A new approach to join reordering
in query optimization

Mostafa Pilehvar

A Thesis
In
The Department
Of
Computer Science and Software Engineering
Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

March 2005

© Mostafa Pilehvar, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04207-9
Our file Notre référence
ISBN: 0-494-04207-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

iii
Abstract

A new approach to join reordering in query optimization

Mostafa Pilehvar

A major task in query optimization is finding an optimal or near-optimal order to
perform join operations. Most optimizers perform this join reordering using an exhaus-
tive search algorithm with a dynamic programming technique. This algorithm always
gives the optimal join ordering, but is very expensive. An alternative greedy approach
is very efficient, but is not guaranteed to produce the optimal order.

In this thesis, we introduce a new algorithm called AO* to find the optimal
join ordering for a given set of relations. Our algorithm is based on a well-known
problem reduction technique of the same name proposed in the context of decomposable
production systems. In our algorithm, we build an AND/OR graph from the relations
in the query which represents all possible join orders, and an optimal join ordering is
an optimal-cost path in this graph.

The AQ* algorithm is guaranteed to produce the optimal join ordering, as is dy-
namic programming. While the worst-case performance cost of AO* is comparable to
that of dynamic programming, in most instances, it is far more efficient. We compared
the performance of AO* with that of dynamic programming and the greedy approach
on star-, chain-, circular-, and clique-shaped queries. Qur results show that for the
first three types of queries, AO* outperforms dynamic programming dramatically. An-
other finding is that certain properties of the optimal join order have an impact on the

performance of AO*.

Dedication

To my wife Sepideh and my kids Fara and Radbod.

Acknowledgements

At the beginning of my thesis I would like to thank all those people who made
this thesis possible and an enjoyable experience for me. First of all I wish to express
my sincere gratitude to Lata Narayanan and Gosta Grahne, who guided this work and
helped whenever I was in need. I think their presence in Concordia University was the
best thing that could happen to me and my thesis.

Sunil Rottoo implemented all three algorithms studied in this thesis. I am grateful
to him for his efforts, without which this thesis would not be completed.

I am grateful to the members of the University for their support, especially to
Halina Monkiewicz.

Finally, I would like to express my deepest gratitude for the constant support,

understanding that I received from my wife Sepideh during the past years.

Chapter

Contents

1 Introduction

1.1 Joins and Join Trees

1.2 Cost Estimation

1.2.1

1.3 Organization of the Thesis

1.4 Contribution of this Thesis

Estimation of the Size of Join

2 Existing Query Optimizers

2.1 TOP-DOWN

21.1

2.2 BOTTOM-UP

221
2.2.2
2.2.3
224
2.2.5

Volcano

Branch-and-Bound Plan

Dynamic Programming

Selinger-Style Optimization or System R

Starburst

Greedy algorithm

3 AO* Algorithm

3.1 AND/OR Graphs

3.2 AO*: A heuristic search procedure for AND/OR graphs

vi

10
10
1
13
13
13
15
16
17

22

3.3 Application of AO* to the join reordering problem
3.4 How AO™ algorithm works on the reference query
3.5 [Illustration of a best-case for AO*

3.6 Illustration of a bad case for AO*

4 Experiments
41 Shapeof Query e e
411 Star Query e e
4.1.2 Chain Query i i i e e e e e e
413 Circular Query e
414 Clique Query e e e
4.2 Left-deep vs Bushy trees
4.3 Tlustration of algorithms on four example relations
431 Starquery. e e e e e e
43.2 Chainquery. i e
433 Circularquery e
434 Cliquequery it e
4.3.5 Result of running three algorithms on four reference relations . .
4.4 Effect of size of relations (evenly distributed)
4.5 Effect of size of relations (unevenly distributed)
4.6 Effect of cost index of solution tree on the optimization cost
4.7 Effect of shape of query on the performance of AO*

4.8 Performance of AO* Algorithm on Bencmark TPC-D Queries

5 Conclusions and Future Work

Bibliography

vil
27
32

34

42

44
44
44
45
45
47
47
49
49
53
56
59

62
63
63
74
74

77

79

Table

2.1
2.2
2.3
2.4
2.5

2.6

3.1

4.1
4.2
4.3
4.4

4.5

4.6

4.7

Tables

Reference relations used to illustrate various algorithms.
The table for singletonsets,
The table for pairs of relations
The table for triplesof relations
Join grouping and theircosts oL,
Reference relations showing that the Greedy algorithm does not produce

an optimal plan even when the optimal solution is a left-deep tree. . . .

Reference relations used to illustrate various algorithms.

Reference relations forastarquery..
Reference relations for a chainquery. L.
Reference relations for a circular query.
Reference relations for a cliquequery.
Results of dynamic programming and AQ* algorithm on the reference
relations given in Tables 4.1t04.4.
Results of Greedy algorithm on the reference relations given in Tables 4.1
1044, . . e e e

Optimization costs on the reference relations for the three algorithms.

viii

53

62

63
64

4.8

4.9

4.10

411

412

Result of optimization costs for AO* on the reference relations with un-
evenly distributed valueset.,
Results of optimization costs for AO* algorithm on the reference relations
with evenly distributed valueset.
The results of averages of cost indices of different query shapes.
Reference relations for TPC-D benchmark.
The optimization costs for AO* and Dynamic Programming on Bench-

mark TPC D queries.u....

ix

Figure

1.1

1.2

2.1

2.2

3.1
3.2
3.3

3.4

3.5
3.6
3.7
3.8
3.9
3.10

3.11

Figures
Major parts of a query processor.ol 1
Three types of join trees for the join Rexs ST W. 5

The left-deep tree found by Dynamic Programming (which the Greedy
algorithm fails to find) for the reference relations in Table 2.5. 20

The non-optimal solution found by Greedy algorithm for the reference

relations in Table 2.5.o o L 21
AN AND/OR graph.ottt e et e e 23
Two solution graphs for the graphin Fig3.1. 24
The AO* algorithm [17]. 26

An AND/OR graph representing different possible join reorderings of

three relations R, Sand 7. 28
The initialization function., 30
AO* Pseduocode. e e e e e 31
The first cycle of running AO*algorithm on the test query. 35
The second cycle of running AO*algorithm on the test query. 36
The third cycle of running AQ*algorithm on the test query. 37
The fourth cycle of running AQ*algorithm on the test query. 38

The fifth cycle of running AO*algorithm on the test query. 39

3.12

3.13

3.14

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

The result after running AQ*algorithm on the test query.
The best case example of AO* algorithm, the AO* optimization cost is
284 vs the Dynamic Programming optimization cost of 9330.
The worst case example of AQ* algorithm, AO* optimization cost 8756

vs Dynamic Programming optimization cost of 9330.

Star-shaped query. The relations R, S, T, U have attribute a in common.

Chain-shaped query. The relations R and S have attribute b, S and T
attribute ¢ and T and U attribute d in common.
Circular-shaped query. The relations R and S have attribute b, S and T
have attribute ¢, T' and U have attribute d and U and R have attribute
GINCOMMMON. v o vttt e e e e e e e e e e e
Clique-shaped query. Every relation has at least an attribute in common
with other relations. o L oL
The solution given by Dynamic Programming and AO* on the star query
given in Table 4.2 with query cost of 11140000.
The solution given by Greedy algorithm on the star query given in Table
4.2 with query cost of 11111100000.
The solution given by Dynamic Programming and AO* on the chain
query given in Table 4.1, with query cost of 11140000,
The solution given by Greedy algorithm on the chain query given in Table
4.1, with query cost of 11111100000.
The solution given by Dynamic Programming and AO* on the circular
query given in Table 4.3, with query cost of 11140000.
The solution given by Greedy algorithm on the circular query given in

Table 4.3, with query cost of 11111100000.

41

43

45

46

46

47

51

52

54

55

57

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

421

The solution given by Dynamic Programming and AO* on the clique
query given in Table 4.4, with query cost of 23200.
The solution given by Greedy algorithm on the clique query given in
Table 4.4, with query cost of 2320000.
Diagram of average of optimization costs vs cost index in a Circular query
evenly distributed. L L
Diagram of average of optimization costs vs cost index in a Circular query
unevenly distributed. o o e
Diagram of average of optimization costs vs cost index in a Chain query
evenly distributed. o
Diagram of average of optimization costs vs cost index in a Chain query
unevenly distributed. o Lo oLl
Diagram of average of optimization costs vs cost index in a Star query
evenly distributed. oL oL
Diagram of average of optimization costs vs cost index in a Star query
unevenly distributed. L L Lo
Diagram of average of optimization costs vs cost index in a Clique query
evenly distributed. e
Diagram of average of optimization costs vs cost index in a Clique query
unevenly distributed.o L oo oo o oo

The TPC-D Schema. e e e e e e e e i e e

xii

60

66

68

70

72

xiii

Abbreviations

g Selection of a tuple in a relation.
™ Projection of a table on (an) attribute(s).
B The binary operation of join.

R(X,Y) | R is a relation with attribute sets of X and Y.

B(R) The number of blocks needed to hold all the tuples of
relation R.

T(R) The number of tuples of relation R.

V(R,a) | The number of tuples with different values for attribute a

in relation R.

The importance of query optimization in relational databases is widely recognized.
Given a query, there are many plans that a database management system (DBMS) can
follow to answer it. All plans will have the same final output but vary in costs, i.e., the
amount of time and/or resources that they need to reach the final answer. Finding the
plan with the least cost is the goal of query optimization. The performance of database

applications can be improved significantly by using query optimization.

Chapter 1

Introduction

The flow of a query through a DBMS is shown in Figure 1.

Query Parser

—

Query
rewriter

Physical Plan
™ Generator

—

Interpreter

[——

Query
Processor

Figure 1.1: Major parts of a query processor.

The above mentioned system modules have the following functionalities:

s Query parser: In this stage the validity of the query is checked and a parse tree

which represents the query and its structure is constructed.

o Query rewriter: In this stage the constructed parse tree is converted to an
initial query plan, which is an algebraic expression representing the query. It is
then transformed to an equivalent plan called the logical query plan, which is

expected to be executed much faster.

e Physical plan generator: In this stage the output of previous stage is trans-
formed to a query physical plan. The result of this stage is usually called the

access plan.

Query rewriting and Physical plan generation together comprise the process of

query optimization.

o Interpreter: In this stage the output of the previous stage, the access plan, is

transformed into calls to the next stage, the query processor.
e Query Processor: In this stage the query is finally executed.

Queries in a DBMS are posed either by interactive users or are embedded in
general purpose programming languages. An interactive query goes through the entire
path shown in Fig. 1, while an embedded query goes through the first three stages
only once, when the original program is first compiled. That is why these stages are
called the query compilation step. The code generated by the interpreter is stored in
a database and is called and executed by the last stage, the query processor, whenever
control reaches that point during run time. Thus, unless something changes, the process
of query optimization is not repeated. So in the query optimization stage, we should
choose a query plan that takes the least resources, and to do so we should select, amongst

different algebraically equivalent forms, the one which has the most efficient algorithm

to answer the query, and for every operation in that plan the algorithm that leads to
the less expensive implementation [24].

A query optimizer typically translates non-procedural queries into procedural
plans for execution by constructing many different alternative and equivalent plans,
estimating their execution costs and choosing the plan with the least expensive estimated
plan. The baseline approach, exhaustive search, is to consider all combinations of choices
of the set of access plans. Increasing this set, while it increases the compilation time
of the query, improves the possibility of finding a better plan but does not necessarily
guarantee it. Since the number of alternative access plans for a query grows very fast,
query optimization becomes an expensive process. A major task in the design of a query
optimizer is to ensure that the set of access plans contains enough efficient plans.

The major decision that the optimizer should make is the order of different tables
10 join in the query. Usually join is a 2-way operation, so the optimizer must create plans
that achieve n-way joins as a sequence of 2-way operations. When there are more than
a few tables involved in the query, the number of those tables dominates the number of
possible alternative access plans. The number of possible alternative access plans in a

query with n tables is nl.

1.1 Joins and Join Trees

The join operation, denoted by <, is used to combine related tuples from two
relations into single tuples. This operation is very important for any relational database
with more than a single relation, because it allows the processing of relationships among
relations [22][25]. It is defined as follows:
join: Ry pgu.p S = {(t,u): t€ Rand u € S and t.A § uB }
where ¢ is a tuple in relation R, u is a tuple in relation S and these two tuples satisfy
the join condition 6. Also ¢t and u should have the same domain. The join condition @ is

one of the comparison operators in the set {=, <, <, >, >,#}. This type of join is called

Theta Join. The most common join involves a join condition with the equality operator.
Such a join is called an Egquijoin. Notice that in the result of an Equijoin we always
have one or more pairs of attributes that have identical values in every tuple. Because
one of each pair of attributes with identical values is superfluous, a new operation called
Natural Join was created to get rid of the second(superfluous) attribute in an equijoin
condition [20][7].

An important property of the join operation is associativity, meaning:
(R S)=xT =R (S<xT)

Typically an algebraic query is represented by a query tree whose leaf nodes are
database relations and non-leaf nodes are algebraic operators. An intermediate node
indicates the application of the corresponding operator on the relations constructed by
its children. The result of such an operation then is sent further up. Therefore, the
edges of the tree represent the query itself. In a complicated query, the number of all
possible query trees will be enormous. When we have the join of two relations, we
will conventionally select the one with smaller size as the left argument. Algorithms
used to join relations like, one-pass, nested-loop, and indexed, work best when the left
argument is the smaller one. When we have only two relations, there are only two
possible alternatives for the join tree. When the join involves more than two relations
the number of possible alternative join trees increases very fast. Based on the shape
and location of relations in the join tree we can have three different and distinguishable

types of trees[27].
e a left-deep tree is a binary tree whose right children are always leaves.
e a right-deep tree is a binary tree whose left children are always leaves.
e a bushy tree is neither left-deep nor right-deep.

These different types of join trees are depicted in Figure 1.2.

CUu> CUu>
@SD GEY aUp, @RSD
@ L B D ad @
CROTSD CROTSD
Left-deep tree Bushy tree Right-deep tree

Figure 1.2: Three types of join trees for the join Rpa S > T <t W, where
the left-deep tree corresponds to (((R <t S) <1 T) < U),

the bushy tree corresponds to ((R > .5) < (T = U)) and

the right-deep tree corresponds to (((U v« (T > (R > .5)))

To reduce the size of the space that the search strategy has to explore, some alter-
native access plans or query trees that are likely to be sub-optimal should be eliminated
by the application of several useful heuristics. One of them is to consider only left-deep

trees as possible join orders. There are two advantages to using such a heuristic:

e With a given number of leaves, the number of left-deep trees is much smaller
than the number of all trees. Therefore, the search space will decrease signifi-

cantly.

e Query plans based on left-deep trees interact efficiently with common join al-

gorithms like, one-pass and nested-loop joins.

The main disadvantage of using such a heuristic is that it is quite possible that the
optimal plan is a bushy tree and by using this heuristic we would not find the optimal

plan.

1.2 Cost Estimation

As already said, given a query there are many logically equivalent algebraic ex-
pressions and for each of these expressions, there are many ways to implement them as
operators. Apart from the complexity of enumeration of the search space, the question
of making the decision of choosing the operator with least consumption of resources,
remains. Resources may be CPU time, I/O cost, memory, communication bandwith,
or a combination of these. In this thesis, we use the total size of all intermediate re-
lations needed to achieve an operation as the cost of the operation. Therefore, given
an operator tree of a query, finding an accurate and efficient evaluation of cost is of
high importance. Obviously we cannot know these costs exactly without executing the
plan, and we surely don’t want to execute more than one plan for a query. Thus we are
forced to estimate the cost of a plan without executing it. Preliminary to our discussion

of physical plan enumeration, is a consideration of how to estimate costs of such plans

accurately. Such estimates are based on parameters of the data that must be either
computed exactly from the data or estimated by a process based on a solid framework.

The basic estimation framework is derived from the System-R approach[5]:

e Collect statistical summaries of data that has been stored.

e Given an operator and the statistical summary of its input data streams, deter-

mine the:

* Statistical summary of the output data stream such as the size of an in-

termediate relation or the number of attributes with different values.

* Hstimated cost of executing the operation e.g join operation.

Given values for these parameters, we may make a number of reasonable estimates of
relation sizes that can be used to predict the cost of a complete physical plan. Since
our enumeration is based on queries only using join operation, here we briefly explain

our size estimation assumptions for the join operation.

1.2.1 Estimation of the Size of Join

We will consider here only the natural join, that is, we consider the join R(X,Y)
S(Y, Z), but initially we assume that Y is a single attribute, while X and Z can be any
set of attributes. Following [10], we denote the size of a relation R by T'(R) and the
number of different possible values for attribute a in relation R by V(R, a). The problem
is that there exist different possibilities depending on the distribution of Y values in R
and S. For example two relations could have disjoint sets of Y-values. In this case the
Jjoin is empty and the size of R <1 S could be zero. Alternatively, Y might be the key in
S and foreign key in R. In this case, T(R < S) = T(R). As another example, all the
tuples of R and S could have the same Y-value, in which case T(R < S) = T(R)T(S).

To focus on the most common situations, we will use these two simplifying

assumptions{10]:

o Containment of Value Sets. If Y is an attribute appearing in several relations,
then each relation chooses its values from the front of a fixed list of values
Y1, Y2, Y3, .- and has all the values in that prefix. As a consequence, if R and
S are two relations with an attribute Y, and V(R,Y) < V(S,Y), then every

Y -value of R will be a Y-value of S.

o Preservation of Value Sets. If we join a relation R with another relation, then
an attribute A that is not a join attribute does not lose values from its set of
possible values. More precisely, if A is an attribute of R but not of S, then

V(R S,A) =V(R,A)
Under these assumptions, we can estimate the size of R(X,Y) < S(Y, Z) as :
e T(R= S) =T(R)T(S)/maz(V(R,Y),V(5,Y))

If Y represents several attributes in the join, the formula above can be generalized. For

example, suppose we want to join R(z,y1,y2) &< S(y1,y2,2). Then
e T(Rva S) = T(R)T(S)/maz(V(R,11), V (S, 11))maz(V (R, y2), V (S5, y2))

Finally, in the general case of the join R; 0 Ry < ... b Ry, the size of the join can be

estimated using the following rule:

e Start with the product of the number of tuples in each relation. Then, for each

attribute A appearing at least twice, divide by all but the least of the V(R, A)’s.

1.3 Organization of the Thesis

Some of the existing query optimizers are introduced in the next chapter. These
can be categorized as top-down or bottom-up. In the top-down category, the Volcano
algorithm is introduced. In the bottom-up category, the Branch-and-Bound Plan, Sys-

tem R and Starburst are briefly introduced. The dynamic programming and greedy

algorithms are explained in detail. In the third chapter, the AO* algorithm is first in-
troduced for general AND/OR graphs and then our adaptation for join optimization is
described. In the fourth chapter, our experimental results based on running AO* on four
types of queries are given. The last chapter contains our conclusions and suggestions

for future work.

14 Contribution of this Thesis

In this thesis, we propose a new algorithm called AO* for the well-known problem
of join reordering in the query optimization field. AQO* is guaranteed to produce an
optimal join ordering. We studied various factors that affect the performance of this
algorithm, including the shape of the query, the distribution of the sizes of relations and
the value sets, and the shape of the final solution. To capture the effect of the shape
of the final solution, we propose a new metric, called cost index, for a join tree. We
compared the performance of our algorithm with that of the previously known dynamic

programming and greedy algorithms.

Chapter 2

Existing Query Optimizers

There are two broad approaches to explore the space of possible and equivalent

access plans [5]:

e Top-down: In this approach, we start working on the tree of the logical query
plan from the root to leaf nodes. For each possible implementation of the
operation at root, we take into account all the possible ways to execute it and
then evaluate and compute the cost of each combination, choosing the one with

least cost.

e Bottom-up: In this approach, we compute every sub-expression in the logical
query plan tree, and recursively combining all the possible combinations, com-

pute the least expensive one to produce the root.

We will consider all the existing work in the area of query optimization under these
two broad categories. We present a set of relations against which we may run some
examples to show how the different algorithms perform. The reference relations are

shown in Table 2.1.

2.1 TOP-DOWN

We briefly explain VOLCANO, the major enumerator in this category, which is

based on the EXODUS algorithm [17].

1

|S |R v | W |
T(S) =1000 | T(R) =100 |T(U)=100 | T(W)= 1000
V (S, a) = 100 V(W,a) = 1000

V(S,b) = 100 | V(R,b) = 100
V(R,c) =10 | V(U,c)=10
V(U,d) = 100 | V(W,d) = 100

Table 2.1: Reference relations used to illustrate various algorithms.

2.1.1 Volcano

The Volcano optimizer generator is based on three fundamental design decisions:

1- Query processing, both optimization and execution, are presumed to be based on

algebraic techniques.

2- Rules are used to specify the data model and its properties. In this case the only

needed rule is (Rt S) T = R (S T)

3- Rules are transformed by an optimizer generator into source code in a standard
programming language(C) to be compiled and linked with the other DBMS

modules.

The Volcano Optimizer Generator follows the generator-transformation-based ap-
proach (first demonstrated by EXODUS [9]) where properties of the data model are
input to the optimizer generator. Logical operator declarations, algorithm declarations,
logical transformation rules, and implementation rules are contained in the model spec-
ification. This file is parsed by the optimizer generator and C code is generated.

In addition to the model input file, the optimizer implementer supplies functions
to determine the cost of using each algorithm, algorithm applicability, property deriva-
tion functions, and property comparison functions. This code is compiled and linked

with the compiled generated code and the compiled data model-independent code to

12

produce an optimizer.

The generated optimizer accepts as input a logical algebra expression(query) and
physical property(or properties) pair. There are three principal assumptions made about
inputs to the generator and generated optimizers. First, it is assumed a logical expres-
sion to be optimized is syntactically and semantically correct. The second assumption
is that the transformation rule set is sound. The third assumption is that the query to
be optimized can be expressed as a tree of logical operators and associated arguments,
each operator having one or more inputs and a single output, and that this query can
be optimized using algebraic, cost-based techniques, i.e., algebraic equivalence rules and
cost information about the implementation of the algebraic operators.

A query passed to the optimizer is expressed as a tree of logical operators and their
associated arguments, i.e., an expression in the logical algebra. The logical operator set
is declared in the model input file and compiled into the optimizer. Along with the
query, the optimizer is also passed a set of physical properties that the query execution
plan found by the optimizer should deliver. The output of the optimizer is expressed
as a tree of algorithms, i.e., an expression in the physical algebra, that delivers the
requested physical properties.

Optimization consists of mapping a logical algebra expression into a relatively low
cost, equivalent physical algebra expression. In another words, the optimizer reorders
operators and selects implementation algorithm for the operators. Rules that express
the equivalence of logical algebra expressions, e.g., commutativity and associativity, are
represented in the model input file by transformation rules. The possible mappings of
logical operators to the algorithms that implement them are expressed using implemen-
tation rules. Additional information about rules, e.g., applicability, can be specified by
attaching condition code to the rules to be invoked after pattern matching has succeeded

[17].

13

2.2 BOTTOM-UP

In this category we review these algorithms, Branch-and-Bound Plan, Selinger-

Style Optimization, Starburst, Dynamic Programming,.

2.2.1 Branch-and-Bound Plan

In this algorithm, we begin the enumeration by using heuristics to find a good
physical plan for the entire logical plan with a cost of, e.g., C. While considering all the
subqueries, we will discard all those with costs greater than C. Meanwhile, if we find a
plan with cost less than C, we will replace C with this new value.

An important advantage of this algorithm is that we can stop our search whenever
we find a plan with a reasonable cost, ignoring any possible better plan taking into

account the required time for the search [28].

2.2.2 Dynamic Programming

In this approach, for every subquery we keep only the plan of least cost. Moving
upward in the tree, we consider all the possible implementations of each node and choose
the one with least cost. In this fashion, we fill in a table of costs and remember the
minimum information we need to proceed to a conclusion [3].

This algorithm is the base line to develop other algorithms by applying some
helpful heuristics to reduce the size and cost of intermediate relations. Some of those
algorithms are described in this chapter. We can also decide either to pick all the orders
of joining many relations or consider a subset of them or even use a heuristic to choose
one. Based on this decision we may have different results with different costs.

For example, consider the S, R, U, W schema given in Table 2.1 and the requested

query S Roa U a W.1 As stated before, we use the sum of sizes of intermediate

! The example used here is taken from chapter 7 of [10]. We use it to provide a comparison of
different algorithms on a well-known schema.

14

relations as the cost function. If we apply this algorithm on the reference schema, for
singleton sets, the sizes, costs and best plans are shown in Table 2.2. Since singleton

relations are base relations and not intermediate relations, their cost is 0.

| 1§ [R |U W |
Size 1000 | 100 | 100 | 1000
Cost 0 0 0 0

Best Plan | S R U W

Table 2.2: The table for singleton sets

Now, consider pairs of relations. The cost for each is 0, since there are still no
intermediate relations in a join of two. The sizes of the resulting relations are computed

by the previously described formula. The results are summarized in Table 2.3.

| IS',R |S,U |S,W [R,U]R,W |U,W |
Size 1000 100000 | 10000 | 1000 100000 | 1000
Cost 0 0 0 0 0 0

Best Plan | SR | S<U | SxxW | RaU | R W | U W

Table 2.3: The table for pairs of relations

The next step is to consider the join of three relations. The result of the sizes
and the costs of each join is presented in Table 2.4.

At this stage we should consider the join of all four relations. The size estimate
for this relation is 1000 tuples, so the true cost is essentially in the construction of
intermediate relations. We can compute the join of all four in two ways, either picking
three relations and join it with the fourth one or picking two relations of two relations
to be joined later.

Of course, if we only consider left-deep trees then the second type of plan, being

a bushy tree need not to be considered. Table 2.5 summarizes the seven possible ways

15

S,R,W R,S5,U R,W,U |S,VV,U]
Size 10000 50000 10000 2000
Cost 1000 1000 1000 1000
Best Plan | (S R) < W | (R S)xU | WU)R | (WxU)= S

Table 2.4: The table for triples of relations

to group the joins:

So the optimum plan found by this algorithm would be:
(S R) e (U W))

with the cost of 2000.

2.2.2.1 Complexity

The number of joins needed to be evaluated to find the final solution in dynamic
programming is:
N =352 gy - 2" + L.

In [14], N is shown to be O(3"), where n is the number of relations to be joined.

2.2.3 Selinger-Style Optimization or System R

This algorithm is based on dynamic programming. In addition to the plan with
least cost for each subquery, we keep track of some useful subqueries even with higher
costs but interesting results. This optimizer uses heuristics to limit the join sequences
which should be evaluated. One of these heuristics is constructing only left-deep joins.
Another major heuristic used in this approach is deferring Cartesian products in the
join sequence as late as possible. These two heuristics help to make the search strategy
much more efficient in most cases. However there are some situations in which the

optimal solution is eliminated [21].

16

Grouping Cost
((S=R)=U) < W) | 11000
(S R) < W) U) | 11000
({UeW) 8) < T) | 11000

(

(U W) R) > S) | 11000
(S R) (U W)) | 2000
(S U)a (R W)) | 200000
(S W) (R U)) | 11000

(
(
(
(
(
(
(

Table 2.5: Join grouping and their costs

2.24 Starburst

In this approach, for a given query, after parsing the query and storing it in an
internal database called the Query Graph Model (QGM), it is sent to the next step called
plan optimization in which some alternative query ezecution plans (QEPs) and output
for executing them with the least estimated costs, are evaluated. The plan optimizer in
Starburst consists of two separate and extensible sub-components: the join enumerator
which enumerates the join orders in which the relations can be joined, and a rule-based
plan generator, which generates and evaluates the cost of alternative QEPs.

Starburst uses a generate and filter strategy for join enumeration. It will generate
a superset of feasible access plans and then filters non-feasible ones by applying some
feasibility criteria. Some of these criteria are globally valid and some are optional and
therefore can be parameterized for reducing the search space. Among those optional
criteria are heuristics deferring Cartesian product and avoiding bushy trees, which can
be parameterized either by the user or the system.[8]

The number of joins evaluated for a query depends on two classes of factors: 1)
characteristics of the query, such as the number of relations, the number of predicates,
and the shape of the query, indicating how the relations are connected by the relations

and 2) join feasibility criteria, like whether the bushy joins are allowed or not. Regarding

17

the shape of queries, two distinguishable kind of queries, linear and star queries, were
studied. In the linear queries each relation is connected to only two other relations
except the first and the last ones which are connected to only one relation. There are

some sharper upper bounds for these specific kind of queries [14], which are given below:

e Complexity of linear queries with bushy trees: Using dynamic program-
ming to optimize a linear query with n relations, and allowing bushy trees,

requires evaluating (n3 — n)/6 feasible joins.

¢ Complexity of linear queries without bushy trees: Using dynamic pro-
gramming to optimize a linear query with n relations, and disallowing bushy

trees, requires evaluating (n — 1)? feasible joins.

e Complexity of star queries: Using dynamic programming to optimize a star

query with n relations requires evaluating (n — 1)2"2 feasible joins.

2.2.5 Greedy algorithm

In order to avoid exhaustive search in dynamic programming, we can choose a
greedy algorithm in which, when we make a decision on a join order, never reconsider
that decision again. One of the greedy algorithms is when we consider only left-deep
trees. By using this heuristic we keep the number of intermediate relations as small
as possible. The way it works is that, we start by evaluating all the pairs of relations,
choosing the pair with smallest estimate of join result. In the next step, we only consider
the possibility of join of this pair with the other relations and pick the relation which
creates the smallest join. After choosing the next relation, we will once again consider
the join of the result with other remaining relations until we obtain the join of all
relations [13].

Consider the same schema and the same query, as in section 2.2.2, this time

optimized with the Greedy algorithm, using the same cost function. To find the best

18

plan, the first step is as per described in Table 2.2. At that point, we choose, for
example, (S < R) as our first two relations to be joined. In the next step we consider
all the possible joins only with this pair, getting (S t< R < U) and so on till finally
we get (((S > R) b U) pa W) as the resulting plan, whose cost is 11000. As shown in
Table 2.4, the optimal plan is ((S v« R) > (U pa W)), whose cost is 2000. Note that the
optimal plan is not a left-deep tree, while the greedy algorithm only considers left-deep
trees.

This raises the question of whether the greedy algorithm produces an optimal
plan in those situations where the optimal plan is a left-deep tree. The answer is
unfortunately no, as shown by the example given in Table 2.5 which shows a 9-relation
schema.

The optimal ordering of the query found by Dynamic Programming, is:
(({Lt{{M > N) 1 P) 51 Q) >4 R) 24 5) a1 Z) b1 U) pa W)

but the Greedy algorithm finds another left-deep tree as its solution namely:
(((((L((W pa U) ba Z) b N) 02 §) >4 R) 4 Q) 3 M) < P).

Figures 2.1 and 2.2 show the final solution of such a query by Dynamic Program-
ming algorithm and the Greedy algorithm repectively.

In the graphs representing join trees, in each node depicting a join two values are
given, the first is the estimated size of intermediate join represented by the node and
the second one is the estimated cost of that specific sub-query.

As seen in these two figures, the optimal join order has a cost of 23200 while the

suggested join by the Greedy algorithm has a cost of 2300000.

2.2.5.1 Complexity

The number of joins to find the final solution in this algorithm is

19

N = (n —1)? which is O(n?), where n is the number of relations to be joined.

R S |2 | U |1Q |
T(R) = 1000 | T(S) = 1000 | T'(Z) = 1000 | T(U) = 1000 | T'(Q) = 1000
V(R,a) =100 V(Q,a) =100
V(R,b) =100 | V(S,b) =100
V(8S,c) =100 | V(Z,c)=100
V(Z,d) =100 | V(U,d) = 100
V(U,e) =100 | V(Q,e) = 100
| M |N P | W
T(M) =1000 | T(N) =1000 | T(P) = 1000 | T(W)=1000
V(M,a) = 100 V(P,a) = 100
V(N,b) = 100
V(P,c) =100 | V(W,c) =100
V(M, d) = 100
V(N,e) = 100 V(W,e) = 100

Table 2.6: Reference relations showing that the Greedy algorithm does not produce an
optimal plan even when the optimal solution is a left-deep tree.

20

MNPQRSZUW [1000, 23200)

MNPRSZUW [100, 23100]

MNRSZUW [1000, 22100]

MNRSZW [100, 22000 }

MRSZW { 1000, 21000]

MSZW [10000 . 11000] >

MZW [1000, 10000]

MW [10000, 0]

Figure 2.1: The left-deep tree found by Dynamic Programming (which the Greedy
algorithm fails to find) for the reference relations in Table 2.5.

21

WUZNSRQMP [1000 , 2.32e+06]

UZNSRQMP { 10000 , 2.31e+06 | @

ZNSRQMP [100000 , 2.21e+06 | m

NSRQMP [1e+06 , 1.21e+06 | @

SRQMP [100000 , 1.11e+06 @

RQMP [1le+06 , 110000] ${0,0]

QMP [100000 , 10000] @

Cr im0, 07> Qo 01>

Figure 2.2: The non-optimal solution found by Greedy algorithm for the reference
relations in Table 2.5.

Chapter 3

AO* Algorithm

The term production system in Aritifical Inteligence usually refers to systems de-
rived from a computational formalism which was based on string replacement rules. The
notion of decomposable production system encompasses a technique often called problem
reduction in Al. The problem reduction idea usually involves replacing a problem goal
by a set of subgoals such that if the subgoals are solved, the main goal is also solved.

To solve a given problem by decomposition we split the problem into a set of sub-
problems. Each subproblem is expected to be simpler to solve than the given problem.
We then solve the given problem by solving subproblems. A subproblem can, of course,
be further decomposed. We proceed this way until we obtain a set of terminal problems,
that is, problems whose solution we know.

In this chapter, we discuss a well-known problem reduction technique called AO*

[18] and then describe an adaptation of AO* to solve the problem of join reordering.

3.1 AND/OR Graphs

A decomposition production system can be represented by an AND/OR graph as
defined in {18]. An AO* graph is a hypergraph in which hyperarcs connect a node to its
successor nodes. These hyperarcs are called connectors. Each k-connector is directed
from a parent node to a set of k successor nodes. In Figure 3.1, we show an example

of an AND/OR graph. Note that node ny has a 1-connector directed to successor n;

23

and a 2-connector directed to the set of successors ng, ng. For k& > 1, k-connectors are

denoted by a curved line joining the arcs from parent to elements of the successor set.

Figure 3.1: AN AND/OR graph.

In the decomposable production system the initial database corresponds to a dis-
tinguished node in the graph called the start node. The start node has an outgoing
connector to a set of successor nodes corresponding to the components of the initial
database(if it can be decomposed). Each production rule corresponds to a connector in
the implicit graph. The nodes to which such a connector is directed correspond to com-
ponent databases resulting after rule application and decomposition into components.
There is a set of terminal nodes in the implicit graph corresponding to databases sat-
isfying the termination condition of the production system. The task of the production
system can be regarded as finding a solution graph from the start node to the terminal
nodes.

Roughly, a solution graph from node n to node set N of an AND/OR graph is
analogous to a path in an ordinary graph. It can be obtained by starting with node n

and selecting exactly one outgoing connector. From each successor node to which this

24

connector is directed, we continue to select one outgoing connector, and so on, until
eventually every successor thus produced is an element of the set N. In Figure 3.2, we

show two different solution graphs from node ng to ns,ng in the graph of Figure 3.1.

Figure 3.2: Two solution graphs for the graph in Fig 3.1.

We can give a precise recursive definition of a solution graph. The definition
assumes that our AND/OR graphs contain no cycles, that is, it assumes that there is
no node in the graph having a successor that is also its ancestor. The nodes thus form
a partial order which guarantees termination of the recursive procedures we use. We
henceforth make this assumption of acyclicity.

Let G’ denote a solution graph from node n to a set N of nodes of an AND/ OR
graph G. (' is a subgraph of G. Analogous to the use of arc costs in ordinary graphs, it
is often useful to assign costs to connectors in AND/OR graphs.(These costs model the
costs of rule applications ; again we need to assume that each cost is greater than some
small positive number, e.) The connector costs can then be used to calculate the cost
of a solution graph. Let the cost of a solution graph from any node n to N be denoted
by k(n,N). The cost k(n, N) can be recursively calculated as follows:

If n is an element of N, then k(n, N) = 0. Otherwise, n has an outgoing connector

25

to a set of successor nodes {n1,n; } in the solution graph. Let the cost of this connector
be ¢,. Then, k(n,N) = ¢y + k(ny, N) + ... + k(n;, N).

We see tha,t the cost of a solution graph, G', from n to N is the cost of the
outgoing connector from n (in G') plus the sum of the costs of the solution graphs from
the successors of n (in G') to N. This recursive definition is satisfactory because we are
assuming acyclic graphs.

Beyond merely finding any solution graph from the start node to a set of terminal
nodes, we may well want to find one having minimal cost. We call such a solution graph
an optimal solution graph, and denote the cost of an optimal solution graph from n to

a set of terminal nodes by the function k*(n).

3.2 AO*: A heuristic search procedure for AND/OR graphs

Since there can be more than one solution graph from a node n, there can be more
than one value for the solution graph from n. Let k*(n) be the cost of the cheapest
solution graph from node n, where k*(n) > 0; and k(n) be an estimate of k*(n) based
on some heuristic, such that k(n) > 0.

If k(n) is infinite, then n has been judged to be unsolvable. Suppose that for all
nodes n, and for all connectors directed from n, k(n) is at most the cost of the connector
from n to the nodes n1, ng,...,nm + Y ieq k(n;). Then the heuristic function k is said to
be monotonic. It can be shown that if £ is monotonic, and if the k value of all terminal
nodes is zero, then k is a lower bound on &*. In other words, k(n) < k*(n), for all nodes
n.

The heuristic function k is employed by a search strategy called AO*. It is an
established mathematical result that if & is monotonic, and if & is a lower bound on k¥,
then AO* is admissible. In other words, AO* is guaranteed to find the cheapest solution
graph, provided a solution graph exists.

For completeness, we give here the AO* algorithm as described in [18]:

26

1 Create a search graph, G, consisting solely of the start node, s. Associate with
node s a cost g(s) = h(s). If s is a terminal node, label s SOLVED.

2 until s is labeled SOLVED, do:

3 begin

4 Compute a partial solution graph, G', in G by tracing down the marked
connectors in G from s.

5 select any nonterminal leaf node, n, of G'.

6 Expand node n generating all of its successors and install these in G as
successors of n. For each successor, n;, not already occuring in G, associate
the cost g(nj) = h(n;). Label SOLVED any of these successors that are
terminal nodes.

7 Create a singleton set of nodes, S, containing just node n.
8 until S is empty, do:
9 begin
10 Remove from S a node m such that m has no descendants in G
occuring in S.

11 Revise the cost g(m) for m, as follows:
for each connector directed from m to a set of nodes {nij,...,nki}
compute g;(m) = ¢; + q(n1; + .. + Gi-
Set g(m) to the minimum over all outgoing connectors of ¢;(m) and
mark the connector through which this minimum is achieved, erasing
the previous marking if different. If all of the successor nodes through
this connector are labeled SOLVED, then label node m SOLVED.

12 If m has been marked SOLVED or if the revised cost of m is different
than its just previous cost, then add to § all those parents of m such
that m is one of their successors through a marked connector.

13 end
14 end

Figure 3.3: The AO* algorithm [18].

27

Algorithm AO* can best be understood as a repetition of the following two major
operations. First a top-down operation (steps 4 to 6), to find the best partial solution
graph by tracing down through the marked connectors. These marks indicate the current
best partial solution graph from each node in the search graph. One of the nonterminal
leaf nodes of this best partial solution graph is expanded, and a cost is assigned to its
SUCCESSOrs.

The second major operation in AQ* is a bottom-up, cost-revising, connector-marking,
SOLVED-labeling procedure. Starting with the node just expanded, the procedure
revises its cost and marks the outgoing connector on the estimated best "path” to
terminal nodes. This revised cost estimate is propagated upward in the graph. The
revised cost, k(n), is an updated estimate of the cost of an optimal solution graph from
7 to a set of terminal nodes. Only the ancestors of nodes having their costs revised
can possibly have their costs revised, so only these need be considered. Because we
are assuming the monotone restriction on k, cost revisions can only be cost increases.
Therefore, not all ancestors need have cost revisions, but only those ancestors having

best partial solution graphs containing descendants with revised costs.

3.3 Application of AO* to the join reordering problem

In this section, we describe our adaptation of the AO* algorithm described in the
previous section to solve the problem of join reordering. We start by describing the
specific types of AND/OR graphs relevant to our application.

It is straightforward to see that all possible join reordering plans can be rep-
resented by an AND/OR graph. For example, Figure 3.4 shows an AND/OR graph
representing all possible join orders for performing the join R < S < T. The root node,
labelled RST has three outgoing binary AND connectors. (In fact, all AND connec-
torsin our application are always 2-connectors, since they always represent the join of

two intermediate relations.) These three outgoing connectors represent the three possi-

28

ble ways of obtaining the join R < S < T as a binary join of two (possibly intermediate)
relations. That is, the AND connector with successor nodes RS and T represents the
join order (R < S) p< T, the AND connector with successor nodes RT and S represents
the join order (R < T) < S and the AND connector with successor nodes T'S and R
represents the join order (T < S) < R. For the node RS there is only one possible join
order, which is seen by the fact that there is a single outgoing binary AND connector.
Terminal nodes (nodes with no outgoing connector) correspond to base relations. A
solution graph is an AND/OR tree, with every node having a single outgoing AND

connector, and correspond to a specific join-ordering.

Figure 3.4: An AND/OR graph representing different possible join reorderings of three
relations R, S and T'.

Next, we present our adaptation of AO* to deal with the types of AND/OR
graphs described above. In the following, a node v is labelled by a set S of relations.
It follows from the discussion in the previous paragraph that the two successor nodes
corresponding to each 2-connector outgoing from v are labelled by sets S; and S22, which

constitute a partition of S. Each node is further labelled by two parameters: cost and

29

size. The size parameter corresponding to set S of relations is an estimate of the size of
the join of all relations in the set S as computed by the formula in Section 1.2.1. The
size parameter for each node remains fixed during the operation of the algorithm. The
cost parameter is an estimate of query cost. In géneral, this cost is an underestimate
of the true cost. For every node, the cost parameter is initialized to 0, and is revised
upwards during the operation of algorithm. When the algorithm terminates, the root
node (and all other nodes in the solution graph) have the cost parameter set to the true
query cost according to the optimal join order.

The algorithm proceeds as follows. We start with the root node, and expand
it to the next level, and choose the best alternative based on current estimates of the
costs of various alternatives (i.e. outgoing connectors). This connector is MARKED,
and we proceed to expand one of the two successor nodes of this connector. If as the
result of this expansion, the cost of the current alternative is revised, we propagate this
revigion upwards to the parent, which evaluates all alternatives again. If it turns out
that there is now a better alternative at the parent’s level, the current alternative is
unmarked, and the new alternative is marked and explored. If the cost is not revised,
or if the current alternative is still best, we continue expanding markeci non-terminal
descendants till all paths are completely explored. We say that a node v is marked when
there is a path from the root node to v consisting of only marked connectors. A node is
deemed SOLVED when it is either a terminal node, or when all marked paths outgoing
from that node consist of only solved nodes. The algorithm terminates when the root
is solved.

It remains to describe the computation of the cost of a node. The cost of a
terminal node (that is, base relation) is 0, and the cost of a non-terminal node is the
minimum of the costs of its outgoing connectors. The cost of a connector with successor
nodes u and v is cost(u) + cost(u) + (size(v) + size(u)). This is because choosing

the connector with successor nodes u and v means performing the join of intermediate

30

relations corresponding to u and v, which includes the cost of computing the join of each
of those intermediate relations (that is, cost(u) and cost(v)) plus the cost of computing
the join of these two intermediate relations (that is, size(u) + size(v)).

The psuedocode for the initialization function is given in Figure 3.5. All the
terminal nodes are labelled solved and their costs and sizes are initialized to 0. All
the non-terminal nodes are initially labelled unsolved, their costs and sizes again are
initialized to 0. The pseduocode for the main Solve procedure is given in Figure 3.6.
The algorithm starts by calling the procedure for the node root, Solve(root), where
the root is a node labelled by the set of all relations to be joined. Initially the graph G

consists only of the root node.

initialize_node(S)

if S is a singleton set,
solved(S) + true;
size(S) + 0;
cost(S) + 0;
else
solved(S) + false;
size(S) + size_estimate(S);
cost(S) < 0;

end of function

Figure 3.5: The initialization function.

31

Solve(set S[int size, int cost, bool solved])
while not solved(S) do:

min_cost < oo
for each binary partition S; and S; of S do:
if S is not a node in @G, then:
initialize_node(S5;)
if S is not a node in G, then:
initialize_node(S:)
temp < cost(Sy) + cost(S2) + size(S1) + size(Ss)
if temp < min_cost, then:
min_cost < temp
Mark connector(S1,52);
Mark node Si;
Mark node So;
Unmark any previous marked connector (57,95) outgoing from
S;
Unmark node S};
Unmark node S%;
if cost < min_cost
cost < min._cost
if § is not root, then
exit
if all marked children of S are solved, then:
solved(S) «+ true;
else for some unsolved marked child u of S

Solve(u);
end of procedure

Figure 3.6: AO* Pseduocode.

32

Since our cost function is initialized to 0, and it can easily be seen to satisfy the
monotonicity restriction, it follows from the result in [18] that our AO* algorithm is
admissible. It is obvious that in any algorithm, the graph representing the final solution
either optimal or non-optimal has a tree shape. The trees representing the final solutions

of different algorithms which are shown in this thesis have the following characteristics:

¢ On each node, there are two values given, the size of the join up to that point

and the cost of the query up the point.

e In AO* graphs, since nodes have binary connectors, to show which connector
are combined with which ones, each connector has an identifier number. The
connectors which are together have identical numbers. Additionally, the con-
nectors which are MARKED, have an identifier “(M)” in front of their identifier

number.

34 How AO* algorithm works on the reference query

In this section, we illustrate the operation of AO* on the set of relations which
was used as our example for the dynamic programming and greedy algorithms in Section

2.1. For ease of reference, we provide the details of the relations here in Table 3.1.

LS R v | W |
T(S) = 1000 | T(R) =100 | T(U) =100 | T(W) = 1000
V(S,a) = 100 V(W,a) = 1000

V(S,b) = 100 | V(R,b) = 100
V(R,c) =10 | V(U,)=10
V(U,d) =100 | V(W,d) = 100

Table 3.1: Reference relations used to illustrate various algorithms.

In AO*, we call the algorithm with root node SRUW, with cost 0 and size 100.

On expanding the node, the minimum cost outgoing connector is found to be S <« RUW,

33

which has a cost of 0+ 0+ 10000 = 1000. So this connector is marked (drawn bold in
the graph), and the resulting AND/OR graph is shown in Figure 3.7. Recall that in the
graphs representing join trees, in each node depicting a join two values are given, the
first is the estimated size of intermediate join represented by the node and the second
one is the estimated cost of that specific sub-query. Now, the Solve procedure is called
recursively for the node TUW.

In Figure 3.8 the node RUW is expanded to its immediate successors. Among its
outgoing connectors, nodes RW and U have the least cost, which is 0+ 041000+ 0 =
1000. Consequently the connectors to these nodes are MARKED. In this cycle the cost
of the intermediate relation RUW is revised to 1000. Since this cost has been revised,
we exit the recursive call and return to the while loop at the root node.

In Figure 3.9, the cost of the connector node (RUW,S) will be revised as 0 +
0 + 1000 + 1000 = 2000 which in turn causes the algorithm to choose a new connector
SRW, U as the MARKED connector which has cost 1000. Next, the Solve procedure is
called recursively for the node SRW, the result of which is shown in Figure 3.10. The
best outgoing connector from SRW is (RW,S), which has cost 1000, and causes the
cost of the node SRW to change. This causes a return to the while loop at thé root
node once again.

In the next round, the outgoing connector (RW,SU) from the root node is chosen
as the best alternative, since it has the minimum cost of 1000 + 0 + 1000 + 0 = 2000; as
shown in Figure 3.11.

At this point, the Solve procedure is called recursively for the node SU. Since
there is only one outgoing connector both going to solved (terminal) nodes, the node SU
is deemed solved as well. The same holds true for the node RW, and neither procedure
call results in a change in cost, which further implies no change in cost for the root. Since
both marked children are solved, the root itself is deemed solved and the algorithm ter-

minates. The final solution, as given by a marked path from the root to the leaf nodes is:

34

(R W) (S l))

as shown in Figure 3.12.

3.5 INlustration of a best-case for AO*

As an example of a best-case scenario for our AO* algorithm, we use a query
with 9 relations, given in Table 4.1 (see the next chapter). For the AO* algorithm
to be efficent, the optimization cost should be far less than Dynamic Programming
and close to the Greedy algorithm. The number of operations required by Dynamic
programming to find the optimal join order for the relation given in Table 4.1 is 9330,
whereas AO* finds the optimal solution using only 284 operations. This number for
the Greedy algorithm is 81. The ratio of AO* to Dynamic Programming is about .03
while this value for Greedy algorithm to AO* is about .33. The graph showing all nodes
created by AO* is given in Figure 3.12. The shaded nodes are in the solution. As can
be seen, very few nodes not part of the solution are created.

There are several factors involved in the cost of the AO* algorithm which will
be discussed in the next chapter. Among them are the shape of the query, the size

distribution of relations, and the shape of the final solution.

SRUW([100,1000]

SUN[100000] /
0

SU[1000,0

Ruiooogy) (RUTONE00 _
RUM1000,0]

SRW[1000,0]) { UW[1000,0]

Figure 3.7: The first cycle of running AO*algorithm on the test query.

35

SRUW[100,1000]

SRW[10000]) { U100}

Figure 3.8: The second cycle of running AO*algorithm on the test query.

SRU[10000,]

36

37

SRUW([100,1000]

SRU[10000,0]

SRW[1000,0]) | UW[t000,0]

Figure 3.9: The third cycle of running AQ*algorithm on the test query.

SRUW([100,2000]

=

0000,

Figure 3.10: The fourth cycle of running AQO*algorithm on the test query.

38

SRUW[100,2000]

Figure 3.11: The fifth cycle of running AO*algorithm on the test query.

39

SRUW[100,2000]

U[1000,0)

Figure 3.12: The result after running AO*algorithm on the test query.

40

41

1222(M) 222(M)

1259(M) 1259(M) 1297(M) 1297(M}

1290(M)

1299(M) 3UU(M) [13030M) \13030M)

311(M)

13140M) {13140

Figure 3.13: The best case example of AO* algorithm, the AO* optimization cost is 284
vs the Dynamic Programming optimization cost of 9330.

42

3.6 Illustration of a bad case for AQO*

To illustrate an example where AQ* has high optimization cost, a query with the
same number of relations is used. The reference relations are shown in Table 4.4 (see
the next chapter). For AO* algorithm, a bad scenario is when its optimization cost is
close to that of Dynamic Programming. In this example the number of operations to
find the optimal answer was 8756 while this number for Dynamic Programming is 9330.
The ratio is about .94. The graph including all created nodes for this example is given
in Figure 3.14. As can be seen, there are several nodes created which are not part of
the eventual optimal solution.

In the next chapter, we will visit some of the factors affecting the performance of
the AO* algorithm. The main factor differentiating the example given in this section,
which is a bad case for AO* and the one given in section 3.5, which is a good case for

AQ*, is the shape of the query.

43

Figure 3.14: The worst case example of AO* algorithm, AO* optimization cost 8756 vs
Dynamic Programming optimization cost of 9330.

Chapter 4

Experiments

In this chapter, we describe the experiments we undertook to understand the per-
formance and behavior of AOQ*, particularly in relation to the dynamic programming
and Greedy algorithms. We also present the result of running the AO* algorithm on
four different types of queries. Additionally, we present the experimental results show-

ing their performance on some benchmark queries.

4.1 Shape of Query

As mentioned previously, the cost of optimization of a query by dynamic pro-
gramming and the Greedy algorithm does not depend on the shape of the query and is
only dependent on the number of relations in the query. This does not appear to be true
for AO*. In this thesis, we studied the performance of AO* on four different types of
queries: star, chain, circular and clique queries. We examined the best and worst-case
scenarios for all three algorithms, the effect of the shape of the query and the shape of

the result on their performance.

4.1.1 Star Query

In a Star query, there is a subset of attributes common to all relations in the

query. In Figure 4.1 this type of query is illustrated. The graph corresponding to the

45

query is a star.

Figure 4.1: Star-shaped query. The relations R, S, T', U have attribute ¢ in common.

4.1.2 Chain Query

In a Chain query, all except two queries have common attributes with exactly
two other relations but the first and last relations have attributes in common with only
one other query. Each attribute is common to at most two relations. This type of query

is illustrated in Figure 4.2. The graph corresponding to the query is a chain.

4.1.3 Circular Query

In a Circular query, each relation has common attributes with exactly two other
relations and each attribute is common to at most two relations. Figure 4.3 illustrates

this type of query. The graph corresponding to the query is a cycle.

46

Figure 4.2: Chain-shaped query. The relations R and S have attribute b, S and T
attribute ¢ and T and U attribute d in common.

Figure 4.3: Circular-shaped query. The relations R and S have attribute b, S and T
have attribute ¢, T and U have attribute d and U and R have attribute a in common.

47
4.1.4 Clique Query

In a Cligue query, every pair of relations has a unique subset of common attributes.
This type of query is illustrated in Figure 4.4. The graph corresponding to the query is

a clique.

Figure 4.4: Clique-shaped query. Every relation has at least an attribute in common
with other relations.

4.2 Left-deep vs Bushy trees

While examining the performance of the AO* algorithm, it was noticed that the
shape of the final optimal solution appears to have an effect on the number of joins
to be evaluated to find that optimal solution, or in other words the cost of the query

optimization. The factors affecting the performance are listed below [4][29]:

e The "bushyness” of the final solution has a good effect on the cost of the query
optimization done by the AO* algorithm. The bushier the final solution is, the

less is the cost incurred by the AO* algorithm to find it.

48

e The balance of the internal nodes in left and right subtrees of a ”bushy node”
has a good effect on the cost of query optimization. The more balanced the

final solution is, the less the cost of query optimization.

e The height of the "bushy nodes” has also a good effect on the cost of query
optimization. The higher the bushy nodes are located, the less is the cost of

query optimization.

In order to study the effect of the shape of the final optimal solution on the
performance of algorithms, we propose the cost_indez(g) as a single factor that includes
all the above factors. A node is called a bushy node if it has two children, both of which

are internal nodes. If v is a bushy node in a solution graph with n nodes:

o bushy-index (X (v)) of each non-leaf node v is equal to the number of the in-
ternal nodes of its children minus one. The bushy index of a graph G, X(G) is

equal to the summation of the bushy indices of all its nodes. So:

X(G) = Xpea X (v)

This value for a solution graph G of a query with n relations can be seen to

satisfy:

* if n is even X(G) < (n—1)(n — 3)/4.

* if n is odd X(G) < ((n —2)/2)2.

e The balance index (Y (v)) of the node v is the difference of the numbers of the
internal nodes in the left and right subtrees of a bushy node v. The balance
index of a graph G, Y (G) is equal to summation of the balance indices of all its

nodes. So:

Y(G) = Z’UEG Y('U)

49

For a solution tree with n relations, Y(G) < (n — 4).

e The height H(v)) of a node v is the length of the longest simple path from v to a
leaf node. The height of a graph, H(G), is the height of its highest bushy node

and the maximum value of the height of a graph with n relations, is (n — 2).
Finally, cost_indez of a graph G is given by:

cost index(G) = (X(G) + H(G) - Y (@))
4.3 Illustration of algorithms on four example relations

In this section, we illustrate the operation of AQO*, Dynamic programming and
Greedy algorithms on sample relations of all four types discussed in Section 4.1. The
reference relations we use (for each type of query) are given in Tables 4.1 to 4.4, the join
order given by each algorithm is given in Tables 4.5 and 4.6 and Table 4.7 compares the

optimization cost of all 3 algorithms.

4.3.1 Star query

We use the sample relation given in Table 4.1 and present the results produced
by all three algorithms. Figure 4.5 gives the result given by Dynamic programming and
AQO* and Figure 4.6 gives the result of Greedy.

As shown in Figure 4.5, the optimal solution for this query is a bushy balanced
tree with cost of 11140000 while Figure 4.6 presents the output of Greedy algorithm for
the same query with a cost of 1000 times more expensive in a left-deep tree solution
graph. On the other hand, the optimization costs of Dynamic Programming, AO* and

Greedy algorithms are presented in Table 4.5.

50

Table 4.1: Reference relations for a star query.

R |S | Z U | Q |
T(R) = 1000 | T(S) = 1000 | T(Z) = 1000 | T(U) = 1000 | 7(Q) = 1000
V(R,a) = 100 | V(S,a) = 100 | V(Z,a) = 100 | V(U,a) = 100 | T(Q,a) = 100
V(R,b) = 100

V(Z,c)=100
V(U,d) = 100
V(Q,e) = 100
V(S, f) = 100
M N | P w |
T(M) = 1000 | T(N) = 1000 | T(P) = 1000 | T(W)=1000
V(M,a) =100 | V(N,a) =100 | V(P,a) =100 | V(W,a)
V(M,g) = 100
V(N,h) = 100
V(P,1) = 100
V(W,t) = 100

51

MNPQRSZUW { le+11, 1.114e+07]

MNQRS [1e+07,, 120000] PZUW [1e406,20000]

'
MNR [100060, 10000] QS[10000,0] PW{10000,0] ZU[10000,0)

'

4
Gt Guoad G o) G (o) o) o

Figure 4.5: The solution given by Dynamic Programming and AO* on the star query
given in Table 4.2 with query cost of 11140000.

52

WUZSRQPMN { le+11,1.11111e+10

UZSRQPMN [1e+10,1.11111e+09 }

ZSRQPMN [1e+09, 1.1111e+08]

SRQPMN [1e+08 , 1.111e+07] @

RQPMN [1e+07 , 1.11e+06] @

QPMN [1e+06 , 110000] @

PMN [100000 , 10000] @

MN [10000, 0] @

Figure 4.6: The solution given by Greedy algorithm on the star query given in Table
4.2 with query cost of 11111100000.

53

4.3.2 Chain query

We use the sample relation given in Table 4.2 and present the results produced
by all three algorithms. Figure 4.7 gives the result given by Dynamic programming and

AO* algorithm while Figure 4.8 gives the result of Greedy.

R | S | Z | U | Q |
T(R) = 1000 | T(S) = 1000 | T(Z) = 1000 | T(U) = 1000 | 7(Q) = 1000
V(R,a) =100

V(R,b) = 100 | V(5,b) = 100
V(S,¢) = 100 | V(Z,c)=100
V(Z,d) =100 | V(U,d) = 100
V(U,e) =100 | V(Q,e) = 100

V(Q, f) =100
(M [N [P | W |
T(M) = 1000 | T(N) = 1000 | T(P) = 1000 | T(W)=1000
V(M, f) = 100
V(M,g) =100 | V(N,g) =100 | V(P,h) = 100
V(N, k) V(P,k) =100 | V(W,k) = 100
V(W,1) = 100

Table 4.2: Reference relations for a chain query.

As is shown in Figure 4.7, the optimal solution graph is a bushy tree with the
query cost of 11140000. It is a balanced bushy tree. Figure 4.8 presents a lefi-deep tree
as the output of Greedy for the same query. The join cost for such a query is given as

11111100000, which is 1000 times more expensive.

54

MNPQRSZUW [le+11, 1.114e+07]

MNPW [1e+06, 20000] QRSZU[1e+07, 1200001

QZU [100000, 10000 | RS[10000,0]

MN{10000,0] PW [10000,0]

Figure 4.7: The solution given by Dynamic Programming and AO* on the chain query
given in Table 4.1, with query cost of 11140000.

55

WRSZUQPMN [le+11,1.11111e+10

RSZUQPMN [1e+10, 1.11111e+09] @

SZUQPMN [1e+09 , 1.1111e+08 | @

ZUQFMN [1e+08 , 1.111e+07] @

UQPMN [1e+07 , 1.11e+06] @

QPMN [1e+06 , 110000 } @

PMN [100000, 10000] @

MN [10000, 0 } @

Figure 4.8: The solution given by Greedy algorithm on the chain query given in Table
4.1, with query cost of 11111100000.

56
4.3.3 Circular query

We use the sample relation given in Table 4.3 and present the result produced by
all three algorithms. Figure 4.9 gives the result given by Dynamic programming and

AQO* and Figure 4.10 gives the result of Greedy.

R | S | Z | U 1 Q |
T(R) = 1000 | T(S) = 1000 | T(Z) = 1000 | T(U) = 1000 | T(Q) = 1000
V(R,a) = 100

V(R,b) = 100 | V(S,b) = 100
V(S,c) =100 | V(Z,c)=100
V(Z,d) =100 | V(U,d) = 100
V(U,e) =100 | V(Q,e) = 100

V(Q,f) =100
M | N s | W |

T(M) = 1000 | T(N) = 1000 | T(P) = 1000 | T(W)=1000
V(M,]) = 100 V(W,a) = 100
V(M,g) = 100

V(N,g) =100

V(N, h) = 100

V(P,h) = 100
V(W, k) = 100

Table 4.3: Reference relations for a circular query.

As seen in Figure 4.9, the cost for the balanced bushy tree solution graph is
11140000 while Figure 4.10 shows a left-deep tree as the output of Greedy to the same

query with a query cost of 11111100000, which is 1000 times more expensive.

57

MNPQRSZUW [10, 23200]

< _MPQRSZUW [100, 231001 w

MPQSZUW [1000, 22100]

MPQZUW { 100, 22000 1

MQZUW [1000, 21000]

—
MZUW [10000 ., 11000] >

MZW { 1000, 10000]

MW [10000 .0]

Figure 4.9: The solution given by Dynamic Programming and AO* on the circular query
given in Table 4.3, with query cost of 11140000.

58

WUZNSRQMP [10, 33100]

UZNSRQMP [100 . 33000]

. —
= Cwre.ar >

ZNSRQMP [1000 , 32000]

NSRQMP [10000 , 22000]

SRQMP [1000 , 21000]

RQMP [100060 , 11000]

QMP [1000 , 10000]

MP [10000, 0]

Figure 4.10: The solution given by Greedy algorithm on the circular query given in
Table 4.3, with query cost of 11111100000.

4.3.4

Clique query

59

We use the sample relation in Table 4.4 and present the results produced by all

three algorithms. Figure 4.11 gives the result given by Dynamic programming and AO*

and Figure 4.12 gives the result of Greedy.

R E | Z | U Q |
T(R) = 1000 | T(S) = 1000 | T(Z) = 1000 | T(U) = 1000 | T(Q) = 1000
V(R,a) = 100 V(Q,a) = 100
V(R,b) =100 | V(S,b) = 100

V(S,c) = 100 | V(Z,c)=100
V(Z,d) =100 | V(U,d) = 100
V(U,e) =100 | V(Q,e) = 100
M | N | P | W |

T(M) = 1000 | T(N) = 1000 | T(P) = 1000 | T(W)=1000
V(M,a) = 100 V(P,a) = 100

V(N,b) = 100

V(P,c) =100 | V(W,c) = 100

V(M,d) = 100

V(N,e) = 100 V(W,e) = 100

Table 4.4: Reference relations for a clique query.

As shown in Figure 4.11, the optimal solution is a left-deep tree with query cost
of 23200, but Greedy outputs another left-deeptree with a query cost which is 100 times

more expensive for the same query.

4.3.5 Result of running three algorithms on four reference relations

After running our three algorithms on the four sets of relations described in Tables
4.1 to 4.4, we can summarize the results in Tables 4.5 and 4.6.

As shown in the Tables 4.5 to 4.7, the AQ* algorithm always finds the same
optimal solution as dynamic programming does. However the number of operations or

the optimization cost is much less than dynamic programming. On the other hand, the

60

MNPQRSZUW [1000, 232001]

IS —
MNPRSZUW [100, 23100]

= Cere.o1>

MNRSZUW [1000, 22100 }

MNRSZW [100, 22000]

MRSZW [1000, 21000]

MSZW [10000, 11000]

MZW [1000, 10000 }

MW [10000, 0]

Figure 4.11: The solution given by Dynamic Programming and AO* on the clique query
given in Table 4.4, with query cost of 23200.

61

WUZNSRQMP | 1000 , 2.32¢+06]

UZNSROMP [10000 , 2.31e+06 |

ZNSRQMP { 100000 , 2.21¢+06] @

NSRQMP [1¢+06 , 1.21e+06] @

SRQMP [100000 , 1.11¢+06] @

RQMP [1e+06 , 110000] @

QMEP [100000 , 10000] @

Qo.0l

Figure 4.12: The solution given by Greedy algorithm on the clique query given in Table
4.4, with query cost of 2320000.

6

Result of the Search query cost
Chain Q. (M N)<(PxW))=< ((QZ < U)xa (R S)) 11140000
Star Q. (M<BR)xN)< (S Q)< (P W) (ZxU)) | 11140000

Circular Q. | (M = Q)= U) < (S Z)) < ((N x P) 1 (R W)) 11140000
Clique Q- | (M= W) Z)x U) x Q) 1 P) 1 S) b R) b N) | 23200

Table 4.5: Results of dynamic programming and AO* algorithm on the reference rela-
tions given in Tables 4.1 to 4.4.

query cost produced by the Greedy algorithm is approximately 1000 times the optimal
query cost for the first three queries. For the clique query it turns out that the optimal
solution is a left-deep tree, but the Greedy algorithm fails to find it, and finds instead

a more expensive solution.

4.4 Effect of size of relations (evenly distributed)

To study the effect of the shape of the query on the performance of AO*, we
computed the average cost of query optimization on relations whose sizes were chosen

uniformly at random as described below:

We start with the base relations as given in Tables 4.1 to 4.4.

o The size of each relation was multiplied by different j, where j was an integer
chosen randomly from [10, 100] while the attributes of each relation was multi-
plied by different k, where k was an integer chosen randomly from [1,10]. This

test was performed 20 times and the average is presented in results .

e For another set of 20 tests the size of each relation was multiplied by j, where j
was an integer chosen randomly from [100, 1000] while the size of each attribute

was multiplied by an ineger chosen randomly from [10, 100].

e The last set of 20 tests was performed by multiplying the size of relations by

63

| Result of the Search query cost |
Chain Q. | (M = N) = P) = Q) = U) = Z) 1 8) 51 R) > W) | 11111100000
Star Q. (M N)x Py Q)< R)x S) i Z) e U) > W) | 11111100000
Circular Q. | (M = N) = P)x Q) U) x Z) <1 S) 1 R) > W) | 11111100000
Clique Q. | (M P) Q)< R)xS)xaN)x Z)xaU) xa W) | 33100

Table 4.6: Results of Greedy algorithm on the reference relations given in Tables 4.1 to
4.4.

J, where j was an integer chosen from [1000, 10000}, while the size of attributes

was multiplied by &, where k was an integer chosen randomly from [100, 1000].

e Another set of three tests was performed with the same criteria as 2 to 4 with
the exception that the j and k values were chosen unevenly meaning that the j

and k values were used for half of the relations chosen randomly.

As seen in Table 4.7, the optimization cost of Greedy and Dynamic programming
depend only on the number of relations, and are independent of the shape of the query.

However, for AQ*, this factor appears to make a difference.

4.5 Effect of size of relations (unevenly distributed)

As stated before, the optimization cost of Greedy and Dynamic programming
again depend only on the number of relations, and are independent of the shape of the
query. However, for AO*, the size of relations does make a difference, specifically for

clique shape query the smaller size for relations causes the optimization cost to increase.

4.6 Effect of cost index of solution tree on the optimization cost

As seen in Figures 4.13 through 4.20, there is a correlation between the cost index
of the solution tree and the cost of query optimization. The larger the cost index, the

less the optimization cost for the query by the AQO* algorithm. It seems that the reason

| Dynamic Programming | AO* Algorithm | Greedy Algorithm |

Chain Q. 9330 304 64
Star Q. 9330 436 64
Circular Q. | 9330 496 64
Clique Q. 9330 4224 64

Table 4.7: Optimization costs on the reference relations for the three algorithms.

[100 < size <1000

1000 < size <10000

10000 < size <100000

Chain Q. 304 306 302
Star Q. 484 372 356
Circular Q. | 1256 380 346
Clique Q. 6546 4480 2735

Table 4.8: Result of optimization costs for AO* on the reference relations with unevenly
distributed value set.

[100 < size <1000 | 1000 < size <10000 | 10000 < size <100000
Chain Q. 284 284 284
Star Q. 305 284 284
Circular Q. | 568 298 284
Clique Q. | 5864 3756 2686

Table 4.9: Results of optimization costs for AO* algorithm on the reference relations

with evenly distributed value set.

65

for such a behavior is that the bushier the solution tree, the larger the cost index for
that specific solution tree. For our reference sets of relations with 9 relations, the query
index for the possible solution graphs would differ between 0 to 13, 0 for a fully left-
deep tree and 13 for a fully bushy tree. The bushiness of the solution tree will affect
the optimization cost by removing a large number of potential join orders from being
evaluated which decreases the optimization cost. It seems that all the discussed factors,
like shape, size of relation, and size of value set affect the optimization cost by affecting
the shape of the solution tree. A query with a solution tree of bushy shape has less
optimization cost by AO* than a query with solution tree of left-deep shape.

Figures 4.13 to 4.20 show the correlation between cost inder and optimization
cost for all four different query shapes for AO* algorithm. For each query shape, this
correlation is examined in two different evenly and unevenly distributed values of relation
size and attribute value set size.

The solutions with higher cost indices have lower optimization costs. It also
seems that for Star, Chain and Circular queries the cost index remains relatively high,
resulting in a lower optimization costs but for a Cligue query the cost index remains

close to O (left-deep tree) resulting in a rather higher optimization cost.

66

800

0= <1000
- <10000
~&<100000

700

600

g g

Optimization Cost

g

100

Cost Index

Figure 4.13: Diagram of average of optimization costs vs cost index in a Circular query
evenly distributed.

67

2000
001 1000
——<10000
o] 100000
1400
7 1200
8
[
£ 1000
k|
E
2
6 a0
600
40 :._;
20
0 ‘ < : : . ;
0 2 4 6 8 10 12 14

CostIndex

Figure 4.14: Diagram of average of optimization costs vs cost index in a Circular query
unevenly distributed.

68

800

700
0~ <1000

—&-<10000

i <100000
600

]
=3
=3

Optimization Cost

[

200

Cost Index

Figure 4.15: Diagram of average of optimization costs vs cost index in a Chain query
evenly distributed.

69

800
700
- <100000
—4—<10000
600 ~i-<1000
500
g L }
Q
£
: 400
2
E
a
o
300
200
100
0 T T T 1 T v .
0 2 4 [8 1 12 14

Cost Index

Figure 4.16: Diagram of average of optimization costs vs cost index in a Chain query
unevenly distributed.

70

800
——<1000
700 ~%~<10000
~4r-<100000
600
500
2
8
&
£ 400
k|
£
30 —
200
100
0 : T T ! T |
0 2 4 [8 10 12 14

Cost Index

Figure 4.17: Diagram of average of optimization costs vs cost index in a Star query
evenly distributed.

71

500
—0-<1000
—~<10000
400 ~a—<100000
7 300
38
E-4
K]
8
E
8' 200
100
0 T T . T T T !
0 2 4 6 8 10 12 14
Cost index

Figure 4.18: Diagram of average of optimization costs vs cost index in a Star query
unevenly distributed.

5000
A
4500 4100000
8- <10000
4000 —k~ <1000
|
3500
% 3000
Q9
Q
&
2 2500 4
2
E
a
& 2000
1500
1000
500
9 T T T T
0 4 8 8 10 12 14

Cost Index

72

Figure 4.19: Diagram of average of optimization costs vs cost index in a Clique query

evenly distributed.

7000

6000
L 4
~4-<1000
~#-<10000
5000 —&~<100000
5 n
8 4000
&
2
3
£
g 3000
A
2000
1000
0 T T T . T)
0 4] 8 10 12 14
Cost Index

73

Figure 4.20: Diagram of average of optimization costs vs cost index in a Clique query

unevenly distributed.

74

4.7 Effect of shape of query on the performance of AO*

To illustrate the effect of the shape of a query on the performance of the AQ*
algorithm, we show the average of cost indices of all the experiments run in the previous
sections on four different types of queries in Table 4.10. As shown, for Chain, Circular
and Star queries the averages cost indices are around 12 while this value for Cligue
queries is around zero. This is consistent with the results of the previous sections,
which show that the optimization cost of star, chain and circular queries are lower than
that of clique queries, and that optimization cost is inversely proportional to the cost

index of the query.

[| Average Cost Index |
Chain Query 12.13
Circular Query | 11.76
Clique Query | 0.27

Star Query 11.82

Table 4.10: The results of averages of cost indices of different query shapes.

4.8 Performance of AO* Algorithm on Bencmark TPC-D Queries

To show the performance of our AO* algorithm on commercial schemas, we use
the TCP-D benchmark schema [19] and some queries generated based on this schema.
You can find the benchmark schema in Figure 4.21 and the relations are presented in
Table 4.11.

We have run four queries based on this schema with our AO* algorithm and the

result with the number of operations to find the optimal solution is defined as follows:

e The first query is (P < X 1.5 < N < R) and the result is:

(P> (X > (S (R N))))

75

P X | L | O |
T(P)=200M | T(X)=800M |[T(L)=6B T(O)=15B
V(P,a) =200M | V(X,a) = 200M | V(L,a) = 200M
V(X,b) =10M | V(L,b) = 10M
V(L,e) =15B | V(O,e)=1.5B
V(0, f) = 150M
E | N | C R

T(S)=10M |[T(N)=25 |T(C)=150M |T(R) =5
V(S,b) = 10M
V(S,) =25 |V(N,e)=25|V(Cc)=25
V(N,d) =5 V(R,d) =5
V(C, §) = 150M

Table 4.11: Reference relations for TPC-D benchmark.

The number of operations to find the optimal solution with the AO* algorithm

is 40 while with dynamic programming it would be 90.

e The second query is (C > L <t N b1 O b R« S) and the optimal join order is:
((C > O) pat (Lt (S < (N < R)))
The number of operations to find this query with the AO* algorithm is 141

while with dynamic programming it would be 301.

e The third query is (C < L < N < O 4 S) and the optimal solution is :
((Ca O)a (L < (N < 9))
The number of operations to find the optimal solution with AO* algorithm is

51 while with dynamic programming it would be 90.

e The fourth query is (C 09 L N 54 O >4 R <1 S < P ba X)) and the optimal
solution is :
((((((L > X) >x) 2 O) <1 C) <1 P) 1 (N <t R)) The number of operations to
find this query with AO* algorithm is 826 while with dynamic programming it

would be 3025.

76

| | Dynamic Programming | AO* Algorithm |

QL9 40
Q2 | 301 141
Q3 [90 51
Q4 | 3025 826

Table 4.12: The optimization costs for AO* and Dynamic Programming on Benchmark
TPC_D queries.

200 Million 800 Million 6 billion 1.5 Billion
Part(P) PartSupp(X) Lineitem(L) [—— Order(0)
25
10 Million 150 Million
Nation(N) \
Supplier(S) Customer(C)
5
Region(R)

Figure 4.21: The TPC-D Schema.

Chapter 5

Conclusions and Future Work

The problem of join reordering or rewriting is a major task in query optimizers.
Two classical techniques for join redordering are dynamic programming and the greedy
algorithm. The first algorithm always gives the optimal join ordering, but is very expen-
sive. In contrast, the greedy algorithm is very eflicient, but may produce sub-optimal
join orders.

In this thesis, we presented a new algorithm called AO* to find the optimal
join ordering for a given set of relations. Our algorithm is based on a well-known
problem reduction technique of the same name proposed in the context of decomposable
production systems. In our algorithm, we build an AND/OR graph from the relations
in the query; the graph represents all possible join orders, and an optimal join ordering
is an optimal-cost path in this graph. The algorithm is comprised of a top-down graph
growing procedure, as well as a bottom-up cost-revising procedure.

The AQO* algorithm is guaranteed to produce the optimal join ordering, as is
dynamic programming. While the worst-case performance cost of AO* is comparable to
that of dynamic programming, in most instances, it is far more efficient. We compared
the performance of AO* with that of dynamic programming and the greedy approach on
star-, chain-, circular-, and clique-shaped queries. Our results show that the performance
of AO* is substantially better than dynamic programming for the first three types of

queries. While the performance of both dynamic programming and the greedy algorithm

78

are affected only by the number of relations and are independent of the shape of the
queries, or the size of the relations or the value sets, it appears that all these factors
affect the performance of AO*.

Remarkably, the shape of the final result also affects the performance of AQO*.
When the optimal solution has a high cost index, as defined in this thesis, AO™ appears
to converge to it much more rapidly than when it has a relatively low cost index. To
understand the reasons for this, as well as the relationship between query shape and cost
index would be a fruitful direction of future research. A complete characterization of
the worst-case and average-case complexity of AO* would be also an interesting avenue

of research.

Bibliography

[1] M. Kersten A. Pellenkoft, C. Galindo-Legaria. The complexity of transformation-
~ based join enumeration. In VLDB, 1997, pp. 85-97.

[2] A. Gupta A. Swami. Optimization of large join queries. In ACM SIGMOD, 1988,
pp. 8-17.

[3] R.E. Bellman. Dynamic Programming. Princeton University Press, 1975.

[4] David Maier Bennet Vance. Rapid bushy join-order optimization with cartesian
products. In ACM SIGMOD, 1996, pp. 35-46.

[6] Surajit Chaughuri. An overview of query optimization in relational systems. In
ACM SIGMOD, 1998, pp. 34-43.

k [6] C. Date. An introduction to Database systems. Addison-Wesley, California, 1986.
[7] C. Date. Relational Database:Selected Writings. Addison-Wesley, California, 1986.

[8] L. Haas et al. Extensible query processing in starburst. In ACM SIGMOD, 1989,
pp- 143-160. '

[9] G. Graefe and D.J. DeWitt. The exodus optimiser generator. In ACM SIGMOD,
1987, pp. 160-172.

[10] Jeffrey D. Ullman Hector Garcia-Molina and Jennifer Widom. Database Systems:
The Complete Book. The Prentice-Hall Company, California, 2002.

{11} T. Imielinski. Advances in Database theory. The Plenum Press, New York, 1984.

{12] Yannis E. Ioannidis. Query optimization; In Database and Information Retrieval,
1997, pp- 1038-1057.

[13] E. Wang K. Youssefi. Query processing in a relational database management sys-
tem. In ACM SIGMOD, 1997, pp. 223-241.

[14] Guy M. Lohman Kiyoshi Ono. Measuring the complexity of join enumeration in
query optimization. In VLDB, 1990, pp. 314-325.

[15] G.M. Lobman L.F. Mackert. Optimizer validation and performance evaluation for
local queries. In ACM SIGMOD, 1986, pp. 149-159.

80
[16] G.M. Lohman. Is query optimization a solved problem? In ACM SIGMOD, 1988,
pp- 110-123.

[17) William J. McKenna. Efficient Search Extensible Database Query Optimization:
The Volcano Optimizer Generator. PhD thesis, University of Colorado at Boulder,
1993. ‘

[18] Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co., Palo
Alto, California, 1980.

[19] TPC organization. The tpcd queries. In Introduction to Queries.,
http://www.tpc.org/tpcd/default.asp.

[20] D.S.Parker P. Atzeni. Assumptions in relational database theory. In ACM Symp.
on Principles of Database Systems., 1982, pp. 76-90.

[21] T.G. Price P.G. Selinger, R.A. Lorie. Access path selection in a relational database
management system. In ACM SIGMOD, 1979, pp. 170-183.

[22] S.B. Navathe R. Elmasri. Fundamentals of Database Systems. Addison-Wesley,
Vancouver, 2000.

[23] A. Levy R. Pottinger. A scalable algorithm for answering queries using views. In
VLDB, 2000, pp. 243-261.

[24] J. Gehrke R. Ramakrishnan. Database Management Systems. McGraw Hill, 2000.
[25] V. Vianu S. Abiteboul, R. Hull. Foundations of Databases. Addison-Wesley, 1995.

[26] R. Badrinath T. Imielinski. Querying in highly mobile distributed environments.
In VLDB, 1992, pp. 44-54.

[27] Jeffrey D. Ullman. Principles of Database Systems. Computer Science Press,
Rockville, 1982.

[28] M.C. Shan W. Du, R. Krishnamurthy. Query optimization in a heterogeneous
dbms. In VLDB, 1992, pp. 128-137.

[29] Younkyung Cha Kang Yannis E. Ioannidis. Left-deep vs. bushy trees: An analysis
of strategy spaces and its implications for query optimization. In ACM SIGMOD,
1991, pp. 168-177.

