New Approaches for the Design of Low-Complexity

Radix-Based FFT and FHT Algorithms

Saad Bouguezel

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montreal, Quebec, Canada

September 2004

© Saad Bouguezel, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-96958-4
Our file Notre référence
ISBN: 0-612-96958-4

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

New Approaches for the Design of Low-Complexity
Radix-Based FFT and FHT Algorithms

Saad Bouguezel, Ph. D.

Concordia University, 2004

The discrete Fourier transform (DFT) and discrete Hartley transform (DHT) play a cru-
cial role in one- and multi-dimensional digital signal processing applications. Traditionally,
the main concern in the design of fast Fourier transform (FFT) and fast Hartley transform
(FHT) algorithms has been the reduction of the arithmetic complexity. However, with the
recent advances in the digital technology and the present demands of such transforms in
low-power high-performance real-time applications, a more comprehensive treatment of
the computational and structural complexities must be considered in the design of the al-
gorithms. The objective of this thesis is to design one- and multi-dimensional FFT and
FHT algorithms that address the problem of reducing the number of arithmetic operations,
data transfers, address generations, and twiddle factor evaluations or accesses to the lookup
table, while possessing features such as simplicity, regularity, modularity, easy indexing
scheme, and butterfly-style and in-place computations that are highly desirable character-
istics for software or hardware implementations of the algorithms. To achieve these ob-
jecti?es, radix-based algorithms are proposed by introducing new decomposition strategies,

efficient index mappings, and by an appropriate use of the Kronecker product.

iii

A general decomposition method, which is based on the radix-2 approach, valid for
any dimension and applicable to both the DHT and DFT, and which significantly reduces
the complexity of the FHT algorithms, is proposed. This method enables us to develop
multidimensional FHT and FFT algorithms. A new approach for computing the DFT and
DHT using a unified structure is proposed by establishing a close relationship, valid for any
dimension, between the radix-2 based FHT and FFT algorithms.

An efficient method, based on the radix-2 approach, for pruning output samples of a
1-D or 2-D DFT is proposed by grouping in its 1-D or 2-D FFT algorithm all the stages
that involve unnecessary operations into a single stage and by introducing a new recursive
technique for the computations required in the resulting stage.

A technique is presented to improve the performance of the radix-4, radix-8 and radix-
16 FFT algorithms in terms of the number of twiddle factor evaluations or accesses to the
lookup table without any increase in the computational or structural complexities of the
algorithms. |

In order to take advantage of the lowest structural complexity provided by the radix-2
approach and reduced computational complexity offered by the radix-4 approach, a tech-
nique suitable for combining these two approaches is introduced in order to develop effi-
cient 3-D FFT and FHT algorithms.

A radix-2/8 approach for reducing the complexity in the computation of the 1-D DFT
and DHT of lengths N = g x 2™ is proposed by appropriately mixing the radix-2 and radix-8
indefc maps. This approach is extended to 2-D and 3-D DFTs. It is shown that the proposed
radix-2/8 approach is superior to all the other existing radix-based approaches in providing

low-complexity 1-D, 2-D and 3-D FFT, and 1-D FHT algorithms.

v

To my loving family

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude and heartfelt thanks to
my thesis supervisors, Dr. M. Omair Ahmad and Dr. M.N.S. Swamy, for their invaluable
guidance and mentorship throughout the span of this research. Without their insight, in-
spiration, valuable advice and encouragement, it would not have been possible to complete
this thesis. I feel honored and privileged for having the opportunity to work under their
supervision.

It is my great pleasure to thank my friends and colleagues at the Center for Signal
Processing and Communications, Department of Electrical and Computer Engineering, for
the many fruitful discussions which we have had during the course of this work.

I owe special thanks to my family members for their encouragement, love, patience and
sacrifices. Their support and understanding has contributed a great deal for completing this
work.

Finally, I gratefully acknowledge the support from the Natural Sciences and Engineer-
ing Research Council of Canada, through research grants awarded to Dr. M. Omair Ahmad

and Dr. M.N.S. Swamy.

vi

Contents

1 Introduction " 1
1. General e 1
1.2 Structural and Computational Complexities 2
1.3 Scope and Organization of the Thesis 4

2 Radix-2 Approach for the Computation of DFT and DHT of Arbitrary Dimen-

sions 7
21 Introduction 7
2.2 Proposed M-D Radix-(2x2x..x2) DIF FHT Algorithm 9
2.3 Proposed M-D Radix-(2x2x..x2) DIT FHT Algorithm 21

2.4 Computational Complexities of the Proposed M-D Radix-(2 X2 X ... x2)
FHT Algorithms 27
2.5 Relationship Between the Structures of the M-D Radix-(2 x 2 x ... x 2) Complex-
Valued FFT Algorithms and the Proposed M-D Radix-(2x2x...x2)
FHT Algorithms L, 34
251 An M-D Radix-(2x2x...x2) DIF Complex-Valued FFT
Algorithm oL 35
252 An M-D Radix-(2x2x..x2) DIT Complex-Valued FFT

vii

Output-Pruning of DFTs

3.1 Imtroduction

3.2 Output-Pruningof the I-DDFT
3.2.1 Proposed Radix-2 DIT FFT Pruning Algorithm
3.2.2 Proposed Radix-2 DIF FFT Pruning Algorithm

3.3 Output-Pruning of the 2-DDFT
3.3.1 Proposed Radix-(2 x 2) DIT FFT Pruning Algorithm

34 Summary ...

Higher Radix Approach for the Computation of DFTs

41 Imtroduction
4.2 AnImproved Radix-4 DIF FFT Algorithm
4.3 AnImproved Radix-8 DIF FFT Algorithm
44 AnImproved Radix-16 DIF FFT Algorithm

45 Summary ...

Radix-2/4 Approach for the Computation of 3-D DFT and DHT
51 Imtroduction
5.2 Radix-2/4 Approach for the Computationof 3-DDFT
5.2.1 Proposed Radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FFT Algorithm . .
522 Computational Complexity
5.2.2.1 Arithmetic Complexity
5222 DataTransfers
5223 TwiddleFactors
5.3 Radix-2/4 Approach for the Computationof 3-DDHT
5.3.1 Proposed Radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FHT Algorithm

viii

44
44
45
47
33
54
55
62

63
63
64
66
71
76

77
77
78
79
87
87
92
94
95
97

'5.3.2 Proposed Radix-(2 x 2 x 2)/(4 x 4 x 4) DIT FHT Algorithm 107

5.3.3 Computational Complexity 114

5.3.3.1 Arithmetic Complexity 115

5332 DataTransfers 121

5333 Twiddlefactors 122

54 Summary e e 124

6 A New radix-2/8 Approach 125
6.1 Introduction 125

6.2 Radix-2/8 Approach for the Computation of Length-g x 2™ 1-DDFT . . . 126

6.2.1 Proposed Radix-2/8 DIF FFT Algorithm. 127

6.2.2 Computational Complexity 138
6.2.2.1 Arithmetic Complexity 138

6222 DataTransfers 144

6.223 TwiddleFactors 146

6224 Example 149

6.3 Radix-2/8 Approach for the Computation of Length-g x 2™ [-D DHT . .. 150
6.3.1 Proposed Radix-2/8 DIF FHT Algorithm 151

6.3.2 Computational Complexity 168
6.3.2.1 Arithmetic Complexity 168

6322 DataTransfers 173

6323 TwiddleFactors 175

64 Summary e e 178

7 Extension of the Radix-2/8 Approach for the Computation of DFTs of Higher
Dimensions 179

7.1 Introduction e e e e e e e e e e, 179

ix

7.2 Proposed Radix-(2 x 2)/(8 x 8) DIF FFT Algorithm 181

7.2.1 Computational Complexity 190

7.2.1.1 Arithmetic Complexity 190

7212 DataTransfers 192

7213 TwiddleFactors 193

7.3 Proposed Radix-(2x2x2)/(8x8x8) DIF FFT Algorithm 195
7.3.1 Computational Complexity 202

7.3.1.1 Arithmetic Complexity 202

7312 DataTransfers 2006

73.1.3 TwiddleFactors 207

T4 Summary ... e 209

8 Conclusion 210
8.1 ConcludingRemarks 210

8.2 Scope for Further Investigation 214
References 216

List of Figures

2.1

22

23

24

25

6.1

General butterfly of the proposed 2-D DIF FHT algorithm, ¢; = cos (0k;),

si = sin (0k;), c12 = cos (0 (ky + k2)), s12 = sin (0 (k1 +k2)), 0 =21/N.. . . 17
General butterfly of the proposed 4-D DIF FHT algorithm, ¢; = cos (8k;),

s; = sin (6k;), ¢;; =cos (6 (k,- +kj)), sij =sin (6 (k,- +kj)), ciji =cos(0(k;+
kj+kp)), siji=sin (8 (ki-+k;+k;)), ci23a =cos (B (k1 +ka + k3 +ks)), 51234 =
sin(0 (ki +ky+ks+ke)), 0=20/N. . . oo 18
General butterfly of the proposed M-D DIF FHT algorithm, ¢; = cos (6k;),
s;=sin (0k;), ¢;; = cos (8 (k; +&;)), s;j =sin (6 (k; +k;)), cij.g =cos(0(k;+
ki+..t+ki)), sij.g=sin(0(ki+kj+...+k)), cij.in = cos(O(k; + k; +
otk K)), sijan = sin (8 (ki +kj+ ...+ +ky)), O =2m/N. 19
General butterfly of the proposed 4-D DIT FHT algorithm, ¢ = —1, ¢; =

cos (On;), s; = sin (Bn;), c;j = cos (8 (n; +n;)), sij =sin (6 (n; +nj)). cijt =

cos (8 (ni+nj+mn)), siji = sin (8 (n;+nj+m)), cizza = cos(0(ny +nz +
n3+ng)), 51234 =sin (0 (ny +np+n3+mg)),0=2n/N. 25
General butterfly of the proposed M-D DIT FHT algorithm, e = —1, ¢; =

cos (8n;), 5; = sin (Bn;), ¢;; = cos (0 (n; +n;)), sij=sin (0 (n;+n;)), ;.1 =

cos (8 (mj+nj+...+n)),s;j.1=sin (0 (nitnj+...+m)), cij.n =cos(8(n;+
nj+...+n+ng)), Sij.in = sin (6 (n,-+nj + .. Fny +nh)), 0=2n/N. .. 26

Xi

6.2
6.3
6.4
6.5
6.6
6.7
6.8

General butterfly of the proposed radix-2/8 FFT algorithm. 135

First stage of the proposed radix-2/8 FFT algorithm. 137
Decomposition of alength-2g DHT. 153
Decomposition of alength-4g DHT. 154
Decomposition of alength-8g DHT. 160
General butterfly of the proposed radix-2/8 FHT algorithm, 6 = 2ngk/N. . . 162

Decomposition scheme of the proposed radix-2/8 FHT algorithm. 167

Xii

List of Tables

2.1
22

23

3.1
32
5.1
52

5.3

54

Number of arithmetic operations required for the computation of the 4-D
DHT using the 4mult-2add scheme fors=0.
Number of non-trivial operations required for the computation of the 4-D
DHT using the 4mult-2add scheme
Number of non-trivial operations required for the computation of the 5-D

DHT using the 4mult-2addscheme

Computational complexities of the different algorithms in the computation
of a subset of output samples of the I-DDFT
Computational complexities of the different algorithms in the computation

of a subset of output samples of the 2-DDFT

Number of arithmetic operations required for the computation of the 3-D
DFT using the 4mult-2addscheme
Number of arithmetic operations required for the computation of the 3-D
DFT using the 3mult-3addscheme
Number of non-trivial operations required for the computation of the 3-D
DFT using the 4mult-2addscheme
Number of non-trivial operations required for the computation of the 3-D

DFT using the 3mult-3addscheme

Xiii

5.5
5.6

5.7
5.8
5.9
5.10
5.11

5.12
5.13

6.1
6.2

6.3
6.4

6.5

Comparison of the number of data transfers
Comparison of the number of twiddle factor evaluations or accesses to the
lookuptable
Number of arithmetic operations required for the computation of the 3-D
DHT using the 4mult-2addscheme
Number of arithmetic operations required for the computation of the 3-D
DHT using the 3mult-3addscheme
Number of non-trivial operations required for the computation of the 3-D
DHT using the 4mult-2addscheme
Number of non-trivial operations required for the computation of the 3-D
DHT using the 3mult-3addscheme
Number of non-trivial operations required for the computation of the 3-D
DHT using the 4mult-2addscheme
Comparison of the number of data transfers
Comparison of the number of twiddle factor evaluations or accesses to the

lookuptable

Arithmetic complexities of the 8¢-, 4g- and 2¢-point DFTs
Number of arithmetic operations required for the computation of the 1-D
DFT using the 3mult-3add scheme forg=1
Number of arithmetic operations required for the computation of the 1-D
DFT using the 4mult-2add scheme forg=1
Number of arithmetic operations required for the computation of the 1-D
DFT using the 4mult-2add scheme forg=3
Number of arithmetic operations required for the computation of the 1-D

DFT using the 3mult-3add scheme forg=3

Xiv

6.6 Number of arithmetic operations required for the computation of the 1-D
DFT using the 4mult-2add scheme forg=9
6.7 Number of arithmetic operations required for the computation of the 1-D

DFT using the 4mult-2add scheme forg=15

6.8 Number of multiplications and additions required by 3-, 9- and 15-point DFTs143

6.9 Comparison of the number of data transfers operations forg =1
6.10 Comparison of the number of twiddle factor evaluations or accesses to the
lookuptableforg=1.
6.11 Comparison of the number of twiddle factor evaluations or accesses to the
lookuptableforg=3.,
6.12 Comparison of the arithmetic complexities and twiddle factor requirements
for the proposed 2"- and 3 x 2™-point FFT algorithms
6.13 Number of arithmetic operations required for the computation of the 1-D
DHT forg=1

6.14 Number of arithmetic operations required for the computation of the 1-D

6.15 Number of arithmetic operations required for the computation of the 1-D
DHT forg=9.

6.16 Number of arithmetic operations required for the computation of the 1-D
DHTforg=15

6.17 Number of multiplications and additions required by 3-, 9- and 15-point
6.18 Comparison of the number of data transfer operations forg=1

6.19 Comparison of the number of twiddle factor evaluations or accesses to the

lookuptableforg=1.,

XV

6.20 Comparison of the number of twiddle factor evaluations or accesses to the

7.1

7.2

73

74

7.5

7.6

lookuptableforg=3.

Number of arithmetic operations required for the computation of the 2-D
DFT using the 3mult-3addscheme
Number of arithmetic operations required for the computation of the 2-D
DFT using the 4mult-2addscheme
Comparison of the number of data transfers, and twiddle factor evaluations
or accesses to the lookup table
Number of arithmetic operations required for the computation of the 3-D
DFT using the 3mult-3addscheme
Number of arithmetic operations required for the computation of the 3-D
DFT using the 4mult-2addscheme
Comparison of the number of data transfers, and twiddle factor evaluations

oraccessestothelookuptable

XVi

List of Abbreviations

3mult-3add Three-multiplication-three-addition scheme
4mult-2add Four-multiplication-two-addition scheme
A. Number of additions

Adds. Number of additions

DFT Discrete Fourier transform

DHT Discrete Hartley transform

DIF Decimation-in-frequency decomposition
DIT Decimation-in-time decomposition

FFT Fast Fourier transform

FHT Fast Hartley transform

M. Number of multiplications

M-D Multi-dimensional

Mults. Number of multiplications

RAM Random access memory

ROM Read only memory

VLSI Very large scale integration

Xvii

List of Symbols

Number of additions required in the computation of a length-g DHT

Number of additions required in the computation of a length-g DFT

Hadamard matrix of order L

Identity matrix of order L

Indices or variables for time (space) domain

Number of samples in the desired spectrum band

Number of dimensions in a sequence or transform

Number of multiplications required in the computation of a length-¢ DHT
Number of multiplications required in the computation of a length-g DFT
Number of multiplications required in the computation of a scaled length-g DHT
Number of multiplications required in the computation of a scaled length-g DFT
Number of samples in each dimension

Indices or variables for frequency domain

Null matrix

Kronecker product

Arbitrary or odd integer

Real-valued output sequence of a DHT

Real-valued input sequence of a DHT

Complex-valued output sequence of a DFT

Complex-valued input sequence of a DFT

XViii

Chapter 1

Introduction

1.1 General

The discrete Fourier transform (DFT) plays a central role in many applications such as
frequency-domain analysis and design of signals and systems in communications, image
processing, multi-dimensional digital signal processing, and in many other areas of science
and engineering [1], [2]. Since the discovery of the radix-2 fast Fourier transform (FFT)
algorithm by Cooley and Tukey in 1965 [3], intensive research efforts have been made by
several investigators resulting in a number of fast algorithms for the computation of the
one-dimensional (1-D) DFT [4]-[21] and the multi-dimensional (M-D) DFT [22]-[35]. All
these FFT algorithms have been derived specifically for computing complex-valued DFTs.

There are many practical applications that involve only real data. The direct use of
the qomplex—valued FFT algorithms in such applications is time consuming and memory
intensive. To overcome this problem, specific FFT algorithms have been derived to com-
pute real-valued DFTs [36]-[41]. An alternative solution is through the use of the discrete
Hartley transform (DHT) introduced by Bracewell in 1983 [42], which has now become an

important tool in image and signal processing. The main difference between the DHT and

the DFT is that the former is a real-to-real transform, whereas the latter is, in general, a
complex-to-complex transform. In other words, the kernel of the DHT is real, whereas that
of the DFT is complex. An important property of the DHT is that the forward and inverse
transforms have the same form except for the scaling factor. This property is also preserved
by the M-D DHT introduced by Buneman [43] and can be used as an alternative to the
M-D DFT for applications that involve real data. Almost all the approaches that have been
used for deriving complex-valued FFT algorithms have been applied to derive fast Hartley
transform (FHT) algorithms. Since the introduction of the FHT algorithm by Bracewell in
1984 [44], considerable research has been conducted resulting in a number of algorithms
for computing the 1-D DHT [45]-[57] and the M-D DHT [58]-[68]. It has been shown
in [45] that the structure of a real-valued FFT algorithm is complicated compared to that
of an FHT algorithm and, in general, the forward and inverse versions of the former are
completely different, which is not the case with the latter. Due to these drawbacks of the
real-valued FFT and due to the fact that the DHT is an efficient alternative to the DFT for
real-data applications, development of real-valued FFT algorithms is not attractive.

Until the nineties, the DFT and DHT have found their practical applications mainly in
those that involve 1-D and 2-D signals, thus motivating researchers to concentrate on 1-D
and 2-D transform algorithms. However, in recent years, there is also a growing interest in

applications that involve 3-D and 4-D DFTs [69]-[76].

1.2 Structural and Computational Complexities

As mentioned in Section 1.1, a large number of algorithms, based on a number of different
approaches, have been proposed in the literature for the computation of the DFT and DHT;
however, only a few of them are popular and widely used. One of the most interesting

approaches is that of Cooley-Tukey [3], which has been used to develop radix-2 [3], [10],

[21], [38], [41], [45], radix-4 [12], [45], radix-8 [4], [36], mixed radix {5], and vector radix
[22]-[24], [26], [32], [33], [58], [65], [66] transform algorithms. Although the arithmetic
complexities of these algorithms are not optimum, the algorithms have been found to be
more attractive for software and hardware implementations than all the other ones. This is
mainly due to their features of simplicity, regularity, modularity, easy indexing scheme, and
butterfly-style and in-place computations, which comprise the structural complexity of the
algorithms. The split-radix (or radix-2/4) approach introduced by Duhamel and Hollmann
in [11] has provided attractive algorithms for one [11], [17], [45], [56], [57] and higher
[29], [30], [39], [64] dimension transforms. These algorithms possess a good compromise
between the arithmetic and structural complexities. All the other approaches that have been
proposed so far are less popular than the radix-based ones, since the resulting algorithms
(61, {71, [91, [19], [25], [34], [35], [47], [48], [50], [511, [59], [61], [63], [67], [68] have
structures that are rather complicated. Consequently, the structural complexity is an impor-
tant factor that should be considered in the development of an efficient algorithm.

From the mid-sixties to the mid-eighties, the main concern of the researchers in this
areas was to optimize the number of multiplications [77]-[79], since the most costly opera-
tion in hardware or software implementation of an algorithm at that time was multiplication.
This led to algorithms requiring minimum number of multiplications [6], [7], [9], [25], and
any further reduction in the number of multiplications became very difficult. Due to the
rapid advances in the VLSI design and technology, the cost of a multiplication reduced
significantly and became comparable to that of an addition in many computer architec-
tures [80]-[84]. As a consequence, it became important to consider the optimization of the
number of arithmetic operations (multiplications + additions) rather than optimizing the
number of multiplications alone [11], [15], [19], {34], [38], [45], [47], {68], [85], [86]. Fur-
ther reduction in the number of arithmetic operations has become difficult, especially for

the case of 1-D transform algorithms. Due to the recent demands for the applications of the

DFT and DHT in wireless communication, radar and portable computation, the reduction
of other operations such as data transfers, address generations, and twiddle factor evalua-
tions or accesses to the lookup table has become significantly important. Such reductions
are also crucial in the design of low-power digital signal processors [87]-[97]. Therefore,
in addition to the structural complexity, the factors that should be considered to determine
the overall complexity of an algorithm must include the numbers of the 1) multiplications,
2) additions, 3) data transfers, 4) address generations, and 5) twiddle factor evaluations or
accesses to the lookup table. We shall, henceforth, refer to the complexity of these five
operations as computational complexity. To this date, no approach exists in the literature
that addresses the problem of simultaneously reducing the complexity of the above five
operations.

Recently, some attention has been given to reducing the number of twiddle factor ac-
cesses to the lookup table and address generations in the computation of the DFT [88], [89],
[91]-[96]. This reduction has been achieved at the implementation level by suitable modifi-
cations of the existing FFT algorithms. However, in general, these modifications introduce
additional complexity, and the improvements achieved are not that significant. In order to
achieve a significant reduction in the computational complexity, it is essential to focus on

this aspect at the algorithm design level itself.

1.3 Scope and Organization of the Thesis

The objective of this thesis is to devise techniques for the design of one- and multi-dimensional
FFT and FHT algorithms that address the problem of reducing their computational and
structural complexities. The emphasis is to introduce certain attributes in the algorithms at
the design level itself so that the feature of reduced complexity is naturally achieved when

the algorithms are implemented. The thesis is organized as follows.

Chapter 2 addresses the problem of reducing the complexity in the computation of the
DHT and DFT of arbitrary dimensions and introduces a general decomposition method for
these transforms by exploring the most popular approach, namely, the radix-2 approach,
and by using appropriate index mappings and the Kronecker product. This chapter also
introduces a new approach for a unified computation of the DHT and DFT.

There are many applications where a significant part of the output samples of a DFT are
not needed, for example, where only a narrow band of the spectrum is of interest. Chapter
3 considers this case and introduces an efficient method for pruning the output samples of
the 1-D and 2-D FFT algorithms that are based on the radix-2 approach.

Even though the radix-2 approach leads to algorithms having the lowest structural com-
plexities, the computational complexities of these algorithms are still higher than those
provided by a higher radix approach. Chapter 4 presents an efficient technique for improv-
ing the radix-4, radix-8, and radix-16 approaches for the computation of the DFT. This
is achieved by introducing new indices for some of the sub-sequences resulting from the
conventional decompositions in the radix-4, radix-8, and radix-16 FFT algorithms.

Algorithms requiring the lowest number of arithmetic operations have been obtained in
the 1-D case [11], [17], [45], [56], [57] by a simultaneous use of the radix-2 and radix-4
approaches, which has lead to the so-called radix-2/4 approach. This approach has been
exploited in developing effective algorithms for the computation of 2-D transforms [29],
[30],‘ [64]. However, this approach has not yet been exploited in the case of three or higher
dimensions. This is mainly due to the fact that the simultaneous use of the radix-2 and
radix-4 approaches in the case of higher dimensions is neither obvious nor straightforward.
This problem, for the 3-D case, is efficiently solved in Chapter 5 by introducing a new

decomposition strategy and appropriate mathematical tools.

Chapter 6 proposes a new approach that provides a substantial reduction in the number
of data transfers, address generations, and twiddle factor evaluations or accesses to the
lookup table in the computation of the DFT and DHT, while maintaining the lowest number
of arithmetic operations. This approach is based on an appropriate simultaneous use of the
radix-2 and radix-8 approaches, and provides a natural reduction in the number of these
operétions.

Chapter 7 proposes efficient 2-D and 3-D FFT algorithms by exploiting the approach
introduced in Chapter 6.

Finally, Chapter 8 concludes the thesis by highlighting the contributions made in this

investigation and suggesting some possible future research work.

Chapter 2

Radix-2 Approach for the Computation
of DFT and DHT of Arbitrary

Dimensions

2.1 Introduction

The growing interest in applications involving higher-dimension signals has spurred a great
deal of interest in the challenging problem of the computation of M-D DFT and DHT. Since
the M-D DFT is separable and the M-D DHT is not, the use of the existing approaches in
developing algorithms for fast computation of the former is much easier than for the case of
the latter. Two approaches that have been used for computing the M-D DFT have also been
applied to compute the M-D DHT. One is the conventional row-column decomposition ap-
proach, which requires matrix transposition operations and high computational complexity.
Another approach, based on polynomial transforms, provides FHT algorithms [67], [68]
with reduced arithmetic complexities at the expense of very complicated structures. Other

algorithms [59], [61], [63] that have been specifically proposed for the M-D DHT have also

complicated structures and, in general, are not suitable for software and hardware imple-
mentations. To cope with the problems of prohibitively large computational complexity and
the large volume of data for the computation of M-D DHT, there is a need to develop FHT
algorithms that are more efficient and valid for any dimension, possessing highly desirable
properties such as regularity, simplicity and in-place computation similar to the ones of the
existing M-D radix-(2 X 2 X ... x 2) complex-valued FFT algorithms [24], [26], [32].

The most regular and simple algorithm among the ones reported for the fast compu-
tation of the one-dimensional (1-D) DHT is the radix-2 FHT algorithm [45]. It has been
extended for the 2-D case using decimation-in-time (DIT) [58] and, recently, for the 3-D
case using DIT [65] as well as decimation-in-frequency (DIF) [66]. These FHT algorithms
have been specifically derived for the DHT of a particular dimension and their extension to
other higher dimensions is neither obvious nor straightforward. However, it is desirable to
genefalize the radix-2 approach for computing the DHT of any dimension.

In this chapter, the problem of reducing the complexity in the computation of the DHT
of an arbitrary dimension is addressed, and efficient M-D radix-(2 x 2 x ... x 2) DIF and
DIT FHT algorithms are proposed [98], [99] by exploring the radix-2 approach and making
use of an appropriate index mapping and the Kronecker product. The resulting butterflies
of the proposed algorithms are characterized by simple closed-form expressions that allow
easy implementations of these algorithms for any dimension.

Since the 1-D radix-2 complex-valued DIT and DIF FFT algorithms and their exten-
sions to the M-D case are very popular and frequently used in practice for the computation
of DFTs, it is highly desirable to investigate all the existing hardware and software imple-
mentations of these FFT algorithms in the computation of the M-D DHTs. By reformulating
the existing M-D radix-(2 x 2 x ... x 2) complex-valued DIF and DIT FFT algorithms using
an approach similar to that used for deriving the proposed M-D radix-(2 x 2 x ... x 2) DIF

and DIT FHT algorithms, a close relationship between the former and the latter algorithms,

valid for any dimension, is established in this chapter [98], [99]. This type of relationship
is of great importance for software and hardware implementations of the algorithms, since
such a relationship along with the fact that the DHT is an alternative to the DFT for real
data would make it possible for a single kind of software or hardware module to be used,
possibly with some minor modifications, for the computation of the forward and inverse
M-D DFTs for real- or complex-valued data and M-D DHTs. Thus, the same module (with
a little or no modification) can be used to cover all domains of applications that involve
DFT or DHT.

In Sections 2.2 and 2.3, we propose M-D radix-(2 X 2 X ... x 2) DIF and DIT FHT al-
gorithms and show how to map the mathematical expressions, derived for these algorithms,
into actual structures for implementations. In Section 2.4, we study the performance of
the proposed M-D FHT algorithms by analyzing their computational and structural com-
plexities and comparing them with those of the existing M-D FHT algorithms. In Section
2.5, we show that there exists a close relationship between the M-D radix-(2 x 2 X ... X 2)
complex-valued FFT algorithms and the proposed M-D radix-(2 x 2 x ... x 2) FHT algo-
rithms.

22 Proposed M-D Radix-(2x2x..x2) DIF FHT
Algorithm

Letx (ki, ..., ki, ..., kar), where 1 <i <M, be areal data sequence of size (N X Ny X ... X Ny);
its M-D DHT X (ny, ..., n;, ..., nar) is also a real sequence of size (N; x N2 x ... X Nyy) de-

fined by

Ni—1 Ni—1 Ny—1 M n.k.
X(nl,...,ni,...,nM) = 2 z z x(kl,...,ki,...,kM)CaS (2%2—1——1) s

=0 k=0 ky=0 b
0<n<N—1,1<i<M @1

where cas(0) = cos(8) + sin(8). Without loss of generality, we assume that N; = N, for 1 <
i <M, where N is an integral power of two. Then, (2.1) becomes a size-(N x N X ... X N)
M-D DHT given by

k=0 k=0 kp=0

' N—1 N-1 N-1 p M
XAty By ooy ipyg) = z Z Z x(ky,y ..., kiy ..., kar) cas —A—I-kai ,
i=1
0<m<N—1,1<i<M (22

Let us start by deriving in matrix form, using the Kronecker product, the M-D DHT for the
interesting case of N = 2. Then, the size-(2 X 2 X ... X 2) M-D DHT given by (2.2) can be

expressed in a matrix form as

X = Hyux 2.3)

where x and X are, respectively, the input and output vectors. Their mth components are

related to the input and output sequences, respectively, by
x(m) =x(my,...,my,...,mp) 2.4)

and

X(m)=X (my,...,mj,...,mp) (2.5)

where m varies from 0 to 2M — 1 and m;, for 1 < i < M, are the binary bits of m, that is,

m=m2M 4 m 22 e m2M 2+ my (2.6)

10

The transform operator in (2.3) is a Hadamard matrix of order 2™ which can be generated

from the second-order Hadamard matrix given by

1 1
H, =
1 -1
using the Kronecker product [32], [100]
Hy=HLoH,;®..QH; 2.7

The matrix Houm in (2.7) can be efficiently factored as

M
H2M = H (12i~1 ® H2 ® IZM—-i) (28)

i=1

where I, is an identity matrix of order L. Since the right side of (2.8) can be considered
as a i)roduct of M matrices each requiring 2™ additions, the matrix Hy introduces M2
additions in the computation of the size-(2 x 2 x ... x 2) M-D DHT given by (2.3).
Let us now consider the general case of (2.2). Since cas(0) = Re[(1+ j)exp(—j0)],
j=+/—1, (2.2) can be written as
N-1 N-1 N-I1

X (n1yees Riyoeeyipyg) = 2 2
k1=0 k=0 ky=0

x(kl, ceny ki,..., kM)Re

. 2n Y
(1+j)exp | —j= D niki | |,
N i=1

0<m<N-1 (29

In order to exploit the matrix representation derived above for the special case of N = 2, we

11

change the variables k; and »; in (2.9), respectively, by

N N
ki+‘]it2“: 0<Kk< *2-—1, qi=0,1 (2.10)
and
N
2ni‘|’Pi, Ognig—"la pi:()al (211)

2

Then, (2.9) becomes

X (2n1 + p1, ey 20+ Piy ey 201 + pir)
N/2-1 N/2-1 Nj2-1 (

-_ ces

k=0 k;=0 k=0 \q1=0 ¢=0 qgu=0

N N N
x (kl +qi=y kit qis, kM+CIM-)

2 2 2
M
Re | (—1)%=1 P4 exp “ngZpiki
N i=1
, m M
(1+j)exp (—Jmizzlnik,ﬂ) (2.12)

The quantity Re[e] in (2.12) can be expressed as

M 2n M 2n ¥
(_1)2,-=1 pidi (cos — 2 piki Jcas | —= > nk;

i=1

(oY Y
+sin (7\/— 2}1 p,-k,') cas (N—/2 2 n,k,-)) (2.13)

i=1

Substituting (2.13) in (2.12) and using the fact that

12

N/2—-1 N/2-1 Nj2-1

N N N
2 X k1+q1§,...,ki—l—q,-—z—,...,kM-{-qME
k=0 ki=0 kpe=0

M
sin (%;piki) (N/2 2n,k>

N[2-1 N[2-1 Nf2-1 N N NN N
=" 2 e 2 2 X -~k1-|—q1—,...,—~——k,~+q,~—~,...,———kM+qM-)

sin (2 pi (— —)) cas (;—Zgniki) (2.14)

we see that (2.12) corresponds to a set of 2 size-(%’— X g X .. %1) M-D DHTs given by

N/2-1 N/2-1 N/2-1

X(2n1+p1,...,2n,'—|—p,~,...,ZnM—i—pM)= 2 Z 2
k=0 k=0 kyg=0

F (Jeas | —= Y nik
. “ee g ens NiKi
kiyernrkiyeerydpg \ Py <oy Pis--ey PM N/Zl / N

N
OSniS"z__l, Pi:()’l (2.15)

The 2™ input sequences of (2.15) are given by

7 M 1 1 1
Fip,okiyeskrg (D1 o0y Piy oy PM) = COS (W Zpiki) [2 Y S
i=1

@1=0 g;=0 qu=0
N
2’

+sin (givgép" (%/ _ki)> Lgo"‘qéo"'q%o

N N N N N N M
— e kg — L —— —) (- Z-=1Pi4i]
x(2 k1+QI2, '3 kz+61z2, '3 kM+CIM2)(1) ;

N
x(k1+611"‘, aki+qi

,— Pigi
5 kM+qM)(1) 1]

pi=0,1 (2.16)

It is clear that (2.16) can be considered, for a given combination of k;, 1 <i < M, as a sum

13

of two size-(2 x 2 x ... x 2) M-D DHTs that are multiplied by twiddle factors. Therefore,

using (2.3), (2.16) can be expressed in a matrix form as

Fkl:"-?ki!"-skM = Dli,],...,k,',...,kMHZMXkl,...,kl‘,...,kM
+D§~k1,..., g—ki,...,é}-kMHZMX%—kl,...,-g-’—ki,..., Yk (2.17)
where the mth component of the input vector Xky,... kiye kg 18 given by
N N N
xk],...,ki,...,kM(m) =X (kl +m1’2~7 ceey ki +mi57 weey kM +mME) ’ (2'18)
the (m, m)th component of the diagonal matrix D,qu Kivoos g by
2n Y
iy . koo lpy (1,) = COS v Y mik; |, (2.19)
i=1
and the (m, m)th component of the diagonal matrix Di,,..., Kivoorrg by
(oM
Ber sl 1y M) = 50| = S ik | (2.20)
i=l1

The components of the vector Fy, ¢ .z, in (2.17) are related to the input sequence of
(2.15) by

Fipokyonkir (M) = Fiey kg (M0 ey Mgy mpg) (2.21)

Since the in-place computation property is highly desirable to reduce the storage, especially
for the multidimensional case, we use the same input samples of (2.17) in the computation

of the vector ¥ ¥y . This can be achieved by replacing k; by %1 ~k;in (2.17).

N N
yrees 3 ~Kiyerry 5 kg

Then, we obtain

14

_ 5
F%——kh...,%—k,-,...,%—kM = Dkl,...,k,-,...,kMHzMXkl,.<.,k,-,...,kM

+D5

2.22
%‘kl’-“)¥~ki;"-1¥”kM ()

H2MX§—k1,...,—’%—k,-,...,%l—kM

It is seen that the application of the Hadamard matrix on the input vector is required in
the computation of the vectors given by (2.17) and (2.22). Some of these operations are
redundant and can be avoided by combining the two equations. Therefore, we may obtain a

closéd-form expression for the general butterfly of the proposed M-D radix-(2 x 2 x ... x 2)

DIF FHT algorithm as
| PR T _p Hy O . VI T
T Mk e ki kg o H
F%—k},...,%—-ki,..‘,%——kM oM X%——kl,..., %—-ki,...,g—kM

(2.23)

is the transpose of the

where O is a null matrix and the twiddle factor matrix qu kiRt

matrix given by

C S
kiyeeeskiyey Kag Dkl,...,ki,...,kM

D3 D5

by Y —kiyees ¥ ~ks Ykt gy F—biyees Y —knt

Dy, ki by = (2.24)

In order to avoid the redundant computations in (2.23), one of the indices k; (1 <i < M)
varies from 0 to (§ — 1), whereas the others vary from 0 to (§ —1). Itis interesting to note
some useful properties of the eléments of the twiddle factor matrix given by (2.24). It can
be seen from (2.19) that

dC

N N
Yy ¥ —kiyr, ¥k

(m, m) = (—1)ZE1mige (m, m) (2.25)

LyeesKiyeens kg

15

and

ikl (00 0) =y iy Mty (0, 0) =1 (2.26)
7z Lyeey o frenes 3 M

Similarly, from (2.20), we have

M
szz_kl,...y %,"'ki,.-n %"kM (m’ m) = ‘—(—1)Ei=1 mldlili"'vkia'";kM(m’ m) (2.27)

and

By O O =y w4, (0,0)=0 2.28)
T TRy T TR ey TR

It is seen from (2.25) and (2.27) that the transposition operation of the matrix given by

(2.24) to obtain the twiddle factor matrix qu ok

(FILL}}

I, cOrresponds to just changing the sign
of the off-diagonal sub-matrices in (2.24). In addition, it is clear from (2.25)-(2.28) that,
for a given combination of &;’s, the computation of the operation given by (2.23) requires
only 2 x (2M — 1) twiddle factors, including trivial factors, to be evaluated or loaded from
a lookup table. Using (2.25) and (2.27), the twiddle factor matrix for the butterfly, given by
(2.23), of the proposed M-D radix-(2 x 2 x ... x 2) DIF FHT algorithm can be expressed as

t ¢ IzM O
Do kivesks = Tk, ki kg (2.29)
O E2M
where
D¢ D .
Tk],...,k,-,...,kM — k1 seeskiyenskag kiyeoeskiye.oskpg (230)
_Dil,...,ki,‘..,kM Dzl,...,k,-,..,,kM
and Eyu is a diagonal matrix whose elements are given by
M
e(m, m) = (—1)Z=1™m (2.31)

Let us first consider the particular cases of M = 1, 2, 3 and 4. By setting M = 1 and

16

X(kl’ k2) X(kl, kz)
x(k, k+N/2) - x(k, k+N/2)

x(k+N/2, k) x(k+N/2, k)

x(kN/2, k+N/2)

X(kN/2, k+N/2)

xX(N/2-k, N/2-k)

x(N/2-k,, N/2-k,)
x(N/2-k,, N-k,) x(N/2-k,, N-k,)

N4k, N2-k)

X(N-k , N/2-k)

x(N-k, N-k))

x(N-k, N-k)

Figure 2.1: General butterfly of the proposed 2-D DIF FHT algorithm, ¢; = cos (8k;), 5; =
sin (0k;), c12 = cos (0 (ki +k2)), s12 = sin (0 (k1 +42)), 0 = 21/N.

3 in (2.23), the proposed M-D radix-(2 x 2 x ... x 2) DIF FHT algorithm reduces to the
existing 1-D [45] and 3-D [66] DIF FHT algorithms, respectively. For M = 2 and 4, the
butterflies of the proposed 2-D and 4-D DIF FHT algorithms are depicted in Figs. 2.1 and
2.2, respectively. In these figures, we have adopted the same notation for the input and
output samples, since the proposed algorithms have the property of in-place computation.
They are obtained by a direct mapping of the expression given by (2.23) for M =2 and 4,
respectively. It is noted that at present no radix-(2 x 2 x ... x 2) DIF FHT algorithm exists
in the literature for M > 4.

This direct mapping can be easily generalized; the butterfly for the proposed DIF FHT
algorithm for any dimension M is illustrated in Fig. 2.3. In this figure, the gain denoted by
* depends only on the dimension M and its value is either +1 or -1. The value of the gain
can be obtained from the matrix Ey» given by (2.31). Due to the closed-form expression

of the butterfly given by (2.23), the proposed DIF FHT algorithm can be mapped very

17

x(k k& k)

1759 ><\
X ke N2)

xk .k k+NR2K)
173273 4

x(k & k+N/2,k+N/2)
17273 4

X kN2 o

- Xk ,k2+N/2,k3,k‘+N/2) o

x(k kN2, k-+N/2k)

172 3
*(A N2 N2 NP2) ></\,/

kN2, kK k)

ko W
XOEEN2K Kkt N72)

x(kl+N0,k2,k3+N0 k)o

x(I§+N/2,l§ ANk N2)

XK+N2 KN K) o
MEANZIFN2E KEN) o

X1 l§+N/2, k2+NQ, k3+NQ lc4) o

x() kl+NQ, kZ+N0 N2, k‘+N/2)

x{. N/Z—kl,N/Z-k2 N2 ‘kJ,N/2-k‘ }

HN2-K N2 N2KNE) o
HNK N2 NI NZK) o

x(N/2-k ,Nﬂ‘k:,N-kJ,N»k) o

x{NOJc1 ,N—lg N2k N2k)

DO/)
\/ W

VA TR
KX \VIA\'I-IMN ZMM\

lA‘\WA\\'II-IIlMZM\\\
"OM\\\VIII-IIIM N

x(N/2-k ,N-k, N2k Nk) ©
x(N/2—k1 ,N»k:,N»ij/ZAk) 0
X(N72-k N-k Nk ,N-k) o
x(N‘Ig,N/Z-Ig,N/Z-kz,NQJc) 0
xN-k, NR2-k N2-k N-k) o
x(N-k iNQ—kZ,N-k],N/Z-k) o

x(N—kl,N/Z-lg ,N-kg N-k) o

XNk NA N2KNRE) o

HNk Nk N2 NK) o

SN Nk N-Ae N2k)

x(N-kl,N-kz,N—k},N-k‘)

SN S ';; e
0IIA\\\%I.IIIII“&A\\\\\
ANV |
mum-lllllll \\\\\\\
‘YA'IMM-IIIIIIA\\\\\\
AOA‘\IIIA.“\'IIIIIA\\\\\.
"A‘\\WIII \\'Illln\\\\ o

<,

w

// N/ A—

XX /\\// /'S
NV -

S12s

x(k &k k)
k& k kN2
172734
Xk K K+ N2K)
1z 3 4
Xk K kN2 K+NA2)
12713 4
Xk KrN2 KK)
12 374
Ak AN K NA2)
i 2 34
4
*k kAN N2 K)
&
o MR NN N2)
L MkAN2K
HEANZK kK)
XN K &k N22)
1 23 4

o XN N2)
1 2 3 [}

/I -,
S S -
NWIIIA\\\-\\\\W‘WIIII
‘YIIMVIII\\-\\\\‘:: '0::% .

S
= X(K+NIZEFNA2 K NP2 K +N22)

.mommm -

x(1§+N/2.lg ,k;rN/Z, kNZ2)
X(k+N2,k+N2k k)

i 2 374
x(lg+Nﬂ. k2+N/2,Ig ,k‘+N/2)

x(I§+N/2, k2+N/2, k3+N/A k‘)

X NE«k‘,N/Z—Ig ,NQ-k], N/Z-k‘)
X(N/2-k ,N72-k ,N2-k ,N-k)

1 2 3 4
x(N/2-k ,N/2-k ,N-k ,N/2-k)

1 2 S ¢
X(N2-k ,N2-k ,N—k,N-k‘)

1 2 3
L(NQ"CI,N'-Ig ,NQ—kB,N/Z—k‘)
X(N72-k ,N-k ,N/2-k ,N-k)

1 2 3 4
x(N/Z-l;,N-kz,N—ij/Z‘k‘)
x(NQ-kl,N-lg,N-k!,N-k‘)
X(N-k N72-k ,N/2-k ,N/2-k)

1 1 k4)
X(N-k ,Nf2-k ,N/2-k ,N-k)

1 F 3 q
x(N-k,N2-k N-k N2-k)

1 2 £ ¢
x(N«kx,Nﬂ-lg ,N‘ka-k‘)
X(N-k ,N-k ,N/2-k ,N/2-k }

[3 ¢
x(N—kl,N-lg ,NO—k},N-k‘)
x(N-kl,NJg,N-kJ,N/Lk‘)

x(N—k],vaz,N«kl,N~k‘)

Figure 2.2: General butterfly of the proposed 4-D DIF FHT algorithm, ¢; = cos (6k;), s; =
sin(ek,-), Cij = COS (9 (k,‘—{—kj)), Sij = sin (G (k,'+kj)), Cijl = COS(e(k,' -I-kj —I—kl)), Sijl1 =
sin (8 (ki +k; +k;)), c1234 = cos (0 (ki + ko +k3 +k4)), s1234 = sin (8 (k1 +kz + k3 +kq)),
6 =2mn/N.

18

First Step

Xk k... k Kk)o——sd
172 e

x(ksz -----]l‘bl.k:'N/Z)o——-—vc

x(/g,kz,...,krtll\lﬂ,klz PR

x(lcl,lcz,...,k’:{\la,k;N/Z) P

AN N2 RN NTZ) oo

(2x2x...x2)-point DHT

XN N2 o N2 N2) 0—end
AN N2 N2 N)
M2k N2 Nk NI)

XNR2-& N2k, N-K N-E)

Jc(N—kl,N-k2 N-kK,_II\//Z-kH)

XNk Nk . Nk NK)

(2x2x...x2)-point DHT

bi———s0

Second Step
ke)
S Xk k. ke k+N/Z)
12 -1 M

[

G-y /S "

x(kx,kz,...,k.t{V/Z,k)

B\

PO

Xk K oo NP2,k NI2)
12 M-1 M

cev (M-1)M

NTANNY.
VAV SR

x(N/Z—kl,Nﬂ-kf.‘.,NIZ-kl{_IY/LkJ

x(N/Z—k1 ,Nﬂ—kz,A..,NQ-k !(jl\/-k)

ps

*

xX(N2-k N2-k,...N-k ,N/Z-kH)
1 2 %)

(a-1m
ALY

WIS
J .

x(NQ-kl,N/Z-k2 A 4 K_I;J«k)

€
*
C TR
! 12...(M-1)H

x(N—k1 ,N—k2 N-k 2'{_IQI/Z-kH)

XNk Nk o NE NK)

Figure 2.3: General butterfly of the proposed M-D DIF FHT algorithm, ¢; = cos (0k;),
S = Sin(eki), Cij = €08 (e (k,'-l—kj)), Sij = sin (6 (ki+kj)), Cij.d = COS(G(ki +kj + ..
kl)), Sij.d = sin (9 (k,'—i—kj + ... +k1)), Cij..lh = COS(G(k,‘ + kj + .tk + kh)), Sij.dh =
sin (8 (ki+kj+...+k +ks)), 0= 2m/N.

19

easily into structures for implementation for any dimension. It is clear that the operation
given by (2.23) can be performed in two steps. In the first step, a pair of 2" samples
that are regularly selected from the input sequence according to (2.18) are processed by
applying the operator Hyu. As seen earlier, Hyn, a Hadamard matrix of order 2¥, is a
size-(2 x 2 X ... x 2) M-D DHT operator. The mapping of this matrix (which introduces
only additions and subtractions) into a structure can be easily obtained according to the
decomposition given by (2.8). Addition and subtraction operations of two samples are
mapped using the well-known radix-2 butterfly. The second step consists of multiplying
the results obtained from the first step by the matrix given by (2.29). In this step, a change
of signs of some of the results obtained from the first step is performed according to the
diagonal matrix Equ. Then, multiplication by the transpose of the matrix given by (2.30) is
carried out. Each row of this matrix contains only two non-zero elements, except for the first
and (ZM + l)th rows. These non-zero elements are twiddle factors and are obtained from
(2.19) and (2.20). Hence, the basic operation required in this step consists of multiplying
two samples, one by cosine and the other by sine, and adding (or subtracting) the results of
thesé multiplications. It is clear from (2.26) and (2.28) that the first and (2M + 1)th TOWS
of the matrix given by (2.30) contain only one non-zero element that is unity. Hence, the
additions (or subtractions) and multiplications of the two samples corresponding to these
two rows are not needed.

Finally, the proposed M-D radix-(2 x 2 x ... x 2) DIF FHT algorithm corresponds to de-
composing a size-(N X N X ... x N) M-D DHT into 2¥ size-(§ x § x ... x §) M-D DHTs
given by (2.15) in the first stage of the decomposition. This is achieved by repeating %{M
times the butterfly given by (2.23) and illustrated in Fig. 2.3. It is clear from (2.15) and
(2.23) that the input sequence of the resulting ith size—(% X %’— X . X %’) M-D DHT is ob-
tained from the ith and (2" +i)th rows of the butterfly. This decomposition scheme can be

repeated successively for each of the new resulting DHTs until size-(2 x 2 x ... x2) M-D

20

DHTs result in the last stage. The entire algorithm requires log,N stages. It can be seen that
the operations such as multiplications, additions, and twiddle factor evaluations or accesses
to a lookup table introduced by the twiddle factor matrix of the butterfly of the proposed

algorithm in the last two stages are all trivial.

23 Proposed M-D Radix-(2x2x..x2) DIT FHT

Algorithm

To derive a M-D radix-(2 x 2 x ... x 2) FHT algorithm using the DIT decomposition, we

change the variables k; and n;, 1 <i < M, in (2.9), respectively, by

N
2ki+qi, 0< Kk < 5~1, qi=0,1 (2.32)
and
N N
ni-l-pi—z—, 0<nm < 5—1, pi=0,1 (2.33)

Then, (2.9) can be written as

N N N
X nl+P1—r~-,ni+Pi‘2";~--anM+PM§
1 (N/2—-l N/2-1 N/2-1

_yLyey (s LS

g1=0 g=0 gu=0 \ k=0 k=0 kpr=0
x(2k1 +q1, .y 2ki + qiy .o, 2kpg +qu)

M
Re [exp (*jzﬁn Zni‘ﬁ) (L+J)

i=1

m Y, pias
exp -—Jm;n,-k,- (—1)%i=1 P (2.34)

21

Carrying out the operation of taking the real part in the above equation and using an appro-

priately modified form of (2.14), (2.34) can be expressed as

X (01 D1 s i Do g+ P
nyrply 5" s BT Pis g Ry -+ pm 2

1 1 1
= Z - Z 2 COT o (G5 es Gis -, GM)

=0 g=0 qu=0

0s gfzniqi (—1)ZH Pidi
NS

1 1
+ Z 2 2 G——n1, ,%_n“ ,.i—nM (qla :q%"qu)

q1=0 ¢g;=0 gqu=0

sin (2 2”1Ql> (1)2;——1 Pt‘Iz

pi=0,1 (2.35)

where

N/2-1 N/2-1 N/2-1

G”h---,"i,---,’lM(qlr"vcﬁr--uQM): 2 2 2
ky=0 k=0 kpr=0

o M
x(2k1 +q1, -, 2ki + qiy -y 2kpg + qur) cas (—/—2- Znikf) ,
=1
N
O<n,§—2——1 g =0,1 (2.36)

For all combinations of g;’s, (2.36) represents a set of 2M size-(§ x ¥ x ... x §) M-D
DHTs. It is clear that for a given combination of n;’s, (2.35) represents a sum of two
size-(2 X 2 x ... x 2) M-D DHTs whose input sequences are obtained from (2.36) after the
multiplications by the twiddle factors (cos(e) and sin(e)). Therefore, exploiting the matrix

representation given by (2.3), (2.35) can be expressed in a matrix form as

22

C
Xm,...,n,-,...,nM = HZMD

n1,--',ni,--.,nMGnl:-~-,"i,---,nM

+H2MDS GN

MLy By I 2 S =ty By B g

(2.37)

where the components of the vector Gy, ... p, .., are obtained from the output samples of

the DHTs given by (2.36) as
Gnl,...,ni,...,nM(m) - Gnl,...,n,-,...,nM (mla ‘eny mi, Tty mM) (238)

The desired output samples given by (2.35) are related to the component of the output vector

an,...,n,-,...,nM of (237) by

N N N
an,...,ni,...,nM (m) =X (nl -+ my 51 ey B +mi§a ey M +mM°2') (2°39)

In order to derive an M-D radix-(2 x 2 x ... x 2) DIT FHT algorithm, which possesses the

property of in-place computation, we replace #; by %’- —n; in (2.37), thus yielding

%—nl,...,%—m,...,%’—nM Gnl,...,ni,...,nM

H,» D3
MUy

N N
=R sy T Rgeeny T Y

+H 2M D(i‘v
2

Gn N N
Yoty Yoty Fmmyg 7 3115y 3 iy 3~

(2.40)

By combining (2.37) and (2.40), we may obtain a closed-form expression for the general

butterfly of the proposed M-D radix-(2 x 2 x ... x 2) DIT FHT algorithm as

an,...,n,-,...,nM H2M 0 D Gnl,...,n;,...,nM
Aiyeeeyiyeey Y

O H2M GN

N N
Ty 5 Ry Sy Y

41)
Just as for the proposed M-D radix-(2 x 2 x ... x 2) DIF FHT algorithm derived in Section

Xy
7

N N
F] yeeny ‘2“'”,’,..., '2‘—?1M

23

2.2, in (2.41), one of the indices n; (1 <i < M) must vary from 0 to (¥ — 1) and the others
from O to (% - 1), in order to avoid the redundant computations. The twiddle factor matrix
for the butterfly, given by (2.41), of the proposed M-D radix-(2 x 2 x ... x 2) DIT FHT

algorithm can also be expressed as

bLv O
Doieoosiyymy = LUTR Y (2.42)
O Euw
Let us first consider the particular cases of M =1, 2, 3 and 4. By setting M = 1,2 and 3
in (2.41), the proposed M-D DIF FHT algorithm reduces, respectively, to the existing 1—D
[45], 2-D [58] and 3-D [65] DIT FHT algorithms. For M = 4, the butterfly of the proposed
4-D DIT FHT algorithm is depicted in Fig. 2.4. This is obtained by a direct mapping of
the expression given by (2.41) for M = 4. The direct mapping can be easily generalized
as was done in the case of the DIF algorithm; the butterfly for the proposed DIT FHT
algorithm for any dimension M is illustrated in Fig. 2.5. It is to be noted that at present no
radix-(2 x 2 x ... x 2) DIT FHT algorithm exits in the literature for M > 4.
Finally, in the proposed M-D radix-(2 x 2 x ... x 2) DIT FHT algorithm, the compu-
tation of the size-(N X N x ... x N) M-D DHT given by (2.2) consists of computing the

size-(¥ x ¥ x ... x §) M-D DHTs given by (2.36) whose output sequences are used in

M
(2.41) for computing the desired output samples. The desired M-D DHT is obtained by
repeating 5%77 times the butterfly given by (2.41) and illustrated in Fig. 2.5. This compu-
tation process is applied recursively for the computation of each of the required DHTS until
only size-(2 X 2 x ... X 2) M-D DHTs need to be computed. The whole algorithm requires
logzN stages. It can be seen that the operations such as multiplications, additions, and twid-
dle factor evaluations or accesses to a lookup table introduced by the twiddle factor matrix

of the butterfly of the proposed algorithm in the first two stages of the computation are all

trivial.

24

o monn)

n.n)

x{n,n.n,n+N/2) S \ f\ /v>< :((N2
S NP A /AN i
N2, +N/2):X\ a4 /[\\\\ //[\w%x x(n,n 1 eN2,n+Ni2)

el s I WDKK

x(n n+N2n, +Na)\ \\ ﬁ\\XX// / M\/><~ XNt N/2)

P\ ////f* AT/ /AN XX ez
NN

(1, 1t N2 R+ N2, 0k NP2) Case

I~ MNNWWﬂWM\fNCXfﬁx"M

' ’ ’A . Mt N2n,n+N2,0,)
XA+ N2 et N2t NE2) \\\\\‘ " ’II “' _ HAN2 1t N2, N/2)
| XnN2, \\\\ “ “ . XnaN2 RN 1)
BN i WIIIHII‘\\VM(\' -
T WX X

X+ N2,n+N2,n+N2n) o X(n+N2,n+N/2,n+N2n)

Hmmmwwnmwﬂ/\/\/y><ﬂ@@gwm
X(N/2-n N/2-n ,N/2-n ,N/2-n) “““““““ X(N72-n ,N/2-n, ,N/2-n ,N/2-n)
oy I TS S
x(N/2~nl,N/2-nz,N-n3,N/2—) d ‘q" A " o
mmeammmmumb
I T
mmmmsmmmggb» A

M)c(N/Z-nl,N—n2 ,N-n 3,N/2—n‘)
& » 30— x(N/Z—nl,N~ré,N—nJ,N~n‘)

X(N-n N2-n N2-n,N2-n)
1 2 3 4

NQ n)

x(+N0 +N/2 +NQ)

X(N/2-n ,N/2-n N-n N/2-n)
1 2 3 4

X(N/2-n Nf2-n ,N-u ,N-n) X(N/2-n N/2-n ,N-n N-n)
1 2 3 1 2 3 [)

x(NQ-nl,N‘rg ,N/?»na,N/Zm‘) x(N/Z—nl,N-lg ,N/Z-n!,N/Z-n‘)
X(N/2-n N-n N/2-n,N-n) o
1 2 3 [}

x(N/Z—nl,N-nz,Nwa,NE—n‘)

x(NQAnl,NAr% ,N‘ns, N»r}1)

.IIIIIIIA\\\\\\\BOMMI _
.IIIIIIA\\\\\\UMM\'AV'
IIIIIA\\\\\HIIM\\\V‘)X".

s o ‘ . X(N-n N2t Non_Nori)
cvnnnavig] W= KT e
x(;,,l.;,%,m’ o %/ . \\\& %/ \Q\\?)O(\VK
X(N-nN-n,N-n ,N/2-n hePH) Ls_l;*/ \/ \/\>< HN-n,N-

x(N-n ,N/2-n ,N/2-n ,N/2-n)
1 2 3 4
x(N~n1,N/2~n2,N/2-n],N-n‘) x(N-nx,NIZ-nz ,N/Z-nJ,N-n‘)

MN-1 N2-1N-1 N0) o

x{. N-nl,N/Q-n2 N-n ” N/2—n‘)

’-

n,N-n N/2-n)
2 El 4

X(N-n N N N) 1230

x(N-n_,N-v N-n ,N-n)
1 2 3 4

Figure 2.4: General butterfly of the proposed 4-D DIT FHT algorithm, ¢ = —1,
ci = cos(On;), s; = sin(Bn;), c;; = cos (G(n,--}—nj)), sij = sin (0 (ni+n;)), cij =
cos (8 (mi+nj+mn)), sij = sin(6 (ni+nj+mn)), ciz3a = cos(8(ny + ny + n3 + na)),
$1234 = Sin (9 (n1 +ny+n3 +n4)), 0= 27'E/N.

25

First Step

Second Step

x(nl,nz ,,,, r}‘_l,:}()c

MUty M) G
N [
X0, kN2 Qu.1y

FO S :\\
n+N/2,n+N/2)
1 2.3

x(nl,nz,“., 1

x(n+N/2 .n+N/2, ..., n+N/2,nn)
1 2 H-1

x(n+N2 ntN2,...n+ N2, n+N/2) o
1 2 M-1 b4

x(N/Z«nl,N/Zﬂ L N2- n, N/Z n l“)

(2x2x...x2)-point DHT

p—s X110t ,1)

e LT Yo

n+N2)
M
N x(nl,nz,...,nzi{V/Z,n“)

S x(nl,nz,,<.,n¢11VH,nH+N/2)

S x(nl+NQ ,n;-N/Z,...,n::{V/Z,nH)

3.___.Jc(nli»le ,n;rNﬁ anIN/Z,n:NO)

x(N/Z—n N/Z«n N/2—r€4 {V n)

n/\ck

x(N/Zn N/2n ,,,,, N%{V/Zn)

M

X(N/2- -f, N/Z—n

su...(--u

x(N—nl,N—n N- -n, N/2 n) /

(2x2x...x2)-point DHT

b——s X(N2-n,N2-n,...N2-n ,N/ZAnJ
b 7 w1

N x(N/Z—nl,N/Z-nz ,,,,, N/Z-r%4 111\"—11 j]

N)c(NQ-nl,N/ZJt2 N—lg‘ é\//Z-n }

— x(Nﬂ—nl,N/Z-nl N”‘,:{\’“" M)

Figure 2.5: General butterfly of the proposed M-D DIT FHT algorithm, e = —1,
¢; = cos(6m;), s;i = sin(On;), cij = cos(0(ni+n;)), s;j = sin(0(ni+nj)), cijs =
cos (8 (mi+nj+...+m)), sij.0 =sin (0 (n;+n;+...+n)), cij_in = cos(O(ni+n; + ... +
n; +nh)), Sij. dn= sin (6 (n,-+nj +...+n +nh)), 0= 27'C/N.

26

2.4 Computational Complexities of the Proposed M-D
Radix-(2 x 2 x ... x 2) FHT Algorithms

In this section, we study the performance of the proposed M-D FHT algorithms by ana-
lyzing their computational and structural complexities and comparing them with those of
the existing M-D FHT algorithms. Since the proposed DIF and DIT algorithms are based
on the same decomposition philosophy, their structural and computational complexities are
exactly the same. Therefore, the anaiysis éf the computational complexity of only one
would be sufficient. Let us consider the computational complexity of the proposed DIF
algorithm. It is clear from (2.26) and (2.28) that the twiddle factor matrix given by (2.24)
has for its first and (2% + 1)th rows, all the elements as zero except for one element which
is unity. Therefore, in the computation of the right side of (2.23), the twiddle factor matrix
introduces 4 (2 — 1) multiplications and 2 (2 — 1) additions. It is also observed that in
the first step of this computation, 2 x 2 samples of the input sequence x (R1yeees kiyeees kp)
are operated upon by the second-order Hadamard matrix Hy. This step requires 2 x M2M
addiﬁons. Therefore, the butterfly based on (2.23), which computes 2 x 2 samples, re-
quires 4 (2" — 1) multiplications and [2 (2 — 1) +2 x M2¥] additions. The first stage of
the algorithm consists of decomposing the size-(N x N X ... x N) M-D DHT given by (2.2)
into 2M size-(§ x ¥ x ... x) M-D DHTs given by (2.15). This is achieved by repeating
-2—?{—’;” times the butterfly given by (2.23). This decomposition process is repeated for each
of the new resulting DHTSs until the problem is reduced to size-(2 x 2 x ... x 2) M-D DHTs.
The desired output is obtained after performing log,N such stages. It can be seen from the
twiddle factor matrix given by (2.24) that some savings can be achieved in the number of
operations for special combinations of k;, 1 <i < M. Specifically, the operations introduced
by the twiddle factor matrix in the last two stages are trivial for any combination of k;. Con-

sequently, the number of multiplications and additions required by the proposed M-D DIF

27

FHT algorithm are given by

M_1 . N
A M1\ oy N M
(M, N) = (M+b=~ | N™logy 7 + sMN (2.44)

where s = 0 if no special butterfly is used in the implementation, s = 1 if we can avoid
the trivial operations only at the last stage, and s = 2 if we can avoid the trivial operations
at the last two stages. In (2.43) and (2.44), a = b = 1, if the twiddle factor matrix is
implemented using the four-multiplication-two-addition (4mult-2add) scheme, whereas a =
3/4 and b =3/2, if it is implemented using the three—multiplication—three-addition (Bmult-
3add_) scheme.

The arithmetic complexities of the proposed algorithms can be further dramatically re-
duced by avoiding all trivial operations. Let us consider the 4mult-2add scheme. Then, by
removing the trivial operations in the first or last stage of the proposed DIF or DIT algo-
rithm, respectively, and applying the decomposition scheme derived in Section 2.2 or 2.3,
it is seen that the expressions for the numbers of non-trivial multiplications and additions

required by the proposed algorithms are given by

M2 (M, N)
ZELNM 3 (2M — 1) g2M—1 (QM-1)1OBN=3 L ougp 4y Ny > g
_ (2.45)
0, N<8

28

Ap(M,N)
(M+ Z’;ﬁi) NM - (2M 1) 221 (ZM—l)logzN—3 +2MAn(M,Y), N> 8
- (2.46)
MNMlog,N, N < 8

In the row-column approach, besides computing MN¥~! 1-D DHTs, MN™ extra ad-
ditions are required in the computation of the M-D DHT. Therefore, if the simplest and
the most regular existing 1-D radix-2 FHT algorithm is used to compute the 1-D DHTs,

then the numbers of multiplications and additions required by the row-column approach

are given by
Mrc(M,N) = aMNM 10g2~1\—7 (2.47)
25‘
b+2 N
Arc(M,N) =M (--“25—) NMlogy = + (s-+ 1) MNM (2.48)

By removing all trivial operations and considering the 4mult-2add scheme, the numbers of

non-trivial multiplications and additions required by the row-column approach are given by
Mrc(M,N) = MN"~1Mp(1,N) (2.49)

Arc(M,N) = MNM~'Ary(1,N) + MNM (2.50)

Note that the bit-shift operations (multiplications by 1/2) required by the row-column ap-
proach in computing the M-D DHT are not included in (2.47) and (2.49). Table 2.1 presents
the arithmetic complexities required by the row-column approach and proposed algorithms
in the computation of the 4-D DHT. The results in this table are obtained by letting M = 4

and s =0 in (2.43), (2.44), (2.47) and (2.48). It can be verified using (2.43)-(2.44)-(2.47)-

29

Table 2.1: Number of arithmetic operations required for the computation of the 4-D DHT
using the 4mult-2add scheme for s = 0

Row-Column method Proposed Radix-
(2x2x2x2)FHTs
Transform Size Mults. | Adds. | M.+A. | Mults. | Adds. | M.+A.
NXxNxNxN /point | /point | /point | /point | /point | /point
2x2x2x2? 12 22 34 5.62 | 14.81 | 20.43
2 x2%x 24 x2* 16 28 44 7.50 | 19.75 | 27.25
P xPxPxP 20 34 54 9.37 | 24.68 | 34.06
26 % 26 x 26 % 26 24 40 64 11.25 | 29.62 | 40.87
2" x2Tx2Tx 27 28 46 74 13.12 | 34.56 | 47.68
28 %28 x 28 % 28 32 52 84 15.00 | 39.5 | 54.50
%27 x2°x2° 36 58 94 | 16.87 | 4443 | 61.31
210 % 210 % 210 2101 40 64 104 | 18.75 | 49.37 | 68.12
21 2T T o1l 44 70 114 | 20.62 | 5431 | 74.93
212 %212 x 212 212 48 76 124 | 22.50 | 59.25 | 81.75

(2.48) or (2.45)-(2.46)-(2.49)-(2.50) that significant savings in terms of the arithmetic op-
erations are achieved by the proposed algorithms for any set of values of M and N. In
addition, these savings increase with the dimension M. Moreover, the matrix transposition
and bit-shift operations required in the row-column method are not required in the proposed
algorithms.

The row-column scheme has been exploited in [63] to derive an approach different
from the traditional row-column method for the M-D DHT. This approach is based on a
successive use of 1-D complex-valued FFT algorithms and special retrograde indexing ma-
nipulations. In addition, it requires matrix transposition operations and has a computational
complexity comparable to that of the traditional row-column method for the M-D DHT.
The only advantage of this approach over the traditional row-column method is the possi-
bility of exploiting the existing hardware and software modules of the 1-D complex-valued
FET algorithm in the computation of the M-D DHT. This, however, is not of much im-

portance compared to advantages offered by the proposed algorithms, since there exists a

30

close relationship between the structures of the M-D radix-(2 x 2 x ... x 2) complex-valued
FFT algorithms and the proposed M-D radix-(2 X 2 x ... x 2) FHT algorithms, as shown in
Section 2.5.

An approach for computing 2-D and 3-D DHTs has been proposed in [61], which re-
quires a simultaneous use of 1-D FFT and FHT algorithms and a special interstage scheme
for addition operations. Further, the number of arithmetic operations (additions + multi-
plications) needed is greater than those required by the 2-D radix-(2 x 2) and 3-D radix-
(2 x 2 x 2) FHT algorithms. Hence, the extension of the approach in [61] to higher dimen-
sions is not attractive.

In [59], an approach based on Fermat number transforms (FNTs) has been proposed
for the computation of 2-D and 3-D DHTs. It requires the implementation of 1-D, 2-D,
and 3-D forward FNTs, 2-D and 3-D inverse FNTs, and a very large number of bit-shift
operations. In addition, the number of arithmetic operations needed is too large compared
to those required by the 2-D radix-(2 x 2) and 3-D radix-(2 x 2 x 2) FHT algorithms. All
these drawbacks would become more pronounced if the approach in [59] is extended to
higher dimensions.

The only approach left for comparison is the one recently reported in [68] for the com-
putation of the M-D DHT. It requires 3NMlog,N — 2 +1“1NM + %li—il +3(2Y - 1) mul-

2M+2—3

tiplications, (M -+ -2-) NMlog,N — %M:?:;NM + S + 5 (2M - 1) additions, and a special

sequence reordering. This reordering requires (5 —) N™ multiplications, (} — +) NM

additions, (— 1%,) NM™ modulo operations, and (% - %) NM bit-shift operations. These re-
quirements along with those of the proposed algorithms are given in Tables 2.2 and 2.3 for
M =4 and 5. In these tables, mp and ap denote the total number of multiplications and ad-
ditions required by the algorithm in [68]. The advantage of a slight reduction in the number

of arithmetic operations provided by the approach in [68] compared to that of the proposed

algorithms is achieved at the expense of certain severe drawbacks, as explained below.

31

Table 2.2: Number of non-trivial operations required for the computation of the 4-D DHT
using the 4mult-2add scheme

Algorithm in [68] Proposed Radix-
(2x2x2x2)FHTs
Transform Size Mults. | Adds. | M.+A. | Modulo | Bit-shift | Mults. | Adds. | M.+A.
NxNxNxN /point | /point | /point /point /point /point | /point | /point
Bx2Bx2Bx23 084 | 11,84 | 12.69 | 037 0.37 046 | 1246 | 12.93
2 x 2 x 2 x 24 1.40 | 16.40 | 17.80 | 043 0.43 1.64 | 17.17 | 18.81
PxPxPxD 1.93 12093 | 2287 | 047 0.47 3.16 |21.99 | 25.15
26 % 20 x 26 x 26 245 | 2545 | 27.90 | 0.48 0.48 4.86 | 26.87 | 31.73
27 %2 x2Tx 27 295 [29.95{ 3291 | 049 0.49 6.65 | 31.78 | 38.42
28 x 28 x 28 x 28 346 | 34.46 | 3792 | 049 0.49 8.48 | 36.70 | 45.18
29 x 2 x2?x20 3.96 | 3896 | 4293 | 0.50 0.50 10.33 | 41.63 | 51.96
21052105210 210 [446 | 43.46 | 47.93 | 0.50 0.50 12.19 | 46.56 | 58.76
215 21 215211 | 496 | 47.96 | 52.93 0.50 0.50 14.06 | 51.50 | 65.56
22 % 212212212 | 546 | 5246 | 57.93 | 0.50 0.50 15.94 | 56.43 | 72.37

Table 2.3: Number of non-trivial operations required for the computation of the 5-D DHT
using the 4mult-2add scheme

Algorithm in [68] Proposed Radix-
(2x2x2x2x2)FHTs

Transform Size Mults. | Adds. | M.+A. | Modulo | Bit-shift | Mults. | Adds. | M.+A.
NxNxXNxN /point | /point | /point | /point /point | /point | /point | /point

PxBxBx2x23] 0.85 | 14.86 | 15.71 0.37 0.37 048 | 1548 | 15.96

V2% x 2 x24%x2% | 142 120421 21.84 0.43 0.43 1.69 | 21.21 | 22.90

VxVx2x2°%x25| 195 [2595 | 27.90 0.47 0.47 3.26 |27.05 | 30.32

20%20x26%x26%x20 1 246 | 31.46 | 33.93 0.48 0.48 502 |3296 | 37.99

27x27x27x2"x27 | 297 |36.97 | 39.95 | 0.49 0.49 6.87 | 38.90 | 45.77

28 x28x 28 %2828 | 348 | 42.48 | 45.96 0.49 0.49 8.76 | 44.85 | 53.62

22x29%x22x2%2%x2%| 398 | 47.98 | 51.96 0.50 0.50 10.67 | 50.82 | 61.49

32

The main reason behind the importance of the DHT is the fact that the software or
hardware implementation of only a single FHT algorithm is sufficient to compute both the
forward and inverse transforms. Unfortunately, this very useful property of the DHT in
requiring only a single algorithm is lost when we consider the approach reported in [68],
since the latter requires the implementation of two different complicated algorithms, one
for computing the 1-D type-II-DWTs and the other for the M-D polynomial transforms.
Moreover, the approach in [68] requires a special sequence reordering, thus necessitating
extra multiplications, additions, modulo operations, and bit-shift operations. Further, these
time-consuming overhead operations contribute significantly to an increase in the overall
structural complexity of the algorithm. Another drawback of this approach is that it does
not have the butterfly-style and in-place computation properties, thereby requiring a large
memory. Hence, even though this approach has the advantage of a slight reduction in the
number of arithmetic operations compared to that required by the proposed algorithms, its
complicated structure and overhead operations make it unsuitable for software or hardware
implementation. However, the proposed algorithms possess attractive and highly desirable
properties such as the regularity, modularity, simplicity, easy indexing scheme, and the
butterfly-style and in-place computations. Thus, they are more suitable for software or

hardware implementations.

33

2.5 Relationship Between the Structures of the M-D Radix-
(2x2x...x2) Complex-Valued FFT Algorithms and
the Proposed M-D Radix-(2x2x...x2) FHT
Algorithms

In this section, we reformulate the existing M-D radix-(2 x 2 x ... x 2) complex-valued FFT
algorithms using an approach similar to that used in Sections 2.2 and 2.3 for deriving the
proposed M-D radix-(2Xx 2 x ... x 2) FHT algorithms in order to establish a relationship
between the M-D radix-(2 x 2 X ... x 2) complex-valued FFT algorithms and the proposed
M-D radix-(2 X 2 x ... x 2) FHT algorithms. Such a relationship would be highly desirable
in order to investigate the possibility of using a single software or hardware module to
compute the DHT as well as the forward and inverse complex-valued DFTs.

Let X (ky, ..., ki, ..., kar) be a complex data sequence of size (N XN x...xN). Its M-D

DFT X (n1,--., 1y, ..., npr), which is also a complex sequence of the same size, is defined by

g b Aﬁ iki
X (Al By ag) = 3 o D e 3 F (K eves Kiy ey Fong) W=t ™

0<nm<N—-1,1<i<M (2.51)

where Wy = exp(—j27t/N). The input and output sequences in (2.51) can be expressed in

terms of their real and imaginary parts, respectively, by
X (kiyeorkiyey kag) = X (K1, ooy Kiy ooy ag) + 5 (Rt oy Ky ey Kg) (2.52)
and

X (11, Gy ey myg) = X" (1, ey iy ey g)+ X (01, ooy 1y ny) (2.53)

34

251 An M-D Radix-(2x2x..x2) DIF Complex-Valued FFT
Algorithm

To derive the M-D radix-(2x 2 x ... x 2) complex-valued FFT algorithm using the DIF
decomposition, we replace k; and »; in (2.51), respectively, by the expressions given in
(2.10) and (2.11). Then, we see that (2.51) corresponds to a set of 2M size-(§ x ¥ x ... x ¥)

M-D DFTs given by

B N/2-1 Nj2-1 Nj2-1
X (2n1+pt, . 20+ iy 200+ py) = 2 2
k=0 =0 kp=0

o~ M nik;
Fk],...,ki,...,kM (pla ooy Piyeeny PM) WN/zln 3

ognis]—zy—l, pi=0 (254

where their 2M input sequences are given by

5 M, piki . ! .
Fiy ki (P1y vy Diy ey D) = W1 2 Z 2
q1=0 gq=0 qu=0
~ N N N Mo
x (kl +41—,~-,ki+qz'5,---,kM +QM”2‘) (—1)Z'=‘p‘q‘])

pi=0,1 (2.55)

For a given combination of k;’s, (2.55) is recognized as a size-(2 X 2 X ... x 2) M-D DFT
whose output samples are multiplied by the twiddle factors. This DFT is similar to the size-
(2x2x... x2) M-D DHT. Hence, using (2.3), (2.55) can be expressed in a matrix form

as

- . _
Fliskivts =P8,k H2M Kby kg (2.56)

35

where the mth component of the input vector ikh___, kiy...,kyy 18 given by

—~ - N N N
Xy ooyl () = x<k1+m15,-~,kz‘+mi§,-.-,kM+mM§)
N N N
= ¥ (kl+m15,...,ki+mi-2—,...,kM+mM-2—>

B N N N
+jx™ (Iq Mg kit M, ky +mM“2*) (2.57)

2 2
and the (m, m)th component of the diagonal matrix D}C"h_._’ Kiyor g DY
w 2n M
A kg (M M) = €XP Iy Y mik;
i=1
dlgl"“:kir";kM (m’ m) - jdi],...,ki,...,kM (m’ m)’ (2'58)

The COmponents of the vector F ki, kiy..., kg 10 (2.56) are related to the input sequence of

(2.54) by

Byt (M) = Fry ki g (1 ey My)
= Fkrle,...,ki,...,kM (ml’ ey My eeey mM)

AT kg (P 1y ey) (2.59)

. ~ foed . W
The input vector Xy, . r. .k, the vector Fii,... ki ke @nd the matrix th_"’ Kiveonryy 3T€

ke

complex-valued, which can be expressed in terms of their real and imaginary parts, re-

spectively, by
LTS R . A S (2.60)
Fly,obiobe = Bt st F I b (2.61)
and
Dy kirtar = Dy kikir = D% ki ki (2.62)

36

Substituting (260)-(2.62) in (2.56), we get a matrix form for the butterfly of the M-D radix-
(2 x2 % ... x 2) DIF complex-valued FFT algorithm

Fre H,» O X7
Koo Kiyeonsk 2 K yooeskiyoons K
I = Tk g [I
14143 I
Fk],...,k,',...,kM O H2M Xklr--ykiy km
N .
OSle—z—-—l,lSlSM (2.63)

The M-D radix-(2 x 2 x ... x 2) DIF FFT algorithm consists of decomposing a size-(N X
N x ... x N) M-D DFT into 2™ size-(§ x § x ... x §) M-D DFTs given by (2.54) in the
first stage. This is achieved by repeating %gr times the butterfly given by (2.63). This
decomposition scheme is repeated recursively for each of the new resulting DFTs until size-
(2%2x...x2) M-D DFTs result in the last stage. The entire algorithm requires log,N
stages. It can be seen that the operations such as multiplications, additions, and twiddle
factor evaluations or accesses to a lookup table introduced by the twiddle factor matrix of
the butterfly given by (2.63) in the last two stages are all trivial. Therefore, it can be shown
that the numbers of real multiplications, real additions, storage locations for real data, data
transfers, and twiddle factor evaluations or accesses to the lookup table required by the M-
D radix-(2 x 2 x ... x 2) DIF FFT algorithm are exactly twice the corresponding numbers
required by the proposed M-D radix-(2 x 2 X ... x 2) DIF FHT algorithm. This result is
obvious, since the M-D DIF FFT algorithm, actually, computes 2N¥ real output samples
(real and imaginary parts of the output sequence) from 2N real input samples (real and
imaginary parts of the input sequence), whereas the proposed M-D DIF FHT algorithm
computes N¥ real output samples from N¥ real input samples.

Let us now discuss the relationship between the structures of the M-D DIF FHT and
FFT algorithms. It is seen that the butterfly given by (2.63) of the DIF FFT algorithm

is very similar to the butterfly given by (2.23) of the proposed DIF FHT algorithm; both

37

the butterflies have the same size and in-place computation property, and are processed
by applying the Hadamard operator matrix to the input samples followed by a twiddle
factor matrix multiplication. In addition, all the twiddle factors required to be evaluated or
read from a lookup table in a given stage of the DIF FHT algorithm are also required in
the corresponding stage of the DIF FFT algorithm and the twiddle factor matrices of the
two butterflies differ only in the sign of some elements. This difference in sign depends
only on the dimension M. The special butterflies that can be used to further reduce the
arithmetic operations in the DIF FHT algorithm can also be used in the DIF FFT algorithm
for the same objective. It is interesting to note that, for computing the inverse DFT, we
use the twiddle factor matrix T;q,---, Kiyooo Kt instead of Ty,k, in (2.63). Therefore, the
butterfly of the DIF FHT algorithm is more similar to that used for computing the inverse
DFT than to that used for the forward DFT. Moreover, the similarity between the butterflies
of the DIF FHT and FFT algorithms is comparable to the similarity between the butterflies
used for the forward and inverse DFTs. The decomposition processes in the DIF FHT and
FFT algorithms are very similar; both the algorithms have the same number of stages and
perform similar operations. However, the number of butterflies required in each stage for
the DIF FFT is twice that needed by the DIF FHT. This is due to the fact that in the DIF
FFT algorithm all the indices k;’s vary from 0 to (% - 1) as indicated in (2.63), whereas in
the DIF FHT algorithm, one of these indices must vary only from 0 to (% - 1). In order
to make the indexing process of the DIF FHT algorithm identical to that of the DIF FFT
algorithm, the first half of the data that can be indexed by (k1, ..., k;, ..., ky) in the FHT
algorithm is stored at the locatipns designated for the real part in the FFT algorithm and the
secoﬁd half of the data that can be indexed by (%’ —kiyeers % —~kiy ..., % - kM) is stored at
the locations designated for the imaginary part. Finally, this close relationship between the
two algorithms, which we have established, can be exploited to develop a single software

or hardware module for the implementation of the algorithms to compute the forward and

38

inverse M-D complex-valued DFT as well as the M-D DHT. It should be noted that the
M-D DHT can be used for efficiently computing the M-D forward and inverse real-valued
DFTs as well.

252 An M-D Radix-(2x2x..x2) DIT Complex-Valued FFT
Algorithm

To derive the M-D radix-(2 x 2 x ... x 2) complex-valued FFT algorithm using the DIT
decomposition, we replace k; and n; in (2.51) by the expressions given in (2.32) and (2.33),

respectively. Then, we obtain

~ N N N 1 1 1
X (n1+17157---’ ni+Pi’2',---, nM+pM“2‘) = 2 cee 2 aee Z

~ M nig; M
[Gnl,...,ni,...,nM (q17"'1 Giseaey CIM) W]g‘qzlnq] (_1)Z’=1 PzQz’

pi=0,1 (2.64)

where

B N/2-1 Nf2-1 NJ2-1
Gﬂla---;ni,---,"M (ql,...,q[’..., qM) = 2 “an e
k1=0 k=0 kpr=0

~ M nik;
X(2k1 +q1, . 2ki 4 iy ..., 2kng +qur) Wyiz s

N
Osm=<5-1,¢=01 (2.65)

For all combinations of ¢;s, (2.65) corresponds to a set of 2M size-(¥ x ¥ x ... x ¥ M-
D DFTs. It is clear that for a given combination of #;’s, (2.64) is recognized as a size-
(2x2x...x2) M-D DFT whose input sequences are obtained from (2.65) after multi-

plications by the twiddle factors. Therefore, exploiting the representation given by (2.3),

39

(2.64) can be expressed in a matrix form as

ana"')ni)"'anM = H2MD¥1,...,n,-,..,,nMGn1,...,ni,...,nM (2.66)
where the components of the vector (T‘:,,1 iy AT€ Obtained from the output samples of

the DHTs given by (2.65) as

Gnl,...,ni,...,nM(m) = Gnl,...,ni,...,nM (mh ceey My aeny mM)

_ (e)
- Gnl,...,n,-,...,nM (ml’ ey T, ey mM)

+ij1n|1,...,n,‘,...,nM (m17 ceey My eeey mM) (2.67)

The desired output samples are related to the components of the output vector)~(m ooy Tiyeees Il
of (2.66) as given by

- ~ N N N
an,...,ni,...,nM(m) = X (nl +my '2"7 g R +mi57 <oy M +mM'2—')

= X"(m +m1g ni—l—mig nM+mM{V—
2’ 3 21 b 2

» N N N
+_]le (nl+m1§:7“'1ni+mi_2_1‘":nM+mM§:) ’ (268)

The input and output vectors of (2.66) can be expressed in terms of their real and imaginary

parts by

e 7 im
X”lr--a”i:---,nM - an,...,ni,...,nM +JXn1,..‘,n,-,...,nM (2-69)

and

+ jGim (2.70)

é = G'e
0l yeeeyiyeey M3f RlyeeyBisens Ay

Al geey Migees AN

40

respectively. Using (2.62), (2.69) and (2.70) in (2.66), we have a matrix form for the but-
terfly of the M-D radix-(2 x 2 x ... x 2) DIT complex-valued FFT algorithm, as given by

Xre Hy O G

Ry gey Mg Ry Ngaees My pg
LT 3

Xim 0 My Gim

Flgeeasgeaay ipf L3 YRR S 200 (1V 4

OSniS%I—l, 1<i<M (27D

In the M-D DIT FFT algorithm, the computation of the size-(N X N x ... x N) M-D DFT
givenby (2.51) consists of computing 2 size- (¥ x ¥ x ... x §) M-D DFTs given by (2.65)
whose output sequences are used in (2.64) for computing the desired output samples. The
desired M-D DFT is obtained by repeating g—,; times the butterfly given by (2.71). This
computation process can be applied recursively for the computation of each of the required
DFTs until only size-(2 x 2 x ... x 2) M-D DFTs need to be computed. The entire algorithm
requires log, N stages. It can be seen that the operations such as multiplications, additions,
and twiddle factor evaluations or accesses to a lookup table introduced by the twiddle factor
matrix of the butterfly given by (2.71) in the first two stages of the computation are all trivial.
It can be shown that the complexity of the M-D DIT FFT algorithm is identical to that of
the M-D DIF FFT algorithm.

A discussion similar to that carried out above for establishing a relationship between the
M-D DIF FHT and FFT algorithms can be carried out to establish a relationship between
the M-D DIT radix-(2 x 2 x ... x 2) FHT and FFT algorithms. The similarity between the
propbsed DIT FHT algorithm and the DIT FFT algorithm can be clearly seen from Figs.
2.4 and 2.5. If the first half of the data that can be indexed by (n, ..., 1y, ..., nps) in the FHT
algorithm is stored at the locations designated for the real part in the FFT algorithm and
the second half of the data that can be indexed by (¥ —n1,..., § —n;,..., 8 — np) is stored

at the locations designated for the imaginary part, then the butterflies of the DIT FHT and

41

FFT algorithms for the corresponding dimension differ only in the value of e. Thatis, e = 1
for the DIT FFT algorithms and e = —1 for the DIT FHT algorithms. This similarity is due
to the fact that the twiddle factor matrix of the butterfly given by (2.71) of the M-D DIT
FFT algorithm and the twiddle factor matrix given by (2.42) of the butterfly given by (2.41)
of the proposed M-D DIT FHT algorithm differ only in the diagonal matrix E,u. Note that,
E,u depends only on the dimension M and its elements are +1 or -1.

It is interesting to note that such a close relationship between the proposed M-D FHT al-
gorithms and the corresponding complex-valued FFT algorithms does not exist between the
existing real-valued [36]-[41] and complex-valued FFT algorithms. Moreover, the existing
real-valued FFT algorithms have complicated structures compared to those of the proposed

FHT algorithms and, in general, their forward and inverse versions are completely different.

2.6 Summary

In this chapter, M-D radix-(2 x 2 x ... x 2) DIF and DIT FHT algorithms have been pro-
posed for efficiently computing the DHT of any dimension by using an appropriate index
mapping and the Kronecker product. It has been shown that the proposed algorithms are
more effective and highly suitable for hardware and software implementations compared to
all the existing M-D FHT algorithms. The butterflies of the proposed algorithms are char-
acterized by simple closed-form expressions that allow easy implementations of these algo-
rithms for any dimension. The butterfly for a given dimension M can be readily obtained by
assigning the corresponding value to M in the butterflies of the proposed FHT algorithms.
For example, the butterflies of the existing 1-D radix-2 [45], 2-D radix-(2 x 2) [58] and
3-D radix-(2 x 2 x 2) [65] DIT FHT algorithms, can be easily obtained by letting M = 1,
2 and 3, respectively, in the general butterfly of the proposed M-D radix-(2 x 2 x ... x 2)
DIT FHT algorithm. Similarly, for M = 1 and 3, the general butterfly of the proposed M-D

42

radix-(2 x 2 x ... x 2) DIF FHT algorithm reduces to those of the existing 1-D radix-2 [45]
and 3-D radix-(2 x 2 x 2) [66] DIF FHT algorithms, respectively. Moreover, the proposed
algorithms possess properties such as high regularity, simplicity and in-place computation
that are highly desirable characteristics for software and hardware implementations, espe-
cially for multidimensional applications. A close relationship between the proposed M-D
radix-(2 X 2 X ... x 2) FHT algorithms and the M-D radix-(2 x 2 X ... X 2) complex-valued
FFT algorithms has been established. This relationship along with the fact that the DHT is
an alfernative to the DFT for real data, can enable one to use a single software or hardware
module for computing the forward and inverse M-D DFTs for real- or complex-valued data
and M-D DHTs with a little or no modifications.

One of the most interesting results that have been presented in this chapter is the general
decomposition method, which is based on the radix-2 approach, valid for any dimension,
applicable either for the case of the DHT or DFT, and significantly reducing the complexity
of the algorithms. This method will be further exploited in developing efficient FFT and

FHT algorithms in the succeeding chapters.

43

Chapter 3

Output-Pruning of DFTs

3.1 Introduction

Chapter 2 was devoted to the fast computation of full-length (size) transforms, by exploring
the radix-2 approach. For the case of the Fourier transform, there are some applications
where a significant part of the output samples of the DFT are not needed, for example,
where only a narrow spectrum band is desired. The direct use of a full-length FFT algorithm
in such applications is not advantageous, and in order to reduce the arithmetic complexity,
methods for pruning 1-D [101]-[106] and 2-D [107]-[109] DFT's have been proposed in the
literature.

In this chapter, the problem of increasing the computational and structural efficiencies
of FFT algorithms for such applications is considered and efficient methods for pruning
output samples of the DFT, based on the radix-2 approach, are proposed for both the 1-D
[110} and 2-D [111] cases. These two cases are considered in detail in Sections 3.2 and 3.3,

respectively.

44

3.2 QOutput-Pruning of the 1-D DFT

One of the methods of increasing the computational efficiency of an FFT algorithm in
applications, where only a narrow spectrum band is of interest, is to remove unnecessary
computations from the FFT algorithm. This case was studied by Markel, who proposed
the well-known pruning algorithm [101] based on a modification of the radix-2 DIT FFT
algoﬁthm. Using (2.51), the 1-D DFT of length N is given by

N-—1
X(n)= Y X())WF, 0<n<N-1 (3.1)
k=0

Assuming that only the first L, (L < N = 2"), output points are needed and is restricted to
be a power of two, L = 24, Markel’s algorithm retains the first d stages of the radix-2 DIT
FFT algorithm and alters the remaining (r — d) stages by avoiding the computations of the
undesired (N — L) points. The ith stage, (i = d + 1 to r), contains 27~!L half butterflies
each requiring 4 real multiplications, 4 real additions, and 2 RAM read and 1 RAM write
operations of complex numbers. Note that the complex multiplication can be computed by
using 4 real multiplications and 2 real additions (4mult-2add scheme) or by using 3 real
multiplications and 3 real additions (3mult-3add scheme). In this chapter, it is assumed that
‘the 4mult-2add scheme is considered. The different requirements of the Markel’s algorithm
are given in Table 3.1. Skinner proposed a method to prune the input samples by modifying
the radix-2 DIT FFT algorithm [102]. Sorensen and Burrus [103] showed how this idea can
be adapted to prune the output samples by modifying the radix-2 DIF FFT algorithm and
called it as the Skinner algorithm. This Skinner’s algorithm retains the first d stages of the
radix-2 DIF FFT algorithm and alters the remaining (r — d) stages by avoiding the twiddle
factors, and using only additions. The ith stage, (i =d + 1 to r), requires 2 x 2" "L real
addifions, and 2 x 2" L RAM read and 2"~'L RAM write operations of complex numbers.

The requirements of the Skinner’s algorithm are also given in Table 3.1. Sorensen and

45

Table 3.1: Computational complexities of the different algorithms in the computation of a
subset of output samples of the 1-D DFT

Output-pruned radix-2 DIT FFT
Markel’s algorithm | Proposed algorithm
Real multiplications 2NlogyL — 4L 2NlogoL— 3N — T — 4L,
Real additions 3NlogoL+2N ~4L | 3NlogyL+ 3N — 2 — 4L
Address generations of complex numbers | Nlog,L+2N —2L | Nlog,L
Read operations of complex numbers NlogoL+2N —2L | NlogyL
Write operations of complex numbers Nlog,L+N—L NlogsL— (N —L)

Output-pruned radix-2 DIF FFT
Skinner’s algorithm | Proposed algorithm

Real multiplications 2Nlog,L 2Nlog, L — 3N —2L
Real additions 3NlogaL+2N — 2L | 3NlogaL+ 3N —3L
Address generations of complex numbers | NlogoL+2N —2L | Nlog,L

Read operations of complex numbers Nlog,L+2N —2L | Nlog,L

Write operations of complex numbers NlogrL+N~L NlogaL— (N —L)

Burrus proposed another method [103], that seems to be better than the algorithm of Markel
or that of Skinner in terms of arithmetic complexity. This is due to the use of the radix-2/4
FFT in the computation of the sub-transforms. However, the overall structural complexity
of the algorithm in [103] is much larger than those of the algorithms of Markel and Skinner,
which are based on the simple and regular structure of the radix-2 FFT. These three pruning
algorithms decrease the number of arithmetic operations relative to the full-length FFT.
However, no attempt has been made to minimize the number of data transfers, address
generations, and twiddle factor evaluations or accesses to the lookup table.

In this section, we propose efficient algorithms for the pruning of the output samples
based on both the DIT and DIF versions of the radix-2 FFT. The main difference between
the proposed pruning algorithms and those mentioned above is in the decimation process.
In the decomposition of the proposed method, the decimation is carried out only on a few
stages, all the other stages being grouped by an appropriate recursive process so as to min-

imize the number of arithmetic operations, data transfers, address generations and twiddle

46

factor evaluations or accesses to the lookup table.

3.2.1 Proposed Radix-2 DIT FFT Pruning Algorithm

The proposed method is similar to that of Markel in the sense that both the methods are
based on the radix-2 DIT FFT algorithm. The main difference, however, is that in the
proposed method only d stages are needed in pruning the output samples. Further, the re-
maining (r — d) stages are grouped and incorporated in the dth stage of the radix-2 DIT FFT,
This grouping provides a significant reduction in the overall structural and computational
complexities.

For the case of L =29 < N =27, the DFT given by (3.1) can be written as

_ N-1
X(m)=Y X)W, m=0,1,2,..,L—1 (3.2)
k=0

Therefore, the index k can be expressed by r binary bits, whereas for the index m, d bits are

sufficient. Thus, the product mk can be written as
mk =AB+CD (3.3)

where

A= Zd“lmd_l +29 "2y o4+ 2my + my,

B=2"tk 4+ 22 g 42T ey 27y,

C=2"my |+ 2d”2md_2 + ..+ 2m +my,

D=2 4 1+ ...+ 2k +ko,

my, k;=10,1and [€ [0, 7~ 1]. We observe that the factor CD in (3.3) cannot provide
the advantage of redundant operations when it is used to carry out the DIT decomposition

of (3.2). Consequently, in order to compute (3.2) by using a minimum number of stages,

47

we apply the DIT only when we use the first factor AB in (3.3), and group in one stage all
the stages resulting from the factor CD. Hence, we can perform the pruning operation using

only the d stages corresponding to the expressions given by

1 i—1 r—i
ford ford 2 i1t 2 ey
X; (mO---mi—lkr~i—l ko) = 2 X1 (mO-umi-—Zkr—i---kO) W1§ i1 mo) G4

kr—i=0

and

- 1 1 L
X (m()...md._lo...O) = Z 2 2 Xg_1 (mO---md—zkr-d---kO)
k0=0 kr__d_lzokr__dzo

chnzhdk,- 4 Wl:ln(zr-d-lk,-d_l +..thp) (3.5)
where i =1,2,...,d — 1 and Xp(k) = (k). The input is taken in the natural order so as
to obtain the output in the bit-reversed sequence. Thus, the desired narrow spectrum is
obtained by the bit-reversal of only L points of the dth stage. The set of equations given
by (3.4) represents the first (d — 1) stages of the radix-2 DIT FFT [32], and (3.5) represents
the dth stage obtained by a grouping of the last (r —d + 1) stages. Therefore, the problem
of pruning the output samples using a radix-2 DIT FFT can be divided into two distinct
parts. After expressing the indices by a decimal notation, the first part that contains the
(d — 1) stages corresponding to (3.4) can be efficiently calculated by the following recursive

relation

~ 1 0 ~.
Xr?nlfk,i‘—‘:H2 — X::,k,i’ i=1,2,..,d~1,
N
m=0,1,.,(L/2)~1, k=0,1,...,277" —1 (3.6)

48

where

R R ICEG

" & ()
in Xi1 (C%,i(k))
m,k,i 1

ey (k) = 27713 4k, el (k) = CD (k) +27*, and 7 denotes the bit-reversed value of
m. For each value of i, (3.6) corresponds to a stage. However, for a given stage and for
a spéciﬁc value of m and of , (3.6) represents a butterfly. For each stage there are N /2
such butterflies. Each butterfly requires 2 RAM address generations of complex numbers,
4 real multiplications, 6 real additions, and 2 RAM read and 2 RAM write operations of
complex numbers, In order to simplify the procedure for the address generation, we do
the bit-reversal of the exponents of the twiddle factors, which are generally precomputed
and stored in a lookup table. Recall that the first stage of the radix-2 DIT FFT does not
contain any twiddle factor and also the second stage requires only multiplications by — ;.
Therefore, the first (d — 1) stages require (NlogzL — N) RAM address generations of com-
plex numbers, (2NlogoL—6N) real multiplications, (3NlogaL — SN) real additions, and
(Nlog2L— N) RAM read and (NlogzL — N) RAM write operations of complex numbers.
It is seen from (3.6) that the indexing process introduced in the above development
not only simplifies the address generation, but has two other advantages. First, it allows
the processing of all the butterflies of the ith stage having the same twiddle factors, and
this can be easily done by fixing m and varying k from 0 to (27~ ~1),i=1,2,...,d - 1.
This technique provides a significant reduction in the number of address generations and
twiddle factor evaluations or accesses to the lookup table. The second advantage is that,
by this indexing process, it is easy to avoid trivial multiplications in (3.6) by starting each

stage with m = 0 and varying k. Additional savings are possible if the implementation is

49

designed to take advantage of the twiddle factors at the third stage.
The second part of the proposed algorithm is concerned with the last stage, represented
by (3.5). The (r —d + 1) summations in (3.5) are replaced by a single summation, and is

expressed, after using the decimal notation of the indices, by

. (N/L)-1 _
Xntoa= 3 (DnsHaD,Xi,,), m=0,1,..,(L/2)~1 3.7
k=0
where
Wik 0
Do = (L/2)+m)k
0w
and
1 0
0w

Since modern processors possess sufficient number of internal fast registers to store the
intermediate results, (3.7) can be efficiently implemented without requiring intermediate
storing in and loading from the RAM. This reduction in the number of RAM address gen-
erations, and read and write operations is one of the advantages of the equation given by
(3.7). There are only L points to be computed using (3.7), hence this part of pruning re-
quires only L write operations, and can be implemented as follows. For each value of m,
m=0,1, .., (L/2)~1, vary k in decreasing order from (N/L) — 1 to 0, generate the two
addresses for reading, read two points from the RAM, process the general butterfly of the
radix-2 DIT FFT, multiply the butterfly outputs by the twiddle factors, store the results in
registers, repeat the process for the second value of &, add these results to the previous ones
and store in the same registers, and repeat the whole process until £ = 0. Write the final
results in RAM using the last two address generated for reading. It is clear from (3.7) that

a large number of trivial multiplications can be easily avoided when m = k = 0. Thus, it

50

can be easily deduced that the second part of our decomposition requires N RAM address
generations of complex numbers, 6N — (2N /L) — 4L real multiplications, 7N — (N/L) — 4L
real additions, and N RAM read and L RAM write operations of complex numbers. If we
combine the computational complexities of the both the parts, we find that our decomposi-
tion presents a significant improvement in comparison with Markel’s algorithm, especially
in the address generation and data transfer; however, the number of real multiplications and

additions is only slightly reduced. In order to further decrease this number, we rearrange

(3.7) as

N wpaD-1
Xo0a= Y DmiXpp m=0,1,..,(L/2)~1 (3.8)
k=0
where
—X-::,k = Hsziﬁz,k,d+J2H2Dr2niz,k+21_v,:,d
1 i 3 i
o (HaDL X0+ BHDLXE,) 3.9)
o (3.10)
C2 = ; .
(1-j)
0 2
1 0
Ja= , (3.11)
0 —j
Dl _ wrEo0
m b]
0wy
D;, =W;iD,,
and

51

A close examination of the computational complexity of (3.8), taking into account the
number of operations introduced by each matrix in the calculation of (3.9) and the number
of trivial multiplications that can be avoided when m = k = 0, shows that the second part
-of pruning requires only {(19/4)N — (7N/2L) — 4L} real multiplications and {(13/2)N —
(TN /4L) — 4L} real additions.

The overall computational complexity of the proposed algorithm is summarized in Ta-
ble 3.1. The comparison of this complexity is made only with that of Markel’s pruning
algorithm, since the both these are based on the radix-2 DIT FFT algorithm. It is clear that
the proposed algorithm is far better than Markel’s, since all the operations that contribute
significantly to the execution time are reduced.

There remains another point, which needs to be discussed. It concerns the number of
twiddle factor evaluations or accesses to the lookup table. It can be shown that the number
of complex twiddle factors needed to compute (3.8) is {(9N/4) — (3N/2L) —2L —1}. To
reduce this number, we introduce a technique to implement (3.8) with a minimum number
of twiddle factor evaluations or accesses to the lookup table. Since D,,, « is a diagonal matrix

k+1)

and Wy,) = WIQ”‘W,(,", we get Dy i1 = Dy gDy Hence, by performing an appropriate

factorization, (3.8) can be efficiently implemented by expressing it as

iz’zo,d = ——'ll::,o + Dm,l (-X.:"ll,l + Dm,l (X;Z,z + .

cor Dt (Ko 25+ Dyt Xy 2 1)) (.12)

It is seen from (3.12) that for a given value of m, m =0, 1, ..., (L/2) — 1, it requires only 9
complex twiddle factors. Note that for m = 0, one complex twiddle factor is enough. Thus,

the number of complex twiddle factor evaluations or accesses to the lookup table is only

(9L/2) - 8.

52

3.2.2 Proposed Radix-2 DIF FFT Pruning Algorithm

In this section, a second efficient algorithm for the pruning of the output samples is pro-
posed. It is similar to that of Skinner in the sense that both the algorithms are based on the
radix-2 DIF FFT algorithm. This algorithm is derived by using techniques similar to those
in the previous section. It can be shown that it consists of two parts. The first part can be

efficiently calculated by the recursive equation given by

~ 1 0 ~.
’O"I:kai = i—1 Hzxzjk,i i=1,2, ey d — 1,
0 Wik
k=0,1,..,27" -1, m=0,1,.., (L/2)-1 (3.13)

The second part is given by the expression

X504 = X0+ D01 (X1 + Dot (Xyip + .

ADoKy w2+ D01 (K x1))...)) (3.14)

where m=0, 1, ..., (L/2) — 1. Since the entire second part needs only one complex twiddle
factor, this decomposition not only reduces the number of twiddle factor evaluations or
accesses to the lookup table, but also is suitable for the lookup table reduction techniques.
Note that the first d stages of Skinner’s algorithm can be computed by any radix-2 DIF
FFT. Assuming now that they are computed by (3.13), the dth stage requires (N/L) —
1 complex twiddle factors, since in general N >> L. Other advantages of the proposed

algorithm compared to that of Skinner are included in Table 3.1.

53

3.3 Output-Pruning of the 2-D DFT

Pruning algorithms are extremely important to avoid unnecessary computations in an FFT
algorithm, especially in the 2-D case where the task is more complex and the volume of

data larger. Using (2.51), the 2-D DFT of size (N x N) is given by

N N=1N-1
X(ni,m) =Y 3 Xk, k) Wit 0 <ny g <N-1 (3.15)
k1=0ky=0

Some of the existing 1-D FFT pruning methods reviewed in Section 3.2 have been ex-
tended in the literature to the 2-D case, and there are two widely used approaches for this
purpbse [107]-[109]. One of them is based on the row-column decomposition and the other
on a logical extension of the pruned 1-D FFT algorithm. It has been shown in [107] and
[108] that the latter approach is better than the former in terms of the arithmetic complex-
ity. For the case where only the first L x L, (L =29 <N=2"), output points of the DFT
given by (3.15) are needed, the latter approach [107], [108] retains the first d stages of
the radix—(2x2) DIT FFT algorithm and alters the remaining (r — d) stages by avoiding
the computations of the undesired (N2 — L2) output points. The ith stage, i =d +1, ...,
r, contains 4" L2 partial butterflies each requiring 3 complex multiplications, 3 complex
additions, 4 RAM read and 1 RAM write operations of complex numbers. Note that the
number of RAM address generations of complex numbers is equal to the corresponding
number of RAM read operations of complex numbers. These requirements of the radix-
(2x2) DIT FFT pruning algorithm [107], [108] are summarized in Table 3.2. Just as in the
case of the existing radix-2 DIT FFT pruning algorithm, the existing radix-(2 x2) DIT FFT
pruning algorithm [107], {108] has been derived mainly to reduce the number of arithmetic
operations relative to the full-size 2-D FFT. However, efficient 2-D FFT pruning algorithms
are not available to minimize the computational and structural complexities.

In this section, we explore the pruning method introduced in Section 3.2.1 for the case

54

Table 3.2: Computational complexities of the different algorithms in the computation of a
subset of output samples of the 2-D DFT

Output-pruned radix-(2x2) DIT FFT

Algorithm in [107], [108] l Proposed algorithm

Real multiplications 3N%logs L+ 4N? — 42 3Nlog, L+ HN? — 412
Real additions AN%logoL+4N* =41 | IN%iog,L + INT 412
Address generations of complex numbers | N%log, L+ %N 2452 Nlog)L

Read operations of complex numbers N%log,L+ IN? — 412 N%log, L

Write operations of complex numbers N%logyL+ IN*— 112 N?logoL — N*+ 12

of the radix-2 DIT FFT algorithm to develop an algorithm for efficiently pruning the output
samples of the radix-(2 x2) DIT FFT.

3.3.1 Proposed Radix-(2 x 2) DIT FFT Pruning Algorithm

Without loss of generality, we assume that only the first Lx L, (L=2% < N =2"), output

points are needed. Then, the 2-D DFT given by (3.15) can be expressed as

N-1N-1
X(mim) =Y ¥ F(ki k) Wyktmke oy my =0,1,2, .., L—1 (3.16)
k1=0ky=0

Therefore, each of the indices kjand &, can be expressed by r binary bits, whereas for each
of the indices m; and my, d bits are sufficient. Thus, the product mgkq, g =1,2, can be
written as

maky = AgBy +CyD, (3.17)

where
Aq =207 (mg)a-1 + 2972 (mg) a2 + ..+ 2(mg)1 + (mg)o,
By = -t (kg)r-1+ 2rwz(kq)r~2 + o2 (kq)r—d-H +24 (kg)r—a,

Cq =27 (mg)a—1 +297(mg) a2+ ... +-2(mg)1 + (mg)o,
Dy = 2" (kg)r—d—1+ .+ 2(kg)1 + (kq)o,

55

(mg)i, (kg)1=0,1forg=1,2and ! € [0,r—1]. We observe that the factor C,D, in
(3.17) cannot provide the advantage of redundant operations when it is used to carry out
the DIT decomposition of (3.16). Consequently, in order to compute (3.16) by using a
minimum number of stages, we apply the DIT only when we use the first factor Ay4By in
(3.17), and group in one stage all the stages resulting from the factor CyDy. Hence, we
can perform the pruning operation using only the d stages corresponding to the expressions

given by

X; ((m1)0--- (m11)ie1 (K1) rim1 oo (k1 Y05 (112) 00 (m2)i—1 (k2) i1 (k2)0) =

1
i > Xt ((m1)o-n-(m1)iza(kr)r—iee- (k1 Do, (m2)0---(ma2)ia (ka)r—i--(R2)o)

(kt)r—i=0 (kz)r—=0

WIE‘%:] (2i_1(mq)i—l+---+(mq)0)2r—i(kq)’“i (318)

and

X4 ((m1)0---(m1)g-10...0, (m2)o...(m2) 4—-10...0) =
1 1 1 1

)

(k1)o=0 (ki)r—g-1=0(k2)o=0 (kp)—g-1=0
1 1

: Y Xaor ((m1)o--(m1)a—2(kt)r—ge(ki)o, (m2)0-- (m2)d—2 (K2)y—a.--(k2)o)
(k1)r-a=0 (k2)-4=0
=t (217 madar im0)27 k) e
v

21 (27 mg)ac1 . +(mg)o) (270 (kg Y1+ kg o)

Wi (3.19)

where i = 1,2, ...,d — 1, Xp (k1 k) =% (k1, k>). The input is taken in the natural order so as
to obtain the output in the bit-reversed sequence. Thus, the desired narrow 2-D spectrum is
obtained by the bit-reversal of only L x L points of the dth stage. The set of equations given
by (3.18) may be recognized as corresponding to the first (d — 1) stages of the radix-(2x2)

DIT FFT [32]. The remaining (r —d + 1) stages of the FFT represented by (3.19) may be

56

grouped together into a single stage, the dth stage. Therefore, the problem of pruning the
output samples using a radix-(2x2) DIT FFT can be divided into two distinct parts. After
expressing the indices by a decimal notation, the first part that contains the (d — 1) stages

corresponding to (3.18) can be efficiently calculated by using the recursive relation given

by

(1 o0 0 0 -
SZ?'I:H k) (ma k)i =Hp X Wm22 ° ~i X i?'l" k1) (ma ko)i2
T 0 o wm 0 M
0 0 0wy

i=1,2,..,d—1, m,my=0,1,..., 27 —1, ky, ky =0,1,..,277 =1 (3.20)

where -
i (Cg” :l(kl) cmz L(kz))
iou _ X (C9n1,t(mz i(k2)>
(my k) (ma kp)i |)
%, (chy k1), €5, (2))
L Xl (c’!”lal(’ mz,i(k2))
[~ -
Xl 1 (Cgll,l(kl)’cg’lz,l (kZ))
Yin - X‘ 1 (Cg“ ,z(kl)’ crln))
(my ki)(mo k)i = | o ,
Xi1 (Cflnl,l (k]), sz l(kz))
L 551 H (rlnl l(kl)’cmzz kZ))
cg’q"'(k‘ﬂ = 2r~i+1;@ + kg, Crlnq,i(kq) C;?z i(kq) +271, and #7; denotes the bit-reversed

value of my. The second part of the proposed algorithm is concerned with the dth stage,

represented by (3.19). After using the decimal notation of the indices, the two (r —d + 1)-

57

summations in (3.19) may be replaced by the relation given by

<on (N/L)-1(N/L)-1 .
X(mho)(mz,())d: Z 2 D(m1,kl)(mz,kz)HZZDmlmZX(ml,kl)(mz,kz)dv

k1=0 k=0
my,my=0,1, .., (L/Z)-—-l (3.2DH
where
[W&nlkﬁmzkz 0 0 0
. 0 W&nlk1+(’i+m)k2 0 0
(mykp Y (ma ko) = 0 0 W]\s%-\‘-ml)kl-l*—m;)kz 0
0 0 0 W1$%+m1)k1+(%+'nz)k2

(1 0 o 0
w0 0

Dm;m; -

0
0 0 w0
0 0 0 wnmtm

In order to further improve the computation of the second part of our decomposition, let us

rearrange (3.21) as

N (N/ALY—-1(N/4L)—1
ou

X(ml,o)("u,o)d = Z D(mlakl)(m27k2)Xl(’rlnl,kl)(mz,kz)’
k=0 k=0

my,my=0,1,..., (L/2) -1

The expression of the input vector ﬁé’;h k1) (ma) in (3.22) is given by

58

(3.22)

Rl) = { Ko+ (28I Ko + (T2 To) (X + (L ©.J) Xy
+(L®e) _3('6"1 + (Lo k) Xg +(J2®1) ('}ZZ; +(L2®J) X’Z@)' }

+(€80) {Xiy + (Lo k)Xl + (Loh) (Xi+ (L 1) %)

+(L®c) Ti’i”l +(LeJ) X5 +U0h) ('X‘f;ﬁ +(I ®J2)X§’§): } (3.23)

The input vectors X—Zﬁ, o, B=0,1,2,3, in (3.23) are expressed as

it __ afiyrin
X(X = H22D X(ml ,k1+a£’£)(m2,k2+ﬁ%)d (324)

where D% = Dy, D% = DOW/™, and D = DBy ™.
Finally, to implement (3.22) with a minimum number of twiddle factor evaluations or

accesses to the lookup table, a recursive technique is introduced. Since D 1y k1) (o k) 18 2

mg(kg+1)

. . k
diagonal matrix and Wy, v

=Wy W;q, g=1,2, we get

1 2
D(mlak])(mZ,kz) = D(mlxkl)D(mZ;kZ)’
q _
D(mq’kq+l) - ngq,kq)ngq,l) (3.25)
where
W[(]"lkl 0
(mir) =~ Ii+m1)k1 ®I
0 Wy
and
szk; O
D2 ::I ® N
(rada) i 0 W}S% +my)k

Hence, by performing an appropriate factorization, (3.22) can be efficiently implemented

59

by expressing it as

Sou _ pou 1 oou
(m1,0)(mp,0)d — Xmlmz,() + D(ml,l) (Xmlm,l
w7FO0U

i 5 U i
+D(m1,1)(Xm1m2,2+ +D(m1,1)(XM1m2,1NL-—2

+D 1y K, -1))---)) (3.26)

1my, =1

where

—Ou o~ 2 o~
Xm1m2,k1 = Xl(rllnl k1)(my,0) + D(mz,l)(l(':m k1) (mz,1)
2 i 2 i
+D(m271)(Xl(’:nhkl)(m212) ot D(mlil) (Xl(r:n],kl)(mz,zNz—Z)

2 gin
+D(’”2’1)(Xl(ml,kl)(mz,%*l)))"')) (3.27)

my,my=0,1,...,(L/2)—land k1 =0, 1, ..., (N/4L) — 1.

We now consider the performance of the proposed pruning algorithm for the 2-D DFT
computation of a subset of output samples, when it is implemented using (3.20) and (3.26).
This is done by comparing its computational complexity with that of the existing 2-D prun-
ing algorithm [107], [108], since both these are based on the radix-(2x2) DIT FFT algo-
rithm. Note that when the desired output has a square support region (L x L), the algorithm
in [109] reduces to the existing algorithm [107], [108].

The proposed algorithm reduces the number of stages from r = log,N to d =log,L. The
advantage of this is that the overall structural complexity of the algorithm is significantly
decreased in addition to the reduction of the data transfers. This is achieved by dividing the
pruning operation into two distinct parts. The first part is concerned with the first (d — 1)
stages obtained by varying i in (3.20) from 1 to (d — 1). Each of these stages is performed
by repeating (N?/4) times the butterfly based on (3.20). Each butterfly operation requires

3 complex multiplications, 8 complex additions, 4 RAM read and 4 RAM write operations

60

of complex numbers. It is seen from (3.20) that the indexing process introduced in the
above development not only simplifies the address generation, but has two other advantages.
First, it allows the processing of all the butterflies of the ith stage having the same twiddle
factors, and this can be easily done by fixing m; and my, and varying k; and k; from 0 to
(27 —1),i=1,2,...,d — 1. This technique provides a significant reduction in the number
of address generations and twiddle factor evaluations or accesses to the lookup table. The
second advantage is that, by this indexing process, it is easy to avoid trivial multiplications
in (3.20) by starting each stage with m; or m; = 0 and varying k| and k. The first and
second stages (corresponding to i = 1, 2 in (3.20)) do not require multiplications any more.
Additional savings are possible if the implementation is designed to take advantage of the
twiddle factors at the third stage.

The second part of the proposed algorithm is concerned with the dth stage correspond-
ing to (3.26). The purpose of the recursive computation technique introduced in (3.26) is
to provide further savings in the data transfers, address generations, arithmetic operations,
and twiddle factor evaluations or accesses to the lookup table. From (3.26), it can be seen
that the second part of the proposed algorithm requires L*[(N /4L) — 1] complex multipli-
cations, L2[(N/4L) — 1] complex additions, L?> RAM write operations of complex numbers
and to perform (LN /16) times the operation given by (3.27). The expression given by (3.27)
requires 4[(N/4L) — 1] complex multiplications, 4[(N/4L) — 1] complex additions and to
perform (N/4L) times the operation given by (3.23). Finally, (3.23) requires 63 complex
multiplications, 6 multiplications by (1 — j)/v/2, 188 complex additions and 64 RAM read
operations of complex numbers. It is shown that the number of complex twiddle factor
evaluations or accesses to the lookup table needed by (3.26) is (65L%/4) + L. In counting
this number and that of the data transfers, it is assumed that sufficient number of internal
fast registers are available in the processor to store the intermediate results and to keep the

twiddle factors for the succeeding operations.

61

The overall computational complexity including the trivial multiplications (multipli-
cations by =+1) of the proposed algorithm as well as that of the existing output-pruned
radix-(2x2) DIT FFT algorithm [107], [108] is summarized in Table 3.2. It is assumed
that the 4mult-2add scheme is considered. It is clear from this table that the proposed algo-
rithm is far better than the algorithm of [107], [108], since all the operations that contribute

significantly to the execution time are reduced.

34 Summary

In this chapter, we have proposed an efficient method, applicable for both DIT and DIF de-
compositions, for pruning the output samples in a radix-2 or radix-(2x2) FFT algorithm. It
has been achieved by grouping in a radix-2 or radix-(2x2) FFT algorithm the last (r —d +1)
stages that involve unnecessary operations into a single stage and introducing a new recur-
sive technique for computing the resulting dth stage. Due to this grouping and the efficient
indexing process introduced in this chapter, the implementation of the proposed pruning al-
gorithms requires only d stages, whereas the existing pruning algorithms requires r (r > d)
stages. Therefore, the overall structural complexities of the algorithms are substantially
reduced by using the proposed method. In addition, it has been shown that significant re-
duction in the computational complexity can be achieved using the proposed method, yet

retaining all the features of the Cooley-Tukey FFT algorithms.

62

Chapter 4

Higher Radix Approach for the

Computation of DFTs

4.1 Introduction

The previous two chapters dealt with the exploitation of the radix-2 approach in developing
new attractive algorithms and methods that provide significantly reduced computational
and structural complexities compared to those of the existing ones. The idea of the radix-
2 approach was originally introduced by Cooley and Tukey in 1965 [3] for computing a
length-N DFT, where N is an integral power of two. Later, it has been used to develop
more efficient algorithms, namely radix-4 [12], [95], radix-8 [4], [92], [112] and radix-16
[32], [84] FFT algorithms. The number of stages required by the radix-16 FFT algorithm is
three-quarters, one-half and one-quarter of that required respectively by the radix-8, radix-4
and radix-2 FFT algorithms. If the algorithms are implemented on processors that possess
sufficient internal registers to perform an entire butterfly without extra transfers, a higher
radix FFT algorithm reduces the number of all the operations such as arithmetic operations,

data transfers, address generations, and twiddle factor evaluations or accesses to the lookup

63

table compared to the corresponding numbers required by lower radix FFT al gorithms.

In this chapter, an efficient technique for further improving these higher radix FFT
algorithms is proposed [113], [114]. It is achieved by introducing new indices for some
of the sub-sequences resulting from the conventional decompositions in these algorithms.
This is realized without any increase in the computational or structural complexities of the
algorithms. Sections 4.2, 4.3 and 4.4 consider respectively the cases of radix-4, radix-8 and

radix-16 FFT algorithms.

4.2 An Improved Radix-4 DIF FFT Algorithm

If N is assumed to be an integral power of four, the DIF decomposition of the length-N DFT
given by (3.1) can provide in the first stage four length-N /4 DFTs given by

N/4—1

X(4n) = 2 Bo(k)Wihy, n=0,1,.., (N/4~1) (4.1)
N/4—1

X(4n+1)= 2 SWe n=0,1, ..., (N/4~1) (42)
_ N/4—1

X(4n+2)= Y &kWyi,, n=0,1,..,(N/4—1) (4.3)
k=0

N/4-1
X(W-+dn=mod) = 35 Fa(OWify n=01,.., W/4-1) 40

where the input sequences go(k), g1 (k), g2(k) and g__1 (k) are expressed in a matrix form as

[~ 1 [)

go(k) *(k)

O pzor, | Y o ey as)
b /2

B e+ 2n/9)

64

In (4.5), the twiddle factor matrix F4 1 is given by

-

Fay =

1 0 0 o
0wtk 0 o0
0 0o w o

0 0 0 wt

and the constant matrices Z4, D4 and Ry by

Zy=

Dy =

[10 1 o0
01 0 1
1 0 -1 0
01 0 -1
- -
1 00 O
010 0
001 0
000 —j
10 1 0
10 -1 0
01 0 1
(01 0 -1 |

(4.6)

4.7)

(4.8)

“4.9)

This decomposition scheme is identical to that of the conventional radix-4 DIF FFT algo-

rithm, except for a slight difference, yet with a significant implication. This difference is

in the indexing of the output sub-sequence given by (4.4) and leads to the twiddle factor

matrix given by (4.6). The radix-4 DIF FFT algorithm resulting from this new decom-

position will, henceforth, be referred as the improved radix-4 DIF FFT algorithm. It is

65

seen from (4.6) that only 4 real twiddle factors (cosine and sine) need to be evaluated
or loaded from the lookup table during the processing of the improved algorithm, since
Wy = cos (57k) — jsin (3k) and Wy* = cos (2&k) + jsin (3%k). However, the general
butterfly of the conventional radix-4 DIF FFT algorithm requires 6 real twiddle factors.
Consequently, a saving of 33% is achieved by the improved algorithm in terms of the twid-
dle factor evaluations or accesses to the lookup table. Note that, when the lookup table is
used, similar savings are obtained in the address generation. This improvement is achieved
without any increase in the computational and structural complexities of the algorithm. The
genefation of the new address (N +4n — 1)modN introduced in (4.4) does not require any
additional complexity as compared to its corresponding address (47 --3) of the conventional

radix-4 DIF FFT algorithm, since

N—1, forn=0
(N+4n—1)modN = (4.10)

4n —1 elsewhere

4.3 An Improved Radix-8 DIF FFT Algorithm

If the length N is assumed to be an integral power of eight, the length-N DFT given by (3.1)
can be decomposed in the first stage, using the DIF scheme, into eight length-N /8 DFTs

given by
N/8-1
X(8n) = Z ho(k N/S, n=0,1,..,(N/8-1) (4.11)

N/8—1
X(@8n+1)= 2 by (k)W igs n=0,1,.., (N/8—1) (4.12)

N/8—1
X(8n+2)= Y k) N/g,n=0,1,...,(1v/s—1) (4.13)

k=0

N/8—-1

X@n+3)= Y h(k)W, g 1=0,1,..., (N/8~1) (4.14)
k=0

66

N/8-1
X(8n+4) = Z ha(k) N/S,n— 1, (N/8—1)

N/8—1
X ((N+ 8n—3)modN) = S hs(k)W, Mg n=0,1, ..., (N/8~1)
k=0

_ N/8—1
X((N+8n—2)modN) = ¥ h_yf N/g, n=0,1,..,(N/8-1)
=@

N/8—1
X((N+8n—3)modN) = DI RT(3)./ /8,n~01 ~ (N/8=1)
k=0

where the input sequences in (4.11)-(4.18) are expressed in a matrix form as

- - - .

67

ho(k) x(k)
b (k) F(k+N/8)
By (k) X(k+N/4)
f3(k) — Py ZeDsReTsPg | TN/ | 0,1, ..., (N/8—1)
ha(k) F(k+N/2)

h_s(k) X(k+5N/8)

h-a(k) F(k+3N/4)

| ha(k) | | X(k+7N/8) |

(4.15)

(4.16)

@.17)

(4.18)

4.19)

The twiddle factor matrix Fgy in (4.19) is given by

(10000 0 0 o]
0g 0 0 0 0 0 O
004 0 0 0 0 O
Fyy = 0004 0 0 0 O 420)
000 04 0 0 0
000 0 0 43 0 o0
000 0 0 0 g2 0
(000 0 0 0 0 g7!]
and the constant matrices Zg, Dg, Rg, Ts and Pg by
(101 000 0 0]
01 0 1 00 0 0O
10 -1 0 00 0 0
Zo = 01 0 =100 0 0 @21)
00 0 0 10 1 0
00 0 0 01 0 1
00 0 0 10 -1 0
(00 0 0 01 0 —1]

68

i

Dg

(e e B o N e e B o N
o O o o o

i

Rg

o O O O o ©
[e s N s}
(== = N =

o R e = N e T - T o B
(o R o D = = T e B o
(=T o B o B o B

(== o B v B

69

(== = N
oo o o O

[R o B)

[ew T < S o B o)

-0 o o O

oo o

[e=]

e R e N s N = N = B« }

oo O o O

0 0
0 0
0 0
0 0
0 0
0 0
10
0—]_
0 0
0 0
0 0
0 0
10
1 0
0 1
0 -1
0 0]
0 0
0 0
0 0
0 0
0 0
—j 0
0 B |

(4.22)

(4.23)

(4.24)

(1000 1 0 0 0]
01000 1 0 0
00100 0 1 0
P | 0001 0 0 0 1 425)
1000 -1 0 0 0
01000 -1 0 0
00100 0 —1 0
0001 0 0 0 -1

where g = Wk, a = %—2(1 —j)and B = —%2(1 + /).

This decomposition scheme is identical to that of the conventional radix-8 DIF FET
algorithm, except for a slight difference, yet with a significant implication. This differ-
ence is in the indexing of the output sub-sequences given by (4.16)-(4.18) and leads to
the twiddle factor matrix given by (4.20). The radix-8 DIF FFT algorithm resulting from
this new decomposition will, henceforth, be referred as the improved radix-8 DIF FFT
algorithm. It is seen from (4.20) that only 8 real twiddle factors need to be evaluated
or loaded from the lookup table during the processing of the improved algorithm, since
Wo* = cos (3 pk) — jsin (% pk) and WA?pk = cos (£ pk) + jsin (Zpk) for p=1, 2, 3.
However, since the elements of the corresponding diagonal twiddle factor matrix of the
conventional radix-8 DIF FFT algorithm are W,@k, forg=1,2,3,4,5,6, 7, the general
butterfly of the conventional radix-8 DIF FFT algorithm requires 14 real twiddle factors.
Consequently, a saving of 42% is achieved by the improved algorithm in terms of the twid-
dle factor evaluations or accesses to the lookup table. Note that, when the lookup table is
used, similar savings are obtained in the address generation. This improvement is achieved
without any increase in the computational and structural complexities of the algorithm. The

generation of the new indices (N +8n—1)modN, (N+8n—2)mod¥ and (N +8x—1)modN

70

introduced, respectively, in (4.16)-(4.18) do not require any additional complexity as com-
pared to the corresponding indices (8n+5), (824 6) and (8n-+7) of the conventional radix-8
DIF FFT algorithm, since

N-p, forn=0
(N +8n— p)modN = ,p=1,273 (4.26)
8n — p elsewhere

4.4 An Improved Radix-16 DIF FFT Algorithm

Let us first give a brief review of the conventional radix-16 DIF FFT algorithm. By assum-

ing that N is an integral power of 16 and changing the variables » and & in (3.1) by

16n+p,0§nsf—v6——1,OSp315 4.27)
and
N N
—, 0<k< —— <g< .
k+q16 0<k T 1, 0< g <15, (4.28)

respectively, the DFT given by (3.1) can be expressed as

N/16~-1 N
X(16n+p) = kzo o)Wy Wikis, 0<n < Tk (4.29)
where
15
k) =Y % (k+q)W{’ﬁq, 0<p<l15 (4.30)
q=0

For a given value of p, (4.29) is recognized as a length-— DFT, whose input sequence is
obtained from (4.30) after multiplying it by the twiddle factors. For a given value of £,
(4.30) is recognized as a 16-point DFT that can be expressed in a matrix form as

Y = WX, 4.31)

71

where Wig is the operator matrix of the DFT of length 16. The components of the input

and output vectors of (4.31) are related to the input and output sequences of (4.30) by

- N N
Xi(p) =x(k+qﬁ)

and

Yi(p) = 5 (),

respectively. From (4.29) and (4.31), the butterfly of the conventional radix-16 DIF FFT
algorithm is given by

Y = FOIVW 6K, (4.32)

where

conv _ . k oywok wik vk sk wok ok
Fisp = dlag<1»W16vW161W16vWl6’W163W16vW167

Wi WiGs Wi, Wigh, wigk, wigk, wi, wik) (4.33)
and the components of the vector Yy, are related to the input sequences of (4.29) by
7 ~ k
Yi(p) =y, (k)Wy

Thus, the radix-16 DIF FFT algorithm decomposes the length-N DFT into 16 length- %
DFTs given by (4.29) in the first stage. This is achieved by repeating %"6 times the butterfly
given by (4.32). This decomposition process is applied successively for each of the new
resulting DFTs until the size is reduced to 16-point DFTs. The entire algorithm requires
log,¢N stages.

Ih order to further decrease the number of twiddle factor evaluations or accesses to

the lookup table in the conventional radix-16 DIF FFT algorithm, we introduce a slight

72

modification in the indexing process of some of the DFTs given by (4.29). This leads to a

new algorithm that provides in its first stage 16 length-—— DFTs given by

N/16-1

X(tn)= Y Jo(k)Whie, 0<n < % -1
k=0

N/16-1 N
X(len+1)= ¥ 3 (D)WW 16, 0<n < T
k=0

N/16-1 N
X(16n+2) = 1; V2ARYWF Wit 0<n<e-1
N/i6-1 N
X(16n+3)_ E yS(k)WN N/167 0<7’l<—1—6—-1
k=0
_ N/16-1 N
X(16n+4)= Y Fa(k)Wyw, (P 0<n<o—1
k=0
N/16—1 ” N
X(16n+5) = k;) y5(k)Wy WN/16, 0<n<E—1
_ N/16—1 N
X(16n+6)= 3, Fo(k)Wy Wk, 0<n< -1
k=0
N/16—1 N
X(16n+7)= Y F(k)Wek WN/16, 0<n< Tk
k=0
_ N/16—1 N
k=0

N/16-1

X((N+16n—TymodN) = ¥ Fo(k Wy Wi 0<n< % -1
k=0

_ N/16~1 N

X((N+16n—6)modN) = ¥ Fio(k)Wy Wik s, 0<n< !
k=0

- N/16-1 N

X((N+16n—5/modN) = 3 11 (k)Wy Wy, 0<n< 1
k=0

73

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

4.41)

(4.42)

(4.43)

(4.44)

(4.45)

N/16-1

R((V+16n—4modV) = Y Fra(k)Wy Wik, 0 <n< f’—6 -1 (4.46)
k=0
N/16—1 N
X((N+16n-3)modN) = 3 513 (k)Wy W, /]6, 0<n< -1 (4.47)
k=0
_ N/16-1 N
X((N+16n—-2)modN) = Y F4(k)Wy> WN/16, 0<n< T (4.48)
k=0
N/16—1 N
X((N+16n—)modN) = ¥, Fis(k)Wy* Wik, 0<n< -1 (4.49)
=0

The radix-16 DIF FFT algorithm resulting from this modification in the indexing process
will be referred as the improved radix-16 DIF FFT algorithm. The decomposition scheme of
this improved algorithm is identical to that of the conventional radix-16 DIF FFT algorithm.

Similar to the conventional radix-16 DIF FFT algorithm, the butterfly of the improved

radix-16 DIF FFT algorithm can be constructed from (4.34)-(4.49) as
Vi =Figy WieX; (4.50)

where
im .
FIG,I? = dlag(lawleastW Wig, Wig, Wix, Wig,

~Tk —6k —5k —4k —3k —2k ~k
W16 ’ Wl6 ’ W]6 ’ Wl6 : W16 ’ Wl6 ? W16 1 W16) (4.51)

It is clear that the DFTs given by (4.34)-(4.42) in the improved radix-16 DIF FFT al-
gorithm are identical to the corresponding DFTs in the conventional radix-16 DIF FFT
algorithm. However, the remaining DFTs given by (4.43)-(4.49) slightly differ from the
corresponding DFTs given by (4.29). The modification of the indexing process introduced
in (4.43)-(4.49) leads to the twiddle factor matrix given by (4.51) of the butterfly of the
improved radix-16 DIF FFT algorithm, which is different from that given by (4.33) of the

74

butterfly of the conventional radix-16 DIF FFT algorithm. This slight difference has a sig-
nificant implication. It is seen from (4.51) that, since W&* = cos (% pk) — jsin (% pk) and
ngk = cos (3 pk) + jsin (¥pk) for p=1,2,3,4, 5,6, 7, only 16 real twiddle factors
need to be evaluated or loaded from the lookup table during the processing of the butterfly
given by (4.50) of the improved FFT algorithm. However, since the eleménts of the matrix
given by (4.33) are W, for q=1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, the butterfly
given by (4.32) of the conventional FFT algorithm requires 30 real twiddle factors. Con-
sequently, savings of more than 46% are achieved by the improved algorithm in terms of
the twiddle factor evaluations or accesses to the lookup table. Note that when the lookup
table is used, similar savings are obtained in the address generation. This improvement
is achieved without imposing any additional computational or structural complexity in the
algoﬁthm.

The generation of the new indices (N + 16n — p)modN, for p =1, 2, 3, 4, 5, 6, 7,
introduced in (4.43)-(4.49), of the improved radix-16 DIF FFT algorithm does not impose
any additional complexity as compared to the corresponding indices (16n -+ q), for g = 9,

10, 11, 12, 13, 14, 15, of the conventional radix-16 DIF FFT algorithm, since

N—p, forn=0
(N +16n— p)modN =

bl

16n — p elsewhere

p=1,2,3,4,5,6,7 4.52)

75

4.5 Summary

In this chapter, improved algorithms for radix-4, radix-8 and radix-16 FFTs have been
proposed by introducing new indices for some of the sub-sequences resulting from the con-
ventional decompositions in the radix-4, radix-8 and radix-16 FFT algorithms. It has been
shown that savings of more than 33%, 42% and 46% in the number of twiddle factor evalua-
tions or accesses to the lookup table can be achieved using the proposed radix-4, radix-8 and
radix-16 algorithms over the corresponding conventional FFT algorithms without imposing
any additional computational or structural complexity. In addition, it should be mentioned
that the hardware implementation of the architectures [115] employing the proposed FFT
algorithms can result in a reduced number of ROM modules.

The technique introduced in this chapter for improving the higher radix approach will

also be used in Chapter 6.

76

Chapter 5

Radix-2/4 Approach for the
Computation of 3-D DFT and DHT

5.1 'Introduction

The radix-2 approach was used in Chapter 2 to reduce the complexity in the computation of
the DFT and DHT of arbitrary dimensions. As discussed in Chapter 4, the radix-4 approach
provides a lower computational complexity compared to that provided by the radix-2 ap-
proach. Ithas been shown in the literature that the simultaneous use of these two approaches
leads to 1-D [11], [17], [45], [56], [57] and 2-D [29], [30], [64] FFT and FHT algorithms
having a good compromise between the arithmetic and structural complexities. The num-
bers of data transfers, address generations, and twiddle factor evaluations or accesses to
the lookup table required by these algorithms are lower than those required by the corre-
sponding algorithms that are based on the radix-2 approach. However, in the case of three
or higher dimensions, the simultaneous use of the radix-2 and radix-4 approaches that may
provide efficient solutions has not yet been studied. This is mainly due to the fact that

the simultaneous use of these two approaches in the case of higher dimensions is neither

77

obvious nor straightforward.

In this chapter, the problem of reducing the complexity in the computation of the 3-D
DFT and DHT is addressed and a method proposed for the simultaneous use of the radix-2
and radix-4 approaches in the 3-D case. This method consists of two steps. In the first
step, the general decomposition method proposed in Chapter 2 is used to decompose the
3-D DFT or DHT using the radix-(2 x 2 x 2) index maps. In the second step, a further
decomposition is carried out to introduce radix-(4 x 4 x 4) index maps. The introduction
of these two steps and an appropriate use of the Kronecker product enable us to design 3-D
FFT [116], [117] and FHT [118], [119] algorithms whose butterflies are characterized by
simple closed-form expressions. The proposed solutions for the 3-D DFT and DHT are

given in Sections 5.2 and 5.3, respectively.

5.2 Radix-2/4 Approach for the Computation of 3-D DFT

The conventional method of reducing the computational complexity in the computation of
the 3-D DFT is by applying sequentially a 1-D FFT algorithm to each of the three dimen-
sions of the input sequence. This is called the row-column method [26], [35]. Another
popular algorithm is the 3-D radix-(2 x 2 x 2) FFT algorithm [24], [26], [32], which is
based on a philosophy similar to that of the 1-D radix-2 FFT algorithm [3]. The radix-
(2 x 2 x 2) FFT substantially reduces the number of arithmetic operations over the row-
column method. Although the polynomial transform algorithm [25], [34] requires the low-
est number of multiplications, it is not widely used in view of its complicated structure
compared to the existing radix-based FFT algorithms. Duhamel and Hollmann have shown
that in the 1-D case the radix-2/4 approach provides the best compromise between the arith-
metic and structural complexities [11]. This approach has been extended to the 2-D DFT

case using DIT [39]. The DIF version of the algorithm in [39] has been formulated in

78

[28] using a matrix form. Alternate versions of these 2-D FFT algorithms have been given
in [29] using an algebraic formulation. However, no algorithm exists for three or higher
dimensions using the radix-2/4 approach.

In this section, we propose a new radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FFT algorithm for
computing the 3-D DFT, based on a mixture of radix-(2 X 2 x 2) and radix-(4 x 4 x 4) index

maps, coupled with an appropriate use of the Kronecker product.

5.2.1 Proposed Radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FFT Algorithm

Using (2.51), the 3-D DFT of size (N X N x N) is given by

1 N—1N-1 "
X (n1,n2,n3) E > Y F(ki ko, ks) WN’— ™
ky=0ky=0k3=0
0<m<N-1,i=1,273 (5.1)

In this section, we introduce a new DIF decomposition of the 3-D DFT given by (5.1)
using the radix-2/4 approach. This decomposition is performed using two steps. In the
first step, we use radix-(2 x 2 x 2) index maps to decompose the DFT given by (5.1) into
eight DFTs. In the second step, we introduce radix-(4 x 4 x 4) index maps by further
decomposing some of these resulting DFTs.

Let us first introduce radix-(2 x 2 x 2) index maps by changing the variables k; and »;

in (5.1) by
h+§m05hs§—hh:m1 52)
and
N
2n; +my, OSniSE—l, m=0,1 (5.3)

79

respectively. Then, (5.1) is decomposed into eight (¥ x ¥ x &)-point DFTs given by

N/2-1N/2~1N/2—1

t=-3 lkl
X@m2mom)= 3 3 3 Foo(kika k) Waigt ™,
k=0 k=0 k3=0

Ognigg——l 54

N/2-1N/2—1N/2—1

~ ~ = zki
X(2m2m.2m+1)= Y 3 Y Foor (ki ko, ks) WS W%/’zn ;
k=0 k=0 k3=0

Ognigl—;,-—l (5.5)

N/2—-1N/2—1N/2—1

X(@2n,2m+12m)= 3 Y 3 Foo kl,kz,kz)W/\?W;\%/’Eln' ,
B=0 k=0 ks=0

Ognigg—l 5.6)

_ N/2—-1N/2—-1N/2~1 T
X(m,2m+12m+1) = 3 3 ¥ ou (ki ko, ks) Wy oWt ™,
k=0 k=0 k=0

Ognigg-—l 6.7

N/2—-1N/2—1N/2~1

i
X@2n+12m2m)= % ¥ Y ymo(kl,kz,kgwl’;lw,?;;" ,
k1=0 k=0 k=0

OSniSJ—;——l (5.8)

80

B N/2-1N/2-1N/2-1 -
X(@2m+12m2m+)= 3 ¥ ¥ Jia (kl,kz,ka)W,l\C,‘+k3W1§/'§‘"”,
k=0 k=0 #k;3=0

O_<_ni_<_§—1 (5.9)

~ N/2-1N/2-1N/2~1 53 ks
XCm+12m+12m)= Y » Y)7“()(kl’kz’k3)W/\c'l+k2WN/i31 o
k=0 k=0 k3=0

OSnng—l (5.10)

- N/Z——IN/Z——IN/Z——I 23 .
X(2n1+1,2n2+1,2n3+1) = 2 2 2 5,’111 (kl,kz’k?))WNkl+k2+k3WN/i§1nr 1’
k]=0 k2=0 k3=0

N
ngligi—l (5.11)

The sequences y__(k1,k2,k3) in (5.4)-(5.11) are obtained from the original input sequence
X (k1,kz,k3) using

- - N
Yy ko ks = Hp3Xpy k.15, 0 < ki < 51 (5.12)

where
% (k1 ka, k3)

X(k1,ka,k3+N/2)
X(k1,ky +N/2,k3)

B bt = % (ki ky +N/2,ks +N/2) ’ 519
F (k1 +N/2,kp, k3)

Z(ki +N/2,kz, k3 +N/2)

(ki +N/2,ky +N/2,k3)

| ¥(ki +N/2,kp+N/2,k3+N/2) |

81

yooo (k1,k2,k3)
Yoot (k1,k2,k3)
Yoto (k1,ka,k3)
Tu = | 01 b arH) (5.14)
Y100 (k1,k2,k3)
y1o1 (k1,k2,k3)
Y110 (k1,k2,k3)
Y111 (ky, k2, k3)

and the Hadamard matrix Hy in (5.12) can be factored using (2.8). The decomposition of
the DFT given by (5.1) into the DFT's given by (5.4)-(5.11) represents the first stage of the
decomposition in the radix-(2 x 2 x 2) DIF FFT algorithm presented in Section 2.5.1.

In order to develop a radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithm, we further decompose
the DFTs given by (5.5)-(5.11) to introduce radix-(4 x 4 X 4) index maps. Let us start by
the decomposition of the even-even-odd indexed terms, which correspond to (5.5). First,

we change the variables k;’s by

k,'—{»—%v—l,', 03](,‘5%—1, [;=0,1 (5.15)

Then, the DFT given by (5.5) becomes

B N/4—1NJ4—1N/4—1
X (2n1,2n3,2n3+ 1) = Z
N=0 k=0 ks=0
1 1 1
~ N N N . K 3 ki
Y 2 2 oo (k1+~lhk2+~lzak3+—-la) (~J)’3(—J)Z'=*”’l‘] W Wit ™,

l1=001=013=0 4 4 4

OSn,-S%—J (5.16)

82

Now, we change the frequency variables n;’s in (5.16) by
N
2n; -+ my, OSniSZ—-—l, m;=0,1 5.17)

Then, (5.16) becomes

N/4—IN/4~1N/4—-1 3 nik

kg

X(4n1+p,4n2+q,4n3 +Y 2 2 2 Yoo1 (k1)k21k3)WN/Zl)
k1=0 k=0 k3=0

N
0<m<7-1,pg=027=13 (.18

It is clear that (5.18) represents a set of eight (¥ x & x &')-point DFTs that are obtained
by further decomposition of the even-even-odd index terms given by (5.5) using the radix-
(2 x 2 x 2) index maps given by (5.15) and (5.17). By a similar technique, the other odd-
indexed terms given by (5.6)-(5.11) can be expressed, respectively, as
' N/4—1N/4—1N/4—1
X (4n1-+ p,4ny +B,4n3 + q) = klg() k22_0 k320 SR (ko ey Wt ™,

0<m<Y-1,pg=02p=13 (19

N/4—1N/4~1Nj4—1

R4 1 ik
X(4n1+p)4n2+ﬁa4n3 +Y) Z Z 2 y()ll (klvkz,k3) El " I
k=0 ky=0 k3=0

0<m<y-1,p=02By=13 (520

N/4—1N/4~1N/4—1

~ =] lkl
XA +o,dny+pdns+q)= D Y Y Fidd (ki ke, ks) Wy 2 .
=0 k=0 k=0

N
0Sm<7-1,pg=02a=13 (521

83

N/4—1N/4-1N/4-1

o~ lkl
X(dm+a,dm+pdn+y)= Yy ¥ Y i%’?(kl,kz,ka)W,@:" :
k=0 k=0 k=0

0Sm<y-1,p=02 ay=13 (2

N/4—1N/4—1N/4—1

5(/(4711‘*‘&,4”2-{-6,4”3 +p) Z 2 Z yl]() (k13k25k3)W]§/Z nl)
k=0 k=0 k=0

N
Osnisz_1$p:()121 G"B:173 (523)

. N/4—IN/4—-1N/4~1 3k

niK;

X (4n1 +0,4n + B, 4n3 +y) = DYDY ym("1”‘2”‘3)“’1\1/31 ’
k1=0 k=0 k3=0

OSnis%’—l, why=1,3 (524)

The input sequences - (k, k2, 43) of the DFTs given by (5.18)-(5.24) are, respectively, the

components of the vectors given by

-~ N
Yg?,lkz,k;; = F]??,lkz,kg,HZs (12 ® 12 ®J2) Ygokz k32 0 < k < Z - 1 (525)
010 _R0I0 oo 010 N

ky ko ks = Fky, kz kyTR23 (L®J:8L) kuyko,kyy O < ki < 4 1 (5.26)
o1 N

kl,kZ k3 kl,kz k3H23 (12 ®J2 ®J2) Yk1 k2 k37 0 < k < Z - 1 (527)
o < N
Y5t =F o Hy (10 Lo L) Y5k 0< ki < 71 (5.28)
o < N
Yiooks = Fioty s Ho (2@ L ®J) YO, |, 0<ki< 7! (5.29)
110 5110 N
Ykhkz,k3 Fkl kz,k3H23 (J2 ®J200) Ykl,kz,k3’ 0<k< 4 1 (530
o < N
Yiots = Fioo i (120 81) Vil 4y, 0< ki< 2 -1 (5:31)

84

In (5.25)-(5.31), the matrix J; is given by (3.11), while the components of the input and out-
put vectors iv(,q ko, Kz 80 ?751', k. k; a0d those of their corresponding diagonal twiddle factor

matrices Fk'{, ks, ks ATC given by

i/}c?(,)llcz,kg(a) 237001 (kl +p%,k2 +q%,k3 +(Y" 1)1%/_)

?/g?’lcz,k:s (a) = %Oq (kl ’ k2vk3)

ky-+yk (5.32)
W]\I;kl +qka-+vks

001 _
F/q,kz,k3 (a,a) =

Wherea=2p+q+y—}l, p,9=0,2,y=1,3

}7121,22 15 (D) = Jo10 (k1 +p% o+ (B -)Y ks +q¥)

12322 1 (D) = ym d (ki ko, k3)

010 k4Bl +gls
k1 k2, k3 (b b) WN

whereb:2p+[3~1+%, p,g=0,2, f=1,3

(5.33)

f Y (@ =%ou (ki +p¥ ko + (B~ 1), ks + (v — DY)

) PO 1 (0) = 50T (K ko, k)

011 _ i Pki+Bhatvks
F}q,kz,ka (C C) =Wy

wherec:2p+B—1+Y—_—l, r=0,2, B,y=1,3
7

(5.34)

B () =500 (ki + (0t~ 1) ¥ ko + p¥ s +g¥)

kll?gz,lg (d) y?goq (kl . k2vk3)

100 Odcl +pkay+qks
k] ka k3 (d d)

whered =2(a—-1)+p+%, p,g=0,2, a=1,3

(5.35)

kll(,)llcz k(&) =50 (k1 + (0 - 1)§ ko +pF ks + (v~ 1))
Ykll(a)}iZ,h (€) =101 (ki k2, k3)

ock + pky+vk

Fkll?llcz 1 (e e) = Wy TP

{ Wheree=2(06—1)+p+1'—2—, r=0,2, o,y=1,3

(5.36)

85

kllfgzig(f) Fuo (ki + (o~ D) F,k+ (B—1)¥ k3 + p¥)
) klxl,gz,ka(f) ﬁlf(kl,kz,kﬂ

otk +Pa-+pk 637
k111,22 kz(f’f) Wy -
| where f=2(0.—~1)+B-145, p=0,2, a,p=1,3
and
(
YL 6@ =51 (ki + o= DY o+ B 1Y,k + (v~ D)
) Tk =581 k) 558

Flil
k, ky, ks (&)

whereg=2(a-1)+B~1+%l, a,B,y=1,3

ok +Pko ks
WN

For a given combination of (ki,k»,ks), each of the seven general sub-butterflies given by
(5.25)-(5.31) computes 8 points using (5.12). In order to compute, for a given combina-
tion of (k1,kz,k3), all the points required in the computation of these sub-butterflies, we

rearrange (5.12) as

Vit ¥ ot ¥ty = WX 8 8 g,

ng,-g%—l, ;=0,1 (5.39)

Itis clear from (5.13) and (5.14) that for a given combination of (k1,k2,k3), (5.39) computes
64 points from the initial input sequence ¥'(k1,kz,k3), where 8 points are used to form
the input sequence 300 (k1,k2,43) of the (§ x ¥ x &)-point 3-D DFT given by (5.4) and
the other 56 points are used by the general sub-butterflies given by (5.25)-(5.31). The
output of these sub-butterflies are used to form the input sequences of the corresponding
(’Z X ’X x ¥)—pomt 3-D DFTs given by (5.18)-(5.24). These operations are repeated for all
the combinations of (k,k,43), k; =0, 1, ..., (N/4)—1,i=1, 2, 3. This completes the first

stage of the proposed decomposition.

86

Thus, the proposed radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FFT algorithm corresponds to
decomposing the (N x N x N)-point 3-D DFT given by (5.1) into one (¥ x § x ¥)-point
3-D DFT given by (5.4) and 56 (§ x § x ¥)-point 3-D DFTs given by (5.18)-(5.24), in
the first stage. This is achieved by repeating —’g;j— times the general butterfly based on (5.39)

and (5.25)-(5.31). This decomposition scheme is repeated successively for each of the new

resulting DFTs, until the problem is reduced to some (2 x 2 x 2)-point 3-D DFTs.

5.2.2 Computational Complexity

In this section, we consider the performance of the proposed radix-(2 x 2 x 2)/(4 x 4 x 4)
FFT algorithm by analyzing its computational complexity and comparing it with that of the

radix-(2 x 2 x 2) FFT algorithms presented in Chapter 2.

5.2.2.1 Arithmetic Complexity

The general butterfly of the proposed 3-D DIF FFT algorithm computes 64 points using
(5.39) and (5.25)-(5.31). It requires 56 comi)lex multiplications and 360 complex additions.
Thefe are %; general butterflies in the first stage of the decomposition. This means that the
first stage requires 7%3 complex multiplications and 45—1\{;31 complex additions. The decom-
position requires a special butterfly to compute the (2 x 2 x 2}-point 3-D DFTs involved
in the last stage. Therefore, it is seen that the expressions for the numbers of multiplica-
tions and additions required by the two-butterfly implementation (one general and one for

computing (2 x 2 x 2)-point DFTs) of the proposed FFT algorithm are, respectively,

N N
3 4
Mp,4(3,N) =3.5N + M5, (3,5) +56M2,, (3,2) N>2,
Mr3/4(3,2) =M, (3,1) =0 (5.40)

87

and

Arz/4 (3,2) =48, AB,(3,1) =0, (5.41)

if the 4mult-2add scheme is considered. Similarly, if the 3mult-3add scheme is considered,

the corresponding expressions for the numbers of multiplications and additions are

1\/1,—’_:3/4 (3,2) = Mr2/4(3, 1)=0 (542)

and -

N N
A4 (3,N) = 13.875N° + AL , <3 2) +56A%)4 (3 4), N>2,

A54(3,2) =48, AD, (3,1)=0 (5.43)

The expressions for the numbers of non-trivial multiplications and additions required by

the proposed FFT algorithm are, respectively,

N
4

Mr/s(3,4) =MB,,(3,2) =0 (544)

M4 (3,N) =3.5N° - 2IN* + M3, (3 1;’) +56Mg5 4 (3) N >4,
and
N

N
A2, (3,N) = 13N>~ IN* + A%, (3 2)+56Ar2/4 (3 4), N >4,

A (3,4) =768, AZ, (3,2) =48, (545)

88

in the case of the 4mult-2add scheme, and

' N N
M4 (3,N) = 2.625N° — 14N* + M3, (3, -2—) +56Mp; 4 (3, Z) , N>4,

M3 (3,4) =MB,(3,2) =0 (5.46)

and

A4 (3,N) = 13.875N° — 14N* + AD (3, g) +56A%4 (3, %) , N> 4,

Ay (3,4) =768, AD,(3,2) =48, (547)

in the case of the 3mult-3add scheme.

To carry out a fair and comprehensive comparison, we also consider the numbers of mul-
tiplications and additions required by the one-butterfly, two-butterfly and multiple-butterfly
implementations of the radix-(2 x 2 x 2) FFT algorithms. The arithmetic complexities re-
quired by these algorithms along with those required by the proposed one for various trans-
form sizes (N x N x N) are given in Tables 5.1-5.4. We see from these tables that the
proposed FFT algorithm reduces substantially the number of multiplications as well as the
number of additions. For example, if the 3mult-3add scheme is considered, savings of
about more than 40% in the number of multiplications and about more than 10% in the
number of additions can be easily achieved using the two-butterfly implementation of the
proposed FFT algorithm over the two-butterfly implementation of the radix-(2 x 2 x 2) FFT

algorithm.

89

Table 5.1: Number of arithmetic operations required for the computation of the 3-D DFT
using the 4mult-2add scheme

Radix-(2 x 2 x 2) FFTs

Proposed radix-

(2x2x2)/(4x4x4)
FFT
Using one butterfly Using two butterfies Using two butterfles

Transform size | Mults. | Adds. { M.4+A. | Mults. | Adds. | M.+A. | Mults. | Adds. | M.+A.
NxNxN /point | /point | /point | /point | /point | /point | /point | /point | /point
2 x23x23 105 | 2325 {3375 |7 215 | 285 393 | 19.96 | 23.90
24 x 24 x 24 14 31 45 10.5 | 29.25 {3975 |7.05 |27.52 | 3458
2P x29x25 17.5 3875 | 5625 |14 37 51 7.82 3391 | 41.74
26 % 26 x 20 21 46.5 | 675 17.5 | 4475 { 62.25 | 10.65 |41.32 | 51.97
27x27x27 245 | 5425 [78.75 |21 525 | 735 11.68 | 47.84 | 59.52
28 x 28 28 28 62 90 24.5 | 60.25 | 84.75 | 14.27 |55.13 | 69.41
29 x29x2° 31.5 | 69.75 | 101.25 | 28 68 96 1550 | 61.75 | 77.25
210 ¢ 210 5 21071 35 77.5 | 1125 [31.5 | 7575 | 107.25 | 17.93 | 68.96 | 86.89
2105 2 211 1385 | 8525 | 123.75 | 35 835 | 118.5 | 19.30 | 75.65 | 94.96
2125212212 1 42 93 135 38.5 | 91.25 | 129.75 | 21.60 | 82.80 | 104.40

Table 5.2: Number of arithmetic operations required for the computation of the 3-D DFT
using the 3mult-3add scheme

Radix-(2 x 2 x 2) FFTs

Proposed radix-

(2x2x2)/(4x4x4)
FFT
Using one butterfly Using two butterfles Using two butterfies

Transform size | Mults. | Adds. | M.4+A. | Mults. | Adds. | M.+A. | Mults. | Adds. | M.+A.
NXNxN /point | /point | /point | /point | /point | /point | /point | /point | /point
2 %23 %23 7.87 | 25.87 {33.75 |525 [2325 |285 295 12095 |23.90
24 x 24 %24 105 [345 |45 7.875 {31.87 |39.75 |529 |29.29 | 34.58
2> x 2% x 25 13.12 [43.12 | 5625 | 105 |405 |51 587 |35.87 | 41.74
20 % 26 % 26 1575 |51.75 | 67.5 1312 [49.12 [6225 |7.98 |43.98 |51.97
27 x2"x 27 18.37 | 60.37 | 78.75 | 15.75 |57.75 | 735 876 |50.76 | 59.52
28 28 % 28 21 69 90 18.37 | 66.37 | 84.75 |10.70 | 58.70 | 69.41
22 %2 %2 23.62 | 77.62 | 101.25 | 21 75 96 11.62 | 65.62 | 77.25
21052105210 1 2625 | 8625 | 1125 |23.62 | 83.62 | 107.25 | 13.44 | 73.44 | 86.89
22211 1 2887 | 94.87 | 123.75 | 26.25 |92.25 | 1185 | 14.48 | 80.48 | 94.96
22212212 1 315 103.5 | 135 28.87 | 100.87 | 129.75 | 16.20 | 88.20 | 104.40

90

Table 5.3: Number of non-trivial operations required for the computation of the 3-D DFT

using the 4mult-2add scheme

Radix-(2 x 2 x 2) Proposed radix-
FFTs (2%x2x2)/(4x4x4)FFT
Transform size | Mults. Adds. M.+A. Mults. Adds. M.+A.
N xNXxN /point | /point | /point /point | /point - | /point
%2 %23 0.875 18.875 |[19.75 0.875 | 18.875]19.75
2% %24 x 2% 3.0625 |26.1875 | 29.25 2.2969 |25.4219 | 27.7188
22x2°x2 5.9062 |33.7188 | 39.625 | 3.8965 | 324746 | 36.3711
26 % 26 % 20 9.0781 | 41.3594 | 50.4375 | 5.6687 | 39.1941 | 44.8628
27x 27 %27 12.4141 | 49.0547 | 61.4688 | 7.4539 |46.2599 | 537138
282828 15.832 | 56.7773 | 72.6094 |9.3098 |53.05 |62.3598
29 %27 x2? 19.291 | 64.5137 | 83.8047 | 11.1449 | 60.0949 | 71.2399
210210210 1227705 | 72.2568 | 95.0273 | 13.0187 | 66.9238 | 79.9425
21 2T %211 126.2603 | 80.0034 | 106.2637 | 14.8689 | 73.9451 | 88.814
212 %212 %212 129.7551 | 87.7517 | 117.5068 | 16.7449 | 80.7997 | 97.5446

Table 5.4: Number of non-trivial operations required for the computation of the 3-D DFT

using the 3mult-3add scheme

Radix-(2 x 2 x 2) Proposed radix-

FFTs (2x2x2)/(4%x4x4)FFT
Transform size | Mults. | Adds. M.+A. Mults. | Adds. | M.+A.
NxXNxN /point | /point | /point /point | /point | /point
22x23x 2’ 0.2188 | 19.5312 | 19.75 0.8750 | 18.875 | 19.75
24 x 24 x 2% 1.6406 | 27.6094 | 29.25 1.8594 |25.8594 | 27.7188
2P x2x2 3.6641 | 35.9609 | 39.625 3.1855 | 33.1855 | 36.3711
20 % 20 x 20 5.9883 |44.4492 | 504375 | 4.4314 | 40.4314 | 44.8628
272" %27 8.4629 | 53.0059 | 61.4688 | 5.8569 | 47.8569 | 53.7138
28 x 28 x 28 11.0127 | 61.5967 | 72.6094 | 7.1799 | 55.1799 | 62.3598
29%x 2% x2° 13.6001 | 70.2046 | 83.8047 | 8.6199 | 62.6199 | 71.2399
210 2105210 116.2063 | 78.821 |95.0273 [9.9712 | 69.9712 | 79.9425
21 21 % 211 118.8219 | 87.4418 | 106.2637 | 11.407 | 77.4070 | 88.814
212 % 212 % 212 121.4422 [96.0646 | 117.5068 | 12.7723 | 84.7723 | 97.5446

91

5.2.2.2 Data Transfers

An appropriate use of the internal registers (on-chip memory) of a processor is becom-
ing an important strategy in the exploitation of the modern computer architectures, since
the on-chip memory can be accessed faster than the external memory (off-chip mem-
ory). We assume that a sufficient on-chip memory is available to perform an entire but-
terfly without using any intermediate transfer operations between the processor and the
off-chip memory. We first give a brief implementation scheme of the proposed radix-
(2 x 2% 2)/(4 x 4 x 4) FFT algorithm by considering the implementation of the butterfly
given by (5.39) and (5.25)-(5.31). For a given combination of (k;,k»,k3), by reading eight
points from the off-chip memory according to (5.13) to compute the operation given by
(5.12), we obtain the eight points given by (5.14). The first point yooo (k1,k2,k3) of (5.14)
is returned to the off-chip memory, whereas the other seven points are kept in the on-chip
memory since they are used by the seven sub-butterflies given by (5.25)-(5.31). These
operations are repeated 8 times to complete the computation of the operation given by
(5.39). The seven 8-point results kept in the on-chip memory are used to process the seven
sub-butterflies. This completes the process of the butterfly. For all the combinations of
(k1,ka,k3), ki =0, 1, ...,(N/4) — 1, the results returned to the off-chip memory are grouped
to form the input sequence yooo (k1,k2,k3) of the (¥ x § x &)-point 3-D DFT given by
(5.4). The 56 input sequences of the (§ x & x ¥)-point 3-D DFTs given by (5.18)-(5.24)
are formed by grouping separately the results of each line of the output vectors given by
(5.25)-(5.31). This completes the first stage of the proposed decomposition.

Then, it can be shown that the expression for the number of data transfers (real and
imaginary parts), not including the read operations for the twiddle factors, required by the

proposed FFT algorithm is

92

Table 5.5: Comparison of the number of data transfers

Radix-(2 x 2 x 2) Proposed radix- Savings
FFTs (2x2x2)/(4x4x4)FFT
Transform size Dr2(3,N) Dry/4(3,N) (%)
NxNxN /N? /N3
x23%x23 6 40312 32.81
2% 2% x 2% 8 4.4727 44.09
22 x2°x2 10 6.0864 39.13
26 % 26 x 26 12 6.6744 4438
27 x 27 x 27 14 8.1599 41.71
28 %28 %28 16 8.8601 44.62
29x29%x2° 18 10.2474 43.07
210 % 210 210 20 11.0335 44.83
2 21l x 21 22 12.3457 43.88
212 % 212 x 212 24 13.1975 45.01

N N
Dra/s (3,N) =2N° +Dryy4 (3, —2-) +56Dr/4 (3, Z) , N>2,

Dr2/4(3,2) =16, Drp/4(3,1) =0 (5.48)

The radix-(2 x 2 x 2) FFT algorithm requires log,N stages each requiring 2N? transfer op-
erations. Thus, the number of data transfers required by the radix-(2 x 2 x 2) FFT algorithm
is

Dr2(3, N) = 2N*log,N (5.49)

The numbers of data transfers for the two FFT algorithms are compared in Table 5.5, for
various values of N. It is clear from this table that the radix-(2 x 2 x 2)/(4 x 4 x 4) FFT
algorithm requires about 40% less data transfer operations than that required in the radix-
(2 x2 x2) FFT algorithm. Hence, similar reduction is also obtained in the case of the

address generation.

93

5.2.2.3 Twiddle Factors

In counting the number of real twiddle factor (cosine and sine) evaluations or accesses to
the lookup table required by the radix-(2 x 2 x 2)/(4 x 4 x 4) and radix-(2 x 2 x 2) FFT
algorithms, it is assumed that the 4mult-2add scheme is considered. Hence, the general
butterfly of the radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithm requires 112 twiddle factors,
whereas that of the radix-(2 x 2 x 2) FFT algorithm requires 14 twiddle factors. Therefore,
itis seen that the expression for the number of twiddle factors required by the two-butterfly
implementation of the radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithm is given by

N3 N N
T4 (3.N) = 1126—4+T;‘§/4 (3, —2-) +56Tt5 4 (3,1) , N>2,

T/4(3,2) = Tf5,4(3,1) =0 (5.50)

The corresponding expression for the one-butterfly (s = 0) or two-butterfly (s = 1) imple-

mentation of the radix-(2 x 2 x 2) FFT algorithm is given by

N

2 N3
B, N) = 14—logy 5 (5.51)

The numbers of twiddle factor evaluations or accesses to the lookup table for the two
algorithms are compared in Table 5.6. It is clear from this table that savings of about 40%
in the number of twiddle factor evaluations or accesses to the lookup table can be achieved
using the proposed radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithm over the one-butterfly and
two-butterfly implementations of the radix~(2 x 2 x 2) FFT algorithm. Note that, when the
lookup table is used, similar savings are obtained by the proposed FFT algorithm in the

address generation for reading the twiddle factors.

94

Table 5.6: Comparison of the number of twiddle factor evaluations or accesses to the lookup
table

Radix-(2 x 2 x 2) Proposed radix- Savings
FFTs (2x2x2)/(4x4x4)FFT (%)
Transform size | Using one | Using two Using two
butterfly | butterflies butterflies
‘ T (3, N) | TH(3,N) Tp5/4(3, N) inC [inC
NxNxN /N3 /N? /N3 over | over
(A) (B) ©) A B
23 x 2% x2? 5.25 35 1.9688 62.49 | 43.74
24 x 2% x 24 7 525 3.5273 49.61 | 32.71
2 x2°x2 8.75 7 3.9136 55.27 | 44.09
20 % 20 x 26 10.5 8.75 5.3256 49.28 | 39.13
2T x 27 % 27 12.25 10.5 5.8401 52.32 | 44.38
28 x 28 x 28 14 12.25 7.1399 49.00 | 41.71
2° x 27 x2’ 15.75 14 7.7526 50.77 | 44.62
2105 210 % 210 17.5 15.75 8.9665 48.76 | 43.06
215 2t o1l 19.25 17.5 9.6543 49.84 | 44.83
212 % 212 % 212 21 19.25 10.8025 48.55 | 43.88

3.3 Radix-2/4 Approach for the Computation of 3-D DHT

A number of FHT algorithms have been developed in [45] for the fast computation of the 1-
D DHT. The most attractive ones are those that employ radix-2 or radix-2/4 approach, since
the former results in algorithms that are highly regular and simple, whereas the latter in
algorithms that provide a good compromise between the arithmetic and structural complex-
ities. The radix-2 approach has been extended for the 2-D DHT case using DIT [58] and,
recently, for the 3-D DHT case using DIT [65] as well as DIF [66]. However, the radix-2/4
approach has been extended only for the 2-D DHT case [60], [62], [64] and to this date, no
attempt has been made for its extension to the case of three or higher dimensions. This is

mainly due to the fact that the kemnel of the multidimensional DHT is not separable, mak-

95

ing the extension of the radix-2/4 approach neither obvious nor straightforward. Therefore,
new decomposition strategies and appropriate mathematical tools are necessary in order to
develop multidimensional FHT algorithms that are based on the radix-2/4 approach.

We now give a brief review of other approaches proposed so far for the computation of
the 3-D DHT. The 3-D DHT can be computed using 1-D FHT algorithms in a row-column
fashibn. This traditional row-column method requires matrix transposition operations and
high computational complexity as well as bit-shift operations. The 3-D DHT can also
be computed using 1-D complex-valued FFT algorithms in a row-column fashion [63].
This approach requires special retrograde indexing manipulations, matrix transposition op-
erations and a computational complexity comparable to that required by the row-column
method. Another approach has been proposed in [61]. However, it requires the use of 1-D
FFT and FHT algorithms and a special interstage scheme for addition operations. In [59],
an approach based on Fermat number transforms (FNTs) has been proposed for the compu-
tation of the 3-D DHT. It requires the implementation of 1-D, 2-D, and 3-D forward FNTs,
3-D inverse FNT, and a large number of bit-shift operations. It has been shown in [65] that
the 3-D radix-(2 x 2 x 2) FHT algorithm is more efficient than all the algorithms reported in
[59], (61], [63] including the row-column method. Recently, an approach, based on poly-
nomial transforms, has been proposed in [68]. It provides FHT algorithms with reduced
arithmetic complexities at the expense of very complicated structures.

In this section, new 3-D radix-(2 x 2 x 2)/(4 x 4 x 4) DIF and DIT FHT algorithms are
proposed for efficient computation of the 3-D DHT. The decomposition strategy used to
develop the two algorithms is based on a mixture of radix-(2 x 2 x 2) and radix-(4 x 4 x 4)
index maps, coupled with an appropriate use of the Kronecker product. The butterflies of

the proposed FHT algorithms are characterized by simple closed-form expressions.

96

5.3.1 Proposed Radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FHT Algorithm

Using (2.2), the 3-D DHT of size (N x N x N) is given by

~1N=1N-1 o 3
X (n1,m2,n3) 2 Y, >, x(ki,kz,ks)cas ‘]’\,‘Eniki :
i=1

ky=0kr=0k3=0
O<m<N—1,i=123 (5.52)

Then, using some trigonometric properties, (5.52) can be expressed as

~1 N-1 N-1

X(nl,nz,ng,) = Z E 2 Re[(k1, k2, k3) (1+])Wz' n,k,] ,

=0k =0k3=0
0<nm<N-1 (5.53)

In this section, we develop a 3-D radix-(2 x 2 x 2)/(4 x 4 x 4) FHT algorithm by em-
ploying the radix-2/4 DIF approach. The decomposition of the (N x N x N)-point 3-D DHT
is performed using two steps. In the first step, we introduce radix-(2 x 2 x 2) index maps
by decomposing (5.53) into the following eight indexed terms.

N/2-1N/2—-1N/2~1

X (2n1,2n3,2n3) = 2 2 2 Re [}’OOO (k1,k2,k3) (1 +J)W]§/E v l:|
k=0 k=0 k3=0

N/2—1N/2-1N/2—1
=2 2 Y yooo (k1, k2, k3) cas (N/22nk)

k1=0 k3=0 Kk3=0

Ogn,-gg——l (5.54)

N/2—1N/2—-1N/2-1

X(2n1,2n2,2n3+ 1) == Z 2 2 Re l:yo()l (kl,kz,kg,) W[{;?J(l +])W1§/L?: 17 z:l ’
K1=0 k=0 k=0

03m5%~1 (5.55)

97

N/2-1N/2-1N/2—1

3 ke
XQ@n2m+1,2m)= 3 ¥ Y Re|yowo ki ko ks) War(1+ j)Wieis ™

/2
k] =0 k2:0 k3=0

N

X (201,213 + 1,203 + 1)
N/2-1N/2-1N/2~1 3
=2 2 X Re you(kl,kz,ks)W1$2+k3(1+j)W1§/rz'lniki ;
k1=0 k2=0 k3=0
N

OSniS-z-—

X (2n1 +1,2m,2n3)
N/2—-1N/2~1N/2~1
B ki v yp St Miki
=y ¥ zlkymﬂmhhﬂm(HﬁmM2 ’
k1=0 k=0 k3=0
N

OSMSE—

X (2n1 +1,2m3,2n3 +1)
N/2—1N/2—1N/2—
3 [2-1N/[2—1N/2~1 Ky Ny Sy ki
= > 2 > Relyior(ki,kz,ks) Wy (1+7)Wyj3 '
k=0 ky=0 k3=0
N

OSWSE*

X (2m +1,2ny+1,2n3)
N/2-1N/2-1N/2-1 3
=2 X X Re [yuo(kl,kzak3)W1$1+k2(l+j)W1§/i§1niki ’
k=0 k=0 k=0
N

._.nl_ 2

98

b

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

X (2n1+1,2n3+ 1,213+ 1)
N/2~1N/2-1Nj2—1 o
= 2 X X Re v (kka,ks) Wy TR (14w]
k=0 k=0 k3=0

OSniﬁg—l (5.61)

The sequences yg (k1,k2,k3), for a, b, ¢ =0, 1, in (5.54)-(5.61) are obtained from the

original input sequence x (ky,k, k3) as

N
ykl Kok = H23Xk1,k2,k31 0 S ki S 5 -1 (562)

where
x(ky, ko, k3)
x(ky, ko, k3 +N/2)
x (ki k2 +N/2,k3)
Xty o = x(ki,ky+N/2,ks +N/2) 569
x(ki +N/2,kp, k3)
x (ki +N/2,ky, k3 +N/2)
x(ki +N/2,ky+N/2,k3)
| x(ki +N/2,ky+N/2,k3+N/2)

-~ -

yooo (k1,k2,k3)
yoot (k1,k2,k3)
yoro (k1,k2,k3)
Vevkoks = you1 (k1,k2,k3) 5.64)
yioo (k1, k2, k3)
yio1 (k1,k2,k3)
yito (k1,k2,k3)

vt (k1. k2, k3)

99

The even-even-even term given by (5.54) is recognized as a 3-D DHT of size (%’ X —]2! X %),
whose input sequence is obtained from the original input sequence without any twiddle fac-
tor. In the second step, we introduce radix-(4 x 4 x 4) index maps by further decomposing

the terms given by (5.55)-(5.61).

Let us start by decomposing the even-even-odd term given by (5.55). This is achieved

by changing the variables #; and ; by

N
mit+pi, Osm< o —1, pi=0,1 (5.65)

and

N
ki+zQi7 OSkiS%—l,Qisoﬂ (5.66)

respectively. Then, (5.55) becomes

X (4ny +2p1,4ny+2py,4n3 +2p3 +1)

N/4 IN/4~1N/d—1 N N N
2 2 z}’om k1+4611,k2+4Q2,k3+Z<J3

= > X Z Re
01=0¢2=0¢3=0

k=0 k=0 k=0

()P DWW 66

Using the fact that

N/4—1N/4—1 N/4—1 o 3
Y Y Y glkkks)cas [—— Y nik;
N/4 S

k=0 k=0 k3=0
N/A—1 Nj4—1 NJ4~1

=y Yy Eg(lq,N kz,N)cas(N/Aan,k,) (5.68)

k1=0 k=0 k3=0

for any 3-D sequence g (ki,k2,k3), we see that (5.67) corresponds to a set of eight 3-D

100

DHTs, each of size (¥ x & x ¥), given by

X(4n1 +2P174n2 +2p2, 4n3 +2p3+ 1)
N/4«1N/4—1N/4—1 X o
=2 2 2 fzﬁ‘sz,@ (p1,p2,p3)cas
k1=0 k=0 k=0

0<m<——1,p=01 (569

where the eight input sequences of (5.69) are given by

i 1 1
S piki
fthats (1P, =Re [W£3W1?;2‘P (2 >3

n1=0q2=0¢3=0

N N N s
yoor { k1 +=q1,k2 + —qa, k3 + —q3 | (—7)93(—1)2=1 Pidi
4 4 4
—k3 1pz 4 kz ! ! 1
W W XXX
q1=0g,=0g3=0

N N N N N N 3
o g g o — N\ _1\ 2= Pibi
Yoo1 (4 k1+4fh,4 k2+4q2,4 k3+4q3>(HB(=1)%=1)] (5.70)

For a given combination of (k1,ky,ks3), the quantity contained within brackets in (5.70) can
be considered as a sum of two 3-D DFTs, each of size (2 x 2 x 2), multiplied by twiddle
factors. The input sequences of these DFT's are obtained using (5.62). Now, using matrix

representation, (5.70) can be expressed as

tg?lkz k3 =Re [(Ckl koks T JSkl K2 k3> H23 (Jr - JJlm) yk] 1k2;k3
001 <001 001 : 001
(C T) Hy (Jim + jJ%) y%—kl,%'~kz,%—k3] (5.71)

—"klyf'—k237"k3 T_kh?f"kbf‘k?i

wheré
JR =Re[LeL®J,], (5.72)
I = —Im[L®1 5
im = mLehel] (5.73)

101

001

the pth component of the vector Yo feo ks is given by

N N N
Yehaks (P) =001 (kl + Pkt g2k + zps) : (5.74)

the (p, p)th component of the diagonal matrix Cgﬁ}% 1 BY

2n
Bhoiv.0) =cos (3 Ok +2pba+ a4)R)), 679

the (p, p)th component of the diagonal matrix Sg?’lkz, 1 bY

. {2n .
S0 ks (P,) =sin (7\7 (2p1ki +2p2ky + (2p3+1) ks)) (5.76)

and

p=4p1+2p2+p3, pi(i=1,2,3)=0o0r 1.
The components of the vector t(lg?,lkz,ks in (5.71) are related to the input sequence of (5.69)
by

Fe i (P) = 1% 4 (P1. P2, P3) (5.77)

It can be seen from (5.75) that

C(I)%IO—lkn%—kza%—ka (p,p) = (_1)p1+p2+p3 kl}Cz,ks (P,p) (.78)

Similarly, from (5.76), we have

S%Oiklx%—kb%_kf) (p,p) = (_1)p1+p2+p3 kla}CZ:kS (p’p) (579)

102

Using (5.78) and (5.79), it can be shown that

¢t s R (5.80)

Yk, ~kp, Yy — Pkiikaiks

and
001 _ 001
S%"—kh%"km%—lﬁ - Ck11k27k3R (5'81)
where]
1 0 0 0 0 00 O
0O -1 ¢ 0 0 00 O
0 6 -1 0 0 00 0
6 0 0 1 0 00 0
R= (5.82)
0 6 0 0 -1 00 O
0O 0 0 0 0 10 0
0 0 0 0 0 01 O
i 0O 0 0 0 0 00 -1 |

Now, by substituting (5.80) and (5.81) in (5.71), we obtain

1 . 001 001 001 001,001
Bl ts = Coko e (HosJE'¥), 1, + RH I Y%-k,,%_kz,%—z@)
Qo1 001,001 001 _ 001
St ko ks (H23Jimy’<1 doks ~ RHp i ¥ —kl,%—kz,%—zg))

OSkng"l (5.83)

In order to perform the in-place computation, we use the same input vectors of (5.83) in the

computation of the vector {1 .
Tk, 3k, k3

in (5.83) and using (5.80) and (5.81). Then we obtain

. This can be achieved by replacing k; by % —k;

103

01 _ QUo1 001 ., 001 001001
tO___kh_..]Q)%i._]g - Skl,kg k3 (H23Jre ykl,kz ka3 + RH23J1‘e yN kl K“k2a§—k3)
+Ck1 k2,k3 (H23J1myk1 kasks RHZ3‘Ilmy Tk Y ~kz,z~k3>
N

0<k< -1 (584)

The redundant operations involved in the computation of f) . and f3" L N N, Can
ey T 114 21?“ 3

be avoided by combining (5.83) and (5.84). Therefore, we may obtain a sub-butterfly for

computing the input sequences of (5.69) as

tgﬁlkz,ka

Tk~ g~k

_ | Bl S | | Ml RHIR | |
Sttads Clilots HpJi, —RHxJ y(io-l-k1,~—kz,%—k3

where one of the indices k;, k, and k3 varies from O to (% - 1), whereas the others vary
from O to (~—1) Letus assume that 0 < k; < %1——1 and 0 < ky, ks g%— 1.

In order to introduce radix-(4 x 4 x 4) index maps for the other terms given by (5.56)-
(5.61), we apply similar decomposition and techniques to those used for deriving the sub-
butterfly given by (5.85) of the even-even-odd term. Then, it is seen that (5.55)-(5.61) can
be mapped to a set of 56 DHTs, each of size (X 4 X5) given by

X (4n1 +2p1 +a,4ny+2py + b,4n3 +2p3 +¢)

N/4 IN/4—1N/4—1
=2 2 X f/f‘l,kz,ks(m,pz,ps)cas(N/42n,)

k=0 k=0 k=0

N
0<m< 1 1, piya,b,c=0,1, (a,b,c) # (0,0,0) (5.86)

104

The input sequences ,?1”22, ks (P1,p2,p3) in (5.84) are obtained from a general sub-butterfly
of the proposed radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FHT algorithm that is given by a closed-

form expression as

bc abc _ Qabc
le a3 — Ckl vk2,k3 Skl ska,k3 Adbe yzl Ska.k3
- 3
be abc abc be
tf’}—kl,%—kz,¥~k3 Skl kaiks Ckl ks ya —ky X —ka, ks

0<Kk < %— 1, 0<ky, k3 < ¥~ 1, a,b,c=0,1, (a,b,c) # (0,0,0) (5.87)

where
)
H23 Jabc (__ 1) a+b+c— RH23 Ja be .
atbpet , when a+ b+ cis odd
H23Jfrbl§ —(-1) RH, Jabc
A= g . (5.88)

H23 Jabc ()thﬂRH23 Jabc

tbie , whena-+b+ciseven
Hy) (—1) " RH)3

Je5 =Re [J“@Jb@JC] L =D, Jt=1J,, (5.89)
3¢ = _Im [J“@J”@JC} (5.90)

Yabe (k1, k2, k3)
Yabe (k1,k2,k3 +N/4)
Yabe (k1, k2 + N /4,k3)
yobe = Yabe (ki kz +N/4,k3+ N /4) | 59
Yabe (k1 +N /4, k2, k3)
Yabe (ki +N /4, k2, k3 +N/4)
Yabe (ki +N/4,ky +N/4,k3)

| Yabe (ki +N/4,ky +N/4,k3 +N/4) |

105

i k() =cos (— (@p1+a)ki+(2p2+b) ko + (2p3+c) kz))

. (2n
Sia(P2P) =sin ('ﬁ (2p1+a)ki + (2p2+b)ky + (2p3 +c) k3))

(5.92)

(5.93)

and the components of the vector fgf’sz &, are related to the input sequences of (5.86) by

bc —_—
f;‘ll Kasks T

[k (0,0,0)
fs (0,0,1)
fe% 4, (0,1,0)
f%, 1 (0,1,1)
%, 1 (1,0,0)
£ 4 (1L,O,1)
1k (1,1,0)

’?11?22’63 (1’1’1)

(5.94)

For given combinations of (k1,k2,k3) and (a,b,c), the sub-butterfly given by (5.87) com-

putes 16 points using 16 points obtained from (5.62). For a given combination of (k1, k2, k3),

the sub-butterflies corresponding to the seven combinations of (a,b,c) require 112 points

to be computed using (5.62). In order to compute, for a fixed combination of (ky,k;,k3), all

the points required by (5.87), we rearrange (5.62) as

ykﬁ%l’h’éﬁ%lhkﬁ%lﬂs
yﬂ*kﬁzm Nkt 2 Y~k + 5 ps

H23 O

0 H23

0<h<T-1,0<kk<y-1 p=01

Xkﬁ%m Jo+§ prks+ 4 ps

X%*/ﬂ+%P1,%’—k2+%’-172,¥~k3+%m

106

(5.95)

It is clear that, for a fixed combination of (ki,k2,k3), (5.95) computes 128 points from the
initial input sequence x (k1,k2,k3), where 16 points are used to form the input sequenée
yooo (k1 ,k2,k3) of the (5 x § x §)-point 3-D DHT given by (5.54) and all the other points
are used by the sub-butterfly given by (5.87). The results of (5.87) are used to form the
input sequences of the corresponding (¥ x & x &)-point 3-D DHTs given by (5.86).

In summary, the proposed radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FHT algorithm corresponds
to decomposing the (N x N x N)-point 3-D DHT into one (§ x § x &)-point 3-D DHT
given by (5.54) and 56 (X 4 X) -point 3-D DHTs given by (5.86), in the first stage.
This is achieved by repeating Tﬁ times the butterfly based on (5.95) and (5.87). This
decomposition scheme is repeated successively for each of the new resulting DHTs, until

the problem is reduced to some (2 x 2 x 2)-point 3-D DHTs in the last stage.

5.3.2 Proposed Radix-(2 x 2 x 2)/(4 x 4 x 4) DIT FHT Algorithm

In this section, we develop a 3-D radix-(2 x 2 x 2)/(4 x 4 x 4) FHT algorithm by employing
the radix-2/4 DIT approach. The decomposition of the (N x N x N)-point 3-D DHT is
performed using the following two steps.
Step 1

In this step, we introduce radix-(2 x 2 x 2) index maps by changing the variables n; and

k; in (5.53) by

N
”z*%l’i, OSniSE*l,pz:O,l (5.96)
and
N
2k; + qi, O<skhi<s5-1,4=0,1 (5.97)

respectively. Then, (5.53) becomes

107

N N N 1 1 1 (N/2—-1N/2-1N/2-1
X(n1+*2~p1,n2+—ip2,n3+5p3): Z 2 E (Z 2 2

q1=0g2=0g3=0 \ ki=0 k=0 k3=0

i 3
Re [x (2k1 +q1,2k2 + q2,2k3 +q3) ng":l n'q'(l +])WIE/’? n’k’] > (_1)2?=1 P

N
Osm<5-1 pi=0,1(598)

According to the definition of the 3-D DHT, (5.98) is recognized, for a fixed combination

of (n1,n2,n3), as a (2 x 2 x 2)-point 3-D DHT that can be expressed in a matrix form as

: N
Xy = Wy Yoy gy 0 S < 5 = (5.99)

where

Yoo0 (n1,n2,n3)
Yoo1 (ni,n2,n3) .
Yoi0 (n1,n2,n3)
Yo11 (n1,n2,n3)
Yoimm = (5.100)
Y100 (n1,n2,n3)

Y101 (n1,n2,n3)

Y110 (n1,n2,n3)

Y111 (n1,m2,n3)

108

and
X (n1,n2,n3)
X (n1,n2,n3+N/2)

X (n1,nm+N/2,n3)
Xy = X(ni,n2+N/2,n3+N/2) (5.101)
X (n1+N/2,np,n3)

X (m+N/2,n2,n3+N/2)
X(ni+N/2,n2+N/2,n3)

| X(n1+N/2,n34+N/2,n3+N/2) |

The components of the vector given by (5.100) are expressed as

, N/2 IN/2-1N/2-1
Yabc nlvn23n3 Z 2 Z

k1=0 k=0 k3=0

X (2k1 + a,2ky + b, 2ks + ¢) W thnatens g J)WIE/’E . } ;

N
Ognig-z———l, a,b,c=0,1 (5.102)

For the case of a= b = ¢ = 0, (5.102) reduces to a (%’ X %1 X %)-point 3-D DHT given by

N/2 IN/2-1N/2-1 o 3
Yooo (n1,12,13) 2 2 2 x(2ky,2ky, 2k3) cas }~V7—2—Zn,'ki) s
i=1

k1=0 k=0 k=0

Ogn,-ggl—-l (5.103)

Step 2
In this step, we introduce radix-(4 x 4 x 4) index maps by further decomposing (5.102),

for (a,b,c) # (0,0,0). This is achieved by changing the variables n; and ; in (5.102) by

N
ni+ 3 pi, OSniS%["l,Pi:O:l (5.104)

109

and

2ki+qs, 05@5%’—1, gi=0,1 (5.105)

respectively. Then, using the facts that cas (¥ / 7} Z 1 Hi) = cas (73—}% }]?:1 (% — ni) ki)

and

nik;

(1 +])W1§/‘Z‘ = cas (N/4 213_ n,kl) + jcas (N%’%Zle nik,') , (5.102) can be written as

N N N ~ap1+bpy+cp . . .
Yope | m1+7pime+ opama+ps | =Re | (=)0 30 K Y
q1=0g2=043=0

b E« L4 3 ¥y 23 . o
(W;\}'lr*‘ "2+cn3WN/2 "iqi pabe (q1,q2,q3)) (__1)2:1 piqi +](_J)0Pl+bP2+CP3

ni,nz,h3
1 1 1 any+bny+-cn Z niqi —ab s
Z 2 2 (W 1Tony SW. /‘-—1 “Ff-—Cnl,z—nz N (q1 Q2:Q3)) (,1)2i=1piq,~ ,
q1=0q2=0q3=0
N
0<m< o —1pi=01,abc=0,11(abc)#(0,0,0) (5106
where

N/4~1N/4—1Nf4-1
abc

nl,nz,n;; (ql»qZ-: Q3) 2
k=0 k=0 k3=0

x(4ky +2q1 +a,4ky +2q2 + b, 4k3 +2g3 + ¢) cas (N/4 Zn,) ,
N
0<n; < 1 1, g;=0,1, a,b,c=0,1,(a,b,c) # (0,0,0) (5.107)
It is clear that (5.107) represents a set of 56 (N X g X) -point 3-D DHTs. For fixed
combmatlons of (ny,n2,n3) and (a,b,c), the quantity between brackets in (5.106) can be

recognized as a sum of two (2 x 2 x 2)-point 3-D DFTs that are multiplied by some trivial

twiddle factors 1, -1, j or —j. The input sequences of these two DFTs are obtained using

110

(5.107). Now, using matrix form representation, (5.106) can be expressed as

abc - abc
Ynls”2yn3 - Re [(Jre -
abc : yabc abc _ 3Qabc be
+ (Jim +idre) Hy (Cnl N2, JSnl ,'12,"3) Fﬁl’}—m,%—nz,%——ng]

— abc abc abc abc abc
= Jre'Hp (Cnl,nz,n3Fn1,n2,n3 +Sn om0 F

+J§IIEH23 (

0<n<¥-1,a,b,c=0,1,(a,b,c) # (0,0,0)

where

abc hyp,ng
a3 T

and

abc -
ny,n2,13

j JclzIin) H23 (Cabc _ jsabc)Fabc

ny1412,13

1,112,713 ny,12,13

abc abc abc abe
Sm 2,13 Fm H12,13 + Cnl M2 ,naF N

-
Fi s s (0,0,0)

E#e . (0,0,1)

1,112,113

Fg . (0,1,0)

ni,na,n3
Fo . (0,1,1)
Fabe (1,0,0)

n14112,13

Egbe . (1,0,1)

11,712,713

Fobe (1,1,0)

ny,12,13

Fe . (1,1,1)

ny,n2,n3 I

Yape (n1,m2,m3)

Yope (m1,n2,n3 +N/4)
Yape (n1,m2 4+ N/4,13)
Yope (n1,n2+N/4,n3+N/4)
Yabe (n1+N/4,n2,n3)
Yape (n1 +N/4,n2,n3+N/4)
Yope (1 +N/4,ny+N/4,n3)

| Yape (11 +N/4,n+N/4,n3+N/4)

111

N N
a3 Bt (P s]

N N
FTmsg T, N3

(5.108)

(5.109)

(5.110)

Since the in-place computation property is highly desirable to reduce the storage, especially

for the 3-D case, we use the same input samples of (5.108) in the computation of the vector
b !_V_ o

Y‘; Ve it Xy Xy This can be achieved by replacing »n; by & —n; in (5.108). Then, we

obtain

Yabc

N N
7{"‘”11 (o Pl

bcH (Cabc Fabc abc bc
=J N N_ . N v +S% K
re ——'nh 3 n2)]"“”3 b et (5 Pl G (P g [} Z_nh%{"‘nZa%‘r@ R1M2,13
N N N
nl)I'—nZ:Z_"B Z*nl)'Z'_nQ’T_nfi Z—nly%“nb'{’_’n Ty 512413

+ J‘izfrinp (Sabc Fabc + Cabc Fabc) ,

0<m< %— 1, a,b,c=0,1, (a,b,c)# (0,0,0) (5.111)
From (5.92), it is seen that

b .
Cabc _ (—1) RSfllcn2 ny» When a+b+-cis odd (5.112)

N
F LT 2'—”3 atbtc .
e (-7 RCZi’CnZ nyy Whena+b+ciseven

Similarly, from (5.93), we obtain

a+bc ab. .
g - (1) Cmc,,zn3, when a+b+cis odd (5.113)

o en —(——1)%RSZ€’CRZ,,3, when a +b+cis even
Now, in order to avoid the redundant operations in (5.108) and (5.111), we use (5.112)
and (5.113) in (5.111), combine the result of (5.111) with (5.108), and vary one of the
indices out of ny, ny, and n3 from 0 to (§ — 1) and the remaining ones from 0 to (F-1).
Without loss of generality, let us assume that 0 < ny < % —land 0 < ;y,n3 < % - 1.

Therefore, a closed-form expression for the general sub-butterfly of the proposed radix-

112

(2 x 2 x2)/(4 x4 x 4) DIT FHT algorithm is given by

abc abe Sabc FabC
Ry,2,03 . Aabc ny,hg,03 1,012,113 ny,n2,n3
bl
Yabc . Sabc Cabc Fabc
%—nl,%—nz,%—m A14/12,113 1,012,113 Z—-nl,z n2,10n3

N
OSl’ll S g— 17 OSHQ, n3 S g—la a, b,C=O, 19 (a,b,c) 7é (03010) (5114)

where the matrix A% is the transpose of the matrix A% given by (5.88). For given com-
binations of (ri,n2,n3) and (a, b, c), the sub-butterfly given by (5.114) computes 16 points
that require the knowledge of the 16 points of the right hand side vector, which in turn
are oEtained from the DHTs given by (5.107). For a given combination of (n1,n2,n3), the
sub-butterflies corresponding to the seven combinations of (a, b, ¢) require 112 points to be
obtained from (5.107). In order to use, for a fixed combination of (rn{,n3,n3), all the points

computed by (5.114), we rearrange (5.99) as

Xnﬁ%m ,n2+%p2,n3 +% 73
Xu

Y-m+Ypvf-m+ o ¥ —m+Yps
_ H23 O Yn1+%vp1,n2+%l721”3+%p3
0 Hy Yot pr, Y oot Yo B nst Y py

N
0Sﬂ1£%~1,05n2,n3ﬁz—1, pi=0,1 (5.115)

It is clear that, for a fixed combination of (n1,72,n3), (5.115) computes 128 points of the
desired output sequence X (n1,n2,n3) using 16 points obtained from the output sequence
Yooo (n1,n2,n3) of the (¥ x ¥ x §)-point 3-D DHT given by (5.103) and 112 points ob-
tained from the sub-butterfly given by (5.114). The input points of (5.114) are obtained
from the output sequences of the corresponding (X N —)—pomt 3-D DHTs given by

(5.107).

113

In summary, in the proposed radix-(2 x 2 x 2)/(4 x 4 x 4) DIT FHT algorithm, the com-
putation of the (N x N x N)-point 3-D DHT consists of computing one (¥ x ¥ x ¥)-point
3-D DHT given by (5.103) and 56 (¥ x & x &)-point 3-D DHTs given by (5.107). The
output points of the DHTs given by (5.107) are used to process the sub-butterfly given
by (5.114). The results obtained from (5.114) and the output points of the DHT given
by (5.103) are used in (5.115) to compute the samples of the desired output sequence
X (n1,n2,n3). The desired 3-D DHT is obtained by repeating -{% times the butterfly given
by (5.114) and (5.115). This computation process is applied successively for the computa-
tion of each of the required DHTSs until only some (2 x 2 x 2)-point 3-D DHTs need to be

computed.

5.3.3 Computational Complexity

In this section, we consider the performance of the proposed radix-(2 x 2 x 2)/(4 x 4 x 4)
DIF and DIT FHT algorithms by analyzing their computational complexities and compar-
ing them with those of the existing 3-D FHT algorithms. This comparison is made with
the 3-D radix-(2 x 2 x 2) FHT algorithms of [65] and [66]. Note that the computational
complexities of the algorithms of [65] and [66] are exactly the same, and the algorithm in
[65] has been shown to be more efficient than all the other existing algorithms appearing
before 2001 and reported in [59], [61], [63] including the traditional row-column method.
The comparison is also made with a subsequent algorithm reported in [68]. Since the pro-
posed radix-(2 x 2 x 2)/(4 x 4 x 4) DIF and DIT FHT algorithms are based on the same
decomposition philosophy, their computational complexities are exactly the same. There-
fore, the analysis of the computational complexity of only one would be sufficient. Let us
consider the computational complexity of the proposed radix-(2 x 2 x 2)/(4 x 4 x 4) DIF

FHT algorithm.

114

5.3.3.1 Arithmetic Complexity

From (5.89) and (5.90), we observe that four of the elements of the diagonal matrix Jfg abe
or J‘ilrbri are zero, whereas the remaining four elements are either 1 or -1. Hence, the matrix
H,3 J&° or H23J§lrbri introduces only 8 additions in (5.87). If the 4mult-2add scheme is con-
sidered, the general butterfly of the proposed 3-D DIF FHT algorithm based on (5.95) and
(5.87) requires 224 multiplications and 832 additions. The decomposition process of the al-
gorithm consists of dividing the (N x N x N)-point DHT into one (g’ X 5 X) -point DHT
and 56 (X 4 X)—pomt DHTs. This is achieved by performing & 128 general butterflies.
The decomposition process is repeated successively for each of the new resulting DHTS,
until the problem is reduced to some (2 x 2 x 2)-point 3-D DHTs in the last stage. There-
fore, it is seen that the expressions for the numbers of multiplications and additions required
by the two-butterfly implementation (one general and one for computing (2 X 2 x 2)-point
DHTs) of the proposed FHT algorithm are, respectively,
ME 4 (3,N) = LTSN’ + M5, (3 12v> +56Mg5 4 (3 ID , N>2,

My (3:2)=M5,(3,1)=0 (5.116)

and

N N\
r2/4(3 N)=6. 5N3+Ar2/4 (3 2) +56Ar2/4 (3 4) , N>2,
A1’2/4 (3’2) =24, Ag/4 (3, 1) =0 (5.117)

Similarly, if the 3mult-3add scheme is considered, it can be shown that the corresponding

expressions for the numbers of multiplications and additions are

115

N N

MB,(3,2)=Mp,(3,1)=0 (5.118)

and

N N
A% (3,N) = 69375N3+Ar2/4(3 2)+56Ar2/4(3 4),N>2,

AB(3,2)=24, AD,(3,1)=0 (5.119)

The expressions for the numbers of non-trivial multiplications and additions required by

the proposed FHT algorithm are, respectively,

YEE N)_175N3—105N2+M1_2/4(3 1;’)+56M /4(N) Noa

ME,(3:4) =ME,,(3,2) =0 (5.120)

and

N N
A5 (3,N) = 6.5N3—3.5N2+Ar2/4(3 2)+56Ar2/4 (3 4),N>4,

r2/4 (3,4) = 384, r2/4 (3,2)=24, (5.121)
in the case of the 4mult-2add scheme, and
N

"4
MB (3,4 =My, (3,2) =0 (5.122)

M3, (3,N) = 1.3125N> ~ TN? 4 Mr2/4(3 §)+56M1313/4(3 >,N>4,

116

and

| N
A4 (3,N) = 6.9375N* —IN* + A, (3, 5) 5643, <3’ %) N4

AB4(3,4) =384, A ,(3,2) =24, (5.123)

in the case of the 3mult-3add scheme.

To carry out a fair and comprehensive comparison, we also consider the numbers of mul-
tiplications and additions required by the one-butterfly, two-butterfly and multiple-butterfly
implementations of the existing 3-D radix-(2 x 2 x 2) FHT algorithms. The arithmetic
complexities required by these algorithms along with those required by the proposed ones
for various transform sizes (N X N x N) are given in Tables 5.7-5.10. We see from these
tables that the proposed FHT algorithms reduce substantially the number of multiplications
as well as the number of additions. For example, if the 3mult-3add scheme is considered,
savings of about more than 40% in the number of multiplications and about more than 10%
in the number of additions can be easily achieved using the two-butterfly implementation of
the proposed FHT algorithm over the two-butterfly implementation of the radix-(2 x 2 x 2)
algorithm.

The 3-D DHT can also be computed using the approach recently reported in [68].
This approach requires %N3log2N — %N3 + % non-trivial multiplications, —;-Nz’logzN -
%NM + %—6— non-trivial additions, and a special sequence reordering. This reordering re-
quires (3 — 5) N multiplications, (1 — +)N? additions, (1 — &) N® modulo operations,
and (4 — L) N? bit-shift operations. These requirements along with those of the proposed
algorithm are given in Table 5.11. It is clear from this table that the two algorithms have
comparable arithmetic complexities. However, as discussed below, the overall structural
and computational complexity of the algorithm in [68] is larger than those of the proposed

FHT algorithms.

117

Table 5.7: Number of arithmetic operations required for the computation of the 3-D DHT
using the 4mult-2add scheme

Radix-(2 x 2 x 2) FHTs in [65], [66] Proposed radix-
(2x2x2)/(4x4x4)
FHTs
Using one butterfly Using two butterfles Using two butterfies
Transform size | Mults. | Adds. | M.+A. | Mults. | Adds. | M.+A. | Mults. | Adds. | M.+A.
NxNxN - {/point | /point | /point | /point | /point | /point | /point | /point | /point
P x2x23 5.25 11.62 | 16.87 | 3.5 10.75 | 14.25 | 1.96 998 | 11.95
24 x 24 x 24 7 155 {225 |525 |14.62 |19.87 |352 |13.76 | 17.29
P x2x2 875 | 1937 |28.12 |7 185 |255 |391 |16.95 {20.87

26 % 20 % 20 10.5 |2325 3375 | 875 |2237 {3112 |532 2066 |2598
2T x27x27 1225 |27.12 [3937 {105 2625 | 3675 |584 |23.92 [29.76
28 % 28 % 28 14 31 45 1225 {3012 {4237 |7.13 |27.57 | 34.70
29 %29 %27 1575 | 34.87 | 50.62 | 14 34 48 795 {3087 | 38.62
2102105210 1175 | 3875 | 56.25 | 15.75 | 37.87 [53.62 | 896 |3448 |43.44
2ol 11925 4262 | 61.87 | 17.5 |41.75 {5925 |9.65 |37.82 | 47.48
2122125212 | 21 46.5 | 675 19.25 | 45.62 | 64.87 | 10.80 | 41.40 | 52.20

Table 5.8: Number of arithmetic operations required for the computation of the 3-D DHT
using the 3mult-3add scheme

Radix-(2 x 2 x 2) FHTs in [65], [66] Proposed radix-
(2x2x2)/(4x4x4)
FHTs
: Using one butterfly Using two butterfies Using two butterfles
Transform size | Mults. | Adds. | M.+A. | Mults. | Adds. | M.+A. | Mults. | Adds. | M.+A.
NxNxN /point | /point | /point | /point | /point | /point | /point | /point | /point

23 x23x 23 3.93 12.93 | 16.87 | 2.62 11.62 | 1425 | 147 1047 | 11.95

24 %24 x 24 5.25 17.25 | 22.5 3.93 15.93 | 19.87 | 2.64 14.64 | 17.29

P x2°x2 6.56 21.56 | 28.12 | 5.25 20.25 | 25.5 293 17.93 | 20.87

26 % 26 % 26 7.87 25.87 | 33.75 | 6.56 24.56 | 31.12 | 3.99 21.99 | 25.98

27 x 2" x 727 9.18 30.18 [39.37 | 7.87 28.87 | 36.75 |4.38 25.38 | 29.76

28 x 28x 28 10.5 345 | 45 9.18 33.18 | 4237 | 5.35 29.35 | 34.70

29%x29x2° 11.81 | 38.81 | 50.62 | 10.5 375 |48 5.81 32.71 | 38.62

2105210210 1 1312 | 43.12 | 5625 | 11.81 | 41.81 [53.62 672 13672 | 4344

2105 21211 1 1443 | 4743 | 61.87 [13.12 | 46.12 | 5925 | 724 |40.24 | 47.48

212 %212 212 1 1575 | 51.75 | 67.5 14.43 | 5043 | 64.87 | 810 |44.10 |52.20

118

Table 5.9: Number of non-trivial operations required for the computation of the 3-D DHT
using the 4mult-2add scheme

Radix-(2x 2 x 2) Proposed radix-

FHTs in [65], [66] (2x2x2)/(4x4x4)FHTs
Transform size | Mults. | Adds. M.+A. | Mults. | Adds. M.+A.
NXxXNXxN /point | /point | /point | /point | /point | /point

23 x 2B x23 04375 |9.4375 [9.8750 [0.4375]9.4375 [9.8750
28 x 2% x2% [15312 |13.0938 | 14.6250 | 1.1484 | 12.7109 | 13.8594
2’ x2°x 2 29531 |16.8594 | 19.8125 | 1.9482 | 16.2373 | 18.1855
26 % 28 % 20 4.5391 |20.6797 | 25.2188 | 2.8344 | 19.5970 | 22.4314
27 % 2T%x 27 6.2070 | 24.5273 | 30.7344 | 3.7270 | 23.1299 | 26.8569
28 % 28 x 28 7.9160 | 28.3887 | 36.3047 | 4.6549 | 26.5250 | 31.1799
29 %2 %27 9.6455 | 32.2568 | 41.9023 | 5.5725 | 30.0475 | 35.6199
210 % 2105 2101 11.3853 | 36.1284 | 47.5137 | 6.5094 | 33.4619 | 39.9712
2105 21 21T 1 13,1301 | 40.0017 | 53.1318 | 7.4344 | 36.9726 | 44.4070
212 5 212 % 21271'14.8776 | 43.8759 | 58.7534 | 83724 | 40.3999 | 48.7723

Table 5.10: Number of non-trivial operations required for the computation of the 3-D DHT
using the 3mult-3add scheme

Radix-(2 x 2 x 2) Proposed radix-
FHT's in [65], [66] (2x2x2)/(4x4x4)FHTs
Transform size | Mults. | Adds. M.+A. | Mults. | Adds. M.+A.
"NXNXxXN /point | /point | /point | /point | /point | /point
23 %23 x 23 0.1094 |9.7656 |9.8750 | 0.4375|9.4375 | 9.8750
24 x 2% x 2% 0.8203 | 13.8047 | 14.6250 | 0.9297 | 12.9297 | 13.8594
2 x2x2 1.8320 | 17.9805 | 19.8125 | 1.5928 | 16.5928 | 18.1855
20 x 20 x 20 2.9941 |22.2246 | 25.2188 | 2.2157 | 20.2157 | 22.4314
2Tx27x 27 42314 | 26.5029 | 30.7344 | 2.9285 | 23.9285 | 26.8569
28 x 28 x 28 5.5063 | 30.7983 | 36.3047 | 3.5899 | 27.5899 | 31.1799
9% 29x2° 6.8000 | 35.1023 | 41.9023 | 4.3100 | 31.3100 | 35.6199
2105210 210181031 | 39.4105 | 47.5137 | 4.9856 | 34.9856 | 39.9712
215 21 % 211194109 | 43.7209 | 53.1318 | 5.7035 | 38.7035 | 44.4070
212 212 % 212 1 10.7211 | 48.0323 | 58.7534 | 6.3861 | 42.3861 | 48.7723

119

Table 5.11: Number of non-trivial operations required for the computation of the 3-D DHT
using the 4mult-2add scheme

Polynomial transform algorithm in {68] Proposed radix-
(2x2x2)/(4x4x4)
FHTs
Transform Size | Mults. | Adds. | M.+A. | Modulo | Bit-shift | Mults. | Adds. | M.+A.
NxNXxN /point | /point | /point | /point /point | /point | /point | /point
P x23%x2° 0.81 | 882 | 9.64 0.37 0.37 043 | 943 | 9.87
24 x 2% x 2% 1.36 | 12.36 | 13.73 0.43 0.43 1.14 | 1271 | 13.85
2 x2°x2 1.89 |15.89 | 17.79 | 0.46 0.46 194 | 1623 | 18.18

20 x 20 x 2° 241 {1941 | 2182 | 0.48 0.48 283 1959 | 2243

27 %27 x 27 292 | 2292 | 25.84 0.49 0.49 372 |23.12 | 26.85

25 x 28 x 28 342 | 2642} 2984 | 049 0.49 4.65 | 2652 | 31.17

2° %27 x2° 392 |29.92 | 33.85 0.49 0.49 5.57 |30.04 | 35.61

21021020 1442 |3342] 37.85 0.49 0.49 6.50 | 33.46 | 39.97

2122111492 13692 | 41.85 0.49 0.49 7.43 | 3697 | 44.40

21252125212 1 542 14042 | 4585 | 0.49 0.49 8.37 | 4039 | 48.77

The popularity of the DHT is mainly due to the fact that the forward and inverse trans-
fonﬁs can be computed using only a single FHT algorithm. Unfortunately, this very useful
property of the DHT in requiring only a single algorithm is lost when we consider the ap-
proach reported in [68], since the algorithm requires the implementation of two different
complicated algorithms, one for computing the 1-D type-II-DWTs and the other for the 3-D
polynomial transforms. Moreover, the approach in [68] requires a special sequence reorder-
ing, thus necessitating extra multiplications, additions, modulo operations, and bit-shift op-
erations. Further, these time-consuming overhead operations contribute significantly to an
increase in the overall structural complexity of the algorithm. Another drawback of this
approach is that it does not have the butterfly-style and in-place computation properties,
thereby requiring a large memory. Due to these drawbacks, the algorithm in [68] would
not be attractive for software or hardware implementation. However, the proposed FHT

algorithms have more regular and simple structures using butterfly-style and in-place com-

putations.

120

5.3.3.2 Data Transfers

We first give a brief implementation scheme of the proposed radix-(2 x 2 x 2)/(4 x 4 x 4)
DIF FHT algorithm by considering the implementation of the butterfly given by (5.95) and
(5.87). For a given combination of (k,k2,k3), by reading eight points from the off-chip
memmory according to (5.63) to compute the operation given by (5.62), we obtain the eight
points given by (5.64). The first point yooo (k1,k2,k3) of (5.64) is returned to the off-chip
memory, Whereas the other seven points are kept in the on-chip memory since they are
used according to (5.91) by the general sub-butterfly given by (5.87). These operations
are repeated 16 times to complete the computation of the operation given by (5.95). The
seveﬁ 16-point results kept in the on-chip memory are used to process the general sub-
butterfly. This completes the process of the butterfly. For all the combinations of (ky, k2, 43),
0<kh < % —=1,0<k, k< % — 1, the results returned to the off-chip memory are grouped
to form the input sequence yooo (k1,k2,k3) of the (¥ x & x &)-point 3-D DHT given by
(5.54). The 56 input sequences of the (¥ x & x X)-point 3-D DHTs given by (5.86) are
formed by grouping appropriately the results of the output vector given by (5.87). This
completes the first stage of the proposed decomposition.

Then, it can be shown that the expression for the number of data transfers, not including
the read operations for the twiddle factors, required by the proposed DIF FHT algorithm is

given by

N N
Dr2/4 (3,N) :N3+Dr2/4 (3, E) +56Dr2/4 (3, Z) , N>2,

Dr2/4(3,2) =8, Dpys(3,1) =0 (5.124)
The corresponding expression for the radix-(2 x 2 x 2) FHT algorithm is given by
Dr2(3, N) = N3log,N (5.125)

121

Table 5.12: Comparison of the number of data transfers

Radix-(2 x 2 x 2) Proposed radix- Savings
FHTs (2x2x2)/(4x4x4)FHTs
Transform size Dr;(3,N) Dr2/4(3 N) (%)
NxNxN /N3 /N?
2% x 23 x 23 3 2.0156 32.81
2% x 24 x 2% 4 2.2363 44.09
22 x2°x2° 5 3.0432 39.13
20 % 26 x 26 6 3.3372 44.38
27 x27x27 7 4.08 41.71
28 x 28 x 28 8 4.43 44.62
27 x2°x2° 9 5.1237 43.07
210 5 210 5 210 10 5.5167 44.83
2 2 ol 11 6.1728 43.88
‘ 212 212 % 212 12 6.5988 45.01

The numbers of data transfers for the two FHT algorithms are compared in Table 5.12, for
various values of N. It is clear from this table that the radix-(2 x 2 x 2)/(4 x4 x 4) FHT
algorithm requires about 40% less data transfer operations than that required in the radix-
(2 x2x2) FHT algorithm. Hence, similar reduction is also obtained in the case of the

address generation.

5.3.3.3 Twiddle factors

The general butterfly of the radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FHT algorithm requires 112
twiddle factors (cosine and sine), whereas that of the radix-(2 x 2 x 2) FHT algorithm re-
quires 14 twiddle factors. Therefore, it is seen that the expression for the number of twiddle
factors required by the two-butterfly implementation of the radix-(2 x 2 x 2)/(4 x4 x 4)

FHT algorithm is given by

N N N
Ti5/s (3,N) = 128+Tr2/4 (3 2)+561;‘2/4(4>, N>2,

TH/4(3,2) =Tf4(3,1) =0 (5.126)

122

Table 5.13: Comparison of the number of twiddle factor evaluations or accesses to the
lookup table

Radix-(2 x 2 x 2) Proposed radix- Savings
FHTs (2x2x2)/(4x4x4) FHTs (%)
Transform size | Using one | Using two Using two
butterfly | butterflies butterflies
T5(3,N) | TE(3,N) T‘r‘%/4(3,N) inC | inC
NxNxN /N3 /N3 /N3 over | over
- (A) (B) ©) A B
2 %x23x23 2.625 1.75 0.9844 62.49 | 43.74
24 x 24 x 24 3.5 2.625 1.7637 49.61 | 32.71
P x2x2 4.375 3.5 1.9568 55.27 | 44.09
20 % 26 x 26 5.25 4.375 2.6628 49.28 | 39.13
2% 27 x 27 6.125 5.25 2.92 52.32 | 44.38
28 %28 %28 7 6.125 3.57 49.00 | 41.71
29 %29 x2° 7.875 7 3.8763 50.77 | 44.62
210 5 210 5 210 8.75 7.875 4.4833 48.76 | 43.06
22T 2T 19, 625 8.75 4.8272 49.84 | 44.83
212 212 x 212 10.5 9.625 5.4012 48.55 | 43.88

The corresponding expression for the one-butterfly (s = 0) or two-butterfly (s = 1) imple-
mentation of the radix-(2 x 2 x 2) FHT algorithm is given by
2(3,N) = 141-\[—310 N (5.127)
2\ - 1 6 g2 2 s :

The numbers of twiddle factor evaluations or accesses to the lookup table for the two
algorithms are compared in Table 5.13. It is clear from this table that savings of about 40%
in the number of twiddle factor evaluations or accesses to the lookup table can be achieved
using the proposed radix-(2 x 2 x 2)/(4 x 4 x 4) FHT algorithms over the one-butterfly and
two-butterfly implementations of the radix-(2 x 2 x 2) FHT algorithms. Note that, when

the lookup table is used, similar savings are obtained by the proposed FHT algorithms in

the address generation for reading the twiddle factors.

123

54 Summary

In this chapter, new radix-(2 x 2 x 2)/(4 x 4 x 4) FFT and FHT algorithms for computing,
respectively, the 3-D DFT and DHT have been developed using DIF and/or DIT decom-
positions. The proposed algorithms are based on the radix-2/4 approach that has been
introduced by using an appropriate index mapping to carry out the decomposition of the
3-D DFT or DHT in two distinct steps. In the first step, the decomposition has been carried
out By using radix-(2 x 2 x 2) index maps, and in the second step further decomposition has
been carried out by introducing radix-(4 x 4 x 4) index maps. The introduction of these two
steps and the use of the Kronecker product enable us to develop 3-D FFT and FHT algo-
rithms whose butterflies are characterized by simple closed-form expressions. It has been
shown that the proposed 3-D FFT (or FHT) algorithm substantially reduces the number of
arithmetic operations, data transfers, address generations, and twiddle factor evaluations or
accesses to the lookup table compared to that required by the existing 3-D radix-(2 x 2 x 2)
FFT (or FHT) algorithm. The proposed 3-D FFT and FHT algorithms have significantly
reduced structural complexities compared to the corresponding polynomial transform algo-

rithms.

124

Chapter 6

A New radix-2/8 Approach

6.1 Introduction

It has been shown in the literature that the 1-D and 2-D FFT and FHT algorithms, based on
the radix-2/4 approach, are more efficient than the other existing ones [11], [17], [29], [301,
[45], [56], [57], [64]. In Chapter 5, we have shown that the radix-2/4 approach is superior
to the other existing approaches even in the 3-D case. The efficiency of this approach is
obtained by taking advantage of the lowest structural complexity provided by the radix-2
approach and reduced computational complexity provided by the radix-4 approach. Even
though the radix-2/4 algorithms are the simplest algorithms having the lowest number of
arithmetic operations, there is still a scope for further improvement in terms of the number
of data transfers, address generations, and twiddle factor evaluations or accesses to the
lookup table, which also significantly increase the complexity of the algorithms.

In this chapter, the problem of reducing the complexity in the computation of the 1-D
DFT and DHT of lengths N = g x 2™, where g and m are integers is addressed, and a new
radix-2/8 approach is proposed by a simultaneous use of the radix-2 and radix-8 approaches

[120]-[123]. This new approach takes advantage offered by the radix-2 approach discussed

125

in Chapter 1 and that offered by the radix-8 approach discussed in Chapter 4. This approach
will be extended to 2-D and 3-D DFTs in the next chapter.

6.2 Radix-2/8 Approach for the Computation of Length-
q x 2" 1-D DFT

The radix-2/4 approach of Duhamel-Hollmann differs from that of Cooley-Tukey in the
decomposition process. For example, in the Cooley-Tukey radix-2 FFT, radix-2 index maps
are used to decompose both the even and odd indexed terms of the DFT, while in the radix-
2/4 FFT, radix-4 index maps are used in the decomposition of the odd indexed terms. In
other words, the radix-2/4 FFT consists of dividing a length-N DFT into one length-N/2
DFT and two length-N /4 DFTs in the first stage and repeating successively the process until
the size is reduced to a 2-point DFT without twiddle factors. This significantly reduces the
number of arithmetic operations as compared with the fixed-radix Cooley-Tukey FFT [4],
[36], [32]. In 2000, Grigoryan and Agaian [19] proposed another algorithm that reduces
the number of arithmetic operations for DFTs of lengths larger than 256 at the expense of a
more complicated structure compared to that of the radix-2/4 FFT algorithm; however, it is
computationally less efficient for smaller lengths. Even though the radix-2/4 FFT algorithm
is the simplest algorithm having the lowest number of arithmetic operations, the number of
data transfers, address generations, and twiddle factor evaluations or accesses to the lookup
table is still high.

The radix-2/4 FFT algorithm was mainly proposed for length-2" DFTs. In order to
explore the performance of the split-radix approach in the other DFTs, the idea of the
radix-2/4 FFT proposed in [11] has been extended to the length-p™ [14] and length-g x 2™
DFTs [17]. Specifically, the algorithm in [17] consists of dividing a length-N DFT into one
length-N/2 DFT and two length-N /4 DFTs in the first stage and repeating successively the

126

process until the size is reduced to a 2¢g-point or a g-point DFT. It has been shown that
this algorithm reduces the number of arithmetic operations compared with other reported
algorithms [2], [5], [6], [13], [14].

In order to address the problem of reducing the number of data transfers, address gen-
erations, and twiddle factor evaluations or accesses to the lookup table, we explore the
possibility of using radix-8 index maps in the decomposition process. In [11], the authors
claim that the computation of the odd terms of the split-radix DFT through a radix-8 does
not improve the algorithm. In [124], the author states “It can easily be checked out that a %-
split-radix algorithm is worse than a %—split—radix algorithm from an arithmetic complexity
poinf of view”. In 2001, Takahashi [20] directly used the radix-8 in the decomposition of
the odd terms. This, of course, led to an algorithm with an increased arithmetic complexity.

In this section, we develop a new radix-2/8 FFT algorithm [120], [121] by an appro-
priate simultaneous use of the radix-2 and radix-8 index maps and show that, for the case
of the DFT of length N = 2™, we can substantially reduce the number of data transfers,
address generations and twiddle factor evaluations or accesses to the lookup table, without
increasing the number of arithmetic operations from that of the radix-2/4 FFT algorithm.

We also show that these results hold for the case of the DFT of length N = g x 2™.

6.2.1 Proposed Radix-2/8 DIF FFT Algorithm
From (3.1), the 1-D DFT of length ¥ is given by

N-1
X(n)= Y X)W, 0<n<N-1 (6.1)
k=0

The sequence length N is assumed to be g x 2™, where q is an odd integer and m > 0. Let us

first consider the case when m = 1. Then, the decomposition of the DFT coefficients X (n)

127

in (6.1) into even-indexed and odd-indexed terms provides

~ q-1
X(2n) =Y (&) +x(k+q)W™, n=0,1,..,9—1 6.2)
k=0

X ((2n+q) mod 2q) = Y (%(k) — X(k+q)) (—=1)'W*, n=0,1, .., —1 (6.3)
k=0

This decomposition consists of dividing the length-2¢g DFT into two length-g DFTs given

by (6.2) and (6.3). In a similar way, when m = 2, the decomposition of (6.1) provides
~ 241
X(2n)=Y (x(k)+x(k+29)) Wik, n=0,1,...,(2g—1) (6.4)
k=0

for the even-indexed terms, and

X ((4n+q) mod 4g) = Y (a(k) + (—j)%a(k+q) (=)' W*, n=0,1,...,g—1 (65)
k=0
- q-1
X ((4n+3q) mod 4q) = Y’ (a(k) + (j)%a(k+q)))W, n=0,1,..,q-1 (6.6)
k=0

for the odd-indexed terms, where a(k) = x(k) — X(k+ 2q). The length-4q DFT is thus de-
composed into one length-2g DFT given by (6.4) and two length-g DFTs given by (6.5) and
(6.6). We now propose the following new decomposition of (6.1) so that we can compute a

length-g x 2" (m > 2) DFT using a mixture of radix-2 and radix-8 index maps.

_ N/2—1
X@n)= Y @)Wy, n=0,1,.,(N/2—1) 6.7)
k=0

for the even-indexed terms, and

128

B N/8-1 o
X((8n+g)modN)= Y (be(k)+e“1?be(k+N/8)) Wz’ékWﬁ'}s,

k=0
n=0,1,..(N/8~1)
- N/8—1 s 2k
X (N +8n —3q) mod N) = szb (be(k)—e"%be(k+N/8))WN TWs:
n=0,1,..(N/8~1)
~ NET ;g 3gk
X ((8n+3g) mod N) = IZ{) (bo(k)-}-e"f 4 bo(k+N/8)) Wy' Wys,
n=0,1,..(N/8-1)
B N/8-1 g .
X ((N+8n—g) mod N) = 1;0 (Bo) — e bo(k+N/8)) Wy Wik,

n=0,1,..,(N/8—1)

(6.8)

(6.9)

(6.10)

(6.11)

for the odd-indexed terms. The sequences b, (k) in (6.8) and (6.9), and b,(k) in (6.10) and

(6.11) can be expressed in a matrix form as

be® | | @W
b, (k) a, (k+N/4)
where
1 0
J=
0 (—j)7

129

(6.12)

The sequences a,(k) in (6.7) and a,(k) in (6.12) can be obtained by

“W | _ |) (6.13)
a, (k) X(k+N/2)
which can be considered as the first step of the new decomposition. This first step is pro-
cessed by applying a second-order Hadamard matrix Hj to the input sequence %(k) without
requiring the twiddle factors. Since the operation of multiplication of (a+ jb) by (—j) con-
verts the complex number (a+ jb) to the complex number (b — ja), the matrix J introduced
in (6.12) can be implemented within the address generation process, and hence, J does not
require any additional processing time.
Let us use this decomposition to efficiently compute the length-8g DFT with a minimum

number of arithmetic operations. We let N = 8¢ in (6.7)-(6.11). Then, (6.7) reduces to

N 4g—1
X@2n) =Y a (Wi, n=0,1,..,(4g—1) (6.14)
k=0

By adding (6.9) and (6.8) and dividing the result by two, we can form a new sequence g,(n)

given by

Ba(n) = qz_‘j [e—jk'l—‘ (_li_(_:.l_ﬁge(k) +e—j£i§m Q_MN W;k,

be(k+q)
P 2 2 ¢

n=0,1,..,g—1 (6.15)

Similarly, subtracting (6.9) from (6.8) and dividing by two, we can form another sequence

8s(n) given by

a0 =S [kj U= C005 e D5

Par 2 2

n=0,1,..,g—1 (6.16)

130

Since ¢ is an odd integer and k takes only even or odd integer values, the quantity within
the brackets in (6.15) reduces either to (— j)*/2b, (k) or (—j)(@t0/2h,(k+q). Also, the cor-
respénding quantity in (6.16) reduces to 3@ (£1 = j)b, (k) or 3@(:!:1 + j)be(k+ q). Hence,
the length-g DFT given by (6.15) does not require to perform any pre-additions or pre-
multiplications on the sequence b, (k) or b, (k +q); however, (6.16) can be considered as a
length-g DFT scaled by a real factor 3@, whose input sequence is either (&1 =)b (k) or
(F1+£ j)ge(k-{— g). The final transform output sequences corresponding to (6.8) and (6.9)

are obtained, respectively, by

X ((8n+4) mod 8q) = Zu(n) +&iln), n=0, 1, ...,q— 1 6.17)

and

X ((8n+5q) mod 8¢) = g,(n) — gs(n), n=0,1,..,qg—1 (6.18)

Similarly, using (6.10) and (6.11) we can form two more new sequences given by

—1 —1)* ~ -3(g+k)m —(=1)* ~
Za(n)zg[ﬂ?m(”(z D95, (0 + -tz (L= C DY) (2 D95 et g | W,
n=0,1,..g—1 (6.19)
~ q-1 . — (=1~ . 3{g+k)n DK .
()= ¥, {e—f%_—_—(l C0 05,0+ et LR gy
k=0

n=0,1,..,9—-1 (6.20)

For even values of &, the quantities within the brackets in (6.19) and (6.20) reduce to
()¥ 2’l;a(k) and g(il + j)go (k+ q), respectively. The corresponding quantities for odd
values of k reduce to (j)4+0/2p, (k+ g) and —? (£1+ /)b, (k). Therefore, the computation
of (6.19) and (6.20) is similar to that of (6.15) and (6.16), respectively. The final transform

131

Sequence

.. ark) of Output
Original le%l(g t)ho 4q Length-4¢ sub-sequence
input _ DFT given X(2n) of
sequence by (14) length 44
%(k) of
length 87 [Eqn. |- ~ Output
fength og) ; 1(13)~ gg n) _sub-sequence
- Sequence | Length-¢ X((8n+q)mod8q)
lé(k) of DFT given of length g
length 2¢ by (15)
Scaled Output
length-q | _ . sub-sequence
DFT given gg n) X((8n+5g)mod8q)
Eqn. [~ by (16) 7{() of length ¢
1) L n Output
S%((lzfgge (42 Length-¢ - -_ sub-sequence
leagth 4 DFT given X((8n+3g)mod8q)
1 by (19) of length ¢
Sequence Scaled Out
= put
b(k) of length-¢].1, _ sub-sequence
length 29 - |DFT given | () X((8n+7g)mod8q)
by (20) z of length ¢
Figure 6.1: Decomposition diagram of a length-8q DFT.
output sequences corresponding to (6.10) and (6.11) are obtained, respectively, by
X ((8n+3q) mod 8q) = hya(n) +hs(n), n=0,1,...,qg~1 (6.21)
and
X ((8n+7q) mod 8q) = ha(n) —ks(n), n=0,1, ...,g—1 (6.22)

Thus, the computation of a length-8¢ DFT may be thought of as having being decomposed

into five DFTs, as given by (6.14), (6.17), (6.18), (6.21) and (6.22). This decomposition is

iltustrated in Fig. 6.1. It is clear from this figure that the computation of a length-84 DFT

requires one length-4g DFT, two length-q DFTs, two scaled length-g DFTs and some extra

additions.

Let us now consider the general case when N > 8g. We denote the input sequences

132

of the four length-N/8 DFTs given by (6.8)-(6.11), respectively, by ¢1(k), ¢_3(k), &3(k)

and c_1(k). After certain mathematical transformations, these input sequences may be

expressed in a compact form as

El (k) Ee (k)
¢k be(k+N/8
0 | | Blerngs) |
63 (k) bo(k)
| &1(k) | | Bo(k+N/8) |
where the matrix Ay is given by
Ar=EA

In (6.24), the twiddle factor matrix Ey is a diagonal matrix given by

w0 0
0 Wy o
3qk
0 0wy

0 0 0

and the constant matrix A is given by

where

0
0
0

—gk
WN

A=(LeH)D(,®C)

133

0,1,....(N/8~1)

o

(6.23)

(6.24)

(6.25)

(6.26)

Finally, the general butterfly of the proposed radix-2/8 FFT algorithm is constructed

using

ae(k)
G (k+N/8)
G.(k+N/4)
a,(k+3N/8)
o (k)
a,(k+N/8) -
Go(k+N/4)
a,(k+3N/8) |

=(H912 QL)

be(k)
be(k+N/8)

~ Do(k)
| Bo(k+N/8) |

=(H,0L)(JeL)

| (k+7N/8) |

(k)
%(k+N/8)
Z(k+N/4)
%(k+3N/8)
*(k+N/2)
%(k+5N/8)
%(k+3N/4)

o (k)
ao(k+N/8)
a,(k+N/4)

| @,(k+3N/8)

,k=0,1,...,(N/8-1) (6.27)

,k=0,1,...,(N/8—1) (6.28)

and the general sub-butterfly given by (6.23). The flowgraph of this general butterfly is

illustrated in Fig. 6.2.

It is clear that for a sequence of length N, the required number of butterflies to perform

the first stage of this new decomposition is %. The index k in Fig. 6.2 varies from 0 to

(¥ — 1) as indicated in (6.27), (6.28) and (6.23). The appearance of the parameter g in the

exponents of the elements of the twiddle factor matrix (6.25), aliows us to define 2q special

butterflies that can be indexed by k = p1—2’q~, where p =0, 1, ..., (2¢ — 1). Then, (6.25) can

be expressed as

Ep_l%% =(LeJ)(E’L), p=0,1,..,(2¢—1) (6.29)

134

(k) afk)
(k+N/8) ; ; o d(k+N/8)
X(k+N/4) \\/[a(k+N/4)

(k+3N/8)

a(k+3N/8)
k
F(k+N/2) o T(K)
H(k+SN/S) g I S0, T(K)
. 3gk
%(k+3N/A) o, T(k)
-gk

X(k+7N/8)

where
Je 1 ¢
0 (j)?
and
e‘j%ﬁ 0
E= ;
0 e‘fJiiE

By substituting (6.29) in (6.24), using the fact that (E®17) (b ®Hy) = (L H,) (EQ L),
and combining the twiddle factor matrices (E® 1) and D (I, ® C), the matrix A | A can be
q

expressed as

Ay =(LeF)LeH)T, p=0,1,..,(2¢-1) (6.30)

Pieq

135

where

[i 0 0]
T= 0 eIEE 0 0 r=0,1,..,(2¢g—1) (631
0 i 0 T '
0 0 (_j)qe"jw

It can be shown that four real multiplications and four real additions are introduced by
the matrix T in each of the g special butterflies corresponding to the even values of p,
and four complex multiplications are introduced in each of the other g special buiterflies
that correspond to the odd values of p. The number of operations to process these special
butterflies is less than that needed to process the general butterfly, as will be seen in Section
6.2.2.
We now summarize the scheme of the proposed radix-2/8 FFT algorithm for computing
. alength-g x 2™ DFT. By performing (%J; - 2q) general butterflies and 2q special butterflies
defined above, the initial input sequence x(k) of length N is decomposed into five sub-
sequences. The first sub-sequence of length N/2 is constructed by the first four outputs
obtained from (6.27). The other four sub-sequences each of length N /8 represent the four
outputs of the sub-butterfly given by (6.23). This process is repeated successively for each
of the new resulting sub-sequences, until the size is reduced to a 4¢- , 2g- or g-point DFT.
This‘scheme is illustrated for the first stage in Fig. 6.3. Note that, for simplicity, the gains

(weights) are omitted in Fig. 6.3 and can easily be obtained from Fig. 6.2.

136

X(0)e

X(N/M4-1} g

X(3N/8) \I
e AR,
wN2)h B MM b :
M X =
RI5N/B-1) / /A\/‘\‘\, o o O A 3O ‘ o
a T,

S(SN/S) KN

/8 - Ny
T =

I\

HINS] X] N

X(3N/4)q

X(7N/8-1) oy

XN-1)

RN .'

NS\ 1L

WL e

N NV L DFT

X(3N/8-1) g \

\

VY V7T

I{

\v.' ‘. N/8-point
é\-:% .
. N I

N/8-point
DFT

1 ®s

Figure 6.3: First stage of the proposed radix-2/8 FFT algorithm.

137

Table 6.1: Arithmetic complexities of the 8¢-, 4¢- and 2¢-point DFTs

N | Multiplications | Additions
2g 2M, 2A,+4q

4q 4aM, 4A,+16q
8q | 6M,+2M; |8A;+52q

6.2.2 Computational Complexity

In this section, we consider the performance of the proposed radix-2/8 FFT algorithm for
length-g x 2™ DFT by analyzing its computational complexity and comparing it with that

of the existing radix-2/4 FFT algorithm reported in [17].

6.2.2.1 Arithmetic Complexity

Let Mfl be the number of multiplications required by a scaled length-g DFT. Let 1\7Iq and
Zq be, respectively, the number of multiplications and number of additions required by a
length-g DFT. The arithmetic complexity of a length-2g DFT can be computed using (6.2)
and (6.3), whereas that of a length-4g DFT can be obtained using (6.4)-(6.6). Finally, the
required arithmetic complexity of a length-8q DFT can be calculated from (6.14)-(6.22).
These arithmetic complexities are given in Table 6.1.

In order to carry out a complete comparison of the arithmetic complexity of the pro-
posed radix-2/8 FFT algorithm with that of the existing radix-2/4 FFT algorithm [17], we
count the number of operations required by each algorithm whether the complex multipli-
cation is performed using the 3mult-3add scheme or using the 4mult-2add scheme.

For the 4mult-2add scheme, the general butterfly of the proposed radix-2/8 FFT algo-
rithm based on (6.27), (6.28) and (6.23) requires 20 real multiplications and 44 real ad-

ditions. The algorithm has 2g special butterflies that can be indexed by k = p%(;, where

p=0,1,..,(2g—1). For a given even value of p, the corresponding special butterfly

138

requires 4 real multiplications and 36 real additions. For a given odd value of p, the cor-
responding special butterfly requires 16 real multiplications and 40 real additions. The
proposed decomposition consists of dividing a length-N DFT to one length-N/2 DFT and
four length-N/8 DFTs in the first stage. This is achieved by performing (N/8) — 2q general
butterflies and the 2q special butterflies. The decomposition process is repeated succes-
sively for each of the resulting DFT until the size is reduced to a 8g-, 4g-, 2¢- or g-point
DFT: Therefore, it is seen that the expressions for the number of real multiplications and

real additions of the proposed FFT algorithm are, respectively,

5 N N
M5 (1,N) = 5N - 20q-|—Mr2/8<1 2)+4Mr2/8(1 8),N>8q (6.32)

11 N N
ABs(1LN) = —N—12q+Ar2/8(1 2>+4Ar2/8 (1 8),N>8q (6.33)

Similarly, if the 3mult-3add scheme is considered, it can be shown that the corresponding

numbers are
33 N N
Mg 5 (1,N) = 2N — 16g+ M ¢ Ly +4MDB g Lg) N>8g (6.34)
N N
AR5 (1,N) = 6N — 169+ A% ¢ L3 +4AY g Lg) N>8g (6.35)

It can be verified that the radix-2/4 FFT algorithm of [17] also has 24 special butterflies
that are precisely indexed by p—S%, where p =0, 1, ..., (29— 1). For a given even value of
D, thé corresponding special butterfly requires 12 real additions. For a given odd value of
p, the corresponding special butterfly requires 4 real multiplications and 16 real additions.
When the 3mult-3add scheme is used, the general butterfly of the algorithm in [17] requires
6 real multiplications and 18 real additions. Thus, it can be seen that the expressions for

the number of real multiplications and real additions of the radix-2/4 FFT algorithm of [17]

139

are, respectively

3 N N

Mg/ (LN) = 5N ~8¢ + M3/, (1 2) +2M3, (1 4), N> 8q (6.36)
9 N N

AR (LN)= 2N~ 8q+A$§,4()+2Ar2/4 (1 4), N> 8q 637)

Similarly, when the 4mult-2add scheme is used, the corresponding numbers are [17]

N N
r2/4(1 N)y=2N- 12q+Mr2/4(1 2>+2Mr2/4(1 4),N>8q (6.38)
N N
Ara(LN)=4N—-dg+A8, (1,5) +2A5, (1,7), N>38g (639)

The arithmetic complexities of the proposed radix-2/8 FFT algorithm, and the radix-
2/4 FFT algorithm reported in [17] for complex data for various values of N are given in
Tables 6.2-6.7. In Tables 6.4-6.7, the values used for]VI,S], A7Iq and Eq for the proposed FFT
algorithm are shown in Table 6.8, for ¢ = 3,9 and 15. These values are the same as the
ones used in [17] for the radix-2/4 FFT algorithm for the corresponding values of g. 1t can
be seen from Tables 6.2-6.7 that, in general, the total number of arithmetic operations is the
samé for both the proposed radix-2/8 FFT and the existing radix-2/4 FFT algorithms. For
the interesting case of g = 1, the total number of operations (i.e., multiplications+additions)
is exactly the same for the proposed FFT algorithm and the algorithms in [11], [120] and
[17] for both the 3mult-3add and 4mult-2add schemes. Note that this number is less than

the corresponding numbers for the algorithms in [16] and [20].

140

Table 6.2: Number of arithmetic operations required for the computation of the 1-D DFT
using the 3mult-3add scheme for g = 1

Radix-2/4 FFT in {17] Proposed radix-2/8 FFT
| N |Mulis. | Adds. | M+A. | Mults. | Adds. | M+A.
8 4 52 56 4 52 56
16 20 148 168 20 148 168
32 68 388 456 68 388 456
64 196 964 1160 196 964 1160
128 516 2308 2824 516 2308 2824
256 | 1284 5380 6664 | 1284 5380 6664
512) 3076 | 12292 | 15368 | 3076 | 12292 | 15368
1011024 | 7172 | 27652 | 34824 | 7172 | 27652 | 34824
11]2048 | 16388 | 61444 | 77832 | 16388 | 61444 | 77832
12 | 4096 | 36868 | 135172 | 172040 | 36868 | 135172 | 172040

Ol ool |l w] KWl 3

Table 6.3: Number of arithmetic operations required for the computation of the 1-D DFT
using the 4mult-2add scheme for g =1

Radix-2/4 FFT in {17] Proposed radix-2/8 FFT
| N [Mults. | Adds. | M.+A. | Mults. | Adds. | M+A.
8 4 52 56 4 52 56
16 24 144 168 24 144 168
32 84 372 456 84 372 456
64 248 912 1160 240 920 1160
128 660 2164 2824 636 2188 2824
256 | 1656 5008 6664 | 1592 5072 6664
512 | 3988 | 11380 | 15368 | 3812 | 11556 | 15368
1011024 | 9336 | 25488 | 34824 | 8896 | 25928 | 34824
11 | 2048 | 21396 | 56436 | 77832 | 20364 | 57468 | 77832
12 | 4096 | 48248 | 123792 | 172040 | 45832 | 126208 | 172040

|0l | n| w3

141

Table 6.4: Number of arithmetic operations required for the computation of the 1-D DFT
using the 4mult-2add scheme for g = 3

Radix-2/4 FFT in [17] | Proposed radix-2/8 FFT

N | Mults. | Adds. | M.+A. | Mults. | Adds. | M.+A.
6 4 36 40 4 36 40
12 8 96 104 8 96 104

24 24 252 276 24 252 276
48 100 624 724 100 624 724
96 304} 1500 1804 312 | 1500 | 1812
192 852 | 3504 | 4356 828 | 3528 | 4356
384 | 2192 | 8028 | 10220 | 2128 | 8100 | 10228
768 | 5396 | 18096 | 23492 | 5236 | 18288 | 23524
1536 | 12816 | 40284 | 53100 | 12328 | 40812 | 53140

Ol ool Al] B Lo =il 3

Table 6.5: Number of arithmetic operations required for the computation of the 1-D DFT
using the 3mult-3add scheme for g = 3

Radix-2/4 FFT in [17] | Proposed radix-2/8 FFT

| N | Mulss. | Adds. | M+A. | Mults. | Adds. | M.+A.
6 4 36 40 4 36 40
12 8 96 104 8 96 104

24 24 252 276 24 252 276
48 88 636 724 88 636 724
96 256 | 1548 | 1804 264 | 1548 | 1812
192 696 | 3660 | 4356 696 | 3660 | 4356
384 | 1760 | 8460 | 10220 | 1768 | 8460 | 10228
768 | 4280 | 19212 | 23492 | 4312 | 19212 | 23524
1536 | 10080 | 43020 | 53100 | 10120 | 43020 | 53140

Wl ool <3|\ L] & W] =]l 3

142

Table 6.6: Number of arithmetic operations required for the computation of the 1-D DFT
using the 4mult-2add scheme for g =9

Radix-2/4 FFT in [17] | Proposed radix-2/8 FFT
Mults. | Adds. | M.+A. | Mults. | Adds. | M.+A.
18 32 204 236 32 204 236
36 64 480 544 64 480 544
72 140 | 1140 | 1280 140 | 1140 | 1280
144 448 | 2640 | 3088 448 | 2640 | 3088
288 | 1196 | 6036 | 7232 1244 | 6036 | 7280
576 | 3136 | 13584 | 16720 | 3064 | 13656 | 16720
1152 | 7724 | 30228 | 37952 | 7556 | 30444 | 38000
2304 | 18496 | 66576 | 85072 | 18112 | 67152 | 85264

=

ool Al vk A wlo] =l 3

Table 6.7: Number of arithmetic operations required for the computation of the 1-D DFT
using the 4mult-2add scheme for g = 15

Radix-2/4 FFT in [17] | Proposed radix-2/8 FFT
Mults. | Adds. | M+A. | Mults. | Adds. | M.+A.

30 60 396 456 60 396 456
60 120 912, 1032 120 912 | 1032
120 264 | 2124 | 2388 264 | 2124 | 2388
804 | 4848 | 5652 804 | 4848 | 5652
480 | 2112 | 10956 | 13068 | 2184 | 10956 | 13140
960 | 5460 | 24432 | 29892 | 5340 | 24552 | 29892
1920 | 13344 | 53964 | 67308 | 13056 | 54324 | 67380

2

Qo] B o] || 3
[\)
N
)

Table 6.8: Number of multiplications and additions required by 3-, 9- and 15-point DFTs

q | M, | M| A
3] 2] 6] 12
9 16| 22| 84
I5]30] 42168

143

6.2.2.2 Data Transfers

In counting the number of data transfer operations between the processor and the external
memory (RAM), we assume that sufficient registers are available in the processor to per-
form an entire butterfly without using any intermediate transfer operations. Let us give a
brief implementation scheme of the proposed FFT algorithm to show how an expression
for the number of data transfers, not including the read operations for the twiddle factors,
is obtained. The implementation of the butterfly for a given value of k, based on (6.27),
(6.28) and (6.23), of the proposed FFT algorithm consists, of reading two points from the
external memory of the processor and performing the operations of addition and subtraction
using these two points as the operands. The result of the addition is returned to the external
memory, whereas that of the subtraction is kept in an internal register of the processor. This
process is repeated four times to compute @, and a, given by (6.27) of the butterfly. The
four points kept in the processor are used to compute (6.28), whose outputs are used to pro-
cess the sub-butterfly given by (6.23). The results of the additionsfor k=0, 1, ..., (N/8)—1
returned to the external memory are grouped to form the first sub-sequence of length N /2.
The four sub-sequences of length N/8 are formed by grouping separately the results of each
line of the output vector of (6.23). This scheme of implementation reduces significantly the
number of data transfers and address generations. To compare the number of data transfers
and address generations of the proposed radix-2/8 and the radix-2/4 FFT algorithm of {17],
we consider the case of ¢ = 1 as an example. For this case, both the algorithms require four
types of butterflies: one type to compute length-2 DFTs, two types of special butterflies and
one general butterfly. However, the radix-2/8 FFT requires one additional type of butterfly
to compute length-4 DFTs. It can be shown that the expression for the number of data

transvfer operations (real and imaginary parts) for the implementation of the radix-2/8 FFT

144

algorithm using all the five types of butterflies is given by

N N
Drajg (1,N) = 2N +Dryyg (1,5) +4Dry/3 (1,—8~) , N>38,

Dr2/8(174) =8, DI’Z/S (1)2):41 DI‘Z/S (171) =0 (6.40)

whereas the corresponding expression for the implementation of the radix-2/4 FFT algo-

rithm using the first four types of butterflies is given by

N N
Dry/4(1,N) = 2N +Drpy4 (1, *2"> +2Dry/4 (1, Z) , N>4,

Drp/4(1,2) =4,Drz4(1,1) =0 (6.41)

If in the implementation of the latter algorithm, all the five types of butterflies are used, then

the corresponding expression is

N N
Dr2/4 (1,N) =2N +Drpyy (1,—2-> +2Dr2/4 (LZ) , N>8,

Dr2/a(1,4) = 8,Drgy4(1,2) = 4,Dpy 4 (1,1) =0 (6.42)

The number of data transfer operations for the two algorithms are compared in Table 6.9.
The 4-butterfly and 5-butterfly implementations of the radix-2/4 FFT algorithms [17] or
[11] require about 20% more data transfer operations compared to the implementation of the
proposed FFT algorithm. During the data transfer process the address generation operations
are required to read/write the data from/in memory, and hence, similar savings are also
obtained by the proposed FFT algorithm in the case of the address generation. Note that
the proposed FFT algorithm and the algorithms in {20] and [120] have the same number of

data transfer operations.

145

Table 6.9: Comparison of the number of data transfers operations for g = 1

4-butterty S-butterfly Implementation [Savings [Savings

implementation of | implementation of | of the proposed inC inC
the radix-2/4 FFT | the radix-2/4 FFT | radix-2/8 FFT | over A | over B

m| N| Dou(LN) @A) | Dpu(LN)®) [Dps(LN)©] % %

3 8 36 32 24 33.33 25.00
4 16 92 80 72 21.73 10.00
5 32 228 208 168 26.31 19.23
6 64 540 496 392 27.40 20.96
71 128 1252 1168 936 25.23 19.86
8] 256 2844 2672 2120 2545 20.65
91 512 6372 6032 4712 26.05 21.88
10 | 1024 14108 13424 10504 25.54 21.75
11 | 2048 30948 29584 23080 2542 21.98
12 | 4096 67356 64624 50120 2558 22.44

6.2.2.3 Twiddle Factors

A complex multiplication using the 3mult-3add scheme is performed as

(c+js) (xr + jxr) = (c+5)xg — s (xg +x1) + j[s (xg +x1) + (¢ —) x1] (6.43)

where ¢ and s are, respectively, the real and imaginary parts of a twiddle factor. Hence, one
complex multiplication requires three real coefficients, s, ¢+ s and ¢ — s, to be calculated
or loaded from a lookup table. It is obvious that two real coefficients are required when
the 4mult-2add scheme is used. We discuss here only the cases of g =1 and ¢ = 3. In
counting the number of real coefficient evaluations or accesses to the lookup table required
by the proposed radix-2/8 and the radix-2/4 FFT algorithm of [17], it is assumed that the
coefficients required by the special butterflies, such as v/2/2, v/3/2, cos(n/8) and sin(1/8)
are initialized and kept in the internal registers of the processor during the processing time
of the corresponding algorithm. However, for the radix-2/8 and radix-2/4 FFT algorithms,

4 and 2 real coefficients are respectively required to be evaluated or loaded from the lookup

146

table by the corresponding general butterfly using the 4mult-2add scheme; the correspond-
ing numbers are 6 and 3 for the 3mult-3add scheme. Therefore, by counting the required
number of the general butterflies in the radix-2/8 and radix-2/4 FFT algorithms, the number
of real coefficient evaluations or accesses to the lookup table for the two algorithms are,

respectively

N N
Ts (1LN) = ”“8‘1+ /8 (2) +4T (1’§)’ N> 8 (6.44)

and

N N N
T/ (1L,N) = 5 —4g+Tg) (1, 5) +2Tg 4 (1,2) , N>dq (6.45)

using the 4mult-2add scheme, and

3 N N
Trz/g(laN):ZN 12c1+Tr2/8 (1 2>+4T§§/8() N >38q (6.46)
and
3 N N
T?§/4(1,N)=ZN~6q+T2/4(2)+2Tr2/4(1 4),N>4q (6.47)

using the 3mult-3add scheme.

For various values of N, the number of real coefficient evaluations or accesses to the
lookup table of the proposed radix-2/8 FFT algorithm is compared to that required by the
radix-2/4 FFT algorithm when g = 1 in Table 6.10 and g = 3 in Table 6.11. It is seen from
thesé tables that savings of over 30% in the evaluation of twiddle factors or in the access to
the lookup table can easily be achieved by the proposed FFT algorithm. Note that, when the
lookup table is used, identical savings are obtained by the proposed FFT algorithm in the
address generation for reading the twiddle factors. Specifically, for the case of g = 1, the
proposed FFT algorithm achieves savings of 50% as compared with the algorithm in [120],

over 50% as compared with the algorithm of [20] and over 65% as compared with the

147

Table 6.10: Comparison of the number of twiddle factor evaluations or accesses to the
lookup table for g = 1

Radix-2/4 Proposed Savings | Radix-2/4 Proposed Savings
FFT radix-2/8 FFT FFT radix-2/8 FFT
m N T, (LN) | TE,(1,N) % | T3 (LN) | T8, (1,N) %
3 8 0 0 0 0 0 0
4 16 4 0 100 6 0 100
5 32 16 8 50 24 12 50
6 64 52 32 38.46 78 48 38.46
71 128 144 88 38.88 216 132 38.38
8| 256 372 240 3548 558 360 3548
9| 512 912 616 32.45 1368 924 32.45
10 | 1024 2164 1472 31.97 3246 2208 31.97
11 | 2048 5008 3448 31.15 7512 5172 31.15
12 1 4096 | 11380 7952 30.12 17070 11928 30.12

Table 6.11: Comparison of the number of twiddle factor evaluations or accesses to the
lookup table for g =3

Radix-2/4 Proposed Savings | Radix-2/4 Proposed Savings
FFT radix-2/8 FFT FFT radix-2/8 FFT

m| N|Tg,(LN) | TE4(LN) % | T5,(LN) | TB,4(LN) %

3 24 0 0 0 0 0 0

4 48 12 0 100 18 0 100

5 96 48 24 50 72 36 50

6 192 156 96 38.46 234 144 38.46

7 384 432 264 38.88 648 396 38.38

8 768 1116 720 35.48 1674 1080 35.48

9| 1536 2736 1848 32.45 4104 2772 32.45
10 | 3072 6492 4416 31.97 9738 6624 31.97
11| 6144 15024 10344 31.15 22536 15516 31.15
12 | 12288 | 34140 23856 30.12 51210 35784 30.12

148

standard radix-2/4 FFT algorithm of [11]. Note that the proposed radix-2/8 FFT algorithm

for g = 1 can be considered as an improved version of the algorithm reported in [120].

6.2.2.4 Example

The purpose of this example is to show the importance of a ¢ x 2™-point FFT algorithm
in providing a large range of choices for the length N. To illustrate this point, we use the
algorithm proposed here since we have already shown that the complexity of this algorithm
is les;s than those of the existing ones. Consider the case of filtering, which plays a central
role in signal processing. In general, the length of the impulse response of the filter is much
lower than the length of the input signal and is not a power of two. Instead of implementing
the linear convolution directly, it is more efficient to carry out a block convolution using
the FFT [1], [2]. If we assume that the length of the impulse response is P and the length
of the blocks of the input signal is L, then the possible choice for the length N of the FFT
is N> (L+P—1). Since (L+ P — 1) is, in general, not a power of two, the use of a 2"-
point FFT algorithm requires a zero padding technique to augment the lengths P and L to
the closest N = 2" that satisfies 2" > (L+ P —1). However, when using a g x 2™-point
FFT -algorithm, for g > 1, it is sufficient to choose the closest N = g x 2™ that satisfies
gx2" > (L+P—1). Table 6.12 gives the arithmetic complexities and twiddle factor
requirements using the 3 x 2™-point and 2"-point FFT algorithms. It is clear from this table
that the 3 x 2"-point FFT algorithm substantially reduces the arithmetic complexity and
the number of twiddle factor evaluations or accesses to the lookup table compared to those
required by the 2"-point FFT algorithm. In addition, it reduces the number of data transfers.
Similar comparisons may be carried out for different values of g to show the importance of
the g x 2™-point FFT algorithm in providing many other interesting choices for the length

N different from the usual one of N = 27,

149

Table 6.12: Comparison of the arithmetic complexities and twiddle factor requirements for
the proposed 2"- and 3 x 2™-point FFT algorithms

Possible choice 2"-point FFT algorithm 3 x 2™-point FFT algorithm
oflengthN [N | MAA [T2,4 [Thp | N [MAA | T2, [T,

N2>23 32 456 | 8 12 24 276 0 0
N> 47 64 1160 32 48 48 724 0 0
N>95 128 | 2824 88 132 | 96 1812 24 36

N> 191 256 | 6664 | 240 | 360 | 192 | 4356 96 144
N > 383 512 | 15368 | 616 | 924 | 384 | 10228 | 264 | 396
N >767 1024 | 34824 | 1472 | 2208 | 768 | 23524 | 720 | 1080
N > 1535 2048 | 77832 | 3448 | 5172 | 1536 | 53140 | 1848 | 2772

6.3 Radix-2/8 Approach for the Computation of Length-

g x 2" 1-D DHT

The idea of the radix-2/4 approach proposed in [11] to compute a length-2" DFT has been
exploited in [45] and [60] to compute a length-2 DHT. Recently, an alternative radix-2/4

FFT algorithm proposed for computing a length-g x 2™ DFT [17], has also been used for
computing a length-g x 2™ DHT [55]-[57]. It is known that these radix-2/4 FHT algorithms

are the simplest algorithms having the lowest number of arithmetic operations [45], [55]-

[57].
We now propose a new radix-2/8 FHT algorithm for efficiently computing a length-

g x 2" DHT, where ¢ is an odd integer, by introducing a mixture of radix-2 and radix-8

index maps in the decomposition of the DHT [122], [123].

150

6.3.1 Proposed Radix-2/8 DIF FHT Algorithm
Using (2.2), the 1-D DHT of length N is given by

Nl 2n
X(n) = 2 x(k)cas (—]\—]—nk> ,n=0,1,..,N-1 (6.43)
k=0

The sequence length N is assumed to be g x 2", where g is an odd integer and m > 0. Using

the trigonometric identities, cas (2*nk) can be expressed as

2n 1 1, 1 1. -
cas(ﬁnk> = (-2~+'2—]>Wﬁk+(§—§])WNnk

= Re[(1+)W3] (6.49)

where Wy = exp(—j2n/N), j = +/—1 and Re [y] denotes the real part of y. Another expres-
sion for computing the DHT can be obtained from (6.48) using (6.49) as

N-—1
X(n)= 3 Re [x(k)(l—f—j)W]Gk], n=0,1,. . .N—1 (6.50)
k=0

Let us first consider the case when m = 1. Then, the decomposition of the DHT coefficients

X (n) in (6.50) into even-indexed and odd-indexed terms provides

g—1
X(@2n) = Y Re [re(k)(l—l— j)W;k]
k=0

! 2
= re(k)cas <—~nk), n=0,1,..,qg—1 6.51)
k=0 q

—1

X ((2n+q) mod 2g) = quRe[ra(k)(—nk(H j)Wq"k]
k=
q—1

= Zro(k)(—l)"cas<—2-’-t—nk),n=0,1,...,q—1 (6.52)
k=0 q

151

where the sequences 7.(k) in (6.51) and r, (k) in (6.52) are given by

e (K k
re (&) =H, *(0) (6.53)

7o (k) x(k+q)
This decomposition reduces the computation of the length-2g DHT to the computation of
two length-g DHTs given by (6.51) and (6.52), whose input sequences are obtained from
the original input sequence x(k) using (6.53). The decomposition process of a length-2¢

DHT is shown in Fig. 6.4. In a similar way, when m = 2, the decomposition of (6.50)

provides

21 2n
X(2n)= Y d.(k)cas <~nk) ,n=0,1,...,(2¢g~1) (6.54)
' k=0 2q

for the even-indexed terms, and
g1

X ((4n-+g) mod dg) = 31 Re [(do(K) + (=)"dok-+)) WL+ /)W),
=0

n=01,..g—1 (655

-1
X ((+39) mod dg) = 3 Re [(dl6)+ ()%l)W 1 + W],

n=0,1,...,g—1 (656)

for the odd-indexed terms, where the sequences d,(k) in (6.54) and d,(k) in (6.55) and
(6.56) are given by
de (k) x (k)

=W, (6.57)
dy (k) x(k+29)

152

Original Sequence

: Output
input r(k) of Lenoth- sub-sequence

sequence length g gt-q X(2n) of
x(k) of [| PHT given - X(n)o

leneth 2 Eqn. by (581) length 4q

(53) Length-q Output
—IS——' DHT given [~ sub-sequence
Cquencel uy (52) | X((2n+q)mod2q)

r(k) of
o f length
length q otfength

Figure 6.4: Decomposition of a length-2¢ DHT.

After computing the real parts in (6.55) and (6.56), the odd-indexed terms can be expressed

X ((4n+q) mod 4q) _n, F(n) A= 01, g—1 658)
X ((4n+34) mod 4q) G(g—n)
where
- ~1)%d, (k) k
Fr)=Y fk)eas (-2-’3nk> =] D0, T (659
k=0 q (~1)% (=1)7 dy(k+q), kodd
and
- —(-1)Z (=), (k k
G(n) =qu(k)cas (—Z-T—E-nk>, g(k) = ()_1 (=1)2do(k+q), keven (6.60)
| =0 9 (-1)T dy(k), kodd

Therefore, the decomposition of the length-4g DHT leads to the computation of the length-
2q DHT given by (6.54) and the two length-¢ DHTs given by (6.59) and (6.60). This
decomposition is illustrated in Fig. 6.5.

By introducing a mixture of radix-2 and radix-8 index maps, we now propose the fol-

lowing novel decomposition of (6.50) so that we can compute a length-g x 2™ (m > 2)

153

Sequence

Output

O.riginal I e%(kt)hog Length-2g sub-sequence
s eg:f;;t ce 029 DHT given X(2n) of
x(k) of by (54) length 2g
length4g | Eqn. [~ Output
57) |-
37 Length-g F sub-sequence
DHT given > L X((4n+q)moddq)
by (59) Eqn. of length ¢
Sequence (58) Output
d((lk) of R Dlgi‘lgtih\;gn G(n) | sub-sequence
length 2 by (60 X((4n+3q)mod4q)
y (60) of length ¢
Figure 6.5: Decomposition of a length-4g DHT.
DHT
N/2—1 o
X(2n)= Y ac(kjcas| —=nk), n=0,1,.,(N/2—1) (6.61)
k=0 N / 2

for the even-indexed terms, as

N/8~1
X ((8n+g) mod N) = k% Re[((ao(k) + (—j)Tao(k+N/4))

+e I (a,(k+N/8) + (~j)qao(k+3N/8))) W (1 +j)W:’I;8} ’

n=0,1,..(N/8=1) (6.62)

_ N/8—1
X ((8n+3g) mod N) = kE—:o Re[((ao(k) + (j)a,(k+N/4))

4 (ol N/8) + ()l 3N/8))) W0k 1+ Wi

n=0,1,...,(N/8=1) (6.63)

154

N/8-1
X((N+8r—3g) modN)= Y Re[((ao(k)+ (—j)ao(k+N/4))
k=0

eI (ag+N/8)+ (=)o (k-+ 3N/8))) Wy (14 W3]

n=0,1,..,(N/8=1) (6.64)

N/8-1

X((N+8r—g)modN)= Y Re[((ao(k)+ (j)%ao(k+N/4))
k=0

~e 7 F (g, (k-+N/8) + (7)7a0(k-+3N/8))) Wiy ™ (1+ j)\Wiky]

n=0,1,..,(N/8—1) (6.65)

for the odd-indexed terms. The sequences a.(k) in (6.61) and a, (k) in (6.62)-(6.65) can be

obtained by

e (k k
e (k) =H, *®) (6.66)

a, (k) x(k+N/2)

which can be considered as the first step of the new decomposition. This step is processed
by applying a second-order Hadamard matrix Hj to the input sequence x(k) without requir-
ing any twiddle factor. Some of the properties that will be used throughout this section are
given in the following lemmas, without proof.
Lemma 1: Let cos (B}) = —‘é—ch and sin (B}) = —‘éésq, where f is an odd integer. Then

(@) For =g, cgs, = (—1)*T

(b) For B = 3¢q, c3, = —c4 and 535 = 54
Lemma 2: Let B be an odd integer. Then

(a) cos (3BF) = (—1)95l sin (B%)

() sin (3p%) = (~1)"% cos (BZ)

155

Now, computing the real parts in (6.62)-(6.65) and using Lemma 1, the odd-indexed

terms of the proposed decomposition can be expressed in a compact form as

[X(GrrgmedN) | [1 1 0 0] A@]
X((8n+3q)modN) | |0 0 1 1 Gi(¥ —n)
X((N+8n—3g)modN) | |0 0 1 —I Bm) |

| X(N+8r—gq)modN) | |1 -1 0 0 || Gs(§-n) |

n=0,1,..,(N/8-1) (6.67)

N/8—1
Fn)=) {(ao(k) + ?cqbo(k+N/8)) cos (?V—nqk>

k=0
H(-)F (ao(k+N/4) + —z‘f—z-cqbe(kHV/s)) sin (%qkﬂ cas (N%%nk> (6.68)
N/8—1 \/i ' o
Gi(n) = 12:0 [(ao(k) + “‘Q“Cqbo(k+N/8)> sin (“ﬁqk)
—(——1)9;(—1 (ao(k+N/4) + —\g—icqbe(k+N/8)) cos (gﬁnqk)} cas (Nz—;—%nk) (6.69)
: N/8-1 \/i m
Fi(n) = kgo [(ao(k) - TCqbo(k-i—N/S)) cos <]—V—3qk)
_(——1)1;—l (ao(k+N/4) - %icqbe(k+N/8)) sin (—2—1\-’133qk)] cas (Nz/%nk) (6.70)

156

| N/8-1
Gs(n)= Y, [(ao(k) - —\g—gcqbo(k—{—N/S)) sin (%36]1()

k=0

(1% (ao(k+N/4) - —?cqbe(k-i—N/S)) cos <—2N1—I-3qk)J cas (%nk) ©6.71)
forn=0, 1, ...,(N/8—1). The sequences b, (k) and b, (k) in (6.68)-(6.71) can be obtained
by

be (k) a, (k)

~H, (6.72)
bo (k) ay (k+N/4)

Let us now use this new decomposition to efficiently compute the length-8¢g DHT. We

let N = 8¢ in (6.61) and (6.66)-(6.72). Then, (6.61) becomes

491

X (2n) = k_S:‘B ae(k)cas (%gnk) ,n=0,1,..,(4g—-1) (6.73)

Adding (6.70) and (6.68), and dividing the result by two, we can form a new sequence Fy(n)

given by
] 2n
Fy(n) =Y fa(k)cas (—nk) (6.74)
k=0 q
where
(!
(—1)3a,(k), k=0,4,8,12, ...
~(~1)F (~1) P, (k+2q), k=2,6,10, 14, ...
fa(k) == 4 k=1 ad

+1
DTkt g) i21~)f§ao(k+:«sq)] , k=1,5,9,13, ..

+1
2 ay(k+q) - ﬂ—ziao(kﬁq)] k=3,7,11,15,...
(6.75)

\

Subtfacting (6.70) from (6.68) and dividing by two, we can form another sequence Fs(n)

157

given by

R =25, fteas (%)

k=0

where
(=1)sepbo(k+g), k=0,4,8,12, ..
filk) = ¢ ”(_121 (=1) 4 cqbe(k+9), k=2,6,10,14, ..
("I)T[")+ (= 1)97ao(k+2q)] k=1,5,9,13, ..
\ (-1)" 1 [ao(k) (- l)iraa(k+2q)], k=3,7,11,15,...

Similarly, using (6.69) and (6.71), we can form two more new sequences given by

and

where

Gulg—n) £q§:1ga k)cas(%-nk)

k=0

Gs(g—n) = qil gs(k)cas (%Enk)

k=0

158

[()% (<) cgbe(k+q), k=0,4,8 12, ...
—(=1) % bo(k+q), k=2,6,10,14, ...
(-5 [ao(k) - (—1)%1ao(k+2q)] . k=1,50913, .
| (- [ao(k) (- 1)”%‘ao(k+2q)},k=3,7,11,15,

(6.76)

6.77)

(6.78)

(6.79)

(6.80)

and

gs(k) = J

k2

—(=1) a,(k),

[()% (1) (k4 29),

k=0,4,8,12, ...
k=2,6,10,14, ...

+1 +1
cg(-1)F [—‘—‘i:%fzao(kw) - 1—*‘—‘2—‘fzao(k+3q)J , k=1,59,13,...

—cg(—1)"4

5 [1+(_1)”r1
2

+1
) — L"(—'z—l-)iao(k+3q)] , k=3,7,11,15, ...

(6.81)

Finally, using (6.74), (6.76), (6.78) and (6.79), the four input sequences in (6.67), for the

case of N = 8¢, can be obtained by

-

Fi(n)
Gi(q—n)
F3(n)

| Galg—n) |

=(H:91)

Fy(n)
Ga(q—n)
Fs(n)

i Gs(q —n)]

,n=0,1,..,9g-1 (6.82)

It is clear from this decomposition that a length-8q DHT requires one length-4q DHT given

by (6.73), two length-g DHTs given by (6.74) and (6.79), two scaled length-g DHTs given

by (6.76) and (6.78), and the additions needed in (6.66), (6.72), (6.82) and (6.67). This

computation scheme is illustrated in Fig. 6.6.

Let us now consider the general case when N > 8g. We denote the input sequences of

the four length-N /8 DHTs given by (6.68)-(6.71), respectively, by f1(k), g1(k), f3(k) and

g3(k). After certain mathematical transformations, these input sequences may be expressed

159

Original
input
sequence
x(k) of

length 841 Eqn.

o

(66) |-

Length-4g
DHT given
by (73)

Eqn.

Output

1 sub-sequence

X(2n) of
length 49

{5

Eqn.

Length-¢ | F(n)
DHT given =
by (74)

by

(81)

(72)

Length-¢ | G(g-n)
DHT given |2
by (79)

Eqn.
an

bfk)

b(k) Eqn.

8(k)

Scaled
length-g
DHT given
by (76)

Figure 6.6:

in a matrix form as

80)

where the matrix By is given by

ao(k)
ao(k+N/4)
a,(k+N/8)
| ao(k+3N/8) |

Scaled
length-g
DHT given -
by (78)

Decomposition of a length-gq DHT.

I

k L(N/8=1)

B, =F,Q(H:®L)SZ , k=0,1,..,(N/8—1)

In (6.84), the twiddle factor matrix Fy, is given by

e
I

0
0

[cos (%‘-qk)

sin (¥qk) —cos (2qk)
0
0

sin (Zqk)

0 0
0 0
cos (23¥3gk) sin (2E3gk)

sin (23gk) —cos (%3gk) |

160

Output
sub-sequence
X((8n+q)mod8q)
of length ¢
Output
sub-sequence
> X((8n+7q)mod8q)
of length ¢

Qutput
— sub-sequence
X((8n+3g)mod8q)

of length q

Output
™ sub-sequence
X((8n+5¢)mod8q)
of length ¢

(6.83)

(6.84)

(6.85)

and the other constant matrices are given by

1 00 0

0
0
0

(6.86)

(6.87)

(6.88)

Finally, the general butterfly of the proposed radix-2/8 FHT algorithm is constructed

using

~

a.(k)
a.(k+N/8)
a.(k+N/4)
a.(k+3N/8)

 a(k)
as(k+N/8)
a,(k+N/4)

ao(k+3N/8) |

=H,0L L)

x(k)
x(k+N/8)
x(k+N/4)
x(k+3N/8)
x(k+N/2)
x(k+5N/8)
x(k+3N/4)

x(k+7N/8) |

161

 k=0,1,...,(N/8—1)

(6.89)

z

a(k+N/8)
a(k+NA)

a(k+3N/8)

x(k+3NA), cos(36) fk)
9211. sin(30)
X(k+7N/8) o €h -, so— 8(k)
- cos(39) 3

Figure 6.7: General butterfly of the proposed radix-2/8 FHT algorithm, 6 = 2ngk/N.

and the general sub-butterfly given by (6.83). The flowgraph of this general butterfly is
illustrated in Fig. 6.7.

The appearance of the parameter ¢ in the elements of the twiddle factor matrix given
by (6.85), allows us to define 2q special butterflies that can be indexed by k = prlgq, where

p=0,1,...,2g— 1. Then, for these cases, (6.85) reduces to

[cos (p§) sin(p}) 0 0 -
1) _cos (pt 0 0
P sin (p§) —cos (pE) =01, .. (2g-1)
oa 0 0 cos (p3F) sin(p3F)
0 0 sin (p3F) —cos (p3F)]

(6.90)

It is clear that the operations introduced by (6.90) are trivial for the special butterflies cor-

responding to p = 0,4, 8,12, For the special butterflies corresponding to other even

162

values of p, matrix By given by (6.84) can be rearranged as

for p=2,10, 18, ..., and

By =(-1)%

N
P16

S P C K SEES
T ==
i
R TIE s s =
e o e]
L
LTI A i
ARSI e SRS ki

(6.91)

(6.92)

for p =6, 14,22, Now, for the special butterflies corresponding to odd values of p,

using Lemma 2 and carrying out some mathematical manipulations, matrix By given by

(6.84) can be factored as
-1 0 0 0] -1 0
Bp%z 01 0) 0 01
T 100 (-7 0 01
00 o (DT |10
[cos(8) iysin(6) 0
sin(8) —igcos(0) 0
0 0 %cq (cos (8) + igsin (0))
0 0 Le, (sin(8) —igcos (6))

163

1

0

0
~1

.
I
-1
O..
) _
0

e, (cos (8) —igsin(8))

¥2¢, (sin (8) + i cos (6))

(6.93)

where 6 = p% and i; = (—1)%1. The number of operations to process each of the special
butterflies defined above is less than that needed to process the general butterfly, as will be
seen in Section 6.3.2.

It is seen from (6.85) that the general butterfly of the proposed FHT algorithm requires

an operation of the type

D cos(0) sin(O d

_ | cos(®) sin@® || 654
D, sin(0) —cos(0) dy

which needs four multiplications and two additions (4mult-2add scheme). The implemen-

tation of (6.94) using the 3mult-3add scheme can be achieved by rearranging (6.94) in the

form
cas(—0) 0 0 10
Dy 110 dr
= 0 sin(6) 0 11 (6.95)
Do 01 —1 d
0 0 cas(9) 01

In order to perform the general butterfly of the proposed FHT algorithm using the 3mult-

3add scheme given by (6.95), we factor the twiddle factor matrix given by (6.85) as

164

-1 1 0 00 O -
F,— 61 -100 0O
00 0 11 O
I 00 0 01 -1 |
- cas(—0) O 0 0 0 0 -
0 sin(6) 0 0 0 0
0 0 cas(9) 0 0 0
0 0 0 cas(—30) 0 0
0 0 0 0 sin(30) 0
0 0 0 0 0 cas (30)
[1 000 -
1100
0100 , 0= «2—7Eqk (6.96)
0010 N
0011
0001

For the special butterflies corresponding to the even values of p, we use the matrices given
by (6.90), (6.91) and (6.92). However, for the butterflies corresponding to the odd values of

p, we rearrange the matrix given by (6.93) as

165

10 0 0 10 1 0
0 1 0 0 01 0 1

BPTI&I_: o

9 00 (-7 0 01 0 =1
00 0 (D= |10 -1 0

cas(—0) 0 0 000
11 0 00 0 0 sin@) 0 0 0 0
01 <100 0 0 0 cas(®) 0 0 O
00 0 11 0 0 0 0 A0 O
00 0 01 —1 0 0 0 0 B 0
0 0 0 00 C
:) i 1
1000
1100 1000
0100|034 00
6.97)
0010|[00T1 0
0011 00 0 i
0001
where

Cadl

8= pL ig=(~1)7", A= L, ((1+is) cos (6) — (1~ iy) sin(6)),

B= %Zcq (sin (6) —izcos (6)) and C = @cq ((1—i4) cos(8) + (1+1iq)sin(6)).

We now summarize the scheme of the proposed radix-2/8 FHT algorithm for computing
a length-g x 2™ DHT. In this decomposition, the computation of a length-N DHT may be
considered as being decomposed into five DHTs, one of length N/2 given by (6.61) to
compute the even-indexed terms and the others of length N/8 given by (6.68)-(6.71) to

be used in (6.67) for computing the odd-indexed terms. This is achieved by using the

166

X(0)q

HNRB-I) o

X(N/8)g I-l

MNA-1) &

X(NM)q I\I'lllf

S

XN N I X

\V\'/\'/V/'
o A\/A\/A\/A.

o
) Qutput
N/IZD-I[;?rmt sub-sequence
X(2n) of
length N/2

il
v A/A\/A\A

WSNB)L, 'I\l,
X3INA-1} &3 /’/"A\ Y
(3N .A‘\ y

X(7NA-1) O

x(7N/8

N/8-point |

DHT

A\’/A

N/8-point |-

DHT

/A‘A\ D

N/8-point |

DHT

] \)& /M

N/8-point |

DHT

Output
sub-sequence
X((8n+q)modN)
of length N/8

Gutput
sub-sequence
X((N+8n-g)modN)
of length N/8

Qutput
sub-sequence
X({8n+3g)modN)
of length N/8

QOutput
sub-sequence
X((N+8n-3q)modN)
of length N/8

- Figure 6.8: Decomposition scheme of the proposed radix-2/8 FHT algorithm.

butterfly based on (6.89) and (6.83). The required number of butterflies is (¥ —2q) general

butterflies and 2q special butterflies corresponding to k = p—l—%, where p =0, 1, ...,2¢g— 1.

This process is repeated successively for each of the new resulting DHTs, until the size is

reduced to a 4¢- , 2g- or g-point DHT. This scheme is illustrated in Fig. 6.8. Note that, for

simp.licity, the gains (weights) are omitted in Fig. 6.8 and can easily be obtained from Fig.

6.7.

167

6.3.2 Computational Complexity

In this section, we consider the performance of the proposed radix-2/8 FHT algorithm for
the computation of a length-g x 2™ DHT by analyzing its computational complexity and

comparing it with that of the existing radix-2/4 FHT algorithm reported in [55]-[57].

6.3.2.1 Arithmetic Complexity

The arithmetic complexities of 2g-, 4¢-, and 8g-point DHTs can easily be obtained, from
Figs. 6.4, 6.5 and 6.6 respectively. These arithmetic complexities are respectively 2M,, 4M,,
and 6M, +2M;, multiplications, and 24,4 2g, 44,4 8¢ and 84, + 264 additions, where M p
denotes the number of multiplications required by a scaled length-¢ DHT, and M, and 4,
denote, respectively, the numbers of multiplications and additions required by a length-g
DHT.

Let us now discuss the arithmetic complexity of a length-N DHT, when N > 8¢. If
the 4mult-2add scheme is considered, the general butterfly of the proposed radix-2/8 FHT
algorithm based on (6.89) and (6.83) requires 10 multiplications and 18 additions; 10 mul-
tiplications and 10 additions are introduced by the matrix (6.84) in the computation of
(6.83), whereas the matrix (Hy ® I> ® I) introduces only 8 additions in the computation
of (6.89). The algorithm has 2q special butterflies that can be indexed by k = pT%Lq’ where
p=0,1,.., (2g—1). The reduction in the computation achieved by these special butter-
flies is due to the fact that the matrix used for computing (6.83) is different from that used
by the general butterfly. Since (6.90) does not introduce any operation in the computation
of (6.84) for p=0, 4, 8, 12, ..., each of the corresponding special butterflies requires 2 mul-
tiplications and 14 additions. The special butterflies corresponding to p = 2, 10, 18, ... and
p=06,14,22, ... use, respectively, (6.91) and (6.92) to compute (6.83). Since g is an odd

¢ (-1 F 2
2

: . T . o
integer, i equals one, then 1—(—7}1——— equals zero and vis versa. Using this fact,

(6.91) and (6.92) each requires only 2 multiplications and 6 additions. Therefore, each of

168

the special butterflies corresponding to p = 2,10, 18, ... and p = 6, 14, 22, ... requires 2
multiplications and 14 additions. Since for odd values of p, the matrix given by (6.93) is
used for computing (6.83), each of the corresponding special butterflies requires 8 multi-
plications and 16 additions. The proposed decomposition consists of dividing a length-N
DHT to one length-N /2 DHT and four length-N/8 DHTs. This is achieved by performing
(%’- — 2q) general butterflies and the 2¢ special butterflies. The odd-indexed terms are ob-
tained by performing the extra N/2 additions needed by (6.67). The decomposition process
is repeated successively for each of the new resulting DHTs until the size is reduced to a
8q-, 4q-, 2g- or g-point DHT. Therefore, it is seen that the expressions for the number of

multiplications and additions of the proposed FHT algorithm are, respectively,

N N
M35 (1,N) = N 10q+Mr2/8<1 2)+4Mr2/8(1 8),N>8q (6.98)

11 N N
A g (1,N) = Z"N—6Q+Ar2/g (1 2) +4A5 (1 :) , N>8q (6.99)

Similarly, if the 3mult-3add scheme is considered, the general butterfly uses (6.96) in the
computation of (6.84). Then, it requires 8 multiplications and 20 additions. The special
butterflies corresponding to the even values of p have the same number of multiplications
and additions as in the case of the 4mult-2add scheme. However, for the odd values of p,
the matrix given by (6.97) is used to compute (6.83). This involves the computation of each
of the corresponding special butterflies using 6 multiplications and 18 additions. It can be
shown that, for this scheme, the number of multiplications and additions of the proposed

FHT algorithm are, respectively,

N N
Mg (1,N) =N - 8q+Mrz/s(,5>+4Mr2/8(1,—§),N>8q (6.100)
33 N N
Arsys (1LN) =3N =8q+Ag e (1,5 | +4A5 5 (L | N> 8g (6.101)

169

Table 6.13: Number of arithmetic operations required for the computation of the 1-D DHT

forg=1

Radix-2/4 FHT algorithm

in [55]-[57]

Proposed radix-2/8 FHT algorithm

Using Using Total Using Using Total
3mult-3add 4mult-2add 3mult-3add 4mult-2add
scheme scheme scheme scheme
m N | Mults. | Mults. | Mults. | Adds. | M.+A. | Mults. | Adds. | Mults. | Adds. | M.+A.
3 8 2 26 2 26 28 2 26 2 26 28
4 16 10 74 12 72 84 10 74 12 72 84
5 32 34 194 42 186 | 228 34 194 42 186 | 228
6 64 98 482 124 456 | 580 98 482 120 460 | 580
71 128 256 | 1154 330 | 1082 | 1412 256 | 1154 318 | 1094 | 1412
8| 256 642 | 2690 828 | 2504 | 3332 642 | 2690 796 | 2536 | 3332
91 512 | 1538 | 6146 | 1994 | 5690 | 7684 1538 | 6146 | 1906 | 5778 | 7684
10 | 1024 | 3586 | 13826 | 4668 | 12744 | 17412 | 3586 | 13826 | 4448 | 12964 | 17412
11 { 2048 | 8194 | 30722 | 10698 | 28218 | 38916 8194 | 30722 | 10182 | 28734 | 38916

The .arithmetic complexities of the proposed radix-2/8 FHT algorithm and the existing

radix-2/4 FHT algorithm reported in [55]-[57] for various values of N are given in Ta-

bles 6.13-6.16. In Tables 6.14-6.16, the values used for Mg, M, and A, for the proposed

FHT algorithm are shown in Table 6.17, for g = 3,9 and 15. These values are the same as

the ones used in [55] and [56] for the radix-2/4 FHT algorithm for the corresponding values

of g. We see from Tables 6.13-6.16 that, in general, the total number of arithmetic opera-

tions is the same for both the proposed radix-2/8 FHT and the radix-2/4 FHT algorithms. It

can be verified that the radix-2/4 FHT algorithms of [55]-[57] also have exactly 2¢ special

butterflies that are precisely indexed by pé%, where p=0,1, ..., (29— 1).

170

Table 6.14: Number of arithmetic operations required for the computation of the 1-D DHT

forg=73
Radix-2/4 FHT algorithm Proposed radix-2/8 FHT algorithm
in [55]-(57]
Using Using Total Using Using Total
3mult-3add 4mult-2add 3mult-3add 4mult-2add

scheme scheme scheme scheme
m | N [Mults. | Mults. | Mults. [Adds. | M+A. | Mults. [Adds. | Mults. | Adds. | M.+A.
1 6 2 18 2 18 20 2 18 2 18 20
2 12 4 48 4 48 52 4 48 4 48 52
3 24 12 126 12 126 | 138 12 126 12 126 | 138
4 48 44 318 50 312 1 362 4 | 318 50 312 | 362
5 96 128 774 152 750 | 902 132 774 156 750 | 906
6| 192 348 | 1830 426 | 1752 | 2178 348 | 1830 414 | 1764 | 2178
71 384 880 | 4230 | 1096 | 4014 | 5110 884 | 4230 | 1064 | 4050 | 5114
81 768 | 2140 | 9606 | 2698 | 9048 | 11746 | 2156 | 9606 | 2618 | 9144 | 11762
9| 1536 | 5040 | 21510 | 6408 | 20142 | 26550 | 5060 | 21510 | 6164 | 20406 | 26570

Table 6.15: Number of arithmetic operations required for the computation of the 1-D DHT

forg=9
Radix-2/4 FHT algorithm Proposed radix-2/8 FHT aigorithm
in [55]-[57]
Using Using Total Using Using Total
3mult-3add 4mult-2add 3mult-3add 4mult-2add
scheme scheme scheme scheme

m N | Mults. | Mults. | Mults. | Adds. | M.+A. | Mults. | Adds. | Mults. | Adds. | M.+A.

1 18 20 98 20 98 | 118 20 98 20 98 | 118

2 36 40 232 40 232 | 272 40 232 40 232 | 272

3 72 36 554 86 554 | 640 86 554 86 554 | 640
4] 144 238 | 1306 256 | 1288 | 1544 238 | 1306 256 | 1288 | 1544
51 288 590 1 3026 662 | 2954 | 3616 614 | 3026 686 | 2954 | 3640
6| 5761 1462 | 6898 | 1696 | 6664 | 8360 1462 | 6898 | 1660 | 6700 | 8360
711152 | 3470 | 15506 | 4118 | 14858 | 18976 | 3494 | 15506 | 4034 | 14966 | 19000
8 | 2304 | 8086 | 34450 | 9760 | 32776 | 42536 | 8182 | 34450 | 9568 | 33064 | 42632

171

Table 6.16: Number of arithmetic operations required for the computation of the 1-D DHT

forg=15
Radix-2/4 FHT algorithm Proposed radix-2/8 FHT algorithm
in [55]-[57]

Using Using Total Using Using Total

3mult-3add 4mult-2add 3mult-3add 4mult-2add

scheme scheme scheme scheme
m | N | Mulss. | Mults. | Mults. | Adds. | M+A. | Mults. | Adds. | Mults. | Adds. | M+A.
1 30 36 192 36 192} 228 36 192 36 192} 228
2 60 72 444 72 444 | 516 72 444 72 444 | 516
31 120 156 | 1038 156 | 1038 | 1194 156 | 1038 156 ; 1038 | 1194
4| 240 420 | 2406 450 | 2376 | 2826 420 | 2406 450 | 2376 | 2826
5| 480 | 1032 | 5502 | 1152 5382 | 6534 1068 | 5502 | 1188 | 5382 | 6570
61 960 | 2532 | 12414 | 2922 | 12024 | 14946 | 2532 | 12414 | 2862 | 12084 | 14946
711920 | 5976 | 27678 | 7056 | 26598 | 33654 | 6012 | 27678 | 6912 | 26778 | 33690

Table 6.17: Number of multiplications and additions required by 3-, 9- and 15-point DHTs

QIMQIMKSI]ACI

3 1} 3| 6
91 10| 13140
15 18| 24| 81

172

6.3.2.2 Data Transfers

The butterfly, shown in Fig. 6.7, of the proposed FHT algorithm, is based on (6.89) and
(6.83). We assume that sufficient registers are available in the processor to compute all
the operations required by the butterfly without using any intermediate transfer operations
between the processor and the external memory (RAM). The implementation of the butter-
fly for a given value of k, consists of reading two points from the external memory of the
processor and performing the operations of addition and subtraction using these two points
as the operands. The result of the addition is returned to the external memory, whereas
that of the subtraction is kept in an internal register of the processor. This process is re-
peated four times to compute a, and a, given by (6.89) of the butterfly. The four points of
a, kept in the processor are used to process the sub-butterfly given by (6.83). Therefore,
the butterfly requires 8 transfer operations (read and write). The results of the additions
for k=0,1,...,(N/8) — 1 returned to the external memory are grouped to form the first
sub-sequence a, (k) of length N /2. The four sub-sequences f; (k), g1(k), f3(k) and g3 (k) of
length /8 are formed by grouping separately the results of each row of the output vector
of (6.83). This is achieved by using N/8 butterflies. This scheme of implementation re-
duces significantly the number of data transfers and address generations. To compare the
number of data transfers and address generations of the proposed radix-2/8 FHT algorithm
with that of the radix-2/4 FHT algorithm of [55]-[57], we consider the case of ¢ = 1 as
| an example. Since, for a length-8 DHT, the DHTs given by (6.68)-(6.71) become length-1
DHTs, the four resulting points can be kept in the processor to compute (6.67) without any
extra transfer operation. However, for a length-N DHT (N > 8), the extra N/2 transfer
operations of (67) are required. The proposed decomposition and that reported in [55]-[57]
require four types of butterflies: one type to compute length-2 DHTs, two types of special
butterflies and one general butterfly. However, the proposed decomposition requires one

additional type of butterfly to compute a length-4 DHT. It can be shown that the expression

173

for the number of data transfer operations, not including the read operations for the twiddle

factors, for the implementation of the proposed radix-2/8 FHT algorithm is given by

3N

N N
Dry/s (1,N) = — +Drys (1,5) +4Dry/5 <1,*§) , N>38,

Dry/8(1,8) =12, Dra/g(1,4) = 4, Dy (1,2) =2, Dy (1,1) =0 (6.102)

whereas the corresponding expression for the implementation of the radix-2/4 FHT algo-

rithm using the first four types of butterflies is given by

3N N N
Dpy/4 (1,N) = 7+Dr2/4 (1,5) +2Drg/4 (1’1) , N>8,
Drasa (1,4) DY* = 6, Dy (1,2) = 2, Dy (1,1) = 0 (6.103)

If in the implementation of the latter algorithm, all the five types of butterflies are used, then

the corresponding expression is given by

3N N N
Dry/4 (1,N) = — +Dray4 (1, —2-> +2Dr2/4 (l,z> , N>8,
Dry/4(1,4) =4,Drp4(1,2) =2,Dpp4 (1,1) =0 (6.104)

The number of data transfer operations for the two algorithms are compared in Table 6.18.
It is seen from this table that the implementation of the proposed FHT algorithm provides
around 25% savings over the 4-butterfly and 5-butterfly implementations of the radix-2/4
FHT algorithm of [55]-[57]. During the data transfer process, the address generation oper-
ations are required to read/write the data from/in memory, and hence, similar savings are

also obtained by the proposed FHT algorithm in the case of the address generation.

174

Table 6.18: Comparison of the number of data transfer operations for g = 1

4-butterfly S-butterfly Implementation | Savings | Savings
implementation of | implementation of | of the proposed | inC inC
the radix-2/4 FHT | the radix-2/4 FHT | radix-2/§ FHT | over A | over B
m N | Drys(1,N)(A) | Dpyu(1,N)B) | Dpyg(1,N) (O % %
3 8 22 20 12 4545 | 40.00
4 16 58 52 44 24.13 15.38
5 32 150 140 108 28.00 | 22.85
6 64 362 340 252 30.38 | 25.88
7] 128 854 812 620 2740 | 23.64
8| 256 1962 1876 1436 26.80 | 2345
9| 512 4438 4268 3212 27.62 | 2474
10 | 1024 9898 9556 7228 2697 | 2436
11| 2048 21846 21164 16044 26.55 24.19
12 | 4096 47786 46420 35036 26.68 | 24.52

6.3.2.3 Twiddle Factors

We discuss here only the cases of ¢ = 1 and g = 3. In counting the number of twiddle factor
evaluations or accesses to the lookup table required by the proposed radix-2/8 FHT algo-
rithm and the radix-2/4 FHT algorithm of [55]-[57], it is assumed that the twiddle factors
required by the special butterflies, such as v/2/2, v/3/2, cos(n/8), sin(n/8), cas(—m/8)
and cas(m/8) are initialized and kept in the internal registers of the processor during the
processing time of the corresponding algorithm. However, for the radix-2/8 and radix-
2/4 FHT algorithms, 4 and 2 twiddle factors are respectively required to be evaluated or
loadéd from the lookup table by the corresponding general butterfly using the 4mult-2add
scheme. The corresponding numbers are 6 and 3 for the 3mult-3add scheme. Therefore, by
counting the required number of the general butterflies in the radix-2/8 and radix-2/4 FHT

algorithms, the number of twiddle factor evaluations or accesses to the lookup table for the

175

two algorithms are, respectively

N N N
ra/s (1LN) = 8q+T§‘2/8()+4 r2/s (1,—8->, N> 8g (6.105)
and
N N N
/s (LN) =7 4q+1“r‘§/4< >+2 B4 (1 4), N>4q (6.106)

using the 4mult-2add scheme, and

3 N N
Tr2/8 (1,N) = ZN 12¢9 +Tr2/8 (1 2) +4Tr2/8 (1 8) , N> 8¢ 6.107)

and

NY _3 N N
T34 (1 2)=ZN 69+T3 4 (1 2)+2Tr2/4<1 4>,N>4q (6.108)

using the 3mult-3add scheme. For various values of N, the number of twiddle factor evalu-
ations or accesses to the lookup table of the proposed radix-2/8 FHT algorithm is compared
with that of the radix-2/4 FHT algorithm when g = 1 in Table 6.19 and g = 3 in Table 6.20.
It is seen from these tables that savings of over 30% in the evaluation of twiddle factors or
in the access to the lookup table can easily be achieved by the proposed FHT algorithm.
Note that, when the lookup table is used, identical savings are obtained by the proposed

FHT algorithm in the address generation for reading the twiddle factors.

176

Table 6.19: Comparison of the number of twiddle factor evaluations or accesses to the
lookup table for g =1

Radix-2/4 Proposed Savings | Radix-2/4 Proposed Savings
FHT radix-2/8 FHT FHT radix-2/8 FHT
m N | T8, (LN) | T5,(1,N) % | Tou(LN) | Ths(L,N) %
3 8 0 0 00.00 0 0 00.00
4 16 4 0 100 6 0 100
5 32 16 8 50.00 24 12 50.00
6 64 52 32 38.46 78 48 38.46
71 128 144 88 38.88 216 132 38.38
8| 256 372 240 35.48 558 360 35.48
9| 512 912 616 32.45 1368 924 32.45
10 | 1024 2164 1472 31.97 3246 2208 31.97
11 | 2048 5008 3448 31.15 7512 5172 31.15
12 | 4096 | 11380 7952 30.12 17070 11928 30.12

Table 6.20: Comparison of the number of twiddle factor evaluations or accesses to the
lookup table for g =3

Radix-2/4 Proposed Savings | Radix-2/4 Proposed Savings
FHT radix-2/8 FHT FHT radix-2/8 FHT
m N TE,(LN) | TE(LA) % | T (LN) | T 4(LN) %
3 24 0 0 00.00 0 0 00.00
4 48 12 0 100 18 0 100
5 96 48 24 50.00 72 36 50.00
6 192 156 96 38.46 234 144 38.46
7 384 432 264 38.88 648 396 38.38
8 768 1116 720 3548 1674 1080 3548
9! 1536 2736 1848 32.45 4104 2772 3245
10| 3072 6492 4416 31.97 9738 6624 31.97
11| 6144 15024 10344 31.15 22536 15516 31.15
12 | 12288 | 34140 23856 30.12 51210 35784 30.12

177

6.4 Summary

In this chapter, we have proposed a new radix-2/8 approach for computing the DFT and
DHT of arbitrary lengths N = g x 2™, where g and m are integers. It is based on the use of a
mixture of radix-2 and radix-8 index maps. This mixture and the use of an efficient index-
ing process provide decompositions different from those of the existing radix-2/4 FFT and
FHT algorithms, since the existing ones are all based on the use of a mixture of radix-2 and
radix-4 index maps. This new approach has been used to design efficient radix-2/8 FFT and
FHT algorithms. It has been shown that, in most cases, the number of arithmetic operations
required in the proposed radix-2/8 FFT (or FHT) algorithm is the same as that in the existing
radix-2/4 FFT (or FHT) algorithm. However, the other operations such as data transfer, ad-
dress generation, and twiddle factor evaluation or access to the lookup table, which increase
significantly the complexity of FFT and FHT algorithms, are all substantially reduced in the
proposed radix-2/8 algorithms. This is of particular importance in the case of g = 1, when
the data length becomes an integral power of two, and the number of arithmetic operations
required by the proposed radix-2/8 FFT (or FHT) is identical to that required by the exist-
ing radix-2/4 FFT (or FHT) algorithm. The proposed algorithms are expressed in simple
matrix forms, thereby facilitating easy implementations of the algorithms, and allowing for

extensions to the multidimensional case.

178

Chapter 7

Extension of the Radix-2/8 Approach for
the Computation of DFTSs of Higher

Dimensions

7.1 Introduction

In the conventional row-column method, the 2-D and 3-D DFTs are computed by a series
of 1-D FFT algorithms applied successively in each of the dimensions [26]. The 2-D and
3-D DFTs can also be computed using the polynomial transform [25], [34]. Although the
polynomial transform algorithms require the lowest number of multiplications, they are not
popular in view of their complicated structures compared to the existing radix-based FFT
algorithms. We now give a brief review of the radix-2 and radix-2/4 approaches that have
been exploited in developing two and higher dimension FFT algorithms.

The radix-2 approach of Cooley-Tukey [3] has been used to develop the radix-(2 x 2)
FFT algorithm for computing the 2-D DFT [22]. This has been generalized for the radix-

(r1 x rp) FFT algorithm [23], where r| and r; are arbitrary integers. Later, the approach of

179

Cooley-Tukey was extended for the computation of the DFT of an arbitrary dimension [24],
[26], [32]. These algorithms, known as vector radix FFT algorithms, substantially reduce
the number of arithmetic operations over the row-column method.

The radix-2/4 approach of Duhamel-Hollmann [11] has been extended for the 2-D DFT
case using DIT decomposition [39]. This provides the 2-D radix-(2 x 2)/(4 x 4) DIT FFT
algorithm, which is based on the use of a mixture of radix-(2 x 2) and radix-(4 x 4) index
maps. The 2-D radix-(2 x 2)/(4 x 4) DIF version of the DIT algorithm in [39] has been
formulated in a matrix form in [28]. Alternate versions of these radix-(2 x 2)/(4 x 4) FFT
algoﬁthms have been given in [29] using an algebraic formulation. In Chapter 5, we have
proposed an efficient radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FFT algorithm for computing the 3-
D DFT. All the above FFT algorithms that are based on the radix-2/4 approach significantly
reduce the computational complexity as compared to the corresponding vector radix FFT
algorithms.

It has been shown that the new radix-2/8 approach introduced in Chapter 6 is superior
to all the other existing radix-based approaches in providing efficient 1-D FFT and FHT al-
gorithms. In this chapter, by exploring the radix-2/8 approach, the problem of reducing the
complexity in the computation of the 2-D and 3-D DFTs is addressed, and efficient radix-
(2 x2)/(8 x 8) [125] and radix-(2 x 2 x 2)/(8 x 8 x 8) [117] FFT algorithms are proposed.
An appropriate use of the Kronecker product coupled with an efficient index mapping en-
able us to characterize the butterflies of the proposed algorithms by simple closed-form
expressions that facilitate easy software or hardware implementations of the algorithms.

Sections 7.2 and 7.3 consider the cases of the 2-D and 3-D DFTs, respectively

180

7.2 Proposed Radix-(2 x 2)/(8 x 8) DIF FFT Algorithm

From (3.15), the 2-D DFT of size (N x N), is given by

N-1 N-1
Xm,m)=Y 3 #ki, k) Wyt 0 <nj,ny <N-1 (7.1)
k1 =0ky=0 :

In this section, we introduce a new DIF decomposition of the 2-D DFT given by (7.1)
using the radix-2/8 approach. This decomposition is performed using two steps. In the first
step, we use radix-(2 x 2) index maps to decompose the DFT given by (7.1) into four DFTs.
In the second step, we introduce radix-(8 x 8) index maps by further decomposing some of
these resulting DFT's.

Let us first introduce radix-(2 x 2) index maps by changing the variables k; and n; in
(7.1) by

btk 0<k<y 1, 5=0,1 (7.2)

and

N
2n;+m, Ogniga—l, m;=0,1 (7.3)
respectively. Then, (7.1) is decomposed into four (% X %)—point DFTs given by

N/2—1N/2—1

Xem2m)= 3 Y oolki,k) W, 2'*1""" OSnigg——l (71.4)
ki=0 k=0

_ Nf2—1N/2—1 52 ik N
X@u,2m+1)= Y 3 o (ki,k) Wy Wit OSn,’S—z——l (7.5)
. k=0 k=0
N/2—1N/2~1

N
Xem+1,2m)= 3 Y o (kl,kz)W/\;lWIE;;”'k’ 0<m< 51 (1.6)
k=0 kp=0

181

N N[2-1Nj2-1 2 N
X@m+12m+)= ¥ 3% yll(kl,kz)W,(‘,”“"ZW%/";‘”’ Lo<m<Z-1 (17
k=0 k=0

The sequences y.. (ky,&2) in (7.4)-(7.7) are obtained from the original input sequence ¥ (k1,k2)

using
- - N
Yy kp = Hp2Xpy 1y, 0 < K < 3 I (7.8)
where N)
x(k1,k2)
N x(ki, k2 +N/2)
Xkl,kz = _ (7.9)
(ki +N/2,k)
| X(ki +N/2,ky +N/2) |
and

yoo (k1,k2,k3)
N yot (ki,k2,k3)
Ykl,kz = _ (710)
y1o (kl 3k27 k3)

yu (ki ko, ks) |

The transform operator Hy. in (7.8) can be factored using (2.8). The decomposition of
the DFT given by (7.1) into the DFTs given by (7.4)-(7.7) represents the first stage of the
decomposition in the radix-(2 x 2) DIF FFT algorithm.

Ih order to develop a radix-(2 x 2)/(8 x 8) FFT algorithm, we further decompose the
DFTs given by (7.5)-(7.7) to introduce radix-(8 x 8) index maps. Let us start by the de-
composition of the even-odd indexed terms, which correspond to (7.5). First, we change
the variables k;’s by

N N
ki+—8-—l,',0§ki§—8——1, =0,1,2,3 (7.11)

182

Then, the DFT given by (7.5) becomes

N/8—1N/8-1

X@nm2m+1)= Y Y

k=0 k=0

3 3
- N N .n
[Z 2 Jou <k1 + =ik + —lz) e~ Tib (— jyTm W"ZW,?;;‘ "
11=01,=0 8 8

OSniS%V—I (7.12)

Now, we change the frequency variables #;’s in (7.12) by

4n; + m;, 0311,-5%——1, m=0,1,2,3 (7.13)
Then, (7.12) becomes

N/8—1N/8—1 2k

o - TR

X(8n1+p,8n2+ﬁ) 2 2 }’01 kl,kZ WN;gl)

=0 k=0
N

Ogni§~8——-1,p=0,2,4,6,6:1,3,5,7 (7.14)

It is clear that (7.14) represents a set of 16 (¥ x &)-point DFTs that are obtained by a
further decomposition of the even-odd index terms given by (7.5) using radix-(8 x 8) index
maps. By a similar technique, the odd-even and odd-odd indexed terms given by (7.6) and

(7.7) can be expressed, respectively, as

~ N/8—1N /81 5
X(@Bm+o,8m+p)= 3 ¥ F§ (k,k) Wys'™,
k=0 k=0
N
OSni§—§~1,p=0,2,4,6,0€=1,3,5,7 (7.15)

183

N/8—1N/8—1

R(Entosntf)= 3 3 5 k) Wz,
k=0 k=0

OS"!S%—L aaB:17375a7

(7.16)

The input sequences y': (ki,k2) of the DFTs given by (7.14)-(7.16) are, respectively, the

components of the vectors given by
P01 YO N
kiky = k1 /€2VV42 (L4 ®S4) bk 0< ki < '8—“1

S N
Y =Fi0, Wi (S4@L) Y10, , 0< ki < 3-1

~ N

(7.17)

(7.18)

(7.19)

where the components of the input vectors ?k}, k,» Output vectors ?k‘l x, and those of their

corresponding diagonal twiddle factor matrices Fj, &, are given by

Y/glkz(a) =yo1 (ki +pfe. ko + (B—1)4)
Y/gl,kz(a) 2%{3 (k1,k2)

ey +Bk
Fo pla,a) =Wy bk

where a=2p+ 851, p=0,2,4,6, B=1,3,5,7

Y0, () =510 (ki + (o~ 1), k2 + %)
I?kllokz (b) yom (kl) kz)

ak k
Fk1 kp_(b b) 1+Pky

| where b=20~2+5, p=0,2,4,6, a=1,3,5,7

184

(7.20)

(7.21)

and
YL@ =5 (ki + (- 1)k +(B-1)%)
?klltkz(c) =57 (k1 k)

4 st (1.22)
Fkllsz(c, c) =Wy '
where c = 20— 2+ 8% o, =1,3,5,7
In (7.17)-(7.19), the matrix Sy is given by
1 0 1 0
S4=(L8C2) (280), C, = = (7.23)
0 e/a 0 —j

and the matrix W2, the operator of the (4 x 4)-point 2-D DFT, can be factored using the

Kronecker product as [32]

We = Wi@Wy

2
= H (Tp-10Z4 @) (L1 @D4 QL) Iy 1 QR4 @L2t) (7.24)
I=1

Whefe the matrices Z4, D4 and R4 are given by (4.7), (4.8) and (4.9), respectively.

For a given combination of (kj,k7), each of the three general sub-butterflies given by
(7.17)-(7.19) requires 16 input points to be calculated using (7.8). Hence, the operation
given by (7.8) is repeated 16 times, since yqo is no longer required by the sub-butterflies and
the other three output points are used directly by the corresponding sub-butterflies. In order
to compute, for a given combination of (ki, k), all the points required in the computation

of these three sub-butterflies, we rearrange (7.8) as

Y+ § o+ h ¥ = szxkﬁlx N o+h o

N
ngigg—l, ;=0,1,2,3 (7.25)

185

Using (7.9) and (7.10), it is clear that for a given combination of (k;,k2), (7.25) computes
64 points from the initial input sequence x (k1,k2), where 16 points are used to form the
input sequence Yoo (k1,k2) of the (% X %)-point 2-D DFT given by (7.4) and all the other
points are used by the general sub-butterflies given by (7.17)-(7.19). The output of these
sub-butterflies are used to form the input sequences of the corresponding (% X %Y)-point
2-D DFTs given by (7.14)-(7.16). These operations are repeated for all the combinations
of (k1,k2), ki =0,1, ..., (N/8) — 1, i=1, 2. This completes the first stage of the proposed
decomposition.

Thus, the proposed radix-(2 x 2)/(8 x 8) FFT algorithm corresponds to decomposing
the (N x N)-point 2-D DFT given by (7.1) into one (¥ x &)-point 2-D DFT given by (7.4)
and 48 (§ x &)-point 2-D DFTs given by (7.14)-(7.16), in the first stage. This is achieved
by repeating %43 times the general butterfly based on (7.25) and (7.17)-(7.19). This de-
composition scheme is repeated successively for each of the new resulting DFTs, until the
problem is reduced to some DFT's without twiddle factors, namely (4 x 4)- or (2 x 2)-point
2-D DFTs.

Let us now count the operations required by the general butterfly of the proposed 2-D
FFT algorithm. This is achieved by counting all the necessary operations for a given com-
bination of (ki,k2). According to (2.8), the matrix H,; introduces 8 x 16 complex additions
in the computation of the operation given by (7.25). According to (7.24), the matrix W
introduces 16 x 2 x 2 complex additions in the computation of each of the three general
sub-Butterﬂies given by (7.17)-(7.19). The computation of each of these sub-butterflies also
requires 16 complex multiplications that are introduced by the corresponding twiddle factor
matrix ¥y ., and 16 real multiplications and 16 real additions that are introduced by the
corresponding diagonal matrix generated using S4. Consequently, the general butterfly of
the proposed 2-D FFT algorithm requires 240 real multiplications and 784 real additions, if

the 4mult-2add scheme is considered, and 192 real multiplications and 832 real additions,

186

if the 3mult-3add scheme is considered.

In order to further reduce the number of operations, we consider some special combina-
tions of (k1,k2) that involve some trivial operations. It is clear from (7.20)-(7.22) that each
of the twiddle factor matrices F 2}0 and F, (1)?1(requires only 12 complex multiplications, for
k=1,2,..,(N/8)—1and k#s,s/2, where s = & Itis also clear that the twiddle factor

. 01 g0l ROl gpl0 gl0 pl0 gll gl gl
matrices K 50, 3 50 Fo 6, Fog 0 Fog 30 Fo oo Fy o F3s o F

11 . « .
0,5 Fs,50 F3 5 F 3 and F3 5 involve some trivial

operations. Since the sub-butterflies given by (7.17)-(7.19) require pre-multiplications (due
to S4) and post-multiplications (due to F;. 1,)> a technique for combining twiddle factors
is introduced to reduce the number of operations for some special combinations of (k;,k3).
This technique is based on the following theorem.

Theorem 1: Let two matrices Zy and Ry of order 4¥ be defined as

M

Ly =4 Q@14 Q.. Q1% = H (L1 ® 74 @ Yyna—i) (7.26)
i=1
M

Ry =R4QR4® ... @Ry =[] (-1 ®R4 ® Lgns—s) (1.27)
i=1

Let A4M and K4M be two diagonal matrices generated by an arbitrary diagonal matrix Aj of

order two, as

Am =Im1® (1L®A3) (7.28)
Apr =Ip1® (A ®) (7.29)

Then,
(1) A Ziy = Ly A gu
(i) RyuA g = AguRyp.
Proof:

()Fori=1,2, ..., M —1, the product of the matrix A by the ith term (I;i-1 ® Zs @ Lyy)

187

of the right side of (7.26) is commutative. That is,

| Ap (L1 ®Z4 QL) = (L1 ® (L ®A2)) (11 @ Zg @ Lypr—i)
= (L1 ® (L= @ (I ® A2))) (TLy-1 ® (Zs @ Lywr—i))
= L1 @ [(Lgr—t ® (2 ® Ag)) (Za @ Lyp—s)]
= L1 ®[(L® (Lgr-i-1 © (L ®A2))) (Za ® L]
= Tyt ® [(14Za) & (Lot @ (T ® Az)) Lypi—i)]
= Lyt ©[(Zas) ® (I (Igpe-i1 ® (2 @ A2)))]
= Lim ®[(Za®@Tpp-1) (Lt @i ® (12 ® A2))]
= (L1 ©Z4 O Ugp—s) (L1 ® (I ® A2))

= (Li-1®Zs @Y m-i)Am (7.30)
Fori=M,

Ap (Igp-1®Zy) = (L1 @ (L ®AL)) (Lyp-1 @ Zy)
= Iym ®((12®A2) Zy)
= (L1 @ Zy) (n1 @ (I, ® Ap))

= (I4M—1 ®Z4)A4M (7.31)

where in the last step we have used the fact that (I, ®A3)Z4 = Z4 (I ® A3). Combining
(7.30) and (7.31), we see that Ay Zm = ZymAym.
(ii) Similarly, fori =1, 2, ..., M — 1, it can be shown that the product of the matrix X4M

by the ith term (E4i-1 ® R4 ® I4m—:) of the right side of (7.27) is also commutative. That is,

X4M (-1 @Ry @ L) = (L1 @ Ry ® Lym—i) K4M (7.32)

188

Also, for i =M, since R4 (I, ® A3) = (A, ® I) Ry, we have

A (Ip1 ®Rq) = (L1 ® (A2®12)) (L1t ®Ry)
= Ip-1®((A2@12)Ry)
= (-1 @Ry) (Ip-1 ® (L ® A2))

= (L1 @Ra)Aym (7.33)

Combining (7.32) and (7.33), we see that RycA g = ARy
Now, for M = 2, by an appropriate application of this theorem in the expressions given

by (7.17)-(7.19), we can show the following:

a) The sub-butterfly given by (7.17) requires only 16 real multiplications and 144 real
- additions for each of the combinations (0, 0) and (2s, 0) of (k1,k2), whereas it needs
16 complex multiplications and 64 complex additions for each of the combinations

(0, 2s) and (2s, 2s).

b) The sub-butterfly given by (7.18) requires only 16 real multiplications and 144 real
additions for each of the combinations (0, 0) and (0, 2s), whereas it needs 16 complex
multiplications and 64 complex additions for each of the combinations (2s,0) and

(2s,2s).

¢) The sub-butterfly given by (7.19) requires only 16 real multiplications and 144 real ad-
ditions for each of the combinations (0, 0) and (2s, 2s), whereas it needs 16 complex
~ multiplications and 64 complex additions for each of the combinations (0, 2s) and

(25,0).

189

7.2.1 Computational Complexity

In this section we consider the efficiency of the proposed radix-(2 x 2)/(8 x 8) FFT algo-
rithm when it is implemented using the general butterfly based on (7.25) and (7.17)-(7.19),
and the special sub-butterflies corresponding to the special combinations of (k1,k>) defined
in Section 7.1.1. This is done by comparing its computational complexity with that of
the existing radix-(2 x 2)/(4 x 4) FFT algorithm [29]. The following computational com-
plexity of the proposed 2-D FFT algorithm is found by a close examination of the scheme

described in Section 7.1.1.

7.2.1.1 Arithmetic Complexity

It can be seen that the expressions for the numbers of real multiplications and real additions

required by the proposed 2-D FFT algorithm are, respectively,

N N
M2 5 (2,N) = 3N? —3N — 472—|—Mr2/8(2 2)+48Mr2/8(2 8),N_>_32,

M} g (2,16) = 432, M5 5 (2,8) = 48, M35 (2,4) =0 (7.34)
and
AP 2 N 33 N
AB g (2,N) = 13N? —3N 472+ AP 4 | 2,5 o | +48AL s (25) N 232,
AR 15(2,16) = 4528, AD 5(2,8) =816, AL 4 (2,4) =128 (7.35)
if the 3mult-3add scheme is considered, and
15 N N
M55 (2,N) = ~4—N2-4N 624+ Mg g (2)+48Mr2/8 (2 8), N >32,

M55 (2,16) = 528, M55 (2,8) = 48, M 5(2,4) =0 (7.36)

190

Table 7.1: Number of arithmetic operations required for the computation of the 2-D DFT
using the 3mult-3add scheme

Radix- (2 x 2)/(4 x 4) Proposed radix- Savings
Transform size FFT in [29] (2x2)/(8 x 8) FFT (%)
NN Mults. [Adds. Mults. Adds. | Mults. [Adds.
22 % 2% 0 128 0 128 0 0
2° %23 48 816 48 816 0 0
2% x 28 560 4654 432 4528 | 2285 | 2.70
2°x2° 3312 23792 2936 23416 | 11.35 1.58
20 x 20 18992 117296 16864 115168 | 11.20 1.81
27 %27 95088 553840 85896 544648 9.66 | 1.66
28 x 28 469424 | 2566576 | 422192 | 2519344 | 10.06 | 1.84
27 x2° 2198256 | 11635440 | 2016088 | 11453272 8.28 1 1.56
210 5 210 10186544 | 52129584 | 9281280 | 51224320 8881 1.73
and
AS g (2N) = %Nz —2N 320+ A (2,]—Z—) +48A5 ¢ (2, %’) , N>32,

AR (2,16) = 4432, M5 5 (2,8) = 816, M54 (2,4) =128 (7.37)

if thé 4mult-2add scheme is considered.

The arithmetic complexities of the proposed radix-(2 x 2)/(8 x 8) and the existing radix-
(2 x 2)/(4 x 4) [29] FFT algorithms for complex data for various values of N are given in
Tables 7.1 and 7.2. Itis clear from these tables that the proposed 2-D FFT algorithm reduces
significantly the number of arithmetic operations, especially the number of real multiplica-

tions.

191

Table 7.2: Number of arithmetic operations required for the computation of the 2-D DFT

using the 4mult-2add scheme

Radix- (2 x 2)/(4 x 4) Proposed radix- Savings
Transform size FFT in [29] (2 x2)/(8 x 8) FFT (%)
NxN Mults. | Adds. Mults. | Adds. | Mults. | Adds.
2% x 2% 0 128 0 128 0 0
29 x2° 48 816 48 816 0 0
2% x 2 720 4496 528 4432 | 26.66 | 142
22 x 2 4176 22928 3616 22736 | 1341 083
20 x 20 24720 111568 20400 111632 | 1747 | -0.05
27 %27 123216 525712 106048 524496 | 1393 | 0.23
28 x 28 614928 | 2421072 523728 | 2417808 | 1483 | 0.13
27 x 2’ 2876880 | 10956816 | 2483296 | 10986064 | 13.68 | -0.26
210 % 210 13395600 | 48920528 | 11501040 | 49004560 | 14.14 | -0.17

7.2.1.2 Data Transfers

We assume that a sufficient on-chip memory is available to perform an entire butterfly
without using any intermediate transfer operations between the processor and the off-chip
memory. For a given combination of (kj,k;), the implementation of the butterfly based on
(7.25) and (7.17)-(7.19) of the proposed 2-D FFT algorithm consists of reading four points
from the off-ship memory of the processor and computing the operation given by (7.25)
using these four points as operands, for /; = I = 0. The result yoo (k1,k2) is returned to the
off-ship memory, whereas the other three results yo; (k1,42), y10 (k1,42) and y11 (k1,k2) are
kept in the on-ship memory of the processor. This process is repeated 16 times to compute
the operation given by (7.25) for all combinations of (I1,2). The three 16-point results
kept in the on-ship memory are used to process the three sub-butterflies given by (7.17)-
(7.19). The above operations are repeated by taking all the combinations of (ky,k), k1, k =
0,1, ...,(N/8)— 1. Now, all the results of o returned to the off-ship memory are grouped
to form the first sub-sequence of size (%’- X %’~), and the 48 sub-sequences of size (%1 X %)

are formed by grouping separately the results of each line of the output vectors of (7.17)-

(7.19). This scheme of implementation reduces significantly the number of data transfers

192

and index generations. To compare the number of data transfers and address generations of
the proposed radix-(2 x 2)/(8 x 8) and the existing radix-(2 x 2)/(4 x 4) FFT algorithms,
we assume that for a given size, the corresponding repeated butterfly operations of both
the algorithms are applied in the same way. Then, it can be shown that the expressions
for the number of data transfers (real and imaginary parts) of the radix-(2 x 2)/(8 x 8) and

radix-(2 x 2)/(4 x 4) FFT algorithms are respectively

N
DYZ/S (23N) :2N2+Dr2/8 (27]%,) +48Dr2/8 (21 —8') , N2 87 .

Dra/s (2,4) =32, Drp/s(2,2) =8, Drp/s(2,1) =0 (7.38)

and

4
DI'2/4 (27 2) = 8a DI‘2/4 (27 1) =0 (739)

N N
Dry/4 (2,N) =2N*+Dpy4 (2, 5:) +12Dpy4 (2, ”) , N> 4,

The number of data transfers for the two algorithms are compared in Table 7.3. The pro-
posed 2-D FFT algorithm requires about 25% less data transfer operations than that in the
existing one. Hence, similar savings are also achieved in the address generation. The use of
vector radix-(8 x 8) Cooley-Tukey FFT can bring about even more savings; however, it will
have a higher arithmetic complexity compared to that of the proposed 2-D FFT algorithm

and imposes more restrictions on the choice of the transform size.

7.2.1.3 Twiddle Factors

In counting the number of twiddle factor (sine and cosine) evaluations or accesses to the
lookup table required by the two algorithms, it is assumed that the constant factor 1/+/2 for

the algorithm in [29], and the constant factors 1/+/2, cos(m/8) and sin(r/8) for the pro-

193

Table 7.3: Comparison of the number of data transfers, and twiddle factor evaluations or
accesses to the lookup table

Radix-(2 x 2)/(4 x 4) Proposed radix- Savings
FFT in [29] (2x2)/(8 x 8) FFT (%)

Transform size | Dpy/a(2,N) | T /4(2 N) | Dpys(2,N) | T3 3(2,N) | inC | inD
NxN over | over

(A) (B) © ®) A B

2x2 8 0 8 0 0 0

22 x2? 40 0 32 0 20 0

2% x2° 264 0 160 0 39.39 0

2% x 2% 1256 256 1056 0 15.92 -

20 x2° 6472 1600 4640 0 28.30 -
26 % 26 29736 10496 20512 5180 31.01 | 50.64
27 %27 140168 53696 103968 28376 25.82 | 47.15
28 28 628072 276864 457760 124468 | 27.11 | 55.04
27 x 27 2834376 1312320 1966624 762448 | 30.61 | 41.90
210 5 210 12468392 6203392 9054240 3690156 | 27.38 | 40.51

posed 2-D FFT algorithm, are initialized and kept in the on-ship memory of the processor

during the processing time of the algorithms. Therefore, they are respectively

3, 1 N
21\72_731\1 548+ T g (2 >+48 2 (2];') N> 64,

T8 /g (2,N)

T3 (2N) =

=0, N<32, (740)

3 N N

T4 (2,N) =0, N<8 (741)

It is seen from Table 7.3 that a saving of over 40% in the evaluation of twiddle factors or in
the access to the lookup table can easily be achieved by the proposed 2-D FFT algorithm.
Note that, when the lookup table is used, similar savings are obtained by the proposed 2-D

FFT algorithm in the address generation for reading the twiddle factors.

194

7.3 Proposed Radix-(2x2x2)/(8x8x8) DIF FFT
Algorithm

In the radix-(2 x 2 x 2)/(4 x 4 x 4) DIF FFT algorithm developed in Section 5.2, radix-(4 x
4 x 4) index maps are introduced by further decomposing the DFTs given by (5.5)-(5.11)
using radix-(2 x 2 x 2) index maps. In order to develop a radix-(2 x 2 x 2)/(8 x 8 x 8)
DIF FFT algorithm, we introduce radix-(8 X 8 x 8) index maps by further decomposing the
DFTs given by (5.5)-(5.11) using radix-(4 x 4 x 4) index maps. Let us start by decomposing
the even-even-odd indexed terms, which correspond to (5.5). First, we change the variables
ki’s by

N N
‘ki+.§li’ OSle—g'—‘l, li=0,1,2,3 (742)

Then, the DFT given by (5.5) becomes

N/8—1N/8—1N/8-1

f(2n1,2n2,2n3+1)= Z Z 2

k1=0 k=0 k3=0

33 3 N N N . NS3 T kg, 2oy niki
Y X 2 oo (k1+§ll,kz+§l2,k3+§l3)e Sy W W
l1=00L=0103=0

N
Ognigi—l (7.43)
Now, we change the frequency variables n;’s in (7.43) by
N
4ni+mi7 Oﬁniﬁ”g“‘l, mi20’17273 (744)

Then, (7.43) becomes

195

B N/8—1N/8—1N/8~1 52 mik
X(8n+p,8ma+q,8m+y)= Y Y ¥ B 1 (kioka, k3) Wagt ™,
=0 k=0 k=0

0<m<3~1,p.=0,2,4,61=1,35T (145

It is clear that (7.45) represents a set of 64 (%1 X %’— X %)-point DFTs that are obtained by
further decomposition of the even-even-odd index terms given by (5.5) using the radix-
(4 x 4 x 4) index maps given by (7.42) and (7.44). By a similar technique, the other odd-
indexed terms given by (5.6)-(5.11) can be expressed, respectively, as
N/8—1N/8—1N/8-1 _
X (8n1+p,8my+P,8n3 +q) = k12~o kzzo 13-:0 hg?g (k1 ko, k3) WI‘%/IEI n,k,’

OSniS%”l, paq=0’234)6aB:1a37577 (746)

N/8—1N/8—1N/8—1

X (8n1 + p,8ny +PB,8n3 +7v) = DD IS h011(k11k21k3)W1§/'§ e
(=0 Jp=0 k3=0

05n,-§%’—1,p=0,2,4,6, B,y=1,3,5,7 (147

N/8—1N/8~1N/8-1

1 ki
ZEu+o8mtpdmta)= Y Y O Wbk k) Wog ™,
k=0 k=0 k=0

N
Osm<=-1,p9=0246 0=1357 (748)

N/8—1N/8—1N/8—1

ki
X(Bm+o8m+psnt+y)= > > 3 B (k;,kz,kg)W]?/‘g‘" ,
k=0 k=0 k=0

N
Osnié—s—-‘l)p:01214767 (X,Y=1,3,5,7 (749)

196

N/8—1N/8~1N/8~1

X (8n1+0,8n2+ B, 8n3 + p) = >y E ke (kl,kz,k3)W1§/8‘"'k‘,
k=0 ky=0 k3=0

OSniS%—l, p=0,2,4,6 o B=1,3,57 (150

N/8~1N/8—1N/8-1

- X (8n1+ o, 8ny+ B, 8n3 +v) = DD hm klakz,ka)W%/'E 1k ',
k1=0 k=0 k3=0

N
0<n< §—1’ o B,y=1,3,57 (7.51)

The input sequences ';Z;;; (k1,k2,k3) of the DFTs given by (7.45)-(7.51) are, respectively, the

components of the vectors given by

a N
HY ok = B, s Was (O L @S HY, 1, 0< ki < 71 (1.52)
S . =B 010 N

ky,kp ks T k2 k3W43 (14 ®S4 ®I4)Hkl ko, k3 0 S kj S “é‘ —1 (753)
3011 N
Hk1,k2,k3 kl k2 k3W43 (14 ®S4 ®S4) Hk] k2 k3’ O < k, < —8— — 1 (754)
T = N
Hy kb = Biy s W Ss 8L L)LY o, 0<ki< o ~1 (7.55)
7310t N
HiYs k= Bl s War (54 @ L @S)HY . 0< K < 7! (7.56)
fj110 =110 N
Hy ok = k1 kz s Wa (S1©8,01y) Hy by 0< ki < 3 1 (7.57)
H L ks = Bk oyt Wos (S4 @84 @8a) Hy 4, 0< ki< -1 (7.58)

197

The components of the input and output vectors ITI;C'I" ky ky AN ﬁié{, ko, k, and those of their

corresponding diagonal twiddle factor matrices B}é{, ko, k3 in (7.52)-(7.58) are given by

(HY (@ =001 (k1 +p& ko + g ks + (y— 1))
R ANORHURCRD) 2.59)
BYL (a,0) = Ptk
| Wherea=8p+2q+y"—l, p,9=0,2,4,6,y=1,3,5,7
(HYS 1 6) =500 (k1 + p ke + (B— 1) X ks +¢2%)
< Hl{c)ll,(}cz,@(b) h010 (k1,k2,k3) 7.60)
B) = gt
| where b=8p+28-2+1, p,4=0,2,4,6, $=1,3,5,7
(Hl(c)ll,}cz k() =%ou (ki +pfe o+ (B-1E b+ (1 1))
< AR (5 =0 (K1, ka, k3) 61
Bgll ,1k2,k3 (c,c)= Wzgkﬁﬂkﬁyks
| where c=8p+28—2+1%", p=0,2,4,6, B,y=1,3,5,7
[%, (d) =50 (b + (0= D o p i s g 2)
3 H’:ﬁ(}‘z’“ (@) =g (o) (7.62)
B, (d,d) = kPt
| whered =8(a—1)+2p+4, p,g=0,2,4,6, 0 =1,3,5,7
(H" (&) =% (ki +(a-D)E b+pl b+ y-1)X)
J L0 =T 1 o k) e
B) = P
| wheree=8(a—1)+2p+%*, p=0,2,4,6, 0,y=1,3,5,7

198

ﬁl;l,(}cg,k:,-(f) :57110 (kl +(Cl- 1)-1-1\!6—’162—}— (B— 1)%’k3 +p_11%)
’211,962,/63 ()= h(lxﬁ’i) (k1, k2, k3)

) Bl ok +Bky+ pk (7.64)
Bl sy (fo) = Wy TH0TPR
| where f=8(a—1)+2B—2+%, p=0,2,4,6, o,p=1,3,5,7
and
(AN, (0 =5 (k0= D kot (B= 1) ks + (r— 1))
) Bl (9) = F (1, k) .69

Bl ak1+Bkz+Yk3

k12k21k3(g’g)
where g = 8(0.— 1) +28 -2+ %1, 0, B,v=1,3,5,7

In (7.52)-(7.58), the matrix W3, the operator of the (4 x 4 x 4)-point 3-D DFT, can be

factored using the Kronecker product as [32]

3
We=[]U-1 ®Z4®@151) (L1 ®Ds @ Lyst) (L1 ® Ry @ L31) (7.66)
I=1

For a given combination of (k1,k;,k3), each of the seven general sub-butterflies given by
(7.52)«(7.58) computes 64 points using (5.12). In order to compute, for a given combina-
tion of (k1,k2,k3), all the points required in the computation of these sub-butterflies, we

rearrange (5.12) as

yk1+ll %’,kz+lz%,k3+l3 T = H23xk1+ll %,k2+lz%,k3+l3%’

ng,-gg—l, [;=0,1,2,3 (7.67)

Itis clear from (5.13) and (5.14) that for a given combination of (ky,k, k3), (7.67) computes
512 points from the initial input sequence X (ki,k2,k3), where 64 points are used to form

the input sequence yooo (k1,k2,k3) of the (N N x ¥)—pomt 3-D DFT given by (5.4) and

199

all the other points are used by the general sub-butterflies given by (7.52)-(7.58). The
output of these sub-butterflies are used to form the input sequences of the corresponding
(% X % x %) -point 3-D DFTs given by (7.45)-(7.51). These operations are repeated for all
the combinations of (ki,kz,k3), k; =0, 1, ..., (N/8) — 1, i =1, 2, 3. This completes the first
stage of the proposed decomposition.

Thus, the proposed radix-(2 x 2 x 2)/(8 x 8 x 8) FFT algorithm corresponds to decom-
posing the (N x N x N)-point 3-D DFT given by (5.1) into one (§ x -12! x §)-point 3-D
DFT given by (5.4) and 448 (¥ x & x ¥)-point 3-D DFTs given by (7.45)-(7.51), in the
first stage. This is achieved by repeating 5~I‘g— times the general butterfly based on (7.67)
and (7.52)-(7.58). This decomposition scheme is repeated successively for each of the new
resulting DFTs, until the problem is reduced to some DFTs without twiddle factors, namely
(4 x 4 x4)- or (2 x2 x2)-point 3-D DFTs.

Let us now count the operations required by the general butterfly of the radix-(2 x 2 x
2)/(8 x 8 x 8) FFT algorithm. This is achieved by counting all the necessary operations for
a given combination of (ki,k2,k3). According to (2.8), the matrix H,; introduces 24 x 64
complex additions in the computation of the operation given by (7.67). According to (7.66),
the matrix W3 introduces 64 x 2 x 3 complex additions in the computation of each of the
seven general sub-butterflies given by (7.52)-(7.58). The computation of each of these sub-
butterflies also requires 64 complex multiplications that are introduced by the correspond-
ing twiddle factor matrix B , , and 64 real multiplications and 64 real additions that are
introduced by the corresponding diagonal matrix generated using S4. We count the opera-
tions required by the butterﬂy whether the complex multiplication is performed using the
4muit-2add scheme or using the 3mult-3add scheme. Consequently, the general butterfly
of the radix-(2 x 2 x 2)/(8 x 8 x 8) FFT algorithm requires 2240 real multiplications and
9792 real additions, if the 4mult-2add scheme is considered, and 1792 real multiplications

and 10240 real additions, if the 3mult-3add scheme is considered.

200

In order to further reduce the number of operations, we consider some special com-
binations of (k1,42,k3) that involve some trivial operations. It is clear from (7.59)-(7.64)
that each of the twiddle factor matrices B%)O, Bg?,:,o, Bg}& o Bg}g, o B%’O, B(l)?& o B(l)?,go,
B o and By'g, requires only 48 complex multiplications, whereas each of the twiddle
factor matrices Bg?ll’o, Bg}& ; and Bé?,g ; requires 60 complex multiplications, for k,! =
1,2,...,(N/8)—1 and k,l # s, where s = {%. Since the sub-butterflies given by (7.52)-
(7.58) require pre-multiplications (due to S4) and post-multiplications (due to Bic'{, o, k3),
Theorem 1 can be used effectively to combine the twiddle factors for the purpose of re-

ducing the number of operations. For M = 2, it has been efficiently exploited in Section

7.2. Now, for M = 3, by appropriate application of this theorem in the expressions given by

(7.52)-(7.58), we can show the following:

1) Only 64 real multiplications and 832 real additions are required for each of the following
- combinations of (ki,kp,k3):
() (0,0,0), (0, s,0), (5,0,0) and (s, 5, 0) for the sub-butterfly given by (7.52)
() (0,0,0), (0,0,s), (s5,0,0) and (s, 0, 5) for the sub-butterfly given by (7.53)
() (0,0,0), (5,0,0), (0, 5, 5) and (s, s, 5) for the sub-butterfly given by (7.54)
(d) (0,0,0), (0,0,5), (0,s,0) and (0, 5, 5) for the sub-butterfly given by (7.55)
(e) (0,0,0), (0,5,0), (s,0,s) and (s, s, 5) for the sub-butterfly given by (7.56)
) (0,0,0), (0,0, s), (s,5,0) and (s, s, s) for the sub-butterfly given by (7.57)
() (0,0,0), (0,5, 5), (5,5 0) and (s, 0, s) for the sub-butterfly given by (7.58)

2) Only 64 complex multiplications and 384 complex additions are required for each of the
following combinations of (k1,k2,k3):
() (0,0,s), (0,s,5), (5,0, 5) and (s, s, 5) for the sub-butterfly given by (7.52)
() (0,5,0), (0,s,5), (5,5,0) and (s, 5, s) for the sub-butterfly given by (7.53)
(©) (0,0,5), (5,0,), (0,5,0) and (s, s, 0) for the sub-butterfly given by (7.54)

201

(d) (5,0,0), (s,0,5), (s,5,0) and (s, s, 5) for the sub-butterfly given by (7.55)
| (e) (0,0,s),(0,5,s), (5,0,0) and (s, 5, 0) for the sub-butterfly given by (7.56)
® (0,5,0), (0,5, 5), (s,0,0) and (s, 0, 5) for the sub-butterfly given by (7.57)
(2) (0,0,5), (0,s,0), (5,0,0) and (s, s, 5) for the sub-butterfly given by (7.58)

7.3.1 Computational Complexity

In this section, we consider the performance of the proposed radix-(2 x 2 x 2)/(8 x 8 x 8)
FFT algorithm by analyzing its computational complexity and comparing it with that of the

proposed radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithm introduced in Section 5.2.

7.3.1.1 Arithmetic Complexity

For both the radix-(2 x 2 x 2)/(8 x 8 x 8) and radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithms,
we count the total number of operations required by each algorithm using both the 3mult-
3add and 4mult-2add schemes. In addition, we remove the trivial operations involved only
in the special combinations of (ki,kz,k3) defined in Section 7.3 for s = N/16 for the radix-
(2 x2x2)/(8 x 8 x 8) algorithm, and similarly, for s = N/8 for the radix-(2 x 2 x 2)/(4 x
4 x 4) algorithm.

Then, it can be shown that the expressions for the numbers of real multiplications and

real additions required by the radix-(2 x 2 x 2)/(8 x 8 x 8) FFT algorithm are, respectively,

M5 (3,N)
7 9 N N
- .2-N3 _ _1_6N2 ~36N — 6448 + M5 g (3,-2-) A48M ¢ (3,§> , N>38,

M 5(3,8) = 448, M3 4(3.4) = M3 5(3,2) =0 (7.68)

202

and

AL/ (3:N)

9 N
—1-6—N2 36N — 6448+ A% ¢ (3 2) +448A% ¢ (3

N
8

AJ5(3,8) = 9664, AL 5(3,4) =768, A% 4(3,2) =48, (7.69)

= 20N? —),N>8,

if the 3mult-3add scheme is considered. The corresponding numbers are

Mr2/8 (3,N)
= TN~ ZN2 - 48N - 8000+ M, (3 2) +a48MB s (3,2), N> 8,
Mp3/s(3,8) = 448, ME 5(3,4) = r2/8(3 2)=0 (7.70)
and

Af g (3,N)
_ 1535 3
ERE 8

A /5(3,8) = 9664, AD 5(3,4) =768, A3 4(3,2) =48, (1.71)

SN2 —24N — 4896 + A ¢ (3 1;') +448A5 ¢ (3 N), N > 8,

if the 4mult-2add scheme is considered.
It can be further shown that the expressions for the numbers of real multiplications and

real additions required by the radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithm are, respectively

M35 (3,)
21 9 N N
=2 oo - 752+Mr2/4(3 2)+56Mr2/4(3 4),1v>4,

MB/4(3,4) =M3,,(3,2) =0 (1.72)

203

and

AB/4(3,N)
11, 9 N
8N3 §N2 ON — 752+A§§/4(3 >+56Ar2/4(3]Z),N>4,

A%,(3,4) =768, AB),(3,2) =48, (1.73)

if the 3mult-3add scheme is considered. The corresponding numbers are

M54 (3,N)
7 3
= SN} NP - 1N - 1152+ M, (3 2’) +56M5, (3]Z) N> a4,
ME,4(3,4) = Mi2,(3,2) =0 (1.74)
and
AB4(3,N)
3
= 138~ TN~ 6N 352+ A%, (3 1;’) +56A%, (3 Ji) N >4,

r2/4(3 4) =768, r2/4(3 2)=48, (7.75)

if the 4mult-2add scheme is considered.

The arithmetic complexities of the two algorithms for complex data for various val-
ues of N are given in Tables 7.4 and 7.5. It is clear from these tables that the radix-
(2x2x2)/(8 x8x8) FFT algorithm reduces the number of arithmetic operations, es-
pecially the number of real multiplications, compared to that required by the radix-(2 x
2 X 2)/(4 x 4 x 4) FFT algorithm. For example, if the 4mult-2add scheme is considered,
savings of about 14% in the number of multiplications can be achieved using the radix-

(2x2x2)/(8 x 8 x8) FFT algorithm. It should be pointed out that additional reductions in

204

Table 7.4: Number of arithmetic operations required for the computation of the 3-D DFT

using the 3mult-3add scheme

Proposed radix- Proposed radix- Savings
(2x2x2)/(4x4x4) | (2x2x2)/(8x8x8)
FFT FFT
Transform size | Mults. | Adds. Mults, | Adds. Mults. | Adds.
NXNxN /point | /point /point | /point (%) (%)
23 %23 x 23 0.8750 | 18.8750 0.8750 | 18.8750 0 0
2% x 2% x 24 2.4453 | 26.4453 1.8594 | 25.8594 2396 | 2.21
2 x22x23 3.6294 | 33.6294 3.4829 | 33.4829 403 | 043
20 26 x 20 5.1957 | 41.1957 4.6588 | 40.6588 1033 | 1.30
272" x 27 6.4405 | 48.4405 5.6996 | 47.6996 11.50 | 1.52
28 x 28 x 28 79717 | 55.9717 7.2569 | 55.2569 896 | 1.27
29 %27 x 27 9.2546 | 63.2546 8.4823 | 62.4823 834 | 1.22
210 % 210 % 219 110.7560 | 70.7560 9.5469 | 69.5469 1124 | 1.70
215 215 211 1120668 | 78.0668 11.0428 | 77.0428 8.48 1.31
212 % 212 % 212 1'13.5445 | 85.5445 12.3022 | 84.3022 9.17 1.45

Table 7.5: Number of arithmetic operations required for the computation of the 3-D DFT

using the 4mult-2add scheme

Proposed radix- Proposed radix- Savings
(2x2x2)/(4x4x4) | 2x2%x2)/(8x8x8)
FFT FFT

Transform size | Mults. | Adds. Mults. | Adds. Mults. | Adds.
"NXNxN /point | /point /point | /point (%) (%)

2°x2°x2% | 0.8750 [18.8750 0.8750 | 18.8750 0 0

2*x2%x2% | 3.1875 |25.7031 2.2969 | 25.4219 2794 | 1.09

22 x22x2° | 45703 | 32.6885 4.3477 | 32.6182 487 | 0.21

2626 x2% | 6.8296 | 39.5618 5.6301 | 39.6875 17.56 | -0.31

27 %27 x 27 8.3397 | 46.5412 7.0759 | 46.3233 15.15 | 0.46

28 x28x2% 1105122 | 53.4312 9.0596 | 53.4542 13.81 | -0.04
27x27x2°]12.1083 | 60.4010 10.4321 | 60.5325 13.84 | -0.21
21052105219 1142103 | 67.3017 11.8697 | 67.2241 1645 | 0.11
2% 21T 21 1158703 | 74.2632 13.7854 | 74.3002 13.13 | -0.04
212 x 212 x 212 1179174 | 81.1717 15.2261 | 81.3784 1502 | -0.25

205

the number of arithmetic operations in the two algorithms can be obtained by removing all

the trivial operations.

7.3.1.2 Data Transfers

We first give a brief implementation scheme of the proposed radix-(2 x 2 x 2)/(8 x 8 x 8)
FFT algorithm by considering the implementation of the butterfly given by (7.67) and
(7.52)-(7.58). For a given combination of (ki,k2,ks3), by reading eight points from the
off-chip memory according to (5.13) to compute the operation given by (5.12), we ob-
tain the eight points given by (5.14). The first point Yoo (k1,k2,k3) of (5.14) is returned
to the off-chip memory, whereas the other seven points are kept in the on-chip mem-
ory since they are used by the seven sub-butterflies given by (7.52)-(7.58). These oper-
ations are repeated 64 times to complete the computation of the operation given by (7.67).
The seven 64-point results kept in the on-chip memory are used to process the seven
sub-butterflies. This completes the process of the butterfly. For all the combinations of
(k1, kz, k3), ki=0,1,...,(N/8) — 1, the results returned to the off-chip memory are grouped
to form the input sequence o0 (k1,k2,k3) of the (§ x & x ¥)-point 3-D DFT given by
(5.4). The 448 input sequences of the (%’ X % X %)-point 3-D DFTs given by (7.45)-(7.51)
are formed by grouping separately the results of each line of the output vectors given by
(7.52)~(7.58). This completes the first stage of the proposed decomposition.

To count the numbers of data transfers required by the radix-(2 x 2 x 2)/(8 x 8 x 8)
and radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithms, we assume that the (2 x 2 x 2)- and (4 x
4 x 4)-point DFTs are implemented separately for the two algorithms. In addition, we
assume that the general butterflies of the two algorithms are implemented without additional
transfers. Then, it can be shown that the expressions for the number of data transfers (real

and imaginary parts), not including the read operations for the twiddle factors, required by

206

these two algorithms are

N N
Dry/s (3,N) = 2N° + Dy g (3, —2—) +448Dyy g (3, g) , N> 4,

Dry/5(3,4) = 128, Dry/g(3,2) = 16, Dpyss(3,1) =0 (7.76)
and

N N
Dr2/4 (3,N) = 2N3 +DI‘2/4 (3, "2’) +56Dr2/4 (3, Z) , N>4,

Dry/4(3,4) = 128, Dry/4(3,2) = 16, Dra/a(3,1) = 0 (1.77)

respectively. The numbers of data transfers for the two algorithms are compared in Table
7.6, for various values of N. It is clear from this table that the radix-(2 x 2 x 2)/(8 x 8 x 8)
FFT algorithm requires about 25% less data transfer operations than that required in the
radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithm. Hence, similar reduction is also achieved in

the address generation.

7.3.1.3 Twiddle Factors

In the radix-(2 x 2 x 2)/(8 x 8 x 8) and radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithms, 896
and 112 real coefficients (cosine and sine) are respectively required to be evaluated or
loaded from the lookup table by the corresponding general butterfly using the 4mult-2add
scheme. Therefore, by counting the required number of the general butterflies in the
two algorithms, and assuming that the coefficients required in the special combinations
of (ki,k2,k3), such as v/2/2, cos(n/8) and sin(r/8) are initialized and kept in the inter-
nal registers of the processor during the processing time of the corresponding algorithm,

the number of real coefficient evaluations or accesses to the lookup table for the radix-

207

Table 7.6: Comparison of the number of data transfers, and twiddle factor evaluations or
accesses to the lookup table

Proposed radix- Proposed radix- Savings
(2x2x2)/[(4x4x4) (2%x2x2)/(8 x8x8) (%)
FFT FFT
Transform size | Dy 4(3, N) r2/4(3 N) | Dpyss(3, N) r2/8 (3,N)| inC | inD
NxNxN /N3 /N3 /N3 /N3 over | over
(A) (B) © D) A B
22 x 2% x2? 4 0 2.25 0 4375 0
2P x 24 x 2% 4.25 1.4844 4.0312 0 5.14 | 100
P x2x2 6.0312 1.8818 42539 1.5107 |29.46 | 19.72
20 % 26 x 26 6.4727 3.2678 4.5005 1.9016 | 30.46 | 41.80
2Tx 27 x 27 8.0864 3.7985 6.0899 | 1.9801 |24.68|47.87
28 %25 x 28 8.6744 5.0811 6.4834 33172 [25.25(34.71
9% 29 x 2’ 10.1599 5.7073 6.7484 3.8277 [33.57 |32.93
2105210 % 210 1 10.8601 6.9086 8.1722 3.9607 | 24.75 | 42.67
215 21 21T T 12,2474 7.6071 8.6945 5.1474 {29.00 | 32.33
22 %212 x 2121 13.0335 8.7458 8.9916 5.7426 | 31.01 | 34.33

(2x2x2)/(8 x 8 x8) and radix-(2 x 2 x 2)/(4 x 4 x 4) FFT algorithms are, respectively

T8 (3:)
7

= -N3 -~

4

and

Tf‘%/4 (3’N)
7
4

3
4

2 2
=N* —24N — 6688 + T3 5 (

T?%/S(:;:S) =

3.2
2

N

Tr2/8(372)

)+448 2/8 (3];J), N> 8,
T?%/8(3’4) =

=N —ZN>—6N-— 800+'I“;§,4(N)+56Tu/4(3 IZ),N>4,

=0 (7.78)

r§/4 (3,4)= Tg/4(3,2) =0 (7.79)

For various values of N, the numbers of real coefficient evaluations or accesses to the

lookup table required by the two algorithms are compared in Table 7.6. It is seen from this

208

table that savings of over 30% in the evaluation of twiddle factors or in the access to the
lookup table can be easily achieved using the radix-(2 x 2 x 2)/(8 x 8 x 8) algorithm over
the radix~(2 x 2 x 2)/(4 x 4 x 4) FFT algorithm. Note that, when the lookup table is used,

similar savings are obtained in the address generation for reading the twiddle factors.

7.4 Summary

In this chapter, the radix-2/8 approach, proposed in Chapter 6 for the computation of the
1-D transforms, has been extended for the computation of the 2-D and 3-D DFTs. The
two-step decomposition strategy, presented in Chapter 5, has been advanced in this chap-
ter to introduce radix-(2 x 2), radix-(8 x 8), radix-(2 x 2 x 2) and radix-(8 x 8 x 8) index
mapé in the decomposition of the Q—D and 3-D DFTs. This has enabled the design of
radix-(2 % 2)/(8 x 8) and radix-(2 x 2 x 2)/(8 x 8 x 8) FFT algorithms whose butterflies
are characterized by simple closed-form expressions that facilitate easy implementations
of the algorithms. The two new algorithms have been compared, respectively, with the
existing radix-(2 x 2)/(4 x 4) FFT algorithm and the radix-(2 x 2 x 2)/(4 x 4 x 4) FFT al-
gorithm proposed in Chapter 5. It has been shown that the radix-(2 x 2)/(8 x 8) and radix-
(2 x2x2)/(8 x 8 x 8) FFT algorithms provide better performance in terms of the number
of arithmetic operations, data transfers, address generations, and twiddle factor evaluations
or accesses to the lookup table, thus making the radix-2/8 approach superior to all the other

existing radix-based approaches in providing efficient 2-D and 3-D FFT algorithms.

209

Chapter 8

Conclusion

8.1 Concluding Remarks

The DFT and DHT play a key role in one- and multi-dimensional signal processing ap-
plications. Due to the recent advances in the digital technology and the present demands
of such transforms in low-power high-performance real-time applications, fast and effi-
cient computation of these transforms is extremely crucial. This thesis has been concerned
with developing new techniques and approaches for the design of FFT and FHT algorithms
with a view to reducing the computational and structural complexities globally and com-
prehensively. With this objective in mind, this thesis has proposed a number of one and
multi-dimensional radix-based FFT and FHT algorithms, which in most cases significantly
reduce the operations such as multiplications, additions, data transfers, address generations,
and twiddle factor evaluations or accesses to the lookup table. Further, the proposed algo-
rithms possess features such as simplicity, regularity, modularity, easy indexing scheme,
and butterfly-style and in-place computations that are highly desirable characteristics for
software or hardware implementations of the algorithms.

Due to the growing interest in applications that involve three and higher dimension

210

signals, the M-D transforms are expected to be widely used and hence, their efficient com-
putations are highly desirable. Although the kernel of the M-D DHT is not separable, it
has been shown that by using an appropriate index mapping and the Kronecker product,
the generalization of the radix-2 approach for the computation of the DHT of an arbitrary
dimension is possible. For this purpose, a general decomposition method has been pro-
posed to develop M-D radix-(2 x 2 X ... x 2) DIF and DIT FHT algorithms that have been
shown to be more effective and highly suitable for hardware and software implementa-
tions compared to all the existing M-D FHT algorithms. The proposed method has also
been used to reformulate the existing M-D radix-(2 X 2 X ... x 2) complex-valued DIF and
DIT FFT algorithms. All the butterflies of the proposed algorithms are based on simple
closed-form expressions that allow for easy implementations of these algorithms for any
dimension. A new approach for computing the DFT and DHT using a unified structure
has been introduced and a close relationship between these FHT and FFT algorithms, valid
for any dimension, has been established. This type of relationship is of great significance
for software and hardware implementations of the algorithms, since it has been shown that
because of this relationship and the fact that the DHT is an alternative to the DFT for real
data, a single module with a little or no modification can be used to carry out the forward
and inverse M-D DFTs for real- or complex-valued data and M-D DHTs. Thus, the same
module, with a little or no modification, can be used to cover all domains of applications
that involve the DFT's or DHTs.

Based on the radix-2 approach, a method has been proposed for reducing significantly
the complexity in the computation of the 1-D and 2-D DFTs, where only a sub-set of output
samples of the transforms are needed. This has been achieved by grouping in a radix-
2 or radix-(2x2) FFT algorithm all the stages that involve unnecessary operations into a
single stage and introducing a new recursive technique for the computations required in the

resulting stage. Due to this grouping and an efficient indexing process, the implementation

211

of the proposed pruning DIT or DIF FFT algorithm requires a minimum number of stages.
It has been shown that the proposed 1-D and 2-D FFT algorithms substantially reduce the
structural and computational complexities compared to those of the corresponding existing
ones.

Even though the radix-2 approach introduced by Cooley and Tukey in 1965 has led to al-
gorithms having the lowest structural complexities, the computational complexities of these
algorithms are still higher than those provided by a higher radix approach. In order to fur-
ther improve the performance of the higher-radix FFT algorithms, namely radix-4, radix-8
and radix-16 FFT algorithms, an efficient technique has been proposed by introducing new
indices for some of the sub-sequences resulting from the conventional decompositions in
the radix-4, radix-8, and radix-16 FFT algorithms. It has been shown that significant savings
in the number of twiddle factor evaluations or accesses to the lookup table can be achieved
using the proposed algorithms compared to those of the conventional ones. This has been
achieved without imposing any additional computational or structural complexities in the
algorithms.

The radix-2/4 approach introduced by Duhamel and Hollmann in 1984 has led to 1-D
and 2-D FFT and FHT algorithms having a good compromise between the arithmetic and
structural complexities. However, its extension to three or higher dimensions is neither
obvibus nor straightforward. In order to overcome this problem and reduce the complexity
in the computation of the 3-D DFT and DHT, a two-step decomposition strategy, suitable
for the extension of the radix-2/4 approach, coupled with an efficient index mapping and the
Kronecker product has been developed. This has led to new radix-(2 x 2 x 2)/(4 x 4 x 4)
DIF FFT, and DIF and DIT FHT algorithms whose butterflies are characterized by simple
closed-form expressions that facilitate easy implementations of the algorithms. It has been
shown that these algorithms substantially reduce the complexities as compared with those

of the respective existing 3-D FFT and FHT algorithms.

212

’fhe radix-2/4 approach leads to 1-D FFT and FHT algorithms requiring the lowest num-
ber of arithmetic operations, while maintaining simple and regular structures. This is due
to the fact that the radix-2/4 approach takes advantage of the lowest structural complexity
provided by the radix-2 approach and reduced computational complexity provided by the
radix-4 approach. In order to take advantage of the lower computational complexity offered
by the radix-8 approach in reducing the complexity in the computation of the 1-D DFT and
DHT of lengths N = g x 2™ , a new radix-2/8 approach has been proposed. This has been
achieved by an appropriate simultaneous use of the radix-2 and radix-8 approaches, which
has led to new radix-2/8 FFT and FHT algorithms. It has been shown that the proposed
radix-2/8 algorithms maintain all the advantages of the radix-2/4 algorithms and minimize
the number of data transfers, address generations and twiddle factor evaluations or accesses
to the lookup table.

Motivated by the success of the proposed radix-2/8 approach in providing efficient 1-
D algorithms, the problem of reducing the complexity in the computation of the 2-D and
3-D DFTs has been addressed by exploiting the concept of the proposed approach. A two-
step decomposition strategy, suitable for the extension of the radix-2/8 approach, coupled
with an efficient index mapping and the Kronecker product has been introduced to develop
new radix-(2 x 2)/(8 x 8) and radix-(2 x 2 x 2)/(8 x 8 x 8) DIF FFT algorithms whose but-
terflies are characterized by simple closed form expressions. It has been shown that the
proposed radix-(2 x 2)/(8 x 8) and radix-(2 x 2 x 2)/(8 x 8 x 8) FFT algorithms not only
significantly reduce the number of data transfers, address generations and twiddle factor
evaluations or accesses to the lookup table, but also the number of arithmetic operations
as compared to those of the existing radix-(2 x 2)/(4 x 4) FFT algorithm and the radix-
(2x2x2)/(4x4x4) FFT algorithm presented in Chapter 5. Therefore, the proposed
radix-2/8 approach is superior to all the other existing radix-based approaches in providing

efficient 1-D, 2-D and 3-D FFT, and 1-D FHT algorithms.

213

8.2 Scope for Further Investigation

One important contributions of this thesis has been the development of a general decompo-
sition method, which is based on the radix-2 approach, valid for any dimension and applica-
ble to the cases of both the DHT and DFT, and which significantly reduces the complexity
of the FHT algorithms. Similar generalizations of the radix-2/4 and radix-2/8 approaches
can Be investigated for further reducing the complexity of the algorithms. The philosophy
behind computing the DFT and DHT using a unified structure introduced in this thesis for
the case of the radix-2 approach could be used for the cases of the radix-2/4 and radix-2/8
approaches.

One way of computing a very high resolution spectrum is to pad the input sequence
with a large number of zeros before computing the DFT. In this case, the direct use of the
FFT is not attractive. Therefore, an input-pruning method similar to the one for the output-
pruning proposed in this thesis would be highly desirable to increase the efficiency of FFT
algorithms in such a case. Moreover, the proposed method may be adapted for pruning
input and output samples of the DFT simultaneously.

The basic idea for improved higher-radix FFT algorithms proposed in this thesis can
also be applied to other higher radices DIT and DIF FFT and FHT algorithms as well as to
M-D FFT and FHT algorithms.

The lowest number of arithmetic operations has been achieved in the 1-D case using
the radix-2/4 and radix-2/8 approaches. However, in the case of higher dimensions, the
radix-2/8 approach provides a reduced number of arithmetic operations, but not the lowest
one. Therefore, further work can be undertaken to develop new radix-based approaches that
provide the lowest number of arithmetic operations in the case of higher dimensions, while

maintaining the advantages offered by the radix-2/8 approach.

214

The problem of reducing the complexity in the computation of other interesting dis-
crete transforms, such as the discrete cosine, sine, Walsh, and wavelet transforms, can be
undertaken by using some of the approaches and techniques introduced in this thesis.

The focus of the theéis has been the development of reduced-complexity FFT and FHT
algorithms by directing our effort at the algorithm design level so that such reductions are
achieved naturally when the algorithms are implemented. It would be a worthwhile exercise

to investigate the DSP and VLSI implementations of the proposed FFT and FHT algorithms.

215

References

(1] E. O. Brigham, The fast Fourier transform and its applications, Englewood Cliffs.
NJ: Prentice-Hall, 1988.

[2] O. K. Ersoy, Fourier-Related Transforms, Fast Algorithms and Applications. Engle-
wood Cliffs, NJ: Prentice-Hall, 1997.

[3]1 J. W. Cooley and J. W. Tukey, “An algorithm for machine computation of complex
~ Fourier series,” Math. Compt., vol. 9, pp. 297-301, 1965.

[4] G. D. Bergland, “A fast Fourier transform algorithm using base 8 iterations,” Math.
Comput., vol. 22, pp. 275-279. Apr. 1968.

[5] R. C. Singleton, “An algorithm for computing the mixed-radix fast Fourier trans-
form,” IEEE Trans. Audio Electroacoust., vol. 17, pp. 93-103, June 1969.

[6] D.P. Kolbaand T. W. Parks, “A prime factor FFT algorithm using high-speed convo-
- lution,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 25, pp. 281-294, Aug.
1977.

[7] S. Winograd, “On computing the discrete Fourier transform,” Math. Comput., vol.
32, pp. 175-199, Jan. 1978.

[8] E. Dubois, and A. Venetsanopoulos, “A new algorithm for the radix-3 FFT,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 26, pp. 222-225, Jun 1978.

[91 C.S. Burrus, and P.W. Eschenbacher, “An in-place, in-order prime factor FFT algo-
tithm,” IEEE Trans. Audio Electroacoust., vol. 29, pp. 806-817, Aug. 1981.

[10] R. D. Preuss, “ Very fast computation of the radix-2 discrete Fourier transform,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. 30, pp. 595-607, Aug. 1982.

[11] P. Duhamel and H. Hollmann, “Split radix FFT algorithm,” Electron. Lett., vol. 20,
pp. 14-16, Jan. 1984.

(12] E. E. Swartzlander, W. K. W. Young and S. J. Joseph, “A radix-4 delay commutator
for fast Fourier transform processor implementation,” IEEE J. Solid-State Circuits,
vol. 19, Oct. 1984.

216

[13] Y. Suzuki, T. Sone and K. Kido, “A new algorithm of radix 3, 6, and 12,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 34, pp. 380-383, Feb. 1986.

[14] M. Vetterli and P. Duhamel, “Split-radix algorithms for length-p™ DFT’s,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 57-64, Jan. 1989.

[15] P. Duhamel and M. Vetterli, “Fast Fourier transforms: A tutorial review and a state
of the art,” Signal Processing, vol. 19, pp. 259-299, 1990.

[16] D. Sundararajan, M. Omair Ahmad and M. N. S. Swamy, “Vector computation of the
~ discrete Fourier transform,” JIEEE Trans. Circuits and Syst. II: Analog and Digital
Signal Processing, vol. 45, pp. 449-461, Apr. 1998.

[17] G. Bi and Y. Q. Chen, “Fast DFT algorithms for length N = g 2™ IEEE Trans.
Circuits and Syst. II: Analog and Digital Signal Processing, vol. 45, pp. 685-690,
June 1998.

[18] D. Sundararajan, M. Omair Ahmad, “Index mapping approach of deriving the PM
. DFT algorithms,” IEEE Trans. Computers, vol. 47, pp. 1418-1424, Dec. 1998.

[19] A. M. Grigoryan and S. S. Agaian, “Split manageable efficient algorithm for Fourier
and Hadamard transforms,” IEEE Trans. Signal Processing, vol. 48, pp. 172-182,
Jan. 2000.

[20] D. Takahashi, “An extended split-radix FFT algorithm,” IEEE Signal Processing
Letters, vol. 8, pp. 145-147, May 2001.

[21] V. P. Rodriguez, “A radix-2 FFT algorithm for modern single instruction multiple
data (SIMD) architectures,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-
cessing, vol. 3, May 2002, pp. 3220-3223.

[22] G.E. Rivard, “Algorithm for direct fast Fourier transform of bivariant functions,”
1975 Annual Meeting of the Optical Society of America, Boston, Massachusetts,
Oct. 1975.

[23] D. B. Harris and J. H. McClellan, “Vector radix fast Fourier transform,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 2, May 1977 , pp. 548-551.

[24] R. Mersereau and T. Speake, “A unified treatment of Cooley-Tukey algorithms for
the evaluation of the multidimensional DFT,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. 29, pp. 1011-1017, Oct. 1981.

[25] H. J. Nussbaumer, Fast Fourier transform and convolution algorithms. New York:
Springer-Verlag, 1981.

[26] D. Dudgeon and R. Mersereau, Multidimensional digital signal processing. Engle-
wood Cliffs, NJ: Prentice-Hall, 1984.

217

{271 S. C.Pei and J. L. Wu, “split vector-radix 2D fast Fourier transform,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Processing, vol. 12, Apr. 1987, pp. 1987-1990.

[28] H. R. Wu, and F. J. Paolomi, “On the two-dimensional vector split-radix FFT al-
gorithm,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1302-1304,
Aug. 1989.

[29] S. C. Chan and K. L. Ho, “ Split vector-radix fast Fourier transform,” IEEE Trans.
Signal Processing, vol. 40 , pp. 2029-2039, Aug. 1992.

[30] G. Bi, and Y. Chen, “Split-radix algorithm for 2D DFT,” Electron. Lett., vol. 33, pp.
203-203, Jan. 1997.

[31] D. Sevic, “On computing 2-D FFT,” IEEE Trans. Signal Processing, vol. 47, pp.
1428-1431, May. 1999.

[32] S.Bouguezal, D. Chikouche and A Khellaf, “ An efficient algorithm for the computa-
tion of the multidimensional discrete Fourier transform,” Multidimensional Systems
and Signal processing, vol. 10, pp. 275-304, July 1999.

[33] D. Chikouche, A. Khellaf an S. Bouguezel, “ A new proposed algorithm of arbi-
trary radix for the computation of the 2D DFT,” International Journal for Numerical
Methods in Engineering., vol. 46, pp.103-1135, Sep. 1999.

[34] C. Lizhi and Z. Yonghong, “Multidimensional polynomial transform algorithm for
multidimensional DFT,” Electron. Lett., vol. 36, pp. 990-991, May 2000.

[35] R. Bernardini, “A new multidimensional FFT based on one-dimensional decomposi-
- tion,” IEEE Trans. Circuits and Syst. II: Analog and Digital Signal Processing, vol.
47, pp- 1123-1126, Oct. 2000.

{36] G.D. Bergland, “A radix-eight fast Fourier transform subroutine for real-valued se-
ries,” IEEE Trans. Audio Electroacoust., vol. 17, pp. 138-144, June 1969.

[37] L Pitas and M. Strintzis, “General in-place calculation of discrete Fourier transforms
of multidimensional sequences,” IEEE Trans. Acoust., Speech, Signal Processing,
- vol. 34, pp. 565-572, June 1986.

[38] H. V. Sorensen, D. L. Jones, M. T. Heideman, and C. S. Burrus, “Real-valued fast
Fourier transtorm algorithms,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
35, pp. 849-863, June 1987.

[39] Z. -J. Mou and P. Duhamel, “In-place butterfly-style FFT of 2-D real sequences,”
IEEE Trans. Signal Processing, vol. 36, pp. 1642-1650, Oct. 1988.

[40] D. Sundararajan, M. Omair Ahmad and M. N. S. Swamy, “ Fast computation of the
discrete Fourier transform of real data,” IEEE Trans. Signal Processing, vol. 45, pp.
2010-2022, Aug. 1997.

218

[41] B.R. Sekhar and K. M. M. Prabhu, “Radix-2 decimation-in-frequency algorithm for
. the computation of the real-valued FFT,” IEEE Trans. Signal Processing, vol. 47, pp.
1181-1184, Apr. 1999.

[42] R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., vol. 73, pp. 1832-
1835, Dec. 1983.

[43] O. Buneman, “Multi-dimensional Hartley transform,” Proc. IEEE, vol. 75, pp. 267,
1987.

[44] R. N. Bracewell, “The fast Hartley transform,” Proc. IEEE, vol. 72, pp. 1010-1018,
Aug. 1984.

[45] H. V. Sorensen, D. L. Jones, C. S. Burrus and M. T. Heideman, “On computing the
discrete Hartley transform,” IEEE Trans. Acoust. Speech Signal Processing, vol. 33,
pp- 1231-1238, Oct. 1985.

[46] H. V. Hou, “The fast Hartley transform algorithm,” IEEE Trans. Comput., vol. 36,
- pp- 147-156, Feb. 1987.

[47] P. Duhamel and M. Vetterli, “Improved Fourier and Hartley transform algorithms:
Applications to cyclic convolution of real data,” IEEE Trans. Signal Processing, vol.
35, pp. 818-824, Jun 1987.

[48] Y. Dekun, “Prime factor fast Hartley transform,” Electron. Lett., vol. 26, pp. 119-121,
Jan. 1990.

[49] N. Aupindi, S. B. Narayanan and K. M. M. Prabhu, “New radix-3 FHT algorithm,”
Electron. Lett., vol. 26, pp. 1537-1538, Aug. 1990.

[50] D. P. K. Lun and W. -C. Siu, “On prime factor mapping for the discrete Hartley
transform,” IEEE Trans. Signal Processing, vol. 40, pp. 1399-1411, June 1992.

[51] P. K. Meher, J. K. Satapathy and G. Panda, “New high-speed prime-factor algorithm
for discrete Hartley transform,” IEE Proc. F.,, Radar Signal Processing, vol. 140, pp.
63-70, Feb. 1993.

[52] D. P. -K. Lun and W. -C. Siu, “Fast radix-3/9 discrete Hartley transform,” IEEE
Trans. Acoust. Speech Signal Processing, vol. 41, pp. 2494-2499, July 1993.

[53] G.Bi., “Split-radix algorithm for the discrete Hartley transform,” Electron. Lett., vol.
30, pp. 1833-1835, Oct. 1994,

[54] G. Bi, “Radix-3/9 FHT algorithm,” Electron. Lett., vol. 31, pp. 166-168, Feb. 1995,
[55] G. Bi., “New split-radix algorithm for the discrete Hartley transform,” IEEE Trans.
Signal Processing, vol. 45, pp. 297-302, Feb. 1997.

219

[56] G. Bi and Y. Q. Chen, “Fast DHT algorithms for length N = g x2™,” IEEE Trans.
Signal Processing, vol. 47, pp. 900-903, Mar. 1999.

[57] N. Vijayakumar and K. M. M. Prabhu, “FHT algorithm for length N = g% 2™ Elec-
tron. Lett., vol. 35, pp. 966-968, Jun. 1999.

[58] R. Kumaresan and P. K. Gupta, “Vector-radix algorithm for 2-D discrete Hartley
transform,” Proc. IEEE, vol. 74, pp. 755-757, May 1986.

[59] S. Boussakta and A. G. J. Holt, “Fast multidimensional discrete Hartley transform
using Fermat number transform,” IEE Proc. G., Circuits, Devices, Syst., vol. 135,
- pp- 253-257, Dec. 1988.

[60] E. A. Jonckheere and C. Ma, “Split-radix fast Hartley transform in one and two
dimensions,” IEEE Trans. Acoust. Speech Signal Processing, vol 39, pp. 499-503,
Feb. 1991.

[61] P. K. Meher, J. K. Satapathy, and G. Panda, “Fast computation of multidimensional
discrete Hartley transform,” Electron. Lett., vol.28, pp. 1077-1078, June 1992.

[62] J.-L. Wu, and S.-C. Pei, “The vector split-radix algorithm for 2-D DHT,” IEEE Trans.
Signal Processing, vol. 41, pp. 960-965, Feb. 1993.

(63] T. Bortfield and W. Dinter, “Calculation of multidimensional Hartley transforms us-
ing one-dimensional Fourier transforms,” IEEE Trans. Signal Processing, vol. 43,
pp- 1306-1310, May 1995.

[64] G. Bi, A.C. Kot and Z. Meng, “Computation of 2d discrete Hartley transform,” Elec-
tron. Lett., vol. 34, pp. 1058-1059, May 1998.

{65] S. Boussakta, O. Alshibami and M. Y. Aziz, “Radix-2 x 2 x 2 algorithm for the 3-D
discrete Hartley transform,” IEEE Trans. Acoust. Speech Signal Processing, vol. 49,
pp. 3145-3156, Dec. 2001.

[66] O. Alshibami and S. Boussakta, “Fast 3-D decimation-in-frequency algorithm for
3-D Hartley transform,” Signal Processing, vol. 82, pp. 121-126, Jan. 2002.

[(67] Y. Zeng, G. Bi, and A.C. Kot, “Fast algorithm for multi-dimensional discrete Hartley
transform with size g x ¢2 x ... x ¢'*,” Signal Processing, vol. 82, pp. 497-502, Mar.
2002.

[68] Y. Zeng, G. Bi, and A. R. Leyman, “New algorithms for multidimensional discrete
Hartley transform,” Signal Processing, vol. 82, pp. 1086-1095, Aug. 2002.

[69] J.R. Phillips, and J.K. White, “A precorrected-FFT method for electrostatic analysis
of complicated 3-D structures,” IEEE Trans. Computer-Aided Design of Integrated
* Circuits and Systems, vol. 16, pp. 1059-1072, Oct. 1997.

220

[70] S. Schaller, T. Flohr, and P. Steffen, “An efficient Fourier method for 3-D radon
inversion in exact cone-beam CT reconstruction,” IEEE Trans. Medical Imaging,
vol. 17, pp. 244-250, April 1998.

(71} K. Taylor, and D.P. Taylor, “Analyzing television coding techniques using three-
dimensional signal analysis,” IEEE Trans. Circuits Syst. II: Analog and Digital Sig-
nal Processing, vol. 46, pp. 414-427, April 1999.

[72] R.W. Cox, and Tong Raogiong, “Two- and three-dimensional image rotation using
the FFT,” IEEE Trans. Image Processing, vol. 8, pp. 1297-1299, Sept. 1999.

[73] M.A. Westenberg, and J.B.T.M. Roerdink, “Frequency domain volume rendering by
- the wavelet X-ray transform,” IEEE Trans. Image Processing, vol. 9, pp. 1249-1261,
July 2000.

{74] D.B. Trizna, “Errors in bathymetric retrievals using linear dispersion in 3-D FFT
analysis of marine radar ocean wave imagery,” IEEE Trans. Geosci. Remote Sensing,
vol. 39, pp. 2465-2469, Nov. 2001.

[75] Z.M. Benenson, A.B Elizarov, T.V. Yakovleva, and Jr. W.D. O’Brien, “Approach

to 3-D ultrasound high resolution imaging for mechanically moving large-aperture

~ transducer based upon Fourier transform,” IEEE Trans. Ultrason., Ferroelect., Freq.
Contr., vol. 49, pp. 1665-1685, Dec. 2002.

[76] D. Brasse, P.E. Kinahan, R. Clackdoyle, M. Defrise, C. Comtat, and D.W. Townsend,
“Fast fully 3-D image reconstruction in PET using planograms,” IEEE Trans. Medi-
cal Imagine, vol. 23, pp. 413-425, April 2004.

[77] S. Winograd, “On the multiplicative complexity of the discrete Fourier transform,”
. Adv. Math., vol. 32, pp. 83-117, May 1979.

[78] S. Winograd, “Signal processing and complexity of computation,” in Proc., IEEE
Int. Conf. Acoust., Speech, Signal Processing, vol. 5, Apr. 1980, pp. 94-101.

[79] B. Mescheder, “On the number of active *-operations needed to compute the discrete
Fourier transform,” Acta Inform., vol. 13, pp. 383-408, May 1980.

[80] Z. Li, H.V. Sorensen, and C.S. Burrus, “FFT and convolution algorithms on DSP
. microprocessors,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol.
11, Apr. 1986, pp. 289-292.

[81] C. Lu, “Implementation of 'multiply-add’ FFT algorithms for complex and real data
sequences,” in Proc. IEEE Int. Symp. Circuits and Systems, vol.1, June 1991, pp.
480-483.

[82] E.N. Linzer, and E. Feig, “Implementation of efficient FFT algorithms on fused
multiply-add architectures,” IEEE Trans. Singal Processing, vol. 41, pp. 93-107,
+ Jan. 1993.

221

[83] C. Lu, J.W. Cooley, and R. Tolimieri, “FFT algorithms for prime transform sizes
and their implementations on VAX, IBM3090VF, and IBM RS/6000,” IEEE Trans.
Signal Processing, vol. 41, pp. 638-648, Feb. 1993,

[84] D. Takahashi, “A radix-16 FFT algorithm suitable for multiply-add instruction based
on Goedecker method,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
vol. 2, April 2003, pp. 665-668.

[85] M.T. Heideman, and C.S. Burrus, “On the number of multiplications necessary to
compute a length-2" DFT,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 34,
pp. 91-95, Feb. 1986.

[86] P. Duhamel, “Algorithms meeting the lower bounds on the multiplicative complex-
ity of length-2" DFTs and their connection with practical algorithms,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 38, pp. 1504-1511, Sept. 1990.

[87] B.M. Baas, “An approach to low-power, high-performance, fast Fourier transform
processor Design,” Ph.D. Dissertation, Stanford University, USA, Feb. 1999.

[88] Y. Ma, “An effective memory addressing scheme for FFT processors,” IEEE Trans.
Signal Processing, vol. 47, pp.907-911, Mar. 1999.

[89] Y. Ma and .. Wanhammar, “A hardware efficient control of memory addressing for
high-performance FFT processors,” IEEE Trans. Signal Processing, vol. 48, pp.917-
921, Mar. 2000.

[90] C.-L.. Wang, and C.-H. Chang, “A DHT-based FFT/IFFT processor for VDSL
transceivers,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 2,
May 2001, pp. 1213-1216.

[91] Y. Jiang, T. Zhou, Y. Tang and Y. Wang, “Twiddle-factor-based FFT algorithm with
reduced memory access,” in Proc. IEEE Int. Symp. Parallel and Distributed Process-
ing, April 2002, pp. 70-77.

[92] Q. Li, N. Wang, B. Shi and C. Zheng, “Extendible look-up table of twiddle factors
and radix-8 based Fourier transform,” Signal Processing, vol. 82, pp. 643-648, April
2002.

[93] M. Hasan and T. Arslan, * A coefficient memory addressing scheme for VLSI imple-
mentation of FFT processors,” in Proc. IEEE Int. Symp. Circuits and Systems, vol.
4, May 2002, pp. 850-853. :

[94] Y. Tang, Y. Jiang and Y. Wang, “Reduce FFT memory reference for low power ap-
plications,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 3, May
2002, pp. 3204-3207.

222

[95] M. Hasan, T. Arslan and J. S. Thompson, “A novel coefficient ordering based low
power pipelined radix-4 FFT processor for wireless LAN applications,” IEEE Trans.
Consumer Electronics, vol. 49,, pp. 128-134, Feb. 2003.

[96] Y. Tang, L. Qian, Y. Wang and Y. Savaria, “A new memory reference reduction
method for FFT implementation on DSP,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, vol. 4, May 2003, pp. 496-499.

[97] P.K. Meher, and T. Srikanthan, “A scalable and multiplier-less fully-pipelined archi-
tecture for VLSI implementation of discrete Hartley transform,” in Proc. IEEE Int.
Symp. Signals, Circuits, Systems, vol. 2, July 2003, pp. 393-396.

[98] Saad Bouguezel, M.N.S. Swamy, and M. Omair Ahmad, “Multidimensional vector
radix FHT algorithms,” submitted to IEEE Transactions on Circuits and Systems
Part I: Regular Papers.

[99] Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “A relationship between the
structures of the radix-2 DIT FHT and complex-valued FFT algorithms,” in Proc.
IEEE Canadian Conference on Electrical and Computer Engineering, Niagara Falls,
Ontario, Canada, May 2004, pp. 1111-1114,

[100] J. Granata, M. Conner and R. Tolimieri, “The tensor product: A Mathematical pro-
gramming language for FFT’s and other fast DSP operations,” IEEE Signal Process-
ing Magazine, pp. 40-48, Jan. 1992.

[101] J. D. Markel, “FFT Pruning,” IEEE Trans. Audio Electroacoust., vol. 19, pp. 305-
311, Dec. 1971.

[102] D. P. Skinner, “Pruning the decimation-in-time FFT algorithm,” IEEE Tans. Acoust.,
Speech, Signal Processing, vol. 24, pp. 193-194, Apr. 1976.

[103] H. V. Sorensen and C. S. Burrus, “Efficient computation of the DFT with only a

subset of input/output points,” IEEE Trans. Signal Processing, vol. 41, pp.1184-
1200, Mar. 1993.

[104] R. G. Alves, P. L. Osorio and M. N. S. Swamy, “General FFT pruning algorithm,”

in Proc. 43rd Midwest Symposium on Circuits and Systems, Lansing M1, Aug. 2000,
pp. 1192-1195.

[105] S.R. Rangarajan and S. Srinivasan, “Generalised method for pruning an FFT type of
transform,” IEE Proc. Vision, Image and Signal Processing, vol. 144, pp. 189-192,
Aug. 1997.

[106] C.D. Murphy, “Low-complexity FFT structures for OFDM transceivers,”/EEE
Trans. Communications, vol. 50, pp. 1878-1881, Dec. 2002.

223

[107]

[108]

L. Capodiferro, “Two-dimensional FFT and FFT-pruned algorithms in the context
of HDTV images,” in Signal Processing of HDTV, L. Chiariglione, Ed. New York:
Elsevier, 1988.

R. Cusani and L. Capodiferro, “Pruning the vector-radix 2-D FFT,” in Proc. Int.

- Conf. on Mini and Microcomputers, Barcelona, Spain, June 1988, pp. 461-464.

[109]

[110]

K. S. Knudsen and L. T. Bruton, “Recursive pruning of the 2-D DFT with 3-D signal
processing applications,” IEEE Trans. Signal Processing, vol. 41, pp. 1340-1356,
Mar. 1993.

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “Efficient pruning algo-
rithms for the DFT computation for a subset of output samples,” in Proc. IEEE Int.

. Symp. Circuits and Systems, vol. 4, Bangkok, Thailand, May 2003, pp. 97-100.

[111]
[112]
[113j
[114]
[115]

[116]

(117}

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “Efficient output-pruning
of the 2-D FFT algorithm,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 3,
Vancouver, Canada, May 2004, pp. 285-288.

L. Jia, Y. Gao and H. Tenhumen, “Efficient VLSI implementation of radix-8 FFT al-
gorithm,” in Proc. IEEE Pacific Rim Conf,, Communications, Computers and Signal
Processing, Aug. 1999, pp. 468-471.

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “Improved radix-4 and
radix-8 FFT algorithms,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 3,
Vancouver, Canada, May 2004, pp. 561-564.

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “An improved radix-16 FFT
algorithm,” in Proc. IEEE Canadian Conference on Electrical and Computer Engi-
neering, Niagara Falls, Ontario, Canada, May 2004, pp. 1089-1092.

Y. N. Chang and K. K. Parhi, “An efficient pipelined FFT architecture,” IEEE Trans.

Circuits Systems 1I: Analog and Digital Signal Processing, vol. 50, pp. 322-325,
June 2003.

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “An efficient FFT algorithm
based on the radix-2/4 DIF approach for computing 3-D DFT,” in Proc. IEEE Cana-

dian Conference on Electrical and Computer Engineering, Niagara Falls, Ontario,
Canada, May 2004, pp. 1131-11134.

Saad Bouguezel, M. Omair Ahmad and MN.S. Swamy, “New radix-
(2x2x2)/(4 x4 x4) and radix-(2 x 2 x 2)/(8 x 8 x 8) DIF FFT algorithms for 3-
D DFL,” submitted to IEEE Transactions on Circuits and Systems Part I: Regular
Papers.

224

[118]

[119]
[120]
[121]
[122]

[123]

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “An efficient three-
dimensional decimation-in-time FHT algorithm based on the radix-2/4 approach,”
submitted to IEEE Int. Symp. Signal Processing and Information Technology, Rome,
Italy, December 2004.

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “Split vector-radix algo-
rithms for the 3-D discrete Hartley transform,” submitted to IEEE Trans. on Circuits
and Systems Part I: Regular Papers.

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “An efficient split-radix
FFT algorithm,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 4, Bangkok,
Thailand, May 2003, pp. 65-68.

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “A new radix-2/8 FFT al-
gorithm for length-g x 2™ DFTs,” IEEE Trans. Circuits and Systems Part I: Regular
Papers, vol. 51, pp. 1723-1732, Sept. 2004,

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “An efficient split-radix
FHT algorithm,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, Vancouver,
Canada, May 2004, pp. 565-568.

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “A new split-radix FHT

~ algorithm for length-q+ 2™ DHTs,” IEEE Trans. Circuits and Systems Part I: Regular

[124]

[125]

Papers, vol. 51, Oct. 2004.

P. Duhamel, “Implementation of ’split-radix’ FFT algorithms for complex , real, and
real-symmetric data,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 34, pp.
285-295, April. 1986.

Saad Bouguezel, M. Omair Ahmad and M.N.S. Swamy, “A split-radix algorithm for
2-D DFT,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, Bangkok, Thailand,

- May 2003, pp. 698-701.

225

