NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Program Slicing based Source Code Feature Extraction

Susmita Haldar

A Thesis

in

The Department of Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April, 2005

© Susmita Haldar, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04445-4
Our file Notre référence
ISBN: 0-494-04445-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Program Slicing Based Source Code Feature Extraction

Susmita Haldar

Program comprehension is an essential part of software maintenance. As software
systems are becoming larger, understanding the whole program without prior knowledge
is a hard task for the developer and the maintainer. Our approach of feature extraction
reduces the program understanding complexity by identifying features based on input and
output statements at the source code level. The presented feature extraction approach is a
semi-automatic approach that only requires source code and test cases to identify and
extract features. This approach utilizes program slicing, a program reduction technique to
extract statements that implement an identified feature. The algorithm is implemented
within the CONCEPT (Comprehension Of Net-CEntered Programs and Techniques)
project. A case study using an open source project called JUnit was conducted to evaluate

the applicability of the proposed approach.

11

Acknowledgments

I would like to express my gratitude to my supervisor Dr. Juergen Rilling for his kind
support and guidance throughout this work. Without his guidance the accomplishment of
this task would be impossible.

Also, I would like to give thanks to Beverly and Josh Beherman for proofreading this
thesis.

Finally, special thanks to my parents, my husband, and my brother for their

encouragement and support to help me accomplish this research work.

iv

Table of contents

TabIE OF FIGUIES ...ttt et s b n s snne vi
LSt OF £aDIESc.cvieueireecteicccetec ettt en et r bt nerenin viii
I INTOUCHION ..coitiriiieeire ettt ettt et sa et sa s s se s s e s ssebeseebenen 1
1.1 FEAUIES ..ottt sttt bebn 1
1.1.1 Functional feature...........cocoeeveviininininiiiiccreecee e ebe e 3
1.1.2 Non-functional featureecvevevivvereceneiinienerieeerereerers e enens 3

L2 MOUIVAON ettt sissestenssesteesessessseressssste e sesaesessssessssssessesnerensesesserenes 4
1.3 ThesiS OUINEcociruiieiireiicerirere et er e s b b e enns 4

2 Background/Literatlre SUIVEYccoeverrererienieisreieeeeeessersssessssessesessssessosessonesssassses 6
2.1 Software Comprehension and reverse engineering.............ccoeeeveeveveeveereresnsuenn. 6
2.2 Documentation versus source code-driven feature extractioncuouve...... 8
22.1 NOnN-source code basedccccevirereniniiriineeeereeereeee e rereeeee e sreenes 9
222 Feature extraction based on source code...........ccecevverevervnererernreereeveerennes 17

2.3 Source code analysis basedccoveeerereeiereieireieneereerere e res 21
2.4 Discussion and limitation of existing feature extraction methods.................... 30
2.5 EXISHNZ t0OIS..ccuiiiiieiriiireseecstccrcteeeee ettt sns e e sae s eaes 35
2.6 Limitations of feature eXtraction to0ISceceevevierecveveeiireneeecceeeecererearene 40

3 Source code-based feature extraction approachi..........cccovveveeeeeeeevieiinniseneeseininens 43
3.1 MOIVALION . ..evviiiiiiciiterestecreret ettt ettt e s bbb eseese s seereesensens 43
3.2 Feature CategOTIZatiONccccovvvererierereertsenrienressee et eesereereeeeseesessesesnenes 46
3.3 Research approachoceecevveeiieenininiieee et erenr et saeseneen 50
3.4 Feature extraction algOTithimccocovveiiriininenieice ettt 55
3.5 Description of the backward slicing algorithmcccooveveveireevvveirieeiiinnne. 59
3.6 Description of the forward slicing algorithmccceevevvevveereeceeienieniraenne. 61

4 IMPIemMENtAtiON ...co.ccerveiriiirinieirireeete ettt bt r e st e b e ens 72
4.1 Concept System architeCtUIEcocoveerieininerieieneeeeeeereeresseeerneseeeereereerons 72
4.2 Feature extraction algorithm implementation architectureccourvene..... 74
43 Case study and experimental 1€Sult.............coeeeereiiirirerenrerrericrceece s 77
4.3.1 Experimental 1€SUltS........ccoccoeeririiriinriiinierreneicre e 81

4.4 Application of extracted fEAtUrESccceeveeeeieerereieereinrericeeeeer e 91
4.5 Related WOTK ...c.coviiiieieiictceee ettt s 103

5 Conclusions and fUture WOrkccceceveeiieieiieceeicierce e aenes 109
BibHOZIaphy......ociiiiiiiiiicc ettt b e bbb nnene 112
Appendix 1 The Account.java Programi.........cccceeereerereeeeereveserensesereeessssessesnesessosessone 121

Appendix 2 An example of the computation of dynamic backward algorithm [Kor95] 122
Appendix 3 Identified output statements and output feature criteria from the ResultPrinter
Class fOr teSt CASE 1 ...cuiiiiiiiiieiiece ettt n e 124

Table of figures

Figure 1 Use case diagram of an automated banking Systemccccveveeerrerivrerereninnas 11
Figure 2 Diagram of a Use Case Map representation [AmyOO0b]...........ccccevveevererenrnnnne. 13
Figure 3 The phases of feature oriented domain analysis [Kru93]c.cccecvevevrvvirverennn. 16
Figure 4 An example of source code and the PDG representation of the source code..... 26
Figure 5 The computed slice from Figure 4..........cccovevereeeeerereeieeeereeeeeseveeienenes 26
Figure 6 A Sample SOUICE COUEccvviiniiiiinirreineee e r b s senen 28
Figure 7 Forward slicing computation of Figure 6 using Korel’s algorithm 28
Figure 8 Computed slice using Horwitz approach for slicing criterion <3,c>.................. 29
Figure 9 Traditional approaches to feature eXtractionccoevveververereeereceveenesnennenes 44
Figure 10 Feature extraction process based on our research..........c.ccocevureeeureecverreevennnnns 45
Figure 11 Example of a static featurecoeceveviiicrevnenececiceeeececeeeeeene 48
Figure 12 Example of a dynamic feature...........ccocueeveereeeeceiicecceecrcee e 48
Figure 13 Example of an informational feature..............ccccocvvvrueeveeneeccreeceerecveeeenennes 49
Figure 14 Example of a functional feature.............cceoevreeevivvieerrernreesceeeeeerevee e, 49
Figure 15 Method for extracting output feature using backward slicing.............ccov.u..... 51
Figure 16 An example of the output feature extraction technique............cocueevevevreirnennens 52

Figure 17 Provides an overview of the feature extraction approach for input features. ... 53
Figure 18 Input feature extraction techniques using the combination of backward and

FOrWard SLICINGcccvevevereririririrreretceiceec et s s 54
Figure 19 Algorithm for computation of input and output featurecoeververrrennnnnee. 58
Figure 20 a) Last definition example b) First usage reference example................ 61
Figure 21 Modified method from backward slicing algorithm............ccccevvrvrvrvrrevrrnnnnnes 62
Figure 22 Modified procedure added to the algorithmccocoevveeveveneeeveeveceeecennes 63
Figure 23 Sample program with a constructor callccocovvverivirieeeenieeereiereesseeneas 64
Figure 24 Execution Trace of the sample program of Figure 23cccevveverivvnenrennnen. 64
Figure 25 Integrate backward slicing with forward slicing algorithm.............cocvveuneen. 65
Figure 26 Removable blocks of the sample program.............ccecverevvveveerereeninecreeeereeneenas 66
Figure 27 Execution trace and blocks traces of the sample program..............c.ccoevunenee. 67
Figure 28 Highlighted output feature of the account program............ccceevevivverierenevrnennns 68
Figure 29 The extracted input featurecoccoverirvineneeiniecceeneereee e erenees 71
Figure 30 System architecture of the CONCEPT framework...........ccovereeveereereeirernrenenn. 73
Figure 31 High level view of the feature extraction algorithm implementation............... 76
Figure 32 A screen capture of the part of the output features from JUnit......................... 77
Figure 33 VectorTest Class........cccccvivuririnecinenteienieeseieetste e ese s rere e sseessssssnanes 80
Figure 34 Test results generated by JURNIt..........coooeiivivevieeericieeeecee e 80
Figure 35 Executed junit and file id for each execution that was used in 3 separate

EXPEIIIMEINES ..cuvtieuiiriiieiirieircreeiteentereseesteesseereesseesssessseetesseessesreesessssensssssssessesssesnnans 82
Figure 36 Partial listing of modified VectorTest class........c.cccoevverivvieeereererinereeeesreennnn 88
Figure 37 Output produced by the modified Vector Test classccccceveveveveverenenene. 88
Figure 38 A feature extracted by the sample program............cccoeeveerecrececiecrernerereerereneen. 89
Figure 39 Test case With Input fEatureccocvveevivinnecnninin e 90
Figure 40 Output from the AlITest class........ccccvcvvereveiiirirrieieeeee e 90
Figure 41 An example of an input featurecceevvenreviereiciecieceeeeeeeeeee e 91
Figure 42 Measuring coupling and cohesion of the system..........ccoceeeeeveereieerenrecnnecrennna. 93

vi

Figure 43 The overlapping computation formula and overlapping example.................... 97

Figure 44 Applications of feature extraction technique..........cccccevevvereceeeeerecreeereeererenens 98
Figure 45 Partial listing of ReSUMPIINLETccocoeviviivieciiecriecececeeeceeev e 101
Figure 46 Example of the limitation with the invoking objects..........cccoceeveeereeerivvennnne. 102
Figure 47 Differences between two features identified with different test cases............ 106

vii

List of tables

Table 1 Disadvantages of Feature extraction based on the document based technique.... 32

Table 2 The disadvantages of feature extraction from source code............coevrrervrrerernen.. 34
Table 3 Limitations of current feature extraction toolS........ccoceevecvreriererrereriereereeereerenenns 42
Table 4 An overview Of the JUNIt Project........cccevieueceererieesieieeereereeereeeesresesseeesessesnens 78
Table 5 The computed features [ContinuUEd].........cccveeereeieverieeereerinreeeeeee e venenes &3
Table 6 The result obtained from the JUnit when applying feature extraction algorithm 85
Table 7 Features overlapping percentage from JURitcccceiereveeiivreeererveiiecieennes 95
Table 8 The result of Feature 1 and Feature 2 overlappingccccccveveverevveeericrennnnene 96

viii

1 Introduction

From a user perspective, a software system can be viewed as a black box which provides
a set of features that end users must utilize in order to facilitate their tasks. Software
systems have to evolve in order to respond to market needs. Software developers tend to
give preference to the end users’ requirements as the modifications usually starts with the
customers’ request to make changes [Meh02]. They start enhancing an existing
application by familiarizing themselves with the software application. However, the
software systems are typically large, and might be written in different or obsolete
programming languages that the programmer might not be familiar with [EisO1].
Therefore, it is essential to provide both developers and maintainers with means to focus
their attention on these parts of the source code that are relevant to perform the desired
maintenance task. This is done to reduce time and cost associated with these maintenance
tasks. One approach to reduce the comprehension complexity is to identify a group of
source code statements or components which correspond to a certain requirement or

feature of the system [Mur01].

1.1 Features

Having a mental representation of the application is an important factor in providing
effective software maintenance and evolution [May95]. Furthermore, understanding how
a certain feature is implemented is crucial in program understanding, especially when the
understanding is directed to a certain goal such as modifying or extending the features

[Eis01

In order to deal with identifying features and their applications, the traditional definition
of features needs to be understood. Different researchers have used different definitions
of feature based on the context of their research area [Kru93, Tur99b, Wil95, EisO1b,
Meh0O1a]. The IEEE introduced the following two definitions to describe software
features [IEE90]:

Definition 1: “A distinguishing characteristic of a sofiware item (for example,
performance, portability, or functionality).”

Definition 2: “A software characteristic specified or implied by requirements
documentation (for example, functionality, performance, attributes or design
constraints).”

In both of the above definitions, a feature is described as a high-level requirement view
without detailing any implementation issues.

On the other hand, in [Kan90], Kang et al. describe a feature as a prominent or distinctive
user-visible aspect, quality, or characteristic of software system or systems. Features are
often regarded as the attributes of a system that directly affect the end-users. The end-
users have to make decisions regarding the availability of features in the system.

In [Eis01], Eisenbarth et al. provide the following feature definition:

“A feature fis a realized functional requirement (the term feature is intentionally defined
weakly because its exact meaning depends on the specific context). Generally, the term
feature also subsumes non-functional requirement.”

However, in the context of their paper only functional features were relevant.

Specifically, they [EisO1] considered feature as an observable result of value to a user.

Eisenbarth et al’s definition introduces a categorization of features into functional and

non-functional features.

1.1.1 Functional feature

Kang et al. [Kan90] defined functional features fge as services that are provided by the
applications. In addition, according to them, features of this type can be found in the user
manual and the requirements specification document. Based on the definition of feature
[EisO1], frnct can be described as a realized functional requirement implemented by the
system. The IEEE [IEE90] described the term functional requirement as a system or
software requirement that specifies a function that a system or software system or system
component must be capable of performing. These are software requirements that define
the behavior of the system. Specifically, functional requirements define the fundamental
process or transformation that software and hardware components of the system perform

on inputs to produce outputs.

1.1.2 Non-functional feature

A non-functional feature f,5. can be described as a realized non-functional requirement
implemented by the system. In [Kul00], Kulak et al. described non-functional
requirements as addressing the hidden areas of the system that are important to the user
although the users may not apprehend it. They do not deal with the functionality of a
system. Rather, they relate to the system’s overall success. In all, non-functional
requirements are the constraints, limitations, and specifications on performance.
Examples of non-functional requirements are the ability of a software application to run

on UNIX, or for a software system to work in real time etc.

Xavier Franch et al. [Fra98] defined f,5n as “any constraint referred to a subset of the
non-functionality attributes that are in use in a particular software unit”, where non-
functionality attributes are defined as “any attribute of software which serves as a means
to describe it and possibly to evaluate it. Among the most widely accepted, we can

mention: time and space efficiency, reliability and usability.”

1.2 Motivation

Program comprehension is an essential part of software evolution and software
maintenance. A software system’s code base that is not comprehensible cannot be
changed. Programmers attempt to understand only how certain specific features are
reflected in the code [Raj02, EisOla]. The user views the features in terms of the
functionality the system is performing, and the developer views the features in terms of
the implementation of the feature [Tur99a]. This research investigates different
techniques and approaches that can be applied to guide programmers during the
comprehension process. The motivation of this research is two-fold. Firstly, existing
feature extraction techniques and approaches are surveyed and categorized based on their
underlying approaches and feature types extracted. Secondly, we present a semi
automated feature extraction approach that utilizes source code analysis to identify

features in the source code.

1.3 Thesis outline

The remainder of the thesis is as follows. Section 2 describes the background and a
literature survey of existing methods of feature extraction relevant to this thesis. Section 3

provides the definition of features and introduces the techniques for extracting features in

this research. Section 4 presents the CONCEPT’s system architecture, and discusses
implementation issues, and presents a case study. Finally, section 5 provides conclusions

and discusses some future work.

2 Background/Literature survey

Software modification starts with a maintenance request, which is usually expressed in
terms of domain concepts or program features that have to be enhanced or changed. The
majority of maintenance tasks involve perfective maintenance activities which are caused
by changes in the functional requirements, corresponding to features in the software
system [Boh96]. In order to add or modify any feature, the existing features need to be
examined so that the changes do not create any undesirable effect in the system. One
approach to comprehend these existing features in the system is to extract these
functional features from the system to focus the comprehension and maintenance process

on these parts.

2.1 Software Comprehension and reverse engineering

Software reverse engineering research is concerned with developing tools and
methodologies to aid in the program understanding and management of the ever
increasing number of legacy systems. According to Von Mayrhauser and Vans [May95],
“program comprehension” or “program understanding” constitutes a process that uses
existing knowledge to acquire new knowledge. The system requirements are likely to
change while the system is being developed because the environment is changing. A
change in a system to make it meet its requirements more effectively is referred to as
perfective maintenance. Adaptive maintenance is used to change a system in order to
meet new requirements. Finally, corrective maintenance is used when there is a need to
change a system to correct deficiencies in the way it meets its requirements [Boh96].

Boehm [Boe81] described that the software development effort is largely devoted to

maintaining existing systems rather than developing new systems. The proportion of
resources and time devoted to maintenance range from 50% to 80% [McC92].

As aresult, for years researchers have tried to comprehend how programmers understand
programs throughout software maintenance and evolution process [May95]. In addition,
reverse engineering is concerned with the analysis of existing software systems to make
them more understandable for maintenance, re-engineering, and evolution purposes
[Mul94]. Chikofsky and Cross [Chi90] defined reverse engineering as “analyzing a
subject system to identify its current components and their dependencies, and to extract
and create system abstractions and design information.” Current reverse engineering
technology concentrates on retrieving information by using analysis tools, and by
abstracting programs bottom-up by recognizing plans in the source code [Ric90, Ton96].
The main principle of such tools basically is to help maintainers to understand the
program [Rug94]. According to Rugaber [Rug92, Rug95] the process of reverse
engineering must focus on mapping the gap between bottom-up code analysis, and top-
down synthesis of the description of the application, application domain and
programming language etc. In addition, code analysis is intuitively a bottom-up exercise
[Nel96]. However, the code does not contain all the information that is needed. It helps if
knowledge about architecture and design tradeoffs exists. However, these are not
available often [Mul00]. Hence, code analysis necessitates higher level meaning to be
extracted from code fragments, and higher level concepts to be mapped to lower level
implementations. According to Shneiderman [Shn80], programs are comprehended by
bottom-up strategy which involves reading source code and then mentally chunking low-

level software artifacts into meaningful, higher-level abstractions. These abstractions are

further grouped until a high-level understanding of the program is formed. Next, in top
down strategy [Bro83], programs are comprehended by reconstructing knowledge about
the application domain and mapping that to the source code. In all, top down strategy
includes formulating hypotheses and confirming them by examining the program.

Reverse engineering by itself involves only analysis, not change to the system. Reverse
engineering is the basis for the following activities (listed based on their level of impact).
The activities include re-documentation, design recovery, restructuring and reengineering
[Chi90]. Re-documentation, or recreation of documentation, means revision of system
documentation at the same level of abstraction. Design recovery is mainly used when
there is a need for perfective maintenance. In this phase, re-documentation is used with
the aid of domain knowledge and other external information where possible to create a
model of the system at a higher level of abstraction. Restructuring is used when
preventive maintenance is needed. It includes lateral transformation of the system within
the same level of abstraction. Reengineering involves a combination of reverse
engineering for comprehension, and a reapplication of forward engineering to reexamine

which functionalities need to be retained, deleted or added [Nel96].

2.2 Documentation versus source code-driven feature

extraction

Features in terms of system functionality can be extracted from the engineering-based
requirements document, which usually provides the description of the requirement,
design and architectural details of the life cycle of a software development. In order to
extract the code fragments that are associated with a feature, source code analysis is

needed. There are several techniques for source code-driven feature extraction. As a

8

result, feature extraction can be categorized as source code and non-source code based

feature extraction.

There are two major approaches to extract functional features from a system.

(1) Features can be extracted from the documentation of the software such as the
requirements document or user manuals when features are viewed according to
the problem domain.

2) Features can be extracted and reverse engineered from the source code by
identifying which program artifacts correspond to the implementation of a

functional requirement of the system.

2.2.1 Non-source code based

As the need arises to identify those parts of a system that are crucial for the programmer
and maintainer to understand, a possible solution is, if valid and complete documentation
exists, to read the documentation. Good sources for analyzing the main functionality of
the software system are requirements specification documents, user manuals, white
papers etc. In what follows we discuss the major techniques and approaches relevant to

feature analysis and extraction based on non-source code based sources.

Features Analysis based on requirements specification

When software developers are concentrated on the problem domain, they tend to look for
information related to a particular function or feature in the system. A requirements
specification document states the functional and non-functional requirements of the
system which serves as a baseline for the developer to implement the system [Kir97]. In

[Dav82] Davis identified features as a key organization mechanism for requirements

specification. Software requirements specification is part of the first phase of system
development which includes preparing a complete description of the system’s external
behavior. It is a fundamental stage of system development, since specification defects
will become increasingly difficult to repair when the system is proceeding to the
subsequent stage of its life cycle [Dav93]. The concrete result of requirements
specification is the SRS Software Requirement Specification [Kir97]. The requirements
specification ideally captures all the important behavioral characteristics of a software
system. Hence, According to Turner [Tur99a], feature can be viewed as a grouping or
modularization of individual requirements within that specification during the analysis of
the requirements specification document. From a programmer perspective, a feature is an

abstract description of a functionality described in detail in the specification [Won99].

Use cases

A use case is defined as "a sequence of transactions performed by a system, which yields
an observable result of value for a particular actor"[jac97]. Use cases and scenarios are
very common approaches used in the requirements and specification phase. They capture
most of the requirements, which include all functional requirements and also non-
functional requirements such as response times, performance, etc. A use case is a high-
level description of how the software will be used. It identifies a software user or an actor
and how the user interacts with the system. Hence, a single use case describes a subset of
a system’s functionality in terms of the interactions between the system and a set of users
or actors. It specifies the intended behavior of a system. It is initiated by a particular user,

and serves the purpose of delivering some meaningful unit of work, service, or value to

10

the initiator. When capturing requirements, use case views the system as a black box
[But97]. They are suitable for defining functional requirements in the early stages of
system development when the inner structure of the system has not been defined. Also,
they can be used as a basis for defining this structure in terms of classes, packages, etc.,
and can be used for defining test cases. Since use cases do not deal with the mechanics
inside the system but focus on how the system is perceived from the outside, they are the
most useful approach in discussions with end users to make sure that the requirement of

the system will meet the end users demand [Li01]

LD D

/uses/ Deposit Check current balance
Yy <<include>> -7 Y\
p T / Usgs
’ N % \
ser \ T O f ?
u\ss(s —
\ W ithdraw —
" ATM
\ —
A\ -

Oé/ <<include>>

Validate user

Figure 1 Use case diagram of an automated banking system

Use cases have quickly become a widespread practice for capturing functional
requirements. This is especially true in the object-oriented community where they
originated. However, their applicability is not limited to object-oriented systems [Mal99].
An example of a use case diagram is given in Figure 1.

If proper naming conventions are used for the use cases, programmers can obtain a

general idea about the system and its functionality. Checking current balance is used by

11

the ATM system when withdraw use case is executed to verify whether the current
balance shows there are sufficient funds to withdraw the given amount of money.

Each use case can occur under different situations called “scenarios”. For example, a
customer withdrawing money from the ATM machine can have the following scenarios:

- Customer requests $300 to withdraw from the account. The currént balance is
verified by the ATM system, and the user has a balance of $400. Hence, this
amount will be withdrawn with a receipt from the ATM system.

- Customer requests $300 from checking account, but he has only $200 in his
account balance. The ATM system will inform customer that he has “insufficient

funds.”

User manuals

User manuals describe how a user interacts with the application. Traditionally, functional
features are described as the services that are provided by the software application.
Features of this type can be found in user manuals. Operational features are described as
the features that are related to the operation of applications from the user’s perspective;
that is, how user interactions with the applications occur. Hence, user manuals are a good
source for identifying operational features as they contain a detailed description of the
user interaction with the application [Kan90]. The step-by-step information described in
the user manual provides some background on the application domain, and therefore the

extraction of the feature,

12

Use Case Maps

Use Case Maps (UCMs), as proposed by R.J.A Buhr [Buh96, Buh98], are a scenario-
based notation for describing the organizational structure of complex systems and their
evolving behavior in an abstract way. It bridges the modeling gap between use cases or
requirements and detailed design, and aids in visualizing the architectural entities of an
application. In [Amy00a], UCMs were proposed as a notation for describing features.
They showed related use cases in a map-like diagram, and captures functional
requirements in terms of cause and effect relationship scenarios of the abstract
components. [Amy00a]. In all, UCMs are used for capturing requirements, evaluating
architectures, validating and detecting feature interaction. They illustrate reactive or
distributed systems in terms of casual paths that are followed through the optional
components caused by the occurrence of stimuli. When the UCMs illustrates the
components, they are referred to as bound, and if the components are not shown in the

diagram, then the UCMs can be referred to as unbound.

Start point Res ponsibility Condition End Point
Tom / Agent AgentM / Mike /
J N
Ty i
Y [idle]
Request ‘ N j AN I nng
[busyt
Message = X
upd-b
(Tomponcnl/'

Figure 2 Diagram of a Use Case Map representation [Amy00b]

Components shown in UCMs can represent software entities such as objects, databases,
functional entities, network entities, etc. as well as non-software entities such as users,

actors, processors etc. UCMs involve concurrency and partial orderings of activities, and

13

they link causes such as, preconditions and triggering events to effects such as post
conditions and resulting events composed of responsibilities [Amy02]. A short example
of a simple bound UCMes description, taken from [Amy00b] is described below and the
diagram is shown in Figure 2.

Figure 2 shows a UCM where a user called “Tom” is trying to set up a telephone call
connecting with another user “Mike” through some network of agents. Tom and Mike
each have an agent responsible for managing subscribed telephone features such as
Outgoing Call Screening. At first, Tom sends a connection request (request) to the
network through his agent AgentT. This request causes the called agent to verify (vrfy)
whether Mike’s telephone line is idle or busy. If Mike’s phone is idle, then there will be
some status update (upd) and a ring signal will be activated on Mike’s side (ring).
Otherwise, a different update will occur (upd-b) and an appropriate message (stating that

Mike is not available) will be prepared and sent back to Tom (message) [Amy00b].

Domain analysis

The development and maintenance of large and complex sofiware systems require a clear
understanding of the desired system features. Domain analysis is a process for
understanding requirements in a particular problem domain. It helps in understanding
program features by clearly defining the features and capabilities common to systems in
this application domain before implementing the system. As described in [Kan90]
“domain analysis is the systematic exploration of software systems that define and
develop commonality, defines the features and capabilities of a class of related software

systems”. R. Pietro-Diaz [Pie90] defined domain analysis as “a process by which

14

information used in developing software system is identified, captured, and organized
with the purpose of making it reusable when creating new systems.” Domain analysis
approach can support a mapping from the problem space to appropriate objects and
classes, while considering the design context for patterns and frameworks. Domain
analysis creates a domain model which captures the essential entities in a domain and the
relationships among these entities. Several domain analysis methods exist, including
feature oriented domain analysis (FODA) [Tur99a]. According to [Coh98, D0i98, Gri98],
“a feature represents one or more domain requirements, and this feature analysis becomes
an important aspect of domain analysis.” Domain products, representing the common
functionality and architecture of applications in a domain, are produced from domain
analysis. The FODA method focuses on identifying factors that can cause differences
among applications in a domain, both at the functional and the architectural level. In
addition, this method uses those identified factors to parameterize domain products.

In [Tur99a], the term feature is referred to as the capabilities of systems in a domain.
They typically seek to distinguish the features that represent basic, core functionality
from those that represent variant, optional functionality [Tur99b]. Domain analysis
processes existing and potential software applications in order to extract and pack
reusable assets [Suc00]. The feature/contextual view of many domain analysis methods
should become an essential part of object technology for reuse. Described below, the
feature oriented domain analysis (FODA) method establishes three phases of a domain
analysis [Kan90], as illustrated in Figure 3 [Kru93].

Context analysis: The context analysis phase provides the context model, which is used

to define or establish the scope or bounds of a domain analysis. A context model is

15

represented with a structure diagram and context diagram where structure diagram
includes informal block diagrams. The context diagram is represented with data flow
diagrams illustrating data flows between a generalized application within the domain and
the other entities and abstractions with which it communicates [Kru93]. The domain
analyst interacts with users and domain experts to establish the bounds of the domain and
establish a proper scope for the analysis. The analyst also gathers sources of information

for performing the analysis.

Figure 3 The phases of feature oriented domain analysis [Kru93]

Domain modeling: Domain modeling provides a description of the problem space in the
domain that is addressed by software. The FODA domain modeling process includes
three models including the feature model, entity relationship model and functional model.
The feature model captures common features and differences in the applications in a

domain. The functional model provides a behavioral and functional view of the system.

Architecture modeling: Architecture modeling is used to create the software architecture
for implementing solutions to the problems in the domain. FODA architecture modeling

provides a high level design of the applications which aids in domain product reuse. To

16

achieve successful software reuse, commonalities of related systems must be discovered
and represented in a form that can be exploited in developing similar systems [Kru93,
Kan90]. In [Kan98], Kang et al. extended the feature-oriented domain analysis to feature-
oriented reuse method (FORM). This is a systematic method that focuses on capturing
commonalities and differences of applications in a domain in terms of "features" and

using the analysis results to develop domain architecture and components.

2.2.2 Feature extraction based on source code

For developers to comprehend a software system, it would be advantageous to have some
domain knowledge and proper documentation of the program to be able to identify the
basic entities and functionalities of the system. However, documentation might often be
unavailable or out-of-date and domain experts may not be available. The original
developer’s memory about the source code of the program fades. Some programmers
who were involved in the early development of the application might eventually leave.
The complexity of the software increases as modifications are applied in the source code
base [Leh80]. Typically, a programmer tries to understand how a requirement is
implemented in the source code by first identifying the requirement, and then trying to
map the source code that agrees with the implementation of the feature. The remainder of
this section presents different approaches to comprehend source code based on feature

extraction.

Concept analysis
Concept analysis is a mathematical technique (the mathematical foundation was laid by

Birkoff in 1940) which provides a way to identify the grouping of objects that have

17

common attributes. Birkoff [Bir40] proved that for every binary relation between certain
objects and attributes, a lattice could be constructed that provides remarkable insight into
the structure of the original relation. Concept analysis starts with a relation, or boolean
table, T between a set of objects O and a set of Attributes A, where relation R could be
defined as a binary relation between O and A. A formal context C can be defined as
C=(0, A, R), where R is a binary relation between O and A. Concept analysis has been
used to evaluate class hierarchies, to identify modules, to recover components, to derive
feature component map and to identify feature component relationships [Sne94, Sne97,
Sti97].

A concept lattice cén be used to identify possible ways of partitioning the program into
modules [Sti97]. Concept analysis has been used for analyzing feature relationships with
the components or the feature implementation in a system. The binary relation of concept
analysis has been used to derive the feature component map that states which components
are required when a feature is invoked.

In order to derive the feature component map via concept analysis, one has to define the
formal context (objects, attributes, relation) and to interpret the resulting concept lattice
accordingly [EisO1b]. Eisenbarth et al. [EisOla] used a combination of static and dynamic
analyses to localize a feature. Concept analysis was used to derive correspondences
between features and components implementing a specific set of related features. The
goal of this dynamic analysis was to find out which subprograms contributed to a given
set of features. For each feature, a scenario corresponding to a sequence of user inputs
triggering system actions was executed. The process was automated to a great extent. The

general process [EisOla] can be described as follows:

18

Identify the set of relevant features F= {fI, f2, f3.....Fn} where feature
corresponds to functional requirements. Identify scenarios 4 = {51, S2,..5¢}
which should cover all the identified features in F.

Next, execution summaries are generated where all required subprograms
O={sl...sp} for each scenario are produced. In addition, a subprogram is a lowest
level of components in the program, and it is a function or procedure according to
the programming language.

In the next step, the relation table R such that (S1,s1), (SI,52),...,(Sq,sp) € R are
created.

Perform concept analysi§ for (O, A, R) where concept analysis is used to derive
the detailed relationships between features and executed subprograms.

Identify relationships between scenarios and subprograms.

Perform static dependency analysis along the static dependency graph (SDG) in
order to narrow the executed subprograms to those that form self-contained and

understandable feature-specific components.

In [EisO1b], a technique was derived to get the feature-component correspondence to

utilize dynamic information and concept analysis.

Test cases

Test cases can be used to identify and localize a system’s features. The test cases

represent knowledge of the feature requirements to ensure that the feature

implementation conforms to the desired requirements [Tur99a]. Especially, test cases are

executed to see what components are executed with the given test case. The existence of

19

test cases allows checking the complete scope of system requirements collected by the
individual features.

Regression test cases have been used to identify features with the intention of evaluating
software. They are full of information about system features. Regression testing is
defined as selective retesting of a system or component to verify that modifications have
not caused undesired effects and that the system or component still complies with its
specified requirements [IEE90].

Before a new version of a software product is released, the old test cases are run against
the new version to make sure that all the old capabilities still work. The reason they
might not work is because extension or modification of the new code to a program can
easily introduce errors into code that should not be changed. By exercising each feature
with their associated test cases using code profilers and similar tools, code can be located
and refactored to create components. The steps in identifying the feature and creating a
component that maps to the feature have to start with identifying the source code
associated with features that need evolution. The next step is to create components based
on the extracted code [Meh02]. In [MehO1a], Mehta describes how information about the
legacy system features can be attained. His team identified features of the legacy systems
using test cases by analyzing the existing regression test cases and interviewing the
software developers and the users of the system. Test cases tell a legacy system’s story
which can be used to identify features that the end users are most interested in. After
collecting the test cases, procedures are developed to identify the code associated with
that feature(s). Next, in order to create component(s), the extracted code is used. Finally,

for validation purposes, the components that map to a feature are inserted back into the

20

legacy system. This process bridges the gap between the problem domains, where the
users are more concerned with the functionality of the system, to the solution domain,
which includes the software components that developers see [MehOla]. The following

technique, called Software Reconnaissance [Wil95], uses test cases to extract features.

Software reconnaissance

Software reconnaissance is a dynamic analysis method described by Norman and Scully
in [Wil95]. The code that implements features can often be found by executing the
program twice: once with the feature and once without. Meanwhile, the parts of the
program that were executed the first time but not the secdrid time are marked. These parts
are likely to be in or near code that implements the feature.

Software reconnaissance uses test cases as probes to locate code for a particular product
feature. The program is first instrumented in much the same way that programs are
instrumented to determine test coverage. Then it is run with a few test cases that exhibit
the desired feature and with a few others that do not. The executions of the instrumented

code produces trace files showing which code components were used in each test

[Whi01].

2.3 Source code analysis based

Program slicing [Wei84] is a well known technique used for analysis. Hence, in this
section we will provide a general introduction of program slicing and its category. Next,
some background information about slicing based feature extraction techniques will be

described.

21

Program Dependence Graph

A Program dependence graph (PDG) is a language independent program representation
directed graph, which together with operations such as program slicing, can form the
basis for powerful programming tools. It can aid in understanding programs, analyzing
and localizing features and debugging [Hor92].

Kunrong Chen, el al [Che00] used the dependence graph for localizing features.
Ottenstein and Ottenstein [Ott84] introduced procedure dependence graph (PDG), which
is a graph representation of a procedure where vertices are connected by data and control
edges. The vertices represent statements such as assignment statements, input/output
statements or regions of the code. The data dependence edges représent data flow in a
procedure. Control dependence edges represent conditions on which a statement or region
depends [Hor92]. In addition, each procedure has a special entry vertex that corresponds
to the entry point of the procedure [Che00]. The System dependence graph (SDG)
contains the collection of procedure dependence graphs (PDG) with additional vertices
and edges to represent procedure calls, rather than just single procedure programs. A
single system consists of a main procedure and a collection of auxiliary procedures. The
assumption in that case is system developers usually do not need access to the statement
level information when trying to locate feature.

In [Che00], an abstract system dependence graph (ASDG) representing a higher level of
abstraction of the program is proposed. It can be constructed using a subset of the
information of the SDG. The algorithms used to construct SDG can be used to construct
ASDG also. In the C language, an ASDG has almost the same representation of SDG

except instead of representing statements as vertices; ASDG consists of vertices that

22

represent components which include functions and global variables. Call edge represents
function call, and data flow edge represents flow of data from a function to a global
variable. Next, search scenarios are investigated for locating features. Localization of
feature using ASDG starts with the search through the code. In each step of the search, a
single component is chosen for visit. All visited components and their neighbors
constitute a search graph. The search follows control flow and data flow dependencies
among the program components. At the beginning the search graph contains only the
starting component. Each visit to a component expands the search graph, and the process
continues until all the components implementing the feature or concept are located. Top-
down, Bottom-up, backward data flow, and Forward data flow strategies are available for
search graph. For instance, in the top-down strategy, the functionality of the whole
program is summarized in the top-most function main() or top class of the program. If the
top class or main () method does not implement the sought feature, the features should be
implemented by any of the called function or classes. Hence, the searching has to
continue for the feature, and moving down through the call graph towards more and more
specialized functions or classes, the programmer ultimately finds the classes or functions
that participate in the concept. If the origin or destination of data is sought, then the

programmer follows the data flows rather than control flows [Che01].

Program Slicing
Program slicing is a program reduction technique originated by Mark Weiser
[Wei79,Wei84] that determines the statements S which are relevant for a particular

computation obtained by deleting statements that are not relevant for that particular

23

computation in program P. Program slicing represents the same behavioral representation
of the original program and the slice consists of all statements in the program P which
may affect the value of variable V at the instruction point / based on the data flow and
control flow information of the program. Hence, the slice is constructed based on the
slicing criterion C = <[, V> composed of the program location and the variable
respectively. Program slicing has several application areas mainly in software
engineering and development such as, debugging [Wei84, DelO1, Kor88b], software
maintenance and program comprehension [Gal89, Tip95, Har01], testing [Gop91, Gup92,
Har95], ripple effect analysis [Wan96], restructuring [Tip95], etc. For instance, when the
programmers debug their program, they try to focus on the section of the code that might
cause the bug in the application. It is unnecessary for the programmer to analyze the
sections of the source code which are irrelevant to influence the fault. In all, slicing
focuses attention on those parts of the program that may contain the fault and removes
the unnecessary information for that particular computation in the program slicing. Next,
since slicing transforms a larger program to a smaller one, it reduces the load a
programmer has to take into memory in order to understand a program. Next, Slicing can

be divided into several categories such as the following:

Static slicing

Based on the original definition of Weiser [Wei84] a static program slice S, which is
also referred to as static backward slice, consists of all statements in program P that may
affect the value of variable V" at some point P. The slice is defined for a slicing criterion

C=(x,V), where x is a statement in program P and ¥ is a subset of variables in P. Given C,

24

the slice consists of all statements in P that potentially affect variables in ¥ at position x.
A static slice includes all the statements that affect variable V for a set of all possible
inputs at the point of interest according to data and control dependencies. Static slices
which include only statically available information are computed by finding consecutive
sets of indirectly relevant statements. Several researchers tried to extend the original
static slicing algorithm, as defined, for example, in [Agr94, Cho94] who computed
backward static slices based in the presence of arbitrary control flow. [Liv94, Lyl93]

have proposed algorithms that compute static slicing in the presence of pointers.

Dynamic slicing

A dynamic program slice is that part of a program that "affects”" the computation of a
variable of interest during program execution on a specific program input. The concept of
dynamic program slicing was presented for the first time by Korel and Lasky [Kor88] in
1988. Dynamic program slicing refers to a collection of program slicing methods that are
based on program execution. This may significantly reduce the size of program slices
since run-time information, collected during program execution, is used to compute them.
Dynamic program slicing was originally proposed only for program debugging, but its
application has been extended to program comprehension, software testing, and software
maintenance. Different types of dynamic program slices, together with algorithms to
compute them, have been proposed in the literature (examples include, [Agr90, Gop91,
Kor94, Tib99, and Son99]). Slicing can further be divided into two categories, forward

slicing and backward slicing.

25

Backward slicing

Backward slicing starts with a slicing criteria specified as a tuple C = <i,v>, where i is a
program statement and v is a set of variables. It produces a program slice, which is a set
of statements that might affect the values of variables in the set v at statement i. The
variables in v are restricted to be either defined or used in the statement i. A slice under
the above definition is also known as a backward program slice [Wei79]. Slicing is
represented by a program dependency graph (PDG), where the PDG shows the data and

control dependencies by backward traversing the execution trace.

inta=1;
intb=2;
int z =4,
int ¢ =3;

z = a*a;
ifa==1)
int d = a*b;
c=ctd;

PN AL =

Figure 4 An example of source code and the PDG representation of the source code

1. inta=1; 1. inta=1;
2. intb=2; 2. intb=2;
3. intz=4; 3.

4, intc=3; 4. intc=3;
5. z=a*a; 5.

6. if(a==1) 6. if(a==1)
7. intd = a*b; 7. d=a*b;
8. c=c+d; 8. ¢c=c+d;

Figure 5 The computed slice from Figure 4

26

Figure 4 provides both a sample source code and the program dependency graph
computed by traversing the program backward using the backward slicing algorithm. The
solid arrows represent data dependencies and the dotted arrow indicates control
dependencies in the program In Figure 5, a slice is computed for variable ¢ in statement
8 based on the program dependency graph of Figure 4.

Initially, statement 8 has data dependency for variable ¢ with itself as the value of ¢ is
used and defined at the same statement. Also, it has a data dependency with statement 4
for variable ¢ as c is defined in this statement. For variable d, statement 8 has a data
dependency with statement 7 as statement 7 includes the last definition of d. Next,
statement 7 has a control dependency with statement 6.

Subsequently, statement 7 has data dependencies for a, b with statement number 1 and
statement number 2 as the last definitions of a and b are provided at statements number 1
and 2 respectively. Statement number 5 has a data dependency with statement 1 for
variable a and with statement 3 for the definition of z. However, statements 3 and 5 are
not part of the slice because these statements do not affect the computation of ¢ at

statement 8.

Forward slicing

Most of the existing slicing algorithms are based on “backward" analysis, either
traversing the program dependency graph backward (static slicing) or tracing the
execution trace backward to derive dynamic dependence relations (dynamic slicing). The
notion of forward slice computation has two different interpretations in the literature.

Korel [Kor94] introduced a dynamic forward slicing algorithm that is based on dynamic

27

forward analysis. In fact, in this algorithm dynamic slices are computed during program
execution (at run-time) and no major recording of the execution trace is required. The
forward algorithm computes slices for all variables defined during the program execution.
The major advantage of the dynamic forward approach is that its space complexity is
bounded, as opposed to the dynamic backward slicing approaches. Additionally, it
computes slices for all variables up to a point of interest. This forward algorithm will
result in the same slice for a variable of interest as the dynamic backward algorithms.

Horwitz [Hor90] provided a different interpretation of forward slicing. Horwitz defined a
forward slicing as these program elements that are potentially affected by the values of
the variables in V at statement i [Hor90]. Korel’s dynamic forward slicing algorithm on
the other hand identifies all the statements that have relevant control/data dependencies

influencing the particular execution at the particular position.

RARESI Ol e
Q
I
)
*
R

Figure 6 A sample source code

0° | At the beginning { { {} {
1; b=2; {} {1} { {}
2° | a=1; {2} {1} {} {}
3* | c=a*a; {2} {1} {2,3} {}

Figure 7 Forward slicing computation of Figure 6 using Korel’s algorithm

28

Horwitz’s forward slicing approach has application in the area of impact analysis by
identifying all statements that are potentially affected by the slicing criterion in future
executions. On the other hand, Korel’s forward slice has applications in testing and
debugging.

Figure 6 shows a simple source code of a program, and Figure 7 shows the slicing
computation in Korel’s approach for computing slice using dynamic forward algorithm.
Figure 7 illustrates that for slicing criteria <3, c>, the slice is computed for all the
variables at the same time. For variable c at statement 3, the slice is 2, 3.

Figure 8 shows the dynamic slice computed using Horwitz’s forward slicing approach
for the sample source code of Figure 6. As we can see, the forward slicing computation
approach by Horwitz takes the statements that are affected by the value of ¢ in statement

number 3, and the slice is computed for only variable c.

3. c=a%*a;
5.c=cHd;

Figure 8 Computed slice using Horwitz approach for slicing criterion <3,c>

Concept assignment and slicing

Having automated techniques for extracting subcomponents according to high level
criterion is advantageous for program comprehension and reverse engineering. The
combination of program slicing and concept assignment are automated source code
extraction techniques that use a criterion and program source code as input and generates
parts of the program’s source code as output [Har02]. Mark Harman et al. in [Har02]
showed how slicing and concept assignment could be combined to perform unified

source code extraction, which extracts code identified by a concept assignment criterion.

29

They used several algorithms, such as executable concept slicing, key statement analysis
and concept dependence analysis. Concept assignment is defined by Biggerstaff et al. as
“a process of recognizing concepts within a computer program and building up an
understanding of the program by relating recognized concepts to portions of the program,
in operational context and to one another” [Big93]. This approach has the advantage that
the code extracted is executable, and that the criterion for extraction is expressed at a high
level in terms of domain specific concepts. This is in contrast to pure slicing which

extracts subprograms based upon a low level criteria set of variables.

2.4 Discussion and limitation of existing feature extraction
methods

Feature extraction and localization are a crucial point in program understanding. The
current methods for extracting and localizing features have some potential drawbacks.
The limitations of the existing feature extraction approaches can be summarized as
follows:

Feature extraction methods in general might be expensive if they can not be automated.
This is because they involve often significant human interaction. Another factor is that
most of the techniques for feature analysis are based on some form of domain analysis, or
test cases, and that these resources might not be readily available. In what follows, we

discuss the limitations of the different categories of feature extraction techniques.

Document-driven approach
Challenges for the document-driven approach are that it has to deal with inadequate and

incomplete documentation of a system. The documents might not conform to the existing

30

application because as requirements evolve, documents sometimes may not be modified
to reflect the latest system changes. In addition, requirements specification documents
might not be available for the application system. Even if these documents exist, they
might not be clear [Won99]. Documents are reflecting requirement from a user’s point of
view; however, they may not reflect the implementation of the requirements.

Use cases are frequently used to describe functional system features at the requirement or
specification level. The use case representation corresponds to a collection of intended
uses for a proposed system. However, there are differences between use cases and
features. The link between features and implementation of the system requirements are
more direct than with use cases. With use cases, the domain model objects have
associations with the solution domain artifacts only when the solution domain shares the
object model of the problem domain. A large application can require very large numbers
of use cases for their descriptions. Moreover, when describing many extensions,
alternatives, and options, the domain engineers can easily lose their way when
constructing new systems [Gri98].

Domain analysis approaches to feature extraction can provide guidance during the
comprehension of the overall system functionality; however, they do not provide much
support for the automatic or semi-automatic extraction and analysis of features at the
source code level. For the domain analysis, application domain knowledge is modeled
independently of systems to support the forward engineering of product families.
Evolution focused solely on the problem domain may suggest changes that degrade the
structures of the original code [Idr00]. Domain analysis depends on the availability of

domain experts and the designers involved in the domain modeling. However these might

31

not be readily or no longer be available. Table 1 summarizes the limitations of the

document bases techniques of feature extraction.

Use cases

Use Case Maps

Requirement
and specification

Domain analysis

Not al valbe

Only very limited
availability, since it
is a more recent
approach and not
officially part of
UML

Availability might
be limited and
programmers might
be reluctant to read it
Domain models
are often

available

not

"Mostly related to the problem |

domain, and is used for

requirements gathering

May not have the same
implementation as described in
the Use Case Maps

Problem domain oriented and
most of the time does not conform
to the solution domain
requirements

Might not be related to the system
implementation

An use case diagram might

not have been updated to reflect any
requirement changes.

Depends on the maintenance of the
use case maps; might not reflect the
latest requirements and features
implemented.

Sometimes the documents are not
adequate

Domain model and source code
might be disjunctive

Table 1 Disadvantages of Feature extraction based on the document based technique

When extracting features using dependence graphs, there is a need to integrate these with

other dependency graph analysis tools, to analyze the code and extract the associated

ASDG (Abstract syntax dependency graph). Even though interfaces exist to facilitate the

navigation through an ASDG, the analyst has to perform the localization and

identification of the feature implementations manually [Che01].

When extracting feature using regression test cases, the assumption is that valid test cases

are readily available. These test cases might be undocumented, not complete or might not

even reflect the current implementation (depending on the quality of the test and how

these were maintained). In addition, it is not often possible to identify what group of test

cases will exercise a given feature.

32

Software Reconnaissance [Wil95] does not locate all the code corresponding to features.
It deals with one feature at a time and gives little insight into connections between a set
of related features. If a set of related features rather than a single feature is to be
considered, one would repeat the analysis using each feature separately and then
specifically required subprograms. However, even the relationships among pairs of
features cannot be identified.

Slicing can be used to compute, identify, and extract program features. However, both the
static and dynamic slices have some drawbacks. A static slice is less effective in
identifying code that is uniquely related to a given feature because, in general, it includes
a larger portion of program code with a great deal of common utility code. On the other
hand, collecting dynamic slices may consume excessive time and file space. Also, most
of the existing slicing algorithms are still limited in their support of object-oriented
programming languages.

Thomas Eisenbarth et al. [EisOla] combine static and dynamic analysis with concept
analysis to derive correspondences between features and computational units. Concept
analysis additionally yields the computational unit jointly required for a set of features.
Here, in order to do the concept analysis, scenarios which represent a feature need to be
provided. In order to create a scenario or test cases, domain knowledge is needed.
However, this method is not helpful for extracting the feature without any test cases or
domain knowledge. Table 2 summarizes the limitations of the source code analysis

techniques.

33

Category | Technique Limitations of the current technique

Concept | A mathematical foundation| — Scenarios or test cases are

Analysis | technique for obtaining binary needed in order to find the
relations between features and components that correspond to a
components particular feature

— The accuracy of the feature
depends on how adequate the
scenario is

— Domain knowledge is needed to
create a scenario, however,
domain knowledge might not be

available
Test A dynamic analysis method | - Valid test cases are required
Cases that uses test cases to execute | — It is not always possible to know
and find the components that what group of test cases will
are executed based on the exercise a given feature
given feature — After enhancing any features in

the system, other test cases are
needed to verify that the old
features do not have any
undesired effects because of the
modification

— Relationships among features are
not identified

Static A program analysis technique — The extracted feature based on
Slicing that uses only parsing static slicing could be too large
information to compute a slice

Dynamic | A program slice is taken based | — May consume excessive time

Slicing on a particular input and space

Program | Based on slicing, but has some | — An automated tool is required to

Depende | extension as the whole system represent the System dependence

nce is represented in an abstract graph and search graph

Graph system dependency graph | — The technique needs some
(ASDG) and the programmer human intervention as the
has to search through the graph analyst needs to start searching
to identify which one is the the graph for a specific feature

feature they are looking for

Table 2 The disadvantages of feature extraction from source code

34

2.5 Existing tools

This section describes different methods for feature extraction that can be used in
localizing features. Since a particular feature can be implemented in different ways, it is
very difficult, if not impossible, to implement a fully automatic feature locator. However,
currently several tools exist that aid in the process of extracting feature. Following is a

survey of some of the existing tools:

8rep

The maintainer often looks for the implementation of feature location manually with the
help of simple tools such as grep. The most widely used technique is based on string
pattern matching and uses the similarity of identifiers to program concept names [Che00].
For example, when searching for the location of copy and paste, the programmer may

9% ¢ 2 3% 1

want to search for identifiers “paste”, “copyPaste”, “copy”, "xcopy” and so on. When the
appropriate identifier is found, the programmer studies the surrounding code to decide
whether this is truly the location that implements the feature, or whether the similarity of
names is just a coincidental correspondence. Also, the full extent of the concept’s
location must be established. Generally the feature is implemented not only in the place
where the identifiers were found. It could also spread over the system. The maintainer

starts software modifications after concepts are located and conceptual dependencies are

established.

35

RIPPLES

A tool RIPPLES [Che01] was developed for maintaining software when features need to
be changed or modified. Usually software changes require identifying features of the
system by mapping the features from the problem domain to the software components.
Software change also requires keeping track of the change propagation. The RIPPLES
tool supports both concept location and propagation and combines automatic static code
analysis with human intelligence. Change propagation process can be described as
follows:

When any software entities are being changed, the changed component may affect other
components of the system. In fact, modification of a component may cause the system to
be temporarily inconsistent, as the requirements provide relationships between the change
component and its neighbors which are no longer valid. To fix this, secondary changes
are introduced in the neighbors, but they may cause new inconsistencies. This situation
continues until the system becomes consistent again. This process is called change
propagation [Raj97].

Two components in a conceptual dependence have a connection that is not discovered by
static code analysis, yet both participate in the same concept. A change in one may
require a change in the other. Conceptual dependencies have to be discovered manually
during location and added to the ASDG. The abstract system dependence graph (ASDG)
is the basic data structure of tool RIPPLES. ASDG represents dependencies among
software components. For C programming language, the vertexes are functions, function
arguments, and global variables and types. The edges represent data flows; control flows,

and defines use relationships. ASDG is derived from a finer granularity system

36

dependence graph. ASDG [Che00] represents dependencies among software components.
Location is a computer-assisted search approach. It is a step-by-step process where in
each step; one component is selected for investigation. The mark on the edge means the
direction of the change propagation as forward or backward. The program analyzer
parses the code, constructs ASDG and stores it in the database. Location operations
include mark, unmark and locate. Propagation is suppotted by change, add component,
delete component and skip. During propagation, ASDG changes are called conceptual
dependencies. It is the task of the programmer, not of the tool, to acquire all necessary
domain and programming knowledge. The programmers make all decisions. They choose

the starting component, make changes, determine the end of the process, etc.

xSuds

The xSuds methodology described in [Meh02], suggests using a code-profiling tool in
order to extract feature. The most closely related technology is the xSuds tool that can
identify program feature in a C program. xSuds tool suite, as part of Bellcore
telecommunications system, is a software understanding and diagnosis system which
helps to map features from the problem domain to the solution domain. xSuds first
creates a representation of the program’s control graph, thus laying out its structure. Next,
each time the maintainer runs various test cases, xSuds stores the execution trace which
records how much time each test has exercised a software component. Effective use of
xSuds requires only that the maintainer has a basic understanding of the program’s

features and can identify the test cases of each feature.

37

xVue is one of the xSuds tools that help maintainers to locate features and identify
feature interactions. xVue uses heuristics involving the control graph, execution trace,
and the maintainer’s knowledge to help locate features and identify feature interactions.
xVue software developers locate code within a large system that specifically implements
a particular feature.

A software system may provide its users with many different but related features. xVue
helps maintainers locate code that implements a particular feature by using trace data to
map features onto the code components that implement them. xVue uses one of several
heuristics to identify feature-related code. The simplest and frequently most effective
heuristic identifies blocks that the first test case executes but the second does not.
Studying differences in execution between similar test cases often provide surprising
insights into unfamiliar code. Although the accuracy of identifying feature code depends
strongly on how adequately the test cases define the feature, tools like xVue, with
relatively simple heuristics, effectively focus attention on relevant source code. xVue
quickly narrows the search space by highlighting a few lines of code associated with a

feature [Agr98].

Bauhaus tool

The Bauhaus project [Kos04], developed at the University at Stuttgart, performs research
on techniques to support program understanding of legacy code. More specifically, it
performs research on the recovery of the system’s architecture that consists of its
components, connectors, and constraints. Information about the system is exclusively

extracted from the source code in a semi-automatic way that actively involves the user

38

with one of these environments. Czeranski et al. [Cze00] used the Bauhaus tools to
analyze the xfig program. xfig’s (an open source drawing program that runs on a variety
of UNIX platforms) architecture was recovered and the entire maintenance task described
in the handbook of the developer of Bauhaus tool was performed. Using Bauhaus tool
information about the system is exclusively extracted from the source code as this is the
only reliable source of information, in a semi-automatic way that involves the Bauhaus
user (presumably a software maintainer or auditor). Information extracted from the
source code is represented in a resource graph (RG), which abstracts global information
such as call, types, and use relations. The RG information can be described by an entity
relationship model. The entities are programming language constructs such as functions,
types, and variables, and abstract analyses such as abstract data types, components, and
subsystems. Examples of relationships range from information that can be directly
extracted from the source code such as function calls to more abstract concepts. Entities

are represented as nodes and relationships between the entities are represented as edges

[Cze00].

Recon2

Wilde et al. [Wil95] developed a program feature location technology called Software
Reconnaissance. The technology is based on the analysis of test cases. The instrumented
program is tested with two sets of test cases: one set of test cases with the feature, and the
other set without. For C software, students at the University of West Florida have
developed a public domain reconnaissance tool called Recon2. The feature location in

Recon2 [Wil02] is performed by analyzing the two sets of event traces. In a large and

39

frequently modified system, the code for a feature is often not contiguous or located in
obvious places. The results depend both on the user's ability to find good test cases and
on the way the original designer may have combined features in the code. Recon2 does
not necessarily find all the code related to a particular feature, but it usually finds good

starting points for a search.

2.6 Limitations of feature extraction tools

All of the described feature extraction tools have some drawbacks. Most of them require
some type domain knowledge or human intelligence for extracting features. In all, they
are semi automatic techniques. The limitations of each of the tools are described briefly
below.

The tool “grep” has several limitations in identifying features [Raj02] as the following:

1) When the programmer is unable to guess the appropriate program identifiers, it
does not work. In fact, it is based on the ability of a programmer to derive a
meaningful identifier that grep searches through the source code.

2) When the concepts are hidden more implicitly in the source code, it is not possible
to find the feature using the grep command

As a result, the grep technique depends a lot on the maintainers and developers
programming expertise. It does not work properly unless naming conventions were used
that clearly encode domain concepts, and the program is not structured. Another problem
is after many cycles of maintenance by maintainers, the vocabulary used to describe the
software may no longer be the same as its creation. Hence, the grep techniques are likely

to become less useful in legacy systems having older and heavily maintained code.

40

The Bauhaus tool, which is based on Rigi, has a few limitations. It is relatively slow,
which can cause a long waiting periods for large graphs. As a result, it sometimes
interrupts the fluent use of the tool. It is not possible to automatically lay out Graphs with
more than 500 nodes due to limitations of the external layout graphlet [Cze00]. Rigi
offers no drag-and-drop functionality, which forces the user to move nodes via clipboard.
The recon2 tool is useful in many program understanding situations. However, it is a
complement rather than a replacement for other tools [Raj02]. The results depend both on
the user's ability to find good test cases and on the way the original designer may have
combined features in the code. Recon2 does not necessarily find all the code related to a
particular feature, but it usually finds good starting points for a search.

The XSuds tool needs test cases to exercise the features. Hence, the programmer needs to
have some pre-knowledge or domain knowledge to create the test cases, although the
accuracy of identifying feature code depends strongly on how adequately the test cases
define the feature.

When using the Ripple tool, it is the task of the programmer to acquire all necessary
domain and programming knowledge [Che01]. Programmers have to make all decisions:
choose the starting component, make changes, and determine the end of the process, etc.
Hence, Ripple tools need human intervention. Table 3 on the following page summarizes

the limitations of the current feature extraction tools.

41

ng- Need manual searching for identifying the feature
tool Pattern- location
Matching Features are detected by searching where the
identifiers match the string pattern of the feature. If
proper naming convention for identifiers is not
used, it is hard to locate features.
Not a fully atomic technique as needs human
intervention
xSuds tool | Test-case- Test cases are required to map the features to the
suite (part | based source code
of Bellcore) | approach Maintainers need basic understanding of the
program features so that the test cases can be
exercised.
The accuracy of the extracted features depend on
how accurate the test cases are
If the test case is limited the maintainer may miss
important program behavior.
RIPPLES | Abstract The ASDG complement the maintenance task, but
System does not replace them
Dependence It is the task of the programmer, not of the tool, to
Graph acquire all necessary domain and programming
(ASDG) knowledge.
The programmers make all decisions: choose the
starting component, make changes, determine the
end of the process etc. Hence, it is not a fully
automatic technique
Recon2 Test-Case- Test cases are required to map the features to the
based source code. The accuracy of the extracted features
approach depends on how accurate the test cases are.
Bauhaus Resource- The Bauhaus tool is relatively slow, which can
tool graph-based cause noticeable waiting periods for large graphs
approach [Cze00]
Graphs with more than 500 nodes cannot be
automatically laid out due to limitations of the
external layouter graphlet{Cze00].

Table 3 Limitations of current feature extraction tools

42

3 Source code-based feature extraction approach

As discussed earlier in Section 2, feature extraction from source code can aid in reverse
engineering activities such as program comprehension [Eis01], software maintenance
and reuse [Wil94, Tur99a], evolving legacy systems [MehOlb, MehOlc, Meh02],etc.
Typically, externally visible software requirements or functionalities are mapped to the
software components in order to extract features using several techniques such as
software reconnaissance, testing, concept analysis, etc. In this section, we will define our
research objective, outline our contributions and describe in detail the approach used to

extract features from the source code.

3.1 Motivation

Most of the existing techniques for feature extraction such as software reconnaissance
[Wil95], FODA [Kan90], concept analysis [Sti97], etc., are based on the assumption that
some type of domain knowledge of the system is available. A feature in terms of the
problem domain is acquired at first with the aid of test cases, scenarios and domain
analysis (or a combination of them). Then, this information is mapped to the source code
and extracted.

Figure 9 illustrates this typical scenario. Features are extracted by utilizing all three
resources, domain knowledge, test cases and the associated execution traces and the
source code. However, often the only available and reliable source for the potential
feature extraction might be the source code and test cases. In addition, up-to-date

documentation or domain knowledge might not exist for a system.

43

Figure 9 Traditional approaches to feature extraction

The motivation for this research is to overcome some of the limitations of existing feature
extraction approaches. This is accomplished by developing a semi-automatic source code
based feature extraction approach based on program slicing of the source code. The
resulting source code based features can then be applied towards various application
domains. These include program comprehension, software reuse, software evolution,
creation of test cases, feature-based testing, etc. [EisO1, Wil94, Tur99a, Meh01b]. The
feature extraction approach presented in this thesis (shown in Figure 10) extracts feature
from the source code, based on test cases and the execution traces obtained from
executing these test cases. The major advantages of the presented approach are as

follows:

There is no need for domain knowledge from sources like documents or domain

experts.

— The feature extraction approach is a semi-automatic approach that only requires
source code and test cases to extract features.

— No user interaction is required during the extraction process itself.

— The extracted features correspond to functional features.

44

Figure 10 Feature extraction process based on our research

In what follows we extend the previous feature definitions presénted by [Tur99a, EisO1]
to provide a more user perspective oriented view of source code features. In [Turn99],
user perspective is described as the following:

User perspective is concerned with the problem domain. Users interact with the system
and are directly concerned with its functionality. Users think of the system in terms of the
features provided by the system.

A feature is an identifiable bundle of system functionalities that help characterize the
system from the user perspective [Tur99a). We define a feature as follows:

Definition

A feature is a group of statements which constitutes an executable or non-executable
program, based on functional requirements corresponding to system inputs and
outputs.In other words, a feature implements functional requirements from a user’s
perspective. Therefore a feature can be seen as a group of statements which constitutes an
executable or non-executable program that perform some actions based on user’s input
or system’s output.

In the next section, we provide a categorization of features based on different criteria that

can be applied to extract features (either executable or non-executable).

45

3.2 Feature categorization

There exist several properties one can use to categorize features. In what follows we
present a more detailed discussion on our feature categorization which is based on the
following categories.

e [Execute-ability

e Extraction Technique

e Feature Type

Executable versus non-executable features

A feature might represent an executable or non-executable program. An executable
feature can be described as a group of statements that constitute an executable
subprogram that preserves the semantically correct behavior of the program. An
executable feature facilitates the program understanding process and can be applied for
testing, reuse, and debugging. For instance, in debugging, one often is interested in a
specific execution of program that exhibits irregular behavior. Hence, an executable
feature can be used to detect the fault in a program feature. However, it should be noted
that one of the major disadvantages of an executable feature is the feature size. In order to
compute an executable feature, it has to be a semantically correct program, which
requires the inclusion of statements that might not be directly related to the feature itself.
On the other hand, a non executable feature corresponds to a set of statements that cannot
be executed independently, but contain only statements that are relevant for the particular
feature and therefore might result in a smaller feature size (compared to the executable

feature). This size reduction of the non-executable feature is a result of not having to

46

guarantee the semantic correctness of the program and therefore statements like, variable
definitions or method headers, etc are not included in the feature. As a result, the
application of the non-executable feature is somewhat limited. This is because it provides
developer with a more general comprehension support by identifying these parts of a
program that are directly influencing the feature and its implementation. Hence, the

presented research is focusing on the computation of executable features.

Dynamic versus static feature extraction

For the second feature category, we distinguish between static and dynamic analysis. The
static computation on the source code is parsed and analyzed. The dynamic computation
on the other hand utilizes execution traces that are generated by recording program

executions for specific input(s).

Static feature

For a static feature, information is parsed from the source code only. Figure 11 provides
an example of a static feature where the “if” condition affects the execution of two
separate statements S/ and S2 respectively. When the value of input variable c is true,
statement S/ should be executed, and S2 should be executed otherwise. In Figure 11,
when computing a static feature, S/ and S2 will be executed, although the execution of S/
or S2 corresponds to a specific input of variable c. For the static feature extraction, no
dynamic (run-time) information is available to determine the run-time behavior (program
path that might be selected). A static feature therefore has to consider all possible

program inputs (execution paths) during the computation process.

47

Figure 11 Example of a static feature

Dynamic feature

A dynamic feature computation is based on a particular program input resulting in a
specific program execution. The dynamic feature extraction is based on run-time
information in the form of recorded execution traces. Utilizing these execution traces
allows determining the execution path that will be taken by the program for the specific

input (execution).

Figure 12 Example of a dynamic feature

Figure 12 shows an example of a dynamic feature where for a particular input of C (in
this case the condition evaluates to false). In this case only the If statement and statement
S2 would be executed and therefore considered in the dynamic feature computation.

This research work is focusing on dynamic feature analysis. The reason is that a dynamic
feature is smaller in size (compared to a static feature) as it does not need to consider all
possible program inputs (execution paths) during the computation process. However, the
computation process of a dynamic feature is semi automatic because execution traces

need to be recorded based on run time information. On the other hand, a static feature can

48

be computed solely based on the source code information which causes the feature
extraction process to be fully automatic. However, one of the major disadvantages of a
static feature is its size. Since all the possible execution paths needed to be considered, it
might require inclusion of statements that might not be related for the computation of a
particular feature. Consequently, the feature computation process might be slower

* compared to a dynamic feature.

Functional versus Informational Features

Features can be computed based on different output properties of a program. One can
distinguish between output information that is used to display information in order to
provide the user with information not directly relevant to the program functionalities (e.g.

a welcome screen, system status information, etc).

1. int x;
2. x=x+10;
3. System.out.println(“Welcome™);

Figure 13 Example of an informational feature

For instance, statement 3 in Figure 13 is used to provide the user with a welcome
message rather than providing any system functionalities. On the other hand, there are
output statements that are an essential part of the program or are a direct result of a

program’s functional requirements.

Double balance;

1. Account a = new Account();
2. a.deposit(20); //current balance is balance= balance+20
3. System.out.println(“The current balance is “+a.currentbalance());

Figure 14 Example of a functional feature

49

For instance, Figure 14 illustrates the output statement statement3 is calling a method
currentbalance() in order to show the user the current balance of the system after 20
dollars is deposited in the user’s account. Hence, statement 3 reflects the current balance
of the system where the current balance is directly influenced by the deposit
Functionality of the system.

This research is focusing on extracting the functional features rather than the
informational features because our goal is to extract the source code of the program that

represents the functionalities of the system.

3.3 Research approach

Source code and existing test cases based on execution traces are required for the feature
computation in this presented approach. Executable dynamic features are extracted by
deleting the irrelevant statements from the program for that specific feature. The
extracted executable dynamic feature should conform to the original functionality with
respect to the given feature criteria based on program slicing [Wei82]. As there are
several program slicing techniques available, this presented work used backward and
forward program slicing for extracting features. For backward slicing, the definition is
taken based on [Hor90], where a backward slice is defined as a set consisting of all
statements and control predicates that affect the computation of the slicing criterion. On
the other hand, forward slicing [Hor90, Har01] is represented as a set that consists of all
statements and predicates which are affected by the slicing criterion. In the presented
feature extraction approach, the feature criteria corresponds to input and output

statements.

50

Feature extraction method

Input and output statements of the program are represented as the feature criteria for
feature extraction since they work as the interface for providing interaction between the
system and the user [Tan99]. Hence, features are further categorized into input and output
features. An output feature is computed based on an output statement in which a program
computation is displayed. On the other hand, an input feature is computed based on a
statement in which an input statement modifies the value of a program variable. In what
follows, we describe in detail the input and output feature extraction techniques applied

in our approach.

Techniques for the extraction of output feature

Statement 1

rd d
;/4

Provide Backward slicing
with slicing criteria
<k,V> for extracting the
output feature

Statement i_+n

s
7
7
¢

Statement k is an
output statement

/" Statement J

Py
A
<
P

Statement jtn

Figure 15 Method for extracting output feature using backward slicing

51

For extracting an output feature, we are interested to identify which statements affect the
value of the variable used in an output statement. Suppose k is an output statement where
variable v is used, backward slicing with slicing criterion <k,v> has been applied to
extract the statements that lead to the computation of variable v. The described technique
is illustrated in Figure 15. The up arrow from & was used to show that backward slicing
has been applied from the output statement £.

Figure 16 provides an example of computation for extracting output features using the
backward approach. The process can be divided into 4 major steps. In step 1 the sample
source code of a small program is shown and the output feature criterion (statement 6) is
identified. In step 2 the direction of the algorithm to be applied has to be determined. For
output features the backward slicing technique has to be applied. In step 3 the program
dependence graph (PDG) is derived. Step 4 shows the extracted feature based on

traversing backward the incoming edges from the feature criterion at statement 6.

stepl: Source code step2: Technique

. intX

2 ity Apply

3' L7 Backward

4: ;r(‘il slicing

5. X=Z+10 utput

6. Write(X) Statement
step3: PDG step4: Computed feature based

a on backward slicing
° @ 1.int X
° 3.imntZ

5.X=27+10

@-» 6. Write(X)

Figure 16 An example of the output feature extraction technique

52

Techniques for extracting an input feature

The input feature computation identifies the statements that are influenced by the value of
the variable used in an input statement. Therefore, the forward slicing approach has been
applied to identify these statements that will be influenced by the input statement. For the
computation of an executable feature, it is necessary to include variables definitions and
other necessary statements. Therefore, the forward algorithm has to be combined with the
backward algorithm to compute an executable feature. In Figure 17, an input statement /
uses the variable set V. The forward slicing (indicated by the down arrow) is used to
identify the statements that are being used by V. The backward slicing algorithm is
applied in an iterative process to idenﬁfy and include all relevant control and data

dependencies. This is done to make the feature a syntactical and semantically correct

program.
Statement i «
~ Step2
Provide Backward slicing
Statement i+n with slicing criteria <k, V>
/ for extracting the
o statements that leads to
/ > the input feature
Statement k is an

input statement

Statement j
Step 1
Provide forward slicing with
Statement j+n slicing criteria <k,V>to get
the statements affected by
the input feature

Figure 17 Provides an overview of the feature extraction approach for input features.

53

In Figure 18, a short example is used to illustrate the application of our feature extraction
algorithm for input statements. Step1 shows the source code of a program with statement
number 4 being the input feature criteria. In the next step, forward slicing is applied to
identify all statements that are affected by the input criteria through data dependencies.
Step 3 shows the computed slice using the forward slicing approach. From step 3, we can
see that statement 6 is not part of the slice as it does not have any data and control
influence from statement 4. Next, in order to make the feature executable, it is necessary
to apply the backward slicing algorithm for every used variable in the forward slice. This
is done to guarantee that the behavior of these variables corresponds to the original
behavior. Applying the backward slicing algorithm will identify all statements that
influence the computation of these variables up to the specified position in the source

code. The resulting feature is shown in step 4.

Step 1 Step 2 technique
Source code

int x
inty=0
int z
read(x)
z=x+10
y=yt+l
z++

Forward
slicing

Nk W=

Step 3: Slice based on | Step 4: The resulting feature
forward slicing

l. intx
4. read(x) 3. intz
5.z=x+10 4. read(x)
7. z++ 5. z=x+10
7. z++

Figure 18 Input feature extraction techniques using the combination of backward and
forward slicing

54

3.4 Feature extraction algorithm

The slicing based feature extraction algorithm used in this thesis applied dynamic
backward slicing and dynamic forward slicing algorithm. Hence, the presented approach
used methods and terminology from the dynamic slicing techniques. The basic
terminologies are as follows:

Execution Trace

An execution trace Tx is an abstract list or sequence whose values are accessed by
position in it [Ril98]. The execution trace, as used in this research, records the executed
position and line number for a particular input. To create the necessary execution trace,
monitoring statements are created in the source code. The node x at position k in 7x will
be written as x* and will be referred to as an action.

Removable blocks

Removable Block as defined by Korel is “the smallest part of program text that can be
removed during since computation without violating the syntactical correctness of the
program” [Kor97A]. Input/output and assignment statements are examples of removable
blocks. The conditional expressions or control statements (if-else, while, for, do blocks)
are not removable, so these statements are not considered as removable blocks. Each
block B has 1) a regular entry and exit referred to as its r-entry and 2) a regular exit called
an r-exit.

Block Traces

S(B, k1, k2) denotes a block trace, which is the part of the execution trace corresponding
to the execution of block B. In other words, a block trace is a “sub trace” of execution

trace 7x where kI and k2 are the position of the r-entry and r-exit of B respectively.

55

Moreover, the execution does not exit from block B through its r-exit between &£/ and k2-

1 [Kor97A, Cha04].

Description of the Feature Extraction algorithm from source code

This following section describes in detail the feature extraction algorithm presented in
this thesis. In the first step (line 1) of the algorithm, as shown in Figure 19, a program p
is executed on input x and the execution is recorded up to the execution position g where
g contains the last executed statement of the program. Set Rc contains initially a set of all
blocks in the program. In step 3, based on the information obtained by the parser, and
from the execution trace, executed input and output statements are identified. Each input
statement is added to the Inp; as an action, and each output statement is added to the Out,.
Initially, all the actions in Inp; and Out, are marked as not visited.

The algorithm iterates in the repeat loop 4-19 until all actions in the Inp, and Out; are
marked as visited. There are two major steps inside the loop. The user has the option to
chose whether the current interest is to compute an input or output feature. In step 6 if the
interest is to compute an input feature, then, if there exists any not visited action x*,
procedure “compute feature” is called with the action x* as the parameter. This step
(procedure) is presented in more detail in lines 20-24 of Figure 19. Step 20 shows the
declaration of the procedure “Compute input feature” for the given action x*. Initially, the
action x* in Inp; is marked as visited. Next, the variables v used in the input statement are
selected. If v is not empty, that means the slicing position includes at least one variable.

The major component of this step is calling the forward slicing algorithm in line 23 to get

56

the statements influenced by action x*. The forward slicing algorithm is explained in
detail in section 3.6.

Step 12 shows if the user chose to compute an output feature, the procedure compute
output feature is called when a not visited and marked action exists. This step (procedure)
is presented in more detail in lines 25-30 of Figure 19. The procedure mark the action x*
as visited. Next, for the variables read in x* backward slicing algorithm is called to get
the statements that modified the value of action x*. The backward slicing algorithm is
explained in detail in section 3.5. Step 25 shows the procedure compute output feature for
the given position x from feature extraction algorithm. Step 25 shows the variables used
in the given position are stored in v. If v is not empty, that means the slicing positiorlxl
includes at least one variable. Hence, the backward slicing algorithm is called with
slicing criterion <x,v> when the feature candidate is an output feature. Finally, step 18
shows that after a feature is computed (either input or output feature), it is displayed to

the user.

57

Input: Source code of program P
Output: Extracted input and output features

Tx: Execution trace of the program P on input x
QOc: A set of block traces

Rc: A set of blocks

Out, : Output statements of the program

Inp; : Input statements of the program

1. Execute project P on input x and record execution trace Tx up to position ¢ (the last
executed statement of program P)

2. Initialize Rc to all blocks in project P

3. Based on the static and dynamic information identify executed input and output
statements and store the execution positions into Out; and Inp; respectively

4. Repeat
5 Select choice
6 if choice is input feature

7 if there exists a marked and not visited action x* in Inp; do
8 Select a marked and not visited action in Inp;

9 Compute input feature for x*

10 end if

11 endif

12 else if choice is output feature

13 if there exists a marked and not visited action in Out, do
14 Select a marked and not visited action in Out,

15 Compute output feature

16 end if

17 endif

18 Show the computed feature
19 until there exist a marked and not visited action

20 Procedure Compute input feature

21 mark x* as visited

22 if there exist variable v € U(¥)

23 Call forward slicing algorithm with slicing criteria <x,v>
24 end Compute input feature

25 Procedure Compute output feature

26 mark xk as visited

27 if there exist variable v € U(xk)

28 Call the backward slicing algorithm with slicing criteria <x,v>
30 end Compute output feature

Figure 19 Algorithm for computation of input and output feature

58

3.5 Description of the backward slicing algorithm

The dynamic backward program slicing algorithm [Kor97, Ril98] identifies the actions in
the execution trace Tx which contribute to the computation of a slicing criterion C = (
x,)7). This is obtained by deriving the data and control dependencies. However, it is also
important to identify the actions which do not contribute to the computation of variable
. The reason is that the more non-cbntributing actions are identified, the smaller may be
the resulting slice. The data dependencies are used to identify the contributing actions and
the removable blocks, and the non-contributing ones. Naturally, a block can be removed
from a program if its removal does not interrupt the flow of execution for input x. Let B1,
B2, and B3 be a sequence of three blocks. Block B2 can be removed if during the
execution of the program for input x the execution exits from block B2 thorough its r-exit,
and enters block B2 through its r-entry, leaves B2 through its r-exit, enters block B3
through its r-entry. The final condition is that none of the executed actions within B2
contribute to the computation of y%. If B2 is removed and the program is executed for the
same input x, then after leaving B1 through its r-exit, the execution will enter B3 through
its r-entry. This removal will not affect the flow of execution or the computation of
variable 7.
The backward algorithm using Korel’s approach [Kor97A, Ril98] is shown in the
Appendix 2, and the algorithm can bee summarized as follows:
— Initially the program is executed and its execution is recorded up to execution
position g. The actions in the execution trace can be in contributing, non-

contributing or neutral state.

59

Initially, all the actions in the execution trace are marked as neutral and not visited,
and Nb (a set of non-contributing blocks) is initialized of all blocks in the program.
Step 2 in Appendix 2 shows the last definition of y? is identified, and is marked as
contributing and not visited.

Next, the algorithm starts a repeat loop. The loop iterated until all the actions are
marked as either contributing or non-contributing.

Inside the repeat loop, the procedure find contributing actions is called to identify
actions that contribute to the computation of the 7. When there exist a contributing
and not visited action, the contributing action is marked as visited. Subsequently, in
a repeat loop the last definitions of all variables used in action X* (contributing
action)is identified. Next, all blocks that contain node X are removed from Nb. The
procedure continues until all contributing actions in the execution trace are visited.
For the given set of contributing actions, the algorithm identifies non-contributing
actions using the procedure “find non-contributing actions”. This procedure finds
non-contributing actions in a repeat loop by finding a set of block traces for the set
of blocks Nb. The procedure initially marks all actions as neutral if they are not
already marked as contributing actions. The procedure explores the execution trace
from the beginning looking for actions that are marked as neutral. If such an action
is found, then for this action the procedure tries to identify block trace S(B,p,pl)of
block B with block entry at p and block exit pi. If all the actions betw¢en p and pl
are not marked at contributing, then all the actions between p and p/ are marked as
non-contributing and the algorithm continues searching for non-contributing actions

from position pl. Otherwise, the algorithm tries to find the next neutral actions

60

starting at position p+1. The details of how to compute the non-contributing actions
are given in step 17 to 31 in Appendix 2.

— Actions which are not identified as contributing or non-contributing actions are
marked as contributing actions.

— Finally, the dynamic slice that is constructed from P by removing all blocks from

Rc that belong to non-contributing blocks Nj.

3.6 Description of the forward slicing algorithm

The forward algorithm used in this thesis is a modified version of the backward slicing
algorithm with removable blocks proposed by Korel [Kor97, Ril98]. However, the
forward slicing algorithm varies from the backward algorithm in several ways.

First of all, the dynamic forward program slicing algorithm identifies the actions in the
execution trace Tx which are influenced or “affected” by the computation of a slicing
criterion C = (x,)%). In contrast, the backward algorithm identifies the statements that
affect the slicing criteria.

Last definition versus first usage reference

The forward algorithm varies from the backward algorithm in step 2 of Appendix 2 in
that instead of calling the last definition of the variable, get first usage reference is called

to get the first place where the variable v is used.

1.intz=10;
1. int x 2.inty=5;
2 y=x+1 3.Strnum n = in.readLine(_)
3 System.out.printin(y); 4. z=y+1
S5.y=n+3
Figure 20 a) Last definition example b) First usage reference example

61

For instance, in Figure 20 (a), if the slicing criterion is statement number 3 for variable y,
then last definition of y would be in statement number 2 because the value of y is
assigned in that statement. On the other hand, in Figure 20 (b) if the slicing criterion is
statement 3 for variable “in”, the value of in.readline() is assigned to “in”. Next, the value
of n is used in statement 5. As a result, the first usage reference method for statement 3
would return statement 5 as the position because statement 5 is influenced by the value of
strnum at a forward direction, and the value of strnum is affected by the value of variable
in.

Another difference is given in the find contributing actions method. In step 13 of the find
contributing actions method rather than getting the last definition of v, the first usage
reference is marked as a contributing action in order to get the influenced statements by v
in the forward direction. The highlighted statement 13 in Figure 21 shows the modified
step from the backward slicing algorithm in order to compute the slice using the forward

slicing algorithm.

procedure Find contributing actions
9 while there exists a contributing and not visited action in Tx do
10 Select a contributing and not visited action Xk in Tx

11 Mark X* as a visited action (I = I U {X*})

12 for all variables v € U(Xk) do
13 "

endfor
14 for all blocks B € Rc do
15 if X € N(B) then Ng:=Np- {B}

endfor
16 endwhile
end Find contributing actions

Figure 21 Modified method from backward slicing algorithm

62

Since the dynamic slicing algorithm introduced by Korel was designed for the procedural
version of the Pascal programming language, some modifications were needed to be done
in order to compute the slices for object oriented programs written in Java.

A method called “mark action as contributing” was added to the backward algorithm by
Charland [Cha04] so that the algorithm can handle constructor or method calls. In the
backward algorithm, if an action is marked as contributing and this action contains a
method call with a return type other than void, then the return statement of the method
body is also marked as contributing. However, in the case of an action with a constructor
or method call with a void return type, all actions within the body of the constructor or
method are also marked as contributing. On the other hand, in the forward algorithm
when an action is marked as contributing which contains a method call or a constructor
call, all actions within the body of the constructor or method are also marked as
contributing action as shown in Figure 22. If a method or constructor is called, all the

executed statements in the method or constructor are directly affected by the method call.

procedure Mark action as contributing
1. Let XP be an action at position p in Tx
2. Let S(B, p, pl) be a block trace with an r-entry at position p
3. Mark xP as a contributing action
4. For all method calls and contructor calls at x? do
5. Mark action as contributing all the actions which belong to the body of the
constructor or method between p and pl
End for
end Mark action as contributing

Figure 22 Modified procedure added to the algorithm

For example, Figure 24 shows the execution trace of the sample program of Figure 23.
If the first action (which is a constructor call) in the execution trace is marked as

contributing, then all actions from position 2 to 3 will also be marked as contributing.

63

10 Account A = new Account(100);

15 Public Account(double amount){

16 Balance = amount;

/

Figure 23 Sample program with a constructor call

Execution Trace Action State
10' Account A = new Account(100) Contributing
15% Public Account(double amount) Contributing
16° Balance = amount Contributing

Figure 24 Execution Trace of the sample program of Figure 23

Incorporate backward slicing with the forward algorithm

Next, in order to make the slice executable after the slice is computed based on the above
algorithm, the backward slicing algorithm is called for the given feature criteria. When
the backward slice is computed, it is incorporated with the forward slice. In that case, the
contributing blocks from the backward slice also have to be added to the contributing
blocks of the forward slice. This step is shown in detail in Figure 25. This can be done as
the following:

The noncontributing block that belong to the forward slice, but is not in the non
contributing blocks of backward slice, remove the block from forward slice. In other
words, if any block is not in the non contributing blocks of backward slicing, this block is
a contributing block for the backward slicing. Also, the contributing actions of the

backward slice are added to the contributing actions of the forward slice. In Figure 17,

64

step 30 shows the backward slicing is called for the input feature criteria, after the
computation of slice is done in the forward direction for from the backward slicing is
assigned to Ic(backward) and Nb(backward) in step 32 and 33 respectively. Step 33-36
shows that when there exist any non contributing block in forward slice which is not an
element of the non contributing block of the backward slice, the block is deleted from the
non contributing blocks of the forward slice. Finally, step 37 shows that the forward
algorithm returns all the contributing blocks including the contributing blocks from the

backward slice as well.

1. I, = Contributing actions of forward algorithm

2 N, = Noncontributing blocks of forward algorithm

3 I.(backward) = Contributing actions of backward algorithm

4 Nb(backward) = non contributing blocks of backward algorithm

......

30 Call the backward slicing for {C =x,)’ } (returns the contributing blocks)
31 Ic(backward) = Contributing Actions of backward algorithm

32 Nb(backward) = Non contributing blocks (backward) of backward algorithm
33 Repeat

34 if (there exist a block B in Nb, but it does not exist in Nb(backward)

35 Remove block B from Nb

36 Until all the blocks of Nb are traversed

37 Return (all blocks of the program — Nb)

Figure 25 Integrate backward slicing with forward slicing algorithm

A sample program has been to taken to show the above described feature extraction
algorithm technique. The sample program Account is shown in Appendix 1. It has an
instance variable called balance, and has methods such as deposit that deposits the
amount the user wants. Also, the method getbalance returns the current balance of the
system. The toString method returns the account object in a string repreesntation. The

constructor Account() create a new account object with the amount specified. In order to

65

extract feature, initially removable blocks of the program is stored in Rc which is shown

in Figure 26 as described in the algorithm. Next, the execution trace and block traces of

the Account program is need to be recorded which is illustrated in Figure 27. The input

and output statements are needed to be identified. Figure 19 shows the highlighted input

and output statements. In this example, there is only one input statement action 26° which

is added to Inp;, and the only output statement action 25%is added to Outg

L O NAU R LN~

10.
11.
12.

13.

14.
15.
16.

17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27

28.
29.
30.

public class Account §

double balance;

public Account(double accountbalance) {
balance=accountbalan<£| B6

;

B5

void deposit(double amount) {
balancet+=amount; | B10

B9

double getbalance() {

| return balance;

| B14

3

B13

public String toString () {

eturn "Current balance o1 "+balance;

-] B18

3

B17

pubticstaric void i String{ Targs)throws TOException { B21

utteredReader in = new BufferedReader(new InputStreamReader(System.in)); | B2}

= .1 B24

System.out.println(* A’s current balance 1s “+ A.getbalance())] B25

String strnum = in.readLine();

A deposit(amount); | B28
5

BZ6
double amount = Double.parseDouble(stnum), | B27

5

Figure 26 Removable blocks of the sample program

66

21" public static void main(String[] args)throws IOException \

232 BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); ~] B23

24 Account A = new Account(100); B24
5* public Account(double accountbalance) BS
6° balance=accountbalance; j B6 \/|
B25

137 double getbalance() B13

14® return balance; 3 B14]

) B26

27" double amount = Double.parseDouble(strnum); :I B27
28! A deposit(amount); B28
9'2 void deposit(do‘uble amount) B9

10" balancet+=amount; B10]

Figure 27 Execution trace and blocks traces of the sample program

Based on the above information

Inps = {26°}

Out, = {25°}

If the choice is to compute an output feature then

Out, = {25°} is taken as the feature criteria

Variable used in action 25%is A

The backward slicing algorithm is called with the slicing criterion (25, A)
In the first iteration of the backward slicing algorithm

Ic = {25° 24° 5% 6°,137,14%)

Rc = {B23,B26,B27,B28,B9,B10,B21,B17,B18}

Qc = {S(B23,2,3), S(B26,9,10), S(B27,10,11),S(B28,11,13)}

67

21" is taken as the neutral action because it is neither in the Contributing actions, nor it is
in the block traces.

In the second iteration

Ic= {25°,24° 5% 6°,137,14% 211

Rc = {B23,B26,B27,B28,B9,B10,B17,B18}

Qc = {0}

The extracted output feature based on the backward slicing algorithm is highlighted in

Figure 28.

8.
9. void deposit(double amount){
10. balancet=amount;

11. }

12,

17. public String toString () {
18. return "Current balance of "+balance;
19. }

. BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

. g strnum in.readne);
27. double amount = Double.parseDouble(strnum);
28. A.deposit(amount);

Figure 28 Highlighted output feature of the account program

68

The output feature shows that the programmers don’t need to understand all the methods
of the program for understanding the feature A.getbalance(). The methods that are used
for the particular feature representation is the constructor of the program, and the
getbalance() method to return the balance.

If the choice is to compute an input feature,

Inp,= {26°}

The variable used in action 26° is “ in”

After the first iteration

Ic={26”27'°28" 9'2 10'3}

Rc = { B23, B24, B5, B6, B25,B13,B14, B17,Bl8,B21}

Qc ={8(B23,2,3), S(B24,2,5). S(B25,6,8),5(B13,7,9)}

Action 21'is a neutral action because it is not marked as contributing, neither it is in the
block traces. Hence, the neutral action is marked as contributing

After the second iteration

Ic™ {26 27'28" 9'2 10" 21!}

Rc = {B23, B24, BS, B6, B25,B13, B14, B17,B18}

Where Rc represents the noncontributing blocks of the program

Qc={0}

Next the backward slicing is called for the position 26°

After the backward slicing based on position 26° is called

Ic from backward is Ic = {237, 21',26°}

Rc = {B24, B5, B6, B25, B13, B14, B27, B28, B9, B10}

Qe={90}

69

Next, the slice from the backward algorithm is needed to be integrated with the forward
slice.

The block that is not in the Rc of backward but is in the Rc of forward is deleted from the
forward Rc.

Hence, the Ic = {26 27'°,28" 9'% 10" 21!, 23%

Rc = {B24, B5, B6, B25, B13, B14, B17, B18} // noncontributing blocks

The declarations of the contributing actions are also needed to be added to the input
feature to make the feature executable and if the declaration contains a constructor call or
a method call, the constructor and the method call are added to the slice.

Action 28" is a contributing action included in the slice. The declaration of variable A of
action 28! is found in the action 24°. Since action 24> contains a call, the constructor
body is also taken as contributing. Hence, the contributing actions for getting the
declarations of the contributing actions are as follows:

Ic= (28" 24° 5% 6%}

The blocks corresponding to the contributing actions that should be removed from the
noncontributing blocks are |

B28 BS B6 B24

Hence, finally the forward slicing algorithm gives

Ic = Result of forward integrated with backward + declarations of the contributing actions

= {26>27"28"9'210" 21!, 23%} + (28", 24’ 5%, 6"}

(26”2728 92 10" 21, 232, 24°, 5%, 6°}

70

Forward slice = All blocks of the program - (non contributing blocks from forward
integrated with backward slicing - contributing blocks for the declarations of contributing
actions)

= All blocks of the program — ({B24, B5, B6, B25, B13, B14, B17, B18 }— B28,
B5,B6,B24}

= All blocks of the program — { B25,13,14,B17,B18}

The computed input feature using the above approach is shown in Figure 29. The
extracted statement based on the computation before calling the backward algorithm is
shown with the highlighted statements. Next, the result based on the backward slicing for

making the slice executable is shown in the rectangular boxes.

[
5. public Account(double accountbalance) {
6. |balance=accountbalance;
7. 1}
8.

13. double getbalance() {

14. return balance;

15. }

16.

17. public String toString (){

18. return "Current balance of "+balance;
19. }

20.

23. [BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
24. Account-A=new Af-nnnnf(l nn);
intln(“ A’ ent balance is “+ A.getbalance());

Figure 29 The extracted input feature

71

4 Implementation

The feature extraction algorithm presented in the present research is integrated within the
CONCEPT project. In what follows, we will introduce the CONCEPT project and its
system architecture. Later, we will provide the design and implementation details of our
Feature Extraction algorithm approach. Finally, the experimental result based on JUnit is

provided.

4.1 Concept system architecture

The CONCEPT (Comprehension Of Net-CEntered Programs and Techniques) [Ril01] is
a reverse engineering tool that aids in program comprehension of large and distributed
systems. The major goal of the CONCEPT project is to provide novel program
comprehension techniques and to assist programmers during the creation of mental
models while comprehending software systems. These program understanding techniques
are based on a variety of source code analysis, visualization, and application approaches.
Currently, the CONCEPT project explores new program slicing algorithms such as
hybrid slicing and forward slicing, and investigates their application in different software
engineering sub-areas areas (e.g., software measurement, design pattern recovery,
software visualization, feature analysis and architectural recovery, etc).

Figure 30 shows an architectural overview of the CONCEPT project where the Feature
Extraction algorithm is integrated. The CONCEPT framework is built as a layered
architecture with Postgres SQL database being the underlying repository. The database
stores both static and dynamic source code information that is needed for the feature

extraction.

72

Figure 30 System architecture of the CONCEPT framework

Initially the source code is statically analyzed using a parser. The parser extracts required
information such as the set of elements used in the program (e.g., field, class, variables,
methods information), a set of relationships between the elements (e.g., file p contains
class a, class a contains methods a,b,c, etc) variables used in the program (e.g. variable ¢
is an instance variable, variable c is used and defined in method b), the relationships
between method calls (e.g. method a calls method b n times) etc. The static information
is represented in the form of an abstract Syntax Tree (AST) that is stored in the Postgres
knowledge base. The AST provides detailed static information about structural and
logical dependencies in the source code. The AST is stored in the PostgresSQL database
for late retrieval. In a next step, dynamic information is collected through a source code

instrumenter that modifies the existing source code to include monitoring statements. The

73

execution trace is created by executing the instrumenting source code and recording the
run-time information associated with the particular program execution. The resulting
execution trace is stored in the database.

During the data analysis phase, data is retrieved from the repository through database
interface (DBI). These obtained data facilitate the computation of different kinds of
slicing algorithms, software coupling and cohesion measurement, design recovery; etc
.Our feature extraction algorithm uses the forward slicing algorithm and backward slicing
algorithm implemented in the data analysis phase. Next, feature extraction algorithm

creates the input and output features.

4.2 Feature extraction algorithm implementation architecture

The presented algorithm introduced in Section 3 was implemented using Java program
language with version 1.4. BackwardSlicingAlgorithm, ForwardSlicingAlgorihtm, and
FeatureExtractionAlgorithm were used as the main basis for computing features.

As illustrated in Figure 31, initially the backward slicing algorithm [Kor95, Ril98] was
implemented by Charland [Cha04]. The existing backward slicing implementation
[cha04] can compute features only when the slicing criterion is a variable. However,
slicing computation needs to be done for a method call when the method call contains an
output/input criterion. The modified backward slicing algorithm can compute feature
when the feature candidate includes a method call which consists of an output or input
criteria. The modified DynamicBackwardAlgorithm class is used as a data member in
FeatureExtractionAlgorithm. Another major private data member used in this class is the
DynamicForwardgAlgorithm. Forward slicing has been implemented with the extension

to backward slicing except that forward slicing identifies the statements that are

74

potentially affected by the slicing criterion instead of the statements that lead to the
current position.

The DynamicForwardAlgorithm and the DynamicBackwardAlgorithm are inherited from
the class SlicingAlgorithm. Since input and output statements have been used as the basis
for the slicing criteria for extracting feature, initially the input and output statements are
also stored using the aid of class’s inputstatements and outputstatements. The input and
output criteria are stored in two different files. When traversing the execution trace, the
method calls are compared with file input or output criteria to see whether they match. If
any position is equivalent to the input or output criteria of the file, then the output or
input statement is stored in a map with the file id number and the statement number
corresponding to the given file. Next, the DynamicBackwardAlgorithm class is called in
the case of an output statement, and the class DynamicForwardAlgorithm class is called
when the statement is an input statement. Finally, the FeatureExtractionAlgorithm class
is called by the FeatureGui class in order to provide a graphical user interface

representation for the user.

75

SlicingAlgorithm
& Stiing ProjectName
&int TraceKey

I

DynamicForwardAlgoritim i e
W DynarmicBackwardAlgoritim
ybiccks blocks ~bMaeecuhonl x m‘;r:ceexemﬁonTmce

m ok
sl i BiockTraces blockTreces
‘COI“WWeUsingFommﬂSlmng()

rstisageRefe ‘ComptAeFeatumUssngsacmwdsuang()

M NGetLastDefinitiont)

\ ‘.\ 4

jap mp /__/

QutputStatement InputStatemenis

FeatureExtractionAlgorithm

| WDynamicFonwardAlgorithm forwardslice

N lyDynamicBackwardalgorithm backwardslice

&pinpuiStaternents inputstatements
ements outpitstatements

#ExecutionTrace executionTrace

&y Blocks blocks

®BlockTraces biockTraces

&String ProjectName

&Siring TraceKey

‘éomp&daFea‘ure()

i
i

FeatureGui

#String projectname
#pint traceKey

Display Outpit Feature()
Display input Featire()
SMaintain output criterial)
Maintain input criteriaf)

Figure 31 High level view of the feature extraction algorithm implementation

Figure 32 shows the screen capture of the displayed computed features using our

Feature Extraction Algorithm on the GUI.

76

{The Slice is computed for method call own method: and for information java.io.PrintStream junit text
{The taken time is 1328 millisecond
‘ Executed Line Nbr
[14,18, 20, 104,105, 130, 131} ,
[25, 41, 42, 88, 89, 96, 97, 98,100, 120,121,122,123,137,138, 139, 155, 156, 157
[10, 21, 22]
[13,83,100,112, 113, 126]
[7]
{70,117,118} . “
[15, 22, 23, 24, 25, 26, 27, 54, 55, 66, 67,105, 106, 151,152, 157,158, 162, 163, 164}
[30, 81,82, 224, 225, 226, 227, 229, 230, 234, 235, 255, 256)

i computed for method call own methn: nd forinformatinnjava.io.Prinreamjunit.text r

Dicomp2aJUnitjunitrunnenSimpleTestCaollector.java
Dicomp24RSUnitjunitframeworklCompatrisonF ailure java
Diacomp249JUnitjunitirunnenioadingTestCollector java
Dicomp248JUnitjunitframeworkiTestF ailure.java
D:comp249uJUnitjunitframeworkiAssert java
Dicomp249JUnitjunitrunnenSorter.java
Dicomp24NJUnitjunitisamplesiVectorTest java
Dicomp24JUnitjunitrunnenTestSuiteLoader java
DiAcomp249JUnitjunitextuilResultPrinter.java

Figure 32 A screen capture of the part of the output features from JUnit

4.3 Case study and experimental result

In this section a case study is presented which was applied to provide an initial empirical
validation of the proposed approach. JUnit [Jun0Ol1] an open source project testing
framework started by Erich Gamma and Kent Beck and developed under the Open
Source Initiative (OSI) [Bec98]. JUnit is a testing framework to write repeatable tests. It
allows developer to easily create tests for Java code, and to run them more easily and

quickly. Furthermore, the result is formatted in a consistent fashion. JUnit has become the

77

standard testing framework for Java Development. Using JUnit, test cases can be cheaply
and incrementally built which helps the programmer to measure their progress, spot
unintended side effects, and focus on development effort rather than spending time in
debugging the code each time for detecting defects.

A modified version of JUnit 3.8.1[Jun01, Cha04] was used in this experiment which
includes 2K of code. JUnit was used in this research because it is a standard open source
project, and its source code is available. Moreover, this particular framework has reached
a relatively mature development level. In addition, using JUnit it is possible to create test
cases of one’s own choice, and then to test the result by running the test case class. Its
feature consist of assertions for testing expected results, test fixtures for sharing common
test data, test suites for easily organizing and running tests, and graphical and textual test

unners.

Project Name JUnit
Lines of Code 2358
Total number of executed statements 568
Number of packages 4
Total number of classes 27

Table 4 An overview of the JUnit project

78

Table 4 presents some information about the project size, and the number of executed
statements for the particular test case. The initial Vector Test class executes a total of 568
statements, including 7 output statements and O input statements.

There are three different test cases that were being used for the experiment to get output
feature, and input features. For the initial experiment, the first test case being used with
the JUnit project in this research is called the VectorTest class, which is a rather small
program. This class was used as a test case for our experiment because it comes with the
JUnit project, and it is a simple program which aids to test our implemented feature
extraction algorithm. This specific class has two vectors called fEmpty, and fFull as
private data member. Next, in the set up method, the fEmpty and fFull vectors are
initialized to empty. Subsequently, three elements are added to the fFull vector. The
testClone method tests with the assert method whether the fFull vector’s size is same as
the number of elements that are added to the vector. Also, another assert method tests
whether the first element such as 1 added to the fFull vector corresponds to the number 1.
If not, an assert failure is returned. Otherwise, the assert method returns true. The
VectorTest class is shown in Figure 33.

In JUnit the ResultPrinter class displays the result generated by the TestRunner when a
given test case class is tested. The class ResultPrinter contains the instance variable
fWriter, which is of type PrintStream. It is through this instance variable that the
TestRunner class outputs the results of the test cases. The class TestRunner is a command
line based tool used to run tests. The text based test runner outputs its results on the
console. Hence, if JUnit is executed with the given test case Vector test used in this

experiment, the following result is displayed as illustrated in Figure 34.

79

1. package junit.samples;

L

import junit.framework.*;
import java.util. Vector;

hed

[HE

A sample test case, testing <code>java.util. Vector</code>.
*

*/

public class VectorTest extends TestCase {
protected Vector fEmpty;

0. protected Vector fFull;

2OV ®NA LA

11. protected void setUp() {

12. fEmpty= new Vector();

13. fFull= new Vector();

14. fFull.addElement(new Integer(1));

15. fFull.addElement(new Integer(2));

16. fFull.addElement(new Integer(3));

17. }

18. public static Test suite() {

19. return new TestSuite(VectorTest.class);
20. } .

21. public void testClone() {

22. Vector clone= (Vector)fFull.clone();
23. assertTrue(clone.size() == fFull.size());
24, assertTrue(clone.contains(new Integer(1)));
25. }

26. }

Figure 33 VectorTest class

The output screen shows that when the VectorTest class is executed, a result is displayed
mentioning that 1 test case was executed and the test case successfully passes the

validation. Also, the time for computing the result is shown.

Figure 34 Test results generated by JUnit

80

4.3.1 Experimental resuits

In this section we present some experimental results from our feature extraction
algorithm when applied on the JUnit project. The results shown in Table 5 are based on
the Vector Test class of Figure 33.

The first column in Table 5 corresponds to the identified features, the second column
contains the class name and the third column shows the executed line numbers. Figure
35 shows the file name, and the associated file id for each test case that was obtained
after executing each test case separately. Since three test cases were used for 3 different
experiments, the file name and id representation is shown for each of the execution. For
instancé, the File id 18 is the representation of file ResultPrinter.java of JUnit project
(execution trace #1 obtained from executing the first test case).

To aid in understanding, Appendix 3 shows the identified output statements by this given
algorithm when executing the JUnit project using the test case Vector Test for our first

experiment. The class ResultPrinter contains the executed output statements.

81

Packages Class name Execution 1 | Execution 2 | Execution 3
File id File id File id
Framework | Assert.java 34 136 44
AssertionFailedError 35 137 45
ComparisonFailure.java 36 138 46
Protectable 37 143 47
Test 38 144 48
TestCase 39 139 49
TestFailure 40 140 50
TestListener 41 145 51
TestResult 42 141 52
TestSuite 43 142 53
Runner BaseTestRunner 21 123 54
ClassPathTestCollector 22 124 55
FailureDetail View 23 132 56
LoadingTestCollector 24 125 57
ReloadingTestSuiteLoader | 25 126 58
SimpleTestCollector 26 127 59
Sorter 27 128 60
StandardTestSuiteLoader | 28 129 61
TestCaseClassLoader 29 130 62
TestCollector 30 133 63
TestRunListener 31 134 64
TestSuiteLoader 32 135 65
Version 33 131 66
Samples VectorTest.java 20 146 67
AllTest.java 68
SampleTest.java 69
Textui ResultPrinter.java 18 122 70
TestRunner.java 19 121 71

Figure 35 Executed junit and file id for each execution that was used in 3 separate

experiments

Next, in Table 5, the executed line Numbers are shown for each file, indicating which
statements were executed for the each identified feature (F1, ...F7) . From Table 5§ we

can also see that, each feature includes statements from several files. For instance Feature

82

F1 contains executed statements from 7 files with file id 18, 19, 20, 21, 34, 39, 43 and 43.
We can also see that the features are of different sizes, and some files are necessary for
computing all the features such as files with id 18, 19, 41, 42. The number of files
included in a feature is often different for computing the features. For instance, Feature

F1 contains 7 files, but Feature F2 comprises of 4 files.

Feature File | Executed line nuinber
id

18| [14, 18, 20, 104, 105, 130, 131]

19 [25, 41, 42, 88, 89, 96, 97, 98, 100, 120, 121, 122, 123, 137, 138,
139, 155, 156, 157]

20 | [10,21, 22]

F1 21 | [13,83,100,112, 113, 126]

34 | [7]

39 [70,117, 118]

42 [15, 22, 23, 24, 25, 26, 27, 54, 55, 66, 67, 105, 106, 151, 152, 157,
158,162, 163, 164, 180]

43 [30, 81, 82, 224, 225, 226, 227, 229, 230, 234, 235, 255, 256]

18 [14, 18, 20, 26, 27, 41, 42, 104, 105]

19 [25, 41, 42, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 120, 121,
122,123, 137, 138, 139, 155, 156, 157]

F2 21 [13, 83,100,112, 113, 126]

42 [15, 22, 23, 24, 25, 26, 27, 54, 55, 180]

18 [14, 18, 20, 26, 27, 41, 43, 100, 101, 104, 105]

F3 19 [25, 41, 42, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 120, 121,
122, 123, 137, 138, 139, 155, 156, 157]

21 [13, 83,100, 112, 113, 126]

42 [15, 22,23, 24, 25, 26, 27, 54, 55, 180]

18 | [14, 18, 20, 26, 28, 29, 30, 46, 47, 50, 51, 54, 55, 56, 81, 82, 83,
F4 104, 105]

19 [25, 41, 42, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 120, 121,
122,123, 137, 138, 139, 155, 156, 157]

21 [13, 83,100,112, 113, 126]

42 | [15, 22, 23, 24, 25, 26, 27, 54, 55, 81, 82, 87, 88, 93, 94, 99, 100,
180]

Table 5 The computed features [Continued]

83

Feature | File | Executed line number
id
18 [14, 18, 20, 26, 28, 29, 30, 46, 47, 50, 51, 54, 55, 56, 81, 82, 84, 104,
105]
19 [25, 41, 42, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 120, 121, 122,
F5 123, 137, 138, 139, 155, 156, 157]
21 [13, 83,100,112, 113, 126]
42 [15, 22, 23, 24, 25, 26, 27, 54, 55, 81, 82, 87, 88, 93, 94, 99, 100, 180]
18 [14, 18, 20, 26, 28, 29, 30, 46, 47, 50, 51, 54, 55, 56, 81, 82, 85, 92,
104, 105]
19 [25, 41, 42, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 120, 121, 122,
123, 137, 138, 139, 155, 156, 157]
20 [10, 21, 22]
21 [13, 83,100, 112, 113, 126]
F6 34 [[7]
39 [70, 117, 118]
42 [15, 22,23, 24, 25, 26, 27, 54, 55, 81, 82, 87, 88, 93, 94, 99, 100, 105,
106, 128, 129, 151, 152, 157, 158, 159, 160, 176, 177, 180]
43 [30, 81, 82, 224, 225, 226, 227, 229, 230, 234, 235, 255, 256]
18 [14, 18, 20, 26, 28, 29, 30, 46, 47, 50, 51, 54, 55, 56, 81, 82, 85, 92,
104, 105]
19 [25, 41, 42, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 120, 121, 122,
F7 123, 137, 138, 139, 155, 156, 157]
21 [13, 83, 100,112,113, 126]
42 [15, 22, 23, 24, 25, 26, 27, 54, 55, 81, 82, 87, 88, 93, 94, 99, 100, 176,

177, 180]

Table 5 The computed features

Execution time

The initial experiment shows that there exist seven executed output statements in the

project JUnit. Also, seven output features were identified (indicated by F1..F7). Since

there is no input statement, no input feature could be extracted for that case study. The

following table shows the computation time to compute the output feature slices. Table 6

contains columns such as feature, slice type, slicing criterion and so on. Here the

“Feature” column represents the name assigned to each computed feature. The feature

84

type column indicates whether the feature is an input or output feature. The slicing
criterion column indicates whether the feature is computed based on a variable or method
call as the slicing criterion. In addition, each input or output statement may or may not
contain any variable. When there is an input or output statement, variable defined in the
statement as the slicing criterion for calling the backward or forward algorithm from the
feature extraction algorithm. However, when an I/O statement does not contain any
variable, but includes a method call to perform some computation, when calling the
backward or forward algorithm from the feature extraction algorithm, the method call
position is given as the slicing criterion. Next, the data and control dependencies that lead

to the method call are computed.

Feature | Feature | Slicing Code Execution | Number of | Feature
type criterion | size Position in | classes computation
(Line of | the included in | time
code) execution | the feature | in second
trace
F1 Output | Method | 440 8 1344
feature | call
F2 Output | Method) ¢ 503 4 1235
feature | call
F3 Output | y7oriable | 50 506 4 1.282
feature
Output | Method
F4 Feature | call 66 540 4 1.750
Output | Method
F5 Feature | call 66 543 4 1.469
F6 Output | ;. Hable | 99 546 8 1.906
Feature
Output | Method
F7 Feature | call 69 553 4 1.781

Table 6 The result obtained from the JUnit when applying feature extraction algorithm

One observation from the results in Table 6 is that there seems that no direct relationship

between the computation time and the slice size. For instance, although feature F1

85

consists of 73 lines of code, the computation time is shorter compared to the other slices
of similar size. After a closer analysis, one can identify that there exist several factors
which may contribute to the computation time:

- The slice size and the number of files in which these statements are included. The
number of files in general influences the computation time because often a file
corresponds to a separate method/class and therefore to separate function calls.
The underlying slicing algorithm requires some additional computational
overhead for the computation of slices for function calls. For instance, in the
method “markActionAsContributing” of the dynamic backward slicing algorithm,
the given position is marked as contributing at first. Next, a check is performed to
see whether the statement is a function call such as a constructor or method call. If
it is, then when a statement includes a method call, the statement is marked as
contributing. Next, in the case of a method call, the return statement from the
called method has to be marked as contributing too. Moreover, when the slice is
in a separate file, and if the file includes a class definition, then the class name,

and the constructor needs to be added in the slice to make the slice executable.

— The position in the execution trace of the particular slicing criteria has a direct
impact on the slice computation time. For instance, the backward slicing
algorithm starts from a given position in the execution trace and identifies the
last redefinition of the slicing criteria in the execution by traversing the trace
backwards. Therefore, the more statements the algorithm has to consider in
the evaluation and computation process, the longer the computation time.

Hence, if the execution position is at the end of the execution trace, the

86

algorithm has to consider all the statements of the trace in the computation

process of the slice. It also has a direct effect on the slicing computation time.

— From Table 6, we can see that feature F1 is computed with the slicing
criterion of execution position 440. The computation time for the slice is
1.344 sec, although the time to compute the slice should be comparably longer
because the slice included a large number of statements (73 statements) from
8 files of the project. On the other hand, the next feature is executed after 63
positions in the execution trace. Hence, although feature F2 does not have
many files to access as it contains only 4 files and the slice size is rather small
containing 48 statements, the computation time des not differ greatly from that
of Feature 1. However, we can still see that Feature 2 has less computation

time 1.235 sec compared to 1.34 sec for Feature 1.

Second Test Case

The illustrated VectorTest class shown in Figure 33 returns a true result by the
ResultPrinter class of JUnit because the vector represented in this class contains the
values 1,2,3, and when there was a test to see whether the vector contains 1, it returns
true. In order to see the result from a class that returns a failure result, the VectorTest
class has been changed so that now the test clone methods test whether integer 4 is an
element of the vector as illustrated in Figure 36. A test failure is produced by the

TestRunner class because Integer 4 is not included in the vector as shown in Figure 37.

87

18. public static Test suite() {

19. return new TestSuite(VectorTest.class);

20. }

21. public void testClone() {

22. Vector clone= (Vector)fFull.clone();

23. assertTrue(clone.size() == fFull.size());

24. assertTrue(clone.contains(new Integer(4)));
25. }

26. }

Figure 36 Partial listing of modified VectorTest class

Figure 37 Outpu prodce by the modified Vector Test class |

This example does not have any input statement so only output features were computed.
The numbers of executed output features are 19. From the identified output features some

of these are only informational features so we did not compute them.

88

The Slice is computed for method call own method: and for information
java.io.PrintStream junit.textui.ResultPrinter.getWriter() at
D:\junitwithfailurefeature\junit\textui\ResultPrinter.java L:42,0:1063 in file 122 in
position 42

The taken time is 2234 millisecond

File ID Executed Line Nbr

121 [25, 41, 42, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 120, 121, 122, 123, 124,
137,138, 139, 155, 156, 157]

122 [14,18, 20, 26, 27, 28, 29, 30, 41, 42, 46, 47, 50, 51, 54, 55, 56, 57, 58, 61, 62, 66,
67,71, 74, 81, 82, 104, 105]

123 [13]

136 [7, 12, 13,206, 207,213, 214]

139 [70,117,118, 124, 125, 126, 127, 137, 138, 139, 140, 145, 149, 153, 154, 194,
195]

140 [12, 20,21, 22, 27, 28]

141 [15, 22, 23, 24, 25, 26, 27, 44, 45, 54, 55, 66, 67, 81, 82, 87, 88, 93, 94, 99, 100,
105, 106, 119, 121, 134, 135, 136, 138, 139, 157, 158, 162, 163, 164, 176, 177, 180, 181,
182]

142 [30, 81, 84, 85, 96, 97, 98, 99, 100, 101, 103, 130, 131, 132, 134, 135, 137, 140,
147, 148, 155, 156, 157, 158, 159, 200, 201, 202, 203, 207, 210, 211, 214, 215, 216, 217,
218]

146 [10, 14, 15,16,17, 18, 19, 21, 22]

Figure 38 A feature extracted by the sample program

The result from this test case show that among 27 classes, only 12 classes were used for
computing the feature for method getwriter().The name of the classes which were
executed are TestRunner, ResultPrinter, BaseTestRunner, Assert, TestCase. TestFailure,,
TestResult, TestSuite, VectorTest. The TestFailure is executed because the given test case
fails because of not having 4 in the vector. The TestRunner class is the tool for running
the JUnit, and the class ResultPrinter prints the result to the user.

Third TestCase

Since both of the above examples did not have any input feature, another test case was
added to see the applicability of the extracted input features. In the new test case, 2 input

statements are provided as shown in Figure 39. The output displayed in the console

89

based on the AllTest test cases is shown in Figure 40. Figure 41 shows a computed input

feature from the given test case.

public class AllTest extends TestCase {

protected static String input;
protected static String inputSampleTest;

public static Test suite() {

TestSuite suite = new TestSuite(); :
System.out.printin("Do you want to test the VectorTest class? Enter Y or y to accept ");

try{
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

catch(IOException exception) {
System.out.println(exception);
}
if(input.equalslgnoreCase("Y"))
suite.addTestSuite(VectorTest.class);

System.out.println("Do you want to test the SampleTest class? Enter Y or y to accept ");

try{
BufferedReader readinput = new BufferedReader(new InputStreamReader(System.in));

catch(IOException exception){
System.out.println(exception);

3

if(inputSampleTest.equalsIgnoreCase("y"))

suite.addTestSuite(SampleTest.class);

return suite;

Figure 39 Test case with input feature

Figure 40 Output from the AllTest class
90

Display input Features

he Slice is computed for variable in

#in File 68 in line number 21

{Jthe slice computation time is 9282

: Executed Line Nbr
[7,12,13,14,20, 21, 206, 207, 213, 214]
[70,80,81,82,83,117,118, 124,125,126, 127,129, 130,137,138, 139, 140, 145,149,153, 154, 175,194, 185} |
[15,886,67,72,73, 74,75, 61, 82, 87, 88, 93, 94, 99, 100,105, 106, 119,121, 123, 128, 129, 134, 135, 136, 151, 153}
[30, 81, 82, 83, 84, 85, 91, 96, 97, 98, 99,100, 101,103, 105,119,120, 126,127,130, 131, 132, 134,135, 137, 1394
[13,83,84,88,89,112,193, 194}
[6,11,12)
[10,14,15,16,17,18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 37, 38, 39
[10,15,18, 21, 26, 27, 38, 39, 40]
[10,21, 24, 25, 29])
[14, 26,27, 28, 29, 30, 41, 42, 43, 46, 47, 50, 51, 54, 55, 56, 81, 82, 83, 84, 92, 100, 101, 104, 105, 124,130, 131]
[25, 96,100, 103,105,106, 109,110,111,120,122,123,124, 137,141,142, 144,146, 149, 152, 155, 156, 157]

File Name
D\junitslicingWUnitjunitframeworkiComparisonF ailure java
DyjunitslicingWUnitjunitframeworkiTestF zilure java
DijunitslicingWUnitjunifisamplesiVectorTest java
DijunitslicingWUnitjuniftunnencClassPathTestCollector.java
DjunitslicingWUnitjunitrunnenStandardTestSuiteLoader.java
DijunitslicingWUnitjunitisamples\WiiTest java
D\junitslicingWUnitjunifisamplesiSampleTest java
DijunitslicingWUnitjunitirunnenTestCollector java
DijunitslicingWUnifjunifitextui\ResuitPrinter java

Figure 41 An example of an input feature

The classes executed for this feature are Assert, TestCase, TestResult, TestSuite,
BaseTestRunner, StandardTestSuiteLoader, VectorTest,AllTest, SampleTesResultPrinter
and TestRunner. Hence, this input feature provides us the information that all these
classes are affected by the execution of this input statement, and computations such as

displaying the test result is performed by the other executed classes.

4.4 Application of extracted features

As customer requirements are changing, software systems need to evolve and features in

software systems may need to be deleted, added, modified or extended [Mul01, EisO1].

91

Our semi automatic feature extraction approach can provide users with additional insights
about a system by extracting functional features from the source code. Identifying these
features can be an important aspect of source code comprehension [Kan90]. This is
because it may identify clusters of source code relevant to certain domain aspects where
all the features of the system are not known.

Other applications of the proposed feature extraction algorithm can be found, for
example, in debugging. Often a bug can be associated with a particular program feature.
By extracting features and removing these parts of the program that are not relevant for
the implementation of a particular feature, a user can focus on those parts of the program
which most likely will contain the fault.

Feature extraction can also be used for measuring the interaction (coupling) among
different features. There exist several definitions that introduce the notion of coupling.
For instance, Stevens et al. [Ste74] defined coupling as “the measure of the strength of
association established by a connection of one module to another.” Next, Constantine and
Yourdon [You79] defined coupling based on the relationship of subroutines as
measurements for procedural systems. The commonality among these traditional
coupling definitions is that they are applied on the function level. However, we have
applied an extended definition of coupling introduced in [Ril04] as the source code
dependencies between features. This approach can be seen as an extension of the
traditional measurements by including not only the call dependencies at the function or
class level but also on the feature level.

When a feature is implemented by many software functions the resulting code is often

highly coupled [MehOlc]. Ideally, software should follow certain design standards that

92

require a high degree of cohesion and a low degree of coupling amongst its various
components. In practice, however, this case rarely happens. In fact, one may find that in
a large, complicated software system, a program feature is spread across a number of
components. Code used to implement a feature may be found in components which are
seemingly unrelated to each other. If a single feature is implemented within a single
object or method, it corresponds to high cohesion. If two features overlap, the program
has high coupling. In addition the intersected parts are a crucial part of the program as it
is used by multiple functional requirements of the system. If the intersected part can be
separated, this part could be reused as a separate entity for the purpose of being used by
the system. Figure 42 shows an example of the use of features in measuring the source
code coupling between features. Here, the two features, FI and F2, have overlapping in
their code. Both features F/ and F2 are sharing some functions or classes. If these
functions or classes are spread over several components, then the same code segment that
is shared between multiple components should be extracted as a new class or function for

reuse. The common part between FI and F2 represents high coupling between features.

Common between FI and F2

[o1

Figure 42 Measuring coupling and cohesion of the system

93

The following Table 7 shows the identified features and their overlap for JUnit with the
first test example. This was the test case with the Vector Test class. The rows show the
feature (identified by a feature number), the number of statements and percentage of
overlap among the specific features with other identified features in JUnit. For instance,
the row F1, and column F2 includes the value 39 and 53.4. This means that feature F1
overlaps with feature F2 for 53.4% of F1’s statements.

From Table 7, it can be observed that the identified features within the JUnit have some

commonalities with each other. In what follows we discuss some of the observations and

their potential impact on the comprehension process.

1) The common files in the features can be used to provide some ranking of the source
code to identify these parts of the system that are commonly used by most of the
features and therefore most likely provide some core functionality. For instance the
classes VectorTest.java, TestRunner.java, BaseTestRunnerjava and ResultPrinter
class are used by all identified features.

2) The feature overlapping shows the dependencies (coupling) among different features
and the intention of good system design should be to reduce coupling between
features so that any feature can be modified without having any side effect on other
features. From our case study, Feature2 is sharing most of the statements of Featurel,
causing high coupling between Featurel and Feature2. If there exist more than one

feature to be evolved, then it is important to evaluate the relationship between them.

94

Feature F1 |F2 |F3 |F4 |F5 |F6 |F7

Overlap [73 [B [41 [40 T[40 [e6 [40
F1 size
% 100 |BB] |56.2 |54.8 | 54.8 | 90.4 | 54.8

Overlap |39 |48 46 46 46 45 45
F2 size
% $1.3 100 [958 [958 [958 [93.8 |93.8

Overlap | 41 46 50 43 43 45 45
F3 size
% 82 92 100 | 86 86 90 920
Overlap | 40 46 43 66 57 65 66
size
% 60.6 |169.7 | 652 | 100 |86.4 |98.5 | 100
Overlap |40 46 43 57 66 64 65

F5 'size
% 60.6 | 69.7 |65.2 |86.4 | 100 |97 98.5
Overlap | 66 45 45 65 64 99 69

F6 size
% 66.7 | 455 [455 |65.7 | 64.7 | 100 | 69.7

Overlap | 40 45 45 66 65 69 69
F7 Size

F4

58 652 | 652 {957 |94.2 |100 | 100
Table 7 Features overlapping percentage from JUnit

Table 8 shows the set of statements (identified by a file-id and statement number) that

correspond to Featurel and Feature 2, and their common statements (indicated in bold).

95

Feature 1 (F1) Feature slice size is 73

File ID

18
19

20
21
34
39
42

43

Executed Line Nbr

[14,18, 20, 104, 105, 130, 131]

[25, 41, 42, 88, 89, 96, 97, 98, 100, 120, 121, 122, 123, 137, 138, 139, 155,
156, 157]

[10,21, 22]

[13, 83, 100, 112, 113, 126]

[7]

(70,117, 118]

[15, 22, 23, 24, 25, 26, 27, 54, 55, 66, 67, 105, 106, 151, 152, 157, 158,
162, 163, 164, 180]

[30, 81, 82, 224, 225, 226, 227, 229, 230, 23 , 255, 256]

Feature 2 (F2) Feature slice size is 48

FileID Executed Line Nbr

18 [14, 18, 20, 26, 27, 41, 42, 104, 105]

19 [25, 41, 42, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 120, 121, 122, 123,
137, 139, 155, 156, 157]

21 [13, 83,100, 112, 113, 126]

42 [15, 22, 23, 24, 25, 26, 27, 54, 55, 180]

Overlapped statements between F1 and F2 Slice size is 39

File ID Executed Line Nbr

18 (14,18, 20, 104, 105]

19 [25, 41, 42, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 120, 121, 122, 123,
137, 139, 155, 156, 157]

21 [13, 83,100, 112, 113, 126]

42 [15, 22, 23, 24, 25, 26, 27, 54, 55, 180]

Table 8 The result of Feature 1 and Feature 2 overlapping

96

The overlap among features can be computed as follows:

The formula used is: (overlapped slice size/original slice size) *100
Example:

Featurel has original slice size of 73

Feature2 has original slice size of 48

Featurel overlaps with Feature2 for 39 statements

Featurel overlaps with Feature2 for (39/73)*100 =53.4%

Feature2 overlaps with Featurel for 39 statements

Feature2 overlaps with Featurel for (39/48)*100 = 81.3%

The overlap among features can also graphically be represented in this example; the

feature overlap would be the intersection among the two features (indicated in grey)

" F2

F1 has an overlapping with F2
for53.4%

Overlapping between F1 and F2

Figure 43 The overlapping computation formula and overlapping example

Another application of the feature extraction technique is in testing and creation of test
cases. Each executable feature can be tested separately as they can be executed as a
separate program.

A product normally evolves during different releases by adding, modifying or changing

features from one release to another.

97

The feature extraction can provide some additional guidance to identify, compare
changes that were made to a system with respect to its features. Figure 44 shows a

summary of the various applications of the feature extraction technique used in this

research.
Feature Extraction
|
| |
Executable Feature Non-executable feature

— Measuring coupling and cohesion | | Domain analysis

— Debugging — Product line differentiation
— Testing and measuring test cases | H Reuse

— Add, modify or extending a feature | Program Comprehension

Figure 44 Applications of feature extraction technique

Limitations and assumptions of the presented approach
The following is a summary describing the limitations of the presented feature extraction
approach:

— The algorithm extracts only the statement numbers which corresponds to a
feature, rather than the associated source code. The feature extraction algorithm
uses the instr_trace program for creating execution traces. However, the dynamic
information provided by the instr_trace program is minimal as for each executed

source code line, the output consist only the file name and the line number by the

98

instr_trace. Hence, the feature extraction algorithm has to depend on the static
information generated by the parser although it uses the “dynamic” program
slicing algorithms.

Output statements that are only displaying a string literal are considered as an
informational feature. In addition, the algorithm does not include these
information features in the feature extraction.

The dynamic slicing algorithms are conservative, by computing slices larger than
necessary. This is caused in situations when the algorithm identifies an action as
neutral (the execution of the statement can not be identified at that point of time
as being contributing or non-contributing to tﬁe computation of the slice). Based
on the conservatism, the algorithm considers all of these neutral actions
automatically as contributing actions (includes them in the slice).

Problem occurs when several contributing actions contain the same method call.
In the given algorithm, if a contributing action contains a method call, the return
statement from the method call is also marked as a contributing action. The rule
for computing non-contributing action is when there is any action that is not
marked as contributing, find all the actions between S (B, p, pl) where p is the
block-entry of block B, and pl is the block exit of block B that contains no
contributing actions. Finally, the actions that are not marked as contributing or
noncontributing, are being marked as neutral. All the neutral actions become
contributing in the next iteration. Hence, when several procedures are calling the
same method call, the return statement of the method is already marked as

contributing by the first action that calls it. The reason is each action containing

99

the same method call will have the same block exit. Hence, for example, if there
is a method call such as f{) in any contributing action «, the return statement of f{)
is being marked as the last definition of x*. When the non-contributing actions
method is called, if action x" is not marked as contributing yet and it contains the
same method call m(), it will not be marked as non-contributing. The reason is
the block exit of x" is in the return statement of m() which is already marked as
contributing by the computation of x*. Hence, the action X" becomes neutral
although it may not contribute to the computation. As a result, the action x" is
becoming a contributing action. This situation is shown in Figure 45. In this
example statement 92 corresponds to feature F6, and statement 85 corresponds to
feature F6. From this figure we can see that, feature F7 should not have statement
92 because statement 92 does not affect the value of statement 85. However, the
feature includes statement 92 because statement 85 and statement 92 has the same
method call “getWriter”. When statement 85 is a contributing action, the return
statement of “getWriter”, which is statement 105 is also marked. When the
method non-contributing action method is called, the action with statement 92 is
not marked as contributing because the return statement or the block exit of 92 is
already marked as contributing as the block exit of statement 92 is statement 105
again. Hence, statement 92 becomes a neutral action which is ultimately a
contributing action in the repeat loop. From Table 7 we can see that Feature 7
overlaps with Feature 6 100%, however it has to be noted that some statements
are included in the slice because of the limitations of our slicing algorithm and

therefore causes an imprecision in the interpretation of the results.

100

81
82.
83.
84.
85.

86.
87.
88.
89.
90.

9L
92.
93.
94.
95.
96.
97.
98.
99.

106

100.
101.
102.
103.
104.

Y

protected void printFooter(TestResult result) {
if (result.wasSuccessful()) {
getWriter().println();
oetWriter().print("OK");

/IF

}else {
getWriter().printin();
getWriter().println("FAILURES!!!");
getWriter().println("Tests run: " + result.runCount() + ", Failures: " + result failureCount()
+ ", Errors: " + result.errorCount());

ik

* Returns the formatted string of the elapsed time.
* Duplicated from BaseTestRunner. Fix it.
*/
protected String elapsedTimeAsString(long runTime) {
return NumberFormat.getInstance().format((double)runTime/1000);

}

public PrintStream getWriter() {

Figure 45 Partial listing of ResultPrinter

The parser has several limitations with respect to its ability to parse and extract
static information. The limitations include:

The parser is using javac which can extract information from Java programs only.
More specifically, the current implementation will not be able to handle the new
features and additions included in the upcoming Java version 1.5.

The input and output statements are not parsed initially by the parser. The AST
created by the parser does not identify input and output statements. Rather, input

and output statements are later stored in a data structure component using the

101

inputStatements and outputStatements classes by identifying the usage references
which corresponds to the java.io package.

— Another limitation of the parser identified when implementing feature extraction
algorithm involves objects. When a method is invoked on an object, the parser
cannot determine whether or not new values are defined for its instance variables
[Cha04]. The only information it provides is that the object is used. Hence, when
the backward slicing algorithm is called for computing an output feature, the
computed feature might contain some irrelevant statements that did not modify
the program. For instance, in Figure 46 if the last definition of action 26° has to
be found then action 24* is going to be part of the slice even though this action is

not modifying the value of the balance, and it is just printing the instance variable

balance.
Execution Trace Action State
21" Account a = new Account(); Contributing
24* a.printbalance(); Contributing
26% a.getbalance(); Contributing

Figure 46 Example of the limitation with the invoking objects

- Currently, the input and output criteria are only based on the java.io package. The
input and output criteria do not include any method call of the javax.swing
package. This limitation is caused by the inability of the parser to parse the GUI

libraries of Java (e.g. AWT, Swing).

102

4.5 Related work

The existing non source code based techniques [Amy00, Kan90, and Won99] for feature
extraction do not extract the source code that implements functional system requirement
(feature). For example, the approach presented in [Amy00] uses Use Case Maps [Kan90]
uses feature oriented domain analysis and use cases to provide a high level view of a
system’s overall architecture and its features. The approach does not consider
implementation details. In comparison, our approach focuses on the feature extraction at
the implementation (source code) level. Both approaches (source code and non-source
code based techniques) have their advantages and disadvantages and different application
areas.

- Extracting features using the non source code based techniques has the advantage
that they provide a better high-level understanding of the system functionality.
Hence, for identifying some of the core functionalities of a system these
approaches are particularly useful. There also has been work on requirements
gathering techniques such as from requirement and specification document
[Won99], which would appear to lend itself to the identification of features with
requirements specifications. But they do not address the question of how the
features would be reflected in life-cycle artifacts other than requirement
specifications and in a restricted form of design prototypes. Another disadvantage
is that these documents might not always be complete. Moreover, the
implementation of the system might not conform to the original document of the
system. Making any changes to a feature solely based on these documented

methods may corrupt the original source code as the documents may not reflect

103

the changes which occurred due to maintenance. Our feature extraction tried to
avoid these problems of documentation based methods by locating the features on
the source code level.

Use cases capture functionalities of a system according to user requirements. Use
cases focus on how the system is perceived from the outside by the user and
therefore use cases are the most useful approach in discussions with end users to
make sure that the requirement of the system will meet the end users demand.
One of their shortcomings is that both developers and maintainers will have to
identify and locate the statements manually that implement these use cases.
During domain analysis the users’ requirements of the system are capﬁired.
However, when a feature needs to be modified, even if the domain level
information is provided, one still has to identify the source code that implements
the feature. The feature oriented domain analysis affects the maintainability,
understanding ability, and reusability characteristics of a system or family of
systems. Nonetheless, it does not address the issue about what percentage of

future changes need to be done if the software needs to be evolved [MehO1b].

In contrast, our feature extraction technique identifies features on the source code level

and therefore provides for a more detailed analysis of the features (with respect to their

implementation in the source code). However, the disadvantage of our approach is that

modifications based mainly on solution domain might vary from the end users needs. The

reason is that implementation usually includes the technical details of the system, and

evolving the system solely based on the technical merits may miss the connection with

the end user [MehO1c]. Since we are only doing the source code analysis, the upgrade of

104

the system may differ from what the customers wanted. This is because there is no
communication between the customer and the developer anymore that may cause changes

unacceptable to the customer.

Source code based feature extraction
The existing source code based feature extraction techniques [MehOla, EisOla, and
Wil95] include concept analysis, test cases, software reconnaissance etc. These
techniques compute a single feature with either the aid of test cases, or with the static and
dynamic analysis, and by creating scenarios for extracting features.
We need some program execution which corresponds to the input to execute the program.
Later input and output statements in the same execution have to be identified to be able to
extract features. The reason we are using dynamic slicing is that the computed slice is
relatively small compared to the slice computed by static analysis. The existing source
code based techniques, and our feature extraction techniques both have advantage and
disadvantage. These are illustrated in the following:
- Wilde and Scully [Wil95] used software reconnaissance for analyzing features.
The advantage of the extracted features using this method is that there is a
mapping between the user requirements according to the problem domain, and
the corresponding source code in the program. If proper test cases are given, and
the implementation can be identified correctly, there is an assurance that the
user requirement conform to the implementation of the user requirement.

However the disadvantage of this method is that test cases might not be

105

complete. It is not always possible to know what group of test cases will

exercise a given feature [Meh01].

Directories VectorTest true result Vector Test False
(TestCase 1) Result(Test Case 2)
Samples VectorTest VectorTest
Framework Assert Assert
TestCase TestCase
TestResult TestResult

TestSuite TestSuite

Runner BaseTestRunner BaseTestRunner
Textui TestRunner TestRunner
ResultPrinter ResultPrinter

Figure 47 Differences between two features identified with different test cases

Figure 47 shows that we have used two Vector test classes one for testing the true result
produced by the test case and one for testing the failure result. The class level information
from the computed features using these two test cases shows that the true and false
feature includes the same classes with the exception of the TestFailure class that is used
to compute the failure feature. Hence, by looking at the difference one can identify that
this TestFailure class is specifically computing a feature that corresponds to the failure
result from the JUnit. Hence, our method can provide an insight for the similar
functionality as the software reconnaissance method if different test cases are provided,
even though our computation technique is different than the software reconnaissance
method.

Concept analysis was used by Eisenbarth [Eis01] for identifying the dependencies among

features. The approach requires dynamic and static analysis and the creation of scenarios

106

based on test cases to get the binary relationship between the scenarios and components.
The disadvantage is in the interpretation of the identified concepts. They are mainly
identified by common usage rather then identifying data and control flow that
corresponds to feature. Also the notion of a feature differs in the context that concept
analysis interprets a feature as some execution sequence that is shared among other parts
of a program.

- The feature extraction techniques using test cases [MehOla, Meh02], and software
reconnaissance [Wil95] did not discuss about the software evolution problem. In
contrast, from the case study and as discussed previously, we also see that our
feature extraction technique can aid in software evolution by analyzing the
relationships between features. For instance, if several features are sharing some
common statements, then when enhancing one feature, another identified feature
can be taken into account so that the other feature does not get any undesirable
affect. However, our feature extraction technique needs to create the execution
trace. Also, input and output statements are needed to be identified.

- Wilde and Scully [wil95] focus on localizing required components for one
specific feature rather than analyzing commonalities and variability of related
features. Conversely, by measuring the overlapping between feature features, we
can identify what percentage of a feature is common to the other feature. The
derived commonalities and variability are important information to a maintainer
who needs to understand the system.

The presented feature extraction technique bridges the gap between the problem and the

solution domain by mapping the features that the end user sees using the input and output

107

statements used in the program, and the functions in the source code that a developer
sees. Moreover, in our feature extraction algorithm, we are identifying the source code
associated with a feature. We are concentrating in the software implementation of the
system. The extracted code can be analyzed, and if there is dependency with any other
feature, the other feature should be analyzed. This reduces the task of searching the whole
program for the associated source code of the program. However, the disadvantage is that
the source code might not corresponds to exactly what the user wanted initially, and that
any extension based on the current implementation might not reflect to user needs.
Moreover, features might be computed based on function calls too instead of an input and

output statements only.

108

5 Conclusions and future work

The main motivation of this research work is to support programmers performing typical
program comprehension and software maintenance tasks. During the maintenance phase
of a software product, many of the required changes are performed on a feature level,
with features either being added, modified or deleted, in order to respond to market
needs. Programmers tend to focus on only those parts of the system to save time when
creating a mental model of the system. It is almost infeasible to enhance or add a
software feature without comprehending the source code of the application [Mul01].

The majority of existing techniques [Wil95, EisOla, EisOlb, Buh95, Meh02, and
Meh01a] are based on the assumption that several resources are available for the feature
extraction, including source code, domain experts and/or test cases. In this research, a
survey and categorization of these existing techniques for feature extraction was
provided. Within the context of this research a refined feature definition based on user
perspective was introduced. A source code based feature extraction algorithm based
slicing of input and an output statement of a program was presented and a Java
implementation that was integrated within the CONCEPT environment provided. We
conducted a case study for the JUnit, an open source testing framework for which several
output features were identified and computed. From the experimental result, we observed

the relationships between features such as data dependencies or method dependencies.

Contribution
The contribution of this thesis can be summarized as follows:

- A refined definition of the notion of a feature was provided.

109

A feature categorized based on their properties was introduced

Input statements and output statements at the source code level were identified

A modified version [Cha04] of Korel’s [Kor94] dynamic backward slicing
algorithm was utilized as the general algorithm to compute program slices.

A forward slicing algorithm has been implemented by extending the backward
slicing algorithm [Ril98, Cha04, Kor88]. It combines computing slices using
forward and backward directions of data and control dependencies to identify the
statements that will be affected by the slicing criteria. The forward slicing
algorithm also allows making the extracted features executable. When computing
slices using the forward algorithm, initially the slices are computed by identifying
statements that are affected by the slicing criterion in the forward direction. Next,
in order to make the slice executable necessary statements are included in the
slice by computing the statements from backward direction. This leads to the
statements which affects the value of the variable of the slicing criterion.

The feature extraction algorithm has been implemented within the CONCEPT
(Comprehension Of Net-Centred Programs and Techniques) framework [Ril0O1].
As discussed previously, Concept is a reverse engineering environment which
stores both static and dynamic information into the database. The information is
later used in different applications for comprehending a system. For our feature
extraction algorithm, static information is obtained by the parser. Next, the
execution trace is created using instrumentation and the execution trace is

sussequently stored in the database.

110

Future work
However, several main challenges remain that go beyond just extracting features. They
are included in the following:

- The slicing algorithm should be less conservative to improve the precision of the
algorithm (slice size).

- Additional experiments with larger projects that also contain different type of
input/output statements are needed.

- Another improvement would be to extract the source code associated with a
feature rather than only the statement number and extract automatically
executable features from the source code.

- Static algorithm for feature extraction should be implemented which will allow
for an automatic feature extraction. However, static slicing algorithms are
required for static feature extraction technique including all advantage and
disadvantages associated with static slicing. The advantage of static slicing is that
it would be cheaper, but the disadvantage is that the slicing technique will
produce less precise result.

- The parsing environment will have to be extended to included the ability to

support GUI components

111

Bibliography

[Agro0]

[Agr94]

[Agrog]

[Amy00a]

[Amy00b]

[Amy02]

[Bir40]

[Boe81]

[Bro83]

[Big93]

[Boh96]

H. Agrawal and J. Horgan, “Dynamic program slicing”, In Proceedings
of the ACM SIGPLAN '90 Conference, 1990.

H. Agrawal, “On Slicing programs with jump statements”, In
proceedings of the ACM SIGPLAN’94 Conference on Programming
Language Design and Implementation, pp. 112-135, 1994.

H. Agrawal, J. L. Alberi, J. R. Horgan, J. J. Li, S. London, W. E.
Wong, S. Ghosh and N. Wilde, "Mining system tests to aid software
maintenance”, IEEE Computer Society, pp. 64-73, July 1998.

D. Amyot, “Use Case Maps as a Feature Description Notation”, In
FIREworks Feature Constructs Workshop, Glasgow, Scotland, UK,
May 2000.

D. Amyot, L. Charfi, N. Gorse, T. Gray, Logrippo, J. Sincennes, B.
Stepien and T. Ware, “Feature Description and Feature Interaction
Analysis with Use Case Maps and LOTOS”, In Sixth International
Workshop on Feature Interactions in Telecommunications and Software
Systems (FIW'00), Glasgow, Scotland, UK, May 2000.

D. Amyot, G. Mussbacher and N. Mansurov, “Understanding Existing
Software with Use Case Map Scenarios”, In 3rd SDL and MSC
Workshop (SAM’02), Aberystwyth, U K., June 2002.

G. Birkoff. “Lattice Theory”, Americal Mathematical Society, 1940.

W.B. Boehm, “Software Engineering Economics”, Prentice Hall,
Englewood Cliffs, NJ, 1981.

R. Brooks,”Towards a theory of the comprehension of computer
programs”, International Journal of Man-Machine Studies, pp.543-554,
1983.

T. J. Biggerstaff, B. Mitbander, and D. Webster, “The concept
assignmet problem in program understanding”, In 15" International
Conference on Software Engineering, Baltimore, Maryland, May1993.
IEEE Computer Society Press, Los Alamitos, California, USA.

S. Bohner and R. Arnold, “An Introduction to Software Change Impact

Analysis”, Software Change Impact Analysis, IEEE Computer Society,
1996.

112

[Buh96]

[But97]

[Buh98)

[Chi90]

[Cho94]

[Coh98]

[Che00]

[Cze00]

[Che01]

[Cha04]

[Dav82]

[Dav93]

R.J.A. Buhr and R.S. Casselman, “Use Case Maps for Object-Oriented
Systems”, Prentice Hall, 1996.

G. Butler, P. Grogono and F. Khendek, “A Z Specification of Use
Cases”, In Proc. of the Asia-Pacific Sofiware Engineering Conference
and International Computer Science Conference,. IEEE Computer
Society Press, pp. 505-506, 1997.

R.J.A. Buhr, “Use Case Maps as Architectural Entities for Complex
Systems”, IEEE Transactions on Software Engineering, Archive
Volume 24, Issue 12, pp. 1131-1155, December 1998.

E. J Chikofsky & J. H. Cross. “Reverse engineering and design
recovery: A taxonomy.” IEEE Software, v.7 n.l1, pp. 13-17, January
1990.

J. D. Choi and J. Ferrante, “Static slicing in the presence of goto
statements”, ACM Transactions on Programming Languages and
Systems, vol. 16, no. 4, pp. 1097-1113, 1994.

S. Cohen, and L. Narthrop, “Object-Oriented Technology and Domain
alalysis”, Proceedings of IEEE ICSRS, Victoria, June 1998.

K. Chen and V. Rajlich, “Case Study of Feature Location Using
Dependence Graph”, In Proc. of the 8th Int. Workshop on Program
Comprehension, pp. 241-249, June 2000.

J. Czeranski, T. Eisenbarth, H. Kienle, R. Koschke and D. Simon,
“Analyzing xfig Using the Bauhaus Tool”, Working Conference on
Reverse Engineering, Brisbane, Australia, IEEE Computer Society
Press, pp. 197-199, November 2000.

K. Chen and V. Rajlich, “RIPPLES: Tool for Change in Legacy
Software”, IEEE International Conference on Software Maintenance,
pp.230-239, 2001.

Phillipe Charland, “Enhancing Traditional Behavioural Testing through
Program Slicing”, Master Thesis, Department of computer Science,
Concordia University, Montreal, Canada, September 2004.
A. M. Davis, “The design of a family of application oriented
requirements languages” Computer 15(5), pp. 21-28, 1982.

A .M. Davis, “Software Requirements”, Prentice Hall, Englewood Cliffs,
New Jersey, 1993.

113

[Doi98]

[EisOla]

[EisO1b]

[Gal89]

[Gop91]

[Gup92]

[Gri98]

[Hor90]

[Hor92]

[Har95]

[Har01]

[1EE 90]

A. Doinisi, N. Argentieri, “FODAcom: An Experience with Domain
Analysis in the Italian Telecom Industry”, In: Proceedings of Fifth
International Conference on Software Reuse, pp.166-175, 1998

T. Eisenbarth, R. Koschke, D. Simon, “Aiding Program Comprehension
by Static and Dynamic Feature Analysis”, IEEE International
Conference on Software Maintenance (ICSM'01), Florence, Italy,
pp.602, November 2001.

T. Eisenbarth, R. Koschke, and D. Simon, “ Derivation of Feature
Components Maps by Means of Cocept Analysis, CSMR, PP. 176-179,
2001.

K.B. Gallegher and J.R. Lyle, “Using Program slicing in Software
Maintenance”, IEEE Transactions on Software Engineering,Vol.
17, Issue 8, pp. 751 — 761, August 1991.

R. Gopal, “Dynamic program slicing based on dependence relations”, In
Proceedings of the Conference on Software Maintenance, pp. 191-200,
1991.

R. Gupta, M. Harrold and M. Soffa, “An approach to regression testing
using slicing”, In Proceedings of the Conference on Software
Maintenance, pp. 299-306, 1992.

M. Griss, J Favaro, M. Alessandro, "Integrating Feature Modeling with
the RSEB”, In Proceedings of the Fifth International Conference on
Software Reuse, Canada, 1998.

S. Horwitz, T. Reps and D. Binkley, “Interprocedoral slicing using
dependence graphs”, ACM transaction on Programming Languages and
Systems, vol. 12, pp. 26-60, 1990.

S. Horwitz and T. Reps, “The use of Program Dependence Graphs in
Software Engineering”, Proceedings of the 1 4" International
Conference on Software Engineering, May 1992.

S. Harman, S. Danicic and Y. Sjvaguranathan, “A parallel algorithm for
static program slicing”, Information Processing Letters, 56960, pp. 307-
313, December1995.

M. Harman and R. M. Hierons, “An overview of program slicing”,
Software Focus 2, 3 (2001), pp. 85-92, 2001.

Institute of Electrical and Electronics Engineers, IFEE Standard
Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries, New York, 1990.

114

[IEE94]

[1dr00]

[Jac97]

[Jun01]
[Kor88]

[Kan90]

[Kru93]

[Kor94]

[Kor94]

[Kor97]

[Kir97]

ANSVIEEE Std 830- 1994,“IEEE Guide to Software Requirements
Specifications”, IEEE Computer Society Press, 1994.

H. Idris and P. Colin, “Studying the Evolution and Enhancement of
Software Features”, International Conference on Software Maintenance
(ICSM'00), San Jose, California, October 2000.

I. Jacobson, M. Griss and P. Jonsson, “Software Reuse: Architecture,
Process and Organisation for Business Success”, Addison-Wesley and
ACM Press, Reading MA,pp. 66,1997.

“JUnit”, JUnit.org, April2001. http://www.JUnit.org/index.htm

B. Korel and J. Laski, “Dynamic program slicing”, Information
Processing Letters, 29(3):155-163, Oct. 1988

C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak and A.S. Peterson,
“Feature-Oriented Domain analysis (FODA) Feasibility Study”,
Technical Report CMU/SEI-90-TR-21, ESD-90-TR-222, November
1990.

J.R.W. Krut, "Integrating 001 Tool Support into the Feature-Oriented
Domain Analysis Methodology", Technical Report SEI-93-TR-11,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA., July 1993.

B. Korel and S. Yalamanchili, “Forward Computation of Dynamic
Program Slices”, Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis, pp. 66-
79, 1994.

B. Korel and S. Yalamanchili, “Forward Derivation of Dynamic Slices”,
Proceedings of the International Symposium on Software Testing and
Analysis, pp. 66-79, 1994.

Korel, B., “ Computation of Dynamic Program Slices for Unstructured
Programs,” IEEE Transactions on Software Engineering, vol. 23, no. 1,
pp. 17-34, January 1997.

T. G. Kimer, J. C. Abib, “Inspection of software requirements
specification documents: a pilot study” Proceedings of the 15th
annual international conference on Computer documentation,
ACM Special Interest Group for Design of Communications,
October 1997.

115

[Kan98]

[Kul00]

[Kos04]

[Leh80]

[Lyl93]

[Livo4]

[LiO1]

[McC92]

[Mul94]

[May95]

[Mal99]

[Mul00]

K.C. Kang, SJ. Kim, J.J. Lee, K.J. Kim and E. Shin, "FORM: A
Feature-Oriented Reuse Method with Domain-Specific Reference

Architectures”, To appear in Annuals of Software Engineering, Vol. 5,
1998.

D. Kulak and E. Guiney with illustrations by E. Lavkulich, “Use Cases
Requirements in Context”, ACM Press, Addison-Wesley, May 2000.

R. Koschke, “Bauhaus Library”, February 2004.
http://www iste.uni-stuttgart.de/ps/bauhaus/papers/

M. Lehman. “Programs, life cycles and laws of software evolution”,
Proceedings of IEEE Special Issue on Software Engineering, 68(9), pp.
1060-1076, September 1980.

J.R. Lyle and M. Weiser, “ Automatic program bug location by program
slicing”, Proceedings of 2™ International Conference on Computers and
Applications, Peking, China, pp.877-882, 1987.

P.E. Livadas and A. Rosenstein, “Slicing in the presence of pointer
variables”, Technical Report SERC-TR-74-F, Computer Science and
Information Services Department, University of Florida, Gainesville,
FL, June 1994,

X. Li, Z. Liu and J. He, “Formal and Use-Case Driven Requirement
Analysis in UML”, UNU/IIST Report, No. 230, March 2001.

C.L. McClure, “The Three Rs of Software Automation: re-engineering,
repository, reusability”, N.J. Englewood Cliffs, Prentice Hall, 1992.

H.A. Miiller, K. Wong and S.R. Tilley, “Understanding Software
Systems Using Reverse Engineering Technology”, In The 62nd
Congress of L'Association Canadienne Francaise pour l'Avancement
des Sciences Proceedings (ACFAS), 1994.

A.V. Mayrhauser and A.M. Vans, “Program comprehension during
software maintenance and evolution”, IEEE Journal, Computer, Vol.
28, Issue: 8, pp. 44-55, August 1995.

R. Malan and D. Bredemeyer, "Functional Requirements and Use
Cases", The Architecture Discipline, June 1999.

http:// www.bredemeyer.com/use_cases.htm

H.A. Miiller, J.H. Jahnke, D.B. Smith, M.A. Storey, S.R. Tilley and K.
Wong, “Reverse Engineering: A Roadmap”, In Proceedings of Future

116

[MehO1a]

[MehO1b]

[MehOl1c]

[Mur01]

[Meh02]

[Nel96]

[Ott84]

[Ric90]

[Rug92]

[Rug94]

of Software Engineering, Limerick, Ireland, June 2000.

A. Mehta, “Evolving Legacy Systems Using Feature Engineering and
CBSE”, Proceedings of the 23rd international conference on
Software engineering, ICSE, pp. 797-798, 2001.

A. Mehta and G.T. Heineman, “Evolving Legacy System Features using
Regression Test Cases and Components”,

Proceedings of the 4th international workshop on Pfincip/es of
software evolution, ICSE, pp. 190-193, 2001.

A. Mehta and G.T. Heineman, “Evolving Leagcy Systems by Locating
System Features Using Regression Test Cases”, CiteSeer.IST Scientific
Literature Digital Library, June 2001.
http://citeseer.ist.psu.edu/441595.html

G.C. Murphy, A. Lai, J. Rober, Walker, and Martin P. Robillard,
“Separating Features in Source Code: An Explanatory Study”,
Proceedings of the 23rd International Conference on '01, ICSE, May
2001.

A. Mehta and T. Heineman, “Evolving Legacy System Features into
Fine-Grained Components”, Proceedings of the 24" International
Conference on Software Engineering, Orlando, Florida, May 2002.

M.L. Nelson, “A Survey of Reverse Engineering and Program
Comprehension”, CiteSeer.IST Scientific Literature Digital Library,
1996. http:// www.citeseer.ist.psu.edu/rugaber95program.html

K.J. Ottenstein and L.M. Ottenstein, “The Program Dependence Graph
in a Software Development Environment”, Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pp. 177-184, 1984,

C. Rich ,L. Wills. “The Programmer’s Apprentice”’. ACM Press, 1990.

S. Rugaber," Program Comprehension for Reverse Engineering" 4447
Workshop on Al and Automated Program Comprehension , San Jose,
California,1992.

S. Rugaber, “White Paper on Reverse Engineering”, Georgia Institute
of Technology, 1994.

117

[Rugd5]

[Raj97]

[Ri198]

[Ril01]

[Raj02]

[Ril04]

[Ste74]

[Sne94]

[Sne97]

[Sti97]

[Son99]

[Suc00]

S. Rugaber, K. Stirewalt, and L. Wills, “ The Interleaving Problem in
Program Understanding”, In: Working Conference on Reverse
Engineering, pp. 166-175, 1995.

V. Rajlich, “A model for Change Propogation based on Graph
Rewriting”, International Conference on Software Maintenance
(ICSM ‘97), Bari, Italy, Oct. 1997.

J. Rilling, “ Investigation of Program Slicing and its Applications in
Program Comprehension of Large Software Systems,”,
Ph.D. Thesis, lllinois Institute of Technology, Chicago, Illinois, 1998.

J. Rilling, “Concept”, 2001. http://www.cs.concordia.ca/CONCEPT/

V. Rajlich, N. Wilde, “The Role of Concepts in Program
Comprehension”, Proceedings of the 10th International Workshop
on Program Comprehension, IEEE Computer Society , Washington,
DC, USA, 2002.

J. Rilling,W. Meng, and O. Ormandjeva, “Context Driven Slicing Based
Coupling Measures”, 20 th IEEFE International conference on Software
Maintenance, 1EEE Computer Society, Chicago, Illinois, 11-14
September,2004.

W. Stevens, G.J. Myers, and L.L. Constantine, “Structured design”,
IBM Systems Journal 13(2), pp.115-- 139, 1974.

G. Snelting, “Reengineering Class Hierarchies Using Concept
Analysis’, Proc. of the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pp. 99-110, November,1994.

G. Snelting, F. Tip “Reengineering of configurations Based on
Mathematical Concept Analysis”, ACM Transactions on Software
Engineering and Methodology 5,2, pp. 146-189, April 1997.

M. Stiff, "Identifying Modules Via Concept Analysis", Proc. of. The
International Conference on Software Maintenance, 1997.

Y. Song and D. Huynh, “Forward Dynamic Object-Oriented Program
Slicing”, Application-Specific Systems and Software Engineering and
Technology (ASSET °99), IEEE, pp. 230-237, 1999.

G. Succi, A. Valerio, T. Vernzza, M. Fenaroli and P. Predenzani,
“Framework extraction with domain analysis”, ACM Computing
Surveys, Vol.32, No. 1, March 2000.

118

[Ton96]

[Tan99]

[Tib99]

[Tur99a]

[Tur99b]

[Wei79]

[Wei84]

[Wil94]

[Wil95]

[Wan96]

P. Tonella, R. Fiutem, G. Antoniol, and E. Merlo, “Augment-ing
Pattem-Based Architectural Recovery with Flow Anal-ysis: Mosaic - A
Case Study”, In: Working Conference on Reverse Engineering, pp. 198-
207, 1996.

H.B.K. Tan and J.T. Kow, “Extracting Code Fragment that Implements
Functionality”, Sixth Asia Pacific Software Engineering Conference,
IEEE, pp. 351-354, December 1999.

G. Tibor, B. Arpad and F. Istvan, “An Efficient Relvevant Slicing
Method for Debugging”, Software Engineering Notes, Software
Engineering ~-ESEC/FSE’99 Spinger ACM SIGFT, pp. 303-321, 1999.

C.R. Turner, “Feature Engineering of Software Systems”, Ph. D. Thesis,
Department of computer Science, University of Colorado, Boulder,
December 1999.

C.R. Turner, A. Fuggetta, L. Lavazza and A. L. Wolf, “A conceptual
basis for feature engineering”, Journal of Systems and Software, 49(1),
pp. 3-15, December 1999.

M. Weiser, “Program slices: formal, psychological and practical
investigations of an automatic program abstraction method”, Ph.D.
thesis, University of Michigan, Ann Arbor, 1979.

M. Weiser, “Program slicing”, IEEE Transactions on software
engineering, Vol. SE-10, No. 7, pp. 352-357, July 1984.

N. Wilde, “Faster Reuse and Maintenance Using Software
Reconnaissance”, Software Engineering Research Center (SERC), CSE-
301, University of Florida, Gainesville, FL 32611, July 1994.

N. Wilde and M.C. Scully, “Software Reconnaissance: Mapping
Program features to code”, Journal of Software Maintenance: Research
and Practice, Vol. 7, No. 1, pp. 49-62, January-February 1995.

Y. Wang, W.T. Tsai, X. Chen and S. Rayadurgam, “The Role of
Program Slicing in Ripple Effect Analysis”, The 8th International
Conference on Software Engineering and Knowledge Engineering
(SEKE), Knowledge Systems Institute, Lake Tahoe, Nevada, USA, June
1996.

119

[Won99] W.E. Wong, S.S. Gokhale, K.S. Trivedi and J.R. Horgan, "Locating
Program Features Using Execution Slices," In Proc. of Application
Specific Software Engineering and Technology (ASSET 99), pp. 194-
203, Dallas, TX, March 1999.

[WhiO1] L.J. White and N. Wilde, “ Dynamic Analysis for Locating Product
Features in Ada Code”, Proceedings of the 2001 annual ACM SIGAda
international conference on Ada, ACM SIGAda ada letters vol. 21,
Issue 4, September 2001.

[Wil02] N. Wilde, “Recon Tool for C programmers”, Recon2, March 2002.
http:// www.cs.uwf.edu/~recon/

[You79] E. Yourdon and L.L. Constantine, “Structured Design”, Prentice-Hall,
Englewood, New Jersey, 1979.

120

1. public class Account {

2.

3. double balance;

4,

5. public Account(double accountbalance) {
6. balance=accountbalance;

7. }

8.

9. void deposit(double amount){
10. balancet+=amount;

11.}

12.

13. double getbalance(){

14. return balance;

15. }

16.

17. public String toString (){

-{18. return "Current balance of "+balance;

19.}

20.

21. public static void main(String[] args)throws IOException {

22.

23. BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
24. Account A = new Account(100);

25. System.out.println(“ A’s current balance is “+ A.getbalance());
26. String strnum = in.readLine();

27. double amount = Double.parseDouble(strnum);

28. A.deposit(amount);

29. }

30.}

Appendix 1 The Account.java program

121

Input: a slicing criterion C=(x,39)
Output: a dynamic slice for C

Tx: execution trace upto position q

Dc: a set of block traces

R.: a set of blocks

Ic: a set of contributing actions (actions set as visited)

In: a set of noncontributing actions(actions set as visited)
Nb: a set of noncontributing blocks

1 Initiaize Ic as empty, In to empty and Nb to all blocks of P

2 Find and mark as contributing the last definition of y7

3 repeat

4 Find contributing actions

5 Find non-contributing actions

6 Mark all neutral actions as contributing

7 until all actions are marked as contributing or non-contributing in 7 up to position

q
Show a dynamic slice that is constructed from P by removing all blocks that belong

to Nb.

o]

procedure Find contributing actions
9 while there exists a contributing and not visited action in 7). do

10 Select a contributing and not visited action Xrin T X
11 Mark X* as a visited action (o =Icv {Xk})

12 for all variables v € U(Xk) do

13 Find and mark as a contributing action the last definition of v
endfor

14 for all blocks B € R, do

15 if X € N(B) then Ng :=Npg - {B}

endfor
16 endwhile
end Find contributing actions

Appendix 2 An example of the computation of dynamic backward
algorithm [Kor95]

122

procedure Find non-contributing actions

17 Mark as neutral all actions that are not marked as contributing
18 p:=1
19 repeat

20 Let X be an action at position p in T,

21 if X is not a contributing action (X7 ¢ Ic) then

22 Let B be a block which has an r-entry at position p
23 if B € Nb then

24 if there exists an r-exit from block B at position p; such that

25 Dp<pri<q

26 (2) all actions between p and p; are not marked as contributing

27 then

28 Mark all actions between p and p; as non-contributing (O¢ := O¢
V{S(B.p.p1)})

29 p=p

30 endif

31 endif

32 p=p+1

33 untilp 2¢q

end non- contributing actions

Appendix 2 [Continued]

123

........ // Represent other statements

protected void printHeader(long runTime) {

44, }

45,

....... // Other statements of the program

81. protected void printFooter (TestResult result) {

82. if (result.wasSuccessful(

)) L

86.

87. } else {

88. getWriter () .println{();

89. getWriter().println("FAILURES!!!");

90. getWriter () .println("Tests run: " + result.runCount() +
", Failures: " + result.failureCount() + ", Errors: " +
result.errorCount ());

91. }

(

public void startTest (Test test) {

if (fColumn++ >= 40) {

133. getWriter () .println();
134. fColumn= 0;
135 }

.........

.........

Appendix 3 Identified output statements and output feature criteria
from the ResultPrinter class for test case 1

124

