0 3
1= 0.1054 t=0.6931 t=2.3026
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Figure 4.10: Monte Carlo distributions
for 1,000 replicates Weibull(1,4) samples
(n = 15). The solid lines in each histogram
marks the simulation means.
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Figure 4.13: Monte Carlo distribution
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4.1.2 Bootstrap Simulation

The main disadvantage of the Monte Carlo simulation is that it requires the
knowledge of the underlying distribution. In practice, one has a sample on
hand and does not normally know which distribution the sample comes from.
Thus, Monte Carlo simulation can not be performed properly in such a situa-
tion. However, in Bootstrap simulation it is possible.

The Bootstrap simulation was introduced by Efron (1979) as a computer-
based method for estimating the standard error of a statistic 6. It has the
advantage of being completely automatic. The Bootstrap estimate of standard
error requires no theoretical calculations, and it is available no matter how
mathematically complicated the statistic g may be.

The basic Bootstrap approach is to treat the sample as if it were the pop-
ulation, and then to apply Monte Carlo simulation sampling to generate an
empirical estimate of the statistic’s sampling distribution. This is accom-
plished by drawing a large number of resamples of size n from the original
sample with random replacement. Although each resample will have the same
number of elements as the original sample, through replacement resampling,
each resample could have some of the original data points represented more
than once, and some not represented at all. Therefore, each of these resamples
will likely be slightly and randomly different from the original sample.

The Bootstrap algorithm, described next, is a computational way of ob-

taining good approximations of the bias and the standard error.

Bootstrap Algorithm:

(i) Evaluate S%(t) for a given sample.

(ii) Select B independent Bootstrap samples, each consisting of n data values

drawn with replacement from the original sample.
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(iii) Compute the smooth estimator $9(t) for each bootstrap sample.

(iv) Compute the bias and standard error of the smooth estimator of the

original sample as

6=3%), and 6= [s}g(t)] ) (4.6)
1
The bootstrap bias and standard errors formulas are defined as
(@) g Dl
bias = E (o ) b= = 5.(0), (4.7)
. 1/2
5 {ér p L1 }2
i=1 ] B
se = (4.8)

(B-1)

Note that when bootstrapping, the original sample should be the empir-

ical survival function and not the smooth function itself.

The practical magnitude of the number of resampling B depends on the
tests to be run on the data. Typically, B should be ranging from 50 to 200 to
estimate the standard errors of 9, and at least 1,000 to estimate the confidence
intervals around 6 (see Efron & Tibshirani (1986) ).

We start by using the 1,000 replicates generated in the Monte Carlo sim-
ulation. For each of the sample, we perform a Bootstrap simulation to com-
pute estimates of the smooth estimator S2(t), its bias and its standard error.
Each of the Bootstrap simulation uses B = 999 as the number of resamples.
The Bootstrap smooth estimates Sg (t) are evaluated at the optimum c of the
original replicates. The frequency distributions of the 999 resamples are the
bootstrapped estimat s of the sampling distribution of each S9(t).

The tables 4.3 and 4.4 list the averages of the smooth estimates, biases
and standard errors obtained from the Bootstrap simulation over the 1,000

replicates.
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Comparison results reveal that the Bootstrap biases for all distributions
are in general lower than those of the Monte Carlo simulation. However, the
biases in Bootstrap simulation are somewhat higher when ¢ is smallest. We
observe also that the Bootstrap standard errors exhibit lower values than the
Monte Carlo on all distributions with the exception when the values of ¢ are

smaller.
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Simulations Summary

52

Sa(t)

Monte Carlo

Bootstrap

S(it) 89 bias se

So

n

bias

se

10

0.1054
0.6931
2.3026

0.9
0.5
0.1

Exponential(1)
0.9226 0.0270 0.0287
0.5955 0.0921 0.1053
0.1860 0.0799 0.1006

0.9205
0.5825
0.1714

0.0272
0.0779
0.0657

0.0297
0.0962
0.0718

15

0.1054
0.6931
2.3026

0.9
0.5
0.1

0.9173 0.0214 0.0265
0.5732 0.0743 0.0886
0.1644 0.0642 0.0779

0.9153
0.5639
0.1530

0.0217
0.0674
0.0540

0.0271
0.0823
0.0615

20

0.1054
0.6931
2.3026

0.9
0.5
0.1

0.9142 0.0173 0.0248
0.5623 0.0618 0.0781
0.1542 0.0536 0.0669

0.9128
0.5558
0.1463

0.0175
0.0566
0.0459

0.0256
0.0753
0.0566

30

0.1054
0.6931
2.3026

0.9
0.5
0.1

0.9100 0.0109 0.0239
0.5470 0.0463 0.0691
0.1409 0.0403 0.0545

0.9085
0.5408
0.1353

0.0118
0.0443
0.0349

0.0244
0.0656
0.0473

10

0.2776
1.0000
3.6022

0.9
0.5
0.1

Lognormal(0,1)
0.8729 -0.0227 0.0501
0.6154 0.1213 0.1256
0.2036 0.1013 0.1426

0.8714
0.5962
0.1791

-0.0219
0.1010
0.0771

0.0430
0.0963
0.0827

15

0.2776
1.0000
3.6022

0.9
0.5
0.1

0.8698 -0.0271 0.0417
0.6042 0.1034 0.1013
0.1868 0.0835 0.1099

0.8691
0.5901
0.1673

-0.0257
0.0916
0.0652

0.0368
0.0796
0.0720

20

0.2776
1.0000
3.6022

0.9
0.5
0.1

0.8671 -0.0308 0.0358
0.5942 0.0943 0.0854
0.1755 0.0712 0.0907

0.8673
0.5822
0.1598

-0.0288
0.0836
0.0555

0.0339
0.0733
0.0670

30

0.2776
1.0000
3.6022

0.9
0.5
0.1

0.8647 -0.0338 .0310
0.5807 0.0803 0.0710
0.1593 0.0556 0.0698

0.8650
0.5698
0.1475

-0.0311
0.0736
0.0442

0.0302
0.0627
0.0552

Table 4.3: Estimates of §%(t) obtained from the Bootstrap simulations of Exponential(1)
and Lognormal(0,1) random samples (R = 1,000, B = 999).
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Simulations Summary

Sa(t)

Monte Carlo

Bootstrap

bias

se

=

bias

se

10

0.0263
0.1733
0.5756

0.9
0.5
0.1

0.9207
0.5869
0.1806

Gamma(1,4)

0.0204
0.0869
0.0797

0.0292
0.1072
0.1012

0.9187
0.5739
0.1657

0.0206
0.0727
0.0651

0.0302
0.0962
0.0713

15

0.0263
0.1733
0.5756

0.9
0.5
0.1

0.9169
0.5721
0.1652

0.0143
0.0699
0.0623

0.0263
0.0897
0.0804

0.9157
0.5640
0.1545

0.0150
0.0640
0.0529

0.0267
0.0810
0.0610

20

0.0263
0.1733
0.5756

0.9
0.5
0.1

0.9148
0.5633
0.1558

0.0148
0.0594
0.0533

0.0250
0.0787
0.0678

0.9137
0.5576
0.1478

0.0122
0.0550
0.0454

0.0255
0.0747
0.0569

30

0.0263
0.1733
0.5756

0.9
0.5
0.1

0.9105
0.5473
0.1428

0.0093
0.0452
0.0397

0.0237
0.0668
0.0534

0.9089
0.5411
0.1369

0.0100
0.0432
0.0341

0.0242
0.0654
0.0480

10

0.4214
2.7726
9.2103

0.9
0.5
0.1

0.9232
0.5944
0.1853

Weibull(1,4)

0.0215
0.0902
0.0893

0.0280
0.1054
0.1025

0.9211
0.5811
0.1705

0.0216
0.0756
0.0649

0.0296
0.0959
0.0719

15

0.4214
2.7726
9.2103

0.9
0.5
0.1

0.9179
0.5758
0.1680

0.0175
0.0719
0.0612

0.0260
0.0890
0.0805

0.9164
0.5674
0.1573

0.0180
0.0656
0.0517

0.0266
0.0814
0.0617

20

0.4214
2.7726
9.2103

0.9
0.5
0.1

0.9152
0.5636
0.1555

0.0153
0.0607
0.0507

0.0250
0.0790
0.0667

0.9139
0.5578
0.1477

0.0156
0.0562
0.0432

0.0255
0.0747
0.0568

30

0.4214
2.7726
9.2103

0.9
0.5
0.1

0.9113
0.5483
0.1417

0.0123
0.0461
0.0378

0.0232
0.0668
0.0534

0.£996
0.5424
0.1361

0.0130
0.0443
0.0326

0.0243
0.0654
0.0476
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Table 4.4: Estimates of §2(t) obtained from the Bootstrap simulations of Gamma(1,4) and
Weibull(1,4) random samples (R = 1,000, B = 999).
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4.2 Oversmoothing Assessment

The discussion of the previous sections draws attention to the inherent bias of
the smooth estimator S2(t) in comparison to the empirical survival function.
Although the positive bias could be a good indication that the estimator does
not oversmooth, we still need to extend the examination of the estimator in
this regard.

For a numerical assessment of this problem, we consider comparing the
estimator SO(t) against S,(t) and against the exact s.f. S(t). To proceed,
we estimate the probability that S0(t) is lower than S(t). Then, we compute
the probability that S,(t) is lower than S(t). Finally, we evaluate the prob-
ability that S9(t) is lower than S,(t). Here we know that we can compute
the exact probability Pr[S,(t) < S(t)] by using the binomial distribution, but
Pr[S2(t) < S(t)] can not be computed exactly. The latter probability can be
approximated using the central limit theorem, however we have decided to use
simulation to compute both probabilities.

We again use the 1,000 replicates of the Monte Carlo simulation to perform
our calculations. Tables 4.5 and 4.6 display the resulting probabilities for each
of the distribution. Since the oversmoothing problem occurs mainly in the tail
of a distribution, we emphasize our analysis in this region.

We observe on each distribution that the Pr[S3(t) < S(t)] is systematically
lower than the Pr[S,(t) < S(t)] for all values of n. A similar observation
can be made in the midrange of the distributions. For instance, with the
Exponential distribution (n = 10), 21.7% of the samples had their estimate
of S9(t) below S(t) at ¢ = 2.3036. In comparison, this number is 23.5% for
S,(t). Moreover, this condition seems to accentuate as n in .reases. With n
= 30, the probability Pr[SS(t) < S(t)] is 23.6% versus 40.3% for Sy (t). This

behavior is common to all the distributions.
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Another point to make is the probability that SO(t) is lower than S,(t). For
all the distribution, the probability of 59(t) being below S,(t) is considerably
low; it is less than 9% throughout.

The biases revealed in the previous sections 4.1.1 and 4.1.2 is the average
of the differences between S2(t) and S, (¢). These large positive biases indicate
that the smooth estimator is most likely above the empirical survival function.
This is confirm by the low probability that S9(¢) is lower than S, (t).

The empirical survival function attains zero value beyond the largest order
statistic; however, the smooth estimator assigns some mass in this region so
that it will continue to have above zero values. Knowing that the mass of
Sg(t) remains sufficiently high beyond the largest order statistic of the sample
combined with all the above observations allows us to claim that the smooth
estimator does not oversmooth in the tail, and this is true regardless of the

underlying distribution.
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Oversmoothing Assessment

nt P[sg(t)<S(t)] P [Sa(t) < S(t)] P[ég(t)<sn(t)]

Exponential(1)
10 0.1054 0.180 0.289 0.391
10 0.6931 0.174 0.377 0.198
10 2.3026 0.217 0.235 0.071
15 0.1054 0.210 0.465 0.435
15 0.6931 0.194 0.500 0.173
15 2.3026 0.218 0.552 0.067
20 0.1054 0.267 0.346 0.419
20 0.6931 0.207 0.411 0.161
20 2.3026 0.211 0.390 0.070
30 0.1054 0.316 0.370 0.409
30  0.6931 0.239 0.431 0.161
30 2.3026 0.236 0.403 0.070
Lognormal(0,1)
10 0.2776 0.682 0.275 0.632
10 1.0000 0.186 0.398 0.155
10 3.6022 0.278 0.342 0.041
15 0.2776 0.768 0.463 0.667
15 1.0000 0.152 0.506 0.143
15 3.6022 0.236 0.527 0.045
20 0.2776 0.822 0.309 0.709
20 1.0000 0.139 0.436 0.117
20 3.6022 0.191 0.364 0.044
30  0.2776 0.878 0.363 0.759
30 1.0000 0.130 0.439 0.088
30 3.6022 0.192 0.369 0.050

Table 4.5: Comparison between S2(t) and S, (t) in term of oversmoothing.
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Oversmoothing Assessment

n ot p[ég(t)<5(t)] P [Sa(t) < S(t)] P[ég(t)<s,,(t)]

Gamma(1,4)
10 0.0263 0.198 0.269 0.431
10 0.1733 0.197 0.385 0.195
10 0.5756 0.241 0.340 0.064
15  0.0263 0.228 0.440 0.457
15 0.1733 0.201 0.504 0.173
15 0.5756 0.225 0.537 0.080
20 0.0263 0.259 0.307 0.465
20 0.1733 0.217 0.419 0.182
20 0.5756 0.218 0.383 0.074
30 0.0263 0.305 0.345 0.438
30  0.1733 0.234 0.422 0.153
30 0.5756 0.213 0.385 0.084

Weibull(1,4)

10 0.4214 0.179 0.271 0.419
10 2.7726 0.171 0.376 0.210
10  9.2103 0.244 0.333 0.067
15 04214 0.218 0.455 0.456
15 2.7726 0.189 0.489 0.169
15 9.2103 0.219 0.508 0.083
20 0.4214 0.246 0.323 0.427
20 2.7726 0.203 0.410 0.156
20 9.2103 0.214 0.356 0.087
30 04214 0.283 0.362 0.410
30 2.7726 0.220 0.402 0.160
30 9.2103 0.224 0.380 0.079

Table 4.6: Comparison between S2(¢) and S,(t) in term of oversmoothing.
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4.3 Confidence Intervals

The shapes of the simulation distributions approximate the shapes of the sam-
pling distributions. So we can use the simulation distribution in place of the
sampling distribution to calculate the confidence intervals. We consider four
different types of confidence intervals; Normal, Binomial, Basic and Percentile.
The Normal and Binomial intervals were applied to the Monte Carlo simula-

tion, and the Basic and Percentile methods were used in Bootstrap simulation.

4.3.1 Approximate Confidence Intervals

4.3.1.1 Monte Carlo: Normal Confidence Intervals

Let X be the number of ;s > ¢. It follows that X is distributed as a Binomial

random variable
X ~ Binom with p = S(t). (4.9)

The corresponding expectation and variance are given by
EX]=np o*[X]=np(l1-p), (4.10)
subsequently
B[S0 =80) o[S,0)=-SOL-S®. (1)

Thus S, (t) is unbiased and it’s variance is of order O (). Furthermore it can

be shown that S,(t) is a (weakly) consistent estimator of S(t) at each ¢ as

VA [Sa(t) - ()] —— N(0,S(®)[L - SH)D. (4.12)

In addition if the difference between S,(¢) and S(t) is considered not only for

a fixed t but simultaneously for all ¢, namely

D, = sup|S,(t) — S(t)| L 5 0asn— oo, (4.13)
t
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a stronger consistency property can be obtained.
Using the above results and referring to Chaubey and Sen (1996), we can
establish, for a specified value of ¢, an approximate 100(1-a)% confidence

interval for S(t) as
{S’g(t) — Z(1-0/2)5€50(.) gg(t) + z(l_a/g)segg(_)] , (4.14)

where z(1-q/2) is the 1 — a/2 quantile of the standard normal distribution and

Sego() = \/ s€g0(y) [1 — Sego (t)] /n is an estimate of the standard error of 5(t).

This is known as the Standard Normal confidence intervals.

4.3.1.2 Monte Carlo: Binomial Confidence Intervals

A 100(1-0)% confidence interval for $9(t) based on Binomial sampling can be

defined as

~ -1
=1 |14 (1+ Sg(t))F(l—a/2;2n—2:z(1—gg(t))+2,2n(1—§2(t))) @)
i n(1 - 53(t))
- oy )
uel=1— |1+ nSn(t) . (4.16)
F(l—a/2;2n(l—5'2(t))+2,2n—2n(1—§2(t)))

where F(1-a/24, 12) is the 100(1-c/2) quantile of the F distribution with (11, 1)
degrees of freedom.

The above formulas are called the ezact Binomial-Based confidence interval.
This confidence interval is conservative in the sense that the actual coverage

probability is at least equal to 1 — a.

4.3.1.3 Bootstrap: Basic Confidence Intervals

Suppose that T estimates a scalar # and that we want an interval with left

and right tail errors both equal to a. For simplicity we assume that T is
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continuous. If the quantiles of T — @ are denoted by a,, then
Pr(T—6<a,)=a=Pr(T-02a_,). (4.17)

Rewriting the events T — 0 < ay and T — 0 > a;o as § > T — a, and

6 < T — a;—q respectively, we see that the 1 — 2a equi-tailed interval has limits
éa =f-— (25 PN él—a =t— (178 (418)

However, this ideal solution rarely applies because the distribution of T — «
is usually unknown. This leads us to consider approximate methods, most of
which are based on approximating the quantiles of T — 6.

Starting at the general confidence interval Eq.(4.18), we can estimate the quan-
tiles a, and a;_o by the corresponding quantiles of T* — ¢. Using the Monte
Carlo estimates of quantiles for T—8, an equi-tailed (1—2«) confidence interval

will have limits
t = (t{arn)-a)) — O T~ (E{Rr1)e) = 1) (4.19)
This is based on the probability implication
Prla<T—-a<b=1-20 = Pr(T-b<6<T-a)=1-20. (420)
The above leads to the Basic confidence intervals for 6
b =2t — tgs1)1-a)) D1oa = 2t — t{(R41)a)- (4.21)

To apply Eq.(4.21) exactly, it is necessary that (R 4+ 1)a is an integer. A
simple method that works well for approximately normal estimators is linear

interpolation on the normal quantile scale. In this case, we define

o Ha) — &7 (&)

* g% R+1 * * -
Hirrve) = o 3oLy T (Rkl)(t(k+1)_t(k))’ k=[(R+1)a] (422)
¥ -

Clearly such interpolations fail if k =0, R or R+ 1.
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4.3.1.4 Bootstrap: Percentile Confidence Intervals

Suppose now that there is some unknown transformation of T, say U = h(T),
which has a symmetric distribution. Imagine that we knew h and calculated a
1—2a confidence interval for ¢ = h(6) by applying the basic Bootstrap method
Eq.(4.21), except that we first use the symmetry to write a, = —ai_, in the
basic equation Eq.(4.18) as it applies to U = h(T'). This would mean that in
applying Eq.(4.18) we would take u — uf 5. 1)(;_q) instead of ufg. ) — v and
u— uZ‘( R+1)a) instead of u’("( R+1)(1—a)) — % tO estimate the o and 1 — « quantiles

of U. This swap would change the confidence interval limits Eq.(4.21) to

uZ(RJrl)a)’ u’(k(R+1)(1-a)), (4.23)

whose transformation back to the 8 scale is

tz(R+1)a)a t,(k(R+1)(1-a)) (4.24)

Remarkably this 1-2a interval for # does not involve h at all, and so can
be computed without knowing h. This interval Eq.(4.24) is known as the

Bootstrap Percentile interval.

4.3.2 Numerical Study of the Confidence Intervals

We reuse the results of the Monte Carlo and Bootstrap simulations to perform
the computation of the confidence intervals. The comparison is made for
coverage, average interval width, and interval symmetry. Coverage is measured
as the percentage of intervals (out of 1000) that include the true value of
S(t). Depending on the distribution, different values of ¢ are used to satisfy
S(t = {0.1,0.5,0.9}). The procedure for constructing 95% confidence intervals
should produce actual coverage close to 95%.

Average interval width is considered as our main measurement since we are

interested in the smallest interval that achieves nominal coverage. Symmetry
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is a desirable, but not crucial, property for confidence intervals. We already
noticed that our sampling distributions have asymmetric shapes. Therefore,
we should expect this to influence our results.

We define symmetry as the degree to which the confidence interval tends
to miss the true value of S(t) equally from the right and from the left. Ideally,
a 95% confidence interval would not include the true value of S(t) due to
underestimation 2.5% (%MR) of the time and, likewise, due to overestimation
2.5% (%ML) of the time. Here, overestimation is taken to indicate that the
confidence interval lies entirely below (i.e. includes only values less than) the
true value of the parameter.

Tables 4.7 to 4.16 display the coverage performance results, and figures
4.17 to 4.28 display the distribution of the interval Widthé using box plots of
the 1,000 confidence intervals of the simulation samples.

We should mention that our interest here is again on the tail region of the
survival curves. Therefore, the analysis will be focused on the mid and higher
values of t.

At S(t) = 0.5, it appears that the Binomial intervals display the largest
width values among the intervals and in all distributions with only one excep-
tion. When n = 10, the Normal interval widths exceed the Binomial intervals.
Both Binomial and Normal intervals result in high coverage values, and very
low probabilities (<2.5%) in their %ML and %MR . This should not be surpris-
ing for the Binomial intervals since it tends to be more conservative in term
of coverage probability. The Lognormal distribution for larger sample sizes
seems to be the only distribution that display coverages around the nominal
value of 95% with the Binomial interval.

The Percentile and Basic intervals display very poor coverage probabilities.
The %ML are way too high, and the %MR are too low on all distributions.

Also, we notice that these intervals have the smallest widths and share the
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same magnitude. The percentage of missed of these intervals can be due to
the combination of narrow interval widths and the positive biases of the smooth
estimator.

The plots reveal that all distributions have a certain quantity of outliers.
which can affect their percentages of missed. They illustrate also that the me-
dian of the all intervals widths stay near the middle of the width distributions.
This is an indication that the distributions are reasonably symmetric.

At S(t) = 0.1, the coverage percentages seem to be around the nominal 95%
for the Binomial and Normal intervals on all distributions, but the Lognormal
samples have lower coverage percentages for the same intervals. In contrast
to S(t) = 0.5, the %ML for the Binomial intervals are too high. The %ML
is about twice its nominal value while the %MR is always zero. The possible
reason for this is the high positive bias values seen in the tail probably which
makes the %ML higher than it should.

Once again, the Percentile and Basic intervals continue to display very
low coverages and high %ML. Unlike S(t) = 0.5, the %MR are very high
at S(t) = 0.1. The Lognormal distribution shows considerably high %ML
and %MR on all intervals. This is probably because of the thickness of the
Lognormal tail which is fatter than the other distributions.

The box plots display clearly that the median on all the width distributions
and for all samples seem to increase as n increases. The effect of lifting the
tail up of the smooth estimator appears to create skewed distributions of 59(%)

in the tails.

In summary, we observe that the Percentile and Basic methods tend to
have smaller confidence intervals that produce very low coverage probabilities.
The Percentile intervals are widely used due to its simplicity but it is not
very efficient in non-parametric problems. For the Percentile method to work

well, it would be necessary that T is being unbiased on the transformed scale
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so that the swap of quantile estimates is correct. As mentioned in Davison
(1997), this swap does not usually happen. Also, the method carries the defect
of the Basic Bootstrap method. This defect can be observed as the shape of the
distribution of T changes as the sampling distribution change from F to F even
after transformation. In particular, the implied symmetrizing transformation
often will not be quite the same as the variance-stabilizing transformation.
This may be the cause of the poor performance of the Percentile method.

The Normal and Binomial intervals, on the other hand, seems to produce
somewhat better confidence intervals. Although too conservative, both inter-
vals improve asymptotically and produce good intervals in the tail region for
the Exponential, Weibull and Gamma distributions.

The Binomial confidence intervals seem to be a good choice for approximate
confidence intervals for S%(¢) at this point. It may give wider limits, but its
percentage of misses are relatively low which can be significantly important in

practice.
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4.4 Conclusion

In this thesis, the appropriateness of the Chaubey and Sen untruncated ver-
sion smooth estimator has been investigated numerically. The Monte Carlo
and Bootstrap simulations reveal similar results in term of biases and standard
errors. This establishes a ground for using Bootstrap in practical studies to
analyze and investigate some of the statistical properties of the smooth estima-
tor S%(t). It also has been observed that the smooth estimator was suitable for
many kinds of population data. Whichever the underlying distribution either
Exponential, Gamma, Weibull or Lognormal, each having very distinct shape
from the others, the biases and standard errors are in the same magnitude.

We have searched a generalized model for the optimum c¢ which remarkably
reduces the calculation effort and time to find suitable estimates.

The oversmoothing problem seems to be well handled by the smoothing
parameter c. It has been seen that under optimum c, the probability of SO(t)
being less than S(t) is quite low. Therefore, it is reasonable to state that there
should not be a concern for the fear of oversmoothing with the untruncated
smooth estimator.

For future research, investigations shall be conducted to establish better
confidence intervals with better coverage properties. It is clear from our re-
sults that the usual methods do not perform well. The asymmetric shape of
the sampling distributions greatly influenced the outcome, particularly in the
Bootstrap confidence intervals which resulted in very poor coverages.

One of the major problems of nonparametric Bootstrap is the discreteness
of the Bootstrap distribution. For instance, for the sample mean, there are
only (22=1) possii.c values that Z* can take on. Fortunately as n — oo this
number increases quite rapidly so that the sampling distribution becomes like

a continuous distribution. However, in some cases, even letting n be large will
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not cause a distribution that works well. Therefore, we suggest that other
types of intervals such as Bootstrap studentized, studentized (log), BC,, etc
should be included in a simulation study to compare their performance.
Another research area could be initiated to use different set of weights
patterns in the estimation of S9(t). For instance, in Chaubey and Sen (2002),
Gamma weights were used in the context of the Hille’s theorem (1948). It may

be possible to explore other types of weight functions.
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Exponential(1) Confidence Intervals Coverages
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S(t = 0.1053506) = 0.90, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 99.8 0.2486 0.2 0.0
Exact binomial 100.0 0.4142 0.0 0.0
Bootstrap percentile 80.2 0.1152 19.1 0.7
Basic 66.9 0.1047 32.8 0.3
15 Normal theory 99.7 0.2249 0.3 0.0
Exact binomial 100.0 0.3349 0.0 0.0
Bootstrap percentile 85.9 0.1072 13.5 0.6
Basic 76.7 0.1029 22.7 0.6
20 Normal theory 99.6 0.2101 0.4 0.0
Exact binomial 100.0 0.2881 0.0 0.0
Bootstrap percentile 88.1 0.1016 11.0 0.9
Basic 79.5 0.0998 20.2 0.3
30 Normal theory 99.9 0.1919 0.1 0.0
Exact binomial 100.0 0.2336 0.0 0.0
Bootstrap percentile 91.1 0.0969 8.1 0.8
Basic 83.1 0.0964 16.2 0.7

Table 4.7: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Exponential(1) random samples whit S(t;) = 0.9. The Normal and Binomial C.I. seem to
overestimate the coverage percentages while the other two seems to produce underestimated

results.
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Exponential(1) Confidence Intervals Coverages
S(t = 0.6931472) = 0.50, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 97.8 0.6222 2.0 0.2
Exact binomial 100.0 0.6054 0.0 0.0
Bootstrap percentile 79.4 0.3812 18.4 2.2
Basic 64.5 0.3753 34.6 0.9
15 Normal theory 974 0.5100 2.2 0.4
Exact binomial 99.5 0.5107 0.3 0.2
Bootstrap percentile 82.7 0.3229 16.0 1.3
Basic 71.4 0.3224 27.6 1.0
20 Normal theory 97.7 0.4409 2.3 0.0
Exact binomial 99.7 0.4481 0.3 0.0
Bootstrap percentile 85.0 0.2974 13.9 1.1
Basic 76.3 0.2974 234 0.3
30 Normal theory 96.9 0.3592 3.0 0.1
Exact binomial 99.1 0.3693 0.9 0.0
Bootstrap percentile 89.4 0.2632 9.9 0.7
Basic 82.0 0.2632 17.7 0.3

Table 4.8: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Exponential(1) random samples whit S(¢;) = 0.5. The Normal and Binomial C.I. seem to
overestimate the coverage percentages while the other two seems to produce underestimated
results.
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Exponential(1) Confidence Intervals Coverages
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S(t = 2.3025851) = 0.10, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 95.8 0.4179 1.5 2.7
Exact binomial 95.4 0.5035 4.6 0.0
Bootstrap percentile 81.5 0.2710 10.3 8.2
Basic 66.1 0.2703 25.7 8.2
15 Normal theory 96.5 0.3407 1.3 2.2
Exact binomial 96.0 0.4014 4.0 0.0
Bootstrap percentile 84.7 0.2354 8.0 7.3
Basic 73.8 0.2346 18.7 7.5
20 Normal theory 96.1 0.2969 1.7 2.2
Exact binomial 95.5 0.3411 4.5 0.0
Bootstrap percentile 88.9 0.2237 5.9 5.2
Basic 79.6 0.2224 14.3 6.1
30 Normal theory 96.9 0.2412 1.7 14
Exact binomial 95.0 0.2691 5.0 0.0
Bootstrap percentile 87.8 0.1890 7.8 4.4
Basic 85.1 0.1886 9.7 5.2

Table 4.9: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Exponential(1) random samples whit S(t;) = 0.1. The Normal and Binomial C.I. seem to
overestimate the coverage percentages while the other two seems to produce underestimated

results.
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Gamma(1,4) Confidence Intervals Coverages
S(t = 0.02634013) = 0.90, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 99.9 0.2527 0.1 0.0
Exact binomial 100.0 0.4165 0.0 0.0
Bootstrap percentile 82.2 0.1175 17.2 0.6
Basic 68.8 0.1074 30.5 0.7
15 Normal theory 99.9 0.2255 0.1 0.0
Exact binomial 100.0 0.3353 0.0 0.0
Bootstrap percentile 83.8 0.1050 15.6 0.6
Basic 75.1 0.1016 24.5 0.4
20 Normal theory 99.8 0.2091 0.2 0.0
Exact binomial 100.0 0.2874 0.0 0.0
Bootstrap percentile 86.8 0.1009 12.5 0.7
Basic 78.3 0.0987 21.3 0.4
30 Normal theory 99.7 0.1912 0.3 0.0
Exact binomial 100.0 0.2332 0.0 0.0
Bootstrap percentile 90.8 0.0963 8.4 0.8
Basic 85.7 0.0960 14.1 0.2

Table 4.10: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Gamma(1,4) random samples whit S(¢;) = 0.9. The Normal and Binomial C.I. seem to
overestimate the coverage percentages while the other two seems to produce underestimated
results.
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Gamma(1,4) Confidence Intervals Coverages
S(t = 0.17328680) = 0.50, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 98.1 0.6243 1.7 0.2
Exact binomial 99.8 0.6066 0.0 0.2
Bootstrap percentile 81.6 0.3831 16.2 2.2
Basic 66.1 0.3784 32.7 1.2
15 Normal theory 97.9 0.5100 1.8 0.3
Exact binomial 99.8 0.5107 0.2 0.0
Bootstrap percentile 81.9 0.3179 16.1 2.0
Basic 71.3 0.3178 27.5 1.2
20 Normal theory 97.1 0.4407 2.9 0.0
Exact binomial 99.3 0.4479 0.7 0.0
Bootstrap percentile 85.1 0.2952 14.3 0.6
Basic 74.5 0.2952 25.4 0.1
30 Normal theory 96.6 0.3594 3.3 0.1
Exact binomial 98.7 0.3695 1.3 0.0
Bootstrap percentile 90.4 0.2627 8.9 0.7
Basic 83.7 0.2627 15.9 0.4

Table 4.11: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Gamma(1,4) random samples whit S(t;) = 0.5. The Normal and Binomial C.I. seem to
overestimate the coverage percentages while the other two seems to produce underestimated
results.
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S(t = 0.57564627) = 0.10, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 95.6 0.4090 14 3.0
Exact binomial 95.3 0.4988 4.7 0.0
Bootstrap percentile 80.5 0.2678 8.5 11.0
Basic 65.8 0.2669 23.8 10.4
15 Normal theory 95.2 0.3405 1.5 3.3
Exact binomial 95.1 0.4013 4.9 0.0
Bootstrap percentile 83.7 0.2355 8.2 8.1
Basic 72.4 0.2347 194 8.2
20 Normal theory 96.8 0.2983 1.5 1.7
Exact binomial 94.5 0.3421 5.9 0.0
Bootstrap percentile 87.6 0.2246 6.5 59
Basic 79.1 0.2233 14.5 6.4
30 Normal theory 86.5 0.2433 1.7 1.8
Exact binomial 94.5 0.2705 5.5 0.0
Bootstrap percentile 89.5 0.1923 7.1 34
Basic 87.0 0.1921 8.8 4.2

Table 4.12: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Gamma(1,4) random samples whit S(t;) = 0.1. The Normal and Binomial C.I. seem to
overestimate the coverage percentages while the other two seems to produce underestimated

results.
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S(t = 0.4214421) = 0.90, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width

10 Normal theory 99.9 0.2475 0.1 0.0
Exact binomial 100.0 0.4136 0.0 0.0
Bootstrap percentile 91.9 0.1150 17.8 0.3
Basic 65.2 0.1047 34.4 0.4
15 Normal theory 99.5 0.2237 0.5 0.0
Exact binomial 100.0 0.3342 0.0 0.0
Bootstrap percentile 96.3 0.1053 13.2 0.5
Basic 74.8 0.1014 24.8 0.4
20 Normal theory 99.8 0.2085 0.2 0.0
Exact binomial 100.0 0.2871 0.0 0.0
Bootstrap percentile 88.1 0.1011 11.2 0.7
Basic 77.9 0.0991 21.7 04
30 Normal theory 99.3 0.1901 0.7 0.0
. Exact binomial 100.0 0.2325 0.0 0.0
Bootstrap percentile 92.6 0.0966 7.0 0.4
Basic 85.0 0.0962 15.0 0.0

Table 4.13: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Weibull(1,4) random samples whit S(¢;) = 0.9. The Normal and Binomial C.I. seem to
overestimate the coverage percentages while the other two seems to produce underestimated

results.
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S(t = 2.7725887) = 0.50, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 97.8 0.6224 2.0 0.2
Exact binomial 99.9 0.6056 0.0 0.1
Bootstrap percentile 79.7 0.3794 18.9 14
Basic 63.4 0.3739 35.3 1.3
15 Normal theory 97.6 0.5095 2.3 0.1
Exact binomial 99.7 0.5103 0.3 0.0
Bootstrap percentile 82.9 0.3197 15.7 14
Basic 72.0 0.3194 27.4 0.6
20 Normal theory 97.6 0.4406 24 0.0
Exact binomial 99.4 0.4479 0.6 0.0
Bootstrap percentile 84.8 0.2953 14.0 1.2
Basic 75.3 0.2953 24.0 0.7
30 Normal theory 97.1 0.3593 2.8 0.1
Exact binomial 98.6 0.3695 14 0.0
Bootstrap percentile 91.0 0.2626 8.3 0.7
Basic 83.5 0.2626 16.2 0.3

Table 4.14: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Weibull(1,4) random samples whit S(¢;) = 0.5. The Normal and Binomial C.I. seem to
overestimate the coverage percentages while the other two seems to produce underestimated

results.
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S(t = 9.2103404) = 0.10, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 96.4 0.4159 1.5 2.1
Exact binomial 94.4 0.5022 5.6 0.0
Bootstrap percentile 81.2 0.2711 9.7 9.1
Basic 64.8 0.2702 26.4 8.8
15 Normal theory 96.0 0.3444 1.5 2.5
Exact binomial 95.0 0.4035 5.0 0.0
Bootstrap percentile 83.8 0.2377 8.9 7.3
Basic 7.7 0.2369 20.9 7.4
20 Normal theory 96.9 0.2983 1.2 1.9
Exact binomial 94.5 0.3421 5.5 0.0
Bootstrap percentile 88.3 0.2247 6.7 5.0
Basic 79.7 0.2234 14.6 5.7
30 Normal theory 96.9 0.2420 14 1.7
Exact binomial 95.4 0.2697 4.6 0.0
Bootstrap percentile 88.7 0.1904 6.9 4.4
Basic 86.5 0.1900 8.7 4.8

Table 4.15: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Weibull(1,4) random samples whit S(¢;) = 0.1. The Normal and Binomial C.I. seem to
overestimate the coverage percentages while the other two seems to produce underestimated

results.
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S(t = 0.2776062) = 0.90, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 100.0 0.3391 0.0 0.0
Exact binomial 100.0 0.4651 0.0 0.0
Bootstrap percentile 88.8 0.1665 1.1 10.1
Basic 77.6 0.1509 9.8 12.6
15 Normal theory 100.0 0.3029 0.0 0.0
Exact binomial 99.9 0.3812 0.0 0.1
Bootstrap percentile 87.5 0.1442 0.9 11.6
Basic 78.7 0.1378 6.2 15.1
20 Normal theory 100.0 0.2815 0.0 0.0
Exact binomial 99.9 0.3308 0.0 0.1
Bootstrap percentile 82.5 0.1324 0.6 16.9
Basic 80.9 0.1289 34 15.7
30 Normal theory 100.0 0.2442 0.0 0.0
Exact binomial 99.8 0.2690 0.0 0.2
Bootstrap percentile 79.9 0.1207 0.1 20.0
Basic 81.5 0.1198 1.2 17.3

Table 4.16: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Lognormal(0,1) random samples whit S(¢;) = 0.9. The Normal and Binomial C.I. seem to
overestimate the coverage percentages while the other two seems to produce underestimated

results.
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Lognormal(0,1) Confidence Intervals Coverages
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S(t = 1.0000000) = 0.50, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 90.6 0.6024 9.2 0.2
Exact binomial 98.3 0.5958 1.7 0.0
Bootstrap percentile 76.9 0.3723 21.0 2.1
Basic 52.8 0.3477 46.0 1.2
15 Normal theory 90.4 0.5004 9.3 0.3
Exact binomial 96.7 0.5034 3.2 0.1
Bootstrap percentile 76.9 0.3092 21.5 1.6
Basic 53.8 0.3015 45.3 0.9
20 Normal theory 90.5 0.4349 9.4 0.1
Exact binomial 95.9 0.4430 4.1 0.0
Bootstrap percentile 79.4 0.2877 20.0 0.6
Basic 55.7 0.2842 43.9 0.4
30 Normal theory 90.3 0.3557 9.7 0.0
Exact binomial 95.0 0.3662 5.0 0.0
Bootstrap percentile 81.1 0.2506 184 0.5
Basic 60.6 0.2493 39.3 0.1

Table 4.17: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Lognormal(0,1) random samples whit S(t;) = 0.5. The Normal, Percentile and Basic C.I
seem to underestimate the coverage percentages while the Binomial seems to produce slightly
overestimated results.
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Lognormal(0,1) Confidence Intervals Coverages
S(t = 3.6022245) = 0.10, Theoretical coverage = 0.95

Sample Method Actual Average %ML %MR
sizes coverage width
10 Normal theory 87.7 0.4162 7.2 5.1
Exact binomial 86.1 0.5016 13.9 0.0
Bootstrap percentile 80.2 0.2953 5.3 14.5
Basic 52.9 0.2898 32.0 15.1
15 Normal theory 88.2 0.3521 7.8 4.0
Exact binomial 86.0 0.4090 14.0 0.0
Bootstrap percentile 85.0 0.2668 5.7 9.3
Basic 60.3 0.2651 29.6 10.1
20 Normal theory 89.2 0.3101 7.7 3.1
Exact binomial 86.3 0.3508 13.7 0.0
Bootstrap percentile 87.6 0.2555 6.4 6.0
Basic 68.8 0.2532 24.5 6.7
30 Normal theory 90.0 0.2528 8.0 2.0
Exact binomial 86.5 0.2786 13.5 0.0
Bootstrap percentile 89.0 0.2152 7.6 3.4
Basic 75.5 0.2145 20.6 3.9

Table 4.18: Monte Carlo and Bootstrap confidence intervals summary statistics for the
Lognormal(0,1) random samples whit S(¢;) = 0.1. All confidence intervals seem to under-
estimate the coverage percentages.
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Figure 4.17: Box plots of confidence interval widths of the Exponential(1) samples with
t = 0.1054 and S(¢t) = 0.9. Normal and Binomial are generated from the Monte Carlo
simulations. The Percentile and Basic are generated from the Bootstrap simulations.
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Figure 4.18: Box plots of confidence interval widths of the Exponential(1) samples with
t = 0.6931 and 5(t) = 0.5. Normal and Binomial are generated from the Monte Carlo
simulations. The .-ercentile and Basic are generated from the Bootstrap simulations.
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Figure 4.19: Box plots of confidence interval widths of the Exponential(1) samples with

t = 2.3026 and S(t)

= 0.1

Normal and Binomial are generated from the Monte Carlo

simulations. The Percentile and Basic are generated from the Bootstrap simulations.
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Figure 4.20: Box plots of confidence interval widths of the Gamma(1,4) samples with
¢t = 0.0263 and S(t) = 0.9. Normal nd Binomial are generated from the Monte Carlo
simulations. The Percentile and Basic are generated from the Bootstrap simulations.
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Figure 4.21: Box plots of confidence interval widths of the Gamma(1,4) samples with
t = 0.1733 and S(t) = 0.5. Normal and Binomit' are generated from the Monte Carlo

simulations. The Percentile and Basic are generatea from the Bootstrap simulations.
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Figure 4.22: Box plots of confidence interval widths of the Gamma(1,4) samples with
t = 0.5756 and S(t) = 0.1. Normal and Binomial are gen¢: ited from the Monte Carlo
simulations. The Percentile and Basic are generated from the Bootstrap simulations.
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Figure 4.23: Box plots of confidence interval widths of the Weibull(1,4) samples with
= 0.4214 and S(¢) = 0.9. Normal and Binomial are generated from the Monte Carlo
simulations. The Percentile and Basic are generated from the Bootstrap s.mulations.
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Figure 4.24: Box plots of confidence interval widths of the Weibull(1,4) samples with
t = 2.7725 and S(¢) = 0.5. Normal and Binomial are generated from the Monte Carlo
simulations. The Percentile and Basic are generated from the Bootstrap simulations.
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Figure 4.25: Box plots of confidence interval widths of the Weibull(1,4) samples with
t = 9.2103 and S(t) = 0.1. Normal and Binomial are generated from the Monte Carlo

simulations. The Percentile and Basic are generated from the Bootstrap simulations.
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Figure 4.26: Box plots of confidence interval widths of the Lognormal(0,1) samples with
¢t = 0.2776 and S(t) = 0.9. Normal and Binomial are generated from the Monte Carlo
simulations. The Percentile and Basic are generated from the Bootstrap simulations.
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Figure 4.27: Box plots of confidence interval widths of the Lognormal(0,1) samples with
t = 1.000 and S(t) = 0.5. Normal and Binomial are generated from the Monte Carlo
simulations. The Percentile and Basic are generated from the Bootstrap simulations.
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Figure 4.28: Box plots of confidence interval widths of the Lognormal(0,1) samples with
¢t = 3.6022 and S(t) = 0.1. Normal and Binomial are generated from the Monte Carlo
simulations. The Percentile and Basic are generated from the Bootstrap simulations.
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