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ABSTRACT

STATIC AND BUCKLING ANALYSES OF CURVED METALLIC AND

COMPOSITE BEAMS USING HIERARCHICAL FEM

Wasim Arshad

The conventional finite element formulation has limitations in performing the
static and buckling analyses of composite curved beams. The hierarchical finite element
formulation provides us with the advantages of using fewer elements and obtaining better
accuracy in the calculation of displacements, stresses and critical buckling loads. The
hierarchical finite element formulation for uniform curved beams made of isotropic and
composite materials is developed in the present work. Two sub-formulations of
hierarchical finite element method viz. polynomial and trigonometric sub-formulations
have been developed. The efficiency and accuracy of the developed formulation are
established in comparison with the closed form solutions for uniform isotropic and
composite curved beams. The central deflection values of uniform isotropic and
composite curved beams are evaluated using the hierarchical finite element method. The
critical buckling loads of composite curved beams are calculated based on the developed
formulation and the results are validated with the approximate solution by the Ritz
method. A detailed parametric study encompassing the influences of boundary conditions,

laminate configuration, and the internal degrees of freedom is performed to see their

il



effect on the central deflection and the critical buckling load. The NCT-301 graphite-

epoxy composite material is considered in the analysis and in the parametric study.
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Chapter 1

Introduction

1.1 Buckling Analysis in Mechanical Design

Buckling is the finite bowing, warping, wrinkling, or twisting deformation that
accompanies the development of excessive compressive stresses in isotropic and
composite structures, particularly in thin walled structures. These structures include rods,
Euler columns, plates and shells. The problem itself is a difficult one, for instability can
be affected by various factors such as initial geometrical and material imperfections, non
uniformity in load distribution, and the pattern of loading. Most studies are concerned
with isotropic and orthotropic structures, the latter including beams, finite strips, plates
and shells. Arbitrary geometries are much more difficult to analyze. In view of these
factors, it is imperative that we develop efficient techniques and algorithms for the study

of buckling.



1.2 Composite Materials and Structures

Basically, a composite material consists of two or more constituent materials or
phases that have significantly different macroscopic behavior and a distinct interface
between each constituent (on the microscopic level). This includes the continuous fiber-
reinforced laminated composites that are of primary concern herein, as well as a variety

of composites not specifically addressed.

The term composite material is usually referred to materials that are combinations
of two or more organic or inorganic components, of which one serves as the matrix and
the other as fiber. Individual fiber is usually stiffer and stronger than the matrix. The
central concept behind composites is that the fibers and the matrix can blend into a new
material with properties that are better than those of the constituent parts. In addition, by
changing the orientation of the fibers, the composites can be optimized for strength,
stiffness, fatigue, heat and moisture resistance, etc. It is therefore feasible to tailor the
material to meet specific needs. Composite materials also have much higher strength to
weight and stiffness to weight ratios than the conventional materials. The intrinsic
mechanical behavior of composite laminates offers tremendous possibilities. Two
composite laminates [O/ 90] .and [90/ O] .consist of the same geometry, four layers of the
same thickness, and are subjected to the same axial force and moments. The results show

[1] that when the same axial force is applied, both stretch the same amount. However,

when the same moment is applied, the laminates behave differently, with

[0/90] .exhibiting a stiffer response than the [9O/O]S plate. This illustrative example



shows the great advantages of the structures made from the composite materials; by
varying the fiber orientation we can alter and optimize the mechanical response of the

structure under certain loadings {1].

A shell is a thin walled body, just as a beam or plate is, whose middle surface is
curved in at least one direction. For instance, a cylindrical shell has only one direction in
which the middle surface is curved. In many practical applications, such as in aircraft
structures, we encounter plates having curvature in at least one direction. The strain
energy expressions for a curved beam in a special reduced form of that for a thin shell are
given by Novozhilov [2]. These expressions will be used in the present work for the static

and buckling analyses of the composite curved beams.

1.3 Finite Element Method in Mechanical Design

The analysis of laminated composite beams is usually based on four approaches,
classical theory of elasticity, theory of mechanics of materials, variational methods and
strain energy statements. The governing equations of motion are generally nonlinear
partial differential equations, which are extremely difficult to solve in the closed form.
The availability and sophistication of modern digital computers have made possible the
extensive use of the finite element method for analyzing complex structures. Finite
Element Method (FEM) is one of the most powerful numerical analysis tools in the
engineering and physical sciences. In spite of its tremendous potential, the FEM has some

drawbacks too. The Hierarchical Finite Element Method (HFEM) provides us with



critical advantages of using fewer elements and obtaining better accuracy in the
calculation of displacements, stresses and for the buckling analysis of composite curved

beams.

1.4 Literature Survey

In the following sub-sections a comprehensive and up-to-date literature survey on
relevant topics is presented. Important works done on the finite element methodologies
and buckling analysis of the composite shell structures have been chronicled. After a
brief history of the hierarchical finite element method, seminal works on the HFEM

analysis of beams are given.

1.4.1 Hierarchical Finite Element Method (HFEM)

The finite element method has been serving as a powerful tool for the analysis of
structures. The finite element method in general, is a special case of the Rayleigh-Ritz
method, with the main difference between the two lying in the choice of admissible
functions used in the series representation of the solution. The standard Finite Element
Method consists of dividing the domain of interest into a number of smaller — although
not necessarily identical-convex sub-domains called Finite Elements. The solution is
then approximated by locally admissible polynomial functions, which are piecewise

smooth only over each individual sub-domain [3].



Most of the literature is devoted to the development of isotropic beam elements.
Laminated beams have received less attention. Various straight and curved laminated
beam finite elements were developed by Venkatesh and Rao [4], Yuan and Miller [5],
Chan and Yang [6]. Most isotropic and composite beam finite elements are based on
classical finite element methods in conjunction with classical, first or higher order
lamination theories. The first finite elements were developed by Gallagher to model thin
plates in bending and shells based on the Kirchhoff plate theory. The difficulties in these
approaches are that the elements must satisfy the convergence requirements and be
relatively effective in their applications. To arrive at a 3-D curved beam element
formulation, we interpolate the curved geometry and corresponding beam displacements.
With these interpolations a pure displacement-based element is derived. For curved
elements spurious membrane strains are also obtained. Hence, a curved element also

displays membrane locking.

There are various procedures that exist for the refinement of the finite element
solutions. Broadly these fall into two categories: The first, and the most common,
involves refining the mesh while keeping the degree of the elements fixed. This is termed
as the A-version of the finite element method, or simply the finite element method. The
second method involves keeping the mesh size constant and letting the degree of the
approximating polynomial to tend to infinity [7,8]. This approach is better known as the
p-version of the finite element method or the Hierarchical Finite Element Method

(HFEM). Clearly, the HFEM has much in common with the classical Rayleigh—Ritz



method; however, greater versatility and improved rates of convergence always result,

since local (as opposed to global) admissible displacement functions are used [9].

Hierarchical functions were initially introduced by Zienkiewicz et al. [10] with
the objective of introduction of p-graded meshes in an a priori chosen manner. Initial
applications included the analysis of the nuclear reactor vessels [11]. Subsequently, new
and useful families of p-type elements were introduced by Peano et al. [4, 12-13].
Explicit discussion of hierarchical functions has been done by Zienkiewicz et al. [14].
The use of non-uniform p-refinement in finite element method done hierarchically was
initiated by Kelly et al. [15] and Gago et al. [16]. These papers as parts 1 and II
respectively, deal with error analysis and adaptive processes applied to finite element
calculations. In part I, they derive the basic theory and methods of deriving error
estimates for second order problems. In part II, they provide in detail a strategy for
adaptive refinement and concentrate on the p-convergent methods. It is shown that an
extremely high rate of convergence is reached in practical problems using such
procedures. They also present applications to realistic stress analysis and potential
problems. Babuska et al. [8] describe the mathematical aspect of the convergence of the
finite element solution for p-refinement. Szabo [17] showed that uniform p-refinement
also allows the global energy norm error to be approximately extrapolated by three

consecutive solutions.

The transition of the hierarchical finite element method from the developmental

stages to the application stages has been rather arduous. In general, it offers superior



performance to the h-version, but it took a long time for its merits to be recognized at the
commercial level [18]. Polynomial functions are more common in the finite element
analysis. With regards to the HFEM, Legendre polynomials in the Rodrigues form are
quite popular. They have, for example been applied to linear analysis of plates in
references [19,20]. In these references, it has been shown that convergence is achieved
with far fewer degrees of freedom in the HFEM than that in the h-version of the FEM.

Bardell et al. [21] applied the h-p method to study linear vibrations of shells.

Beam eigenfunctions, exact solutions of the linear problems, are hyperbolic-
trigonometric or only trigonometric, depending on the boundary conditions. Another
advantage of these functions is that the linear stiffness matrices and the mass matrices are
diagonal, and therefore they are well-conditioned and they have several computational
benefits. Also, since higher order polynomials are ill-conditioned [22], some researchers

advised the use of trigonometric displacement shape functions [22-27].

The idea of using trigonometric terms in the finite element method is not new.
Pian [28] described the concept of using more co-ordinates than the element nodal
displacements in deriving element stiffness matrices. Krahula and Polhemus [27] used the

Fourier series for a rectangular plane stress element.



1.4.2 Buckling Analysis of Composite Curved Beams and Shells

The objective of a nonlinear analysis is in many cases to estimate the maximum
load that a structure can support prior to structural instability or collapse. In the analysis,
the load distribution on the structure is known, but the load magnitude that the structure
can sustain is unknown. Different structures respond differently to collapse or buckling.
A thin plate under a transverse load does not have a collapse point; indeed because of
membrane action, the plate increases its stiffness as the displacements grow. An arch,

however, for specific geometric parameters, will collapse if load increases [29].

Wilkins and Love [30] examined the combined compression and shear buckling
behavior of laminated composite cylindrical shells characteristic of the fuselage structure.

Boron-epoxy and graphite epoxy shells of both [i 45]sand [O/i 45]slaminates were

tested. Specimen sizes were 15" diameter and 15" length, with wall thickness of
0.0212" - 0.0336" .Compression-shear interaction curves were obtained for all the above.
Compared to classical buckling theory, the actual compression buckling values were 65%
of the theoretical value. The disparity was attributed to imperfections. Good agreement
between theory and experiment were realized for shear buckling. It was observed that the

compression-shear interaction was essentially linear.

Waltz and Vinson [31] presented methods of analysis for the determination of
interlaminar stresses in laminated cylindrical shells of composite materials. El Naschie

[32] investigated the large deflection behavior of composite material shells in



determining the lower limit of the asymmetric buckling load. Ecord [33] wrote on a very
practical shell structure, namely pressure vessels for the space shuttle orbiter. Here, a
Kevlar 49 overwrap is used over a titanium and Inconel spherical pressure vessel
structure. The Kevlar overwrap was designed to retain the internal pressure without

metallic liner.

Johnson, Reck, and Davis [34] published a paper dealing with the design,
fabrication and testing of a 10 foot long, 10 foot diameter ring stiffened corrugated
graphite-epoxy cylindrical shell, typical of a large space structure, capable of resisting
buckling. The results of the project established the feasibility of efficiently utilizing
composites in structural shell applications. Compared with an aluminum design for the
same application, the use of composites resulted in a 23% weight reduction. Fujczak [35]
studied the torsional fatigue behavior of graphite-epoxy cylindrical shells. New important
information resulted from that study. Booton [36] investigated the buckling of imperfect
composite material cylinders under combined loadings, both theoretically and
experimentally. The combined loadings involved axial compressions, external pressure
and torsion. Donnell-Mushtari theory was used. Imperfections were more critical in axial

compression than in external pressure or torsion, as expected.

Raju, Chandra, and Rao [37] studied the determination of transient temperatures
in laminated composite conical shells caused by aerodynamic heating. Varadan [38]
studied the snap-through buckling of composite shallow spherical shells. He calculated

the critical buckling external pressure as a function of both the shell geometry and



material properties. Also, Rhodes and Marshall [39] studied the asymmetric buckling of
laterally loaded composite material shells. Montague [40] experimentally studied the
behavior of double-skinned composite, circular cylindrical shells subjected to external

pressure.

Humphrey [41] experimentally investigated hygrothermal effects on composite
material pressure vessels, to be used as rocket motor cases. The tests show that Kevlar

composites suffer far less degradation than fiberglass.

More recently, Bert [42, 43] and his colleagues have been very prolific in the
area of shell theory of composite materials. He concentrated in the behavior of
composites which have different properties in tension and compression, which he termed
bi-modulus composites. These are typical of some composites such as fibre reinforced
tires, and some biological materials. Yuceogle and Updike [44] have studied the stress

concentrations in bonded, multilayer cylindrical shells.

1.4 Scope and Objectives of the Thesis

The objectives of the present thesis are, (1) to develop and evaluate the
hierarchical finite element formulation for the static analysis of the curved beams made
of isotropic and composite materials; (2) to conduct the buckling analysis of composite
curved beams using the developed hierarchical finite element formulation; and, (3) to

conduct a detailed parametric study of isotropic and composite curved beams.

10



Hierarchical finite element formulations are developed, viz. the trigonometric and
polynomial formulations. Both the formulations are analyzed for their performance in the
analysis of uniform curved beams made of isotropic and composite materials. All
possible combinations of both symmetric and non-symmetric polynomial and
trigonometric hierarchical terms are studied. The best combination is figured out to
calculate the central deflection and the critical buckling load for the composite curved
beams. The developed methodology not only gives more accurate and faster
convergence, but also uses less number of elements, which is extremely advantageous in
the analysis of composite structures. Finally, a detailed parametric study of composite

curved beams is conducted for the buckling load and central deflection.

1.5 Layout of the Thesis

The present chapter provided a brief introduction and literature survey regarding
the hierarchical finite element method and the static and buckling analyses of composite

curved beams.

In chapter 2 the hierarchical finite element method is developed and applied to
calculate the central deflection of the isotropic curved beams. Both the hierarchical sub-
formulations, viz. trigonometric and polynomial formulations are developed and
validated using closed form solutions. Finally a detailed comparison is made between the

conventional and the hierarchical finite element formulations.

11



Chapter 3 gives the application of hierarchical finite element method to composite
curved beams for calculating the central deflection. The results obtained by applying both
trigonometric and polynomial hierarchical formulations are validated using the

approximate solution obtained by using Ritz method.

In chapter 4 buckling analysis of the composite curved beam is performed by
using hierarchical finite element formulation. Both trigonometric and polynomial
hierarchical formulations are applied and the results are again validated using the

approximate solution obtained using Ritz method.

Chapter 5 is devoted to the parametric study, which includes the effects of the

internal degrees of freedom, boundary conditions, and the laminate configurations.

Chapter 6 brings the thesis to its end by providing the conclusions of the present

work and some recommendations for future work.
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Chapter 2

Hierarchical Finite Element Formulation for Curved Beams Made of Isotropic

Material

2.1 Introduction

Beams with curvatures are another form of structures that we often encounter in
practical structures. In the following, we limit our discussion to the beams curved and
bent only in the plane of curvature so that no torsion is involved. Examples of application
of curved beams can be found in fuselage rings, reinforcement rings for cylindrical and
conical shells, arches, curved bridge girders, hooks, and so on. It is common for curved

beams to have non-uniform cross section.

In this chapter the stiffness matrix is derived for a circularly curved beam
element. Both the tangential and radial displacement functions are based on polynomials.
The curved element is used to analyze a circular arch problem. Curved beam finite

elements developed using hierarchical finite element method are studied as well.
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2.2 Mathematical Model

Beams are actually three-dimensional solids. One-dimensional mathematical
models of plane beams are constructed on the basis of beam theories. All such theories
involve some form of approximation that describes the behavior of the cross-sections in
terms of quantities evaluated at the longitudinal axis. More precisely, the kinematics of a

plane straight beam is completely defined if the following functions are given: the

transverse displacement W(X)and the cross-section rotation 8,(X)= 4 (X), where X

denotes the longitudinal co-ordinate in the reference configuration (Figure 2.1). The

following beam model is in common use in structural mechanics.

2.2.1 Euler-Bernoulli (EB) Model

This is also called as classical beam theory or the engineering beam theory model.
This model accounts for bending moment effects on stresses éﬁd deformations.
Transverse shear forces are recovered from equilibrium but their effect on beam
deformations is neglected. Its fundamental assumption is that cross-sections remain plane
and normal to the deformed longitudinal axis. The rotation occurs about a neutral axis
that passes through the centroid of the cross-section [45]. The rotation, 0 (X) and the
displacement, W(X) are related as indicated in Figure 2.1. In the present work, the Euler-

Bernoulli (EB) Model is used for curved beam.
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Figure 2.1 Beam Kinematics for EB Model

2.3 The Conventional Finite Element Formulation

2.3.1 Circularly Curved Beam Finite Elements

Circularly curved beams are a special form of curved shells. A study of curved

beams is an important first step toward gaining insight into more complex shells.

The basic difference between a curved and a straight beam is that, in the small
deflection theory, axial and flexural behaviors are coupled in the curved beam but not in
the straight beam. Furthermore, in the finite element formulation, the displacement
functions for curved beam elements must be capable of representing three rigid-body
displacements: two orthogonal displacements and a rotation, all in the plane of curvature

of the element.
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There are many circularly curved beam finite elements available. But for the
present case only one element is used by describing the assumptions of displacement
functions for tangential (v) and radial (w) displacements and the assumed degrees of
freedom at each nodal point. To explain this in detail, this element is formulated and

evaluated in detail. Finally, an arch example [46] will be used for comparing results.

Element: Cubic functions are used for v and w

v=a, + a5 +as +a,s
@.1)

W= a, + a5 + a5 + ags’
where s is the tangential distance variable shown in Figure 2.2.
In order to demonstrate in depth the formulation and application of curved beam
elements, we choose cubic-cubic element for which the stiffness matrix can be

formulated explicitly and accurate results can be obtained.

2.3.2 Interpolation Functions

A circularly curved beam finite element is shown in Figure 2.2. The element has
constant bending rigidity EI, axial rigidity EA, constant radius of curvature R, and
subtending angle £, and length L that is equal to R . The angular variable 6 and distance
variable s that is equal to R 6 are measured from nodal point 1. The element possesses
four degrees of freedom at each nodal point: a tangential displacement v, a derivative of
tangential displacement (0v/0s) or v, a radial displacement w, and a derivative of radial

displacement (Ow/0s) or w;, or slope 6.
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The interpolation functions for both the tangential (v) and radial (w)
displacements for this cubic element are of cubic polynomials in s as given in Equation
(2.1). The eight constants are obtained by using the conditions of eight nodal degrees of

freedom at both ends.

at s=0
v=y and i vy
Os
w=w, and @:Wﬂ =0,
0s
at s=1L (2.2)
ov
V=1, and el vy,
w=w, and éw—=wS2:62
Oos

Application of boundary conditions (2.2) yields

v, 1 0 0 0 |fq
val (01 0 0 g (2.3a)
v, |1 L 2 P |a,
v, |0 1 2L 3I’||a,
Similarly
w, 1 0 0 0 j|as
6, 01 0 0 [{aq
= 5 3 (2.3b)
w, 1 L I L |q
o, 0 1 2L 30 ||a,
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Figure 2.2 Eight Degrees-of- Freedom Circular Beam Element

In inverse form Equations (2.3a) and (2.3b) become

a, L 0 0 0 {v

a, 110 L2 0 0 |v,
= = 5 (2.4a)

a, L' {-3L -2L 3L -L||v

a4 2 L s 2 L st

and

a; r o 0 0 ([wm

3 17
a _ ‘IT 0 L 0 0 2 \ (2.4b)

a, L' |-3L -2L 3L -L|w,

ag 2 L -2 L |6

or symbolically

{a} =[T] {d} (2.5)

18



After substituting the a’s back into the displacement functions and factoring out each

degree of freedom, we obtain the displacement functions in the form of interpolation

functions.

v(s) = Ny, + Nywg + N3vy+ Ny

w (S) = Nyw; + Nowgy + N3W2 + Ny

where the interpolation functions are

In normalized form

s_Ro_6
"SI RE B
N, =1-3£2 428
N, =L[g~2¢* + &)
N, =3£2-2&

N,=L[-£ +&)

(2.6)

Q.7)

2.8)

2.9)

(2.10)
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233 Strain Energy expression

The strain energy expressions for general thin shells are well known. The strain

energy expression for a curved beam 1is in a special reduced form of that for a thin shell
[46].

_E4 ¢, El ¢,
U==> [e* ds + e Jx* ds @2.11)

where € and « are the axial strain and curvature of the middle surface, respectively, with

o w

e=2 Yoy Y 2.12)
os R R
2
k=t oW 1, (2.13)
Ros 0Os R

Substituting Equations (2.12) and (2.13) into Equation (2.11) gives

U= UVV+ UVW+ UWW

(2.14a)
where
U _ Lj(v')2 ds + 2 LJ.(v')z ds
Y2 2R*
U 4 I."v’w ds — £ LJ'v'w"ds (2.14b)
w R ; .

EA % v El'% 2
wa=2R2 J(w) ds+7(!(w) ds

The energy expressions U, U,,, and U,, are associated with axial, axial-flexural

coupling, and flexural behaviors, respectively.
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2.3.4 Stiffness Equations

Substituting the displacement functions for v and w given by Equation (2.1) into
the energy expressions (2.14a) and (2.14b), and then performing partial differentiations of
the strain energy with respect to each of the eight degrees of freedom, the 8x8 stiffness

matrix for the element is obtained.

X, Vi
X, [kvv ax4 ] [kvw4x4 ] Vsi
X, V)
X, Vs2
J [ _ ot (2.15)
Y "
M, [kWV4x4] [kWW4x4] 6,
Y W2
M, | 116, |

where X| and X, are the counterpart generalized forces in inch-pounds associated with
the degrees of freedom v, and v, , respectively. The coefficients in the 4x4 sub-matrices

are obtained as

L '
k, = EA(H%) N, N, ds
i R J
0
LEA ’ ’ "
kVW,-, = kwvj, = T(N’ Nj -—aN,. Nj )dS (216)

where the primes indicate differentiation with respect to s and o = EI/ EA.

21



For the convenience of assemblage, it is desirable to number all the degrees of
freedom at each nodal point in a certain sequence. For this purpose the above matrix is

rearranged as:

- XI — e v]
X] vs]
y "
M, 6,

) J— - [k8x8 ] Jen 2.17)
X, v,
X2 v52
Y, W,
M) L 1

2.3.5 Curved Beam Example: Analytical Solution

In order to evaluate the performance of the 8 degrees-of-freedom element, an
example of a semicircular arch as shown in Figure 2.3(a) and Figure 2.3(b) is analyzed.
The parameters are defined as 4 = 1x1 in’ ,R=17in, P=2000 /b, and E = 10’ psi.

Three different approaches are used to analyze this problem: 1. Analytical solution using
Castigliano’s theorem, 2. Conventional FEM solution using 8 degrees-of-freedom curved

element, 3. Conventional FEM solution using 6 degrees-of-freedom frame element [46].
First, the analytical solution is obtained. Due to symmetry, only half of the arch as

shown in Figure 2.3(b) needs to be analyzed. At an arbitrary point B, the bending

moment and axial force are respectively given by
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M = PRsing — OR(1 - cos) - M,

) (2.18)
S =Psin@ + Qcosd

P =2000 b

A =1x1in?

Figure 2.3 (a) Circular Arch under a Central Load

P/2=10001b

Figure 2.3(b) Half of the Arch Being Analyzed
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The strain energy expressions are

2
‘ngﬁ do (2.19)

7 g2 B
U= | MR 4o+ f
5 2EI 5
Because of symmetry, the tangential displacement v, and rotation 8, at point C are both

ZCr0.

vC=%=R—2|:—£1—Q+QR(3—”—2J+M0(£—I)]+£(@+£)=0
o0 EI| 2 4 2 4

g -V _ R MOE—PR+QR(35—1 =0
oM, EI| °2 2

For R=17in, A= 1xlin>, I=1/12in*, and P/2= 10001b,

Solving the two foregoing equations simultaneously gives,

0.9159P 1b

fl

Q

M= 0.3037PR =5.1645P in-lb

we= 0.14152 in
2.3.6 Solution using Eight Degrees of Freedom (D.O.F.) Curved Beam Element

If one element is used to model half of the arch, the boundary conditions are

ow ow
V=W = (a—s) =V, = (g) =0 (2.21)
1 2
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From Equation (2.17), the stiffness equations can be obtained as

X, 356.150 —89.0375 —-15.7263] (v,
X, 1 =10°|-89.0375 356.150  15.7263 |{v,, (2.22)
Y, ~15.7263 157263  3.43724 ||w,

Inverting the matrix gives

vy 35.3144  2.12302 151.860 0
v, +=10712.12302 353144 -151.860({ 0 (2.23)
w, 151.860 —-151.860 4298.91 | {1000

which gives w, =.004299 in , with -97 % error compared to the analytical solution

of w,= 0.14152 in.

The solution for the central deflection using 2, 3, 4...12 equal-length elements is
given in Table 2.1. The solution converges rapidly and monotonically as the number of
elements increases as shown in Figure 2.7. The error reduces to less than 1 % with the
four- elements mesh (15 degrees-of-freedom). It is noted that better accuracy may be
obtained if elements of unequal length are used i.e., using smaller elements near the

central load.

2.3.7 Solution using Six Degrees-of-Freedom (D.O.F) Frame Element

A typical frame finite element with field variables defined at each node is drawn
in Figure 2.4. Stiffness matrix for the frame element can be obtained by superposing

augumented stiffness matrices of bar and beam elements [47].
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vi (i) LAEI Q) v;

Figure 2.4 Frame Element

Frame element stiffness matrix in the local coordinate system is given by

1 0 0 -1 0 O] [0 0 0 0 0 o}
0 00 0 00 0 12 6L 0 -12 6L
[¥]- AE[0 0 0 0 0 0 E}l 0 6L 4 0 -6L 2I* 2.24)
L{-1 00 1 00 IO 0O 0 0 0 0
0 00 0 00 0 -12 -6L 0 12 —6L
(0 00 0 0 O] 0 6L 2 0 —-6L 4|

The nodal degrees of freedom are shown in Figure 2.5. Note that for clarity and brevity,

rotations at nodal points, that are § 0, ,6, and &, were not shown in Figure 2.5. Also

note that /=06, ; 6, =6,.

(V] [c s 0 0 0 0]y,
W -s ¢ 0 0 0 Ofjw
gl o o1 0o 0 of|g
1[0 00 ¢ s oflv| (2.25)
w;. 0 0 0 —s ¢ Oflw,
6] Lo 00 0o 0 1]{6

where ¢c=cosa and s=sina
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The transformation is given by

w,  rotation & rotation 6,
vl
J
—
’ /] .
W, I3 ] is known
!
Vi
. 4
rotation 6, rotation 6,

Note: 6/=0.; 6 =6,

P27y J

Figure 2.5 Transformation of Displacements for a Frame Element

{d'} =[T){4} (2.26)
where {d'}Tz{v; w, 6, v, W 9;} and {d}Tz{v, w, 0, v, w, Gj}

Since there is no change in the & values, that is 6/ =6, 0] =0, , the value of 1 appears in

[T].
[k]{d} = {r} @27
(=17 ) @28
]} =) 229

(r) <[V ey = [T [R1I1i) = K} @30
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where

[7] ([T} =[] (2.31)

Transformed stiffness matrix [k] is given by

¢ e 0 ¢ -cs O [ 12.57
es & 0 —cs - 0 -12cs 1267 sym
[k]=£ 0 0 0 0 0 0 . g —-6.Ls 6.Lc 4.I’
Li-c* =ecs 0 ¢ e 0| L|-125 12cs 6.LS 125
s -5 0 ¢ 0 12¢5 =125 -6.Lc -12cs 127
| O 0 0 0 0 0] | -6.Ls 6.Lc 207 6.Ls —6.Lc 4.L2_

(2.32)

where as before, the abbreviations c=cosa, s=sinq are used.

To evaluate the performance of curved beam element, a straight frame element
with 6 degrees of freedom was used to analyze the same semi-circular arch problem
instead of using curved beam 8 degrees-of-freedom element. A mesh of 3 straight 6 d.o.f.
frame elements is shown in Figure 2.6. The results for the central deflection obtained by
using up to 16 equal-length straight frame elements are given in Table 2.1 for comparison

with the curved beam element solution.

It is seen that for nearly the same numbers of degrees-of-freedom (except for the

first two elements) the solution obtained using curved beam elements are better than that

of the straight frame elements. The results obtained by using the curved beam elements
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get even better when we increase the number of degrees-of-freedom (D.O.F.). The curve

(Figure 2.7) for the straight frame elements starts with quite good accuracy

Figure 2.6 A Mesh of 3 Straight 6 D.O.F. Frame Elements

Table 2.1 Convergence Study of the Two Types of Finite Elements for The Arch

Problem
8 D.O.F. Curved Beam Elements 6 D.O.F. Frame Elements
Number Number Centre Error (%) | Number Number Centre Error (%)
of of Deflection(in) of of Deflection(in)
Elements D.O.F. Elements D.O.F.
1 3 0.0042 96.9 1 1 0.00480 97
2 7 0.1146 18.9 2 4 0.12780 96.9
3 11 0.1371 3.08 3 7 0.13474 4.79
4 15 0.1403 0.808 4 10 0.13748 2.86
5 19 0.1411 0.282 6 16 0.13964 1.33
6 23 0.1413 0.119 7 19 0.14012 0.99
7 27 0.1414 0.06 8 22 0.14044 0.76
8 31 0.1414 0.031 10 28 0.14082 0.49
9 35 0.1414 0.02 11 31 0.14094 0.41
10 39 0.1415 0.0117 12 34 0.14103 0.34
11 43 0.14151 0.00712 14 40 0.14116 0.25
12 47 0.14151 0.00677 15 43 0.14121 0.22
16 46 0.14125 0.19

Analytical Solution: Central Deflection = 0.1415238 in
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Figure 2.7 Comparison between Analytical Solution, Curved Beam Element
Solution and Straight Frame Element Solution

at a low number of degrees of freedom but converges very slowly as the number of

degrees of freedom increases.

In general, the axial-flexural behaviors are intricately coupled in the arch
structures. It is recommended that we not be prejudiced against the axial displacement
function v; that is, the degree of accuracy or order of polynomials assumed for the axial
displacement function v should be comparable to that for the flexural displacement

function w.
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2.4  The Hierarchical Finite Element Method (HFEM)

In the formulation of the finite element model using the conventional formulation,
we assumed a cubic polynomial function for both the tangential displacement (v) and
radial displacement (w) (Equation 2.1). In the hierarchical formulation, we modify the
approximating functions (i) by adding trigonometric functions and (ii) by adding
polynomial functions. We shall study both these cases simultaneously and ascertain the

pros and cons of them as we proceed in our analysis.
2.4.1 Formulation Based on Euler — Bernoulli Theory

The co-ordinate system used to define the geometry of the two-node curved beam

element is shown in Figure 2.2.
2.4.2 Trigonometric Hierarchical Formulation

The tangential displacement (v) and radial displacement (w) functions of the

above mentioned element are given as:

N
vs)=a+a,s+a,s’ +a,s° + ) a,,,sin[6,s]
r=1

N (2.33)
w(s)= e+ e, s+est s’ + ZC,H sin[&,s]

r=1

where 5,=£L7£, r =1,2,3...N
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and g; and ¢; are coefficients to be determined.

The element degrees of freedom in this case are the same as in the conventional

case, viz. tangential displacement (v) and its derivative % and radial displacement (w)
s

and slope (8 = %W— ). The polynomial terms in the assumed displacement field are used as
s

before to define the element nodal degrees of freedom and the trigonometric terms are
used to provide additional degrees-of-freedom that are not physical to the interior of the

element. The above equation can be written in the matrix form as

v(s)=[g]la]

2.34)
wls)=[g]le]
where
g= [l,s, s?, 5%, sinld, ] }]
a=[a,,a2,a3,a4,{ar+4}]r (2-35)

Cc= [Cl, Cy, C3,Cy, {cr+4}]T

where {a,.,} contains terms such as a;,a, a,,a; and so on. In a similar manner

{sin[6s]} and {c,,,} are defined.

Now, upon evaluating v, v_, w, and 8 at node 1 (i.e. at s = () and at node 2 (at s = L) and

evaluating the hierarchical term when r = 1, we get the following matrices.
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(v] [t 000 0]q
v, 01 0 0 ¢ |la
v,wpe=1 1 1 1 0 [Kay¢ (2.36)
vy, 01 2 3 -6 ||a,
vis) 00 0 0 I |la
Similarly
[w,] [1 0 0 0 0 ]fc
6, 01 0 0 o [l
dwyt=[1 1 1 1 0 Heyt (2.37)
o, 01 2 3 -6 e,
wes) (00 0 0 1 |Jle]
Whenr=2,
(vy] [1 0 0 0 0 0]fq
vy 01 00 o 6la,
v, 1 111 0 O0}la
T C b= 47t (2.38)
Ve, 01 2 3 -4, 6,j|la,
Vs 0000 1 0]}as
V) (00 0 0 0 1 flag]
Similarly
(w,] [1 000 0 0]
6, 01 00 o Jlc
w, 1111 0 O0lfc
P, r: < > (239)
o, 012 3 -6 6,l|jc,
W,s 0000 1 0]lc
Mws) 10 0 0 0 0 1]c
The first matrix given (Equation 2.36) can be written in the following form:
[p]=[n]la] (2.40)
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Therefore,

[a]=[#I"lr]

Upon substitution of [a] in Equation (2.34) we get,

v=[e]lAI"[p]

or,

v=[N][p]
where

[N] = Interpolation function matrix
[V]=[g]l»]"

= [1, s, 82,8, {sin(&,s)}][h]"1

Hence the individual interpolation functions will be

or

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)
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N, =1-3&" +2&°
N, =Lf¢ 28 + &)
N, =3¢% —2¢&°

N, =L(-& + &)

(2.46)

where

g (2.47)

=2
L

>a|>c
N
R

and the trigonometric hierarchical shape functions are

N,o==8,5+(25,+(-1y8,)s* + (-6 —(~1y 8, )s* +sin[5,s] (2.48)

where

5 =2, r =1,2,3,...N

Hence, the displacement field for the element, in terms of the nodal degrees of

freedom and the hierarchical degrees of freedom, can now be written as,

for tangential displacement (v)

N
v=Ny + Nyvg+ Nyv, + Nyv, + ZNr+4vvr+4 (2.49)
r=1

and similarly for radial displacement (w)

N
w=Nw, + N,6,+ Nyw, + N,6, + ) N, ,w,,., (2.50)
r=1
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The values of N,,N,, N, and N,ats = 0 and s = L are the same as given in

Equations (2.8) and (2.10).

The hierarchical term(s) N,,, have the values as follows at each end.

r+4

N.,=0 at s=0 and s=1L (2.51)

r+4

N!

r+4

i
o

at s=0 and s=1L (2.52)

Figures 2.8, 2.9, 2.10, and 2.11 show the values of the hierarchical shape

functions Ny, N, N,, N, and their derivatives at various locations within the element.

These functions provide zero displacement and zero slope at each end. This feature is
highly significant, since these functions only provide additional freedom to the interior of

the element and do not affect the element’s nodal degrees of freedom.

2.4.3 Generation of the Finite Element Model

To generate the finite element model using the HFEM, different combinations of
trigonometric hierarchical terms were tried to get the most accurate results. Combinations
involve from one to four trigonometric terms for each of the tangential (v) and radial (w)
displacements. Firstly for symmetric combinations of hierarchical terms, same number of
hierarchical terms are used with tangential (v) and radial (w) displacement functions e.g.
YV, —W,,V,—W,, v, =W, ,v,—w,, where v, —w, means that one hierarchical term is used
with tangential displacement (v) function and one with radial displacement (w) function.

For non-symmetric combinations hierarchical terms are used in different numbers with
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both  tangential (v) and radial (w) displacement functions e.g.

Vo—W,, V=W, ,v,=w,,v,—w, and v,—w, wheren=1, 2,3, 4.

For instance, for the case of two symmetric terms (Equation 2.53), two
trigonometric hierarchical terms were added to both tangential (v) and radial (w)
displacement functions. Initially the order of the matrix was 8x 8, which changed to

12x12 for this particular matrix.
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The stiffness matrix by using two symmetric hierarchical terms is given below.

~
e
vy
o~
N’
T PN < S ST\ B NI I (R
N N NN -
I 1
r—
o
3
S
o,
L J
1]
.

xlrlllhh212221am
NN S NS o

39



As it is shown in Equation (2.53), hierarchical terms v, v, w,,, w,, were

added to the curved beam element for each of tangential (v) and radial (w) displacements.
A total of 2, 4, 6, and 8 hierarchical terms were added for one symmetric trigonometric,
two symmetric trigonometric, three symmetric trigonometric and four symmetric
trigonometric hierarchical terms respectively. A considerable improvement was noted in

the results after applying trigonometric hierarchical finite element model.

The results obtained using different symmetric hierarchical terms are given in

Table 2.2. These results are then plotted against the number of elements for the

comparison of different symmetric combinations in Figure 2.12.
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Figure 2.12 Comparison between the Solutions Obtained using Symmetric
Trigonometric Hierarchical Terms

2.4.4 Discussion

Figure 2.12 shows that when 1 symmetric trigonometric hierarchical term is used
the results show better convergence compared to conventional FEM except the 1-element
mesh. When 2, 3, and 4 trigonometric hierarchical terms were used there was a
considerable improvement in the results right from the very first element. The results
obtained by using 2, 3, and 4 hierarchical terms are almost matching. The results of all

HFEM and FEM models seem to converge at the S-elements mesh.
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The non-symmetric trigonometric terms were applied in the following way.

@ v, —w where n=1,2,3,4

which means that tangential displacement (v) function is provided with no trigonometric
hierarchical function term and radial displacement (w) function is provided with 1, 2, 3,
and 4 trigonometric hierarchical terms successively.

Similarly, the following cases were considered.

) v, —-w, where n=0,2,3,4

@) v, —w where n=20,1,3,4

n

(iv) vy —w, where n=0,1,2,4

where n=0,1,2,3

The results obtained using these non-symmetric trigonometric hierarchical terms
combinations are given in Tables 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7. The values of central
deflections are also plotted against the number of elements, which are shown in Figures

(2.13-2.18).

Figure 2.13 shows that for only the 1* element the combinations (v, —w, ) display

better result than conventional FEM results. All other elements show a little improvement
and all the curves are almost matching. So it is clear from this figure that radial
displacement (w) interpolation functions show little effect on the results because with the
increase of hierarchical terms with radial displacement interpolation functions the

improvement in the results was not that much significant.

43



144

Ul 2§l 0 = UondalaQ |eAuD (uoHN(oS [ednAleuy

ZSLvL 0 20l (41340 €8 [A°152%0) 0L rA 14Nt 6G [R=18 4] A4 [43
(41544 76 [A°15 4% 9. A1 % 41] 79 ¢sivlo ¥S LSLYL0 154 L
LGLPL0 98 LGLYL0 69 LGLYL0 8% LSLPL0 514 0SLyL0 6¢ ]
LGLYL0 8. LSL¥L0 29 LGLPL0 Zs LSivL0 1474 6vivL 0 ge 6
0SivL 0 0. 0SLyL 0 1°1) 0SL¥L0 o 0sivi 0 6¢ YA 48 40 1€ 8
8vivl 0 29 gvivl 0 1514 51454 0] (R4 grivl 0 16> 15948 4 0] lC L
12424%¢) ¥S 14434%8) (R4 12454Y) ge 1245400 6¢ SELYLO 1944 9
LeLPL0 o lelvlo 14 LELPL0 6¢C Lelpl0 144 ZLivLo 6l S
§80tvL 0 6¢ g80t1°0 LT g80¥L°0 154 #8010 6l 8e0¥L 0 Gl 14
0/8¢L0 €C 0.8¢1°0 0c 696€L°0 Ll 098¢1L'0 14" SLLELO bl €
0cveLo gi 8LvTL 0 €l LLPCLO 11 g8iLel o 6 eorLL 0 L [4
£€00L°0 L 820010 9 600800 S 08¥.0°0 14 62¥00°0 € L
Swiis} W3HH Mp-10 swiie] WIAH ME-A0 sule] W3-HH mMg-A0 swius) WIAH ML-AQ IAEE]
oLjauwouobl ) oLyawouobi oLjewouobL | oljewouobl | 12UOUBAUOYD
OLJOWIWAS-UON oLjBLIWAS-UoN oLOWIWAS-UON OLJOUIWIAS-UON
(un) '40°a (ur) '40d (un) ‘400 (ut) '40°a () '40°Q | siuswsj3
uonadyeQg J0 uonosjjeq 10 uonvdlaq 10 uondsllaq jo uonos|jeq 10 Jle)
anuan J18quInN anuan JaquinN aiuan JaquinN aljuan 1BqWInN ajjuan laquinN | JaquinN

JUsawWId|g weag paAIn)d ‘4°'0°'A 8

(“m — %4) swaa ] [BOIYOIRISTH OLI}OWOUOS L], dIowwAg -uoN Suisn £q paje[nofe) uonod[jod [eNu) €7 qeL




I
i
!
1
'

IR &5 S |

N
I
I
1
1
e e -
]
I
I
1
I
.
I
I
I
1

R

'
t
t
b
I
e -
'
t
|
!

1
1
!
[

[
= { —— FEM Solution - -
L - VO-wi-trigonometric
1") - V0-w2-trigonometric
2 . VO-w3-trigonometric |
= - VO-wé-trigonometric
E ! . Analytical Solution | ._ __|
3 | Lo
Y S SO (O R N S HRS VA S S
1 2 3 4 5 6 7 8 9 10 1" 12

Number Of Elements

Figure 2.13 Comparison between the Results Corresponding to Non-Symmetric
(v, —w, ) Trigonometric Hierarchical Terms

The results for the group of combinations (v, — w,) are given in Table 2.4 and

are plotted in Figure 2.14. The results show a little bit improvement for these
combinations when one hierarchical term is added to the tangential (v) displacement
function. For the first 4 or 5 elements the results are better compared to the results given

by the combinations (v, — w, ) but after that results given by the combinations (v, —w,)

converge more rapidly.
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Figure 2.14 Comparison between the Results Corresponding to Non-Symmetric
(v, —w, ) Trigonometric Hierarchical Terms

The results for the group of combinations (v, —w,) are given in Table 2.5 and
they are plotted in Figure 2.15. These combinations show some improvement from the
previous group of combinations in terms of convergence of the results to the analytical

solution. In particular, the combination (v, —w,) provides convergence of the central

deflection values right from the 1% element. The results for the rest of the combinations

are also matching with each other very closely and their trend is the same as shown in

Figure 2.14.
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Figure 2.15 Comparison between the Results Corresponding to Non-Symmetric
(v, —w,) Trigonometric Hierarchical Terms

For the group of combinations (v, —w,), the combinations (v, —w,) and
(v, —w,) give results very similar to that of the results given by the combination

(v, —w,). The rest of the combinations give results closer to each other. It is also evident

that with the addition of the hierarchical terms to the tangential displacement (v) function

the results get better addition of each element.

The group of combinations (v, — w,) provides better convergence of the results

than all the previous combinations because of the addition of four hierarchical terms to

the tangential displacement (v) function. The combination (v, —w,) provides the best
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convergence among all the non-symmetric trigonometric combinations, which were used
in the previously. The results given by this combination were very close to the analytical
solution right from the 1-element mesh and they converge more rapidly than all the other

combinations.

All the combinations seem to converge around the 4-elements mesh which is

better than the case of the symmetric trigonometric hierarchical formulation.
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Figure 2.16 Comparison between the Results Corresponding to Non-Symmetric
(v; —w,) Trigonometric Hierarchical Terms
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Figure 2.17 Comparison between the Results Corresponding to Non-Symmetric
(v, —w,) Trigonometric Hierarchical Terms

2.4.5 Illustrative Calculations for (v, — w, ) Combination

As it has been stated above that the combination (v, —w,) provides the best

combination for the given arch problem. If one element is used with such a combination
of four hierarchical terms added to the tangential displacement (v) function and two terms
added to the radial displacement (w) function, the stiffness matrix will be a 14x14 matrix,
which is shown in Equation (2.54). For two elements the resultant matrix will be a 22x22
matrix. The order of the matrix will keep on increasing as we increase the number of

elements.
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The stiffness matrix and the equilibrium equation for one element are given below
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If one element is used to model half of the arch, the boundary conditions are

ow ow
v1=W1= a =v2= a =0
1 2

After applying the boundary conditions the element matrix equation will be

1

X, [3.5615
F 0.1131
K, 0.3267
F, -1.3590
F,=10"|-0.7794
X, -0.8904
Y, -0.1573
F., -0.0258
F., | 0.0855

0.01131
0.0084
0.0000
-0.1297
-0.0000
-0.1131
—-0.0086
0.0000
0.0076

03267 -1.3590 -0.7794
0.0000 -0.1297 -0.0000

0.1362 -0.0000 -0.5322
-0.0000 2.4731  0.0000
—-0.5322 0.0000 3.2417

0.3267 13590 -0.7794

0.0000  0.1093  0.0000
-0.0076 -0.0000 0.0223

0.0000 -0.1345 0.0000

—-0.8904 -0.1573

-0.0258

-0.0031 -0.0086 0.0000

0.3267  0.0000
1.3590  0.1093
-0.7794  0.0000
3.5615  0.1573
0.1573  0.0344
-0.0258  0.0052

-0.0855 -0.0067

-0.0076
-0.0000
0.0223
-0.0258
0.0052
0.0017
0

(2.54)

(2.55)
0.0855 | [ v,
0.0076 | | v,
0.0000 | | v,
-0.1345 | v,
0.0000 (< v,
-0.0855| | v,,
-0.0067 | | w,
0.0000 | w,,
0.0000 | [w,

(2.56)
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Inverting the matrix gives

vy [ 0.0001 -0.0033 -0.0006 -0.0001 -0.0000 0.0000 0.0001 0.0033 -0.00007( ©
Vs -0.0033 0.2383 -0.0036 0.0088 -0.0001 0.0013 0.0336 -0.1443 0.0054 0
Ve -0.0006 -0.0036 0.0086 -0.0000 0.0009 0.0003 -0.015 0.0666 -0.0000 0
v, -0.0001 0.0088 -0.0000 0.0004 -0.0000 0.0001 0.0001 -0.0005 -0.0005 0
Vg (= 107 = -0.0001 —0.0001 0.0009 -—0.0000 0.0001 -0.0000 -0.0003 0.0012 —0.0000 0
v, 0.0000 0.0013 0.0003 0.0001 -0.0000 0.0006 -0.0083 0.0361 0.0000 0
W, 0.0001 0.0336 -0.0150 0.0001 -0.0003 -0.0083 0.1413 -0.6069 0.0002 | {1000
W,s 0.0003 -0.1443 0.0666 -0.0005 0.0012 0.0361 -0.6069 2.6885 -0.0010 0
W . —0.0000 0.0054 0.0000 -0.0005 -0.0000 0.0000 0.0002 -0.0010 - 0.0134]} 0
2.57)

which gives
w, =0.1413 in, with-0.13 % error.

Hence the hierarchical finite element formulation shows a great improvement in the
convergence of the centre deflection values right from the 1-element mesh compared to

the Conventional FEM which gives -97 % difference for the 1-element mesh.

2.4.6 Polynomial Hierarchical Formulation

In place of trigonometric functions that were used in the previous section we use
polynomials that increase the degree of approximation of the displacement and rotation
fields. The choice of the polynomials is governed by certain aspects. The chosen set
should be complete. Polynomials that have the property that the set of the functions
corresponding to an approximation of lower order constitutes a subset of the set of
functions corresponding to a higher order approximation are particularly desirable. Also,

the chosen function should not contribute to the displacement values at the element
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nodes. There is a wide array of polynomials that can be chosen from. In this work we

have chosen the following set:

fi(s)=s"" (s L) r=1,2..M (2.58)

where L is the element length.

This function is chosen on the above mentioned basis and it fulfills the criteria

when applied to the displacement as we will see in the following formulation.

2.47 Formulation based on Euler — Bernoulli Theory

Now, upon evaluating v, v, w, and 8 at node 1 (i.e. at s = 0) and at node 2

(at s = L) and evaluating the hierarchical term when r = 1, we get the following matrices:

(v,] [1 0 0 0 0]fq
vl [0 1 0 0 0lfa,
v, b={1 1 1 1 0fa, (2.59)
vo| |01 2 3 0}la,
vs] [0 0 0 0 1]]as
Similarly
w,] [1 00 0 0]fc]
6, 01 0 0 0fc,
Tw,p=(1 1 1 1 0Reyd (2.60)
o, 01 2 3 0,
W,s] [0 0 0 0 1]|c
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The displacement field for the curved beam element is written as follows for this
formulation:

For tangential displacement (v)

M
v(s)=Ny, + Nyv, + Nov, + Ny, + YN, .4, (2.61)
r=1

Similarly for radial displacement (w)

M

w(s)=Nw, + N,6, + Nyw, + N,6, + > N, B, (2.62)
r=1

where

N, =s""(s-L)" r=1,2,....... M (2.63)

and 4,and B, are the coefficients of the polynomial hierarchical terms.

The polynomial hierarchical shape functions are chosen such that,

=0 at s=0 and s=1L

r+4

N =0 at s=0 and s

r+d =

Il
b~

The above equations illustrate that the hierarchical shape functions provide zero
displacement and zero slope at each end of the element. Again, it is important to mention
that this property is highly significant, since these modes contribute only to the internal
displacement field of the element, and do not therefore affect (i.e. over restrain) the

displacements at the nodes.
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The values of N,, N,, N,, and N, are the same as calculated before and are

given in Equation (2.8) while value of N, ; is given by
N = ()" [s-1)L]™ (2.64)
These polynomial hierarchical functions are used in the same way as the

trigonometric hierarchical functions were used for symmetric and non-symmetric

combinations to calculate the central deflection.

2.4.8 Discussion and Conclusion

In the previous section the conventional and the hierarchical finite element
methodologies have been described and the arch problem example has been solved to
illustrate their applications. The HFEM displays superior results as compared to the
conventional FEM. We did see how the results of the trigonometric hierarchical
formulations compared with each other and within themselves in the previous section.
Now the same comparison will be done for the polynomial hierarchical finite element

formulation.

The results have been obtained using the conventional FEM and the trigonometric
and polynomial formulations of the HFEM. These results are then compared with the

analytical solution.

For symmetric polynomial hierarchical terms the results are given in Table 2.8

and plotted in Figure 2.18 as well. The results show improvement each time we add
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polynomial hierarchical terms to both tangential (v) and radial (w) displacement
functions. After the 4-elements mesh all the curves converge to a single curve. The
results obtained using symmetric trigonometric and polynomial hierarchical terms show
that symmetric trigonometric hierarchical terms give better results than that of the results

given by symmetric polynomial hierarchical terms.
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Figure 2.18 Comparison between the Results Corresponding to Symmetric
Polynomial Hierarchical Terms
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Figure 2.19 shows that for only the 1* element the combinations (v, —w, ) give

better results than that of the conventional FEM. All other elements show a little
improvement and all the curves are almost matching. So it is clear from the figure that
radial displacement (w) function show its little effect on the results because when
hierarchical terms are added to the radial displacement (w) function, the improvement in

the results was not that much significant.
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Figure 2.19 Comparison between the Results Corresponding to Non-Symmetric
(v, —w, ) Polynomial Hierarchical Terms
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The results for the group of combinations (v, —w,) are given in Table 2.4 and

are plotted in Figure 2.20. The results show a little bit improvement for these
combinations when hierarchical terms are added to the radial displacement (w) function.
For these combinations the results given by polynomial hierarchical formulation are
better than that of the trigonometric hierarchical formulation. This is contrary to the

trends of the previous two types of combinations. The combination (v, — w,) seems to

have the results closest to the analytical solution except for the 1* element for this

particular combination of hierarchical terms.
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Figure 2.20 Comparison between the Results Corresponding to Non-Symmetric
(v, —W,,) Polynomial Hierarchical Terms

63



9

ul ZGLyl 0 = uonoa|aQ [enua) uohnjos [esnleuy

AR 40 96 A1 % 4 01) 8 LGLYL0 cL LSLYL0 6S LSLvL0 VA4 cl
418 4N 88 rA]R 4] LL <SPl o 99 LSLvL0 ¥S LSLPLO 154 Ll
rAIR 4] 08 Z¢sivLo 0. LGLvL0 09 1S1¥L°0 6v 0SL¥L 0 6¢ ol
LGi¥L 0 ¢l LSLYL0 €9 LGLYL0 14% 0SL¥L0 144 6Ll 0 ge 6
LGLrL0 ¥9 LSivL0 9s LGLrL0 8y 14545 6¢ AR 4N Le 8
LSLrL 0 as 0SLyL 0 514 1424 %Y [44 Lyivl 0 ve 1A 48 40] LZ L
0SLvl0 1214 0sivl 0 A4 iyl 0 ¢ 134345 6¢ geLvrL o €C 9
5454 017 Lrivl0 ge A4 4% 0e eelLrLo 144 ZLivL0 6l g
12454%¢) [4% BeELYL0 8¢ 8¢ZL¥i 0 144 #0LPL0 6l 8e0¥L0 cl 14
9ClyLo ve Lilvl 0 ¥4 9/0¥1°0 8l €00l 0 14" GLLel’0 Ll €
ceovL o 9l 0S6€L°0 4" 008€lL0 cl 96¢€l0 6 198°) 4 4 0] L 4
£€680°0 8 12.L0°0 L 108€0°0 9 2e¥00°0 14 62¥00°0 € I
suue] W34H mp-AL suls] W34H me-AlL SuLe)] WIAH MZ-AL swiel W3HH MO-AL IZEE)
jeluiouAjod jeiwiouAjod jeiouhjod jeiwouAkiod [euonuUBAUOD
ILOWIWAS-UON oLBWIWAS -UON SLOWWAS-UON oljeWWAS-UON
(un) '40d (un) '40°a (un) '4'0°a (ur) '4'0°a (w) '4'0°Q | siuswa|3
uonosleq Jo uonoaeqg Jo uonoseq j0 uonosleq jo uondsyeg 10 10
anuan JaquinN anuan JaquinN anuan Jaguinn aue) JaquinN a.)us) JaquwinN | Jequnpn

juswa[3 weag psAn) '4°0°A 8

(“m — 'a) sus I [BdIYOIRIATY [eIWOUA[O] oIowuAg -uoN Suisn £q paje[nofe)) UONOI[Ja(] [eNUd)  (T°Z dlqelL




Figure 2.21 shows the results for the group of combinations (v, —w,) and they

are also given in Table 2.11. These results are even better than that of the results given by
the previous combinations and start converging to the analytical solution much earlier
than before. Trigonometric hierarchical formulation for these combinations give better
results than polynomial hierarchical formulation for the initial few elements but after that
results of polynomial hierarchical terms are only marginally better. The difference

between the results corresponding to these two types of formulations is negligible.
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Figure 2.21 Comparison between the Results Corresponding to Non-Symmetric
(v, —w,) Polynomial Hierarchical Terms

65



99

Ul ZSLyL°0 = Uonoa|aQ eua) uonNn(os [ednhleuy

ZGLvL0 L6 1GLvL0 g8 (4134 %0) ¢l LSL¥L0 LL LGLYL'0 YA4 4"
ZSLvL0 68 (413 4% 8. 413 4% 99 LSL¥L0 S9 LSLPL0 14 bl
rA1R 4] 18 LGLYL0 LL (4184 N0 09 1GLPL°0 65 0SLvL 0 6t 0!l
L1SLPL0 €L LSLPL 0 9 LGP0 ¥S 0SLYL 0 €6 145 4%0) Gt 6
LGLPL0 g9 1GLvL0 JAS] LSLPL0 8y 14840 YA 4 Lrivl0 le 8
0GLvL 0 LS 6¥lvL 0 0S 0SL¥L0 A4 FA4B 4N (R4 evivL0 yx4 L
5145 4%0) 6V VA4% A1) 134 52440 ot eriyL0 Ge SELYLO €C 9
12454 %Y) Iy orLyL 0 g€ erivL0 0¢ eeLrL 0 6¢C ZLivio 6l g
(61548 4 0] 1A 0ZLyL 0 14 LZLyL0 174 ¥0LPL 0 £€C 8e0¥L0 gl 14
080¥L°0 14 1401 4] 44 014014 1) 8l £00vL 0 Ll GLLELO Ll €
9l8EL’0 Ll LLO9EL'0 Sl 919¢1L0 43 96¢€L0 L eoviL0 L [4
LLS0L°0 6 L6¥0L°0 8 921000 9 2ev00°0 S 62000 € I
swue) WIHH mMp-AZ Swue) WI4H Me-AZ swie) WIJH ML-Ag swie) W3dH Mo-AZ2 wW3d
[eIuoUAIOY jelwouAiod © [erouhjod (enwoukjod JBUCHUBAUOYD
oLjeLIAS-UON OLJBUWIWAS-UON oLBUILAS-UON olBWIWAS-UON
(un) '40°a (un) '40°d (u) '40d (un) '4'0a (un '4'0°'Q | sjuswa|3
uono3lyaq Jle] uonoaliaQg Jle) uonosaqg JO uono3ag 10 uonos|jag Jo 10
anuan JaquinN ajuajn JaquinN anuan lBaquinN ajua)n JaquinN anuan jaquinN | Jequwnp
Juswsjz weag paAIn)d ‘4'0°'d 8
(“m — ta) suia ], [eOTYOIRISIY [RITWOUA[O SINAWWAS -uoN Suisn Aq paje[nofed uondajo( [enue)  [1°73IqeL




The results for the group of combinations (v, —w,) are shown in Figure 2.22 and

these results are also given in Table 2.12. These combinations again give good results
with the addition of the three hierarchical terms to the tangential displacement (v)
function. The combination (v, —w,) shows very good convergence at the 10-elements

mesh. Only for the 1** element the trigonometric hierarchical formulation gives better

results than the polynomial hierarchical formulation.
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Figure 2.22 Comparison between the Results Corresponding to Non-Symmetric
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Table 2.13 gives results for the combinations (v, —w, ) and the results are plotted

in Figure 2.23. These combinations give the most accurate results. The combination

(v —w,) provides the best convergence among all the polynomial hierarchical

formulations. This combination of terms converges most rapidly at the 8-elements mesh.
Again only for the 1* element the trigonometric hierarchical formulation is better than
polynomial hierarchical formulation but for the rest of the elements the polynomial

hierarchical terms give better results.

0.16 P
0.14 e 5«:\ - ‘:_._;.5:;3). 3 _,{’%"ji SR f:i __£h
0.12 T ﬂ: VVVVVV R : -------- S E —————— re e m o
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2 : : | ©  w-wO-polynomial
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= ! : i | - v4-w3-polynomial

£ 0.06 R SR Analytical Solution |
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Number Of Elements

Figure 2.23 Comparison between the Results Corresponding to Non-Symmetric
(v, —=w,) Polynomial Hierarchical Terms

To sum up, in this chapter the Hierarchical Finite Element Method has been

presented and its formulation has been applied to Euler- Bernoulli curved beams made of
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isotropic materials. Two variations of the HFEM have been studied viz. Trigonometric
and Polynomial HFEM. To start with, the conventional finite element formulation is
presented and its derivation is detailed to stress the conceptual changes that are made in it
for the HFEM. A semicircular arch problem has been solved using the conventional
formulation so that a comparison can be made with regard to the HFEM results. The
detailed formulation of the HFEM for both the trigonometric and the polynomial cases is
also given to stress the major aspects of the method. Programs are developed in
MATLAB® (for symbolic computation) software environment. The results obtained using
the HFEM method are then compared with the results obtained using the conventional

formulation and the analytical solutions.

Both the forms of HFEM are found to give highly accurate results. Results can be
achieved to any desired degree of accuracy by simply increasing the number of
hierarchical terms in each element. Trigonometric formulation gives better results than
the conventional formulation and gives even better results than polynomial formulation
for some of the initial elements, although polynomial formulation yields the best results

among the three.

Now we have laid the foundation for the application of HFEM in the analysis of
1-D curved composite structures. The inspiring results for isotropic materials should lead
us to similar computational efficiency for structures made of composite materials. In the
next chapter, we shall explore the applications to composite curved structures using the

HFEM methodology.
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Chapter 3

Hierarchical Finite Element Formulation for Curved Composite Beams

3.1 Introduction

In a broad sense the word “composite” means “made of two or more different
parts”. A composite material consists of an assemblage of two materials of different
nature completing and allowing us to obtain a material of which the set of performance

characteristics is better than that of the components taken separately.

In most general case a composite material consists of one or more discontinuous
phases distributed in one continuous phase. In the case of several discontinuous phases of
different nature the composite is said to be a hybrid. The discontinuous phase is usually
harder and with mechanical properties superior to those of the continuous phase. The
continuous phase is called the matrix. The discontinuous phase is called the
reinforcement, or reinforcing material. Composite materials, especially laminated

composites are being increasingly used in the aerospace and automobile industries. This
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is mainly because these materials exhibit high strength-to-weight and stiffness-to-weight
ratios.

The application to isotropic curved beams in the preceding chapter showed us that
the hierarchical finite element formulation performs much better than the conventional
finite element method in terms of faster convergence and use of less number of elements.
In composite structures, the in-plane strains and stresses in different plies of the laminate
are functions of the curvature of the laminate, in accordance with the classical laminated
plate theory {48]. As a result, the continuity of the in—plane stresses and strains in each
ply of the laminate depends upon the continuity of curvature across adjacent elements.
This continuity is not enforced and guaranteed in the conventional finite element
formulation, which requires the use of many elements to obtain reasonable accuracy. The
use of many elements results in the presence of corresponding discontinuities. In the case
of variable-thickness composite laminates, additional complexities arise due to the
presence of drop-off plies. Hierarchical finite element method (HFEM) makes it possible
to model a structure using very few elements. In some cases the use of two or three
elements provides accurate solutions. These features of the HFEM make it an attractive
choice to overcome the limitations associated with the conventional finite element

formulations in the analysis of the composite curved beams.

3.2  Constitutive Equations for Laminated Cylindrical Plates

Consider a cylindrical plate of constant radius R as illustrated in Figure 3.1. As in

the case of flat plates, the thickness and in-plane dimensions are denoted by 4, g, and b
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respectively. The displacements in the x, s, and z directions are denoted by u, v, and w,

respectively [48]. Assumptions are as follows:

1.

10.

11.

12.

13.

14.

The plate is constructed of an arbitrary number of orthotropic layers bonded
together. The orthotropic axes of material symmetry, however, of an individual
layer need not to coincide with the x-s axes of the cylindrical plate.

The plate is thin, i.e., the thickness 4 is smaller than the other physical
dimensions.

The dimensions u, v, and w are small compared to the plate thickness.

In-plane strains¢_,¢,, and &, are small compared to unity.

The radius of the plate R is much larger than the thickness A.

In order to include in-plane force effects, nonlinear terms in the equations of
motion involving products of stresses and plate slopes are retained. All other
nonlinear terms are neglected.

Transverse shear strains ¢, and ¢, are negligible.

Tangential displacements # and v are linear function of the z coordinate.
The transverse normal strain &, is negligible.

Each ply obeys Hooke’s law.

The plate has constant thickness.

Rotatory inertia terms are negligible.

There are no body forces.

Transverse shear stresses 7, and 7, vanish on the surfaces z = + 4/2.
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The strain-displacement relations for general thin shells are well known (see for
example, Refs. 46 and 49) from classical theory of elasticity which are applicable to the

coordinate system shown in Figure 3.1 are as follows.

Figure 3.1 Nomenclature of Curved Laminated Plate

ou’ otw
£ =———
Ox ox?
0 2
g = Wz 2 Ow G.1)
Os R ROs (1+z/R) 0s
0 0 2
£ =(1+2) LA A SRS A L
R™ 0Os Os R~ Oxds

where u°and v°are the axial and tangential displacements of the mid plane, respectively.
Since the plane is shallow (R > > h ), z/R is small compared to unity. Thus,

(1+z/R) ~1 (3.2)
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and Equation (3.1) can be written in the form

gx = 80,\' + ZKX
g, =&’ +zk, 3.3)

0
E, =& x + K,

where
0 ou’ o O w 0 ou® o’
et TR TR T T
X s s X (3.4)
o*w 1ov o*w o*w
Kx__ 2 > fz——_— 2 2 sx=—2
ox Ros ox 0x0s
The ply constitutive relations are as follows
O's(k) Qn(k) le(k) le(k) £,
O'x(k) = QZl(k) sz(k) st(k) &y (3.5
O-sx(k) Q]G(k) Q26(k) Q66(k) gsx
where O, are the reduced stiffnesses for the plane stress.
We define force and moment resultants as follows [50].
hi2
(NN, N= f©,”,0,0,0,7)d (3.6)
~h/2
hi2
M M M= 2,0 ,6,9)z de 3.7)

—h/2

Combining Equations (3.3) and (3.5), substituting the results into Equation (3.6) and

performing the integrations, we arrive at the laminate constitutive relations which are
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N, (4, 4, 4s B, B, B | —837
N, 4, Ap Ay By, By By ||eg
N, _ Ag Ay Aq B By, B lleg (3.8)
M, B, B, By D, D, Dg||x,
M, B, By By D, Dy Dy||x,
| M., ] B By By Dig Dy Dg IRELY™R

or in practical form

-Gl 09

where A B,.j and D,j. are the stiffnesses defined as

ij *
hi2

(4,,8,,D)= [0, (1,z,2")dz (3.10)

~h/2
3.3  Energy Formulation of Laminate Theory

The energy theorems can be used to obtain a variational formulation of the
governing equations of laminates. This formulation, associated with the boundary
conditions, provides the bases for the development of approximate solutions of the
mechanical behavior of laminates. The energy theorems are also the bases for the analysis

of laminates by finite element method.

77



3.3.1 Strain Energy for the Analysis of 1-D Curved Laminate

The strain energy, U, for curved plate in terms of an x ,s ,z coordinate system is

given by the relationship [48].

Ydx ds dz 3.1D)

5X & 5x

1
U=§ J.IJ‘(O'SSS +o.e,+o,,+0,6,+0, 6, +0

where the triple integration is performed over the volume of the body. Taking into

account the basic assumption of laminated plate theory i.e., £,= ¢ _=¢&_ =0 and the we

find that the Equation (3.10) becomes

xs

U% [[@be: +20e,8,+ 20058, +20%6.8,,+QWel + Q&) Ydx ds dz (3.12)

Substituting the kinematic relations, Equations (3.3) and (3.4), into Equation (3.12) and

integrating with respect to z, we obtain the following strain energy relationship:

0\? 0 0 0 0 2
U:l J‘I A22 aL +2A128L_ i+lv_ +A” 6\7_ av_+£ +(KJ
2 ox ox \ Os R os \0s R R

0 0 0 0 0 02 0 A2
IR LA | ChCLa TN (e A B S i
Os Os R Os ox Os Ox ox Ox
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' w)dtw  ou’ o*w ' w)otw *wlou® '
— + — -+ — |~ 2B, | —+ — | =5 — 2By 5 +
Os R} Ox Ox Os Os R ) Os Ox Os Ox

2 2 [~ 0 A2 2 0 0
, 2By (@) +2B2” (@)_Q_w Y u’ ’w 23, a;v ou’ | v
R \ os R os )\ os? | Ox OxOs ox Os ox

+ 4B,

ou’ o*w o*w( ou’ +6v° +2 v w )\ d*w
% Os R

- = _—.+__
Ox OxOs os’ \ Os ox Ox0s |

—4D “
 oxos | ox Os ox? st R \os)\ 8s®

2 2
D, (avr *w *w) 0w o*w 3w
+ 22| 44D, —+D,, — | =2+ D, | | +4D, | | }dxds
R* \ o5 o’ * a5 Joxas '\ os? | oxos j

(3.13)

2 0 0 2 2 2 2
6w(6u L ]+D22 (%V_JMDH o’w &’w 2D, avj(a_wJ

For a 1-D problem all the terms with x will be neglected. We are assuming a symmetric
laminate so all the terms with the coefficients of B matrix are also neglected.

Consequently, we will be left with the following equation.

s=L 2 2 2 \? 2
U:l J. A“ (.a_‘i) +(E) +M4(W ,a_v)+ Dll Q__Zﬂ +2]21(?X)
2 % Os R R Os 0os R°\0s

2, (o) (@
_—R_[(as)(ész H }ds G194

3.4 Cubic-Cubic Circularly Curved Composite Beam Finite Element

We have considered and analyzed the cubic-cubic curved beam finite element
(Figure 2.2) by using the conventional and hierarchical finite element formulations in the

previous chapter. Now we will use the same curved beam element for the semi-circular
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arch problem (section 2.2.5, Figures 2.2(a) and 2.2(b)) by first considering the laminates
with isotopic layers and then by using different configurations of the laminate. Both

conventional and hierarchical finite element formulations will be used.

Total strain energy for the curved beam as discussed before is

v=U,+U, +U,, (3.15)
where
L
U, A— I ? ds ')2 ds
2 0
A L D L
U, 7 [6)Gw)as - —‘l j(v')(w”)ds (3.16)
0
A 2 ” 2
u,, = 2R2 I(w) ds + — I(w) ds

The energy expressions U,, U,, and U,, are associated with axial, axial-flexural

coupling, and flexural behaviors, respectively.

3.4.1 Stiffness Equations

Substituting the displacement functions for v and w, Equation (2.1), into the
energy expressions, Equation (3.16) and then performing partial differentiations of the
strain energy with respect to each of the eight degrees of freedom, the 8x8 stiffness

matrix equations for the element are obtained.
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[ X1' I ] vV,
Xl [kvv 4x4 ] [kvw4x4 ] vxl
X, v,
le Vs2

j % - Jo (3 1 7)
Y, "
M 1 [kWV4x4 ] [kWW4x4 ] 01
Y, W,
\MZ J L Jdt 62

where X| and X are the counterpart generalized forces in inch-pounds associated with
the degrees of freedom v, and v, , respectively. The coefficients in the 4x4 sub-matrices

are obtained as

L
k, = I(ﬁ+ D“Z)N,.’N; ds
172 "2

! 11 ’ i D]] ’ ”
Kp, = Ky, = Oj{ (—R—]N,, Nj] —[(TJN,. N]} s (3.18)
kww,-j = II{ |:(A_12])N1 NJ] - [Dll NI”N;'] }dS
0

3.4.2 Laminates with Isotropic Layers

The reduced stiffness matrix of an isotropic layer is given by the relation [50].

E vE
0
1-v* 1-0
VE E
0= o7 1o 0 (3.19)
0 0 E
| 2(1+v) |
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The stiffness constants of a laminate made of n isotropic layers with different properties

are then given by the following relations:

n n
A = Ekek A _ZUkEkek A =0
1 — 1 2 12 = 1 20 16 —
k=1 1~ Uy k=1 17U,
n
Ee,

i 1-v, Pl B O
" Eez
B,=8B,, B 0, B, = Kk
2 1 2 66 Zo(1+0,)
n E e3
D, = 1 Elez;+ "J
i 1—0; 12
* v E )
D, = 1" . ekz,f+—"J
= 1l-u 12
D,, = Dy, Dy, =0, Dy, =0,
n 3 3.20
Dy =) ——*— 2+ (3:20)
12(l+ k) 12

where

e, = thickness of the ply £

z, = distance of the ply k from the middle plane

3421 Curved Composite Beam Example

In order to evaluate the validity of the strain energy Equation (3.14) the curved

beam example as shown in Figures 2.2(a) and 2.2(b) was solved again by using the finite
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element method and for a laminate of isotropic layers by using the 4 and D matrix

coefficients 4,, and D, in Equation (3.14), and by using the relations for laminates for

isotropic layers given in Equation (3.20). The boundary conditions and stiffness matrix
equations for this arch problem are given by Equations (2.19) and (3.18). The parameters

are defined as

E=10" psi, [1=1/12in*., A=1x1in*, P =10001b., R=17in.,

The interpolation functions are also the same as were given in the previous
chapter (Equation 2.6). The results are given and compared in Table 3.1. These results are
plotted in Figure 3.2 as well, which show that the difference between the conventional
FEM solution using the curved beam element and the element made of isotropic laminate
is 10.88 %. These results validate the strain energy equation for 1-D composite curved

beam element. The difference of 10.88 % is due to fact that for unit width bending and
stretching coefficients D,, and 4,, have 1-v’ terms in their denominators (3.16)

which the terms £4 and EI do not possess (2.14b), which is the reason for this error as

explained below:

E, (Zek J
B NG g
oY -v (3.21)
E e
EI "[; ¢ J EW  EN
—_———_—_— . - =
b 12(-v?) 12 12(1-vd)
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Central Deflection (in)

Table 3.1 Central Deflections Calculated using Curved Beam Element and

Element Made of Isotropic laminate

Comparison Study of Arch Problem
Number Number Centre Number Centre
of of Deflection of Deflection
Elements D.O.F. (in) D.O.F. (in)
Curved Beam Element Isotropic Laminate’s Case
1 3 0.00429 3 0.00383
2 7 0.11463 7 0.10215
3 11 0.13715 11 0.12222
4 15 0.14038 15 0.12509
5 19 0.14112 19 0.12575
6 23 0.14135 23 0.12595
7 27 0.14143 27 0.12603
8 31 0.14147 31 0.12607
9 35 0.14149 35 0.12608
10 39 0.14150 39 0.12609
1 43 0.14151 43 0.12610
12 47 0.14151 47 0.12610
016 g oy ey = e
0.14 - - 4‘ . ',i:r\j, ,ﬁ{:&—;e :'Z{',\x o fix,\ - "'.t)x\ri i ,le«n,,, )J\ 13\, - z}\
| //‘r} i | i : | ‘ \
! 7/ i ' L + /J) P ,-: _,‘\’ D
012t/ e TS [ A I ]
| /A A T B
YN G S S S S S O S
0_08”,,,,./;5:; . E 5 E ‘ ,,,,,,, ;,,4,,,%,,,,1,,,,2,,,,,,4: ,,,,,
R T N e e e
0.04 *r o 1:* ~| -~ FEM solution considering beam element | -
: <;- FEM solution considering isotropic laminate
0.02f it R
1 2 3 4 5 6 7 8 9 10 11 12
Number Of Elements
Figure 3.2  FEM Solutions Considering Beam and Isotropic Laminate
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3.5 The Hierarchical Finite Element Formulation for Composite Curved Beam

The hierarchical finite element formulation for the composite beam proceeds in
the same way as the procedure described in the previous chapter for the isotropic curved
beam. The difference being that now it is applied to the strain energy equation for a
composite curved beam given by Equation (3.16) instead of Equation (2.14b) and that the

EA and EI terms for unit width are replaced by the terms 4,, and D,, respectively. The

salient steps in the HFEM formulation are mentioned below:

The tangential (v) and transverse (w) displacements are approximated as

N
vs)=a+as+a,s’ +a,s° + > a,,sin[d,s]

r=1

N (3.22)
w(s)=c,+c,s+c,s2 +¢,5° + ZcM sin[&,s]

r=1

6, =—, r =1,2,3..N

The derivation is similar to the one described in section 2.3.1.2. It gives us the following

expressions for the displacement fields v and w

For tangential displacement (v)

N
v=Ny + Nyvg + Nov, + Nyv, + ZNr+4er+4 (3.23)
r=1
Similarly for radial displacement (w)
N
w=Nw, + N,6, + Nyw, + N6, + Y N, ,W,,., (3.24)

r=1
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where the shape functions are as follows

N, =1-3£+28°
N,=L|E -2 + &
=Ll -2+ 8) (3.25)
N, :352 “253
N, =L-& + &)
and
N, =-8,5+26 +(1y8, )5 +(-8,-(=1)'8,)s* +sin[,s] (3.26)
where
s =2, r =1,2,3..N
L

The expressions for the shape functions are the same as detailed in the previous
chapter. The finite element model for the composite curved beam is obtained by making
use of the Equation (3.14) and the shape functions given by the Equations (3.25) and
(3.26). The element stiffness matrixes are then assembled by combining all the 4

submatrices given in Equations (3.17) and (3.18) through the usual overlay procedure.

The polynomial hierarchical finite element formulation for the composite curved
beam would differ from the above trigonometric formulation in the nature of the
hierarchical shape functions chosen for the formulation. The shape functions for the
polynomial formulations were described in the previous chapter and will be applied to the

strain energy Equation (3.14) for the composite curved beam.

Hence, the displacement fields for the curved beam element would be,

86



for tangential displacement (v)
M

v(s)=N1vl + Ny, + Nyjv, + Nyv, +ZN,+4A, 3.27)
r=1

and for radial displacement (w)

M

w(s)=Nw, + N,6, + Nyw, + N,6, + > N, ,B, (3.28)
r=1

where

N, =g (s—- L)H] , r=1,2,3..M (3.29)

A, and B, are the coefficients of the polynomial hierarchical terms.

The polynomial hierarchical shape functions are chosen such that,

l
t~

=0 at s=0 and s

14=0 at s=0 and s=1L

The above equations illustrate that the functions provide zero displacement and
zero slope at each end of the element. Again, it is important to mention that this property
is highly significant, since these modes contribute only to the internal displacement field
of the element, and do not therefore affect (i.e. over restrain) the displacements at the

nodes.

Composite curved beam example shown in Figure 3.3 will be solved and modeled

by using four hierarchical trigonometric and polynomial elements. The numbers of

trigonometric and polynomial hierarchical terms per element were used in each and every
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possible combination for both tangential (v) and transverse (w) displacements. A kind of
parametric study was conducted in terms of the use of trigonometric and polynomial
hierarchical terms per element. First, symmetric hierarchical terms were used for both
tangential (v) and transverse (w) displacements ie. v,—w ,v,—w,,v,-w,,v,—w,.
Second, each of these hierarchical terms were used for every possible combination like

Vo—W,,V, =W, ,v,~-Ww,,v;—w, andv,~w,, wheren=1, 2,3, 4.

3.6 Approximate Solution for Composite Curved Beam by Ritz Method

In this section approximate solution in conjunction with Ritz method [50] is
discussed. In the case of composite curved beam the strain energy equation for 1-D

problem is given by the Equation (3.14):

s=L 2 2 2 \2 2
o {8 6T ] 208 o) 28)
5=0 S A) A) A)
2D, |( ov o*w
_ hdd d 3.30
R [(asj(aszj]}s (3-30)

The potential energy owed to the transverse point load P at the free end is

W, =P(w), (3.31)

The approximate solution is given by single summation series:

w,(s) = iAm S, (s) (3.32)

()= 28,5,0)
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The functions S, (s) and S, (s) have to form function bases for polynomials,

trigonometric functions and hyperbolic functions and are chosen to satisfy the boundary
conditions. The coefficients 4,, and B, are next determined by the stationary conditions,

which are written as:

- = (), or = —2 (3.33)
o4, o4, oA,

i 7 oW
a_U =0, or aUd =7 (334)
2B, 0B, 0B,

The U , and Wf are the strain energy and the potential energy owed to the

transverse point load, obtained by substituting the approximate expressions for the
deflections into Equations (3.30) and (3.31) respectively. The calculation of the

approximate strain energy requires us to express the terms

2 2. \? 2 2
(K) ) (w @), 9——2"1 , [@) , (2‘1) 6—?] interms of 4, and B, .
R Os Os Os Os Os

For Example:

’w ¥ d’S (s)

Z72_-N4 m 3.35
= Z " (3.35)
» —i B (3.36)
s =" ds ’

Whence

(asz =i i 44 d*s, (s) d*S,(s) (3.37)

i 2
m=l i=l ds ds 2
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il ds ds
and
1 8 (d’w oY dS(s)dS(s)
- _Z A, 3.39
o (3 - 534 0 0
1 NN ds ( )dS (s)
B, 3.40
2 0B ( ) ; nz=1: ds ds (3.40)
2
Integration of these terms aa—v: and » yields
s
17 Moy d*s, (s) d*S,(s)
— 4, d 3.41
2 s=0 ( ] ”’Z-lg ‘ sJ:) dS dsz ’ ( )
lS:L(@)Z ds = i i B T . (S) “ (s) ds (3.42)
2 s\ 0s - == / o ds ds '

The left hand sides of the Equations (3.33) and (3.34) can be put in the practical form as

follows:
aﬁ " 1 4, ds, Mo g? S, d? S
= 4,8, S, A "
o4, IO{ [Z ] R [, " ds ] “[,Z; ' ds?
D, |¥ , d’S, dsS
R DI ey el I 3.43
R [,,z::‘ " ds* ds fos (3.43)
ou, Z ds, D0, Ay ZAm ds, s, D_lzl ZB' ds
6B,, A S ds ds RI|&A " ds R* |5 7 ds ds

M=l ds 2 ds

M 2
_%[ZAmdSmdSn]}ds
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Equations (3.44) and (3.45) finally become

N N
+ A, [;(di” fs’]+i‘2’ ; [di" % }BJ }ds
where
mi=1273............ M
nj=12,3 N,

3.6.1 Curved Beam Example Based on Euler — Bernoulli Theory

(3.45)

(3.46)

Uniform composite curved beam with fixed-free boundary condition is shown in

Figure 3.2. It is made of NCT-301 Graphite Epoxy material. The deterministic material

properties of the NCT-301 material are given as:

E, =129.43 GPa, E, =1.99 GPa, v, =0.021, G, =4.28 GPa
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P=2001b

l

-

~ ——————

Figure 3.3 Fixed-Free Composite Curved Beam

The geometric properties of the beam are: length L =10x /2 ; individual ply thickness
(e,)=0.125 mm. There are 32 plies in the laminate and the configuration of the laminate

is [O/ 90] g - The laminate thickness of 4 mm is obtained by multiplying the total number

of plies with the individual ply thickness.

3.6.1.1 Fixed-Free Composite Curved Beam

We will discuss the case of composite curved beam fixed at one end and free at

the other end as shown in Figure 3.3, subjected to a point load at the free end. As the

curved beam is fixed at one end and free at the other end the boundary conditions are:
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For tangential displacement (v)

foredge s=20:
v, =0, — | =v,#0 (3.47)
os|,
foredge s=1
v, #0, Gl v,=0 (3.48)
0s |,
For radial displacement (w)
foredge s=20:
w, =0, ow =6,=0 (3.49)
Os |,
foredge s=1
w, # 0, ow =0,#0 (3.50)
Os |,

3.6.1.2  Solution Approximated by Displacement Functions

For the transverse displacement (w) we choose the trigonometric functions in the

form:

S, (s)=s" (cos mzrs) (3.51)

For the tangential displacement (v) we choose the polynomial displacement functions in

the form:
S, (s)= (%) - (%) (3.52)
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These functions satisfy the boundary conditions in Equations (3.47), (3.48), (3.49), and
(3.50).
In the case where m = n =2 the system of Equations (3.45) and (3.46) to calculate

4, and B, becomes

ay, ayp by by (4 F,
ay ay by by |4, - F, (3.53)
ay, ap by by || B 0
a, a, by b, ||B, 0
[ab]{4B} = [F]
(3.54)

{48} = [ab]"[F]

As there is no force being applied in the tangential direction and the only force available
is in the transverse direction the matrix due to work done has zeros in the last two rows.
The values of 4,and 4, will be substituted in Equation (3.32) to calculate the values of

transverse deflection ats=1 .

The results are given in Table 3.2 and plotted as well in Figure 3.4. The results
show an improvement in the transverse deflection as we increase the value of m in the
displacement function. For the first two values of m the improvement is almost linear and
then there is a jump in the value for the third value of m. For the next four values the

improvement between them is almost same. For the last two values of m the transverse
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deflection value is same. Normally for a curved structure, we stop adding more terms in
the Ritz solution if the % age difference between the two consecutive values is less than 5

%. The approximate value for the transverse deflection is obtained for m = 7 which is

0.0568in.

Table 3.2 Ritz Method Solution for [0/90],, Laminate for Fixed-Free

Boundary Condition

Value Centre
of Deflection
m (in)
1 0.0041
2 0.0072
3 0.0329
4 0.0421
5 0.0583
6 0.0568
7 0.0568

3.7  Solution to the Composite Curved Beam by HFEM

The above curved beam example will now be solved by using both conventional
and hierarchical finite element methods and the results will be compared with the

solution obtained by the Ritz method.
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For the HFEM, both the sub-formulations, viz. trigonometric and polynomial
formulations are used to obtain the results. While solving the problem with either
formulation, the beams are discretized such that the numbers of degrees of freedom used
in the analysis by HFEM and by conventional FEM are comparable. This is done to make
a comparison between the two formulations vis-a-vis the number of elements required,

the number of nodal degrees of freedom to obtain the desired accuracy.

The analysis is based on the strain Energy Equation (3.14) developed for 1-D
curved beams. Tables (3.4 - 3.9) show the results for fixed-free composite curved beam
based on the above strain energy equation for mid-plane symmetric composite laminate

having the configuration[0/90],,. Comparison is made between the polynomial and

trigonometric HFEM and the conventional FEM formulations and the results are then

compared with the approximate solutions which were obtained using Ritz Method.

The results for conventional FEM are given in Table 3.3. The results show that
the conventional FEM results show a smooth improvement in results as we increase the
number of elements, resulting in almost linear curve as shown in Figures (3.5 - 3.11). The
results show a considerable improvement in the results when we move from 1-element
mesh to 2-elements mesh which is the same trend as we noted for the isotropic curved
beam element in the previous chapter. After the 2-elements mesh there was a constant
improvement in the results until we reached the approximate solution at the 8-elements

mesh.
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Figure 3.4 Improvement in the Ritz Method Solution with Values of m

For Hierarchical Finite Element method, first symmetric hierarchical
trigonometric and polynomial termsv, —w,,v, —w, ,v,—w;,v, —w,, will be used and then
unsymmetrical hierarchical terms will be used for each and every possible combination

like v,—w, ,v,—w,,v,—w,,v,—w, andv,—w, wheren= 1,2, 3, 4.

The results of the hierarchical finite element formulation are given in Tables (3.4 -

3.9) and are also plotted in Figures (3.5 - 3.11).
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Table 3.3 Conventional FEM Solution for Fixed-Free [0/90]gs laminate

Composite Curved Beam with Fixed-Free Boundary Condition
Number Number Centre
of of Deflection Error (%)
Elements D.O.F. (in)
1 4 0.0057 89.96
2 8 0.0218 61.62
3 12 0.0264 53.52
4 16 0.0307 45.95
5 20 0.0360 36.62
6 24 0.0421 25.88
7 28 0.0485 14.61
8 32 0.0551 2.96

38 Discussion and Conclusion

The Hierarchical Finite Element Method developed and applied to isotropic
curved beams in the previous chapter has been applied in this chapter to uniform
thickness composite curved beams. The uniform-thickness composite curved beams have
been modeled using the 1-D cylindrical laminated plate theory. Both the forms of HFEM
are applied, and contrary to the case of isotropic curved beams the polynomial HFEM
gives better results than the trigonometric form. Results for the Euler-Bernoulli beams

have been presented.
Application of the hierarchical finite element method to composite beams, as in

the case of isotropic curved beams, yields the same advantage of numerical efficiency

and faster convergence. Less number of elements is required to model and obtain precise
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answers for analysis of composite curved beams. The graphs in Figures (3.7-3.16) give us
a comparison of the convergence of the number of elements required by trigonometric
HFEM, polynomial HFEM and the conventional formulation to get the approximate
solution. There is a substantial reduction in the number of elements required to obtain the

results that are almost the same as the approximate solution by Ritz method.

For symmetric Polynomial and Trigonometric Hierarchical terms the results are
plotted in Figures 3.5 and 3.6. These results are given in Table 3.4. The results show that
polynomial hierarchical formulation gives better results than the trigonometric
hierarchical formulation for the symmetric hierarchical terms. The results are converged
more rapidly by the polynomial hierarchical terms than by the trigonometric hierarchical
terms when a hierarchical term is added to both tangential (v) and radial (w) displacement
functions. When 3 and 4 symmetric polynomial terms were used the resulting stiffness
matrix becomes ill-conditioned and hence, their solutions become inaccurate for the 1-
element mesh. When 4 symmetric polynomial hierarchical terms were used, we reached
the result by using just one element mesh. Figures 3.5 and 3.6 show a considerable
improvement in the results when we increase the number of symmetric hierarchical terms
from one term to four terms for both polynomial and trigonometric hierarchical

formulations.
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The results for the group of combinations (v, —w,) of both polynomial and
trigonometric hierarchical terms are almost identical to that of the conventional FEM
reaching the approximate solution at the 8-elements mesh as shown in Table 3.5 and
Figures 3.7 and 3.8. So it is evident that despite increasing the number of hierarchical
terms associated with transverse displacement (w) function the results did not get better
showing its little effect on the results. The results also show that for the combination

(v, —w, ) the results given by the trigonometric hierarchical terms are almost identical to

that of the results given by the polynomial hierarchical formulation. For both polynomial
and trigonometric hierarchical formulations all the combinations of this group (v, —w,)
give almost same results. But as we increase the number of tangential displacement (v)

hierarchical terms, a great improvement in the results is observed showing its greater

effect on the results and it will be shown in the coming figures.

The Figures (3.9-3.16) show greater effect of hierarchical terms added to the
tangential displacement (v) function. As shown in Figures 3.9 and 3.10, the results get

better for the combinations (v, —w, ) than that of the previous group of combinations

(vy —w, ). In present case the results were almost reached by using just 5-elements mesh

instead of 8-elements mesh used in the previous case showing considering the fact that
only one hierarchical term was added to the tangential displacement (v) function for both
polynomial and trigonometric hierarchical formulations. The results given by all the
combinations (v, —w, ) of polynomial hierarchical formulation are similar to each other.
Generally, polynomial hierarchical formulation gives better results that that of

trigonometric hierarchical formulation.
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The results for the group of combinations (v, —w, ) are given in Table 3.7 and are

plotted in Figures 3.11 and 3.12. The results given by the polynomial hierarchical terms
converge better than that of the trigonometric hierarchical terms. For both polynomial
and trigonometric formulations the results converge to the approximate solution around
3-elements mesh that shows an improvement in the resuits from the previous group of

combinations (v, —w, ). The results given by the trigonometric hierarchical formulation

show little improvement each time we add hierarchical terms to the transverse
displacement (w) function. The curves for the trigonometric hierarchical formulation
almost converge to a single curve where as the curves for polynomial hierarchical

formulation show more variations among them.

The results for the group of combinations (v, —w,) get even better with the

addition of three hierarchical terms to the transverse displacement (v) function.
Polynomial hierarchical formulation also shows a bit more variation in the results when
different hierarchical terms are added to the radial displacement (w) function reaching the

approximate solution at the 2-elements mesh for the combination (v, —w, ). The results

for the polynomial hierarchical formulation also show an improvement when hierarchical
terms are added to the radial displacement (w) function. Trigonometric hierarchical terms
once again show very little variation and look like converging to one curve and reaching
the approximate solution at the 3-elements mesh. So it is evident that polynomial

hierarchical terms give better results than the trigonometric terms.

107



801

Ul 8950°0 = UoRoala( [BAUSD PoyIeW Z1Y Aq uonnjog sjewixoiddy

21200 8¢ 71,00 x4 L1200 14 G§1200 1 {4 14
€GS00 (44 8¥500 X4 Ges00 6l 9e60°0 8l €
#0¥0°0 9l 00+0'0 Sl 85¢€0°0 €l 8G€0°0 43 I4
19200 ol 2€e00 6 £€810°0 L 6,100 9 b
swus) WISHEM-¢A swiis) WI4H EM-¢A swue) W3-4H Im-gA swis) WIHH OM-gA sjuswes|g
oLpawouobi oLewouobi | oujauwouobi oujswouobiL JO
oLjBWIWAS-UoN OLIBWWAS-UON OLOWIWAS-UON oLROWIWAS-UON Jdaquinn
€2.00 8¢ 91,00 LZ 9900 14 ¢cl00 ¥e 14
6,500 [44 2,600 ¥4 0€s0°0 6l [A7%5{0)0) 8l €
0S¥#0°0 gl 8¥0°0 Sl 8100 €l 29200 4" 4
¥0€0°0 0l #0€0°0 6 " 9Lco0 L 21200 9 3
suley W34HEM-gA swus) W34H em-¢A swie) WIHH Lm-cA swiis) W3-4H oM-gA
JRILWLOUAIOY D1I}BLIIAS-UON [BILoUAIOd JLBlWAS-uoN | jeiwouljos oujewwAS-uoN | [BILIOUAIOS DLBWWAS-UON
(w) '4'0'a (u) '4'0'd () '40'd () '40°'a | sjuaws|3
uonds|eg 10 uondslieq Jo uond3ljeq Jo uonoaiad 10 10
anuad JagquinN aljuan JBguinn ChiliTg) J1aquIinN ajuan JBquinN | JequinN

ajeuiwe] s8[pe/0] 103 Juswa|z weag paAing ajsodwod "4'0'A 8

uonIpu0)) ATepunog 991,J-paxIj

10] (“m — %4) SWLIS] [eOTYDIRISIH OLOWIOUOSII] UL [RIWOUA[O] JLQWWAS -UON AQ Paje[no[e)) UonR[ja( [eNud) L'€ dqelL




~~~
b
=
I
N
-
N’
7 T T ; €O Q T T In T ; 0O
v ! V ‘B o | ” | |
i /., ! ”,m c i L ‘ /” ” ! u m - _
7 N\ ! k= > > > > 2 r m N u k= O ||
N ! = === | | i 3 =
,, N ! 89098 2 = /,/ ! , 5222823
[ i Q0 Q0 O R o L ‘SttttO\
it e il r B P ), Rl 7 " , r MR ETITINN™
| \ | | |
i | 1E¥333n g AN | EFFFEE N
\ | Y999 Z. : \ ! | ”FQWWWR
. ” 8 ;o o N | IR
[ ! ; =] N i ! »
e e Peom- o Rt |4 © 37 S bl i NTro-ooo- T m - | -4 ©
| . ” , i 5 | i ! | m
| / | ” “ 1& ” ‘7/ | U ,
| ” | : ® = , P | | |
AN ! , | c .Inm [ ! (AN ! |
, \ : | ] ! , i
T R e Ll T T S S e e S e
\ | [ ! o Qo .5 | ! \ . | ,
,/ ” I U 1T ©n m | I \ ” . ”
N | | . & =5 , | o ” M
\ ! B 4 8 : , \ “
it At Fomm 4.m M o  romooc e mmm e I -
,,/ | s 23 | \ |
EA ! < - | ”/ ,
> D =T~ Ly i
N \ ! o O X
/,, ,M/ A W3 on C«M
T R e R -
vf/ Ty \ . ;o.lv. m
T : L O
i /,/, The A\ o T
, o \ | 2 =
« T ; ) i =0
O 4 O j =
”\ R ot o T A/k/ 4,2 m.. Lnﬂb
i /,/ ///h //// ﬁ m rnm
N ~_ Q 5
| > Pl 7 o B
| C T e
| NN . _E
s 8 3 8 § 35 ° 5 g
o o S o o =}
® O
(u1) uonos|eQq |esUSD 5 g (ur) uonosjjeq lenuad
gl
o O
= Ay

109

Number Of Elements

Figure 3.12 Comparison between the Results Obtained using Non-Symmetric

(v, —w,,,) Trigonometric Hierarchical Terms for [0/90]s; Laminate



Ol

U1 8960°0 = uondsvle( fenuad :poydw ziy Aq uopnjos lewixoiddy

ZL.00 14 86900 104 62,00 [44 L1200 (4 €
L6%0°0 8l eLv00 9l €160°0 12 8.v0°0 14 4
18200 L 920’0 6 9200 8 0v20'0 L 3
swisy WIAHYM-gA Swiie)] W34H cM-€A suwlio) W3HH LM-€A suwie] W34H OM-£A Sjuswie[g
oLpewouobll | oujewouoblly oewouobil | oLjauouobll | jo
2LBWILWAS-UON oLJOWIWAS -UON oLBWWAS-UON oLBUIWAS-UON Jaquinn
69900 €C ¥.60°0 [#44 91,00 \12 €
98600 81 9€G0°0 gl €800 Gl €050°0 143 4
1ZAZNY) L 2000 6 9¢€0'0 8 LEEO0'0 L L
swis) WIIHPM-EA SWwie} W3-H gm-gA sule) W34H IM-gA swiey W3HH om-gA
|BILIOUAIOS OLJBWIWAS-UON | [eiwouAiod oLewwAS-UoN | [eIuoukjod ojeuwwAS-uoN | [eluiouhiod oLeWWAS-UoN
(un) '4'0d (u) '40a () '4'0Q (u) '40°q | sjusws|3
uonosiaq Jo uondaaq 10 uonos|jaq Jo uonosyaq Jle] Jo
anua) Jaquinn alus) JoquinN anusn JaquinN anuan JequinN | JaquinN

ajeutwen mw_ncm\on_ 10§ JUBWIB|g weaqg paAIND Qu_wOQEOO 4°0°'g 8

UOTIIPUO)) AIBpUnog 391J-poxI

10 (“m — fa) SWLA T, [EOTYOIEISIH OLQWOUOSII] pue [e[wouk[o JuounuAg ~uoN Aq pajemore)) Uonod[Ja(] [enud) §°¢ AqeL




< W T T o]
: , | |
W | ! ” c
| | | 8 g
! ! NS5 >>>>8
i \ ! 96 0 o022
SRR oo SR HER 33 L3121
i I
| N | 1Z2$3% % n
| \ ” Eee2eR
; N ! ,
| | ! ! L X
T Lo A 1o
i I [
N\ |
P e e . T
h
\ |
A\ | |
rlywwwwx‘\::“\l‘1(.,\\,. 1111111 L\\Ilti\;yllr»\im4
| 4 w
; \ ,
' [ H
| \ i
| \ |
. e Y 02 )
RN W
i \ W
| . L W
= \ |
i /,7 , \ ” W
(l, \\\\\\ S el il [l R -1 N
o " | - |
o |
W i ,///, ! , N ”
| B RN |
| , : , ~
' N i | AN
w S //,\., ” ! [N -
To3 < ) I - o
%. =] o =] o (=]
o (] o o o o

(ur) uonodsyeQq [enued

Number Of Elements

Laminate

Figure 3.13 Comparison between the Results Obtained using Non-Symmetric

(v; —w,) Polynomial Hierarchical Terms for [0/90]ss

T T T ©
I , i I
\ | ) | ,,n |
N ! . | ! ol
N : e
\ | “ g 21
N ! . L= DD O D 3|
N , ,.0.n.n.n.ﬂd”
T AL Rt o BEEETS N
[ ' . | - i
| N _ BEri N
f N . [ =
AN , HeeogE
| \ ! '
M AN | ” A i “
U P A [ - -4 ©
' A | |
i /,
| _/ i
! N i , |
| | | |
R N - w
' , i i |
! ) N\ I ! i
' ' . | |
i ! . I i
, , \ ! ”
lllllll L114\\\114\rb\i,,ﬂli\\\il,r\1\\|||II41III4
: \ i
f _/, !
. A ;
1 | t
,, I
I
I
I
I
I
|
|
I
I

—_

ut) uoioajjeq fenued

Number Of Elements

Figure 3.14 Comparison between the Results Obtained using Non-Symmetric

(vy; —w,) Trigonometric Hierarchical Terms for [0/90)ss Laminate

111



The combinations (v, —w,) with maximum number of hierarchical terms

associated with the tangential displacement (v) function and no hierarchical term with the

transverse displacement (w) function display the most rapid convergence of the results.

Only one element mesh is required for the combination (v, —w,) to reach the

approximate Ritz solution. Trigonometric hierarchical terms once again show very little
variation but this time convergence is faster than the previous combinations and the

approximate solution was reached at the 2-elements mesh.

So the combinations (v, -w,) and (v, —w,) seem to be the fast converging

combinations for the polynomial hierarchical and trigonometric hierarchical formulations

respectively.
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Chapter 4

Buckling Analysis of Curved Beams Made of Isotropic and Composite Materials

using HFEM

4.1 Introduction

Buckling generally occurs when the component is loaded in compression. A simple
way to describe the buckling phenomenon is to use an example of an ideally straight bar
with uniform and axisymmetrical cross section subjected to a compressive force along the
centre axis of the bar. Under such a force, the bar will be slightly shortened but remain
straight with no bending. If a small lateral force such as a breeze is applied, the beam will
be bent infinitesimally but will return to its original straight form when the breeze
disappears. If the axial force is gradually increased, a condition will be reached in which
a small lateral force will cause a deflection which remains when the lateral force
disappears. Such an instable phenomenon is called buckling and the critical force is
called buckling load or Euler load. Buckling usually occurs when the compressive stress

is well below the material’s stress limit [46].
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In linear mechanics of deformable bodies, displacements are proportional to loads.
The essence of buckling, however, is a disproportionate increase in displacement
resulting from a small increase in load. Consequently, buckling analysis is a subtopic of
nonlinear rather than linear mechanics. Nonlinearity in mechanics of deformable bodies
is either physical or geometrical; i.e., it enters the theory either in the stress-strain

relations or in expressions representing the influence of rotations [51].

Only with extensive construction of truss railway bridges did buckling problems
become of practical importance. Due to advances in high-strength-material technology,
the structural members used have become increasingly thinner and lighter and thus
buckling problems have become increasing concern. Buckling can happen to structures in
many forms, such as columns, truss members, components of thin-walled beams and
plate girders, walls, arches, and shell roofs. Buckling can also happen to torispherical
shells under internal pressure. In aerospace structures, minimum-weight design is an
important criterion so that the structures are made of skins and thin members. The
buckling problem is a predominant one [46]. In this chapter the primary concern is
focused on curved beams made of isotropic and composite materials. The same arch

problem will be used for the purpose as in the 2™ chapter.
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4.2 Formulation of a Curved Beam Finite Element With Constant Axial Force
4.2.1 Energy Expressions

The strain energy for a curved beam with uniform cross section has been given in

Chapter 2 as
_EA ¢, El ¢ ,
Uri;k¢k+—;ﬁrw 4.1

where ¢ and x are the axial strain and curvature of the middle surface, respectively, with

o w o,

LR 42)
os R R
2
x:i@_a?=lW—w (4.3)
Ros 0ds° R
Substituting Equations (4.2) and (4.3) into Equation (4.1) gives
Up=Uny + Upy + Uy (443)
where
U, = k4 Ij-(v')z ds + 2 ]‘(v')2 ds
o2 2R*
L L
U,, =E _[v'w ds — £ J.v' w" ds (4.4b)
R 0 R 0

_EA v El % v
u,, =R J(w) ds+76[(w) ds

The energy expressions U, U,,, and U,, are associated with axial, axial-flexural

coupling, and flexural behaviors, respectively.

117



4.2.2 Thin Ring Deformation Theory

The kinematic relations for a thin ring are shown in Figure 4.1. For simplicity, the

ring cross section is assumed to be axisymmetric and only in-plane bending is considered.

—=! b
/ 2

>

EL

Figure 4.1 The Circular Ring Subjected to Uniform External Pressure

The constant a represents the radius of the undeformed centroidal surface and the
maximum thickness 4 is taken to be much smaller than a. Points in the ring are referred to
polar coordinates R and @, as shown in the sketch of the undeformed ring in Figure 4.2.

For convenience, an additional coordinate variable is defined by the relationz=R-—a.

Thus z is measured positive outward from the centroidal surface.

Consider a circumferential line element of length ds referred to rectangular

Cartesian coordinates x and y, as shown in Figure 4.3. After deformation the length of the

line element isds”, and the element is referred to new coordinates x™ and y*. Let v and w,
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denote components of the displacements of the displacement vector in & and z directions,

respectively [51].

Figure 4.2 Coordinate System

Then from Figure 4.3,
=Rcos8
T AReOs 4.5)
y=Rsind
x"=Rcos@—vsinf+wcosb
(4.6)
y" =Rsinf+vcos@+wsinf
and
=—Rsinf@—v'sin@—-vcosG+w cos@-wsin
d @.7)
dy’

=Rcos@+Vv' cos@—vsinf@+w'sin@+wcosl

where V=dv/do

and w=dw/d@
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In terms of polar coordinates,

(ds)’ =(Rd6Y | 4.8)

and (as* ) =(ax'} +(ay" ¥ 4.9)
(ds* ] = [R* +2R(V' +w)+ (v +w)? + (v=w')? | (dO) (4.10)

(as') = {1+2(V'R+W)+( V';W) +(V"RW') }(M@)2 (4.11)

Figure 4.3 Circumferential Line Elements Before and After Deformation

The work done by an axial force P due to bending of the curved beam can be

derived by considering the beam shown in Figure 4.4. Due to lateral deflection of the
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curved beam from its initial position, free end B is displaced by a small amount and

length of the circumferential line element changes from dstods”. This displacement is
equal to the difference between the lengths of the circumferential line element before and

after displacement.

We first consider the difference between the length of the circumferential element

ds" and the corresponding circumferential line element ds of the curved beam as shown

in Figure 4.3.
2 , , 2 N2 1/2
ds' —ds = | 1420 +W)+(V+W) +("_WJ RAO-RdO 4.12)
R R R
1 ! 2 ’ 2
Suppose r = 2(v +w)+(v +w) +(v WJ
R R R
A=[t+x]"* Rd6-Rdo (4.13)
11,
A=|l4ox =i+ Rd6 - RdO (4.14)
Axly (4.15)
: .

Its fourth order is certainly too small to be included. The displacement of the free

end B is the integration of (ds™ — ds) through the curved beam length L.

A=l J‘{z(v'+w)+(v'+w) +(V~W’) }ds (4.16)
27 R R R
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Thus the work done by the axial force P due to the free end displacement of B is

e, (rany (o), @i
W =3 ; R R '

where v' = 0v/0s, w' = ow/ds and the axial force P is positive when in compression.

2 12 2 2r 2 12 2 '
W= TN LA AL S LA PR (T
>R "R R R R R R R

w,=w_+W,_ +W,,

(4.19a)
where
L ' 2 2
szf 2v +v2+12— ds
2R R R
L ’ ’
= J{zvzw——z"f}ds (4.19b)
2L R R
P L 2W w2 W!Z
== | ——t—5+—|ds
20 R R R

4.2.3 Interpolation Functions

The same interpolation functions for tangential (v) and radial (w) displacements

for the curved beam finite element used in chapter 2 will be used for the buckling

analysis as well.

v(s) = Nvi+ Nyvs + Nsvo + Nyvs; (4.20)

w (S) = Nyw; + N0+ Nsw, + N6 (421)
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where the interpolation functions are

4.2.4 Basic Stiffness and Incremental Stiffness Matrices

(4.22)

Substituting the deflection functions (4.18) and (4.19) into Equations (4.4b) and

(4.19b) and then performing partial differentiations of the energy expressions U and W

with respect to each of the eight degrees of freedom (2.15), the equations for the §x8

stiffness and incremental stiffness matrices of the element are obtained [46].

[lk]-Pln]]ia} = 0

(4.23)

where [£] is the basic stiffness matrix associated with the bending deflection; [#] is called

the incremental stiffness matrix associated with the effect of the axial force P on bending

deflection.

The coefficients in 4x4 sub-matrices in [k] are obtained as given in Equation (2.16).

=~
I

W wy;
0

where the primes indicate differentiation with respectto s and a = EI/ EA.

L 14
jEA(H%) N, N, ds
R
0
L ! ! 1
ko= k, = -Eﬁ(N.N. _aN. N, )ds
R i J i J

L N,N ” "
kyy, = [EAl =L +aN, N, |ds
; U R

(4.24)
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By substituting the interpolation functions (4.22) into Equation (4.19b), the

coefficients in [n] can be derived. Energy expressions W, and W, each have one linear

!’

term (— ) and (ZTW) respectively. After substituting the interpolation functions in these

linear terms and performing the integration through the curved beam length L, we will get

a constant value. As a result of this integration Equation (4.23) will become as:

Constant + [[k]-P[n]}]{d} = 0 (4.25)
as Constant # 0 (4.26)

Equation (4.19b) will be modified after discarding those linear terms in energy

expressions W, andW,

2
va=£ —2 v—z dS
2 R R

P

W, = j[sz—sz]ds (4.27)

et et

The coefficients in 4x4 sub-matrices in [#] can be derived as

S
i

P L
F(_)[[1\7;1\7; +N,N,|ds

=S
I

Y Sy

n, = %II[N,’N] + N, N']as (4.28)
0

n, = f;j[N,. N, + N/N']ds
0

where the primes indicate differentiation with respect to s.
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Because the incremental stiffness matrix [#] contains P, it is often referred to as
the initial stress matrix. Because this matrix contains L but no EJ, it sometimes referred

to as the geometric stiffness matrix.
4.3 Formulation for a Curved Beam using Ritz Method
In this section approximate solution in conjunction with Ritz method [50] is

discussed. The strain energy expression for a curved beam which is in a special reduced

form of that for a thin shell [68] is given by Equation (2.14b).

0, :1"‘"{5{(@) () ]_( o) en(22) B (2)
2.2 Os R R Os 05’ R*\ 0s
—EK@) (62—?)} yds (4.29)
R |\ 0s )\ Os

The potential energy owed to the axial force P at the free end is

2 2 12

W—ﬁlj LA 8 Y (4.30)
" 2J R R R R R R '

The approximate solution is expanded in a single summation series

w(s)= iAm S, (s) (4.31)
w(s) = i B, S, (s) (4.32)
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The functions S, (s) and S,(s) have to form functional bases for polynomials,

trigonometric functions and hyperbolic functions and are chosen to satisfy the boundary
conditions. The coefficients 4, are next determined by the stationary conditions, which

are written as:

U _o o ou, _ ow, (4.33)
o4 o4, o4

o
U _6o o oY, _ W, (4.34)
2B, oB, 0B,

U, and W, are the strain energy and the potential energy owed to the

axial force, obtained by substituting the approximate expressions for the deflections into

Equations (4.29) and (4.30) respectively.

The left hand sides of the Equations (4.32) and (4.33) can be put in the practical

form as follows:

oU, "¢ [EAlY EA[L  dS Mo q’S d’S,
= =AY 4s S |+—|Y B —S, |+EIY 4 —nr""!
e B s ] B 3m G ]vms

i=1 ’ ds 2 dsz

m—2 | }ds (4.35)

s=L 7
oS BB S e | S g S

oB, 2% o ds ds | o ds R* |45 ds ds
EI\& , d’S, dS
— A m n ds
R [MZ:, " ds® ds } } (4.36)
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P 2 2 | & das 21¥, 4SS dS.
A 2 5[ 2[ 'S"'S'} R? { S ds ]+R2]: " ds ds}

n=1 i=l

21, 48
_F[ZB" “Sn}}d
n=1
ow. P% 2|& _dS dS 2| ¥ 2
n= HESIDYB L+ =) 4 S —1>.B,S,S,
0B, 20{R2[;’ds ds} R{Z; ] 2{2 "f]
M
—%[ZAmdSmSn]}ds
m=1

Equations (4.34), (4.35), (4.36) and (4.37) finally become

Z(S S,)+ EIZ(ddS; ‘ZSS”A,.

252 25 (5] e

n=l

N as, N das,
+ EA Z(ds”——i]+E—IZ[dS }Bi } ds

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)
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1 (ds,ds; | 1 (&
*{F(Z GS_EJJFRZ (z 5, s,” By (4.42)

where
mi=123 M,
nj=123. ... N,

4.4 Fixed-Free Curved Beam Example: Analytical Solution

Uniform curved beam with fixed-free boundary condition is shown in Figure 4.4.

The parameters are defined as 4 = 1x1 in® ,R=20in,I=1/12 in4, and E =10’ psi.

Figure 4.4 Fixed-Free Curved Beam
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4.4.1 Solution by Ritz Method

We will discuss the case of a curved beam fixed at one end and free at the other

end as shown in Figure 4.4 subjected to an axial force at the free end. As the curved beam

is fixed at one end and free at the other end the boundary conditions are:

For tangential displacement (v)

foredge s=20:
v, =0, — | =v,#0
Os|
foredge s=1L
v, #0, QX =v,=0
Os |,
For radial displacement (w)
foredge s=20:
w, =0, ml 6,=0
os |,
foredge s=1L
W2 # 09 @ = 92 * O
Os |,

4.4.1.1 Solution Approximated by Displacement Functions

For the transverse displacement (w) we choose the polynomials in the form:

0= ()

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

129



For the tangential displacement (v) we choose the polynomial displacement functions in

the form:

S.(s)= (%)2 - (EZ—S) (4.48)

These functions satisfy the boundary conditions in Equations (4.43), (4.44), (4.45), and
(4.46). In the case where m = n =2 the system of equations to calculate the critical

buckling load becomes

a, a, b, by, ¢, ¢, d, dy
a, aj, by, by Cy €y dy dy
- P =0 (4.49)
a, day b, by ¢y Cp dy dy
a, a, b, b, Cy Cy dy dy

where a; and b, represent the coefficients of the [k] matrix, whereas ¢ and d,

represent the coefficients of the [#] matrix.

Table 4.1 Solutions for Fixed-Free Curved Beam using Ritz Method

Value Critical
of Buckling Load
mé&n (Ib)
1 0.638x10’
2 0.246x%10°
3 64842
4 54920
5 44330
6 44046
7 40910
8 40539
9 38495
10 37684
11 36094
13 34788
14 34084
15 34691
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The results for the Ritz solution for the given curved beam example shown in
Figure 4.4 are given in Table 4.1. The results show improvement in the critical buckling
load value as we increase the values of m and 7 in their displacement functions. The
value shows a greater difference initially but as we increase the values of m and n, the
difference gets smaller and smaller. The approximate critical buckling load value given

by Ritz method is 34691 /b.
4.4.2 Solution using Eight Degrees of Freedom (D.O.F.) Curved Beam Element

If one element is used to model the curved beam shown in Figure 4.4, the

boundary conditions are

ow v
v =w = (5)1 = (5)2 =0 (4.50)

After applying the boundary conditions and from Equations (4.23), (4.24) and (4.28), the

basic stiffness and incremental stiffness equations can be obtained as

ky ki ky o ko Ny My Ny Hyg Va
k., k. k., k N, N N, N v
52 Rss  Ksy  Ksg 52 Mss M5y g 2
- P =0 (4.51)
ki kis ko ko Ny Ms Ry Ry w,
ke kys kg kg g, Hgs Mg Ny 0,

where k; and n; represent the coefficients of 8x8 stiffness and incremental stiffness

matrices respectively.
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The results for calculating the critical buckling load for 8 D.O.F. curved beam
element have been given in Table 4.2 which show that at the 35" element, the critical
buckling load value becomes almost equal to the approximate value given by the Ritz
method solution with a 0.32 % error. For the first value there is an error of 98.94 %
which suddenly reduces to 31.73 % when two elements were used. As we increase the
number of elements the difference becomes smaller and smaller and finally ends up with

a difference of 0.32 %.

Table 4.2 8 D.O.F. Curved Beam Finite Element Solution for Fixed-Free
Boundary Condition

Number Number Critical
of of Buckling Load Error (%)
Elements D.OF. (Ib)
1 4 0.32643x10’ 98.94
2 8 50818 31.73
3 12 44551 22.13
4 16 43722 20.66
5 20 43355 19.98
6 24 43044 19.41
7 28 42729 18.81
8 32 42420 18.22
9 36 42109 17.62
10 40 41780 16.97
12 48 41144 15.68
14 56 40524 14.39
16 64 40007 13.29
18 72 39127 11.34
20 80 38752 10.48
22 88 38191 9.16
24 96 37849 8.34
25 100 37358 7.14
30 120 36043 3.75
31 124 35934 3.46
33 132 35294 1.71
34 136 35057 1.04
35 140 34801 0.32
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4.5 The Hierarchical Finite Element Formulation for Isotropic Curved Beam

The hierarchical finite element formulation for the isotropic curved beam for
buckling analysis will be used in the same way as described in chapter 2. In the
hierarchical formulation, we modify the approximating functions (i) by adding

trigonometric functions (2.33) and (ii) by adding polynomial functions (2.58).

Hence, the displacement field for the element, in terms of the nodal degrees of
freedom and the hierarchical degrees of freedom, can now be written as,

for tangential displacement (v)

N
v=Nw + Nyv, + Ny, + Nyv, + ZNr+4er+4 (4.52)
r=1
and similarly for radial displacement (w)
N
w=Nw, +N,0, + Nyw, + N0, + > N, ,w,,., (4.53)

r=1

We will proceed by using the same combinations of the hierarchical terms.
Firstly, symmetric polynomial and trigonometric hierarchical terms will be used with
both tangential (v) and radial (w) displacement functions. Secondly, non-symmetric
hierarchical terms will be used for both displacement functions by trying each and every

possible combination of these hierarchical terms.
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4.6 Discussion and Conclusion

The results for symmetric trigonometric and polynomial hierarchical formulations
for calculating critical buckling load for curved beams with fixed-free boundary
conditions are given in Table 4.3. When we increase the symmetric hierarchical terms
from one hierarchical term to four hierarchical terms for trigonometric hierarchical terms,
the results show better convergence as we increase the number of elements. The
convergence for each of these terms is very small and similar to the results given by the
conventional FEM. For symmetric polynomial hierarchical terms when we increase the
number of elements, at one point the results given by two, three and four hierarchical
terms converge to one value and they all give the same results. The results given by
polynomial hierarchical terms are not much different from that of the results given by
trigonometric terms except that for some of the initial elements the convergence is better
with polynomial terms but when we increase the number of elements, the results with the
trigonometric terms get better. Four symmetric trigonometric hierarchical terms give
good results among all the terms i.e. 33949 /b. For symmetric polynomial hierarchical

terms, results given by all the terms are same i.e. 34182 /b.

The results for the (v, —w,) combinations with trigonometric hierarchical terms

are given in Table 4.4. When we increase the number of trigonometric hierarchical terms
with the radial displacement (w), the results get better for the first few elements with each
addition of the hierarchical terms from 1 term to 4 terms. At one point, for one specific

element, all the hierarchical terms for the combinations (v, — w,) give the same result.

134



cel

91 169%€ = peo] Suippong [eonu) :poyidjA ZIRy £q uonnjog dewrxolddy

[4:134% 1% Z8Lve 8vl 28lye 4" £8LPe 9Ll ge
1628¢ 124" 1/625¢ el PACTA 8l 00gse LGl 0¢
09v9¢ 14" 09tv9c 8. 09t9e 4]’ 999 ozl T4
G99.¢ 12" G§99.¢ el G99.¢ zcl 189/€ 101 0C
0998¢ 174" 0998¢ 801 Gi68¢ Z6 £968¢ 9. Gl
1891 ¥ 144 €8ELYy 8¢ v.ILLY [4 092y 214 ]
LB6LY ¢ €69l Le 0912y 9¢ 6eLCY i 14
LY2y 8¢ 9102y vZ 96G¢Y 0c 662ty 9l €
geeey 0c glely Ll 6SLEY 142 Y4194 Ll 4
ZL 0l 6618 8 09106 9 L
swiuey W3-4H v swis] W34H € swis) WI-4H ¢ wis) W3-4H |
[BILIOUAIOH OLBUILLIAS [BILLIOUAIOY OLJBLWIWAS [BILLIOUAOS OLIBLUWAS BILoUA|Od JLJBUWIWAS
6Y6£€ 121 [A°5] % 114" 8G6¢EE 147" 88ive 9Ll g¢
#00S¢€ 124’ €109¢ Ll £206¢ 8l L0gs¢e LSl o€
£809¢ 140]" 001L9¢ 8. gLl9¢t [4%]° LL¥9E ozl S¢
eLLlE 7ol g6lL.le el l22.¢ (44" vc.l8g Lol 0¢
GET8e 14" 6.28¢ 801 5e8¢ [43] | 668€ 9. Gl
06€0v 4% GLLOV 8¢ ovely [4> alecy oz G
19L0Y 9¢ LeCLy L€ 188LY 9c 68.2v ¥4 14
142134 8¢ LL8LY 144 6862V 0C £EEEY 9l €
1% 444 0c YA TA4 Ll 909¢cy 14’ cleey Ll Z
€09t 43 6€9¢eY 0} 01lG¥¥ 8 2.L226 9 l
suLd) WI-H v swus] WI-4H € swiusy W34H ¢ uus) W3-4H 1
2138WOUOBLL| JLBWWAS | oupewouobL | ouewwAS | oujswouobly oewwAs | ojewouobl JLsUWIWAS
(an) '40d (an 400 (an ‘400 (an ‘40 | susweig
peo Buipong 10 peo Buipjong 10 peo Buiyong 10 peo Buipong Jo Jo
{eoniun raquinN [eanun JaquinN [eonuD JaquinN |eonn JaquinN | JequinN
juswa|3 weag paan) ejsodwon ‘4'0'd 8

uonIpuo)) Arepunog 931,[-paxI]
I0J SULIO ], [eOIYOIeIdIH [erwouk[od pue dimawouoSL] omowwAg Suisn Aq paje[noe)) peo Suipong [eonr) € dqel




9¢l

g1 169¥¢ = peo] uIppong [eoni) :poyd Ziryg 4q uonnjog dewrxorddy

68.¥€ 082 68.Y¢ 1°1°T4 68.vE oLe 68.¥¢ Gl 115
G209¢ ove GZ09¢ 0ce §209e 08l G209¢ 0SL 0¢
LYELE 002 Lpele S.l LPELE 051 LvelE gZl T4
6€.8¢€ 091 6€.8¢ orl 6€.8¢ ozl 6€.8¢ 00l 0c
L 220V 14} Lgcor S0l 1220t 06 1220 7 Sl
1280v 47" L2S0v 86 L2S0F ¥8 1250v 0. 12
9€80Y 0L 9£80p 16 9e80y 8/ 1€80V S9 €L
1514944 96 sylLly ¥8 1514954 [ 1514887 09 143
A1 404 88 coviy L2 ZorLy 99 eoviy gg Ll
8LV 08 8LLLY 04 8LLLY 09 8LLLY 0s ol
602 [#] ¥602¢v €9 ¥602¥ ¥S G602 114 6
60vCY ¥9 60vCYy 96 60vCy 1514 0lvey (017 8
0cLzy 96 WYAXAS 6t IAXA4 (44 [AAX4 4 ge L
£20ey 1534 £20el A4 IXAN%4 9¢ 9zZ0cy 0¢ 9
gleey (0) 4 SLEEY ge ]R8 4 0¢ YA % 4 T4 S
GTocy [A> gzocy 8¢ L29¢v ¥Z 9c9el 0z 14
Syevy ¥Z ovZry 12 052y 8l (NTA 44 Gl €
L6csy 9l 60v8Y 14" (018714 43 GLEBY 0l 4
,0Lx68021°0 8 OLxIELCL0 L QOLxLELSGLO 9 01x/98G1°0 S L
 Swis] WHHH Mp-AQ suwie} WIJH Mg-A0 swiey W3 -HH MZ-A0 Swis} W34H mL-AQ
oLpawouobl | oLyewouobl | oLpewouobl | oLewouosi
oLOUIWIAS-UON oLIJBWILIAS-UON OLJBWIWAS-UON oLJBWLIAS-UON
(a) '4'0°d (an) '40a {a) '40'a (a1) ‘40 | sjusws3
peo Buiong 0 peo Bulpong 10 peo Buipiong Jo peo Buiyong 10 Jo
e J1aquinN [eonun JaquinN 1eonuo Jagwnp oD JagwnpN | JagunN
juswWa|g weag paAin) ajisodwon ‘4'0'q 8

UONIpuo)) AIRpuUnOg 99I1J-PoxL]

10] (“m — %) suo] TeoIYoIeIdIH OLBOWOUOTU] OIPWWAS -uoN Suisn £q pajenore) peo] Juipong [eoni)

b’y d1qeEL




The results for the group of combinations (v, —w,) are given in Table 4.5. With

the increase of number of hierarchical terms associated with the radial displacement (w)

function we get better results. There is a large difference in the critical buckling load

values among the combinations (v, —w,), (v, —w,), (v, —w;) and (v, —w,) of

hierarchical terms when one element mesh was used. The results get better with the

increase of the number of elements. After the 5- elements mesh, the convergence for the

combination (v, —w,) is better than all the other combinations. The critical buckling

load value is 34677 [b for this combination and this value is obtained at the 20-elements

mesh compared to 35-elements mesh for the conventional FEM.

Table 4.6 gives results of the trigonometric hierarchical terms for the

combinations (v, —w,). When we increase the number of elements, results for the 1%
element get better for the group of combinations (v, —w,). The results given by the
combinations (v, —w;) and (v, —w,) are closer to each other. The combinations

(v, —w,)and (v, —w,) give better convergence compared to all the other combinations

of this group. The critical buckling load values for these combinations are obtained at the
15-elements mesh and 25-elements mesh respectively compared to 35-elemnts mesh for

the conventional FEM.
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The results of the trigonometric hierarchical terms for the group of combinations

(v, —w,) are given in Table 4.7. These results follow the same pattern of the
combinations (v, —w, ). The combination (v, — w,) provides better convergence for the

values of critical buckling load compared to all other combinations of this group. The
number of elements mesh used to get the critical buckling load value has been reduced to

10 compared to 15 for the combination (v, —w,).

The results of the trigonometric hierarchical terms for the combinations

(v, —w,) are given in Table 4.8. Once again the combination (v, — w,) provides the

best convergence among all the combinations of this group. The convergence for this
combination significantly improves and 9-elements mesh is used to reach the
approximate Ritz solution. As the number of trigonometric hierarchical terms is
increased associated with the radial displacement (w) function the convergence becomes

less fast.

Critical buckling load calculated by using polynomial hierarchical formulation for

all the combinations as used for the trigonometric hierarchical functions are given in
Tables 4.9, 4.10, 4.11, 4.12 and 4.13. The results for the combinations (v, —w,) are
given in Table 4.9. These results show a little difference between the critical buckling
load values calculated by all the combinations of this group. All of these combinations

give a single value of the critical buckling load which obtained by using 35-elements

mesh.
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The results for the group of combinations (v, —w, ) of polynomial hierarchical

formulation are given in Table 4.10. These results show that when we increase the
number of hierarchical terms, while keeping one polynomial hierarchical term with the
tangential displacement (v), critical buckling load convergence becomes better with each

addition of the element. The combination (v, — w, ) provides the best convergence in this

group of combinations. The critical buckling load value is obtained at the 20-elements

mesh.

The results given by the combinations (v, —w,) of polynomial hierarchical
formulation are given in Table 4.11. The convergence of calculating critical buckling
load for the combinations (v, —w,), (v, —w;) and (v, —w,) is almost similar for all of
these mentioned combinations. The combination (v, — w,) gives the best results among

all these combinations and the value of critical buckling load given is reached at the 14-

elements mesh compared to 20-elements mesh in the previous case.

The combinations (v, — w,) give results which are given in Table 4.12. When we

increase the number of polynomial hierarchical terms with the radial displacement (w)

function for the first few elements, we see an improvement in the results. The

combinations (v, —w,) and (v, —w,) give critical buckling load values that are very
close to each other. The combination (v, —w,) provides better convergence than the

previous combinations. The approximate Ritz solution is obtained at just 10-elements

mesh.
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