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ABSTRACT

ANALYSIS AND TESTING OF MEMS STRUCTURES SUBJECTED
TO RANDOM ENVIRONMENT

Jianliang Ge

In many applications, MEMS structures are subjected to environments that are
stochastic in nature. It could be random loading in the case of pressure sensors. On the
other hand, due to random vibration of the body in which MEMS devices are attached,
they are usually subjected to random base excitation. Therefore, in general MEMS
structures are subjected to random environments which may be either random loading or
random base excitation. Moreover, as the operating environments of MEMS structures
are random, the performance response such as stress, strain, and displacement of the
structures are consequently random. In order to explore the dynamic performance of
MEMS structures under random environments, the concepts of spectral density function,
variance and covariance and the finite element method have to be studied and employed.
Random vibration models of multi-degree-of-freedom system and continuous structures
have been developed and applied to MEM structures under random loading and base
excitation. Experimental results are also conducted on typical MEM structures to verify
the analytical model. Moreover, from application point of view the response of a tire
pressure due to random pressure fluctuation inside the tire has been studied and a
formulation has been proposed to obtain the spectral density function of the tire pressure
with respect to the random pavement roughness. The reliability of MEMS structures in

random environments has also been addressed briefly.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Statement

MEMS is an acronym that stands for MicroElectroMechanical Systems. MEMS-
based pressure sensors, accelerometers, gyroscopes and actuators have tremendous
applications in many fields, especially, in automobile and aerospace industries. In most
practical applications, MEMS devices are subjected to random vibrations. For instance,
the pressure sensor designed to monitor the fluctuation of the pressure inside a
automobile’s tire is subjected to random pressure loading induced by the stochastic nature
of the road surface. Thus, the measurement of tire pressure is a random phenomenon.
Similar phenomenon also occurs in combustion pressure sensor which is employed to
monitor engine performance.

Practically, all quantities such as acceleration, pressure, velocity and dynamic
forces are stochastic in nature and thus the MEMS devices used to measure and sense
these quantities are generally subjected to random environments. Also MEMS devices are
widely used in aerospace applications for both sensing and actuating purposes. The main
applications are the distributed MEMS pressure sensors at the aircraft wings and body

and also the distributed actuators at the wings for aerodynamic control. In both cases,



where the microstructures are attached to wings, the MEMS structures are expected to
undergo random base excitation, as the aircraft structure is subjected to the random
excitation due to stochastic nature of aerodynamic loading. Since MEMS structures are
subjected to both random loading and random base excitation, these random processes
are treated as random environments in a general sense. In random environments, MEMS
performances such as displacement, deformation, strain, and stress are also stochastic due
to the nature of the phenomenon. Therefore, as more and more applications of MEMS in
future will involve random environments, it becomes important and essential to study the
behavior of MEMS structures under random environments. In this thesis, a complete and
comprehensive inVestigation has been conducted to study the behavior of the continuous
microstructure under random environments. The reliability of the MEMS structure under
random environments is an important issue which has been addressed in this study. An
efficient methodology has also been developed to predict the dynamic performance and
reliability of MEMS structures under random environment. Experimental study has also

been conducted to validate the methodology and simulation results.



1.2 Literature Review

This thesis focuses on dynamic performance of MEMS structures and their
reliability in random environments. As a new emerging technology, MEMS
(Microelectromechanical System) or MST (Microsystem Technology) will find
applications in almost every field of human interest. MEMS is a broad term that
encompasses a fairly nebulous group of products. Essentially, MEMS are any products,
ranging in size from a micron to a centimeter, that make use of mechanical, electrical,
optical and other properties [1].

Initially, MEMS were developed from technologies used in the semiconductor
industry for the production of electronic circuits. Less than 10 years after the invention of
the integrated circuit, Nathanson [2] used microelectronic fabrication techniques to make
the world’s first micromechanical device. By the early 1980s, due to massive
improvements in processing technologies, micromechanical devices grew in popularity
[3]. In the following years, a new industry was born, where electromechanical systems
could be realized on micrometer scales. The result was a whole new class of sensors,
machines and actuators that performed common tasks on smaller scales that were ideally
suited for mass production. MEMS offer great promises for creating cost-effective,

miniaturized and robust sensors or actuators. Although MEMS devices come in a wide



variety of applications, the types of structural parts used in them is rather limited. In most
of the applications, MEMS devices are designed with some basic parts, such as
cantilever beams (single side clamped, double side clamped), plates, springs (often as
cantilever beams), hinges, etc [4]. As this thesis aims at developing a prediction method
that could be applied to many applications, the MEMS structures are considered as these
basic units or their combinations. In order to extend the application of this method to
other complicated structures, Finite Element Method (FEM) is used as an analysis tool.
The finite element method is a numerical procedure for analyzing structures and
continua. Petyt [5] gives a brief description of finite elements method’s application to
structural vibration analysis including those of flexural beam and flexural classic thin
plate. Gorman [6] analytically provides highly accurate vibration analysis of rectangular
plates with the method of Fourier series. However, in reality, the geometry and boundary
conditions of the considered structures are not so simple. As a resultv, the finite element
method has to be used to find the static and dynamic performance of the practical
structures. Mukhopadhyay [7] has summarized free vibration characteristics of different
geometry plates; however no random vibration studies have been conducted. As

mentioned before, practically, the excitations to MEMS structure and the response to



such excitations are random processes, and the MEMS structure undergoes random
vibration.

The necessary extensions of random vibration have their roots as early as the work
of Albert Einstein [8]. The probabilistic theory of mechanical system behavior arose
from theoretical investigations of the motion of particles suspended in a fluid, known as
Brownian motion. In his doctoral research, Einstein [9] established the first mathematical
treatment of Brownian motion with a parabolic partial differential equation. Subsequently,
a generation of researchers generalized Einstein’s results using the diffusion equation
framework. New methods for the characterization of random process including Fourier
analysis, autocorrelation functions, and spectral density functions were developed in
1930s. These spectral methods deal directly with the governing equations of motion and
may be more practically applied to complex systems than diffusion-equation-based
methods [10]. The spectral approach is more predominant today, particularly for the
analysis of linear systems. Much of the original development appears in the
communications, and mathematics literature [11]. The response of multi-degree-of-
freedom system to random excitations is either obtained analytically or numerically based
on some assumptions [10,11]. Few papers deal with the response of multi-degree-of-

freedom-system accurately and numerically under random excitations. M.W. Bonilha et



al. [12] proposed an approximate description for the spatial response distribution of the
bending wave field generated by the random vibration of thin plate-like structural
components. Harichandran [13] presented closed-form solutions for random vibration
response integrals arising in the analysis of multi-degree-of-freedom systems to
stationary nodal and/or support excitations. The closed-form solutions are adopted by
Swanson Analysis Systems, Inc.[13]. Furthermore, Harichandran [14] studied the
nonlinear response of laminated fiber reinforced plastic plates modeled with finite
elements and excited by stochastic loading. As mentioned earlier, MEMS structure is
often exposed to random environment. Thus the design and reliability of MEMS
structures in random environment is a very challenging problem for designers. In fact,
reliability considerations are of primary importance in safety and critical applications,
such as, accelerometers for airbag activation [15] and space applications [16]. For these
applications, failure can be catastrophic.

Tanner et al.[17] experimentally studied reliability of MEMS devices in a
vibration environment. In the experiments, vibration environment had a peak acceleration
of 120g and frequency range of 20 to 2000 Hz. The device chosen for the test was a
surface-micromachined unpowered microengine. In this test, two vibration related

failures and three electrical related failures out of 22 microengines tested were observed.



Brown et al.[18] focused on reliability and fatigue of MEMS devices. Some
researchers explored mechanical response and reliability of MEMS structure in shock
environment. There are significant reliability concerns regarding Microsystems under
shoch loading, specially in automotive, industrial and space applications[19-22].Shock-
loaded MEMS can fail in different modes including fracture [23], delamination [24] and
stiction [25]. As a first step toward formulating the guidelines for the design of
dynamically reliable MEMS structures, Srikar et al.[26] analyzed the mechanical
response and formulated failure criteria for a large class of shock-loaded MEMS. The
shocks that occur during service are invariably irregular in pulse shape, jagged in spectral
characteristics, and varying from one occurrence to another [27].

Srikar et al.[26] modeled such shock environments approximately by a series of
simple shocks during laboratory tests. The predictions of the analyses developed by such
models were found to be in agreement with the observed mechanical responsé and
reliability of the device.

Using the Finite Element Method, Wagner et al.[28] presented an approach to
optimize polysilicon MEMS structures with respect to shock loads. Although a few
analytical and experimental studies for the reliability of particular Microsystems exist [29,

30], there is no comprehensive set of guidelines to design dynamically reliable MEMS



structure. As an attempt to solve this problem, the design issues and reliability of
capacitive based MEMS inertial sensors in random environment have been addressed.

In aerospace applications such as launching vehicles, random vibration is caused
primarily by acoustic noise in the payload fairing, which is in turn induced by external
aerodynamic forces due to dynamic pressure and reflection of rocket exhaust from the
ground [1]. In microelectromechanical systems, random vibration can induce a number of
failure modes, including fretting in microgear trains and breakage of lead-wires in drive
electronics.

In automobile applications, Lu Sun [31,32] built models of vehicle suspension
systems subjected to stochastic rough pavement surfaces. In his papers, he modeled
vehicle tires as springs and road roughness as base excitations. With these models, the
deformation of vehicle tires can be obtained. The relationship between the tire pressure
and tire deformation can be established based on this approach to compute the spectral
density function of tire pressure according to that of the pavement roughness.

Even though, the MEMS structure is frequently used in random environments, the
performance characterization of MEMS in such environment has not been given enough
attention in recent times. This thesis attempts to predict MEMS dynamic performance

accurately and efficiently, and analyze reliability issues in random environments.



1.3 Introduction to MEMS Structures

MEMS promise a tremendous potential for sensing and actuation on a microscale
in many fields from DNA sequencing to information and communication systems. A
complete microsystem is a complicated system, however, the individual components of a
given system have much simpler configuration. Generally, the mechanical structural
elements in MEMS, in general are beam, plate, hinges and their combinations.

Typical types of micromechanical structures that are used for different
applications are given in the following figures. Figure 1.1 shows a one-side-fixed beam
structures while Figure 1.2 shows typical thin plate structure. Free hinge structure is
shown in Figure 1.3. Figure 1.4 presents a two-parallel plate structure that could forms a

capacitive pressure sensor, accelerometer or gyroscope.

Fig. 1.1: SEM picture of beam with all dimensions labeled [1]
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Fig. 1.3: A typical hinge [30]
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axea:bf plate

Fig. 1.4: Closeup view of parallel plate capacitor with

the area and gap labeled [1]

Fig. 1.5: Basic structure of a piezoresistive pressure sensor [34]
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Figure 1.5 also shows the basic structure of a piezeresistive pressure sensor. Thus,
as it can be realized, the basic structures of MEMS components are beam, plate types of
structure, and their combinations. Depending on different situations, the plate can be
treated flexible or rigid member. Based on the specific applications, the above MEMS
structures can be exposed to stochastic environment.

1.4 Introduction to Random Process

When a MEMS structure operates in random environment, it can be treated as a
transfer system. The input of this system is random loading or random base excitation,
and the output is the stochastic dynamic performance of the system. Essentially, both
output and input are random processes, which are basically the sequence of random
variables.

For example, consider the random processes shown in Figures 1.6 and 1.7. The
Figures 1.6a and 1.7a show two sample segments of time histories of an excitation from a
single random vibration source that occurs in an aerospace vehicle. The acceleration

responses that correspond to the individual inputs are shown in Figures 1.6b and 1.7b.
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Fig. 1.6: (a) Segment of random excitation time history from

aerospace vehicle
(b) Random vibration response excited by input

in part (a) [8]
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Fig. 1.7: (a) Segment of random excitation time history
measured at same point and same environment.

(b) Random vibration response excited by input

in part (a) [8]
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It 1s clear that even though the excitations originate from the same nominal sources,
they are not identical. Any future excitation and the relative responses will also differ
from those measured in the past. It is known that the structural responses to random
excitations are random processes.

It is obvious from Figures 1.6 and 1.7 that both excitation and response are not
time deterministic. Correlation functions are used to characterize such random processes.
In order to study these correlation functions in frequency domain, the random processes
are assumed to be stationary in this study. These stationary random processes can be
characterized by Spectral Density Function, or SDF, which are Fourier transformations of
correlation functions.

1.5 MEMS under Random Environment

Two random environments that will be discussed in this thesis include random
base excitations (such as automobile random vibration due to the pavement roughness)
and random generalized force (such as uniform random transverse pressure experienced
in tire pressure sensors due to the pressure fluctuation)

Automobile vehicles are subjected to random excitation due to pavement
roughness and variable velocity. The typical variation of road roughness is shown in

Figure 1.8. Such pavement stochastic roughness will lead to random vibration of vehicle

15



suspension system. As a result, MEMS attached to the vehicle will undergo random base

excitation.

! | S
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~—~_

Fig.1. 8: A segment of real pavement roughness [31]

In aerospace, random excitations of MEMS devices can also often occur. For
instance, in launch vehicles, the stochastic accelerations are transmitted to MEMS
structures or other assemblies. Random vibration input occurs over a broad frequency
ranging from about 10 Hzto 2000 Hz. In the space vehicle launch environment, random
vibration is caused by acoustic noise in the payload fairing, which is in turn induced by
external aerodynamic forces due to dynamic pressure and reflection of rocket exhaust

from the ground.
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Fig. 1.9: Random vibration levels transmitted to
flight article through mounts, the power unit is
(m1s*?1Hz [1]

An example of typical random vibration specification realized in flight article is
shown in Figure 1.9. The aforementioned random environments are typical base
excitation random processes. On the other hand, quantities such as pressure, acceleration,
and angular velocity rate which are measured by MEMS sensors are also random in
nature. Consequently, MEMS structures endure random forces that can be modeled as
generalized uniform spatial stochastic pressure force. In nutshell, the random

environments discussed in this paper include stochastic base excitation and stochastic

internal loading.
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1.6 Present Work

The present thesis constitutes a study regarding the behavior of MEMS structures
under random environments. In order to obtain the response of MEMS structure under
random environments, the characteristics of MEMS structure and random excitation
should be first defined. Based on the Finite Element Method, the thesis presents different
models for MEMS structures. The Cross Spectral Density Function of the response has
been evaluated analytically and numerically. The equations of motion of the considered
MEMS structure have been set up and the input characteristics have been evaluated. The
normal mode method is used to develop the differential equations of motion. In most
practical problems, the system under random vibration tends to respond globally only in
the first few modes. Using normal mode method approximation, the size of the model has
been reduced according to the desired frequency range of excitations.

The exact analytical response formulation of multi-degree-of-freedom system
without any assumption has been derived. A numerical approach has also been developed
and the numerical results are compared with those of analytical solutions. A computer
algorithm to compute random response of multi-degree-of-freedom has also been

developed.

18



A dynamic model of continuous structure using Finite Element method has been
derived. Applying this model to MEMS structure under random environments, one can
predict its performance response. The proposed model has been validated by
experimental testing for simple MEMS structures.

A practical application regarding tire pressure sensors has also been investigated.
The tire deformation can be obtained if vehicle structure, vehicle velocity, and the road
roughness condition are known. Tire pressure fluctuation has also been related to road
roughnesses that are characterized by the Spectral Density Function.

Finally, this thesis extends the performance prediction method to analyze design
and reliability issues of MEMS in a statistical framework.

1.7 Thesis Organization

This thesis has six chapters. Chapter 1 provided the problem statement and review
of the pertinent literature. Introduction to MEMS structure and random process was also
discussed in Chapter 1. Chapter 2 will develop finite element formulation for beam and
plate type structures. Chapter 3 will focus on different models, and analysis of multi-
degree-of-freedom and continuous system in random environment. In this chapter, the
analytical and numerical response formulae of multi-degree-of-freedom system will be

derived. The finite element model of continuous structures subjected to random base

19



excitation will be established. Meanwhile, random model of tire pressure will be
developed. The application of analysis of continuous structures under random loading
will be considered in Chapter 4. In this chapter, the basic information about MEMS will
also be summarized. Some typical MEMS structures will be outlined in this chapter.
According to different kinds of structures, appropriate models will be set up. MEMS
design and reliability problems under random environments will be discussed in this
chapter. Chapter 5 will include the experimental setup and experimental results of MEMS
structures under random environment. Chapter 6 will conclude with a synthesis of the

most important findings and the contribution of the present investigation.
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CHAPTER 2

FINITE ELEMENT FORMULATION

2.1 Introduction

The structural components investigated in this thesis are mainly composed of
beam and plate elements. Thus it is very important to know the concepts and
fundamentals regarding these elements. In this chapter, using Hamilton’s principle and
Lagrange’s equation, the equation of motions have been derived assuming deformation
due to shear is negligible. Subsequently, the finite element formulation of the beams and
thin plates are presented.

2.2 Elementary Theory of Bending Beams

For a slender beam under bending action as shown in Figure (2.1), the transverse
shear and normal stresses are negligible. Moreover, no in-plane shear stress exists if the
loads apply in the plane of symmetry.

Considering this, the following relations may be written

21



Ty =Ty =Ty = 2.D

where 0,0 and o are the normal stresses along the x (axis of the beam), y and z axis,

respectively and 7

Ty, and 7, are shear stresses.
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Fig. 2.1 Beam under bending
Considering Eq.(2.1), for a load in plane of x—y, it can be concluded that the

deflection of the beam v is only a function of x, v =v(x). In other words, all points in a

beam at a given longitudinal location x , experience the identical deformation. Axial

v

deformation, u can also be obtained using the relation y, = 5— + a—,
y X

as:

U= —y%+u0(x) 2.2)
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where the first part is deformation due to bending action and the second part u,1s the
deformation of the center line due to axial loading. Thus, for beam under bending action,
Eq. (2.2) may be rewritten as:

“=- % =8 (2.3)
where @ is the slope of the beam axis as shown in the Figure 2.1.
2.3 Theory of Bending Thin Plate

Plates are initially flat structural elements with thicknesses small compared with
the remaining dimensions. The thickness of plate is usually divided into equal halves by a
plane parallel to the faces. This plane is termed the midsurface of the plate. The plate
thickness is measured in a direction normal to the midsurface at each point under
consideration. Plates of technical significance are often defined as thin when the ratio of
the thickness to the small span length is less than1/20 .

Assumptions of thin plate are analogous to those associated with the simple
bending theory of beams. Therefore, the essence of thin plate is a bi-axial beam. The
solution based on this bending theory is therefore approximate. Similar to (2.3), the
displacement relationship can be given as,

u=-—z-— V=—Z— 24

Therefore,
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, £, =717 Vo =722 (2.5)

which provide the strains at any point. The rotation caused on the generic displacements

can be described by:
i j k
7 A 2.6)
ox dy 0z
u v
where
ow ow v ou *w 9w
R —-— R [ R —-————— = — —_ _—_-O 27
"y o Tk oy oxdy 30y @7

It is noted that after-mentioned relations are approximate in nature and are based
in classic thin beam and plate theory. Hence, they are not the accurate solutions derived
from elasticity theory. However, if the beam or plate is thin and deflection is small, the
accuracy of the solution would be sufficient for most engineering problems.

2.4 Hamilton’s Principle and Lagrange’s Equation

The first step in the analysis of any structural vibration problem is the equations of
motion. The equations of motion of any dynamic system can be written by using
Newton’s second law of motion. However, if the structure to be analyzed is a complex
system, then the vector addition of all the forces acting at each mass point is difficuit.

This difficulty may be overcome by the principle of virtual displacements which can be
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used to derive the equations of dynamic equilibrium and hence the equations of motions
indirectly.

The principle of virtual displacements states that “if a system, which is in
equilibrium under the action of a set of forces, is subjected to a virtual displacement, then
the total work done by the forces will be zero.” Although the principle of virtual
displacements alleviate the problem of vector addition of forces, virtual work itself is
calculated from the scalar product of two vectors, representing the force and virtual
displacement. The disadvantage can be largely overcome by using Hamilton’s principle

to determine the equations of motion. The Hamilton’s principle can be well described as:
t2
[1s -v)+ow,1dr =0 (2.8)
I3

where T is potential energy, U is kinetic energy and oW is the virtual work of non -
conservative forces. This principle can be applied to both discrete and continuous

systems.

A discrete or continuous system with ndegrees of freedom can be described by

nindependent generalized displacements g, ,q,,. . .,g,. The kinetic energy and strain
energy of the system are functions of  velocities q j ( j=12,. . .,n) and
displacements g, ( j=12, . .,n), respectively. In other words,
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Similarly, the dissipation function is a function of the velocities cj It that 1s
DzD(ql, Gy s v o qnj (2.10)

Also, the work done by the non-conservative forces can be written in the form:

Z Q; —— |dy; (2.11)
j=1 aq]

where the Q; are generalized forces. Now, consider Egs. (2.9) and (2.11) and use

Hamilton’s principle in Eq.(2.8), Lagrange’s equations can be obtained as;

d| aT oD oU
— + +
dt

) _ =Q;, Jj=12,. . .n (2.12)
dq; | 9q;

It is noted that the kinetic energy, dissipation function and strain energy can be

cast to the following matrix format:

D =—§{4}T[C] {q} (2.13)

1
v =-{al" [k]{a}
where  {g}= column vector of system displacements
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{(ﬂ =column vector of svstem velocities
L J
[M ] = system mass matrix
[C ] = system damping matrix
[K | = system stiffness matrix
Substituting Eq.(2.13) into the Lagrange’s equations (2.12) yields the following
equations of motion in matrix form:
o} + cat + e} - @) @.14)
It can be realized that using Lagrange’s equations, one can obtain indirectly the
equations of motion using only scalar energy quantities. In the following section, using
these principles, the finite element formulation for bending beam and thin plate are
derived.
2.5 Finite Element Formulation for Beam Bending Element
In deriving the energy functions for a beam bending element it is assumed that the
vibration occurs in one of the principal planes of the beam. Let us consider a beam of
length 2a and cross-sectional area of A as shown in Figure 2.1. The xy —plane is the
principal plane in which the beam is vibrating and the x - axis coincides with the

centroidal axis. Deflection v=v(x) is the displacement of the centroidal axis in the

y —direction at position x. All parameters such as strains, stresses, potential, and kinetic
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energy at any point can be expressed with respect to v. Ignoring the effect of transverse

shear deformation, it is assumed that there are two degrees of freedom at each node
. . . . . ov
which are vertical displacement: v and rotation about z axis: P Thus each beam
X
element has four degrees of freedom.

To describe the transverse displacement of the beam’s centerline with four nodal

degrees of freedom, we use a cubic polynomial in natural coordinate as follows:

v(€)=a, +a,+a,E? +a,’ (2.15)
where £ = X This expression can be written in the following matrix form,
a
al

v=l g2 &)™ (2.16)

ay
a,

Considering that até =-1Lv=v, and v =v,, and at £=1,v=v,,andv =v,. The
displacement function v(£)can be expressed as a function of nodal degrees of freedom
V), V;,V,,V, as follows:

v = [NOIvh (2.17)
where [NOEING av (@) Ny (@) aN ()]

{v}, ={V1’Vi’V2’V‘2}T (2.18)

and the displacement functions or shape functions are given by
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N, <§)=§—(2—3§+§2>

N:<§>=i<l—é—§2+§~*> (2.19)

N3<§>=%(2+35—§3>

N4<§>=-§<—1—5+52+53>

Subsequently, the kinetic energy, T, , potential energy U, , and virtual work of

non-conservative forces, W, can be described as:

1+a .2 1+a a2v ) +a
T, =5:[,0Av e U, =—2-:[E12(-ax—2) dc oW, =_J;py§vdx (2.20)

Substituting the displacement expression formulated in Eq. (2.17) into Eq(2.20) and

changing the variable form coordinate x to natural coordinate £, we may have the

following expressions for kinetic energy.

2 2

T, =-;—IpA{z m:%IpAv' ad&

LT » . (2.21)
=5{v} pAa[[N(&)] [N(f)]df{v}
e -1 e
Thus it can be realized that the element mass matrix is equivalent to:
[m), = paaf[N&)] V©)ag (2.22)

-1

Similarly, the element stiffness matrix may be obtained as
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S
[8%]
[O%]
~

[k], = f” v <§>] v (&) he (

—1

Also the element equivalent nodal force vector can be obtained as:
+1
{rl,=a[p,INOT g (2.24)
-1

2.6 Element Formulation of a Bending Thin Plate

Flat plate structures are subjected to dynamic loads normal to their plane. This
results in flexural vibration. Such structures can be analyzed by dividing the plate into an
assemblage of two dimensional finite elements called plate bending elements. These
elements may be either triangular, rectangular or quadrilateral in shape. In this section,
rectangular element’s characteristics based on thin plate theory and Hamilton’s principle
will be derived.

In general, the strain energy stored in a 3D- element is given by:

+ O €+ TayVay t Tz ¥ az TTyz¥yz )dv (2.25)

1
U, ZEI (O 6, + OyEy

v
For 2D- thin plate shown in Figure 2.2, Eq.(2.25) can be simplified as:

U, =—1-I(O'x6‘x to,€,+7,Y,)dV

(2.26)

-1 j_{x}f (DY)

where h is the thickness and
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7 3 v O
ax? (I-v7) (1-v7)
{A‘} _ a "W [D] _ E _ v Ez O
dy* (I-v%) (=v7)
2
o w 0 0 E
| Oxdy | L 2(1+v) |
where wis the transverse displacement in the z direction.
2. -
t
8,
¢=-tn=1 a A
A A g=ly=1
YR

SEAEVARE
g=-ly=-1/ /cﬂ,i?:_1
2a /

Fig. 2.2 A plate element under transverse loading
It is noted that second derivative of wis presented in the formulation. Thus w and
its first derivative should be continuous function for finite element formulation. The
displacement function for plate element may be approximated as:
w=a, +a,x+a,y+a,x’ +a,xy+a,y* + higherorder forms (2.27)

Rectangular element shown in Figure 2.2 contains 4 nodal points, and each have three

ow ow

degrees of freedom (w,—,

dy Cox >
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In terms of the natural coordinates, the three degrees of freedom can be expressed

as w,6 and 6’),, where

H\— :l.a_w , g = _la_w (2.28)
" bon PFY:

inwhich £=2, n=2
a b

Since the element has twelve degrees of freedom, the displacement function in
Equation.(2.27) can be represented by a polynomial having twelve terms, as:
w=a,+a,& +an+a,Et valn+ant +a.E’ +a,fn+adn® +agn® +a,En +a,én’ (2.29)
Similar to the beam element, displacement function can be expressed as a function of

nodal degrees of freedom as:

w= [Nl(f,ﬂ) Nz(f’n) N3(§’77) N4(§,77)]{W}e

SIED ) o
where, {w}e is the element nodal displacement vector described as:
{w}, = [wl O, 60, ...w, 0, 0y4J (2.31)
and N(&,n) is the shape function which can be expressed as:
Lusguinmerinn-& -n)
NT(En) = S0+ &6+’ -1 (2.32)
- S+ OE D+

(£;,m;) is the coordinates of node j.
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Substituting displacement function in Eq.(2.30) into kinetic and potential energies, and

virtual work expressions, we may have:

where mass matrix [mL is

(], = [ pINT [N)aa
i +141 T (233
= phab [ [[N.m)] [N(.mlagdr

-1

Similarly, using potential energy in Eq.(2.26), we can obtain the element stiffness matrix

as;
K T
k], = j ‘1?[3] [D][B]aa (2.34)
where
82/8x2 82/(a28§2)
[Bl=|0*/3y* |IN]=|0*/®%an*) |IN(Em]
20%/0xdy 20*/(abd&on)

and finally the equivalent nodal force can be expressed as:

{r}.=IN] p,aa (2.35)
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CHAPTER 3

MODELING AND ANALYSIS OF CONTINUOUS

STRUCTURE UNDER RANDOM ENVIRONMENT

In the previous chapter, the element’s characteristics such as inertia, stiffness, and
the equivalent generalized nodal forces due to external forces have been obtained. This
chapter contains: the process to assemble elements into whole structure, normal mode
method and size reduction technique, random process and its characteristics in time and
frequency domain, derivation of response of multi-degree-of-freedom due to random
loading, and the modeling of continuous structure subjected to the random base excitation.
3.1 Characteristics of Continuous Structure

Once the element characteristics are found in a common global coordinate system,
the next step is to construct the system equations through the assemblage of the element
equations. The procedure for constructing the system motion equations is equivalent to
estimate total kinetic energy, potential energy and virtual work done by the external work
in terms of global nodal displacements. Such procedure is the same regardless of the type

of the problem and the number and type of elements used.
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The procedure of assembling the elements characteristics 1s based on two
principles.

1) The kinetic energy, potential energy and virtual work of the whole system are
the summation of building blocks (elements).

2) At the nodes where elements are connected, the values of the unknown nodal
degrees of freedom are the same for all elements joining at that node (compatibility
condition). Thus the system characteristics can be obtained by assembling of the element

characteristics:

M=, K131 F=3 1] o

i
i=1

where [M],[k],[F] are the system mass, and stiffness matrices and nodal force vector. E is
the total number of elements and [m],. ,[k],. ,[ f ]iare the mass, stiffness, and nodal force
vector associated with of i” element respectively. If the structure have ¥ nodal degrees
of freedom (including the boundary and restrained degrees of freedom), element

characteristics should be expanded to the order of NxN, NxN,Nx1 respectively by

including zeros in the remaining locations.
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3.2 Boundary Conditions

As previously mentioned, the system equations of entire domain can be obtained
by assembling the element equations. The final format of the continuous structure
discretised into elements may be described by:

e} xp+1cl x b+ [x)x) {r) 62)
Equation (3.2) has to be solved for unknown nodal displacement vector with boundary
conditions.

There are two types of boundary conditions: forced or geometric or essential and
free or natural boundary conditions. Because the motion equations are not derived by
direct method, only forced boundary conditions have to be specified and the natural
boundary conditions will be implicitly satisfied in the solution procedure.

For example, Figure 3.1 is a cantilever plate subjected to a concentrated load. Side
AD is clamped, the degrees of freedom at this side are all zero. On the hand, side AB,
BC, and CD are free of any forces, but it is not necessary to describe the boundary
conditions since the characteristics of the system are not derived in the direct method.

The results obtained will automatically satisfy these boundary conditions.
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Figure 3.1 A cantilever plate subjected to a concentrated load
3.3 Modal Analysis of Multi-Degree-of-Freedom System
As mentioned before, the equation of motion of a discretised continuous structure
can be cast into the form described by Eq.(3.2).

[a] {X} + [c]{x}+ [k Hx={F} (3.2)
which are basically N simultaneous coupled differential equations. In this study, the
normal mode method has been employed to decouple the above coupled differential
equations by transformation of generalized coordinate to modal coordinate. Since any
vector in N -dimensional space can be expressed as a linear combination of N linearly
independent vectors, thus it can be written as:

{x}=[ela} (3.3)
where the vector {g Jcontains the new coordinates (modal coordinates), and [#] is the
orthogonal transformation matrix, which consists of normal modes of the system.

Substituting (3.3) into Equation (3.2) and pre-multiply both sides by [¢] , we may have:
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(/\—41qu+(&1{ : I_< L/} {o} (3.4)

M (o] a]lo), M o [0, M oI (], and fO}=lT {(F} 3.9

It is noted that the modal mass matrix [M J and modal stiffness matrix [I_( J

stiffness are diagonal matrices. If the damping is proportional to the mass and stiffness

(proportional damping), the matrix {C} is also diagonal and equation (3.4) is then

completely uncoupled and its i equation may be written in the following form:

_2.)
- (3.6)

i

g +2Lwg +wiq, =
where M, is the i" modal mass, @, is the i” natural frequency and ¢ is the i”
modal damping factor. Now instead of solving N coupled equation of a N DOF system
explained by Eq.(3.2), Eq.(3.6) enables to solve N decoupled single DOF which is much
simpler.
3.4 Normal Mode Summation
In general, solving systems of large numbers of degrees of freedom is
computationally expensive. It is possible, however, to reduce the computational time (or
reduce the degrees of freedom of the system) by a procedure known as the mode

summation method. Essentially, the displacement of the structure under forced excitation
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is approximated by the sum of a limited number of normal modes of the system
multiplied by generalized coordinates.

For example, consider a structure with50 DOF . The solution of its undamped
homogeneous equation will lead to 50 eigenvalues and 50 eigenvectors that describe the
normal modes of the structure. If the excitation of the structure centers around the lower
frequencies, . the higher modes will not be excited and the forced response will be the
superposition of only a few of the lower-frequency modes; perhaps ¢, (x),¢2(x), and
¢,(x) may be sufficient. Then the deflection under forced excitation can be written as

X, = @(x )a, )+ 0, (x, ), (£) + 0, (x, Jas ) (3.7
or in matrix notation the displacement of all N degrees of freedom can be expressed in

terms of the modal matrix [¢]composed of only three modes.

X,
v | [8x) ax) a(x)
2 9,
d. = ' ’ q, (3.8)
L | ) ax) ex)]

The use of limited modal matrix then reduces the system to that equal to the

number of modes used. For example, for the 50— DOF system, each of the matrices such
as [K] is a 50x50 matrix. Using three normal modes, [¢] is a 50x3 matrix and the

product [g]" [K g] is a (3% 50)(50x50)(50x3) = (3x3) matrix. Thus, instead of solving
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the 50 coupled equations represented by Equations (3.2), it is required to only solve the
three by three uncoupled equations represented by

oF Lol + o] el + o] lkTof g} =IoT ) 69
It is noted that in this study the force excitation is not deterministic function of time. In
fact, the input and output of the system are random processes which will be discussed in
the next section.

3.5 Random Variable

There are a number of physical phenomena that result in nondeterministic data for

which future instantaneous values cannot be predicted, such as noise of a jet engine
pressure gusts, heights of waves and so on. Nondeterministic data of this type are referred
to as random time functions. A sample of a typical random time function is shown in

Figure3.1.

F(t)

A =
" NS -

Fig. 3.2 A sample of random function
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In this study, it is assumed that all random variables or functions are Guassian

which can be characterized by their mean value and variance.

The covariance relationship of two variables is very useful in random analysis.

Let assume n-dimensional vector X is related to n-dimensional vectorY , according to:

Y=PX (3.10)

where P is a linear operator. Expanded form of Equation (3.10) can be written as:

Yoy (B Beo B |1 X
Y|Py Poo By | X,
Y,| |P,P, ...P, | X,
Y, =2 RX, Y, =)PX, (3.11)
1=l k=1
Thus EXY)=Y.P> P.EX,X,) (3.12)

=1 k=1

Now co-variance of Y and X may be related as:

[covr]=[P] [covx ] [PT (3.13)
where m X m matrix [COVY] and nxn matrix [COVX | are covariance of X and Y ,
respectively.

Equation (3.13) will be used frequently in the following section to analyze
stochastic performance at any structural point subjected to random excitation. The
random process generates sequence of random variables in the time domain. The
characteristics of a random process are discussed in next section.
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3.6 Characteristics of Random Process

If random processes are stationary, they can be characterized effectively by the
autocorrelation and cross-correlation in time domain. In any random process, a large
number of data is necessary to establish reliability. For instance, to establish the statistics
of the pressure fluctuation due to air turbulence in a certain air route, an airplane may

collect hundreds of records of the type shown in Figure 3.3. Each record is called a

P(t)

ﬂ/\/v\/
v

AN AN
N/ N,

P()

P()

t4 \/ t2 \JNU t

Fig.3.3 Three samples of the pressure fluctuation in a certain air routine

sample and the total collection of sample is called the ensemble. We can compute the

ensemble average of the instantaneous pressure in each sample at time?,. We can also

multiply the instantaneous pressure in each sample at times f, and ¢, + Az, and average
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results for the ensembles. If such averages do not differ as we choose different values of
the time, the random process described by this ensemble is said to be stationary.

The most important joint measure in a random process is the correlation of the process
with itself in two different times, x(z,) with x(¢,). Denoted R, (z,,2,), this measure of
correlation is called the autocorrelation function expressed as:

R, (t,,1,)= E[X(1,)x(z,)] (3.14)
Similarly, cross-correlation is used to measure the correlation between two different
random processes, say X (z) and Y (z), and it is defined as
Ry (1.1, )=E[X (1)1 (z,)] (3.13)
A strictly stationary process is difficult to demonstrate in practice. A more relaxed
form of stationarity occurs when the mean and variance of the process are constants, and
the autocorrelation function depends only on the difference between time ¢, and
t,, Ry (z‘l,t2 )= R, (t2 —tl) . This process is called weakly stationary. Therefore, the
stationary autocorrelation function is written in terms of the difference between ¢, andz,,
known as the lag, 7=1, —¢,:
R,(7)=R, (1, t+7)= E[X()X (¢ +7)] (3.16)

Since process X and Y are stationary, the cross-correlation can be written as
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R, (t)= Ry, (t, 1+ 1)= E[X (1) (1 +7)] (3.17)
The Fourier transform of the autocorrelation function is called the spectral density

function (SDF) S, (@), which can be mathematically expressed as:

S, (@)= -2-1; R, (r)e ™ dr (3.18)

and its form transform pair is:
+oo
Ry (2)= |8y (0} do (3.19)

Spectral density function S, (a)) can be used to characterize a stationary random
process and to quantify random processes such as stochastic loading, acceleration,
velocity, displacement and force. The spectral density function basically corresponds to
the ensemble average of the squared moduli of the Fourier transform of X (¢). This
suggests that we may estimate the spectral density function from a large number of
sample realizations of X (t) Spectral analyzers can be used to evaluate the spectral
density function. For instance, the waveforms, represented by a current i(t), or a voltage,
v(t) is iteratively filtered to a signal with only a single frequency. The filtered signal’s

mean-square value is then measured and plotted since i*and v* are proportional to power,

this is called power at that frequency. The measured power is divided by the width of the
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bands, analog the units i” or u”per unit frequency. Hence Sx(a))is called power spectral
density.

In similar, the cross-spectral density function is defined as the Fourier transform of
the cross-correlation function. There are two cross-spectral density functions, S, (@) and

Sy (a)), defined as follows:

1

+oo
Sy (@)= Py J‘RXY (z)e™" dz

- (3.20)
Sy (@)= 517—[- jRYX (£)e" dw

It is noted that unlike the spectral density function, which is real valued, the cross-
spectral density functions are complex. Similar to Equations (3.13), the relationship
between spectral density function of two random processes {X }and {Y} related through
{r}= [P]{X } may be described as:

[SPEC(Y)] =[P1*[SPEC(X)]*[P] (3.21)
where SPEC(Y) and SPEC(X) are cross-spectral density functions of random process
Y and X respectively.

3.7 Random Analysis of Multi-Degree-of-Freedom System

At this point, system’s properties such as mass, stiffness and damping have been

discussed completely in the previous sections, and excitations’ characteristics including

spectral density function, cross-spectral density functions, variance and (or) covariance
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have also been stated clearly. The structure, its stochastic excitations and its performance
response could be treated as an input-output system shown in Figure 3.4. The output is
determined by input and system transformation function. In the analysis in this thesis,

external noise is not considered.

B: Input A: System C :Output?

Excitations Structure Response?

Fig. 3.4: Input, system and output

It was explained before that the equation of motion fora N D.O.F system can be
written in the form shown in Equation (3.2). To determine the cross-spectral density
function of the response of the system, the approach is to employ the relationships
between the spectral density function of a random process, x(t), and the Fourier transform
of x(t). It can be shown that for a linear system, the response spectral density matrix
N X (aJ )] is related to the force spectral function N F (a) )] as:

Sy (@N=1H@)IS; @) H (@) (322)
The diagonal elements of [$ X (a))] are the spectral density functions of each coordinate

and the off-diagonal terms are the cross-spectral density functions and the matrix [H (aJ)]
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and [H" (a))] are transform function and its transpose conjugate. Based on the spectral
density functions, variance and covariance can subsequently be attained.

Rewriting Equation of motion in modal coordinates as explained in section 3.2, we have

][l

Since {0} [p] {F}, the cross-spectral density function matrix of modal vector force
{Q}can be derived as

[S,(@)=[oT [s (@) lo] (3.24)
thus, the cross-spectral density function matrix of modal response coordinate {q} may be
expressed as:

[s,@)] =tz@1 o] 5, (@)] o] 15" (@)) (3.25)
Consider that {X }= [¢]{q}, thus, the spectral density function matrix of {X } is
Sx(@)=ol1S,(@h o] =lp](H(@)o]" s (@)l 17" (@]lo] (3.26)
Equation (3.26) is fundamental relation for multi-degree-of-freedom system under
random loading. Using normal mode method, [H(w)] can easily be obtained and is

diagonal. Every mode transform function such as H ; (a)) has real and imaginary part.

It is noted that calculation of the response spectral density function in Equation

(3.26) is computationally expensive. On the other hand, it is unnecessary to calculate the
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spectral density function of the whole system. Assuming that the system has N degree-

of-freedom, it would be very costly to obtain the spectral density function which is

N x N matrix. Thus it is more efficient to employ normal mode summation technique

considering only the first few modes.

For convenience, let us rewrite equation (3.8) as:

X, |

) el e

2 9
< >= . . . q2
. q;
o) L) i) e

where, the modal matrix [(1)] may be written as:

¢1 1 ¢12 ¢l3
¢21 ¢22 ¢23 ¢1 1
[bl=| ¢, 0 oy o] = |0,
s

_¢N1 Pna

¢NN JNx3

Now Equation (3.26) can be expressed as:

Hl(a’) 0 0 SQ11
[S,(@)=|0 Hy(w) 0 |[Sg,
0 0 H3(@)]| s,

Sqn Sq12 Sql3

= S‘hl S‘Izl SQzl

g3, S%z 3

¢21 ¢31 . ¢Nl
On P Ova | (3.27)
¢23 ¢33 ‘ ¢N3 IXN
*
S0, SQ13 Hy (w) 0 0
*
S0y, S0y ||0 Hy@) 0
SQ32 SQ33 0 0 H ; (a))
(3.28)
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Sy =So, HilH[ (@) k=123

(3.29

It is noted that using Equation (3.29), components of spectral density function can
be easily calculated. Also using Eq.(3.24), the spectral density matrix [Sg (a))] may be

written as:

_SF” SFIZ SF]3.. . SFIN i lel 2122 2123
a1 N1 Sky Sy Sky- - Sky ¢31 ¢32 ¢33
=2 P P - - ) - . b/ 7
h3 3 3. N3 Jan|
| SPwi SFyy SEys o SEwy Navlow Ona Ovs s
- L JNX
. . N _ —
Z¢ilSFil z¢i1SFi2 P Z¢11SF1N ¢11 ¢12 ¢13
\ =l i=1 $1 P 13
N
= Z(”izSF“ . ) #1 I 953
i=1 :
N
NS
i ggDIN FiN_3XN _¢N1 o2 ¢N3~N><3
So. Sa, So,
=50 S0n S0 (3.30)

SQ31 SQ32 SQ33

thus, the term of S, in the matrix [, (w)] can be described by:
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N N N

SQab :Z@mSFille ‘i’Zg)mSFiZQZbT .. T Zﬂl‘aSFiNQNb (;31)
=1 =1 =]
N N N N
= Zz¢iaSEj¢jb => Z¢iaSFij¢jb
Jj=li=1 i=l j=1

After evaluating the modal spectral density function, the spectral density function

in original coordinate can be obtained as:

(S (@) =[glS, (hls]
(¢ bo b |

Py Oy O
é b, & Sqll Sq12 Sr/13 ¢11 ¢21 ¢31 o ¢N1
51 P P
= qux quz qua o O O - - Pra
431 432 033 |33 bs 0n 0. . Ous 3N

_¢Nl ¢NZ ¢N3 JNX3

3 3 3 7

z¢“S"u Z¢“S’/iz Z¢“Sqi3

in1 i=l i=1

. . . ¢ll ¢21 ¢31 . : ¢N1
=i. . . ¢12 ¢22 ¢32 * . ¢N2

. . . ¢13 ¢23 ¢33 N ) ¢N3 3xN

3 3 3

20uS, DS, 2fuS,,

L i=l i=1 i=l dnNx3

3.32)
Sy Sy, - . o Sy, ]
L7 Xm SXNz : ' ) Xw Inxn

Thus, the term S, , is the element of response spectral density matrix. [S X (a))] and can

be written as:
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3 3 3
SX\,,I.‘; = Z¢ciSq,‘] P +Z ¢('iS(/j-3 Paz +Z ¢CiS(/,-3 Da3

3 3 - 3 ,;1 = (3.33)
- ZZ%S% baj =2, Z¢Ci5qij Daj
j=li=l i=l j=I

Let us substitute the spectral density function of modal force[S(], from Equation

(3.30) into Equation (3.29)

N N
S guy =2 2 PiaS £y @ jpHa(@)Hp (@) (3.34)
i=1 j=I

Now substitution of Equation (3.34) into Equation (3.32), yields:

3 3 N N
SXoy =2 Z¢ci¢dj[2 > 85i0SF, Hi(@)H (w)] (3.35)
i=1j=1 s=1k=1
or
303 N N .
Sxcd =2, 2. Pcibaj| O 2. 85i#SF, H j(@)H (@) (3.36)
i=1j=1 s=lk=1

It is noted that only real part of cross-spectral is meaningful, and the integration of
imaginary part is zero. As a result, formulas (3.35) and (3.36) are equivalent, and both
can be used to calculate variance and covariance.

Equations (3.35) and (3.36) are exact solutions to obtain covariance of multi
D.O.F system in random problems. It does not need any additional assumptions. The
great value of this method is that the covariance matrix can be precisely obtained which

can lead to any performance randomness in continuous structure.
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3.8 Finite Element Model of Continuous Structure Subjected to Random

Excitations

Because random environments discussed include base excitation to continuous
structure, it is very necessary to set up its finite element model. Using finite element
method, the characteristics of the structure such as inertia and stiffness can be obtained.
In other words, the matrices [M ]and [K ] can be established by using the finite element
method. For the sake of simplicity, let us assume the system has 4 DOF , then kinetic
energy T of the system can be written as;

Kinetic energy T of the whole system is

Vi
my, my; Mz My,

f- - - - My Myy M3 Moy || V2

T=—{viv2vs vy (3.37)
2 M3y M3y Mzz Myy ||

V3

My Myp Myz My

V4

where v;,v,v3 and vy are the displacements at degrees of freedom 1,2,3, and 4

respectively and {11,\}2,{13 and {;4 are velocities. Assume that degree of freedom 1 is
subjected to a random acceleration excitation with power spectral density function.

Objective is to find response of the other degrees of freedom. Knowing this, let us rewrite

the kinetic energy in the following form,
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V2
1 . N «

N 1’_ ‘ , v . 1
T = _Z.LVI my; VIJWLEUmD + iy, v+ (g5 + gy i+ (my, +my, )vIJ V3
V4
o o - (3.38)

1% V2
Myy Mlyy Moy

’ m m m '
Va 42 43 44 va

The expression in Eq.(3.38) can be treated as the combination of two systems.
System 1 has one degree-of-freedom which is known. System 2 has three degrees-of-

freedom which needs to be solved. The total kinetic energy of system 2 is given by

V2
T, = %{(’"12 +m21){)1+(m13 + ”’31){’1+ (myy +m41){11} v3

V4

ro 7 M.
\ %) V2
Myy Myy My
+_1_ ' : (3.39)
) V3| | M3y M3z M3y || V3
: Myy Mys M :
va 4z Mz Mg |

The potential energy of system 2 can also be expressed as:

V2

Uu,= %{(klz +ky )Vl + (k13 +ky) )V1+ (k14 +ky )VI} V3

V4
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T ]

k42 k43 k44
V4

/\22 (03 Koy |
(3.40)

According to Hamilton’s principle and Lagrange’s equations, the undamped motion

equation of freedom v, v, and v, with respect to v, can be described by:

N

1 -]
E(mIZ +my, )Vl + '2‘(k12 + k1)

(3.41)

~-

. 1 -1
(M ]3><3 {V} + [K]3><3 {V}3x1 = _J 5(””13 +ms, )V1+5(k13 + k31 )vy
3x1

1 - 1
5(’”14 +my, )V1+ E(km + kv

Eq.(3.41) can be interpreted as the finite element model of continuous structure-
which is- subjected to base excitation. It is noted that this formula can apply to any
structure under any boundary conditions. Using this model, dynamic response of
continuous structure excited by base motion can be obtained.

If the base excitations are stochastic, randomness characterization of the general
forces should be obtained in order to predict structure behavior. The general force vector
is given in the right side of equation (3.41).Since spectral density function of random

processvi is given by S.. (w), the spectral density function of vy is —12— S..(®) and the

v (1) vy
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spectral density function of yyis given byﬁ S‘.'. (a)) After that, the spectral density
function matrix of general force vector can be obtained.

Finally, the randomness of the displacements can then be attained. The above
basic derivation can be applied to other complex structure.
3.9 Model Verification

In section 3.7, modeling of performance response for multi D.O.F system has
been developed. This model will be verified with already published results. As not many
results were available for comparison, the results are compared with the results of [§].
The following is the verification of this modeling by a two-degree-of-freedom system.
The system and the excitation are shown in Figure 3.5.

w, =0.070 m® /sec*/ HZ,m, =35kg,m, =17.5kg, k, =8750N /m, k, =3500N/m

The assumed damping factors for each mode are

& =0.037
£,=0.053

Set x, and x, as absolute displacement of mass m, and m, respectively.
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Fig.3.5 Two-degree-of-freedom system and spectral density of base acceleration
The undamped governing differential equations of motion can be written as:
[MRx 1+ [k Kz}=0 (3.42)
where {Z}={X}-Y is the relative displacement and Y is the base displacement.

Rearranging the Eq. (3.42), we may have:

[M]{§}+[K]{Z% ) (3.43)

-mY
where {F}= = _rand the spectral density function [S, (@) of nodal force {F}can be
-m,Y
described by:
miw mm,w
[sp(w)]{ L ) } (3.44)
m,mw, m;w,

where w, is the spectral density function of base acceleration excitation. Using the
performance prediction modeling expressed in Equation (3.36), the covariance of relative

displacement can be obtained as:
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Ex.x, =33 az,,@,»(zp 30,0, [SoH (0)H; (w)dw) (3.45)

i=m j=m s=Ai A=l

7.1759x107 1.5970x107*
(3.46)

lcovz]= ) .
1.5970%10" 3.8256x10°

where, [covz] is covariance of relative displacements {z}. The standard deviation of

relative displacements Z, and Z, are found to be:
o, =846 mm 0,, =19.56 mm (3.47)

Now from the normal mode transformation, we can have;:

Z,= 009, + 0,9,

} is the modal matrix and the transformation to modal

where [¢] = !
235 -085

coordinates can be described as:

s o)
z,| 235 -085]4q,

The nodal force can be obtained from:

{o}=lI'iF}=| 76‘1% (3.50)
~20.1¥

Since Y is white noise, we can use the white-noise formulas

2 WO

T (3.51)

where W, is spectral density function of i* nodal force, & is i* damping ratio, and

57



f.is i" frequency. Therefore, the variances of modal coordinates q,-4, are

_(0.378)7(0.0742)
© 1984(0.034)(1.71)°
o2 o (0.422)*(0.0742)

1984(0.066)(3.32)’

=7.35%x107°

1

(3.52)
=2.76x107°

™o

The problem here is that the correlation coefficient about random processes

g,andg, is not clear. It is assumed that these two processes are independent (this
assumption will result in insignificant errors). Therefore, the variances based on this

method are approximate solutions.

02, = 902 +gio? = (1)(7.35%107° )+ (1)(2.76x10)
=73.5%107° +2.76x107° = 76.26x10™°

02, = 920t + pLo? = (2.35%[7.35x107° ) +(0.85 {2.76x10™°)
=(405.9+1.994)x10™°

(3.53)

Thus the values of the standard deviations of the relative displacement using normal
method approximations are found to be:

0, =873mm , 0,=20.19mm (3.54)

Comparing the results in Egs. (3.47) and (3.54), it can be realized that there is

only 4% difference which is generally considered acceptable. Therefore, it can be

concluded that the dynamic modeling formulated in Eq. (3.36) can be applied accurately

to any multi-degree-of-freedom systems.
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CHAPTER 4

MICROMECHANICAL STRUCTURES

In the previous chapter, the dynamic performance of mechanical structures with
multi-degree-of-freedom has been modeled and studied. As this thesis aims at predicting
the performances of micro-structures under random environments, this chapter will apply
the dynamic prediction models to MEMS structures.

4.1 Random Environments of MEMS Structures
4.1.1 Random base excitation

As discussed earlier, MEMS have wide applications in automobile and aerospace
industries and are subjected to random environments. The operating environments of
MEMS structure used for the above applications are considered as typical examples for
the present study, and will be discussed in this Chapter. In this section, two types of
random environments will be discussed. They are stochastic base excitation, and
stochastic loading which is due to random measurements. Figure 4.1 schematically shows
a MEMS structure subjected to both random loading and random base excitation. In this
figure, because the measurements such as pressure, acceleration have random nature, the

MEMS structures used to measure this parameters are subjected to random loading,
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consequently. Meanwhile, MEMS are attached to vehicles and (or) flight articles, so if
the bodies we vibruting randomly, the MEMS structures will undergo random base

excitation.

Package

Loading . Microstructure
%

Substrate

2

VA4 7 l
/ / / / / / /Base Excitation

Fig. 4.1 Scheme showing a micro-structure subjected to

random loading and random base excitation

For example, automobile vehicles are subjected to random excitation due to
pavement roughness as shown in Figure 1.8. Since the surface roughness profile is
regarded as a random function, it can be characterized by a spatial power spectral density
function W, (f, ), which is a function of spatial frequency f; (cycles/my). It is known that
the relationship between the spatial spectral density function and the spatial frequency for

the ground profiles can be approximated by:

W(fs)=Csf" (4.1)

where C, and N are constants that depend on the road conditions. Values of Cg, and

N for

various surfaces are given in Table 4.1.
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Table 4.1 Values of C, and N

No. Description N C,

1 Smooth runway 3.8 43x10™M
2 Rough runway 2.1 8.1x10°°

3 Smooth highway 2.1 4.8x107

4 Highway with gravel | 2.1 4.4x107°

For vehicle vibration analysis, it is more convenient to express the power spectral
density of surface profiles in terms of frequency f in Hz rather than in terms of the
spatial frequency in cycle/m, since vehicle vibration is a function of time.
Transformations of the spatial frequency f, to the frequency f and spatial power spectral

density W, (f, ) to power spectral density Wy (f) can be established through the speed of

the vehicle V in m/ s . The transformations can be given by (4.2) and (4.3) respectively.
f=rv (4.2)
and Wy (fs )= VW, (f) (4.3)

where, f is frequency, f;is spatial frequency, W, is power spectral density function of

road profile, W, is spatial power spectral density function.

Thus, we get
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f -N
W ( v>_ WS (ff> _ CSPfS—N _ CSP[Y/S_) 44
n f B 1 - 1% - 1% ( . )

Based on equation (4.4), power spectral density function of pavement roughness

can be obtained. For example, Figure 4.2 gives the typical randomness characteristic of

smooth highway surface when a vehicle velocity is80Km/h .

o M0

Fig. 4.2: Power spectral density of rough runway when velocity is 80 km/h

The whole vehicle structure will vibrate randomly due to the road roughness

shown in Figure 4.2. Consequently, all MEMS structures attached in the vehicle will

undergo random base excitation. In order to study this base excitation, a walking-beam

model is given in Figure 4.3.
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Fig. 4.3 Mathematical vehicle model in stochastic roughness road [31]

Table 4.2 Descriptions of parameters used in the vehicle suspension mode]

Parameters Descriptions
my Unsprung mass
o Sprung mass
i Moment inertia of unsprung mass
Right-side tire spring stiffness
ky Left-side tire spring stiffness
k3 Suspension spring stiffness
€1 Right-side tire damping
cy Left-side tire damping
c3 Susper.lsion .damping
b Effective width of the vehicle
Y1 Absolute vertical displacement of right-side of unsprung mass
Y2 Absolute vertical displacement of left-side of unsprung mass
y3 Absolute vertical displacement sprung mass
n Absolute height of pavement profile corresponding to right-side tire
n Absolute height of pavement profile corresponding to right-side tire

The equation of motion of the system shown in Figure 4.3 can be given by (4.5).

M{Z} + C{Z} +k{z}={F} (4.5)
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where ﬁZ%:%ZI.Zz,Z?}I,4Z’L:£21.:~.Z;}T.{Z}:f{rz.::.:ﬁ}

andz; =y, =1y, 22 = yp — 17, and z3 = y3. As the road excitation to the vehicle system,
here 1, and 7, are the respective pavement profiles corresponding to right and left tires.
Furthermore, mass matrix [M ] , damping matrix [C ], stiffness matrix [K ] and force

vector F are, respectively given by:

0 0 my —c3ap - c3ag c3
M = myay myan 0 , C= 1 +c3ay Ccy +C3a -C3 |,
~1/b I/b 0 4] Cl2b —Czalb 0
~k3ay —ksay k3
K= kl +k3a2 k2 +k3a1 —k3 (4.6)
kl azb - kzalb 0
7,
7,
0 c,a, k,a, 0 c,q, kia, n
1
F=\-ma, -ca, -ka, -ma -—cq —kya, |5, ¢
1/b 0 0 -1/b 0 0 (|7
7,
m,

S 7

The commonly used description of a pavement roughness is to define a road profile in
longitudinal direction as a one-dimensional random field as shown in Eq.(4.4) and Figure
(4.2). To simply the above study, a widely accepted assumption is given that the

pavement surface can be treated as isotropic homogenous random field [32]. According
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to the assumption of isotropy, the spectral density function roughness of each individual
vrofiie under two sides of axle remains the same as the one-dimensional spectral density
function roughness.

Thus, the cross spectral density function of generalized force vector expressed in

Eq.(4.6) can be obtained. With the response modeling proposed in Chapter 3, cross

T
spectral density function matrix S (w)of response <Z t=4z1,z2,23 + can be obtained.

MEMS structures are subjected to different random vibrations according to the location
they are attached. Take the right-side tire pressure sensor for instance, the MEMS

structures undergo random base excitation, and it’s randomness is characterized by

spectral density function of right-side tire vertical displacement § Z (a))which is the first
diagonal term of S, (w). Furthermore, based onS Z (), the fluctuation of tire pressure
can also be developed, the details will be presented in the next section.

As discussed above, MEMS structures in automobile applications might be
subjected to random base excitation due to random road roughness. In the applications to
space industry, MEMS structures are also commonly under the random vibration
environment. This random vibration occurs over a broad frequency range, from about 10
Hz to 2000 Hz which is directly transmitted into the flight article through its mounts from
the launch vehicle sources such as engine firing, turbo-pumps, etc. Figure 4.4 is the
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typical Power Spectral Density of such random vibration transmitted to flight article.

Thus, MEMS structures attached to flight articles are subjected to serious random base

excitation, especially, during the launching period.

10
T -
&m‘s‘.] =aas
}i'Z 1 / . A
7
il -
D.1 -
. g
0,07
10 100 Frequency,Hz 1000

Fig. 4.4 Random vibration levels transmitted to flight article

through mounts, the power unit is (/%2 / g [1]

According to different operating environment, the requirement of the ability of
MEMS structure to endure random vibration is therefore different. Figure 4.5 is the
sample of the SDF of minimum vibration level proposed by NASA[1] that can be used

for MEMS defect detection.
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Fig. 4.5 Minimum vibration levels for MEMS defect detection,
vibration unit is g*/ Hz [1]

4.1.2 Random loading

MEMS structures are subjected to random loading directly due to the random
nature of the measurements. If the pressure is random, the MEMS structures in Figures
4.6 and 4.7 will be subjected to random loading. Similarly, stochastic acceleration and
angular velocity rate will result in that the MEMS structures shown in Figures 4.8 and 4.9
undergo random loadings. In this section, as an example of random loading, the

relationship between the road roughness and tire pressure fluctuation will be explored.
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Fig. 4.6 Beam-plate inertial capacitive MEMS sensors fabricated in Concordia

Fig. 4.7 Scanning electron micrograph of a beam- plate type
pressure sensor fabricated in Concordia
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Fig. 4.8 Beam-plate type surface-micromachined accelerometer [34]
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Fig. 4.9 Beam-plate type angular-rate sensor under rotation [34]
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Assume stiffness of tire is constant. Tire pressure is expressed by:

_nRT
Vv

P

(4.8)
where V is the air volume which is also random due to randomness of tire vertical
relative displacement. The temperature T is assumed to be constant. Extend (4.8) into
Taylor series, and neglect high order items,

”‘ff AV) (4.9)

P+AP=P+(-

Therefore, dynamic component of pressure is expressed by,

nRT
AP =- v AV (4.10)

Figure 4.10 shows the approximated graph of a tire and its deformation. The deformation
part of tire is expressed by the shaded area schematically.

Area of shaded part in Figure 4.10 is given by,

Fig. 4.10 Tire under random displacement
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, in(26
A=R? (e—sm( )j (4.11)
where 6= ZACD , and volume determined by shaded area is given by,

V=R'H [9~ Si”(zw) j (4.12)

where H is tire width and R, is tire outer radius. Thus, the changing in volume with

AV = R?H (1-cos(26))A8 (4.13)

coso= "2y Z (4.14)
1 Rl

sin?0=221-2y=2% (4.15)
Rl Rl Rl

where Z = DE in Figure 4.10. Differentiate equation (4.14)

(sin B)AQ = —j_ql_AZ (4.16)
3

Substitute equations (4.15) and (4.16) into equation (4.13)

AV =R’H(2sin” 8)A0

fR
:R3H4—Z— AZ = 4HZAZ,|—~
R, R;sin0 2Z

AV =2,2R,Z HAZ (4.17)

Substitute equation (4.17) into equation (4.10), finally,

P
AP=—V2 2R, Z HAZ (4.18)
The relationship between tire pressure spectral density function and relative displacement

spectral density function is,
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.
8R, P’

Sapl@)= CA—127)S 7 () (4.19)
V=

where, Z is static displacement due to the vehicle’s weight, and P and V are initial
pressure and volume, respectively, and S5z (@)is actually Sz, (a))which has been stated
in detail in Section 4.1.1. With the Equations (4.19), (4.4) vehicle structure and its
velocity, and type of road profile, the spectral density tire pressure can be obtained.
4.2 MEMS Structures and Modeling

A complete MEMS is a complex system which is difficult to analyze. In general,
the structural components of MEMS consist of simple beam and plate type of structures
as can be realized from Figures 4.6 to 4.9.

The accelerometer in Figure 4.8 or angular-rate sensor in Figure 4.9 may be
modeled efficiently as one-degree-of-freedom system. Beams can be modeled as springs
in general (including torsion spring), and the plate can be modeled as a rigid body with

proof mass as shown in Figure 4.11.

Proof mass

=

echanical stiffness
Electrostatic stiffness

J777 7777777777

Fig. 4.11 Schematic model of beam-plate capacitive sensor
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MEMS structure shown in Figures 4.6, 4.7 can be modeled as beam-plate and (or)

plate-plate structures depending upon the relative stiffness of the plate element with

reference to the beam element. If the MEMS structures shown in Figure 4.6 and 4.7 are

modeled as a beam-plate, and the stiffness of the plate is far greater thin that of the beam,

then the MEMS structure may be simplified to a flexible beam with end attached rigid

plate as shown in Figure 4.12.

Y

1)

i dx

bX >

e

F :

a

Fig.4.12 Schematic structure of beam-plate type pressure sensor

Discretizing the plane beam AB into N-1 elements (N nodes), then the system would have

2N DOF described by {v;,vy,.....»an_[,Van J» Where vy;_;is vertical displacement and

73



v, 1s rotation. Thus, the stiffness and mass of the beam are 2N X 2N matrices which may

be written as:

[y kiony |

Kppam =|- (4.20)
kem knyany |
"my moNy ]

M geam =1 (4.21)
| M2N) M2NY2N) |

Since the plate is treated as a rigid body, the kinetic energy of the plate can be given by,

2 2 2
T=l _” ,OhdA[va—HxvaJ =£2ﬁ(abV2N—1+éa3bva+azbva VIN-1 (4.22)

CDEF

where h and p are thickness and density of the plate, respectively. Considering
Eq. (4.22) and the methodology explained in Chapter 2, the mass matrix of whole

structure is given by:
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m“ ml(QN)

2N MQ2N)2N) |
0. . . 0 0 i
1 .2
0 pPhab Y pPha“b
0 L oha®s (1 ,0ha3b)
L 2 3 J2NX2N
_m“ . . mLZN i
(4.23)
1
MaN-1,1 (myN-1oN-1F Ohab),  (my_jon + > pha’b)
1 2 1 .3
MmN 1 (man an-1+— pha’D), (mzN,ZN +— pha b)
i 2 3 Jonxon

Compared to the strain energy of the beam, the potential energy due to the weight
of the system is very small. Thus, the stiffness of the whole structure is assumed to be the
same as that of the beam. Using virtual work principle, the equivalent nodal force of the

whole structure may be described as:

T 1
{FY ={f.for - - - fana Fon) +{o, 0,... pab,——pazb}
2 Ix2N
1
= {fl’fZ’ .. fon-1+ pab ’fZN +5pa2b} (4.24)
where {fi, f2, . . . fan—1 faon} is the vector of equivalent nodal force in the beam

which is the null vector for the present study and p is the pressure which is sensed by the
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rigid plate. With the mass and stiffness matrix of the MEMS structure given by Eqn.
(4.20y and (4.22), and the equivalent nodal force expressed in Eq.(4.24). the equation of
motion regarding MEMS structure can be established. Therefore, the dynamic
performances of MEMS structure can be predicted if the nature of pressure p is known.
4.3 Design Issues and Reliability of MEMS

When MEMS structure is under random environment, the responses of the
structure including stress are therefore random. In such situation, the “three-sigma”
design criterion is typically used to design structures where brittle fracture or fatigues are
not considered to be the principal failure modes. A basic requirement commonly
employed in MEMS design criteria documents is that, for a safe design [8]:

R=30, (4.25)
where R is material strength and o is the standard deviation of the stress. The implication
is that mean stress x4 is zero and strength R is deterministic. Because process S is
Gaussian, the probability that stress will exceed three times its RMS value is

P[S(t)}> 30, =0.0026 (4.26)
When R =30, the probability of stress exceeding the strength can be considered to

be 0.3% . In reality, the mean stress is not zero and material strength is a random
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variable. For this more general case a basic criterion for a safe design under no mean

stress conditions can be written o8

U, 2éo, (4.27)

where 4, is the mean value of the strength, R, and the factor ¢ is function of y, /o,
and the coefficient of variation of R, C, = 0, / i, . The function £ has been derived

by numerical analysis and the results are shown in Figure 4.13 [§].
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Fig. 4.13 Generalized three-sigma criterion [8]

Another important effect of random environment on MEMS structure is its

reliability. Figure 4.14 is a schematic of a capacitive inertial sensor. While parallel plate

capacitors have good actuation and sensing abilities, they have some severe limitations.

One of the limitations in these devices is the potential of the plate pull-in. In MEMS

77



structure, when the two metal surfaces come into contact, adhesive forces exert a strong
bond that usually causes fatture. This problem is especially prevalent m parallel plute
devices because the elastic force increases non-linearly with distance. A common
convention in design rule used is that, 1foZ§d , the device will be pulled-in. To
prevent this, parallel plate devices under random environment must be designed to

displace much less this amount due to random loading and excitation.
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Fig. 4.14 Schematic of a capacitive sensor
4.4 Application to MEMS Structure
Design problems and reliability of MEMS in stochastic environment will be

discussed in this section.

4.4.1 Design problem of MEMS structure in random environment
As an example, design of a piezoresistive tire pressure device which is subjected
to random tire pressure will be developed in the following case.
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MEMS structure is shown in Figure 4.15. The dimensions, the material
Characieristics and the load condiuion of the plate are us follows:
Width: 100 zam, Length: 100 wm, Thickness: 8 wm, Density: 2300 kg/m’ ,Young’s
modulus: 73 Gpa , Possion’s ratio; 0.17, Yielding strength: 700 MPa . Damping
coefficients of all modes are assumed to be 0.02. Excitation is spatial uniform random
pressure and its power spectral density function is shown in Figure 4.16 and static tire
pressure is3.5 x10° Pa.
The following are the solutions along with discussion:

1) Using finite element method of bending thin plate which has been explained in
Chapter 2, the motion equations of the MEMS flexural plate can be set up.

| 2) Since the random characterization of the measurement (pressure) is given and

the random response of multi-degree-of-freedom system to random input can be obtained
as described in Chapter3, thus the cross spectral density function and covariance of the
nodal displacement response {x} can be computed directly or using normal mode
summation technique. The computational model has been presented in detail in Section
3.7, and has been verified with a simple discrete 2-degree-of-freedom system in

Section 3.9.
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Fig. 4.15 Photomicrograph of piezeresistive pressure sensor, the sensor area is the square

in the center of the chip [21]

Fig. 4.16 Power spectral density function of pressure
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3) All performances of the considered structure are based on the nodal
displacements. Since the dynamic characterization of the nodal displacement response
{x}can be obtained, the randomness of strain, stress can then be obtained subsequently.

For design problem, covariance of the maximum stress is the main interest.

4) Covariance of maximum stress of the MEMS plate in this study 1s

2.8117 0.8435 -0.1544 O,
0.8435 02531 -0.046 |x10% (Pa)z. It 1s the covariance of stress tensor o, ¢ at
-0.1544 -0.0463  0.0085 Tyy

the center point of the side. The diagonal terms are variances of o,0,,,7,, respectively.

Thus the standard  deviation of 0x:0y,Tyy  may be  written  as:

Sy =V28117x10° pa=53MPa | S, = V0.2531x105 pa =5.1MPa
87, =V0.0085x10" pa =0.92MPa.

Thus, the value of 3-sigma is 159 MPa . The mean maximum stress due to static pressure
is 71 MPa

5) According to different MEMS environment, there will be different dynamic
performance. These performance results are very useful for MEMS design. For example,
in this case, the yielding of this material is 700 MPa, which is far greater than 3-sigma
value of maximum stress. Therefore, the design of MEMS structure in the stochastic

environment shown in Figure 4.15 is safe enough.
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4.4.2 Reliability analysis

A typical MEMS structure shown in Figure 4.7 with its schematic figure shown in
Figure 4.12 is considered here for a case study. It is assumed that the structure is
subjected to a random base excitation in acrospace application. The input spectral density
function is demonstrated in Figure 4.5. The dimensions of the structure are: width of
plate: 100 zm, length of plate: 100 wm, length of AB: 100 um, width of AB:10 um,
thickness: 5 um. The density and the Young’s modulus are 2300 kg/m* and 73 GPa,
respectively and the Possion’s ratio is 0.17. The mode damping coefficient is assumed to
be 0.02.

The solutions are discussed below:

1) The structure is the combination of beam and rigid plate. The modeling of this

type of structure has been presented in Section 4.2. Let us rewrite the mass matrix given

in Eq. (4.23):
—m“ . . . ml,ZN ]
M =
1
myN-11 (myn-12N-1F Phab),  (mpn-yon + 5 pha’b)
1 2 |
myN | (myn on-1 += Phab), |moyon += pha’b
L 2 3 Jansan
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The total kinetic energy of the structure can be written as,

5171111, Hipp . o ’nrl,(ZN-i-l) P
Mgy X1
miyy X9
1
T:E[v,xl,xz,. XN M] . (4.28)
| MION 1)L JL¥eN |
where xj,xp, . . . xpy are desired nodal displacements, v is base excitation.

mt; , my; are terms of mass matrix after assembling.

2) Now recalling the finite element modeling of continuous structure excited by

base motion explained in Section 3.8, the equation of motion can be written as,

mlqq v+ ktzlv

mt3q v+ kt3pv

(M nsan {x} +{&K Lvson g =4 (4.29)
Nx1 .

ML ON+1),1 VT KN 1)1V

Since the interest in this case study is the gap of the two plates, namely,

IN-] =Xy-1-V , it is necessary to replace {x} by z  Setting

{Z} = {x}- {0,0, .. .,v,O}T the equation of motion of the structure can be reformatted as:

[M ]ZNXZN {Z} + [C]{Z}“” [K]ZNXZN {Z}le =-{F} (4.30)
Nx1

where
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[y vt kt,v + My appy VIR onyV F Chanoyy V

mt. v+ki oy TN, VT kzuN—n" t Caany ¥

Fool. 431

M iy VT kt<2N+1),1V + My onoy VT k2N(2N-1) vVt Cyyan-y vV

3) Because the random base excitation vis known, the spectral density function of
generalized force vector in left side of equation can be obtained. Thus, the response

characterization can then be obtained.

. ZaN-11.
4) The covariance of { 2N 1}15
2N

1.1215x10™"  1.94%1077
o= , (4.32)
1.94%10° 0.0034

where z, y_; is the relative displacement, and z,py is rotation. Thus, the gap standard

deviation is ¥1.1215x107"" =3.3um

The probability of failure can be estimated for different initial gap. Thus the above
prediction will be helpful in avoiding the failure of the device due to snapping under

random excitation.
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CHAPTER 5

TESTING OF MEMS STRUCTURES UNDER RANDOM

ENVIRONMET

5.1 Introduction
Performance response modeling of multi degree-of-freedom system under random

environments has been developed and verified in Chapter 3. Meanwhile, finite element
modeling of continuous structure under random base excitation and micromechanical
structures has also been presented in Chapters 3 and 4, respectively. In this chapter, a test
of MEMS structure under random excitation is demonstrated to verify the finite element
modeling.
5.2 Testing of MEMS Structures

A simple cantilever type of MEMS structure is tested. Atomic force microscope
(AFM) probes are chosen for testing. A sample of such probes is given in Figure 5.1, and

the dimensions of the tested AFM cantilever are provided in Table 5.1.
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9832 15KV
Fig. 5.1 An SEM photo of AFM type cantilevers used in this study [33]

Table 5.1 The dimension of the AFM cantilevers used in the test

Cantilever A | Length Width Thickness Fundamental
frequency
351 microns 34.8 microns 1.61 microns | 18000Hz

This bimorph microcantilevers are made up of silicon layer and a thin aluminum

layer on top side. The aluminum coating has reflection characteristics that allow for

excellent testing suitability with a HeNe laser (91% reflection at 632 nm) with virtually

no reduction in signal in sensing from the cantilever surface.
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For this experimentation. a non-contact method, Laser Doppler Velocitimetry [33]
i+ adopied 1o measure the dynamic response of the cantilevers. The test equipment used
in these experiments comprised a helium-neon laser, some simple focusing optics for
beam shaping and laser spot size optimization and an acoustic system to provide the base
excitation energy.

A flat-face acoustic speaker was selected for the ease of mounting, and test
structures. The output signal analysis was done with an oscilloscope for the time-domain
analysis, and a frequency analyzer with an integrated signal generator for the frequency-
domain. Interpretation, analysis and cross referencing of these signals to a single tone
input signal (2kHz sinusoidal with appropriate amplitude) provided the basis for proper
experimental set-up (axial and radial alignment, lens alignment, laser beam focusing,
acoustic signal amplitude, signal sensitivity, etc.). Higher single tone frequencies
(>15kHz) were more sensitive to apparatus misalignments due to the inherent reduction
in signal amplitude, and therefore, were used to “fine tune” the experimental set-up
before device testing was undertaken.

The HeNe laser was mounted onto a fixed immovable platform. All other
equipment was aligned with respect to the laser position. Both lenses, one diverging the

other converging respectively, were mounted onto individual XY micro-positioners,

87



while the flat-face was mounted onto a rotational platform fastened onto a XYZ micro-

posiuoner. Pitch musalignment was corrected by the insertion of an appropriate wedge

device at the base of the speaker. The schematic of the experimental set up is shown in

Figure 5.2.

Frequency &nalyrer Osetlloszape

Thermal
Controller
and Sersor

Fig. 5.2: Overview of the experimental set-up[33]
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Fig. 5.3: Displacement response of the substrate

0 5000 10000 15000 20000 25000 30000
Frequency (Hz)

Fig. 5.4 Displacement response of the cantilever tip
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Initial tuning of the setup is important for testing. Once a proper single response
vous obtained irom the substrate surface of the AFM chip, the laser was focused onto one
of the AFM cantilevers.

The whole device was excited by random base excitation which was generated by
Frequency Analyzer The input excitation was the band pass between the frequencies
20Hz to 20kHz. As a result, the responses of the substrate and the tip of the cantilever are
also random. Figure 5.3 and Figure 5.4 show the responses of the substrate and the beam
tip respectively. Actually, the transform function of a structure is determined only by the
structure and its boundary conditions, and the type of the excitation makes no effect on
the transform function (irrespective of sinusoid or random excitation). The purpose of
this test is to verify the finite element modeling of the continuous structure excited by
base excitation through comparison the gain functions obtained analytically and
experimentally. After the tip response shown in Figure 5.4 is divided by that of the
substrate shown in Figure 5.3, the gain function of the cantilever can be obtained, which

is shown in Figure$5.5.
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Fig. 5.5 Gain function of the micro-cantilever. This function is measured on the condition
of that the AFM device was subjected to random base excitation

5.3 Comparison and Discussion

In this section, the analytical transform and gain function between the tip response
and base excitation will be presented using the model proposed in Chapter 3. Furthermore,
this analytical result will be compared to the testing result given in Figure 5.5.

The considered cantilever beam is a continuous structure, in order to study the
dynamic performance of this structure excited by base motion, the finite element method
has to be employed. Thus the motion of equation of this structure can be given as
[M ]{x} + [c){x} +[k¥x}={F} (5.1)
where [M ] ,[C], K ] are mass, damping, and stiffness matrices respectively, {F } is

equivalent generalized nodal force due to base excitation, and {x}is nodal displacements
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response of the structure.

sing  the modeling proposed in Section 3.8 and Equation (3.41), the equivalent nodal

Sy

force {F }can be defined as:

N

1 S |

—\mys + 1, v +—=(kiy + ks v
2( 12 21) 2( 12 T Rap)

1 -1

—i(m]3 +m31)v+5(k13 +kqy v

1 !
{F}=— E(mm +my, )y EGTRE (5.2)

b

1 S |
> (myy +my;)v+ '2‘(kw +ky )"

/

where my; and k;; are the terms in the unmodified mass and stiffness matrix [m], [k] which
are used to express total kinetic and potential energy of the whole structure, N is number
of the freedom of the system including the known freedom (base excitation) , N -1 is the

number of degrees-of-freedom of the structure which need to be solved, v is base

displacement, and v is base acceleration.

Using Normal Mode Method which has been discussed in detail in Chapter 3, the
coupled differential equations in (5.1) can be a group of uncoupled differential equations

which is given by equation (5.3).

6T ielfa}+ Wi} + T [K][¢1{q}=[¢r () 3

92



where [¢] is modal matrix | {¢}is modal coordinates, {Q}is modal force, and {x}: [gb]{q}
0}=lo] {F] (5.4)

Thus, the Equation(5.3) can be written as (5.5)

e oo

where
M:W o {E}W cll) H=W xlol . 59

and they are diagonal.

Hence
{g}=[H(@)Ko}=[H ()[s] {F} 5.7)
where the transform function matrix [H (@)] is diagonal,
Hi(w) 0 0. . . 0 ]
0 Hyw) 0. . . 0
[H(w)]=|. (5.8)
_0, O, 0, e HN_l(C())d (N -D)x(N ~1)
and H j (w) = > 21 is the jth modal transform function, @ j is the

jth undamped natural frequency, M jis the jth modal mass, and &; damping ratio of

mode j.

Pre-multiply Eq.(5.7) with [¢]
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[olla]= (v} =01 (@)} {F} (5.9)
The fundamental frequency of the micro-beam is 18000 Hz . The mode coordinates

can be simplified as,
{x}=lolla,} (5.10)

On rewriting Eq.(5.9),

A M fmxzwz + ki
& % ’7113(”2 +ki3
4 b= Hl(w)[¢11 P - - ¢N-1]<- e {V} (5.11)
xN_2 . 2
myw° +k
Xya )y Ol [N W) Na
Thus
X X X X T
{__1_,_1,_ . __N—_2_M} =h; j=L(N-1) (5.12)
v v v v \
N-1 ,
by =( Z¢1j¢1i(ml(i+l)w “k1(i+1)) ) H, () (5.13)

i=1

where 4 ;is the transform function of the response between j " degree-of-freedom and

base excitation v, xy_, is the vertical displacement of the beam tip, x,_;is the rotation

of the beam tip.

. . Xy : :
The desired transform function is hyy_, === The cantilever geometries were
X

measured using an optical microscope and are in agreement with the dimensions supplied

by the manufacturer. The dimensions of the cantilevers are given in Table 5.1. Since

94



aluminum layer is very thin compared with that of silicon, for the theoretical analysis the
vilue for Young's modulus was taken as 170Gpa, and the density for silicon was taken as
2332kg/m’.

Using equation (5.13) and data in Table 5.1, analytical gain function lhl( N_:,_)‘between
tip displacement and base excitation can be obtained. When all mode damping ratios are

assumed as to be typically 0.02, the result is shown in Figure 5.6.

_ Gain function between canfilever tip displacement and base excita

T T T T

Fig. 5.6 Gaih functlon between céﬁﬁlé?ér tip displ‘acefne'nt andV ba“se /exc'itétion (£=0.02)
Compare the testing results shown in Fig.5.5 and the theoretical results given in

Fig. 5.6, it can be realized that good agreement exists between the experimental and
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analytical results. Thus it can be concluded that the finite element modeling of continuous

cructure excited by base motion developed in Chapter 3 can efficiently and accurately

predict the dynamic response of MEMS structures in random environment.
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CHAPTER 6
CONCLUSIONS

This thesis attempted modeling and testing MEMS structures that could be
subjected to stochastic working environment which might be random external force or
random base excitation. The author has modeled MEMS structure and built equations of
motion with Hamilton’s principle, Lagrange’s equations, and finite element method to
explore dynamic performance, design issue and reliability of MEMS in such environment.
In order to simplify equations of motion of the structure, normal mode method has been
adopted. Furthermore, since fundamental frequency of MEMS structure is very high
compared to excitation frequency, summation method was used to reduce the size of
motion equations according to the excitation frequency. This technique makes it possible
to compute response of MEMS structure fast and effectively.

According to general nodal force which is caused by random measurements or random
base acceleration, cross spectral density function of input can be obtained. Direct method
and indirect method were both used to derive displacement response formula. The
proposed dynamic models can be applied to both design and reliability of MEMS

structures.
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The response of multi-degree-of-freedom system excited by random force has
heen studied in detail. The formulation proposed in the thesis is found to be in good
agreement with other published results and experiments. Moreover, dynamic models of
continuous structure which are subjected to base (acceleration, velocity, or displacement)
excitation have also been studied and verified in this thesis.

Using the present formulation, any  beam-plate type MEMS structures under
bending can also be modeled easily.

To finally conclude, this thesis provides some guidelines for design of beam-
plate type of MEMS structures and reliability analysis of MEMS structures under random

environment.
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