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ABSTRACT

Development and Evaluation of Novel Finite-Difference Time-Domain Methods for
Solving Maxwell’s Equations
Guilin Sun, Ph.D.

Concordia University, 2005

This thesis proposes several new finite-difference time-domain (FDTD) methods to
overcome shortcomings of current FDTD schemes: the new explicit methods have better
numerical accuracy and the new implicit methods have unconditional stability; an error
quantification method is described to evaluate the discretization error of a FDTD method,;
and a new concept of numerical loss in lossy materials is discussed, which has been
neglected by the FDTD community. |

The new explicit methods are derived by optimizing the numerical dispersion
relation. The 24-stencil method and the neighborhood-average method can have high
accuracy in a given angular sector; or have zero anisotropy in the 2D and 3D cases.
Combining the two methods, the neighborhood-average-24 method provides one order-
of-magnitude lower accumulated phase error than other published methods, and can use
as large as the Courant time step size.

The correct numerical dispersion relations for the implicit alternating-direction-
implicit (ADI) method are derived and verified with good agreement with the numerical
experiments. The inconsistency in the literature concerning the dispersion relation is

removed.
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Based on the high-accuracy, fully implicit and inefficient Crank-Nicolson scheme,
several new efficient implicit methods are proposed, which have much smaller anisotropy
and smaller discretization error than ADI. The numerical dispersion relations and the
perturbation errors to the Crank-Nicolson scheme are given.

It is shown that all the unconditionally-stable methods have their own time-step-size
upper bounds to avoid non-physical attenuation, and have intrinsic spatial dispersion and
intrinsic temporal dispersion. A method to quantify the discretization error of an FDTD
scheme is developed and is used to compare the errors of various schemes.

In lossy media, the relations between numerical phase and loss constants are derived
for Yee’s FDTD, ADI and the Crank-Nicolson-based methods, and verified with good
agreement with numerical experiments. The numerical loss constant is always larger than
its physical value, which implies that the electric field strengths computed by the FDTD
methods in lossy media are smaller than the actual physical values. The numerical
velocity in lossy media can be smaller or larger than its physical value.

The finite-difference operators and the efficient splitting scheme proposed in the

thesis are powerful tools in developing new FDTD methods.
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Chapter 1 Advances, Limitations and Challenges

in Finite-Difference Time-Domain Methods

Since the propagation, diffraction, scattering, penetration and interaction
phenomena of electromagnetic waves are governed by the well-known Maxwell’s
Equations, solving Maxwell’s Equations is fundamental and crucial for the manipulation
of electricity in the design of electric devices. But except for several special cases, such
as plane waves, cylindrical waves, and spherical waves, or wave propagation in some
waveguides, resonance in some cavities, or wave scattering by certain simple objects, it is
often not possible to obtain an analytical or explicit solution for the electromagnetic
fields [1]. Progress in digital computer hardware and software has now made numerical
solutions popular. The numerical solution of Maxwell’s Equations is the main focus of
computational electromagnetics (CEM).

All fields of electrical engineering, encompassing power engineering, control
engineering, electronics, and communications involve electromagnetics. Therefore,
applications of electromagnetic simulation and numerical solutions can be found in many
disciplines [2-6], such as antenna design and analysis, computer chips and circuits design,
electromagnetic compatibility and electromagnetic interference (EMC/EMI), microwave
engineering, radar cross-section analysis and design, optics and optoelectronics, lasers
and photonics, microelectro-mechanical sensors, biomedical engineering and bio-
technology, stealth technology and automatic target recognition, physics-based signal

processing and imaging, remote sensing, and subsurface sensing.



There are many methods in CEM [1-12], based on the differential, integral,
variational, hybrid approaches or other forms. These methods can be classified into two
main categories: the time-domain methods and the frequency domain methods. In recent
times, there is increased interest in direct time-domain methods. Time-domain methods
work better for wideband signature studies, are better suited for parallel processing, and
provide better visual representations for understanding field interaction phenomena [3].
In particular, time domain methods are the only means to examine the causal property of
the recently emerging metamaterials with negative refraction index and positive/negative
group velocities, for example, in [13].

Originally proposed by Yee [14] in 1966, and named later by Taflove [4] [10], the
“finite-difference time-domain” (FDTD) method, a direct full-wave Maxwell’s Equations
solver, is thé most popular method for the solutions of problems in electromagnetics [4-
6]. After Mur’s efficient absorbing boundary condition [15] was introduced in 1981, the
FDTD method gained wide acceptance, particularly in 1990s. This is because FDTD is
quite versatile for solving Maxwell’s Equations from extreme low frequencies to
microwave and optical frequencies [4], and even for problems in particle physics [16].
FDTD is simple to program using elementary data structures, and has a relatively high
computational speed. It can make broad-band prediction, deal with arbitrary 2D and 3D
geometries with materials of any conductivity, permittivity and permeability, with
nonlinear materials, with frequency- and time-dependent materials, as well as with
unconventional materials such as anisotropic plasmas, magnetized ferrites and

metamaterials [2-6] [13]. In addition, it is robust, flexible, and non-dissipative.



Many enhancements have been introduced to extend FDTD to new applications and
improve the performance of FDTD, such as accuracy, computational efficiency,
boundary treatment and material interfaces. For brevity, this Chapter will be restricted to
advances related to the main topics of this thesis.

1.1 Applications of the Finite-Difference Time-Domain Methods

Initially, FDTD was invented for solving Maxwell’s Equations in electrical
engineering. Due to its superiority over other methods, the ingenious FDTD method has
been adapted to other areas, such as acoustics [6], quantum mechanics[17],
elastodynamics [18], as well as particle physics [16], to name a few.

The applications of FDTD methods have swept almost thé whole spectrum of
electromagnetics: static [19], quasi-static [20], lightning-interaction with aircraft [21],
power transmission, antenna, microwave, wireless communications, and photonics [4].

FDTD can accurately predict transient behavior and steady-state behavior over a wide
bandwidth of devices and components, such as high speed digital or mixed signal
circuits, printed circuit boards, integrated circuits, multichip modules, MEMS and nano-
components. In recent years, FDTD has been extended to system level. The progress of
FDTD methods has made simulations possible for devices, components and systems,
including passive and active components.

1.2 Limitations in FDTD Methods

In computational electromagnetics, the size of geometrical features and the
wavelength inside the materials are very important parameters. The “electrical size” of an
object [22], that is, the geometrical size scaled by the wavelength, is used as a guide. If

the electrical size is much larger than unity, such as the analysis of an optical waveguide,



huge computer storage is required to solve the problem with FDTD. If the electrical size
is very small, it is often over sampling spatially and thus spatially for explicit FDTD,
because the Courant-Friedrich-Levy (CFL) constraint [4] (CFL limit, CFL condition or
stability condition) specifies the maximum time step size for stability in terms of spatial
sampling size or the “cell size”. For example, the electrical size for integrated circuits is
of order 10°. To simulate such objects, the CFL dictates a very small time step size,
leading to a long CPU time. To understand how the CFL condition limits the FDTD

performance, consider the interaction of a cell phone with human head as an example. If

homogeneous (uniform) meshing is used, as many as 8.5x10° cells with 1.5 TB memory
may be needed, and may take spend 2.5 years to execute [23]!

Like other discrete methods, FDTD has numerical errors. The most important is the
numerical dispersion, a phenomenon caused by the fact that the velocity of the numerical
wave is not the same as the physical speed, causing numerical refraction and reflection
[4]. Numerical dispersion causes phase error as the wave propagates through the FDTD
grid, and depends on direction of wave travel, which is a limiting factor for electrically-
large structures. In addition, FDTD has magnitude error [161*].

1.3 Methods for Improving Numerical Accuracy

To improve FDTD’s numerical accuracy, many methods have been proposed. These
methods can be classified into two main categories: methods using totally new
formulations, such as the multi-resolution time-domain (MRTD) method [24] and the
pseudospectral time-domain method [25]; and methods modifying the conventional Yee’s

method. Chapter 3 of this thesis focuses on the latter, which can be further classified into

" References from 151 to 167 are the published papers and internal reports by the author, listed on page
225.



three methodologies: larger computational stencil or “higher-order” schemes; coefficient
modification schemes; and hybrid methods using a large computational stencil and
coefficient modification.

Conventional Yee’s FDTD is 2™-order accurate in both time and space, and is
referred as a (2, 2) method. The (2, 4) scheme is 2"-order accurate in time and 4™ -order
in space and can model structures that are thousands of wavelengths in size [26-30].
General (2, 2M) methods where M > 2 can be found in [18]. The (4, 4) schemes such as
Rounge-Kutta [10] and dissipative scheme [31] have been proposed. A generalized
higher-order (4,2M) scheme using the discrete singular convolution for spatial
differentiation is reported [32]. Comparison of some higher-order methods can be found
in [10] [33-35]. However, higher-order algorithms have degraded numerical stability
properties relative to the second-order algorithm, which means that the time-step size
must be smaller than that for second-order methods. Additional challenge for higher-
order schemes is the proper treatment of boundary conditions and material discontinuities
to eliminate artificial reflection and refraction, and avoid later time stability [10]. Most
importantly, analysis shows that higher-order schemes do not always give better
numerical accuracy [159].

Simple methods to improve numerical accuracy at one frequency either use artificial
anisotropy [36-38] or modify the speed through the difference operators [39]. Hybrid
methods include those using non-standard finite-difference method and larger stencils

[40-43], overlapped lattice method [44], and filtering methods [45-48].



In addition, the Richard’s extrapolation can be effectively used after running an
FDTD code by halving the spatial cell size [49]. However, it is only effective for uniform
discretization.

1.4 Methods Using Larger Time Step Size Than CFL Limit

The CFL time step size limit arises from stability requirements. Several methods can
be used efficiently in analyzing the stability of FDTD methods [50-55]. Because the time
step size in explicit FDTD imposed by the CFL limit is too small for practical
computation for some problems, many methods for relaxing this time constraint have
been proposed.

Some problems involve small parts such as a thin wire. If the problem uses uniform
discretization everywhere, it is the smallest part that determines the finest cell size, which
is only a small part of the whole volume but results in larger computation time and
memory requirements. Sub-griding schemes are efficient in improving the CPU time
consumption, and can be divided to three main categories: sequential computations or
time-domain segmentation techniques [56]; sub-gridding in space [57]; and sub-gridding
in both space and time [58-59]. The transition between the coarse and fine regions must
be treated with care in order to eliminate artificial reflection at the interfaces [58].

By combining FDTD and reduced-order modeling, a sub-domain model in 2D is
achieved [60] with time-step size larger. than Courant limit, and more importantly, it
reduces memory by a factor of 100, but at the cost of expensive computation.

For some narrowband application, the envelope method can be used [61-62], which in
some cases can have no time step size limitation [63]. Extrapolation is also efficient in

shortening the CPU time, such as finite-impulse-response neural network model which



uses a short segment of FDTD to extrapolate later information [64], Prony’s method other
signal processing methods [65] for certain problems.

Finally, to reduce computer run-time consumption, special hardware [66-67] or a
parallel computer [68] can be used.

1.5 Methods Without the Time Step Size Limitations

It has been shown [69] that for hyperbolic systems of partial differential equations,
there are no explicit, unconditionally stable, and consistent finite-difference schemes.
Therefore the only way to eliminate the Courant condition is to seek implicit schemes, or
unconditionally-stable methods (USMs).
1.5.1 No time stepping schemes

Most current FDTD methods use time-marching schemes to advance the time step by
step. If the step-by-step time marching can be eliminated, there will be no time step size,
hence no CFL constraint. This thesis refers such a scheme as a “no-time-stepping
method”. By transforming Maxwell’s Curl Equations into the Laplace domain and
combining with the standard FDTD method, a simple no-time-stepping method is
realized for some waveguide problems [70]. By expressing the transient behaviors in
terms of weighted Lagurre polynomials [71], a new unconditionally-stable method solves
2D problem in space only. Based on the Suzuki product-formula, Chebyshev polynomials
can be used to describe the time evolution [72]. It is said these algorithms are
unconditionally stable by construction [73]. Higher-order algorithms have also reported

by the same group [74].



1.5.2. Alternating-direction-implicit methods

The Alternating-Direction-Implicit (ADI) method originally proposed by Peaceman
and Rachford is a popular method in solving parabolic and hyperbolic differential
equations [49][75-78]. Extensive literature survey on ADI by the present author can be
found in [165]. Because it can use a large time step size, it can also be used in solving
linear and nonlinear elliptic equations [79].

In solving Maxwell’s Equations, the first ADI method with three alternations was
introduced in 1984 [80]. In 1999 and 2000, this method was re-invented with two-
alternations [81-83]. Since then the ADI-FDTD has been studied extensively, extended to
frequency-dependent materials [84], lossy media [85], highly conductive materials [86],
Debye material [87], incorporated into a sub-griding scheme [88-89], developed with
compact schemes [90-91], and extended to cylindrical coordinate [92]. Reference [93]
proposes the alternating-implicit block-overlapped (AIBO) FDTD method.

Various methods have been proposed to improve the numerical dispersion of ADI-
FDTD, such as the higher-order scheme [94-97], the coefficient- modification methods
[38] [98], and the envelope ADI-FDTD [61] [62].

However, ADI suffers from large anisotropy in addition to large numerical dispersion
[152-154], and the numerical dispersion relations in the literature are not consistent with
each other [81] [99-101]. The author first found this problem [166] [160], and gave a
numerically-verified relation in 1D [160] [154] and 2D [152]. Later other researchers

published similar results [102-103].



1.5.3. Crank-Nicolson scheme based methods

The Crank-Nicolson scheme is well known in computational science and is a high-
accuracy method for solving differential equations [49] [75-78]. But the resulting matrix
is block-tridiagonal or tridiagonal-with-fringes in 2D and 3D, which is very expensive to
solve by usual methods, such as Gaussian elimination or iterative methods. However, the
CN scheme can be used to compare the accuracy with other USMs, for example the ADI-
FDTD [104]. The first practical use of the CN scheme in solving Maxwell’s Equations
was used in a parallel computation by decomposition of the eigenvalue/eigenvector for
the wave equations of the second degree [105]. A domain-decomposition method [68]
first solves a Schur complement system, then solves a block tridiagonal matrix in 2D.
Reference [16] uses CN scheme for solving particle problems using ADI algorithm.
Reference [106-107] use the split-step method that decouples the 3D Maxwell’s
Equations into locally 1D equations, which is similar to the characterization method

[108-110].

1.5.4. Other unconditionally-stable methods

Characteristic-based algorithms [108-109] first decouple Maxwell’s Curl Equations
into 1D equations [77], then solve them implicitly. Recently a two-factor scheme by
combining a characteristic-based approach to spatial differencing with an implicit lower-
upper approximate factorization is proposed in 1D, which avoids the solution of a
tridiagonal system [110].

1.6 Other Advances
The regular Yee mesh is an orthogonal, rectangular, structured grid, and uses the

same cell sizes over the whole computational domain. Such a meshing method causes



“staircase error” in the approximation of curved boundaries. In addition, traditional
uniform FDTD has difficulty dealing with discontinuities such as edges and corners
involving dissimilar media [111]. To alleviate the error due to boundary discretization,
locally conformal, irregular-mesh (including non-orthogonal grid, curvilinear) methods
and many hybrid schemes such as hybridizing with non-structured finite element method
in the time domain have been proposed [3-4] [10] [111]. Recently a staggered upwind
embedded boundary method has been proposed to eliminate the staircase error [112].

An early attempt to reduce the memory requirement is to use the divergence-free
electric-field regions, and combine the scalar wave equation [113]. By using the vector
potential formulation, a 33% memory reduction is achieved for 2-D problems [114]. Very
recently, the reduced FDTD [115] method has been proposed to eliminate the necessity of
subdividing regions, maintaining the advantage of four required field components, while
also being able to easily treat conductors and source regions by using the divergence-free
nature of the electric displacement instead of the electric field, and following a specific
sequence for the spatial update of the remaining field components. This method achieves
a 33% memory reduction in 3D.

Using a discrete Green’s function formulation of FDTD method [116-117] is also an
efficient way to save memory. For antenna radiation problems, it requires neither
absorbing boundary conditions nor the modeling of free space nodes. For some special
cases, three-dimensional problems can be simplified to two dimensions (compact
scheme), which can reduce greatly the required memory space and CPU time [3].

When applying the FDTD technique to open radiation problems, an accurate and

computationally-efficient absorbing boundary condition (ABC) must be developed in
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order to truncate the mesh lattices. The ideal ABC is reflectionless over a broad
bandwidth. The most commonly-used methods are Mur’s [15], Liao’s [118], and
particularly the Berenger’s PML [4] [21] [119]. The PML is composed of a non-physical
absorbing material and is placed adjacent to the boundary cells of the FDTD grid. Its
wave impedance is independent of the angle at which the scattered waves impinge on it.
The main advantage of the PML is its ability to maintain a high level of performance over
a wide range of group velocities, and its performance is independent of the dispersive
nature of the propagating medium. However, each new FDTD method requires its own
ABC-PML to be compatible to the FDTD scheme in accuracy or other aspects.
1.7 Motivations and Challenges

From above literature survey it can be seen that, although FDTD methods have
matured in many applications, and have been extended to increasingly-complicated
problems, there are some limitations. Sometimes the limitations are so severe that it is
very difficult, or very inefficient to apply FDTD methods to certain problems. For
example, electrically very-large structures are difficult to model with FDTD because of
phase error accumulation; for objects with very fine geometrical features compared to the
wavelength, the CFL constraint limits the largest time step size to be so small that the
conventional explicit FDTD methods require prohibitively long CPU time to simulate.

Since explicit FDTD methods are more efficient and easy to implement for many
problems, one goal of this thesis is to develop new explicit methods that have higher
numerical accuracy. The challenge is that, with a history of about 40 years, explicit

FDTD methods have been investigated thoroughly. To devise a new algorithm, new
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methodology must be sought, and inspiration from other computational methods is
necessary.

Another main purpose of this thesis is to develop some unconditionally-stable
methods to overcome the CFL constraint and ADI-FDTD’s large anisotropy error.
Though some CN-based methods have been proposed [104-106], they either require
much more computer resources than explicit FDTD methods, or the numerical dispersion
relation of the method is not given, therefore it is difficult to design a mesh model to
achieve a pre-set numerical accuracy. The big challenge is to avoid an expensive solution
of a block-tridiagonal matrix, in particular for the first-degree Maxwell’s Equations
which have three coupled field components in 2D and six in 3D.

An unconditionally stable scheme is one in which the time step size is not bounded by
any stability requirement. But the time step size may be governed by other factors. One
obvious bound is the Nyquist Criterion, which governs all discrete systems. However, the
Nyquist Criterion has not attracted the attention of the FDTD community, possibly
because previous explicit FDTD methods discretize much more densely than the
criterion.

Note that most memory-saving methods and staircase-error-free methods modify the
update equations of FDTD metﬁods. Therefore, this thesis will focus on developing new
FDTD methods with Yee’s mesh. The enhancement of the methods in this thesis for
memory saving and the elimination of staircase errors will be left for future investigation.

FDTD methods can be applied to lossy materials, and several papers investigated the
numerical dispersion relations [120-124]. However, most authors omit some terms in

their analysis, which are crucial to obtain the correct numerical accuracy information in
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lossy media. Therefore the numerical dispersion relation in lossy material is re-
investigated in this thesis.

At present, only numerical dispersion is evaluated to assess a FDTD method in
literature, which accounts only the phase error. However, the magnitude error must also
be quantified, particularly for problems in which the magnitude is an important
parameter, such as in EMC and bio-electromagnetics. This thesis will develop such a
quantification method [161].

1.8 Contributions and Problems to Be Solved

This thesis focuses mainly on developing new methods that either improve numerical
accuracy or remove the CFL limit. The contributions fall into four areas. First, some new
methods are proposed, including optimized explicit methods with high accuracy and
unconditionally-stable methods with better performance. Second, numerical loss is found
in lossy media associated with discretization but generally neglected by FDTD
community. Third, a new discretization-error quantification method is presented that
reveals more information than the usual numerical dispersion relation.

A deep understanding of the fundamental characteristics of the FDTD methods allows
better methods to be invented, and a good choice of an FDTD method to be made for a
specific problem. This thesis anticipates providing some such understanding. For
example, it has been observed that, there are only two propagating modes and no
stationary mode in 1D, two propagating modes and one stationary mode in 2D, and four
propagating modes and two stationary modes in 3D for a stable FDTD scheme. The
reason for this behavior has not been reported. This thesis will explore some basic

questions like this, such as the mechanism of unconditional stability for ADI-FDTD,
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intrinsic numerical dispersion, and various time step size limits applied to the
unconditionally-stable methods.

Another goal of this thesis is to ensure that the theoretical assumptions that have been
made in analyzing FDTD methods are not deficient, and that no mechanism has been
neglected. This is achieved by numerical validation of the numerical dispersion relation
of the proposed methods.

In developing new schemes, the concept of spatial difference operators gradually
comes into mind. With some trial and error, as well as comparison with the traditional
node-based formulation, it is realized that, like continuous differential operators, the
difference operators can be treated as a mathematical symbol. The mathematical
operations for such operators are the same as algebraic variables. Thus the derivation of
many formulas becomes much easier, and the update equations are more compact and
concise. The use of difference operators also shortens the length of this thesis which
allows writing concisely the formulas. In addition, the results derived using the difference
operators can be directly extended to higher-order methods by simply using higher-order
difference formulas.

1.9 Outline of the Work

This thesis is outlined as follows. Chapter 2 introduces some terminology and
fundamentals of the FDTD methods. In addition, the method to extract numerical velocity
from numerical experiments is described.

Chapter 3 proposes some optimized explicit methods with high accuracy. Instead of
pursuing higher-order schemes, this thesis seeks methods with less numerical dispersion

by minimizing dispersion error in various senses. By the use of the standard (2, 4) stencil,
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the optimized O24 method [159] can have much less numerical dispersion in a pre-
designed sector of wave travel, or can eliminate anisotropy completely at one designated
frequency and reduce anisotropy at other frequencies. By employing an average around
the neighborhood of a field component, the neighborhood-averaging (NA) method can
achieve high numerical accuracy with time step sizes larger than the Courant limit. A
more promising method is the neighborhood-averaging 24-stencil (NA24) method [164],
which has one order-of-magnitude higher accuracy than the methods reported in [41] [44]
with the Courant limit time step size in a wide bandwidth. In addition, it reveals that the
standard (2,4) method is only 2"%-order accurate in terms of numerical dispersion.

Chapter 4 first addresses the Crank-Nicolson scheme for discretizing Maxwell’s
Equations, then formulates the ADI method in a matrix form, and discusses the numerical
dissipation and growth in each individual sub-procedure of the ADI-FDTD method [152]
[154] [160]. The numerical dispersion is re-derived and validated from numerical
experiments, and the inconsistency among the published papers is removed. In addition,
an isotropic ADI method with the (2, 4) stencil is proposed, which has no anisotropy at
one frequency, and greatly reduces the numerical dispersion at the same time. This is a
surprising result, and is different from its explicit counterpart. The significance of this
chapter is to reveal that is the exact cancellation of the growth and dissipation in the two
sub-marching procedures that makes the overall ADI-FDTD method stable. In addition,
the perturbation errors of ADI-FDTD relative to the CN scheme are obtained, which are
of the 4™, 3" and 2™ order.

Chapter 5 presents several new 2D unconditionally-stable methods based on the CN

scheme. Different from the ADI method, the intermediate time step in these methods is
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not associated with any specific time, making the enforcement of the current- or voltage-
source values more effective. The stability, numerical dispersion and perturbation errors
are analyzed, and numerical dispersion behaviors are discussed and compared to ADI
method [151] [153] [157] [167]. Most CN-based methods have much smaller anisotropy
than ADI, which is inherited from the original CN formulation [153]. In addition, a non-
dissipative, unconditionally-stable method for solving the wave equation of the second-
degree is proposed.

Chapter 6 focuses on the unconditionally-stable methods for solving 3D Maxwell’s
Equations, which is more challenging than 2D because there are six coupled field
components. With the use of difference operators and decomposition of the related
matrices, several different methods for efficiently implementing the CN scheme have
been proposed, such as the approximate-factorization-splitting method [156] and cycle-
sweep method [163]. The stability is analyzed for all the schemes, the numerical
dispersion relations are given, and the perturbation errors are derived.

Chapter 7 discusses some fundamental characteristics of the unconditionally-stable
methods, such as intrinsic spatial-derivative-related dispersion, intrinsic temporal
numerical dispersion, time-step-size limit due to numerical attenuation, and numerical
accuracy [153-154]. In particular the Nyquist Criterion is emphasized in analyzing some
properties of FDTD methods. It is shown that to avoid numerical attenuation, these
unconditional-stable methods do have an upper-bound for the time step size, which are
not originated from the stability requirement [153-154]. Classification of the problems

suitable for unconditionally-stable methods allows the choice of proper method for a
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specific problem, and a guide to choose the time step size is given to achieve a desired
accuracy [155].

Chapter 8 introduces a new concept of numerical loss in FDTD to reveal that in lossy
media, the numerical loss constant is not the same as the physical loss constant, due to
discretization. This is logical and mathematically correct, because the loss constant and
the phase constant together make up the propagation constant. If one has numerical error,
the other can also suffer from error. The general dispersion and loss relations for Yee’s
FDTD, ADI-FDTD and CN-FDTD in 1D are discussed, and numerically verified. It is
shown that CN-FDTD has higher numerical accuracy than ADI. In particular the error of
the numerical loss constant is much smaller than that of ADI-FDTD. The perturbation
error of ADI-FDTD is 1%-order accurate in time, leading to larger numerical loss error.

Chapter 9 provides a quantitative method to evaluate the magnitude error or
discretization error, which provides more information of a scheme, and allows a deep
insight into the .numerical errors. After normalizing and decomposing the plane wave,
Maxwell’s Equations in the continuous domain and in the computational domain can be
written in matrix forms. The difference between the matrices in the discrete domain and
the continuous domain reveals the discretization error. Each update equation has its own
discretization error and is different from the error of other update equations. Since the
information is overloaded, the root-mean-square (RMS) error is used to measure the
discretization error. The discretization errors for Yee’s FDTD, for the optimized explicit
methods, for ADI-FDTD and for CN-based FDTD methods are given and discussed.

Chapter 10 summarizes the progress achieved in this thesis, gives some observations

for insight into some issues of the FDTD methods, and indicates future work.
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Chapter 2  Fundamentals of Finite-Difference

Time-Domain Methods

The study of FDTD relies to a great extent on applied mathematics, electromagnetics
and electrical engineering. This chapter describes some useful terminology and
fundamentals about numerically solving partial differential equations (PDEs) and Yee’s
FDTD. The description is brief and not intended for a strict and complete introduction in
terms of mathematics.

2.1 Partial Differential Equations

Many field problems, physical and natural phenomena, such as electromagnetic,
acoustic, heat, ocean, seismic, meteorological, solid geophysical, and fluid mechanic
waves, can be described with PDEs. PDEs form the basis of very many mathematical
models of physical and biological phenomena, and their use has been spread into
economics, financial forecasting and other fields. If a PDE contains only first-degree
algebraic terms in the relevant variables, it is linear and obeys the principle of
superposition.

The elliptic, parabolic, and hyperbolic PDEs are deterministic as opposed to

stochastic, and can be described with L U =G, where L, is a linear operator, G is a

known excitation source, and U is the function to be determined. An eigenvalue problem
is non-deterministic in which G takes the form of AMU where A is the eigenvalue, and
M is a linear operator. A unique solution of a PDE can be obtained only when boundary
conditions are specified for the problem. The boundary conditions (BCs) are described

with L,U = B[77], where L,is a linear operator. When the BCs are given at time ¢ =0,
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the problem is called initial-value (Cauchy) problem. If only the values at geometrical
boundaries are specified, the problem is a boundary-value problem [77]. The periodic
boundary condition is another important one that extends the associated initial value
function B periodically to the whole real space.

The solution region can be either closed (bounded, interior) with given boundary
conditions such as a resonator, open (unbounded) which extends to infinity such as
antenna radiation problems, or mixed (hybrid) such as an open-end waveguide.

2.2 Discretization, Mesh and Update Equations

In order to be suitable for numerical computation, it is necessary to approximate the
solution of the PDEs by discretizing the space and time. Such discretization transforms
PDE:s from the continuous domain into the discrete, “computational domain™ [126]. After

such discretization, the differential equation becomes a difference equation Lyu=g,
where L, is discretization of the linear operator [126], u is the discretized, approximate
solution of U, and g is the discretized G. The discretization takes different forms for
various numerical methods. In finite difference method, the unknown function
U(x,y,z,t) is approximated as u(iAx, jAy,kAz,nAt) where i, j, k, are the spatial indices,
n 1s the time step index, and Ax, Ay, Azand At are spatial and temporal increments. In

this thesis, the temporal increment is termed the time step size. u(iAx, jAy, kAz,nAt) can

be written more simply as #” (i, j, k) [77], and sometimes just denoted as u".

In the continuous domain, the unknown quantity can be computed at any time and
any location. However, in the computational domain, numerical methods can only
compute such unknown quantities at the specified, isolated “points” or nodes. Usually,

the region to be examined is divided into a rectilinear grid with sides parallel to the
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spatial axes. Thus the computational domain is a regular mesh, or grid (or net, network,
pattern, lattice, tessellation) [126-127] which is composed of small bricks of size Ax by
Ay by Az, which are also called cuboids (3D), rectangles or squares (2D), and segments
(1D). Each of these small elements is called a cell. There are irregular meshes, such as
triangles, hexagons [127-128], curvilinear net [4] [127]; they can be in rectangular,
cylindrical and spherical coordinates [10]. There are also irregular nets called curvilinear
meshes. The meshes can also be classified as orthogonal and non-orthogonal [4].

In actual computation, the difference equation L,u =g is expressed with local

discrete solution operator E, that u""'(i,j,k)=Epu"(i,j,k) [126]. This form of
equation shows the evolution of the unknown quantity at time step n+1 from known
quantities at previous time steps (n, n-1 etc.), and usually called an “update equation”. A
specific discrete solution operator is referred as a scheme, or a method, and sometimes an
algorithm. The grid nodes involved in the computation of E, are called the
computational stencil, molecule or foot-print [127] [129].
2.3 Finite Difference Formulas and Local Truncation Error
In finite difference methods, the Taylor series expansion is used to analyze the

approximation. For example,

A 1
U(x+——) Ux )+U ? +-U, (_) 3x(_) _U (_) +1_2—O 3x(—) (2-1)

where U, (i=1,2,...) are the first, second, and higher-degree derivatives. Symbolically a
difference equation can be formulated in exactly the same way as the differential
equation using an exponential function [127] [130], in which U™ can be expressed as

exp(AtL,)U" for the PDE 0U /0t = L .U where L, is a linear spatial differential operator.
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In practice, the exponential function must be simplified by using the Taylor expansion,
which is truncated to include only some lower-order terms. The numerical computation
can use only a finite number of terms from the Taylor expansion, thus it is called the
finite difference method. The resulting discrete equation is the finite difference equation
(FDE) or simply the difference equation. The finite difference method introduces error
due to approximation, usually called truncation error, or discretization error [49] [127]
[130].
The first derivative can be written from Eqn. (2-1) as

U(x+Ax/2)-U(x-Ax/2)
= A +7 (2_2)
1 1

r=—-—U, (Ax)? ————U. (Ax)* —...
24 2 (A%) 19200 s (A7) (2-3)

U

where U,,, U,, are 3™ - and 5™ -degree derivatives, respectively. Usually = is called the

local truncation error [130], or discretization error [49] to account for the case that some
functions may have no higher-degree derivatives. The first term in 7 is referred as the

principal part of the truncation error. For brevity, the big O notation is commonly used to

denote the principal part as O(Ax™), where m is an integer[76]. The error in Eqn. (2-3)

can be written as O(Ax?), since the lowest order of Ax is two. The quantity before (Ax)”

is called transformation coefficient.
Since the finite difference method can only use finite number of terms, Eqn. (2-2)

may be approximated to

u(x+Ax/2)y—u(x—Ax/2)

U,(x)~u, (x)= Ax (2-4a)

provide that 7 is bounded. Similarly, the second derivative can be approximated to
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u(x+Ax/2)+u(x—Ax/2)—2u(x)

U, (x)~u,, (x)= o~ (2-4b)

The computational stencils for some finite difference formulas can be found in [11] [18]
[33] [127]. Egs. (2-4) and (2-5) are referred central-differencing formulas [11] [127].
Most FDTD methods use central differences.
2.4 Convergence, Accuracy, Stability, Nyquist Criterion and Consistency
To evaluate a numerical scheme, the convergence, accuracy, stability and consistency
must be analyzed [49] [69] [129-130]. “Convergence” means that as the discrete spatial

increments and time step size approach zero, the solution of the difference equation

approaches the solution of the original differential equation, that is u] syt > U @t

any point inside the computational domain. “Global accuracy” (the set of values
{u”(i, J,B)-U"(,]J, k)} [130]) is a measure of the difference between the numerical
solution and the exact solution all over the region under consideration, and is generally a
very difficult quantity to estimate [130]. To compare different schemes, the order of
accuracy is usually used. A difference scheme is said to be accurate of order ( p, g) to the
given PDE if the local discretization error L U"(i,j,k)-G"(i,j,k) or
t=@u™ -E,u")/At of the difference scheme can be expressed as

Iz = O(At”)+ O(Ax*) [49] [69] [77] [126]. Strictly it is local order of accuracy since it

does not concern the boundary conditions. Note that 7 is not the error of the solution. For
smooth initial data, the order of the solution is equal to the order of accuracy of the
scheme [69]. Several methods can be used to improve the accuracy of a solution [49].

In addition, the difference equations may not be solved exactly because of finite

precision of machine arithmetic, and the introduced error is called round-off error [127].
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In linear PDEs, the round-off errors are cumulative [130]. They cannot generally be
reduced by decreasing the cell sizes [127] [130]. Round-off error reflects the fact that
computations must be done only with finite precision arithmetic on a computer [11].
Decreasing truncation errors by using a finer mesh may result in increasing the round-off
error due to the increased number of arithmetic operations [11].

The stability of a finite difference scheme requires that the difference u —# between
the theoretical solution # with infinite-precision arithmetic and the actual solution # with
finite-precision arithmetic remain bounded as » increases with the time step size fixed
[130]. A numerical algorithm is said to be stable if a small error at any stage produces a
smaller cumulative error [11]. An algorithm is stable if the local discrete solution

operator is stable at any time and at any point [126]. A more practical requirement for

n+l

u"" M <|u”|, or ”E b ”Sl. Note that the stability described above usually

stability is

concerns a time slot from 0 to ¢, . Such stability is refereed to numerical stability [69],

and will be examined in this thesis. In addition, this thesis does not distinguish the
solutions # and u for convenience since all the schemes presented in this thesis are
stable.

Modern research shows that the above conventional description of stability is weak,
and not sufficient [51]. Improperly posed material interfaces have a more restrictive
stability requirement [55], and may cause instability, particularly for higher-order
schemes [54]. Reference [55] shows that if the material properties are averaged on the
boundary, the more restrictive condition can be avoided, and thus the stability of the
original scheme is not affected. Since this thesis does not involve the treatment of

boundary conditions, the conventional stability analysis is used.
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While accuracy analysis gives the order of accuracy, and the stability analysis gives
how big the temporal increment can be for a given mesh density, the Nyquist criterion
guides the biggest temporal and spatial increments such that the signal can still be

recovered correctly [131]. The Nyquist criterion is Az <1/2f for the time step size

where f is the highest frequency of the signal, and Ax < A/2 for 1D spatial cell size
where A is the shortest wavelength of the signal. References.[153-154] pointed out that
ADI-FDTD and Crank-Nicolson (CN)-based schemes cannot reach the Nyquist time
sampling limit; Reference [132] concludes that Yee’s FDTD cannot use the coarsest

spatial sampling fAx = 7 at the “magic time step”” [4]. Hence in determining the stability,
only 0< fAx <mand 0<wAt <z are considered. Use of larger increments than the

above range may lead to a “fake” or misleading conclusion concerning stability.

Consistency (or compatibility, [49]) requires that /Ar — 0 as spatial increments go to
zero [130]. If a finite difference scheme is consistent, the difference equations are good
approximations to the PDEs [77], and the numerical solution is an approximate solution
of the original differential equation [130]. For a consistent scheme, stability is the
necessary and sufficient condition for convergence [127]. In addition, the Lax
Equivalence Theorem [77] states that a consistent, two-level (see section 2.7) difference
scheme of a well-posed linear initial-value problem is convergent if and only if it is
stable. All the schemes presented in this thesis have the order of accuracy (2, 2) that
ensures the consistency. Thus we will only analyze the stability issue for such schemes.

If a scheme is stable for a lossless material, it is stable for a lossy material as well
[69]. Thus, all the schemes (which are proved being stable) in this thesis can be extended

to lossy cases without having to prove their stability. In the lossy case, the time step size
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should be small enough to resolve the medium relaxation time 7, =&/o [120]. In
addition, in lossy materials, Maxwell’s Equations are dynamically stable as time extends
infinitely [69].
2.5 Fourier Analysis Method and Matrix Method

There are many methods for the analysis of stability [129], but a convenient and
popular approach is the Fourier analysis method (or von Neumann method) [4] [52][128].
The numerical solution can be harmonically decomposed into the Fourier modes, and a
Fourier mode (sometimes called grid function [69]) is an exact solution of the difference
equations [76]. Instead of finding the difference u —# , the Fourier method introduces the
amplification factor (or symbol, [75]) ¢ together with one Fourier mode, because of

linearity. A Fourier mode for the lossless case can be written as

u =& expl- J(BiAx + B, jAy + B,kAz)) (2-5)

where B, = Bcos(¢)sin(8), B, = fsin(¢)sin(6), B, = fcos(F), and = \/m
is the numerical wave phase constant; ¢ is the direction of wave travel with respect to x-
axis (azimuth angle), and @ is the direction of travel with respect to z-axis
(complimentary to elevation angle). Then u"*'=¢&u”. The amplification factor
E=u""/u" =u""*/u"V? can be expressed as &=e @ 70" [49], which describes
the time evolution of the function in the computational domain. For the subsequent time
steps, when the magnitude of the amplification factor is larger than unity, the scheme
exhibits “growth” with time. If the magnitude is smaller than unity, then there is

“dissipation”. When the magnitude is exactly unity, the method is “strictly non-

dissipative” [69], “neutral” or “marginally stable”. A scheme is stable only when |£<1. If
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neither growth nor dissipation represents physical behavior, a stable FDTD scheme
requires |¢=1. Note that generally the phase constant in a scheme is different from its
theoretical or physical value. This is called discrete dispersion [77] or “numerical
dispersion” [4]. Using Fourier analysis can also show the order of accuracy [69] [160].
Note that the Fourier method does not consider BCs since it is effective in an
unbounded uniform Cartesian grid. The matrix method is well suited to include BCs. It

finds the eigenvalues of the amplification (or polynomial coefficient [129]) matrix O

(Qu" =0) from the update equation including the BCs. It can also be simplified by using
a Fourier mode without concerning the BCs. In this case, it leads to the same result as the
Fourier method. If all the eigenvalues, in absolute value, are less than or equal to 1, the
scheme 1s stable [127]. This method is applicable to linear PDEs with non-constant
coefficients [130]. If the amplification matrix is symmetric, the Fourier analysis is
necessary and sufficient to ensure stability [77]. The necessary and sufficient condition
for the difference equations to be numerically stable when the solution of the partial

differential equation does not increase as ¢ increases is that the Lax-Richtmyer definition
of stability be satisfied |0 <1.

The determinant of Q (whether containing the boundary conditions or not) is the
amplification (characteristic, or associated stability) polynomial of order m (1D, m=2,2D,
m=3, 3D, m=6 generally) [69]. By finding the roots of the polynomial, the amplification

factor £ can be obtained. A stable scheme is said to have a “conservative” amplification
polynomial if |£=1[69] [129], where the locus of the amplification factor lies on a unit
circle. The requirement |£|=1assures that the energy in different modes will not be

incorrectly damped, amplified or redistributed.
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If there are no restrictions on the relationship between time step size and the spatial
increments in terms of stability, the scheme is unconditionally stable; otherwise it is
conditionally stable [77].

2.6 Numerical Errors, Numerical Dispersion and Numerical Dissipation

Numerical errors in a scheme include the “amplitude error” and the “phase error”. In
finite difference methods, numerical dissipation and numerical dispersion are often used

to quantify the errors. Mathematically, @ and S must be related. The relationship is

known as the dispersion relation in EM theory, or more generally, the dispersion and
dissipation relation [77]. Dissipation occurs when the amplitude of the plane wave decays
or damps with time, and growth occurs when the amplitude increases with time.
Dissipation causes smearing (i.e., sharp change is smoothed) and damping [77]. In
physics, dispersion occurs when different wavelengths propagate at different speeds. In
finite difference methods, dispersion also depends on the mesh shape, mesh density, time
step size as well as direction of travel due to discretization, thus is called numerical
dispersion.

When £ is real, the numerical wave propagates at the speed of u=w/f, without
growth or decay. If w is a linear function of f, there is no dispersion in physics. To

count for dissipation, @ = w(f)is expressed in a complex number o, +iw,. Thus w,(f)

1s the dispersion relation, and @,(f)is the dissipation relation [77].

All of the even-degree derivatives in the difference scheme result in dissipation or
growth, and all of the odd-degree derivatives greater than one are dispersive [77]. With
central differencing, all the even-degree terms cancel out. Thus most often FDTD

methods using the central differencing are dispersive rather than dissipative.
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2.7 Two-Level and Multilevel, Time Stepping, Explicit and Implicit Schemes

A two-level scheme involves only the quantities at time step » and n+1. If a scheme
relates the quantities with three or more adjacent time steps, it is called “three-level” or
“multilevel” method [49]. Yee’s FDTD is “nominally” a multi-level method, but can be
considered as two-level, since both the electric and the magnetic fields have only two
time-levels involved though the time step indices are different [4]. Each ADI-FDTD sub-
marching procedure is two-level, and Crank-Nicolson-based schemes [151] [156-157]
[163] for the first-degree Maxwell’s Equations are two-level methods, and are three-level
methods for the second-degree wave equation [162].

If a scheme advances a full time step Az with no intermediate time step, it is refereed
as a ‘“one-step” scheme; if a scheme advances successively through “sub-marching
procedures”, that is, advances a fractional time-step with one set of update equations, and
then a further fractional time —step to complete Az with another set of update equations;
and each sub-marching procedure is associated with a specific time step, it is called
“multi-time stepping” method [126]. Yee’s FDTD is a one-step method, whereas ADI is
two time-step method in which the intermediate time step is associated with (n+1/2)Az.

An explicit scheme involves only one grid point at the current time level ¢ = (n+1)At
and some grids at previous time steps [130]. Thus it permits step-by-step time
advancement iteration directly [127]. An implicit scheme involves more than one grid
point at the current time level. Such a formulation usually requires solving a sparse
matrix at each sub-marching procedure or each time step. In general, both implicit
scheme and explicit scheme can be unconditionally stable. Note that some implicit

scheme is unstable, such as the first-order-approximation (Euler) scheme [49]. However,
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for hyperbolic systems of PDEs, such as Maxwell’s Equations, there are no explicit,
unconditionally-stable, and consistent finite difference schemes [69].
2.8 Discretization of Boundary Conditions and Numerical Boundary Conditions
To perform a numerical solution, the boundary conditions have to be discretized.
Improper implementation of the discretized BCs may ruin the accuracy of the numerical
scheme, and may make the overall scheme unstable. Analysis shows that the discrete

operator for the BCs must be close to (g —1)* order for ¢” -order spatial operator [133].

The open region problem requires an extra, artificial “numerical” absorbing
boundary condition (ABC) to “truncate” the computation into a “closed” problem, since a
digital computer cannot store an infinite amount of data. Such an ABC is used to absorb
ideally all outgoing waves at the outer boundaries from the region of interest, and to

provide boundary values to complete the numerical scheme in the computational domain

with (iAx, jAy,kAz)where i =12,.,.M _, j= L2,..,M, and k =1,2,..., M, where in total
there are (M, —1) (M, —-1)(M, 1) cells. The outer boundary can be the i = 1surface or

the i = M surface, etc. In FDTD methods, there are numerous papers on such ABCs [4]

[6-7] [10]. This thesis will generally not address this issue except for a periodic BC for
some implicit methods (see Chapter 6).

Note that the stability of an algorithm is not only related to the spatial increment and
time step size, but also connected to schemes used to implement the boundary conditions
[4] [54] [134]. References [68] [134] show that for an implicit non-iterative finite-
difference scheme to be unconditionally stable, the numerical boundary conditions must

be also implicit.
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2.9 Numerical Experiments and Validation of A Scheme

Sometimes it is not possible to thoroughly analyze a numerical method to determine
its properties of convergence, accuracy, stability, and consistency. Even if it is possible to
analyze the properties, the theoretical result needs to be verified with numerical
experiments to be sure that the theoretical assumptions that have been made are not
deficient and that no mechanism has been neglected in the theoretical analysis. Therefore
numerical experimentation must be performed to demonstrate the correctness. Such
experiments must be carefully designed. One such experiment is the bench-mark problem
test, in which either the analytical solution is known, or reliable measurement data or data
from other well-established numerical methods have been published. However, such
experiments may show good results only for the bench-mark problems, but poor results
for many other real problems.

The phase velocity of wave propagation in a numerical method is approximate due to
numerical dispersion [77]. An objective of the analysis of an FDTD method is to
demonstrate how well it preserves the phase characteristics, or the true velocity of the
wave in physics. Therefore, in this thesis, the numerical dispersion relations that are
derived theoretically will be validated through numerical experiments by implementing
the proposed scheme.

Another reason for numerical experiments is to test the numerical stability of the
proposed methods by coding them and running the codes for many time steps. Every
scheme proposed in this thesis has been tested and no violation to the stability analysis

has been observed.
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There are a variety of schemes in FDTD. Most schemes have one or more properties
that make them desirable for specific types of problem. The preference of one to another
depends on the problem and personal interest. Finally, it should be noted that the
simulation results can only be as good as the model of the problem. Thus, a good model
for a specific problem must reflect the real physics of the component or object. This
thesis will devise methods for problems best suitable for the full-wave Maxwell’s
Equations.

2.10 Maxwell’s Equations

Maxwell’s Equations (MEs) [135] describe the temporal and spatial evolution of the
electromagnetic waves, and have some special properties. First, MEs are a first-degree,
symmetric and strongly hyperbolic system of PDEs [77]. Second, they are omni-direction
wave equations, which is difficult to solve compared to the one-way wave equation
oU /0t +adU /ox =0, where for a > 0 the wave travels along +x, and for a < 0the wave
travels along —x. Next, it is generally a mixed initial/boundary value problem. Thus the
numerical solution for MEs requires special efforts and careful consideration. Though
sometimes EM problems can be solved by approximating MEs with parabolic equations
[12], in fact, the MEs are hyperbolic and will be solved directly for all the field
components in this thesis. This is referred a “full wave” solution.

By using the MKS units, the time-dependent MEs can be given in differential or point
form as Faradays’ Law, Ampere’s Law, Gauss’ Law for the electric flux density and
Gauss’ Law for the magnetic flux density (Divergence Theorems) as follows [4] [135]

0B/ot=-VxE-M (2-62)

oD/t =VxH—J (2-6b)
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VeD=0 VeB=0 (2-6¢)

where it is assumed that there is no electric or magnetic current sources in the region of
interest. In a linear (¢ and p are field-independent), isotropic (¢ and pu are independent of

direction), and non-dispersive material (¢ and permeability u are frequency-independent),

the quantities can be related by the constitutive equations D=¢E , B= ,uﬁ , J=cE and

M= amﬁ , where o is conductivity, and o, is the equivalent magnetic loss which is

set to zero in this thesis. A lossless material has zero conductivity o =0, and a lossy
material has larger-than zero conductivity o > 0.
2.11 Yee’s 2D Finite-Difference Time-Domain Method
In 1966, K.S.Yee published his milestone paper [14] for solving Maxwell’s Equations

by discretization in space and time with cells. The 2D Yee mesh is shown in Fig.2-1.

j+1

\ 4
A 4

J > P- *
A . A . A Ay
i1 . . :
. e Ax o 1t
1-1 1
. [{Z g Ex ? Ey

Fig. 2-1 Regular 2D Yee mesh and the locations of the field components.
The Yee mesh is a regular, orthogonal, dual-staggered grid consisting of a primary

grid (solid line) and a secondary grid (dashed line). For the 2D TE, wave, the field
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components are space-staggered (E offsets H), and uncollocated (E, is separated
fromE, ). The magnetic field H,is sampled at the intersection of the dashed lines, and
the electric field component £, at the intersection of the horizontal solid lines and the
vertical dash lines, but £, is sampled in the intersection of the vertical sold lines and the

horizontal dash lines. Those intersections are the “nodes”. The time levels in the time-
derivative terms are interleaved by the “leapfrog” scheme over the time levels in the
space-derivative term.

In finite-difference time-domain methods, the vector components of the curl operators
in Cartesian coordinates can be expressed with coupled scalar equations, and they are the
basis of the FDTD numerical algorithm [4]. The divergence Theorems are automatically
satisfied [6], which are centered at the intersections of two solid lines (for the electric
field) and two dash lines (for the magnetic field for TM, wave). Thus Yee’s difference or

the update equations in linear, isotropic, non-dispersive and lossless media are

HM2 G +1/2,j+1/2)=H " (+1/2,j+1/2) +

2-7a
. E"G+1/2,j+D)—ENi+1/2,j)  E G+ j+1/2)-E; @, j+1/2) (2-72)
—a
2 Ay 2 Ax
+1/2 7 . _ +1/2 7 .
Ej*‘(i+1/2,j)=E;(i+1/2,j)+qH’n (+1/2) +1/2)AH: (/2712 (2-7b)
y
el e n e HM2(+1/2, j+1/2)-H"*(i-1/2, j+1/2)
Ey" (i, j+1/2)=E; (i, j+1/2)-q, . (2-7¢)

where a, =At/¢e, a, =At/pu. A2D Yee cell contains £, (i +1/2,j), E, (i,j+1/2) and

H_(i+1/2,j+1/2) as can be seen in Fig. 2-1. The staggered arrangement of the electric

and magnetic field components is consistent with the boundary conditions where the

tangential E and H at the grid surfaces are continuous, allowing the electric and magnetic
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fields to be alternately computed in a leapfrog manner so that the coupled field
components are “decoupled” in time. Yee’s FDTD is explicit, one time-step method, thus
is relatively fast, easy to implement, and requires moderate computer memory. Note that
Yee’s mesh is “ordered”, “structured”.

2.12 Stability Analysis and Numerical Dispersion of 2D Yee’s FDTD.

Using the Fourier analysis method with Eqn. (2-5), the update equations (2-7) can be

simplified to
ow"=0 (2-82)
1-¢& 0 ~J2a,sin3,Ay/2)/ Ay
0= 0 1-¢ J2a, sin(B Ax/2)/ Ax (2-8b)
—J2a,sin(B,Ay/2)/ Ay  J2a,sin(B Ax/2)/ Ax) 1-¢&
n n n n Y 2-8¢
wr=(Er B H!) (2-8¢c)

The amplification polynomial is the determinant of the amplification matrix Q, which is
PE)=([-&N1+202r2 +2r2 ~1)E+£?) (29)
where 7, =cAtsin(f,Ax/2)/ Ax, r, = cAtsin(B,Ay/2)/ Ay. The amplification factor &

can be found from the roots of P(£). The first root is& =1, which is a stationary, non-

propagating solution, and the non-stationary solution is

20 A -1 = 1Y)
1- (rx2 + ryz)

& =exp| £ Jtan" (2-10)

which is the propagating mode solution. Eqn. (2-10) is valid with the condition that

1—(;’xz+ry2 )20is satisfied. The maximum of the sine is unity, that is,

max{r’,r’} = {cAt/ Ax,cAt/ Ay}, thus the condition can be simplified as
x 20y
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1

At <
1/ Ax? +1/ Ay (2-11)

This is the stability condition, usually referred as the Courant-Friedrich-Levy (CFL) limit

or Courant limit [49] [69] [129], and is a general requirement for hyperbolic explicit
difference equations. If a scheme satisfies the CFL condition, then it is “convergent” [77].

The Courant number (CFLN) is defined as s =cAt/A_,, in general in this thesis

max

where A _,, =max{Ax,Ay,Az}. For a homogenous or uniform mesh where all spatial

increments are identical, that is, Ax = Ay = Az, the Courant condition requires s<1//d
for 1D, 2D and 3D where d =1,2,3 is the dimension. Another parameter called “relative

Courant number” (RCFLN) [165] is the product of the CFLN and the aspect ratio

R= \/ (A /Ax) + (A, /Ay)? +(A_,, /Az)* , which indicates that how big the time
step size is compared to the Courant limit. In Yee’s FDTD, the Courant limit insures the
time step size is much less than the limit of the Nyquist criterion.

Since the amplification factor in Eqn. (2-10) has a unity magnitude, either substituting
& = exp(wAt / 2) into the update equations, or comparing & = exp(wAt/2) to Eqn. (2-10)
can obtain the numerical dispersion relation. The numerical dispersion relation can be

derived as [4]

sin’ (¢ /2) _sin’(B,Ax/2) N sin’(8,4y/2)
(CAt)z AxZ Ay2

(2-12)

By use of simple root-finding algorithm, the numerical dispersion can be evaluated.
Numerical anisotropy occurs when a plane wave has different numerical velocity of

propagation in different directions [4].
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2.13 Source Excitation

A complete FDTD implementation must include a computationally-efficient source
excitation. In order to simulate the propagation of EM waves, the source in the FDTD
lattice must be coupled into the FDTD grid properly. Depending on different properties
and criteria, many terminologies [4] [136-138] are used to describe an FDTD source.
This thesis uses a pulsed, monochromatic, embedded (internal), “hard” field source.

FDTD is devised to determine the transient EM fields. It can be regarded as a
“causal” system with a starting point ¢ =0 [139]. If the driving temporal waveform is not
properly chosen, static fields may be included in the FDTD results [137]. To avoid the
induced, unintended dc-offset static field, a zero mean-value function is usually used,
such as the bi-polar [138] (also called double or differential) Gaussian pulses. The source
parameters should be chosen carefully to cover the desired frequency band, and at the
same time avoid unwanted higher frequencies and overshoot [139] [158] due to sudden
turn-on or turn-off. In this thesis, the following driving function is used

n=ng .3

H ={e ™ sin(wnAt) n<n, (2-13)

s

sin(wnAt) n>n,

where n, and w, are parameters to control the “turn-on” transient of the excitation and

w, =n,/4 [6], and @ is the designate angular frequency of the signal. Such a waveform

may be called “quasi-monochromatic” since it has a non-monochromatic part only during
the turn-on transient.

2.14 Numerical Experiment Design and Extraction of the Numerical Velocity

To validate theoretical numerical dispersion relations, their predictions must be

compared with numerical experiments. To extract the numerical velocity from the FDTD
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simulation, usually the data has to be transformed to the frequency domain [8]. This
thesis directly uses the time domain data to obtain the numerical velocity with the

“matching method” [158].

L.

Fig. 2-2 Observers in the computational domain.
2.14.1 The matching method
The matching method requires two sets of data: one set is the field values recorded in

time at a “close” observer located at 7, and the other set is those obtained at a “far”
observer along a direction of travel at r,, as shown in Fig.2-2 in 2D case. Since the

distance between the pair of observers is known, the numerical velocity ucan be

calculated with

u= s (2-14)
where Jt 1s the time delay as the wave travels from the close observer at # to the far

observer at r, . Then the numerical dispersion is evaluated as u/c[4].
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The “matching method” was devised to accurately find the time delay &¢. It first
normalizes the amplitude at the far observer to remove the distance dependence. Then the

normalized field 4,, at the far observer is “matched” to 4, at the close observer by

dragging the far data along the time axis until it coincides with the data at the near

observer. The required time shift is the time delay &t. “Coincidence” is defined to be
minimization of the error, given by e= ¥ (hr1 (mAt) —h,,(mAt —5t))2 . The “dragging”
m=1

operation is performed numerically by evaluating the error as a function of & ; the value
of &t that minimizes the error is the time delay.

To implement the matching method efficiently, a shift-and-compare algorithm is
used. First a “coarse” change of the value of J is used to achieve an approximate match,
then a “fine” change in &t is used to refine the match by minimizing the error. Thus the
time delay between the pair of observers is found to the accuracy of the fine time step
size. More detail can be found in [158].

Each 1D and 2D FDTD method proposed in this thesis has been coded and run. The
codes include subroutines to locate two sets of 91 observers in 2D, one degree of arc
apart, and 2 observers in 1D, and to interpolate the field value at the observer using those
at adjacent grid nodes. The numerical velocity is found from the numerical experiments
by running the code of the matching method. In order to have acceptable accuracy in
finding the numerical velocity, the experiment must be carefully designed.

2.14.2 Numerical experiment design
The Yee mesh can be regarded as a time-response system, and it deals with transient

signals during the turn-on period. Such a system is low-pass, and frequencies higher than

the Nyquist criterion fy .. = (2A1)™" (the cut-off frequency) cannot be propagated. This

38



Nyquist frequency corresponds to a minimum mesh density N_, =2 cells per

wavelength (CPW). In practice, the mesh density is often chosen to be around 10 CPWs
for Yee’s FDTD [3], and much denser to resolve the small geometrical features for ADI
and CN- based unconditionally-stable methods. However, numerical experiments show
that for whatever the mesh density, there is “overshoot” (shown in Figs. 2 and 3 in [158]),

meaning that the field value at the far observer is not an exact duplicate of the field value
at the close observer, that is 4,,(t—-d,r,) # h,,(t,7,). Because the FDTD mesh is a

discrete system with a finite response, the overshoot is inherent, and cannot be avoided.

The Gaussian function in (2-13) is used to reduce the overshoot to an “acceptable”
level by using a “slow” turn-on transient. The value of parameter n,depends on the mesh
density and the Courant number. The numerical experiment design includes choosing a

proper value for n,, the size of the computational space M, and M, for a given mesh

density of an FDTD method to avoid reflection from the boundary.
For Yee’s FDTD, since the Courant number is smaller than unity, the commonly-
acceptable value for -n, is 32, which has a source value of -70dB [6]. For explicit

methods proposed in this thesis, n, is chosen to be 32. However, for larger Courant

numbers used in unconditionally-stable FDTD methods, experiments show that large

overshoot appears. For a Courant number 10 and mesh density 100 CPWs,
n, =320 works well.

To evaluate the numerical dispersion with the Courant number s and mesh density N

CPWs, the time step size is

A= (2-15)
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Each sinusoidal cycle has N /s data points. Next, the total number of data points will be
calculated for a specific experiment. When the far observer is located five wavelengths
away from the source, SN /s time steps are needed for the wave to reach the far observer
in the physical world. Because the source requires 320 time steps to reach steady state,
the first few cycles with less than one-tenth of the amplitude value must be discarded for
velocity extraction. This is equivalent to about 120 time steps. For the matching method
to be effective, about 8 to 10 cycles of the sine wave are required at the far observer,
because the source is still in the transient state. The thesis uses the largest Courant
number of s=10, and the finest mesh density of N=100 CPWs for numerical
experiments, The total number of time steps is 5x100/10+120+8%*100/10 =250,
which is still less than the turn-on transient of 320 time steps. Since the outer boundary is
PEC in this thesis, reflection from the boundary would ruin the data. The cell space size
is chosen so that in 250 time steps, the wave does not reach the outer boundary. Thus
250x100/10 = 2500 cells from the generator to the boundary are sufficient, and with the
source at the center, a computational space of 5000 by 5000 cells is used. Note that the
FDTD algorithm does not have to run for enough time steps to reach the sinusoidal
steady state.
2.14.3 Accuracy of the matching method

Numerical experiment results show that the matching method is very accurate to
extract the velocity directly from the FDTD data, even from the turn-on transient data
[158]. For Yee’s FDTD, the mesh density is 10 CPWs for 300 MHz signal; the time step

size 1s the Courant limit s =0.707, at locations # =15m and », =30m in a 1000 by

1000 cells space, the numerical dispersion along the axis is calculated with the matching
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method to be 0.991472. The exact dispersion formula Eqn. (2-12) gives 0.991485. The
absolute error between the theoretical predication and the numerical results 1s 1.3x 107,
When substituting the velocity from numerical experiment into Eqn. (2-12), the residual
error 1.6x10™.

For ADI-FDTD of Courant number 10, mesh density 100 CPW in a 5000 by 5000
cells space, the numerical dispersion values obtained using the matching method are:
0.967192 along x-axis, 0.978763 along diagonal 45°, and 0.967041 along y-axis,
respectively [158]. The theoretical values are 0.966713, 0.979159 and 0.966713,
respectively. The absolute errors between the theoretical predication and the numerical
results are 4.8x 10™ along x-axis, 4.0x 10 along diagonal 45°, and 3.3 x 10 along y-axis,
respectively. Substituting these numerical dispersion values into the numerical dispersion
relation, the residual errors are 1x 10'6, 9x 10'7, and 7x 10'7, respectively. For Courant
number 1, the maximum absolute error is 2.1x 10'4, and the residual error is 4.1x 107,
This is a sufficient accuracy to affirm that the numerical dispersion relation is correct.
Therefore through the accurate validation of the numerical dispersion relation, the
proposed methods are also validated.

2.15 Summary

This chapter introduces some basic concepts in finite difference methods and FDTD.
The key issue in analyzing an FDTD scheme is the stability. According to the Lax
theorem, proving the stability of a difference scheme ensures the consistency and
convergence. Thus this thesis will only prove the stability of a proposed scheme by the
use of the Fourier method, which is a sufficient and necessary tool in analyzing stability

of an FDTD scheme.
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Numerical schemes can be explicit or implicit, conditionally or unconditionally
stable. For hyperbolic system Maxwell’s Equations to be unconditionally stable, the
scheme must be implicit. If the scheme is implicit, the boundary condition must also be
implicit, and can be one-order less accurate then the scheme.

For FDTD method, the central differencing formulas are used to avoid dissipation.
The order of accuracy of a scheme is the lowest order of the truncation error. To evaluate
a scheme, the numerical dispersion relation will be analyzed and validated with
numerical experimentation. The matching method is quite accurate for the extraction of
the numerical velocity from numerical experiments.

Yee’s FDTD solves the Maxwell’s Curl equations explicitly, using a space-staggered
grid for all the field components, and interleaved time-stepping between electric and
magnetic field components. However, Yee’s FDTD, like other explicit time domain
methods, suffers from numerical dispersion and anisotropy errors, and most importantly,
it has the Courant time-step-size limit.

In Chapter 3, some explicit methods that can eliminate or reduce numerical dispersion
and anisotropy are proposed. In Chapters 4, 5, and 6, some unconditionally-stable FDTD

methods will be introduced to overcome the Courant limit.
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Chapter 3 New Explicit Methods for Suppression and

Elimination of Numerical Dispersion and Anisotropy

Current explicit FDTD (2, 2) methods are usually efficient for moderate electrical
sizes, on the order of 20 or less [33]. For larger problems, higher-order methods are often
used which have smaller accumulated phase error than 2™ order methods. However,
higher-order methods usually need higher-order boundaries and material interfaces,
which complicate the computation. This chapter proposes optimized methods with better
accuracy by using the 2"-order accurate finite differencing, and the boundaries are easily
treated using current techniques for 2™ order methods.

3.1 Introduction

Yee’s FDTD suffers from numerical dispersion and the anisotropy giving rise to a
direction-dependent phase error. Since the numerical velocity of propagation is
dependent on the mesh size, time step size, and the direction of travel [4], the anisotropic
numerical wave complicates the near-to-far transformation [140]. Of course, a finer mesh
can be used to reduce the numerical error, but at the expense of longer CPU running time
and increase of computer memory requirement, both because smaller cells implies many
more cells to fill a given volume of space, and because smaller cells require a smaller
time step size for stability. Consequently, many researchers have tried to develop new
FDTD algorithms that have less dispersion error than Yee’s for a given mesh density, and
a larger time step limit for stability. A short literature survey is as follows.

Reference [26] first presented a high-order (2, 4) method based on Taylor series

analysis. Other higher-order methods are summarized in Chapter 1. Reference [39]
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- proposed a method for increasing the velocity without increasing the processing time or
memory requirement, resulting in zero phase error in an average sense at one frequency.
Reference [36] suggested a method using artificial anisotropy by changing the dielectric
constants in the algorithm. By the combination of two different Laplacian difference
operators with a non-standard finite-difference formula, References [40-41] constructed a
new difference operator with up to 6™ order truncation error. To reduce the numerical
dispersion in a specific direction, References [45-48] presented an angle-optimized
scheme and a dispersion-preserving algorithm with digital filtering. With the
improvement of numerical dispersion, the numerical anisotropy decreases but does not
vanish. References [33-35] compared the dispersion properties of several low-dispersion
FDTD methods.

This thesis proposes the following methods: a weighted method with optimization of
the higher-order (2, 4) scheme (024) [159] and a “neighborhood averaging” (NA)
method; these two methods can eliminate numerical dispersion along some specific
directions, or even remove anisotropy completely at one frequency, but with residual
numerical dispersion, for a uniform mesh (square cells). By combining the two methods
and optimization, a novel scheme termed the ‘“neighborhood-averaging 24-stencil”
(NA24) method can eliminate anisotropy and dispersion at the same time at one
frequency, and reduce greatly the dispersion and anisotropy for other frequencies. The
024 method has the same time step size limit as the (2, 4) scheme, which is smaller (6/7)
than the Courant limit, NA method has a larger than the Courant limit, and the NA24

method has the same Courant limit as Yee’s FDTD.
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To compare numerical dispersion, the numerical dispersion or the relative velocity

u, =u/c is often used where u is the numerical velocity as a function of the direction of

travel. It gives information of the numerical dispersion error and the anisotropy at one
frequency or mesh density. The second evaluation is the maximum numerical dispersion
error as a function of mesh density, which gives an idea how accurate a method is over a
broad bandwidth. To evaluate the uniformity of the numerical velocity, anisotropy
defined as

A =—2d7% q00%
_——— (4]
‘" minfu,,u,) -1

is also used, where u, and u, are numerical velocities along the diagonal and the axis.

Another important evaluation is the accumulated phase error, which is defined as

o c\Ax
Do =360 (1—;j7 (3-2)

It is the phase error per cell of distance traveled. The total phase error along one direction
of travel is simply the product of the accumulated phase error per cell with the electrical
distance the wave travels. Because of anisotropy, the maximum accumulated phase error
versus mesh density is often used.

Traditionally, higher-order (higher than 2™ order) schemes are evaluated based on the
Taylor’s Series. In this Chapter, we do not pursue higher-than-Z"d-order accuracy based
on the Taylor Series. Instead, the proposed methods are based on the optimization of the
numerical dispersion, which leads to smaller numerical error in some sense. For

simplicity, a 2D TE, wave in a linear, isotropic, non-dispersive medium is assumed.
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3.2 Optimized (2, 4) Stencil Scheme

Based on the Taylor Series analysis [4] [26] [28] the first spatial derivatives in the (2,
4) scheme are approximated by the use of the conventional Yee’s elements plus “one-
cell-away” elements. Both elements use a central finite-difference formula to eliminate
third-order and higher odd-order terms. Fourth-order accuracy is obtained by the
cancellation of the two second-order error terms from the Yee’s elements and the “one-
cell-away” elements. The resulting numerical anisotropy is smaller than that of Yee’s
method, but with numerical velocity higher than speed of light. Based on the same
stencil, this Chapter discusses the optimization of the numerical dispersion. To achieve

this, a weight parameter w,, is introduced to optimize the relative contributions of the
Yee’s elements and the “one-cell-away” elements. The new update equations are [159]

HY (412, j+1/2)=H™V(+1/2, j+1/ +wa {[E/G+1/2, j+D) - EG+1/2, )} &y
—E @+ j+1/2)-EG, j+1/ ) M +(1-w)a

[E;(i+1/2, j+2)=E;(i+1/2, j-D1/ 3y~ E}(i+2, j+1/ 2) - E}(i-L j+1/2)]/ 3%} o

ENG+1/2, ) =E (+1/2, ) +wya {([H 2 @ +1/2, j+1/2)-H 2 (+1/2, j-1/2)) A+
(—wya {[H* G +1/2, j+3/2)-HM* (+1/2, j-3/2)) 38} (3-35)

EG, j+1/2)=E} G, j+1/ - wya {[H"* (+1/ 2, j+1/ 2)—H " (i-1/2, j+1/ 2))/ A} + (330

A=w ) {2 (+3/2, j+1/2)-HV? (=312, j+1/ 2))/ 30
Because Eqn. (3-3) uses the same stencil as the standard (2,4) stencil, this method is
termed the “optimized (2,4)” (024) method. Using the Fourier analysis method, the
amplification factor for the 024 formulation (3-3) can be obtained as
£ =1-2{r2 Wy + (L= Wy)Pra0) +72 Wy + (1= w,)P )’ )
iJ\/l—(l—Z(rf (Wyy + (=W, )P1e)? +72 Wy + (1= w3)P,00)* )

2
4 \/1 - (1 - 2(7’;2 (Wyy + (1= Wy )P py)* + ryz (wy, +(1- W24)py24)2 ))
1- 2(}’: (Wyg +(1=W,)P,54)" + ry2 (wy +(1- W24)py24)2)

(3-4a)

=exp *Jtan
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where

Doy =1—4sin’(B,Ax/2)/3 (3-4b)
Py =1-4sin’(8,Ay/2)/3 (3-4c)

With some manipulation, the numerical dispersion equation can be obtained as

(sin(coAt/Z)j2 _ (w sin( B,Ax/ 2) T (1-w) sin(3ﬁxAx/2))2
cAt U Ax “ 3Ax (3-5)
L[, Sin(A,Ayi2) o )sin(3ﬁyAy/2) ?
24 24 3Ay

Since the numerical dispersion depends on the weight parameter, the dispersion
behavior can be optimized in various ways. In practice, some problems, such as the laser
cavity and other examples indicated in [2] [45-46], require an FDTD method that has less
numerical error within an angular sector of space, because most waves travel within that
sector. Therefore in next sub-section, a general formula for arbitrary-angle optimization
will be given with three specific applications.

3.2.1 Arbitrary-angle optimization
The formulation of Eqn. (3-3) allows the elimination of the numerical dispersion at

any specific angle of interest ¢,. The weight parameter can be found from

sin(wAt/2)Y" [ sin( B, Ax/2) sin(3f,4,02/2) )’
cAt B ax U 3Ax
, (3-6a)
i Ay /2 in( 3 Ay /2
+ (Wz“ Sln( 'BY¢0 y ) + (1 _ W24) Sln( ﬂy¢0 y ))
Ay 3Ay
where g, = f,cos(4,),and B, = f,sin(g,). The solution for wis
A+ +Bsin >(wAt/2) - C
Wy = J (3-6b)

B
A = X2¢o px¢o (px¢o _1) + ry2¢OPY¢o (p)’¢o _1)
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B = rx2¢o (px¢o _1)2 + r)’2¢o (p)’¢o —1)2 (3-60)

C=rip o (Pagy = Pya)’
To demonstrate the feasibility of the method, the “axis-optimized method” (AOM), the
“diagonally optimized method” (DOM) and the “minimum-average-dispersion” method
(MADM) will be discussed next.
A. Axes-optimized method
The axes-optimized method has no numerical dispersion along the axes for any time

step size within the stability limit at a designated frequency. To eliminate the numerical

dispersion error along the axes where ¢, = 0°or @, =90°, for a square mesh (Ax = Ay),
g 0 0

the following optimal value of the weight parameter [159] can be used

(sin( wAt/2)  sin( 3/30Ax/2))

w _ cAt 3Ax
oM (sin( BoAx/2) sin( 3/30Ax/2)) (3-7)
Ax 3Ax

where [, =2r/A, is the physical phase constant, and 4, is the designated wavelength

for zero numerical dispersion along the axes. To validate the formulation Egs. (3-3), (3-5)
and (3-7), numerical experiments have been performed. In this Chapter, a grid of 2000 by
2000 cells is used, mesh densities of 10, 20 and 30 cells per wavelength (CPW) are
tested. The numerical velocity is extracted from the experiment data with the matching
method introduced in Chapter 2. The numerical dispersion of the theoretical predication
agrees very well with that from the numerical results (see Fig. 2 in [159]). Fig. 3-1 graphs

the maximum percent numerical error (MPNE) defined as

]1-—u/c’max x100 (3-8)
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along the axis and at ¢ =+10°, at the Courant number s = 0.50s, and s = 0.848s_, where

s, =1/4/2 is the Courant limit in the 2D case. It can be seen that the numerical

dispersion is much smaller than the minimum dispersion for the standard (2, 4) method

(the maximum dispersion error of the (2, 4) method is too large to be shown).
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Fig. 3-1 The maximum percent numerical dispersion error for AOM along 0" and 10",
DOM along 45" and 55, optimized at 10 CPW and the minimum dispersion
error of the (2, 4) scheme along the axes.

B. Diagonally-optimized method

The “diagonally optimized method” (DOM) has no numerical dispersion error along

@, =45° for a square mesh. The optimal value of the weight parameter w,,,, is [159]

[sin( wAt/2) sin( 3«/5,30Ax/4))

N2ceAt 3Ax
Wpom = (3-9)
sin( B,Ax/2) sin(3v/28,Ax/4)
Ax 3Ax
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Numerical experiments show good agreement with the theory (Fig.4 in [159]). Fig. 3-1
shows the maximum percentage dispersion error optimized at 10 CPW. It can be seen
that the MPNE for DOM is much smaller than that of (2, 4), and smaller than that of
AOM in a broad bandwidth. For example, at s =0.5s_, the maximum dispersion error for
DOM occurs at about 14 CPW, which is 0.00336% along the diagonal, and 0.00937% at
¢ =55° , about 25.7 and 9.2 times smaller than the minimum dispersion error of the (2,4)
scheme, respectively, at the same mesh density.
C. The minimum-average-dispersion method

The “minimum-average-dispersion” method eliminates the numerical dispersion error
along ¢ =225 and ¢=67.5° using square mesh cells. For a time step size

5 =0.9324=1.3186s, , the optimal value is 1.054321, with Courant number limit of

0.932417 from Eqn. (3-6a). When optimized at 10 CPW, the largest numerical dispersion
error and the averaged dispersion error are less than 0.0025 and 0.003545 compared to
0.00589 and 0.568 for the standard (2,4) method at 10 CPW. Numerical experiments
show very good agreement with the theory. This method has twice smaller the numerical
dispersion error than the (2,4) method with a larger time step size limit. In addition, it has
eight zero-dispersion sectors angles at 22.5°, 67.5°, 115.5°, 157.5°, 202.5°, 247.5,
292.5" and 337.5°, compared to four such angles in AOM and DOM.
3.2.2 Isotropic optimization method

The above discussion has shown that the weight parameter w,, can be chosen to
make the numerical phase constant exactly equal to the theoretical value in one direction
of travel. The values of the weight parameter Eqs. (3-7) and (3-9) depend on the mesh

density and the time step size. If the AOM and DOM methods are combined together, the
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numerical velocity can be made independent of the direction of travel. This method is
termed as “isotropic optimization method” (IOM). With some manipulation, the

“isotropic” optimal value of the weight parameter for IOM is derived as [159]

[ﬁ sin(3v28,Ax/4) Sin(3ﬂOGAx/2)J

3Ax 3Ax
Wy =
(sin(ﬂoAx/Z)_sin(3,BOAx/2))_\/5 sin(v28,Ax/4) _sin(3v28,Ax/4)]  (3-10)
Ax 3Ax Ax 3Ax

It can be seen that optimal parameter w,,; is only a function of mesh density at the

optimized wavelength. Fig. 3-2 graphs the numerical dispersion of the theoretical
prediction (solid line) and numerical results (small circles), optimized at 10 CPW. For

comparison, the numerical dispersion of the (2, 4) method is shown as dashed lines.
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Fig. 3-2 Numerical dispersion for the isotropic optimization method (IOM) optimized at
10 CPW and for the (2,4) method.

The small difference of the numerical results and theory is in the accuracy limit of the
matching method, which is in the order of 10™ due to the use of fewer time steps to

speed up the calculation. The maximum anisotropy is 1.4x10™ at 14 CPW when
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optimized at 10 CPW. It is noticed that a very recent paper reported a similar method

[43], but optimized with an approximation of the numerical dispersion relation.
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Fig. 3-2 Numerical dispersion for the isotropic optimization method (IOM) optimized at
10 CPW and for the (2,4) method.

3.2.3 A high-accuracy-method with fixed-weight

The (2, 4), AOM, DOM and IOM methods have larger dispersion error as the time
step size increases, which is contrary to the Yee’s method. In addition, their numerical
phase velocity is generally larger than the physical speed. Because these methods are
based on the weighted contributions of Yee’s elements and the “one-cell-away” elements,
the larger numerical velocity indicates that the methods are “over-weighted”. When the
weight parameter becomes smaller, the numerical velocity becomes smaller, and
approaches to the physical speed. In this section we will find a constant value of the
weight parameter that is “optimal” in terms of numerical dispersion error.

Expanding the sine terms in Eqn. (3-10) with the Taylor’ series up to the 3™ order, a

constant value of the weight parameter is obtained as wy, =27/26. Fig. 3-3 shows the
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numerical dispersion from theory (solid line) and from the numerical experiments (small
circles) with very good agreement. Comparing to the (2, 4) method and IOM method, this
method has higher numerical accuracy in terms of the “averaged-accumulated phase
error”’ [159], thus is termed “high-accuracy-method with fixed weight” (HAM-FW).
3.2.4 High accuracy method by search

The optimal value of the weight parameter can also be found by a search algorithm
once the optimization criterion is set. For a range of weight parameter from w,, =1.0000
to 1.4000 with a increment of 0.0001, and for Courant numbers from s =0.8 to 1.2 with a

increment of 0.0001, a simple search algorithm was used to find values of w where the

error [[l-u($ = 0°)/ ¢| ~[1-u(¢ = 45°) /|| is less than 10~ and 1-u(¢=0°/c>0.
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Fig. 3-3 Numerical dispersion of the high-accuracy-method with fixed-weight HAM-FW

with w,, =27/26 and the high-accuracy-method by searching HAM-S.

The search finds (w,,,s) pairs which meet the error criterion. However, the time step

size At = sAt,_should not be larger than the upper bound as s, =3/(4w, —1) [159].
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This eliminates many (w,,,s) pairs, leaving useful pairs with win the range from 1.0546
to 1.0743, which correspond to a time step size limit larger than 0.9 times the Courant

limit of Yee’s FDTD. For the pair (w, =1.0546, s =0.9316), s_, = 0.93214, which is
greater than s, so the method is stable. For the pair (w, =1.0743,s=0.8001),
Smax = 0.90986 , this method is also stable. At the time step size limit, the dispersion error

is not the least with the values of the weight parameter found by search because the
search criterion is for the anisotropy. This method is termed as the “high-accuracy-
method by search” (HAM-S).

Using w, =1.0546 and s=0.9316, the numerical dispersion from theory and

numerical experiment is graphed in Fig.3-3 for HAM-S. The absolute numerical
dispersion error is 0.247% along the axis, and 0.246% along the diagonal. The case of

w, =1.0743 and s5=0.8001 was also numerically verified. The maximum dispersion

error is 0.184%. Since the two cases have very close dispersion, the result is not shown.

The search method is a general way to find an “optimal value” of the weight
parameter if the criterion of optimization is determined. The HAM method, particularly
the HAM-S method, is a broadband, more efficient method, with a time-step size limit
larger than the (2, 4) method. The IOM method is relatively broad band, and can have no
numerical error at one designated frequency, as discussed in the next Section.

3.3 Coefficient-Modification Techniques

The IOM method can eliminate numerical anisotropy, but the residual dispersion

error is large compared to the Yee’s method. In order to reduce the numerical dispersion,

many researchers modify the coefficients of a,and a, in the update equations. This thesis
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refers such methods as the “coefficient-modification” techniques. In general, a, can be

replaced by a,a,, and a,a,,, and a, can be replaced by a,a,, and a,a,, respectively,

ye?

where the parameters a,,, a,,, a,, and a, can be modified differently. For example,

yho Qe
References [36-37] use a,, =1/¢,, a, =1/¢, and a, =a, =1; Reference [38] uses
a,=4,a, =8B and a, =a, =1similar to Reference [98]. References [40-41] use

a,;,=a,, =(sin¥/2)/ ) /(sinff,Ax/ 2)/ ), a, =a,, =(singA/2)/ )/(sin3,Ay/2)/ B Ay)
in conjunction with adjacent cells. Reference [44] uses modification by solving equations
from approximation of the dispersion relation. References [46-48] provide complicated

filtering methods to modify these parameters. The parameter values are obtained

according to different criteria, such as low numerical dispersion. All these methods

change the “speed”: in the standard FDTD, the physical speed is ¢ =1/+/ue ; in the
coefficient-modification techniques, the new speed is ¢'=c,/a,a, for a square mesh

(Ax=Ay,a,, =a,,,0, =0,,E, =E,, A=B).

The different ways to put the a parameters into the update equations are equivalent in
terms of numerical dispersion, but have different root-mean-square (RMS) errors [160]
(Chapter 9). If the problem contains only one material, these techniques have the same
effect. However, if the problem uses different materials, then unless all material
parameters ¢ and £ are modified by the same factor, the reflection coefficient at a

material boundary will change and there is artificial reflection. Therefore in coefficient

modification the same factor for both a, and a, is preferable, that is, let a,, =a,,, and
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a, =a,.Forasquare mesh, a,, =a,=a,=a, =a,, they have the same magnitude,

ye ze = Qye
thus there is no artificial reflection.

A simple, straightforward way to find the values of the “a ” parameters is to reduce or
eliminate the numerical dispersion at one mesh density along one direction of travel. For
example, to eliminate the axial numerical dispersion, the parameters are chosen to be

4 sin(wAt / 2) | wAt
™ Wiy sin(B,Ax/2)/ B, Ax+(1-w,,)sin(33,,Ax / 2) /(3 3,,A%) (3-11)

Note that f, is the theoretical phase constant at a designated frequency to have zero
numerical dispersion, and is not necessarily the same as [, where zero anisotropy is

desired. When they are the same, the combined IOM and the simple coefficient-
modification technique can have zero anisotropy and zero numerical dispersion at one
designated frequency. This method has been tested to reduce the numerical dispersion of
IOM, and the results agree with theory very well.

The value of the “a” parameters can be assigned in different ways. However, since it
has only one value for a given mesh density and time step size, it is possible to find an
“optimal” value of the “a ™ parameters by searching once the sense of the optimization is
set. Eqn. (3-11) is a special case to lead to zero numerical dispersion along axes.

3.4 Neighborhood-Averaging Method

The fact that a larger computational stencil can reduce numerical dispersion implies
that nodes other than those used in the standard Yee stencil contribute “negative”
dispersion. With proper weighting, better performance is obtained. The initial idea of the
neighborhood-averaging method (NA) arises from the box method [69], and further

investigation shows that it incorporates the collocated staggered formulation [128]. In this
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thesis the “collocated” contribution is an average from nodes in the neighborhood of the

nodes in the Yee’s method. The weighted update equations in the 2D case are

HA2G4+1/2,+12) = H 26 +1/2, j+1/2) +w a {[ELG+1/2 j +) - E/G+1/2, )} &y
—[E+Lj+1/D-EG,j+1/2)) Mt +(1-w, )a{[E(+3/2 j+1) (3-12a)
+E (=12, j+)-E}(1+3/2 j)-E, (12, j)Y 2y —[E} i +1,j+3/2)
+E(,j =12 ~E},j+3/2) - EL, j-1/2)) 240

EMG+12,j)=EG+12j)+w a{H "2 (+1/2,j+1/2) = H" (i +1/2,j-1/2) Y &y
+(1—w ) {H (i +3/2 j+1/ 2+ H (i -1/2, j +1/2)— (3-12b)
HM 3 i+3/2,j-1/2)~-H2(-1/2, j-1/2) ) 2y

ESNG, j+1/ D =E; (G, j+1/2)~w,a {H," *(+1/2, j+1/2)-H;" " ((-1/2, j+1/2)}/ Mx
+(1-w, )a {[H*(+1/2, j+3/2+H M2 (i+1/2, j-1/2)— (3-120)
HM? (=172, j+3/2)—-H (1-1/2, j-1/2)}/ 2

The optimal value of w,, is to be determined to optimize the dispersion behavior in some
sense. Setting w,, =1 recovers the usual Yee update equations. Setting w,, =0 obtains

the collocated-staggered formulation [128]. The Yee’s method has smallest numerical
velocity along the axes, and the collocated method has the highest numerical velocity
along the axes [128]. Thus their proper combination should give better performance.

The amplification factor can be obtained from (3-12a), (3-12b) and (3-12c¢) as
E=1-207 (W, + (1= W,,) D)’ + 72 Wy + A= ,)P,00)7)
£ I 1= (=205 (W, + (= W )Pe)” +75 (g + (L= ,)P,0) )’

4 \/1_(1_2(rx2(wna +(1_Wna)pxna)2 +ry2(wna +(1_Wna)pyna)2))2 (3'13)
1_2(rx2 (Wna +(1 _M)mz)pxna)2 +ry2 (Wna + (1— wna)pyna)z)

=exp £ Jtan

where p,, =cos(B4y), p,,, =cos(B,Ax). The dispersion relation can be derived from the

amplification factor as
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sin( @At /2) sin > (B, Ax/2)

(e - B D (- w,, Y oos( 8,890 +
) (3-14)
= (fy?y/z)[wm + (1= w,,)cos( f,Ax)]?
y

Similar to the 024 method, the value of the weight parameter for the neighborhood-

averaging-diagonal” (NAD) method can be obtained as

sin( @At /2) ,sin( B,Ax~/2/4)
. { J2earinx | Ax - cos( ﬂ°Ax‘E/2)J (3-15)
e (1 - cos( ,BoAxx/—?._/2))

The numerical dispersion from the theory (solid line) and the numerical experiments

(small circles) optimized at 10 CPW is shown in Fig. 3-4 with good agreement.
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Fig. 3-4 Numerical dispersion of the NAD method optimized at 10 CPW.

The NA method can also eliminate the numerical anisotropy, termed as the

“neighborhood-averaging-isotropic” (NAI) method. To have zero anisotropy, the weight

parameter w,, can be derived as

58



sin( BoAx/2)
_ (\/—Z_Sin( B,Ax~214) cos( ﬂoAxﬁ/Z)]

Wi (l—cos( ﬂOAxx/E/Z)) (3-16)

The value of w,, is independent of the time step size, and increases slowly as the

optimized mesh density increases, and approaches 11/12 with a very fine mesh.
Numerical experiments have been done with optimization at 10, 20 and 30 CPW. Fig. 3-5
shows the theoretical predication using (3-16) with solid lines and numerical results as
small circles for various Courant numbers, optimized at mesh density 20 CPW. The
theory and the numerical experiments agree with each other quite well. This method has a
larger time-step-size limit than Yee’s FDTD, and has a smaller numerical velocity than
the speed of light. In contrast, the IOM method in Fig. 3-2 produces a numerical velocity
larger than the speed of light. The next section will present a new method combining the

IOM method with the NAI method, leading to much higher numerical accuracy.
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Fig. 3-5 Numerical dispersion of the NAI method optimized at mesh density 20 CPW

and the Yee’s method.
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3.5 Optimized Neighborhood-Averaging 24 Stencil Method
The IOM and the NAI methods proposed in the preceding sections form the basis of
the “neighborhood-averaging 24” stencil (NA24) method. For conciseness, first construct
some central finite-difference (FD) operators for the first-degree spatial derivatives. The
central FD operator D,, the one-cell-away FD operator D,, based on the (2,4) stencil,

and the neighborhood-averaging FD operator D, discussed above are defined for

derivatives along the x-axis as

f(x+Ax/2,y)- f(x—Ax/2,y)

D, = ~ (3-17a)
D = f(x+3Ax/2,y)—- f(x—-3Ax/2,y)
x4 = 3Ax (3-17b)
p SO Dy + 8+ [k e/ 2 y—Ly) - [~ B/ 2, y+ 1)~ [~/ 2y~ by)
xna ™ 2WNAx (3-170)

where fis the function. Similarly, the FD operators for y-derivatives are defined as

p Sy &/ - fxy-Ly/2)

e = A (3-18a)
D = S(x,y+3Ay/2) - f(x,y-3Ay/2)
e = 35 (3-18b)
D _JOADNG Y+ [ 2+ f e+, y =By ] D= f (e~ 1%, y+ D91 )~ f (x— %, y— Ly [ 2)
na = 2y (3-18c¢)

The center of the difference is at (x,y).The new weighted FD operators for the first-

degree derivatives along x-axis and along y-axis can be built up as

nai’~ xc nai)Dxna) (3'193)
D, =w{w,, D, + (=W, )D,5 )+ (L~ WW,u D, + (1~ W,e)D,...) (3-19b)

D, =w(wy, D, +(1~wy,)D,, )+ (1= w)w, D +(1—w

naitye
where w is the weight parameter to be optimized. The new FD operators (3-19) are a
linear combination of other FD operators with second-order accuracy. Thus they have the

second-order accuracy in space, and are simpler in conception than those in [44-48].
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Using these constructed FD operators, the NA24 FDTD method is formulated as

Hzn+1/2 = Hzn—l/Z +a2(DyE: —DxE;) (3-203)
EM =E"+aD H""? (3-20b)
E;+1 — E; _alDXH:+1/2 (3'200)

The amplification factor can be obtained as

. Jtan_l2‘/(Q3+Q§)(1—Qf-Q§)
E=ec 1-(07+0}) (3-21)
where
Qx = rx (M/(w24i + (l - w24i )px24) + (1 - wanai + (1 - wnai)pxna )) (3-223)
Qy =7, (W(W24i +(1-wy,)p 124 ) + (1 -ww,; +1-w,,)p yna )) (3-22b)

The numerical dispersion relation can be derived as

sin@A/2),, _sin’(B,Ax/2)
& )T A
sin’ (8,Ay/2)
AY?

( [M)(W24i + (1 - w24i )px24) + (1 - w)(Wrmi + (1 - wnai )pxna )]2 +

(3-23)
[y + (1= Wy )P 2a) T L= W)W, + (1-w,)p yna g

Similar to the isotropic methods discussed above, one can derive a formula to find the

optimal value of the weight parameter w. However, since both w,,;and w, are highly

isotropic, the formula suffers from the subtraction cancellation of precision. Numerical
experiments show that use of such a formula does not lead to a satisfactory result. An
alternate approach to determine the optimal value of w is to use a search method
according to Eqn. (3-23). The idea is that, for a given optimized mesh density, increase
the parameter w at a step of one thousandth, and calculate the numerical dispersion error
along the axis. The search stops when the numerical error changes sign from negative to
positive. The weight parameter can be found by a linear interpolation. Note that near the

optimal value of the weight parameter, the difference between the dispersion errors along
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the axis and the diagonal is less than 107°. One can use this difference as a second
criterion in the search method to ensure the isotropy. In addition, one can use the optimal
value of w found using the search method to calculate the numerical dispersion error and
anisotropy to verify the correctness. For example, when optimized at 10 CPW, the search
method gives w=0.487447 at the time step size of the Courant limit. Fig. 3-6 shows the
numerical experiments for the NA24 method optimized at 10 CPW and also optimized at

each of the four time step sizes: s=s,_ (circle), s =0.75s, (triangle), s = 0.5s_ (square) and
s =0.25s_(cross), The figure demonstrates that the NA24 method has zero anisotropy

and zero numerical dispersion error within the accuracy limit of the matching method.
For comparison, the numerical dispersion of Yee’s FDTD using the Courant time step

size limit is also shown in Fig. 3-6.
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Fig. 3-6 Numerical dispersion of the NA24 method and the Yee’s FDTD.
Although the optimal values of the weight parameters for IOM and NAI do not

depend on the time step size, their residual dispersion error does depend on the time step
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size. Therefore the optimal value of the weight parameter w will depend on the time step
size, because it makes the dispersion disappear for a given time step size.
3.6 Discussion
3.6.1 Time step size limit
The three methods proposed above are explicit, thus like Yee’s method, they also
have an upper-bound of the time step size limit. From their amplification factors, the time

step size limits can be derived as follows [159]

3
<
B = 4w,, —1 A, (3-24a)
1
<
h 2w,, —1 ae (3-24b)
w(dw,, —1)/3+(1-w)2w,, 1) ¢ (3-24c)

When optimized at 10 CPW, the time step size limit At,,is 0.84867 times At for IOM
with w,, =w,,; =1.133733; for HAM-S method, if w,, =w,  =1.0546, the limit is
0.93214; for NAI with w,, =w,,, =0.915212, Az, is 1.20420 times Af,, respectively.

For HAM-FW method, w,, =27/26, the limit is 39/41, which is larger than that of the

standard (2,4) method. For the NA24 method, the search algorithm finds that
w=0.487447, and the time step size limit is the same as the Courant limit using (3-24c¢).
Numerical experiments have verified the validity of (3-24).

It is interesting to note that the time step size limit of the NA24 method is a weighted
“parallel” combination of the limits for O24 and NA method, that is,

L w 1 +(1- w)L
Atn(124 At24 Atna (3-25)
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Generally At,,is smaller than Az,, and At is larger than Ar,. However, since w is a

function of time step size, when the search method is used to find a proper value of w,
one must verify using Eqn. (3-25) that the time step size used is within the limit.

For AOM and DOM, since they have the optimal value of the weight parameter
smaller than that of IOM [159], their time step size limit for large time step size (e.g.,

s >0.8s,) is larger than that of IOM and (2,4) method. Particularly, the limit for DOM is

close to the Courant limit.
3.6.2 The order of accuracy

By Taylor Series analysis, the optimized methods in this Chapter are 2™ order
accurate both in time and space, and the standard (2,4) method is 2™ order accurate in
time and 4™ order accurate in space. However, analysis shows [159] that the (2, 4)
method is only 2" order accurate in terms of numerical dispersion, and 4™ order accurate
in terms of anisotropy. Because of the partial cancellation of the higher-order terms, the
numerical error of the proposed optimized rﬁethods is compensated to a certain extent.
Thus they have higher than 2™ order accuracy. This can be explained because the spatial
accuracy is also affected by the Courant number used [159]. This fact implies that if the
accuracy orders in time and space are not compatible, the potentially-high accuracy
cannot be fully utilized. This is the part of the reason that this thesis proposes 2™ order-
accurate optimized methods.
3.6.3 Accumulated phase error of the NA24 method

This section only evaluates the most accurate NA24 method. The maximum
accumulated-phase error per cell of wave travel versus the mesh density is shown in Fig.

3-7. The maximum accumulated-phase error occurs at 13 CPW and is 0.002367° per
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cell. For comparison, the maximum accumulated-phase error is larger than 0.05° per cell
for the methods in [44] [47-48]. The proposed NA24 method has more than 20 times
higher accuracy. To maintain the accumulated-phase error less than 0.002367° per cell,
the minimum mesh density can be as low as 9.4 CPW. Thus the highest frequency is

¢/(9.4Ax). Any frequency lower than ¢/(9.4Ax) has smaller accumulated phase error.

Therefore the NA24 method provides better accuracy over a broad bandwidth.
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Fig. 3-7 The Maximum accumulated-phase error per cell distance for NA24 method.
3.6.4 3D NA24 method
It is straightforward to extend the proposed methods in this Chapter to the 3D case.
The 024 FD operator does not change, but needs one more difference along the z-
coordinate axis. The NA FD operator requires a modification to make a full average of

the neighborhood. The 3D NA FD operators centered at (x, y,z ) are

D, =[f(x+M/ 2 y+ N,z +82) + f(x+ M/ 2, y— ), 2+ 22) + f(x+ M/ 2 y+ ),z — %)
+ x4+ 2y - Nz — 1) — f(x— M/ 2 y+ N,z + ) — f(x— Ax/ 2 y— Ny, 2+ /)

— =/ 2 y+09,2 - 12) — f(x— e/ 2y — Iy, z— 1) Y 4 (3-26a)
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D, =G+ y+ 12,2+ 12)+ f(e+ 86 y+y/ 22— 2) + fx— A y+ Lyl 2,2+ )

+ (=0, y+ /2, 2= 1) — f(+ I, y = N1 2,2+ 12) — [+ M, y -1 2,2 1) (3-26b)
—fx—Boy—y/2,2+0) - fx—bey -y 22— L)) Ay
D, =f(x+My+8,z+ 0/ D)+ f(x+ My -,z + 2/ D)+ f(x =D, y+ D,z + 2/ 2)
(3-26¢)

+f (-0 y—N,z+ /)~ f(x+ M0 y+ 8,2 — e/ 2) — fx+ Dy Dy, 2= 2/ 2)
— fxB5 3+ 89,2~ b2/ D)~ f(x— by~ 2~ Ll D e

The amplification factor for 3D NA24 method is similar to Eqn. (3-12), and given by

2 2 2 2\(1=0% —0* - 0*?
¢ _exg] £ tan- Q2 +0; ~01)1-0:-0; -0 527
1-(Q; +0, +0;)
where

QO =r, (W(W24i +(1=Wy )P4 ) + (1 - W)(Wnai + (1= W,0) P )) (3-28a)

Qy =7, (W(W24i +(1=wy,)p 124 ) + (1 ~WW,,; +(1=w,,)p yna )) (3-28b)

g, =r, (W(W24i +(1 =Wy, ) + (1 - W)(wnai +(=W,0) D10 )) (3-28¢)

Poa = cos(ﬂyAy) cos(f3,Az) (3-29a)

D yna =C0S(B,Ax) cos(B,Az) (3-29b)

Dna =C08(B,Ax) cos(B,Ay) (3-29¢)

The numerical dispersion relation is similar to Eqn. (3-23), and given as

sin{wAt/2), s o
(T) =0, +0, +0, (3-30)

The expression for the time step size is the same as Eqn. (3-24c).
3.6.5 Non-square mesh

The NA24 method can also be used in a non-square mesh with some modification.
Because the spatial increments along the axes are not the same for the non-square mesh,
the numerical dispersion errors along different axes are not the same, and the direction of
travel with the highest numerical velocity changes with respect to the aspect ratio. To

apply the NA24 method, first the coefficient-modification technique is used to
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compensate the numerical dispersion error along other axes in order to have the same
dispersion as that of the finest spatial increment. Then the optimal values of the weight
parameters for the optimized (2,4) stencil method, the NA method and the NA24 method
can be found accordingly. The time step size limit may be a little smaller than that for a
square mesh due to the coefficient correction.
3.7 Summary

For problems in which the wave is confined to travel within a known sector space, the
AOM, DOM, or NAD methods can be used with high accuracy, without complicated
filtering. The high-accuracy methods with fixed weight parameter (HAM-FW) have a
constant value of the weight parameter, similar to (2,4) method. The search method
(HAM-S) is a general method for finding the optimal value of the weight parameter
depending on the sense of optimization. Those methods can be incorporated into the
current (2,4) method without extra computational resources. The IOM and NAI methods
can eliminate numerical anisotropy, and numerical dispersion if the coefficient-
modification technique is used, without consuming additional computational resources.
The NA24 method provides much higher (more than 20 times) accuracy than some
published methods with about the same time step size limit of Yee’s FDTD. It is a
broadband, high accuracy method.

For problems with very fine geometrical features to be resolved, explicit methods are
not efficient due to the upper-bound time step size limit, which is common for all explicit
methods in solving Maxwell’s Equations. In the next three Chapters, several new

methods without the time step size limits are proposed to alleviate this limitation.
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Chapter 4 Numerical Dissipation and Dispersion

in ADI-FDTD

With technology advances, the clock frequency and the density of integrated circuits
go higher and higher. In simulating such devices, explicit FDTD methods suffer from
severe inefficiency. For a high-speed VLSI interconnect with a minimum geometrical
feature size of 1 um and a signal rise time less than 100ps [85], the frequency spectrum of
this signal extends to nearly 10 GHz. The resulting minimum wavelength is on the order
of 3 cm in free space, or 1.5 cm in SiO; (6~4). In order to keep proper numerical
accuracy, the appropriate grid size is on the order of 1.0 mm (between 10 to 20 cells per
wavelength). However, in order to model the micron-scale features of the interconnect,
the spatial increment must be on the order of 1.0 um or less. As a result, the upper bound
on the time increment is limited approximately only 2 fs. Simulating the 100-ps rise time
of digital signal alone would need 50,000 time steps! To alleviate the problem, the
unconditionally-stable FDTD methods which can use a larger time step size are desired.

4.1 Introduction

Among the unconditionally-stable FDTD methods, the alternating-direction implicit
(ADI) method for FDTD (ADI-FDTD) [81-83] [85] is the algorithm most investigated in
recent years. However, there is inconsistency [152] in the literature concerning the
numerical dispersion relation [81], [99-100]. Later several papers address this problem
[101-103] [152-154]. Most papers [99] [101-103] derive the dispersion relation using the
matrix method, which is correct. However, since the overall ADI-FDTD scheme is

dissipation-free, the growth and dissipation mechanism of the individual sub-marching
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procedures of ADI-FDTD cannot be revealed by the matrix method. This thesis uses the
Fourier method with the amplification factor for each ADI sub-marching procedure, and
shows that the exact cancellation of the growth and dissipation makes the overall ADI-
FDTD unconditionally stable [152][154]. To account for the dissipation, the imaginary
part of the frequency in the plane wave expression must be used.

All the unconditionally-stable methods proposed in this thesis are based on the Crank-
Nicolson (CN) scheme, thus first the application of the CN scheme to solve Maxwell’s
Equations will be introduced and different forms of the CN scheme will be given for later
comparison. After formulating ADI-FDTD from the CN scheme, the numerical
dispersion relations for 1D and 2D ADI-FDTD will be re-derived and validated. The
perturbation terms of ADI to CN will be given. A higher accuracy ADI method is also
proposed by use of the (2, 4) stencil.

4.2 Various Forms of Crank-Nicolson Scheme
4.2.1 Crank-Nicolson scheme and the numerical dispersion relation

The Crank-Nicloson (John Crank, 1916- , Phyllis Nicolson, 1917-1968) scheme is a
well-known implicit numerical method [49] [69] [129]. It balances the right-hand-side
(RHS) of the difference equations using an average at the time step » and time step n+1
to maintain 2™ order accuracy in time. For a 2D TE, wave in a linear, isotropic, non-

dispersive and lossless medium, the CN scheme can be written [151]

EMi+1/2,j)=Eli+1/2,))
e HMG+1/2,j+1/2)—HM G +1/2,j-1/2)+ H] (i+1/2, j+1/2)—-H] (i+1/2,j-1/2)
1
Ay

(4-1a)

E",j+1/)=EG,j+1/2)

g HPG+12,j+1/2)-H™M G =1/2,j+1/2)+ HIG+1/2j +1/2)— HI (i ~1/2,j +1/2) (4-1b)
Ax

69



HMG+1/2,j+1/2)= H' (i +1/2,j+1/2)
ia EFM+12,j+)-EMG+1/2, )+ E(i+1/2,j+)-Eli+1/2,))
2 Ay
n+l /- . n+le. - nge . ngr o -
_azEy (+1j+1/2)~E" (G, j+1)+E)(+1,j+1/2)~E}(G,j+1/2) (4-1c)
Ax

where a, = At/2&, a, = At/2u. Tt can be seen that the CN scheme is 2™ order accurate

in time and space. Using the Fourier analysis, the amplification coefficient matrix for the

CN scheme can be written as

1-¢ 0 —2aE+DsinB A2/ by
0= 0 1-¢ JaE+singadyine | 4P
— D2 E+ SNy D/ by Ty E+)sings Axl2)] A 1-¢

From the determinant of Q, the amplification polynomial can be obtained as
P()=+r] +1) )& ~D+B+r] +1))E~&7) (4-3)
Eliminating the stationary mode solution, the amplification factor can be found from the

roots of the amplification polynomial as

- ‘/(1+rxz+ry2 )2 —(l—r)(2 —r_y2 )2

5 =e 1=(rl+r)) (4‘4)

Since the amplification factor has a unity magnitude, the CN scheme is unconditionally

stable. The numerical dispersion relation can be derived [151] as

tan’(wAt/2) _sin’(f,Ax/2) . sin”(f,Ay/2)
(cAt)® Ax? Ay

(4-5)

Since the tangent is always larger than the sine of Yee’s FDTD Eqn. (2-12), for the
same parameters, the CN scheme has larger numerical error than Yee’s method even
when the Courant number is smaller than the Courant limit. In addition, the CN scheme

requires a huge, sparse, banded matrix be solved at each time step, which demands large
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computer resources. Thus, to efficiently implement the CN scheme, some modifications
must be made. The simplest form which maintains the unconditional stability requires to
only solve tridiagonal matrices.
4.2.2 Other forms of the CN scheme

This thesis will develop other unconditionally-stable methods by modifying the CN
scheme, and the proposed new methods will be compared to CN. For convenience, the
CN scheme will be written in various different forms. For brevity, the central-difference

operators D, and D, for the first derivatives, as well as the difference operators D,, and
D, for the second derivatives are used. Inserting Egs. (4-1a) and (4-1b) into Eqn. (4-1c)
obtains [151]

1-0%(D,, + D, JH!™ ={1+8*(D,, + D, )}H! +2a,(D,E} ~D,E") (4-6)
where b = cAt/2. Inserting Eqn. (4-1c) into Egs. (4-1a) and (4-1b) 0btains» [157]

(1-b’D,,)E;" +b’D,D E;* =(1+b’D, )E; -b*D,D E} +2a,D H] (4-7Ta)

x~“y~y XYy
(1-b*D, )E™ +b*°D,D E™ =(1+b’D, )E" -b*D_D E" —2a,D_H'" (4-7b)
2x /=y x=yHx 2x /™y x+yHx 1444

Eqgs. (4-7a) and (4-7b) can be further solved to be

1-6%(D,, + D, )JE™ = {1 -b*(D,, - D, )}E" ~26°D, D, E! +2a,D,H" (4-8a)
1-0*(D,, + D, JE™ ={1+6*(D,, - D, )|E" ~26°D,D, E! ~2a,D,H" (4-8b)

These forms Egs. (4-6), (4-7) and (4-8) are derived from the original CN formula Eqn. (4-
1) without adding or dropping any extra terms, thus they have the same accuracy and

stability as Eqn. (4-1).
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4.2.3 Formulation of ADI from the CN scheme

The CN scheme (1) can be written in a matrix form as
(I-D,-D,))W"™ =(I+D, +D,W" (4-9)

where I is 3x3 identity matrix, W = (Ex E, H, )T, D, and D, are spatial difference

matrices given by

0 0 0 0 0 aD,
D=0 0 a,D, D,=| 0 0 0 (4-10)
0 -a,D, O a,D, 0 0

By adding D,D,#™' to the lefi-hand-side (LHS) and D,D,W"to the right-hand-side
(RHS) of Eqn. (4-9), Eqn. (4-9) can be approximately factorized as

(I-D){I-D,W™ =(I+D)I+D,)W" (4-11)
This method is called “approximation factorization” [77]. It can be seen that adding the
term D,D,W " — D, D,W"is for factorization, thus the term D,D,W"™' —D,D,W" can be
called “factorization error”. It can be shown that the factorization error added to Eqn. (4-
1b) is — szny (EX' —E!), there is no factorization error in the other two equations. If
the positions of D, and D, are exchanged, the only factorization error added is
-b’D. D (E;" - E}) to Eqn. (4-1a). Since the added terms are higher-order, they do not
change the stability as mentioned in chapter 2. Therefore Eqn. (4-11) is unconditionally
stable. Note that such formulation does not require that D, and D, commute.

To solve Eqn. (4-11), it can be split into two time steps at n+1/2 and n+1 as

I-D)YyW™* =(I+D)W" (4-12a)
(I_DZ)WM—I =(I+D1)Wn+1/2 (4-12b)
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where n+1/2 is intermediate time step. The implicit operation is alternated from the x-
coordinate (D,) to the y-coordinate (D, ), thus is called “alternating-direction implicit”

(ADI) method [49] [76-78]. 1t is a two-step time-marching scheme different from Yee’s
leap-frog time marching scheme.

Note that in Eqn. (4-12) the field values at the intermediate time step n+1/2 are non-
physical; thus they cannot be interpreted to be the actual field values. In other words, if
ADI is hybridized with other one-step methods by embedding an ADI fine mesh to a
coarse mesh, say, Yee’s FDTD [88], ADI must be performed for a full update cycle from
time step » to n+1. Otherwise, the non-physical field values will propagate erroneously
into the enclosing mesh [154].

4.3 Numerical Dissipation and Dispersion of 1D ADI-FDTD
Following the formulation of Eqn. (4-12) and collapsing to 1D, the update equations

for the two sub-marching procedures of one-dimensional ADI-FDTD are [154]

HM2 0 +1/2)-HM™?(i-1/2)
Ax (4-13.1a)

Ey () =E,(i)-q,

E;H/Z (l + 1) _ E;-H/Z (l)
~ (4-13.1b)

HM?(i+1/2)=H!(i+1/2)-a,

o1/, HM2 G +1/2)-HMM?(i-1/2)
E@) = Ey () - a, - (4-13.22)

E;H—[/Z(i + 1) _ E;1+1/2 (l)
~ (4-13.2b)

H™(i+1/2)= H™?(i+1/2)-q,
Note that E;*/?>and H"''?are non-physical intermediate values as mentioned before.

After inserting the plane wave solution into the Egs. (4-13.1) and (4-13.2), the two

amplification polynomials for the two sub-marching procedures can be obtained as
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P(§1)=1—2§1 +(1+rxz)§12 (4-142)
P(E)=1+r2 =28, +&2 (4-14b)
The two amplification factors for each sub-marching procedure can be obtained from the

roots of Eqn. (4-14) as [154] [160]

é;‘ =é;loei./tan"(:sin(ﬂAx/2)) 62 - gzoe:tJtan"(xsin(ﬂAx/Z)) (4-15a)
_ 1 _ 1

0 = -

Y Nl+stsin?(BAxi2) S

] (4-15b)

Eqn. (4-15.b) shows that the first sub-step is unconditionally stable because the

magnitude of the amplification factor |£|=¢&,, is always smaller than unity, and the

second sub-step is not stable because the magnitude of the amplification factor |§2| =&,

is always larger than unity. Therefore neither (4-13.1) nor (4-13.2) can be used alone as a
numerical scheme because of exponential dissipation or growth. Formulating Eqn. (4-
13.1) as an unconditionally-stable FDTD has proved the dissipation [154]. By using the
complex angular frequency [4] [49] the two amplification factors can be expressed in
terms of the time step size as

£, — o Ombl/2 bt/ (4-162)

52 _ e—a),-,,,zAt/Zeijtlz (4_16b)

where @,,, is dissipation coefficient and w,,, is growth coefficient, given by [154]

im2

In[1+ s> sin’(BAx/2)] In[1/cos’(wAt/2)]
Dy = =Wy = =

iml At At (4- 1 6C)

The dissipation and the growth coefficients have the same magnitude but opposite sign,
thus they cancel each other over one complete update cycle. This dissipation is an
“artificial viscosity”. The dissipation and growth come from the “unbalanced” time

formulation in the RHSs of the Maxwell’s Equations. In other words, the time
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discretization at each sub-marching procedure is 1* order, thus it causes dissipation or
growth, as described in Chapter 2.

The numerical dispersion equation for 1D ADI-FDTD is given in [154] [160] as

tan® (wAt /2) = s* sin® (fAx/ 2) (4-17)

It can be seen from Eqn. (4-15a) that the phases of & and &, are identical. Therefore
the numerical dispersion relation is the same for both sub-steps and thus (4-17) is valid
for the whole algorithm. The hypothesis that each individual sub-marching step has
different numerical dispersion relation [100] is not correct. Note that (4-17) can also be

obtained with the amplification matrix method in [160] and is equivalent to that in [99].
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Fig.4-1 Numerical dispersion as a function of mesh density in 1D.

Fig. 4-1 graphs the numerical relative wave velocity as a function of the mesh
density N = A/Ax, where A =1 m, for s=1, 2, 3 and 4, according to Eqn. (4-17). The
error decreases rapidly as &V increases and increases dramatically as s becomes larger. At

the Courant limit, s=1, the wave velocity is in error by about 0.2% for N=50 CPW. As the
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Courant number increases, the error increases. For example, s=4, the wave velocity is in
error by about 2.18% for N=50.

Numerical experiments were performed to verify that the dispersion predicted by (4-
17) is correct. A cell space with 5000 cells was used. The “close” observer was at cell
number 2600 and the “far” observer at cell number 2700. Fig. 4-1 shows the numerical
experiment results as circles found using the matching method, which almost precisely
agree with the theoretical curves graphed using Eqn. (4-17). Numerical experiment
results from N=50 CPW to N=100 CPW for s=1, 5, and 10 can be found in [160].

4.4 Numerical Dissipation and Dispersion of 2D ADI-FDTD
The 2D ADI-FDTD can be formulated by expanding Eqn. (4-12), which is the same

as Reference [81]. The update equations for 2D ADI-FDTD are as follows.

1 sub-step 2™ sub-step
( —bZsz)E;”’2 (l—szzy)E;"'1
=E!—aDH -b’D.D,E! =EM? yaD H™? -b’D,D EI"? (4-1323)
E:+1/2 = E;l + alDyH: E;+1 - EJ}:-H/Z _ aleHzrl+l/2 (4_18b)

H!"=H!+a,D,E} —a,D.E;"* H" =H"?+a,D E;" —a,D,E;"* (4-18¢)

With the Fourier analysis, the amplification polynomials can be obtained as Eqn. (4-19),
and the amplification factors for the two sub-marching procedures can be found and

rewritten in amplitude and phase as [152]

PE)=(-&N1+72 —28 +A+r2)E2) (4-192)
PE) ==& 1472 =28, +(1+7)E) (4-19b)
& = gloeij(a‘ &= 520611'071 (4-202)
1 2
b0 = f = I:ryz 0=, =tan™ L+ )1+ D) -1 (4-20D)
20 r

76



Eqn. (4-20b) shows clearly that the magnitudes of the two amplification factors are
reciprocals and the phases are the same. In addition, the magnitude of the amplification
factors changes with the direction of travel for a given mesh size (see Fig.1 in [152]), due

to the unbalanced time-splitting in the two sub-marching procedures.

The numerical dispersion relation for the 2D ADI-FDTD method is derived as [152]

tan’(@\t/2) sin’(B.Ax/2) sin’(B,Ay/2) , Sin(B.Ax/2) sin’ (B,Ay/2)
= + > +(cl)

4-21
(cA)? A’ AP A (4-21)

It can be shown [152] that Eqn. (4-21) is equivalent to the numerical dispersion relation
in [99]. The inconsistency concermning the numerical dispersion relation among [81], [99]
and [100] is due to the fact that Reference [81] and [100] assume that the magnitudes of

the two amplification factors are unity, which is incorrect.

Fig.4-2 shows the relative wave velocity as a function of the direction of travel for
Courant number s =cAt/Ax equal to 1, 5 and 10 calculated with Eqn. (4-21). Fig.4-2
also compares the theoretical prediction (solid line) from Eqn. (4-21) with the results

from numerical experiment (small circles). It can be seen that they agree well.
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Fig. 4-2 Numerical dispersion at mesh density 100 in 2D.
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Notice that the numerical anisotropy is large, and it increases as the Courant number

increases. To take into account the case that the numerical velocity along axis u, may be
larger than that along the diagonals u,, the anisotropy definition in Eqn. (3-1) is used

[153]. This definition has the same magnitude as that in [4], but can be positive or
negative, depending on which velocity is larger. Fig.4-3 shows the numerical anisotropy
for ADI, which is much larger than CN and CNDG [153]. For a Courant number 10 at
mesh density 50 CPWs, the anisotropy is 0.058 for ADI, and 0.055x0.01 for CN; at mesh
density 100 CPWs, the anisotropy is 0.013 for ADI, and 0.013x0.01 for CN. Thus ADI
has two-order of magnitude larger anisotropy than the CN scheme. Compared to the CN
scheme Eqn. (4-5), the last term in Eqn. (4-21) is extra, which is responsible for large
anisotropy.

However, ADI has a smaller numerical dispersion error along diagonals than the CN
scheme, though the numerical dispersion is the same along the axes, which can be seen

that along the x-axis, the numerical dispersion relation becomes
tan® (wAt/2) = (cAt/ Ax)* sin®(B,Ax/2) for both methods. Thus, in terms numerical

dispersion, ADI is better than CN; in terms of numerical anisotropy, CN (and other CN-
based methods in Chapters 5 and 6) is superior to ADI. Note that if one method has
smaller anisotropy, it is easy to reduce the numerical dispersion by coefficient-
modification techniques discussed in Chapter 3.

Detailed comparison for ADI, CN and other CN-based methods can be found in
[153]. Though at each sub-step ADI-FDTD has either growth or dissipation, the
numerical dispersion relation can be separated from the dissipation because the overall

ADI method is strictly non-dissipative.
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Fig. 4-3 Numerical anisotropy of 2D ADI-FDTD at the Courant numbers 1, 5 and 10.

4.5 Perturbation Errors for 2D ADI-FDTD
From previous description, it can be seen that ADI method is really a perturbation of
the CN scheme [104]. Since Eqn. (4-11) has been split into two sub-steps Eqn. (4-12), to
find what terms have been added to the CN scheme in formulating ADI-FDTD, the two
sub-steps in ADI must be re-combined into one-step formulation. To achieve this goal,
Eqn. (4-12) can be re-written as

w2 =(1-D)'(I+D,)W" (4-232)
w™' =(I-D,)" (I +D, W™ (4-23b)

Thus the 2D ADI-FDTD method can be formulated in one-step as
w™ =(I-D,)" (I+D,XI-D,)" (I+D,W" (4-24)

Expanding the matrices obtains the following one-step ADI formulation
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E:-H
(1-6'D,)(1-b'D,)) E" |=

Hn+1
: (4-24)
1-v°D,, +b’D,, +b'D, D, -20°'DD, 2D, E
-2’DD,(1-b’D,) 148D, -b°D,, -b'D, D, -2D,(1-°D,) E,
2D, -2D, 1+5°D,, +b°D,, —b"D, D, | H;

Writing Eqn. (4-24) in individual update equations reads

1-07(D,, + Dy JE ={i-07(D,, - D,JE] -26°D,D, E} +2a,D, H; (4-252)
=b'D,. D, (E;" - EY)

-5 (D, + DB ={1+5(D,, - D,)))E; ~ 28 DD ~2a.D.H:

(4-25b)
~b'D, D, (B + E) +25'D,D, E} +26°D,D, H"
-5 D, +D T = {+8(D, + Dy ) H! +20,(DE; ~DE)
(4-25¢)

_b4D2xD2y(Hzn+l +Hzn+1)

Compared to the CN scheme of Egs. (4-2d), (4-2¢) and (4-2a), the terms in the second
line for each equations in (4-25) are the extra terms added to formulate ADI. Dividing by

At in both sides of Eqn. (4-25) one can find the order of accuracy. Those terms are

-b*D,,D, (E!*" —~E!)/ At in Eqn. (4-252), which is 4™ order accurate in time,
(-5*D,.D, (B + Er)+25'D,D, Er + 28 DD, H! )/ At in Eqn. (4-15b), which are 4™ order,
3" order and 2™ order in time, and -D,,D, (H!" +H!)/At in Eqn. (4-15c) is 4"

order in time. They are the perturbation errors. Because the electric and the magnetic

fields are coupled with each other, one may not conclude that E, has the poorest

accuracy because of the 2™ order perturbation. It can be also seen that the perturbation
errors are different from the factorization error, possibly because of splitting and the

intermediate time step introduced.
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Reference [104] points out that ADI-FDTD is an O(At?) perturbation to CN, and the

truncation error grows with A¢”and only gives the 2" _order accurate term. The above
derivation confirms this conclusion, and gives explicitly all the terms of perturbations.
4.6 Isotropic ADI-FDTD

ADI-FDTD can use a larger time step size than the Courant limit. However, the
sacrifice is larger numerical dispersion error than Yee’s FDTD, and larger numerical
anisotropy, which is two orders-of-magnitude larger than the CN scheme [153]. Higher-
order ADI-FDTD [94-97] can reduce the error, but higher than 6™ order provides little
improvement for large Courant numbers [95]. Reference [84] comments that high-order
does not improve as much as expected. Our analysis shows that the higher-order (2,4)
method “over-corrects” the dispersion error, and anisotropy still exists though becomes
smaller. References [38] [98] propose an anisotropy method that can eliminate errors at

only two directions of travel between ¢ =0° and ¢ =90° for a non-uniform mesh, and

along the axes for a uniform mesh. However, the inherent anisotropy is still larger than
CN-based methods.

Since ADI is a time-stepping scheme, it has no special requirement for the
discretization of the spatial derivatives. Therefore the 024 method proposed in Chapter 3
for explicit FDTD can be used to eliminate numerical dispersion along the diagonals, or
along the axes, or eliminate anisotropy for a uniform mesh. By the use of the “isotropic-
optimization” formulation discussed in Chapter 3, a new method can be created, termed
“isotropic ADI” (IADI). The numerical dispersion relation for IADI-FDTD can be

derived as
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tan® (At /2) (cA)? =1} (w+ (1= w)p,) +7, (W+(1-w)p,,,)° 426
+ rxzryz W+ A=W)pp) (W (1~ W)py24)2
To obtain the optimal value of the weight parameter w with isotropic velocity, the

following equation must be solved

FaaWH(L=W)P500)" = 202 W+ (L= WPy 45)” + 1l Wt (L= WPy is)* (427)

However, the above equation cannot be solved analytically. The optimal value of the
weight parameter w can be found using the same technique of search introduced in
Chapter 3. Note that in the ADI case, the value of the optimized weight parameter
depends on not only the mesh density but also on the time step size. Fig.4-4 shows the

numerical dispersion using the IADI-FDTD method. For comparison, the numerical

dispersion for
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Fig. 4-4 The numerical dispersion of IADI-FDTD and ADI-FDTD at mesh density 50

CPWs and Courant number 1, 2, 3, 4 and 5.
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the original ADI-FDTD is shown in the same figure. It can be seen that the anisotropy is
indeed suppressed for the IADI-FDTD method, and the (2,4) stencil gives much better
compensation to the numerical dispersion. Different from explicit case, the resulting
numerical velocity is smaller than the theoretical speed. This is may be because of large
numerical dispersion along the axes for the ADI method. In the ADI case, the one-cell-
away formulation “under-corrects” the dispersion. The under-corrected dispersion can be
eliminated by modifying the coefficients of the update equation using the technique
proposed in Chapter 3, where the parameter optimized method [38] only eliminates the
numerical dispersion along some specific directions of travel.

4.7 3D ADI-FDTD Formulation

It has been noticed that, in 2D ADI, the matrix D, contains all the difference

operators having negative sign, and D, contains the difference operators having positive

sign in the RHS of the Curl equations. 3D ADI-FDTD can also be formulated similarly.

The matrices are

0 0 0 -aD, 0
0 0 0 0 -aD,
b O 0 0 =-aD, 0 0
: 0 0 -a,D, 0 0 0 (4-28a)
~a,D, 0 0 0 0 0
0 -aD, 0 0 0 0 |
0 0 0 0 0 aD,]
0 0 0 aD, 0 0
0 0 0 0 aD, O
D=l ap. 0 0 0 o0 (4-28b)
0 0 aD, O 0 0
a,D, 0 0 0 0 0 |
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Egs. (4-11) and (4-12) are still valid in the 3D case. To formulate Namaki’s 3D ADI-
FDTD [82], directly use the above matrices; to formulate Zheng-Chen-Zhang’s 3D ADI-
FDTD [4] [83], just exchange the position of D, and D,. The numerical dispersion

relation is [99] [101]

tarf (at/2) L+ (e sirf(B.Ax/2) sitf (B,49/2) sirf (B.A2/2)
(cAY)? A N A
sif(BA/2) sif(BAI2) sit(BAV/2)  ,sit(BA/2)SiE(BAV/2)
= 2 + ) + 2 +(cir) 2
Ax Ay Ay AP Ay (4-29)
L St (BAx/2) sitf(B.Az/2) ,SIF(B,A0/2) sir(B.Az/2)
+(cAr) A 7 +(cAY) A yz o

4.8 Discussion
The original formulation of ADI-FDTD [81-83] is straightforward from the
discretized Maxwell’s Equations when the RHS is approximated in time. This Chapter
formulates the ADI-FDTD based on the CN scheme in a compact matrix form Egs. (4-
10) and (4-11) with factorization. Though the CN-based methods introduced in Chapters
5 and 6 are also formulated with the same matrix form and factorization, it is the different
splitting schemes that differentiate them, and thus the numerical dispersion behavior. The
factorization errors indicate why there is a cross term in the numerical dispersion relation.
It is noticed that, for current or voltage sources, ADI-FDTD must treat the source at

each time step. The formulation is

1
=D =+ DY +- W (4-302)

1
(I -DYW™ =+ D)W + W (4-30b)
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where W.*''? is the source vector evaluated at time step n+1/2. However, for CN-based

methods, the source treatment is required only for the first sub-step, which is more
efficient than ADI-FDTD.
Using the coefficient-modification technique, the numerical dispersion error can be

minimized. The CN scheme can be re-written as

E! =E!+a,aD,(H" +H) (4-31a)
E)" =E;) -a,aD (H" +H}) (4-31b)
HI" = H! +a,a,D,(E" + E})=a,a,D,(E}" + E}) (4319

The numerical dispersion is

tarf(at/2) Sitt(3,Ax/2) sir'(8,4v/2)
( o At)2 =4, th + ayeayhT
sirf (3, Ax/2) sirt (8,4y/2) (4-32)
+ axeayeaxhayh (CN) ’ AxZ A;Z

For a uniform mesh Ax=Ay, choosing a,=a,=a, =a,=a, properly can

ye X cm

eliminate numerical dispersion along a designated direction of travel. For example, to

eliminate axial numerical dispersion, the optimized a_, value will be

Lt /)
' ssin(BAx/2) (4-33)

For other directions of travel where 7,7, # 0, the optimized a,, value can be solved from

Eqn. (4-32) as

a (4-34)

cm

J@2 7 + 4 tart (@ /) ~ (2 +77)
- 2

In particular, choosing ¢ =45°can eliminate dispersion error along diagonals, and

choosing ¢ =22.5° or ¢ =67.5° can have minimum average dispersion error. Though
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References [38] [98] use similar techniques to correct the dispersion, they did not give an

analytical expression of a_,.

4.9 Summary

ADI-FDTD is a two-step marching method, and is a 2" order accurate perturbation to
the CN scheme. At each sub-marching procedure, either numerical dissipation or
numerical growth appears, because of the unbalanced formulation in time. However, this
unbalanced behavior is compensated with the two sub-marching procedures, the overall
method is strictly non-dissipative, and unconditionally stable. In implementation, the two
sub-marching procedures must be completely fulfilled [154].

The numerical dispersion relations in 1D and 2D are re-derived using the Fourier
method for each sub-step, and numerically verified with good agreement between
numerical experiments and theoretical prediction. The inconsistency regarding the
numerical dispersion relation is removed. Though ADI-FDTD is unconditionally stable,
use of a large time step size leads to large numerical dispersion and anisotropy. The
isotropic ADI-FDTD using a larger computational stencil gives much better improvement
in numerical dispersion error compared to the explicit IOM method discussed in Chapter
3, and can eliminate anisotropy at one designated frequency.

It has been shown that CN-based methods [151] [157] can greatly reduce the
anisotropy without using a larger computational stencil. In the next two chapters, 2D and
3D CN-based methods are described and the perturbation errors are given. These
perturbation errors are 4™-order accurate in time. Thus the CN-based methods inherit the

small anisotropy behavior of the original scheme at relatively small Courant numbers.
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Chapter 5 2D Crank-Nicolson-Based Methods

From Chapter 4 it can be seen that ADI-FDTD can be considered as a 2™ order
perturbation to the CN scheme with large anisotropy. However, ADI-FDTD differs from
the CN scheme because it associates a specific time step n+1/2 with the intermediate field
values, whereas the CN scheme and the CN-based methods do not associate the
intermediate field values with a specific time step [151], [156-157], [163]. This thesis
will classify them as the ADI methods and the CN-based methods. The CN-based
methods are different from ADI also in the count of floating-point-arithmetic operations
although some CN-based methods have the same numerical dispersion as the ADI
methods [156]. In this chapter, the amplification polynomial, the amplification factor, the
numerical dispersion relation and the numerical validation results will be given for each
proposed method. The proposed methods either have higher computational efficiency, or
have smaller anisotropy than ADI-FDTD.

5.1 An Efficient Splitting Scheme

Eqn (4-11) can be split into two steps in various ways, such as the D’Yakonov
scheme, Douglas-Rechford scheme, Peaceman-Rechford scheme, and the Beam-
Warming scheme [76-78]. However, different splitting schemes may lead to quite
different numerical accuracy and computational stencils, particularly for non-

homogenous difference equations such as

(I-D){I-D,W" =(I+D,)I+D,)W" +f (5-1)
where f'is a matrix, which can be a current or voltage source vector in Eqn. (4-30), or
other known terms introduced in this Chapter. To avoid numerical dissipation and to

alleviate the direct computation of D D,W"which requires a large computational
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stencils, and to have fewer floating-point-arithmetic operations, this thesis proposes an
“efficient splitting” scheme with intermediate values " as

(I-DW =(I+D,+2D,W" +f (5-2a)
(I-D)W™ =W -D,W" (5-2b)

It will be shown that by numerical dispersion analysis and numerical experiments that
such an efficient splitting scheme performs well. Compared to Eqn. (4-30), the matrix f
1s treated only once instead of twice in the ADI formulation Eqn. (4-30). This efficient-
splitting scheme will be used in efficiently developing CN-based schemes in this thesis.
Note that dropping the cross term D,D, in RHS of Eqn. (5-1), as done by some authors
in order to reduce the computational stencils, will introduce artificial numerical
attenuation, which can be avoided by Eqn. (5-2).
5.2 A Direct-Splitting Method
Using the efficient splitting scheme Egs. (5-2) and (4-10), the Eqn. (4-11) can be

written in the form

E,=E+2aDH’ (5-3a)

E,+aDH,=E -aD.H! (5-3b)

H,+a,D.E, =H, +2a,D,E" -a,D,E| (5-3c)

E!"-aDH" =E,-aD,H (5-3d)
n+l * -

EM =E, (5-3¢)

H!"'~a,D,E;" =H_ -a,D,E, (3-36)

and will be termed as the Crank-Nicolson-direct-splitting (CNDS) method. Further
simplification to Eqn. (5-3) shows that similar to ADI, CNDS solves two implicit
tridiagonal equations: one for the intermediate time step, and the other for the current

time step. The rest of the field components can be updated explicitly. Note that Eqn. (5-3)
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can be written much more concisely as the Crank-Nicolson-approximate-decoupling
E,(CNAD-Y) method [156] presented in Section 5.4. Exchanging D, and D, can lead
to a different formulation. The former can be called CNDS-Y, the later can be called
CNDS-X to distinguish the different formulation. As pointed out in Chapter 4, the
factorization error CNDS-Y method is —5°D,D (E;* - E) to the E, update equation,
which is the perturbation error to the original CN scheme.

Note from Eqn. (5-3) it can be seen that the CNDS methods can also be formulated

by solving the magnetic field component implicitly and then the electric field components

explicitly. With some manipulation, the implicit update equations are

H,-b’D, H, =H! +b'D, H} +2a,D,E; —2a,D,E, (5-4a)
H" -b’D, H;" =H, -b’D, H; (5-4b)

This can be termed as CNDS-H method.
Using the Fourier analysis method obtains the amplification polynomial for all the

CNDS methods as
P(&) = (1= &Y+ r2)1+ r2)(E +1) - 48) (5-52)
The amplification factor of the propagating mode and the numerical dispersion relation

can be derived as

1-r) =1} —rlr} iJ\/(l+rX2)(l+ry’")2 —(-rl =1 -rlr))’

= Y 5-5b

g A+r)1+77) (5-30)
i (B.Ax/2) Sit(B,4/2 it (B8.Ax/2) sirt (B,4y/2

tanZC(Aagi/Z):m (ﬁz )+sm (,Byzy )+(cAt)2 si (ﬁz ) sint (,:y}Zy ) (550

The amplification factor has a unity magnitude, thus CNDS method is unconditionally

stable. The numerical dispersion relation Eqn. (5-5c¢) is the same as ADI-FDTD Eqn. (4-
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21) [152], thus the CNDS has larger anisotropy errors than the CN scheme. In the next
few sections some more accurate methods for efficiently implementing the CN scheme
will be discussed.
5.3 The Crank-Nicolson-Douglas-Gunn Method

From Eqn. (4-1) it can be seen that the discrete electric and magnetic field
components are coupled, which lead to a huge sparse matrix to be solved expensively.
One way to decouple the electric and magnetic fields is to insert Egs. (4-1a) and (4-1b)
into (4-1c) to eliminate the implicit electric field components at the current time step n+1

[151]. With some manipulation, it can be written as
(-8, +D, ) =(1+8D,, +D,,)H; +2a,(D,E - DE}) (5-6a)
Note Eqn. (5-5) leads to a block tridiagonal matrix [77], which is expensive to solve

efficiently. By adding terms 5*D, D, H'"and b°D, D, H”to the LHS and RHS of
2x 2y "z 2x2y" T 2

Eqn. (5-6a), respectively, it can be factorized into

(1-#D, J1-#D, )i =(1+8°D, \1+8°D,, ! +24,(D,E; - DE) (5-6b)
This implicit equation can be solved by the Douglas-Gunn method [77] [151] (Jim
Douglas, Jr., 1927-, James E. Gunn, 1938-). In [151] large computational stencils are
encountered since the cross-derivative term D, D, is left in the RHS. By the use of the

efficient splitting method, Eqn. (5-6b) can be solved with the following two-step update

equations

(1-#D, )1, =(1+5D,, +20°D, JH" +24,(D,E: - DE}) (5-7a)
(15D, )i = H, -¥*D, H! (5-7b)

This formulation avoids large computational stencils [151], and is still termed as the

Crank-Nicolson-Douglas-Gunn (CNDG) method. The amplification coefficient matrix,
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the amplification polynomial and factor as well as the numerical dispersion relation can

be derived by the use of the Fourier method as

1-& 0 ~J2a(1+&)sinB A/ 2)/ by

0= 0 1-& J2a(1+E)sinB Ax/2)/ Mx
~Jha,sinBAvI2)/ by Jha,sinBAxi2)/ e (1-7)A-7))-(1+r2)A+7)E
P©) = (- EXA- A=A r2) = EQ+72)A+ 7))+ 2072 +P2)(E+1)) (5-8b)

(5-8a)

R
o = LS
(a+Ha+rh)
L’ sin’ (8, Ax/2) sin’ (ﬁyAy/2)1 tan’ (@e/2) _ sin’(8,A¢/2) sin’(B,4/2) (5-84)
2 & | (e AN

The CNDG method has a unity-magnitude amplification factor, thus it is unconditionally
stable. Numerical experiments and analysis [151] [153] show that CNDG has much
smaller anisotropy than ADI and CNAD, and has the fewest floating-point-arithmetic
counts (see Section 5.7.5).
5.4 The Coupled Electric Field Components at the Current Time Step

In many practical problems, perfect electric conductors (PECs) are often encountered.
Solving the problem in term of the electric field components makes the enforcement of
the boundary conditions easier than solving in terms of the magnetic field. To this end,
inserting Eqn. (4-1c) into Egs. (4-1a) and (4-1b), respectively, obtains the following
equations

(1-bD, )E;" +b’D,D,E;" =(1+b°D, )E; -b°D,D E} +2a,D H} (5-92)

x=y~y XYYy
(1-8D,)E}" +b°D,D E;" =(1+b’D,,)E} -b>D, D E; —2a,D H’ (5-9b)

Eqn. (5-9) realizes the decoupling between the magnetic and the electric fields at the
current time step n+1, but the two electric field components are still coupled each other.

Directly solving Eqn. (5-9) is still expensive in terms of computer resources. However, it
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can be solved efficiently by adding some 2" order- or higher-order terms inspired by the
ADI method. With approximate factorization and the efficient splitting method, Eqn. (5-

9) can be solved efficiently from the following two-step equations

(I-AW =(I+A+2BW" +f,
(5-10a)

(-BW™ =W —BW"
(5-10b)

where now W" =\E; E’ B f.=2a(D, -D,JH" and 4 and B are 2 by 2
y y

difference matrices. Depending on the formulation of 4 and B, several different
methods can be devised [156] as demonstrated in the following. It will be shown later

that Eqn. (5-10) has been added some 4™ order-accurate terms implicitly.

5.5 Crank-Nicolson Approximate-Decoupling Method

Observing Eqn. (5-9), the coupling between E;*"' and £, is due to the D, D, term.

When solving forE;’+1 implicitly first, the 2™ order terms — D_D E™' and —D_D E”

x Ty Tx x T yHx

can be added to the LHS and to the RHS of Eqn. (5-9b), respectively. Thus the
decoupling is realized. This method is termed as Crank-Nicolson-approximate-

decoupling E,(CNAD-Y) method. The update equations are

(1-b°D,,)E;" =(1+b°D,,)E; —2a,D,H —2b>D,D E; (5-11a)
(1-bD, )E;" =(1+b°D, )E} +2a,D,H! -b>D D (E}" +E}) (5-11b)
H!" =H! +a,D,(E;" +E,)~a,D,(E," +E)) (5-11c)

Similarly, by adding 2™ order terms -b’D,D,(E;" - E;)to Eqn. (5-9a), Eqn. (5-9) is

solved by CNAD-X method [156] without the intermediate value. This CNAD method
solves two tridiagonal matrices implicitly, and updates the magnetic field Eqn. (5-11c)
explicitly, at each time step. Note that CNDS-Y has the same update equations as Eqn.

(5-11) after some manipulation. The amplification coefficient matrix is
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1-1 —(1+1)¢ rr(1+6) —~Jaa sin( A/ 2)/ by

0= o, 1-2-(+2¢  JasinBAv/2)/ A (5-12)
=20, (E+D)sinB A/ 2)/ by J2a,(E+1)sin(B Ax/ 2)/ Ax 1-¢
From the determinant of Q, the amplification polynomial can be obtained as
P& = (- NA+r2)A+72)E +1)+202r7 =12 =1 ~D)E) (5-13)

The amplification factor and the numerical dispersion relation are the same as Eqn. (5-5).

Note that adding terms —D_D E"™' and —D_D E’ into Eqn. (5-9a) allows solving for

x Ty Hx x=yHx

E! implicitly first [156]

(1-5’D, )E;" =E} +2a,D,H} -2b*D D E; +b*D, E (5-14a)
(-b°D,,)E;" =E} -2a/D,H + D, ,E} -D,D E} -D D E;" (5-14b)

This method decouples E, first, thus is termed as CNAD-X. Therefore the CNAD

method can be formulated with two different algorithms Eqgs. (5-11) and (5-14). Both
algorithms have the same amplification factor and thus the same numerical dispersion
relation Eqn. (5-5¢), although their amplification coefficient matrices are different.
5.6 Crank-Nicolson Cycle-Sweep Method

The cycle-sweep method solves Eqn. (5-9) by use of different formulations of the
matrices Aand B, and four algorithms were presented in [156]. They can be solved
either first explicitly, then implicitly, or first implicitly and then explicitly.
5.6.1 Crank-Nicolson-cycle-sweep-implicit-explicit method

By constructing the matrices Aand B as follows

D 0 0 -DD
A=p* 7 B=b’ Y _
[—Dny DijI [ J (5-15)

the following update equations can be obtained from Eqn. (5-10)
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(1-b°D,,)E, =E; +2a,D,H] -2b°D,D E; +b’D, E (5-162)

xy~y 2y™x
(-b’D, )E}" =E; -2a,D,H! +D,,E, -D D,E; —-D,D E, (5-16b)
E;" =E,+b’D,D,E; -b’D D E;" (5-16c¢)

This method solves for E, and E;’“ implicitly with tridiagonal matrices, and then solves

E explicitly in a “cycle-sweep” manner: it begins with and ends with E_, thus it is
termed the Crank-Nicolson “cycle-sweep implicit-explicit” (CNCS-IEX) algorithm.
Notice that Egs. (5-16a) and (5-16b) are the same as Eqn. (5-14) of the CNAD

method. Eqn. (5-16¢) compensates explicitly for the terms D D, (E ;” ~E}) dropped out

in Egs. (5-14a) and (5-16a). This compensation does make a difference for the
amplification factor and thus for the numerical dispersion. The amplification coefficient
matrix, the amplification factor, the amplification polynomial and the numerical

dispersion relation can be obtained as

172 —(1+72)E (=R 41420 ~Jasin@BAy/2)/ Ay
0= rr,(1+8) 1P 4P (4R Jasingaay/ae | C17)
~ D2, EF)sinB A D/ by T2y (E+FDsinBAx/2)] A 1-&

PE) =(+r2 1472 -1)-B-r2 =12 +3r22 fE -1) (5-17b)

] (a=rya-r)ef(a+ra+r2)) ~(a-ra-r2)f (5-170)

(+rHa+r))
{1+ ' sinz(/i;?x/2) Sillz(ﬁy?y/Z)ltarf(aAz/Z) _ sinz(ﬂx?x/2) . sinz(ﬂy?y/ 2) 5-17)
A N (e A by

It can be seen from Eqn.(5-17c) that the CNCS-IEX method is unconditionally stable and
strictly non-dissipative. Comparing the numerical dispersion relation Eqn. (5-17d) to

Eqn. (5-8b) for CNAD, their difference is the location of the cross term
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(tar? (¢ /2) /car)* fsin? (B, Ax/2)/ & fsin? (B, Ay/2)/ Ay* ): when it appears in the RHS it
will result in larger anisotropy [156].
Similarly CNCS-IEX) algorithm can be constructed. It begins the sweep with and
ends with £, with the following matrices
D, -DUD 0 0
A=b*"% i B=b ]
[ 0 sz :I {_Dny 0} (5 18)

The update equations are

(1-b°D,)E, =E, -2a,D,H] +b’D, E} -2D,D E] (5-19a)
(1—b2D2y)E"+1=E"+261DH"—bD (E +E))+b’D, E] (5-19b)
E =E,+b*D,D,E} -b>D D E" (5-19¢)

This method solves for E y and E' implicitly with tridiagonal matrices, and then solves
E ;” explicitly in the cycle-sweep manner. Thus it is termed the Crank-Nicolson “cycle-

sweep implicit-explicit” (CNCS-IEY) algorithm. The amplification coefficient matrix is

l—ry2 +;;21;2 —(l-!-ry2 +ifrf)§ rxry(1+§) ~J4a sin@3 A/ 2)/ By
0= (=P +(+D)) 1= —(1+72)¢ Jasin@Ax/2)/ Ax (5-20)
—T2aE+)SinB /DIy T E+Dsing A2 A ¢

It can be shown that the amplification polynomial, the amplification factor and the
numerical dispersion relation are the same as Eqn. (5-18) for CNCS-IEX.
5.6.2 Crank-Nicolson-cycle-sweep-explicit-implicit method

The CNCS-IE algorithms proposed above first approximate the cross term D _D E™!

L GRS ¢

with D D E? to realize the decoupling, and then compensate for the dropped term

x =y xy
explicitly. This section gives another decoupling method: it drops both the second-

derivatives and the cross terms, thus gives explicit update equations first. Then the final
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field values are solved implicitly with the errors compensated [156]. Analysis shows that

one such formulation is to construct the matrices 4 and B as follows

0 0 D, -D.D
A=0 B=p"|"% dl )
50, o v e

The update equations can be formulated from Eqn. (5-10) as

E,=E!+2aD,H!-2b’D,D, +2b*D, E, (5-222)
E,=E)-2aD H, +2b’D, E;, -b*D,D (E; +E,) (5-22b)
(1-5’D,,)E!" =E, -b’D, E" (5-22¢)
(1-b°D,,)E!" =E; -b’D, E. -b*D,D,(E," - E}) (5-2249)

Note that Eqn. (5-22b) can be inserted in Eqn. (5-22c) as

(1-b’D, )E" =E} -2a,D . H! +b’D, E} ~b’D,D (E} +E,) (5-23)

2wl
This algorithm solves for E; explicitly, then solves E;" and E;"implicitly with two
tridiagonal matrices, in the cycle-sweep manner. Thus it is termed Crank-Nicolson
“cycle-sweep explicit-implicit” (CNCS-EIX) algorithm [156].

One can also construct the matrices as

0 -D,D D 0
A=b? Y B=pY ¥ ]
[0 0 } {— DD, D, (5-24)

The update equations can be formulated from Eqn. (5-10) as

E,=E]-2a,D.H!+2b’D, E} -2b’D,D E! (5-252)
(-b°D,,)E;" =E] +2aD,H} +b’D, E; -b°D,D (E}" - E}) (5-25b)
(1-8’D, )E}"' =E, -b*D,,E} -b>’D,D (E;" - E}) (5-25¢)

which solves for £ explicitly first, and then E;"' and E;" implicitly with tridiagonal

matrices in the cycle-sweep manner. Thus it is termed the Crank-Nicolson “cycle-sweep

explicit-implicit” (CNCS-EIY) algorithm.
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The amplification coefficient matrices for the CNCS-EI methods are

-1} =(+1)) rr(1+6) ~JhasinBAvI2)/ by
Ou=|  rn(-P+Q+DE) 1R+ (D Jasingsvdine | OO
~J2a,(E+DsinB A/ DIy J2a(E+Dsing Ax/2)/ Ax 1-¢&
=R+ =+ +2)E  rr(-r+(+2)0)  —JasinB A2/ by
Ooy= rr(1+8) 1-r? —(1+12)¢ JAa,singB A/ 2)/ e (5-27)
~L2a,(E+DsinB A/ 2)/ by J2a,(E+D)sinBAx/2)/ Ax 1-&

It can be shown that the amplification factors and the numerical dispersion relations are
the same as for the CNCS-IE methods.
5.7 Solving the 2D Wave Equations of the Second Degree

Wave equations can often be written either as one equation of the second degree or as
a system of the first degree [77]. Most books and literature focus on the numerical
solution of the first-degree system. But there are some cases in which it is convenient and
efficient to solve the second-degree wave equation directly. There are several explicit
methods [18] [78] [127] [141-142], and References [142-144] transform the wave
equation into a system of the first-degree equations. But all the explicit methods have the
same Courant limit the as the first-degree system of equations. Reference [127] describes
an implicit method in the 1D case, which is simple to solve because the resulting matrix
is tri-diagonal. References [142-143] solve 3D Vlasov-Maxwell’s Equations using ADI
method. Several methods were analyzed and it was found that not all implicit methods
are unconditionally stable [78]. Among the implicit methods, the Crank-Nicolson (CN)
scheme is particularly preferred in this thesis because it has less anisotropy than the ADI
method. This section reports a method based on the CN scheme and the Douglas-Gunn

(DG) [162].
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The 2D wave equation to be solved is

o*u  ,(0*u O%u
7 a7 (5:28)

where c is the velocity, and # can be any EM field components. Since Eqn. (5-28) has a
2"_degree time derivative, it must be discretized as a three-level scheme. There are
several schemes for the discretization of Eqn. (5-28). Here a scheme with small
anisotropy and no numerical dissipation is desired. Using a regular rectangular mesh, one
possible CN scheme can be formulated as

u™ (@, ) +u" )= 2u" G, ) =0 (D + Dy Ju™ G ))+u" G )+ 26" G, ) (5-29)

It can be shown [162] that such a CN scheme for the 2D wave equation (5-28) has the
same amplification factor and numerical dispersion relation as the first-degree Maxwell’s
Equations using the CN scheme, which is a reference for later modification

Eqn. (5-29) is expensive to solve. Since it is a three-level scheme, there are several
methods to modify it [78] [162]. To obtain an efficient solution, first it must be
approximately factorized. This can be realized by adding the higher-order terms
b*D, D, " (i, /)+u"" (i, /)) to the LHS and 2b°D,,D, u"(i, j) to the RHS of Eqn. (5-
29), respectively, which leads to

A-ED)A-ED, )™ G, )+ G j)=21+5" D)+ DG, ) (5-30)
Then Eqn. (5-30) can be split for solution in various ways. With the efficient splitting
method, the Douglas-Gunn algorithm [77] can be used to solve the following equation
(1-b>D, ) (i, ) +u"" (@, j)) =2(1+b°D,, + 2b2D2y)u" @, J)

(5-31a)

(1=b"D, ) )™ (@, ) +u"" @ ) =u" (G, ) +u"" (i, j) = 2b° Dy u" (5, J)
(5-31b)
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Such a formulation avoids large computational stencils for u” and u™'. This method is
termed as the Crank-Nicoslon-Douglas-Gunn method for the wave equation (CNDGW).

The amplification polynomial can be obtained as

PO=(E-N1+A+D)E +)-260-)0-7)) (5-32)
The amplification factor is the same as the CNDG method Eqn. (5-8c) for the first—
degree Maxwell’s Equations [162], and thus has the same dispersion relation as Eqn. (5-
8d). Therefore the CNDGW method obtains more isotropic numerical velocities than
ADI-FDTD. The perturbation error is the same as its factorization error.
5.8 Numerical Validation and Discussion

To validate the methods proposed above, each algorithm was coded. In total eight
programs where created. Each algorithm was run successfully for a variety of Courant
numbers at mesh density from 50 to 100 CPWs in a 3000 by 3000 cell space. No
instability has been found.
5.8.1 Numerical dispersion

The values of the numerical dispersion at mesh density 50 with several Courant
numbers are graphed in Fig. 5-1 for CNAD and Fig. 5-2 for CNCS, respectively. The
figures show excellent agreement between the theoretical dispersion values predicated by
Eqgs. (5-5b) and (5-20) and the numerical results. Other numerical results can be found in
[151] [156] [162].

Comparing Fig. 5-1 to Fig. 5-2, it can be seen that the CNCS (CNDG) methods are
much more isotropic than the CNAD method and the ADI-FDTD method (Chapter 4).

Fig. 5-3 shows the anisotropy of CN and CNCS (CNDG) methods. It can be seen that the
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Fig. 5-1 Numerical dispersion of the CNAD method with mesh density 50. Solid line:
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Fig. 5-2 Numerical dispersion of the CNCS method with mesh density 50. Solid line:
theory; circles: numerical experiments.

anisotropy defined in Eqn. (3-1) of CNCS (CNDG) is two orders of magnitude smaller

than the CNAD and ADI [153]. In Fig.5-2, at s=1 and s =2, the numerical velocity

along the axes is slightly smaller than that along the diagonal ¢ = 45°, the anisotropy is

positive. But for s =4and s =35, the velocity along ¢ =45°is smaller than that along
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axes, thus the anisotropy is negative. However, the vertical scale is Fig. 5-3 is too coarse
to show the sign change of anisotropy. Such change of the anisotropy signs means that at
a specific Courant number for the given mesh density, the numerical velocity is identical
in all directions of travel, leading to zero anisotropy. Fig.5-4 graphs the Courant number
versus the mesh density at zero anisotropy. Note that at zero anisotropy, there is
numerical dispersion, but it is not large. Fig. 5-5 shows the dispersion error at zero
anisotropy as a function of mesh density. At mesh densities of 50 and 100 cells, the

dispersion error is 1.75% and 0.866%, respectively.
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Fig. 5-3 Numerical anisotropy for CN and CNDG.
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Fig. 5-5 Numerical dispersion verses mesh density at the Courant numbers without
numerical anisotropy for CNCS and CNDG.

Though several methods are proposed in this chapter, the numerical dispersion
relations fall into only two types: that with large anisotropy but with better numerical
dispersion along the diagonals, Eqn. (5-5b), for CNAD and CNDS; and that with much
less anisotropy, Eqn. (5-17d), for CNDG and CNCS. The former has a small average
dispersion, the latter is suited for numerical dispersion elimination with coefficient
modification, which will be discussed next.

5.8.2 Techniques to reduce the numerical dispersion

Numerical dispersion can be reduced in various ways. The simplest method is to
modify the coefficients of the discretized Maxwell’s Equations as discussed in Chapter 3.
Since CNDS and CNAD have the same numerical dispersion relation as ADI, the
discussion in Chapter 4 is applicable to CNDS and CNAD. For CNDG and CNCS, using
the formulation of CN scheme with coefficient modification Eqn. (4-31), the numerical

dispersion are derived as
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(8. Ax/2) sin(B.Av/2) | tar? 5
1+axeayeax;.ay,,(cAt)4 sin (ﬂ,,2 ) (ﬂy2y )1tan (aAzz‘/ )
)
sin’ (B, Ax/2) sin’ (B,4y/2) (5-33)
=axeaxh'—2_ aye T
Ax Ay

For a uniform mesh Ax=Ay, choose a, =a,=a,, =a, =a,. To eliminate axial

ye

numerical dispersion, the optimized a,, value in Eqn. (4-33) can be used. For other

directions of travel where 7,7, # 0, the optimized a,, value can be solved as

G2+ 47—l tan' (et 2)
2r? ry2 tan’ (a\t/2)

(5-34)

q

Fig.5-6 shows the numerical test results using the coefficient-modification technique for
CNCS method (CNCS-CM) at a mesh density 50 CPW for the Courant number of 1, 2
and 4. For comparison, the numerical dispersion at Courant number 1 and 4 is also shown
for CNCS without coefficient modification. It can be seen that the numerical dispersion

has been almost removed with residual errors up to the accuracy of the matching method.
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Fig. 5-6 Numerical dispersion of CNCS with the coefficient-modification technique

at a mesh density 50 CPW for the Courant number of 1, 2, and 4.
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5.8.3 Perturbation errors
All the methods proposed in this chapter are modifications of the CN scheme. The
perturbation errors can be derived by comparing the update equations of the CN-based

methods with the CN formulations, similar to Chapter 4. For example, for the CNAD
method of Eqn. (5-11), the perturbation error in Eqn. (5-11a) is »°D,D (E;*' —E}),
which is 2" order accurate. The CNCS-EIX method is formulated by adding two terms,

(cAt/2)* D, D (E;" —E}) and (cAt/2)*D, D, ,(E;" - E}) to Eqn. (5-25b), which are
4™ order accurate in time; D,, is the central difference operator for the 3" derivative

along x-axis. The perturbation errors for other CNCS methods can be found similarly.
One can recognize them from the amplification coefficient matrices. Note that the terms
higher than the 2™ order do not appear into the update equations. They are implicitly
added. This is due to the efficient splitting scheme. All the difference operators are
second order accurate in space. Thus all the proposed methods are 2™ order accurate in
both time and space.

In terms of numerical dispersion along the diagonals, CNAD (CNDS and ADI) is
more accurate than CN and CNCS (CNDG). In terms of anisotropy, CN and CNCS
(CNDG) are more accurate than CNAD (CNDS and ADI). From the perturbation errors,
it can be seen that ADI, CNAD and CNDS are formulated by adding 2" and higher-
order terms. However, CNCS and CNDG are formulated by adding 4™ order terms,
which slightly modifies the CN scheme, whereas CN has larger numerical dispersion
error along the diagonals than ADI. Thus CNCS and CNDG preserve this property of
CN. To reduce the numerical dispersion error, some 2" order terms can be added to

further modify the CN-based methods.
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The large numerical dispersion at large Courant number for CNDG and CNCS is
originated from the decoupling by adding higher-order terms. It may be possible to
realize the decoupling using block factorization [145], thus preserve the numerical
dispersion relation of the original CN scheme, at a cost of longer CPU time.

5.8.4 Count of floating-point operations

Both the CNAD and the CNCS (CNDG) methods solve two tri-diagonal matrices at
each time step, as does the ADI-FDTD method. However, the number of floating-point
arithmetic operations in the right hand side of the update equations is different. Since the
multiplication/division (M/D) operation takes more CPU time than addition/subtraction
(A/S), they are counted separately. Table 5-1 shows the count of arithmetic operations for
ADI, CNAD, CNDG, CNCS-EI and CNCS-IE for one update cycle. In counting
operations, the update equations have been rearranged to minimize the number of
multiplications for CNCS-EI. For example, both sides of an equation can often be
divided by a common coefficient to reduce the number of multiplications required. Note
the actual computation efficiency may be code-dependent, and also dependent on the
optimization performed by the compiler. Table 5-1 shows that CNDG uses the fewest
arithmetic operations, CNAD and CNCS use fewer multiplications than ADI, but more
additions. However, ADI uses one more for-loop than CNDG and CNCS, and two more
for-loops than CNAD. The overhead of additional for-loops consume more CPU time,

particularly for large problems.
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Table 5-1 Count of arithmetic operations for different algorithms.

Method Implicit Explicit Total For-loops
M/D A/S M/D A/S M/D | A/S

ADI 3+3 6+6 1+2+142 2+4+2+4 12 24 6
CNDG 6 12 1+1 4+4 8 20 4+1*
CNAD 3+3 8+12 2 8 8 28 3+1%*
CNDS
CNCS EI| 1+2 3+11 3+3 8+12 9 34 4+1%
CNCS IE | 3+3 8+12 2+1 8+8 9 36 4+1*

* One for-loop is required to store the values at time step 7 .
5.9 Summary

This Chapter has introduced several CN-based unconditionally-stable methods for
efficiently solving Maxwell’s Equations for a 2D TE, wave. All the algorithms have been
numerically tested by coding them. The numerical results agree well with the theoretical
prediction for the numerical dispersion relation. The CNCS and CNDG methods have
non-physical intermediate field values, whereas the CNAD and CNDS methods do not
have. However, in the CNCS and CNDG methods, those field values are parts of the
methods, and are integrated in the scheme. Unlike ADI-FDTD, these intermediate values
will not propagate into the enclosing mesh in the sub-griding method.

In addition, the magnitudes of the amplification factors are unity, thus all the methods
presented in this chapter are unconditionally stable. In terms of floating-point arithmetic
operations, CNDG uses the least CPU time compared to ADI, CNAD and CNCS. CNAD
and CNCS uses fewer multiplication operations but more addition operations than ADI,
and have one or two for-loops fewer than ADI. The perturbation errors to the CN scheme
are the factorization errors, which are 4™ order in time for CNCS and CNDG, and 2™
order for CNDS and CNAD. The numerical dispersion is the same along the axes for

ADI, CNAD, CNDS, CNDG and CNCS. However, the numerical anisotropy of CNDG
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and CNCS is two orders of magnitude smaller than ADI and CNAD (CNDS). Most
importantly, there is a specific time step size for a given mesh that the numerical velocity
1s isotropic, which has not been found in other methods reported previously. Such
properties can be best used to remove the numerical dispersion using the coefficient-
modification technique. Note that the CNAD methods are the same as [150], but
Reference [150] does not give the expression of the amplification factor and the
numerical dispersion relation.

Note that the methods of solving for the magnetic field component in the TE, wave
case can be used in solving for the electric field component in the TM, wave case, where
PEC boundaries are easier to treat.

Since the 3D cases are most often encountered in practice, next chapter will introduce

some CN-based unconditionally-stable methods for 3D meshes.
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Chapter 6 3D Crank-Nicolson-Based Methods

In the 3D case, all the six electromagnetic field components are involved in the
discretized Maxwell’s Equations, which makes the solution more complicated. This
chapter proposes some methods to efficiently implement the CN schemes. Similar to the
2D case, some methods are similar to ADI-FDTD; others are more like the CN itself in
terms of anisotropy.

6.1 3D Crank-Nicolson Formulation for FDTD

The 3D CN formulation for Maxwell’s Equations can be written as

EM=E"+a(D,H"™ -D,H™ +D,H! -D,H") (6-1a)

EM =E"+a(D,H™ -D H™ +D,H' -D,H") (6-1b)

EM =E"+a(D,H™ ~D,H™ +D,H' ~D,H") (6-1c)

H™ =H! +a,(D,E"" ~D,E™ +D,E" - D,E") 6-1d)

H™ =H"+a,(D,E/" -D,E"™ +D.E" - D,E") (6-1e)
)

H™ =H!+a,(D,E™ - D,E"™ + D E' ~D,E" (6-11)

¥y

where the locations of the field components are omitted for brevity, and are the same as

used in the Yee’s FDTD [14]: E,(i+1/2,j,k), E G, j+1/2,k), E,(,j,k+1/2),
H G,j+1/2,k+1/2), H,(i+1/2,j,k+1/2), and H, (i+1/2,j+1/2,k). The

amplification coefficient matrix for 3D CN can be written using the Fourier method as

_ O Qo
Con = (QZ] szJ (6-22)

-£ 0 0

where Q=04 0 1-¢£ 0
0 0 1 (6-2¢)

Q1z =a, (5 + I)th
0, =a,5+ I)QeTh
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0 J2sin(B,Az/2)/ Az~ J2sin(B,Ay/2)/ Ay
0., =|-J2sin(B,Az/2)/ Az 0 J2sin(B,Ax/2)/ Ax
J2sin(B,Ay/2)/ Ay —J2sin(B,Ax/2)/ Ax 0

(6-2d)

The amplification polynomial can be obtained from the determinant of Q,, , given by

P(&) =(1—§)2((1+rx2 +ry2 +r)é+ (-7} —ry2 —r})+4,r] +ry2 +rzz)2
((1 +r’ +ry2 +r)E+(1~r! —ry2 —r})-4rl + ry2 +r] )Z (6-2¢)

where 7, =cAtsin(fB,Az/2)/Az, and B, =cos(d)cos(p), p, =cos(f)sin(p), and

f, =sin(8) . The non-stationary amplification factor is

£J2 tan"( rRerler} )

S=e (6-3)
Thus the numerical dispersion relation can be derived as

tan’ (@At /2) _sin® (B,Ax/2) | sin®(8,Ay/2) ,sin’ (B,42/2)
(cAr)? Ax? Ay? Az?

(6-4)

where g =,/f2+p2+p? is the numerical wave phase constant. It can be seen that 3D

CN has a unity-magnitude amplification factor, thus is unconditionally stable. However,
the formulation Eqn. (6-1) requires solving a huge, sparse, banded matrix at each time
step. For many practical problems, the CPU time consumed to directly solve such a
matrix is so long that its advantage of using large time step size is lost. This chapter
presents methods to solve Eqn. (6-1) efficiently with some modifications. For
convenience, Eqn. (6-1) is written in matrix form using the difference operator matrices

as

(I-D,—D)W™ =(I+D, + D,)W" (6-5)
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0 0 0 0 -aD, 0
0 0 0 0 0 -aD,
0 0 0 -aD 0 0
where D, = Y
0 0 a,D, 0 0 0 (6-62)
~a,D, 0 0 0 0 0
. 0  -a,D, O 0 0 0
0 0o 0 0 0 aD]
0 0 0 aD, O 0
0 0 0 0 aD, 0
D=l ap, 0 0 0 o (6-6b)
0 0 aD, O 0 0
(a,D, 0 0 0 0 0 |
Similar to the 2D case in Chapter 5, the factorized CN scheme can be written as
(I-D){I-D)W™ =(I+D)I+D,)W" (6-7)

The factorization error is D,D,W"™' — D D,W". However, different from the 2D case,

analysis shows that every equation in Eqn. (6-1) has factorization error, which is given by

AD 0
DD, =" " (6-8a)
0 0 —b?D_D,
AD=|-b’D,D 0 0
D, (6-8b)
0 ~5°D, D, 0

The construction of Eqn. (6-6) is important, because different forms of matrices lead
to quite different solutions and stability conditions. For example, the matrices can be

constructed by LU decomposition by writing
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000 O -aD, aD,]
0 0 0 abD, 0 -aD,
b |0 00 -aD, aD, 0
Yoo o0 0 0 0
000 O 0 0
000 O 0 0
[0 0 0 000
0 0 0 000
0 0 0 000
D=l ap, —a,D, 0 0 0
~-a,D, 0 aaD, 0 0 0
a,D, -a,D, 0 0 00

(6-9a)

(6-9b)

an explicit method is obtained. It is conditionally stable, and has the same Courant limit

as the 3D Yee’s FDTD.

6.2 A Direct-Splitting Method

Using the direct-splitting method Eqn. (5-1) and difference matrices Eqn. (6-6), the

following equations of the direct splitting method of Eqn. (6-7) can be obtained

E.+aD,H,=E"+a (2D, H" -D,H")
E,+aD,H. =E +a,2D,H" -D,H!)
E.+aD,H. =E"+a2D,H" -D,H’)
H.+a,D,E, =H"+a,(2D,E" - D E!)
H.+a,D,E. = H" +a,(2D,E! - D,E")
H.+a,D,E, =H'+a,(2D,E" - D,E")

y

E!"-aDH!" =E,-aDH]
E;" ~aD,H}" =E, —a,D,H,
E -aDH" =E,-aD,H,
H" ~a,D,E;" =H_ —-a,D,E,
H" -a,D.E" =H, -a,D,E]
H!*' -a,D,E;" =H,-a,D E;

(6-10a)
(6-10b)
(6-10c)
(6-10d)
(6-10e)
(6-109)

(6-11a)
(6-11b)
(6-11c¢)
(6-11d)
(6-11¢)
(6-111)
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Inserting Eqn. (6-10e) to Eqn. (6-10a), Eqn. (6-10f) to Eqn.(6-10b), and Eqn. (6-10d) to

Eqn. (6-10c) obtains the following intermediate update equations at the intermediate time

step
(1-bD,,)E, = E’ +24,(D,H" - D,H")-b*(2D,D,E - D,,E") (6-12a)
(1-bD,,)E, =E" +24,(D,H! =D, H!)-*(2D,D E’ - D, E") (6-12b)
(1-bD, )E; = E" +2a,(D,H" - D,H" )-5*(2D,D,E" - D, E!) (6-12c)

Inserting Eqn. (6-11f) into Eqn. (6-11a), Eqn. (6-11f) to Eqn.(6-11b), and Eqn. (6-11d) to

Eqn. (6-11c) obtains the following update equations using the intermediate values

(1-b6°D, )E!" =E, +a,D,(H, -H])-b’D, E; (6-132)
(1-b°D,,)E;" =E, +a,D,(H, -H})-b’D,.E, (6-13b)
(1-b’D,)E" =E, +aD (H,~-H})-b*D, E] (6-13c)

This method is termed as 3D “direct-splitting” method for the CN formulation (CNDS).
It can be seen that at each time step, in total six tridiagonal matrices need to be solved for
the electric field components, and six explicit equations are required for the magnetic
field components. Since the magnetic field components at the intermediate time step in
Egs. (6-10d), (6-10¢) and (6-10f) are explicit, they can be substituted into Egs. (6-11d),

(6-11e) and (6-11f) directly, which leads to

(1-b°D,)E;" =E, +b’D, E} -b>D D (E, +E}) (6-14a)
(1-b’D,,)E;" =E, +b’D,,E, -b’D,D,(E, +E]) (6-14b)
(1-b°D, )E!" =E, +b*D,,E! -b’D,D (E. +E") (6-14c)

Thus the six explicit update equations can be reduced to three as follows

H™ =H" +a,{D,(E/" + E!)-D,(E. + E")} (6-152)
H"™ =H' +a,{D (E™ +E")-D,(E, + E")} (6-15b)
H™ = H" +a,{D (E™ + E")-D,(E, + E")} (6-15¢)

112



Therefore the complete CNDS algorithm can be performed in the order of Egs. (6-12), (6-
14) implicitly, and (6-15) explicitly. This formulation not only reduces the count of
arithmetic operations, but also eliminates three for-loops.

Note that from Egs. (6-10) and (6-11), the magnetic field components can be also
solved implicitly if necessary.

With the Fourier analysis method and some complicated manipulation, the

amplification polynomial can be obtained as follows
P& =(1-EP & (p.( +£7)+ pE+E)+ o) (6-16)
where p,, p, and p, are polynomials of 7,;, »; and 7, which will not be given here

due to complexity. With some manipulation, the amplification factor of the non-

stationary mode can be found explicitly as

E= exp(i Jtan™ ¢) (6-17a)
jm \/(l+rf)2(l+r;)2(l+rf)2 -(1-r? —ryz -r} —rfry2 —rlr} —ryzrz2 -l-rzr;rzz)2 (6-17b)

x x
2 2 2 2
A-r}=r2-rl-7

z
2 2.2 2.2 2..2_2N\2
Il S o N +rxryrz)

z

The numerical dispersion relation thus can be derived as

tarf(a\t/2) L) sitf(.Ax/2) st (B,4v/ ) sirf(8.A2/2)
(cA) AP N A
_sif(BAv/2) st (BAy/2) sitt(BAv/2) , sitf (B, Ax/2) sif (8,Av/2)
B +(civ) . & (6-18)
ey sir’ (BAx/2) sirf(ﬂz?z/Z) (Y sirf(ﬂysz/2) sinz(ﬂzfz/Z)
A Az Ay Az

Eqn. (6-18) is recognized as the same as the numerical dispersion relation Eqn. (4-29) of
3D ADI-FDTD. However, the count of floating-point-arithmetic operations and thus the

CPU time are different from ADI-FDTD as demonstrated in Section 6.7.3 below.
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6.3 Coupled Equation for the Unknown Electric Field Components

Since the CNDS method has larger numerical anisotropy than the original CN

formulation, some other more isotropic algorithms must be sought. From Chapter 5 it is

known that if the unknown magnetic field components at time step n+1 H™' are

eliminated, then several efficient solution methods can be devised in solving for the

coupled electric field components. With some complicated manipulation the coupled

electric field components can be written

(1-5*(D,, + D,,)JEr" +b°D,D,E!" + b°D,D,E""

xy™y x~z™z
= E" +2a(D,H} - D,H! )+ b*(D,, + D,, )E! b’ D D E"
(1-8*(D,, + D,,))E™ +b*D,DE™ +b*D,D,E*

= E}': +2a1(DzH: _Dtzn)+b2(D2x +D22)E)': _sznyE:
(1-5*(D,, + D,,))Er" +bD,D_E +b7D, D, E™

xH 2 x y=z"y

= E? +2a,(D,H" -D,H? )+b*(D,, + D,, JE* ~b*D,D,E} —b*D,D,E!

Eqn. (6-19) can be written in a concise matrix as
(I-A-BW™ =(I+A+BW" +f,

0 -D, D, YH

y x
where f.=2a| D, 0 -D,|H,
-D, D, 0 \H

z

-b’D DE"

X zmz

—b*D D.E”

y—z™z

yozy

Similar to the 2D case, Eqn. (6-20a) can be factorized and split as

(I-AW =(I+A+2BW" +f,
(I-BW™ =" —BW"

(6-19a)
(6-19b)

(6-1§c)

(6-20a)

(6-20b)

(6-21a)
(6-21b)

Depending on the formulation of the difference matrices 4 and B, different algorithms

can be obtained. Section 6.4 introduces several cycle-sweep methods [163] and Section

6.5 proposes approximate-factorization-splitting method [167].
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6.4 Cycle-Sweep Methods in 3D
Now the matrices 4 and B are 3 by 3, therefore there are more degrees of freedom in
the formulation. This Section gives two of such formulations.
6.4.1 Cycle-sweep-uniform method

By constructing the following matrices

D,, 0 0 6222
-22a
A=b*-D,D, D, 0
—DxDz _DyDz D2x
DZz —Dny _Dx‘Dz (622b)
B=b* 0 D, -D,D,
0 0 D

2y

Eqn. (6-21) can be solved in a cycle-sweep manner [163], according to Eqn. (6-21), as

(1-8D,, )E; = (1+ 5D, +2b*D,,)E" —26*D,D,E" ~2b*D,D,E" + f,, (6-232)
(1-5°D,, )E; = (1+5D? +26°D, )E" —b°D,D, (E, + El)-2b°D,D,E" + f,,  (6-23b)
(1-#°D,, ). =(+b°D,, +26°D, )E! —b*D,D,(E, +E")~b*D,D,(E, +E) + f,,  (6-23¢)
(1-8?D,, )E = E. -b*D, E" (6-23d)

(1-#°D,, JE™ = E, -b*D, E" +b*D,D,(E" - E™*) (6-23¢)

X

(1-»D,, JEI =E,-b’D,,E] +b’D,D (E} - E}"")+a,a,D,D (E! -E}*")  (6-23f)

It can be seen that Eqn. (6-23) solves six tridiagonal matrices at each time step. The
magnetic field components can be found explicitly using Egs. (6-1d), (6-1¢) and (6-11).

The update cycle for Eqn. (6-23) starts with £, sweeps through £, and E,, and ends at

E_, and “uniformly” solves a tridiagonal matrix for each equation corresponding to each

electrical field component, thus is termed as the “Crank-Nicolson-cycle-sweep-uniform”

(CNCSU) method. It can also start and end at £, orE, if desired. Note that there are

intermediate values E_,E, and E, which are non-physical, as in ADI-FDTD, except
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that they are not associated with a specific time value. The perturbation errors are the
factorization error AB.

In addition, there are several different formulations of 4 and B, leading to slightly
different update equations. Next sub-section introduces some other cycle-sweep methods
similar to those in 2D case.

6.4.2 Implicit/explicit and explicit/implicit cycle-sweep method

The construction of Eqn. (6-22) allows the implicit 2™-degree derivatives to be
uniformly distributed into 4 and B. Similar to the 2D case, one can also construct 4 and B
such that all the 2™ order derivatives have been collected into one matrix and the cross-
derivatives uniformly distributed in both matrices. For example, beginning with and

ending at £, , 4 and B can be constructed as

D,, +D,, 0 0
A=b* -D,D, D, +D, 0 (6-242)
-D,D, -D,D, D, +D,,
0 -D,D, -D,D,
B=bl0 0 -D,D, (6-24b)
0 0 0

However, to solve for the intermediate values (I — A)W ", the two 2“d-degree derivatives

must be factorized for an efficient solution by adding the following matrix

DD, 0 0
A4=b' 0 D, D, 0 (6-25)
0 0 DD,

This method is termed as the “Crank-Niclolson-cycle-sweep-implicit-explict-Ex”

(CNCSIE-X ) method, and is formulated as
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(I-A+AW" =(I+ A+2B+AWV" + f, (6-26a)
I-BW™ =W —-BW" (6-26b)

where f, is given by Eqn. (6-12b). The update equations are

(l—szzy ,=(1+b*D,, +2b°D, )E! -2b>D D E, -2b’D,D,E; + f,, (6-27a)

(-0D..)E; =, -b°D,.E] (6-275)
(1-5°D,, )E; = (1+5°D? +26°D,,)E" ~bD,D, (E; +E!)-26°D,D.E} + f,,  (6-27¢)
N (©279
(1 - bZDZX)E: =(1+5°D,, +2b°D, )E; -b'D,D,(E, +E})-b'D,D(E, +E})+f,,  (6-27¢)
(1-b°D,, )Er"! =E; - 4D, E; (6-271)
E}" =E; +D,D,(E] -E"") (6-27g)
E™ =B +D,D,(E! ~ E'™)+D,D,(E! — EI) (6-27h)

Similarly, one can construct the Crank-Niclolson-cycle-sweep-explict-implicit (CNCSETI)
method by changing the elements in matrices A and B. Note that Eqn. (6-26a) itself can
be used to approximately solve Eqn. (6-19), which is the 3D “approximate-decoupling-
Douglas-Gunn” (CNADDG) method similar to CNAD in the 2D case. Since CNADDG
sweeps electric field components one by one, thus uses two intermediate arrays fewer

than CNCSU methods. The overall perturbation errors for CNCSIE are

AD, W™ —~AD W" (6-28a)
AD (0] AD 0]
AD, = L11 AD. = R11

L ( 0 OJ R ( O 0 (6-28b)

—DZyDZZ DxD3y +DnyDZz _DxD3yD22 DxDZyDz +DxD3z -DxDZyD3z
ADLH: 0 —DZXDZy —DZ.XDZZ DyDBZ _DZXDy 3z (6-280)

O —D2nyDz —DZxDZy _D2xD2z —‘D2yD2z

_DZyDZZ D.VD3y+Dny‘DZZ+DxD3yD2z DXDZyDz+DxD3z+DxD2yD3z
AD = 0 -D,.D,, - D,.D,, D,D,, +D, DD, (6-28d)

0 —DZXDyDz _DZxDZy "szDzz _DZyDZZ

It can be seen that the lowest errors are 4™ order, similar to CNCSU method.
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6.4.3 Amplification polynomial and amplification factor for CNCSU

For the CNCSU method, the implicit update equations Eqn. (6-23) have been added
some higher-order terms from the factorization, and those higher-order terms are avoided
from the splitting in order to minimizing the computational stencil. Using the Fourier

method, the following amplification coefficient matrix can be built up

_ Oy Oy
Q B (QZI QZZ] (6-29a)
where
DD~ rr =)+ )
Q7 -y AU -9 A S (S
1=+ Q) 176+ A=) O+
(6-29b)
0 J2sin(B,Az/2)/ Az —JZSin(,ByAy/Z)/Ay
Q,, =|—J2sin(B,Az/2)/ Az 0 J2sin(f Ax/2)/ Ax (6-29¢)
JZSin(ﬂyAy/2)/Ay ~J2sin(B,Ax/2)/ Ax 0
O, = zalth (6-294)
0, =a,(&+ I)QeTh (6-29¢)
On=01-8)1 (6-199)

With the aid of the symbolic algebra program Maple V, after complicated manipulation

and re-arrangement, the amplification polynomial can be written as

PE) =[-8V & (p & +&™)+ pE+E™) 4 o) (-30a)
p, =1+ rx4 1+ r; A+ r: )+ 2(1‘,‘2 + ry2 + rz2 )+ 4(’}2 ry2 + rx2 r2+ ry2 rzz) + 8rx2 ry2 r?
+2(r} (ry“ +rh)+ ry2 eyl + r; ) (6-30b)
+ 4(’3;2 ry2 rz4 + rx2 r; rz2 + r: ry2 rz2 )+ 2(rx2 ry4 r: + r: ry2 r: + r: r; rzz)
Py = —4(1 -r} Xl -7, Xl -rt )— 8rirr) (6-30c)
Do = 6(1 + r:XI + erl + rf)— 4r2(1+ ry“ +r+ ry“r:) - 4ry2 A+rt+rt+rieh) (6-300)

- 4rz2 1+ rf + r; + r:ry“ )— 161’:7‘;7‘22 + 24(7;‘2;;2 1+ r;) + rxzrz2 1+ r; )+ ryzrz2 1+ r;‘ ))
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After eliminating the stationary solutions, the following expression can be obtained

o= 2p,

pl —4p,p, =64ririr! ((1 -rH- ry4 -+ r4r4r4) (6-31b)

X'y z x'y'z

It can be shown that Eqn. (6-31b) is non-negative, provided that the following conditions
are satisfied

ry <1 rt <1 r <1 (6-32)

z

Suppose the smallest spatial size is A, =min(Ax,Ay,Az) , then Eqn. (6-32) is

simplified to be 7} <1. Thus S min sm(’B By ) < Snin P = <1, where
2 2 2 2 4

Smn = cAt/ A . Recall that the Nyquist criterion can be written as wAf <7 . It can be

seen that the conditions Eqn. (6-32) are larger than the Nyquist limit, thus the CNCSU is
unconditionally stable. By the use of the MObius transformation [129], the same

condition Eqn. (6-32) can be obtained. In addition, because Eqn. (6-31b) is positive, the
CNCSU is also strictly non-dissipative. Since the perturbation errors of CNCSU to the
CN scheme are all higher orders, CNCSU has the same unconditional stability as the
original CN scheme.

Analysis shows that for a stable scheme, its amplification factor polynomial

(excluding the stationary solutions) in 3D should be written in the following form
(a+b&+ce2f (6-33)
where a, b and c are the coefficients of the polynomial. With this hypothesis, the

numerical dispersion relation of the CNCSU can be derived.
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Expanding Eqn. (6-33) and comparing to Eqn. (6-30) obtains

a’=c?=p, (6-34a)
2ab = 2bc = p, (6-34b)
2ac+b* = p, (6-34c)

Therefore the amplification factor can be solved as

g
4p,

The numerical dispersion relation for CNCSU can be derived as

P, =—4p, cos(wAt) (6-36)

Expanding it obtains

(1 AT AVAIL A AR A )sin2 (wAt/2) = (rx“ +r) +r) )cos2 (wAt/2)

X

+ {(rx2 + ry2 + rzz) + 2(;‘):2ry2 + r,frz2 + ryzrzz) +4r2r% 4 (rx2 (ry4 + rz4) + (6-37)

x'y'z

ryz(rx4 + rz4) + rzz(rx2 + ryz)) + 2(r2r2r4 +r2rirt 4 r4r2r2)

x'y'z x'y'z x'y'z

+(rlrirt it rirlr)} cos(wAr)
When collapsed to the 2D case, it can be shown that Eqn. (6-37) can be simplified to the
relation for 2D CNCS in Eqn. (5-8d).

It can be shown that the expression of amplification factor for CNCSIE is similar to
that Eqn. (6-30a) of CNCSU. Thus following the same procedure mentioned above the

numerical dispersion relation for CNCSIE can be obtained. Due to its complexity, it will

not be given here.
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6.5. Approximate-Factorization-Splitting Method

CNCS methods are not suitable for parallel computation because of the alternating
sweep. CNDS can be solved in parallel, but the anisotropy is large compared to the
original CN formulation. It is possible to devise a method suitable for parallel
computation, while maintaining small anisotropy. The construction of the abstract
difference operators allows direct algebraic manipulation, taking the operands as
common algebraic variables. Therefore, Eqn. (6-19) can be further decomposed. With
some complicated manipulation, the update equations for the electric field components

can be written {166]

(1-8°D,, -b*D,, -b°D,, JEI" = g, (6-382)
(1-#?D,, -b*D,, ~b°D,, JE = g, (6-38b)
(1-5°D,, -bD,, -b"D,, JE = g, (6-38¢)

where

g =E"+2a(D,H" D, H!)+b*(D,, - D,, +D,, JE* ~26*(D,D,E" + D,D,E?)  (6-3%)

x xyTy xz 'z
g, =E" +2a(D,H" -D,H! )+¥*(D,, - D,, + D,, )E" ~20*(D,D,E + D,D,E!)  (6-39b)
g, = E! +2a,(D,H; - D, H;)+*(D,, +D,, - D,, JE; - 26*(D,D B} + D,D,E;)  (63%)

Eqn. (6-38) has realized complete decoupling, but each equation is still a large block-

tridiagonal matrix with fringes. Modifying (6-38) by adding the following higher order
terms b4(D2xD2y +D,.D,, +D,,D, -b’D, D, D, XE*' —E') where E, is E,, E, or

E. to Eqn. (6-38) allows us to perform approximate factorization to the LHS of Eqn. (6-

38). The resulting factorized update equations are

(1-5°D,, f1-b?D,, 1-5°D,, JEr" = g,
+b4(D2xD2y +D2xD22 +D2yD22 _szZXDZyDZZ .

X

(6-40a)

121



(1-»*D,, 1-4*D,, J1-?D,, " = g,

+b*(D,,D,, +D,.D,, + D, D,, ~b°D, D, D,, JE"
(1-5°D,, J1-5°D,, [1-5?D,, JEr = g,

+b*(D,,D,, +D,,D,, + D, D,, ~b*D, D, D,, JET

(6-40b)

(6-40¢)

However, such a formulation hasD, D, D,, terms in the RHS, which involves 27

(known) field components, and thus makes the computational stencil very large. To avoid
cross terms in the RHS of Eqn. (6-40), the 3D efficient splitting scheme with some

modification can be applied, which leads to

(1-b°D,,)E; = g, (6-41a)
(1-b’D,,)E;" =E; -b’D,,E} (6-41b)
(1-b°D, )E]" = E;” ~b*D, E} (6-41c)

where g, is g,,g, or g, and is given by

g, =g +b°(D,, + D, )E; (6-422)
g, =8 +b"(D,, + D, )E; (6-42b)
8:=8&s +b2(D2b +D2€)Ezn (6-42¢)

The amplification polynomial is too complicated to write out, but can be solved for the
amplification factor. With some manipulation the amplification factor can be concisely

expressed as

RziJw/Rz-—Rz R} -R?
£ == t — =exp|tJtanT ——— (6-43)

R? R?

where
R =(+r))A+r)) (1+r2)? (6-44)

2
2 ] 2 2 2 2.2 2.2 2.2 2,22

x'ylz

Thus the numerical dispersion relation can be derived as
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[1+(0At)6sirf(,BxAx/2)sirf(,ByAy/z)Sirf(ﬂz&/zﬂtarf(am/z)
A Ay2 A } (CN)Z

ey S BATD Sif(BAY/2) sit(BAx/2) sitt(BA/2) |tart (a¢/2)
sz A); ' sz A22 J (CAt)z

sitf (8 4v/2) sid (B4z/2) |tark (¥ /2)
v (e

_sid(Baw2) sid(BAvI2) sid(Bel2)
N N N

+(CN)4[ (6-45)

This is expected to be similar to that of 2D CNDG and CNCS. The above formulation
requires solving nine tridiagonal matrices. However, by the use of the Divergence

Theorem, it can be reduced to six tridiagonal matrices by explicitly solving the third
electric field value. Suppose E;* and E;" have been found; then E.*' can be found
using
EM(, j,k+1/2) = E¥\(G, j,k-1/2)~(D,(E™ + E?)+D,(E™ +El)+ D,Er)  (6-46)
This is an upper bi-diagonal matrix, and can be solved very efficiently. In the case of
PEC boundary, Eqn. (6-46) can be explicitly solved.
6.6 Implementation of Periodic Boundary Conditions

Sometimes periodic boundary conditions are encountered which have the property

that (M) =u(l). For implicit schemes, the result is a (M —1)x (M —1) tridiagonal (or

block in general) circulant coefficient matrix of the form

A= o (6-47)
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The two elements at the up-right and the down-left comers destroy the symmetry of the
tridiagonal, thus the usual method in solving the tridiagonal matrix is invalid. To

circumvent this difficulty, matrix 4 can be decomposed into [77]

A=B-wzT (6-48)
where
d-a a 0 ... 0 0
b d a O

B=y ... . o (6-49a)

0 b d a

0 0 .. 0 b d-b
=0 0 .0 1) (6-496)
Z=(a 0 .. 0 b (6-49)

Then the matrix equation 4x, = b, is transformed into solving the following equations

Bx, =b, (6-50a)

Bx, =W (6-s0b)
(1-Z"x,)y, =Z"x, (6-50c)
Xy =X +X,), (6-50d)

where x, and x, are (M-1) vectors, and y, is scalar quantity. Note that for a given mesh,
x, and x,can be solved for only once at the beginning. Only the scalar y, must be

computed at each time step. Such a periodic boundary condition is very useful in 2D

CNDG and 3D CNAFS, and has been run successfully.

124



6.7. Discussion
6.7.1 A unified numerical dispersion relation
For comparison, the numerical dispersion relations for CN, CNDS (ADI), and

CNAFS can be written in a unified form as

in2(8.Ax/2) St (B.0v/2) sin*(B8.Az/ 2
tar? (@t / 2) + g, () w"z ) %Zy ) sin (ﬂzz )
Ax Ay Az
— ()’ sinz(ﬂxAx/2)J sinz(,ByAy/ Z)J sinz(ﬂyAy/ 2)
M NN
o[ sin® (B, A/ 2) sin® (B,4y/2)  sin?(B,Ax/ 2) sin® (B,42/2)
+8,(cv) o 5 A e (6-51)
v ()’ sin’ (8, 4v/2) sirt (8, 42/2)
2 NP AZ?
where
tan’ (wAt/ 2) CNDS, ADI
g = 0 o (6-52a)
=
tan® (wAt/2) CNAFS
1 CNDS, ADI
&2 = 0 CN (6-52b)
—tan’(wAt/ 2) CNAFS

It can be seen that the terms are the same but the positions of the cross terms are quite
different. This makes a huge difference for the anisotropy.
6.7.2 Numerical dispersion and numerical anisotropy for 3D methods

Numerical dispersion along the axes is the same for all methods, which is the same as
the 1D ADI method discussed in Chapter 4. However, the numerical dispersion is quite
different along the diagonals, thus the anisotropy is different. Fig.6-1 graphs the
numerical anisotropy for the 3D versions of CN, CNDS (ADI) and CNAFS at a mesh

density from 20 to 50 CPWs, at Courant numbers 1, 2, 3 for a cubic mesh Ax=Ay=Az.
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At a mesh density 34 and Courant number 3 (about 5.2 times the Courant limit), the
anisotropy of CNAFS is 0.000029, which is near its zero-anisotropy point, whereas ADI
has anisotropy of 0.014. The anisotropy of ADI is always larger than that of CN, while
for the Courant number below 2,'the anisotropy of CNAFS is smaller than that of CN.
Note that the anisotropy of CNAFS for Courant number s=3 decreases more rapidly than
that of CN. This implies that at some mesh density less than 20 there is a maximum-
anisotropy point for CNAFS. This point is near 4.3 xs=4.3x3=12.9 CPWs (see Chapter 7,

Table 7-3).

8.08[
@.@@73
8.006} \,
@.2255

@.@@4:

Anisotropy

©.093F
8.002L0

2.001

Mesh Density

Fig. 6-1 Anisotropy of CN, CNAFS, and ADI for coarse meshes.

Because the CNAFS has much smaller anisotropy, the coefficient-modification
introduced in previous chapters is suitable here to remove the numerical dispersion along
axes, leading to very small numerical errors in other directions of travel.

6.7.3 Number of floating-point arithmetic operations
Analysis shows that many methods for approximately solving the 3D CN formulation

can be devised. However, not only are the numerical errors different, but the
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computational efficiency is also different. The number of the floating-point-operations is
counted in Table 6-1, in which each field component is counted according to the update
equation form. Note that some constants have been divided out of the original update
equations to have an optimal count and fast simulation. It can be seen that CNDS and
CNCSU have two fewer loops than ADI, thus are usually more efficient than ADL

Table 6-1 Number of floating-point arithmetic operations

Implicit Explicit Total Loops
M/D A/S M/D A/S M/D | A/S
ADI 6x3 6x8 6x2 6x4 30 72 12
CNDS 3x(443) | 3x (10+11) 3x2 | 3x8 27 |87 | 9+1*
CNCSU IXTH2+3+ § 17+21+25 3x2 3x8 36 110 | 9+1*
4 +3+11+19
CNADDG | 3x(7+2) 17+21+25+3x3 | 3x2 3x8 33 96 9+1*
CNCSIE 3Ix(7+2) 17+21425+3x3 | 3+43x2 | 8+16+3x8 | 36 120 | 11+1*
CNAFSI | 3x(9+4) | 3x(20+2x6) 3x2 | 3x8 45 | 120 | 1241***
CNAFS2 | 2x(9+4)+2 | 2x (2042x6)+4 | 3x2 | 3x8 34 |92 | 6ri*e1en

* One extra loop to store the current field values into old values.
** Solves nine tridiagonal.
*** Solves six tridiagonal and an extra upper bi-diagonal matrix.

The CPU time consumption for ADI and CNCSU has been tested using a code
containing only the for-loops and number of the arithmetic operations. The results show
that indeed the two extra for-loops in ADI consume more CPU time than the extra
numbers of the arithmetic operations of CNCSU. Taking account of larger CPU time
consumptions in solving the tridiagonal matrices, CNCSU, CNDS and CNADDG is as
efficient as ADI though they have more counts of the floating-point arithmetic

operations.
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6.7.4 More concise derivation of the coupled electrical field components
The equations (6-19) for the coupled electric field components can be derived more

compactly by writing the Curl equations in CN form as

W =W +a,Vx ([ + W) (6-53a)
W =W —a,Vx(W" + W) (6-53b)
where
w,=(E, E, EJf (6-542)
w,=(0, H, HJ (6-54b)

and V should be understood as curl symbol containing difference operators. Inserting
Eqn. (6-53b) into Eqn. (6-53a) obtains

W+ BV xVx W™ =W —b*VxVxW +2a,V x W, (6-55)

Eqn. (6-55) can be further simplified and written as

I+’ D)W = (I -b*DYW. +2a,V xW; (6-56)
where
-D,,-D,, DD, D,D,
D={ DD, -D,-D, DD, 6-57)
DD, D, D, -D, -D,

It can be seen that after expanding Eqn. (5-56) with Eqn. (6-57), it is the same as Eqn. (5-
19). This method is more general and concise.
6.7.5 Numerical validation

The methods proposed in this Chapter have been coded and run for a 200 by 200 by
200 cells space at Courant numbers up to 10 at mesh density 50 CPWs and 100 CPWs

successfully. Fig. 6-2 and Fig.6-3 are the contour map of the electric field
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strength E_with a line source lying along x-coordinate axis using CNCSU method. It

shows that the line source does produce a cylindrical wave: in the plane of perpendicular
to and cutting through the line source, it is a circle; in the plane parallel to the line source,
the equal-amplitude fronts are straight lines. The distorted circle near the source is due to

the un-symmetrical behavior of the split updating procedures like ADI [101].

n L L . L L { n L L L 1 L
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Fig. 6-2 The contour map of the electric field strength E, of the y-z cut.
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Fig. 6-3 The contour map of the electric field strength £, of the x-z cut.
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6.8 Summary

By different approximations, this Chapter proposes several methods in efficient
implementing the 3D CN scheme, which are unconditionally stable. The perturbation
errors are given, and the amplification factor and numerical dispersion relation for
CNDS, CNCSU and CNAFS are derived. The CNDS method has the same numerical
dispersion relation as the ADI method. The CNCSU and the CNAFS have much less
numerical anisotropy than that of ADI, which is best suited for coefficient-modification
technique to reduce the numerical dispersion. The CNDS and the CNAFS can have a
little higher computational efficiency for large objects than ADI because they have fewer
loops at each time step. CNDS and CNAFS are suitable for parallel computation.

The conditionally-stable methods, including ADI, CN and CN-based FDTD methods
are relatively new, their characteristics, potential problems have not been revealed and
understood completely. The next Chapter discusses some of the fundamentals for the

unconditionally-stable methods.
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Chapter 7 Some Fundamental Characteristics of the

Unconditionally-Stable FDTD Methods

Explicit FDTD methods have matured through the efforts of many researchers.
Thousands of papers, several books [4-6] [10], and chapters in many other text books
have been published. The characteristics of explicit FDTD methods have been studied
extensively. Even so some papers are still published that reveal some new features and
new problems every year. For the recently-developed unconditionally-stable, implicit
FDTD methods, such as ADI-FDTD and CN-based FDTD, their characteristics have not
been explored fully and understood completely. This chapter will explore some of their
fundamental properties.

7.1 Intrinsic Spatial Dispersion

When the discretization is only applied to space and not to time, the result is “semi-
discretization”. It also has numerical error, called “numerical dispersion of spatial
discretization.” [128]. This thesis uses the term “intrinsic spatial dispersion” to describe
the semi-discretization error, because it is intrinsic in FDTD. In lossless media, the
intrinsic spatial dispersion is related to the formulation of the spatial derivatives. The

intrinsic spatial dispersion for Yee’s FDTD is

u_ \/Silf(ﬂxAx/z)+sirf(ﬂyAy/2)+sin2(ﬁzAz/2) (7-12)

(B (Blyy (B.Le)’

c

Note that the numerical velocity u is also anisotropic [128]. For the optimized methods in
Chapter 3, because the difference operators are not conventional simple central

differencing, the error in the semi-discretized form can be written as
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(7-1b)
[W(W24 + (1 ~ Wy )pi24 ) + (1 - W)(Wna + (1 ~Wu )pina )]2

iz\/ s sin 2(B,Ai [ 2)
¢ \i=xy:  (B,A0)?
where the weight parameters are given in Chapter 3. It can be seen that such numerical
error in spatial discretization does depend on the formulation of the spatial-derivative
difference approximation.

For ADI and CN-based methods, let At — 0, and then the semi-discretized equations
are the same as those for Yee’ method. Thus they have the same spatial discretization
error as the Yee’s FDTD. However, after time discretization, the time-step-size related
cross terms are introduced from Chapters 4, 5 and 6, which lead to different behaviors of
numerical dispersion.

7.2 Non-Physical Values at the Intermediate Time Step

Except for the CNAD and the CNDS methods in the 2D case, all other
unconditionally-stable methods, such as ADI, CNDG, CNAFS, and CNCS in 2D and 3D,
have to be factorized by adding some higher-order terms in order to be implemented
efficiently. The factorized equations must be split into two or even three equations using
intermediate step(s). In ADI-FDTD, the intermediate step is associated with n+1/2; other
methods do not associate any specific time value and the intermediate time step is
denoted with “*”. Although vsome textbooks have pointed out that the field values at the
ADI’s intermediate time step are non-physical, and are only temporary values to
complete a full time step advancement [78], some users of the method do not realize or
do not understand this fact, and erroneously use the non-physical values as “true” values
in sub-griding schemes. This incorrect use will seriously affect the numerical accuracy.

However, in CN-based methods, the intermediate step is part of the marching procedure,
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it is not possible in construction to use the erroneous intermediate field values in sub-
griding schemes.
7.3 Numerical Errors

The electromagnetic field is a wave which has amplitude and phase. Therefore
numerical methods usually have errors both in the amplitude and in the phase. Numerical
dispersion and anisotropy are phase errors, and the numerical dissipation and growth as
well as numerical loss error introduced in Chapter 9 are amplitude errors. For a wide-
band signal, according to the Fourier series, phase error can also cause magnitude error.
To evaluate the global accuracy of a method, one can compare the numerical results to
analytic results for individual special problems. However, such comparison results are
case-dependent. Thus this thesis uses numerical dispersion errors and numerical loss error
for evaluation of a method.

For Yee’s FDTD in 1D, since its numerical dispersion relation 1is
sin’(wAt/2) = s* sin’ (fAx /2), the “magic time step” of At=Ax/c for s=1 has zero
numerical dispersion error [4]. However, since the tangent cannot be cancelled by the
sine, it is generally not possible for ADI and CN-based methods to have zero numerical
dispersion without modification. To eliminate the numerical dispersion along some
specific direction of travel, the coefficient-modification technique can be used as
discussed in previous chapters.

Because CN-based methods such as CNDG and CNCS are more isotropic, and even
can eliminate numerical anisotropy at one specific time step size for one frequency, the
coefficient-modification technique is more efficient and suitable to reduce or eliminate

numerical dispersion in all directions of travel.
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In Yee’s FDTD, smaller time step sizes incur /arger dispersion errors. In contrast, for
ADI-FDTD and CN-based methods the numerical dispersion decreases as the time step
size becomes smaller.

7.4 Limits on Time Step Size and Numerical Attenuation for ADI-FDTD

As pointed out in Chapter 2, the Nyquist criterion must be obeyed in numerical
computation. This section shows that for the unconditionally-stable FDTD methods, the
Nyquist criterion follows naturally from the numerically-propagating wave in lossless
space without numerical attenuation.

- 7.4.1 Nyquist limit

Though ADI and CN-based methods are stable for any time step size, there are other
limitations than stability. Notice that in the numerical dispersion relations Egs. (4-5), (4-
17), (4-21), (5-5¢), (5-8d), (6-51), if the argument of the tangent is # or its integer
multiples, the numerical phase constant f must be zero, which means that the numerical

wave does not propagate. Numerical experiments have verified this observation. This

corresponds to a time step size A, =27 /w . If |tan(wA?/2)|> s, the numerical phase

constant f becomes complex, and the wave decays in space. This never happens in
physics in lossless material. In the extreme case, the tangent function is infinite if its
argument is 7 /2or odd multiples, and the numerical wave decays infinitely fast. The

case wAt/2=r/2 corresponds to a time step size Af, =27 /2w)=1/(2f). The time

step size At, coincides with the Nyquist criterion [131]. Hence there is an upper-bound

limit to the usable time step size for ADI and CN-based methods even though they are
still stable beyond this limit. This limit is not related to stability. The Nyquist criterion

relating the Courant number and mesh density N can be written as
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S<N/2 (7-2)

Therefore the useable range of the Courant number s is at most up to N/2. Beyond this
limit it is impossible to recover the signal from a mathematical point of view, and will
have numerical attenuation.
7.4.2 Numerical attenuation in 1D

For a deep insight into the time step size limit, take the 1D case as a simple example.
In 1D case, all the unconditionally-stable methods in this thesis have the same numerical

dispersion relation

tan® (wAt/2) = s sin® (fAx/ 2) (7-3)
Rewrite Eqn. (7-3) using the Euler formula and express the phase constant as a complex
number

cosh(jpr) = 220 (221D (?At/z) -1 (7-4a)

s
B=p+JjB (7-4b)
where £, is the real phase constant and f,is the attenuation constant. Eqn. (7-4a) can be

written as two equations

1—cosh(B,Ax)cos(fB,Ax) = 2tan’ (wAt/2)/ s> (7-5a)
sinh(8,Ax)sin(8,Ax) = 0 (7-5b)

In (7-5b), either the hyperbolic sine is equal to zero or the sine is zero, or both. If

|tan(a)At/ 2)| < s, the attenuation constant f, is zero, sosinh(/3;Ax)1is zero. The numerical

wave travels without attenuation. When |tan(wA#/2)| = s, both sinh(f3;Ax) and sin(/3,Ax)

are zero, and a minimum velocity limit is reached. This is the “transition” point. When
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ltan(wA/2)| > 5, sin(fB,Ax) maintains zero-valued for whatever Courant number, so the
following equation can be written
B, =mlAx (7-6a)

From (7-5a), it can be found that

B, =ln((2tan2(a)At/2)/sz ~1)£/(2tan’ (@Ar/2)/s* —1)° —1)/Ax (7-6b)

The above results are similar to that of Yee’s “faster than light” propagation in [4]. The
*sign in (7-6b) indicates that the computed electromagnetic fields may increase or
decrease in space. Neither the increasing fields nor the decreasing fields in free space are
physical. Taking the minus sign in (7-6b), the wave is attenuated and the attenuation is a
function of mesh density N and the Courant number. When the Courant number reaches
the Nyquist limit, the wave has infinite attenuation and it cannot travel. The attenuation
gives a practical upper-bound limitation to the allowable time step size.

7.4.3 The slowest numerical velocity and the transition mesh density

Eqn. (7-6a) gives the limit for the slowest numerical wave as

u, =2c/N (7-7)
At]tan(coAt/ 2)[ > s, the numerical wave travels at the extremely low velocity solved by

Eqn. (7-7) for N larger than 2, which is only a function of the mesh density. Table 7-1
gives the velocity limit for various mesh densities.

Table 7-1 The minimum velocity limit and velocity error for various mesh densities.

N 5 10 15 20 25
u, 0.40c 0.20c 0.13¢ 0.10c 0.08¢
l-u,/c 60% 80% 87% 90% 92%
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By analogy with explicit FDTD [4], from Eqn. (7-6b) the transition mesh density
where the numerical phase constant changes from a real and a complex number can be
found to be

VAN

- (s)

transition

(7-8)

The relationship between the Courant number and the transition mesh density is graphed
in Fig. 7-1, labeled as 1D limit. It can be seen that the 1D limit is within the Nyquist
limit. If the mesh density is chosen larger than the 1D limit (above the curve), it has no
numerical attenuation. For example, if a Courant number of 2 is used, the mesh density

must be larger than 5.67 CPW to avoid numerical attenuation.
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Fig. 7-1 The transition mesh density verses the Courant number.
Knowing this relation is important. It gives information about what frequency cannot
be propagated without numerical attenuation. For a given cell size Ax, the mesh density
N = A/Axis proportional to the wavelength A. This transition mesh density

corresponds to the highest frequency that can be propagated in the FDTD grid, given by
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c 25
Ax - N fNyquixl (7_9)

transition

fom =

transition

where f .., is the frequency at the Nyquist criterion. One should not expect to get

information correctly from FDTD simulation data with frequencies higher than Eqn. (7-
9), even though the excitation source contains such high frequency. In addition, if the
excitation source contains frequencies higher than Eqn. (7-9), then a FDTD simulation
will lead to an incorrect result. This explains what happens to the high-frequency energy
in the turm-on transient.

For example, for a Courant number of 5, the transition mesh density is 11.44 CPW. If
a mesh density is chosen to be smaller than 11.44 CPW, the frequencies higher than

(2*5/11.448) f it = Srpguis /1-144 canmot travel without numerical attenuation.

7.4.4 Faster-than-light speed

From Eqn. (7-7) it can be seen that, if N is smaller than 2, the numerical velocity is
larger than the speed of light. But from the spatial Nyquist limit described in Chapter 2,
the mesh density cannot be smaller than 2. Thus “faster-than-light” travel cannot occur in
1D unconditionally-stable methods. With similar analysis, the “faster-than-light” travel
cannot occur in Yee’s 1D FDTD either. The conclusion in [4] comes from the transform
of Eqn. (7-7) into u, =c/s using the relation Eqn. (7-2) s=N/2, and suppose s <1,
then “faster-than-light” travel is realized. However, this violates the spatial Nyquist

criterion.
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7.4.5 Courant number

In this thesis, the Courant number has been defined as s=cAt/Ax. From this
expression, several relations can be found. For a given mesh density and Courant number,
the time step size is

s 1
A‘=‘A77 (7-10)

Thus, the higher the frequency which is associated with the mesh density, the smaller the
time step size. If the time period of a sinusoidal signal for a frequency is 7 =1/ f, then
the following expression is valid

s_At/T
_Ax//I (7-11)

The numerator and the denominator stand for the time sampling rate and the spatial
sampling rate, respectively. In Yee’s FDTD, s<1, therefore time is over-sampled
compared to the space sampling. For unconditionally-stable methods, the space is over-
sampled because the Courant number is often larger than one. For a given Courant
number, a coarse mesh density requires large time step size, which leads to large
numerical error. Thus unconditionally stable methods are not suitable and not designed
for coarse meshes in terms of accuracy. The evaluation of an USM’s performance with

Yee’s method for the same mesh density is inappropriate.
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7.5 Time-Step-Size Limits for 2D and 3D Methods
In higher dimensions, the time step size limits along the axes are the same as 1D.
Thus this Section only discusses the diagonal direction of travel. Similar to 1D case, for a

uniform mesh, the numerical phase constant f,, the attenuation constant S, along the

diagonals for square mesh can be written as

1-cosh(4f,Ax)cos(Af,Ax) = B (7-12a)

sinh(A48,Ax)sin(AfS,Ax) =0 (7-12b)
J2/2 2D

"33 3D (7-12¢)

B, = ln((B ~DtJ(B-1) - 1)/(AAx) (7-12d)
where B depends on the specific FDTD methods, and is given in Table 7-2 in 2D and
Table 7-3 in 3D. For CN in 2D and 3D, and for ADI, CNAD and CNDS in 2D, the
transition mesh density is the same as the 1D limit, because the numerical velocity along
diagonals is always larger than that along axes. For CNDG, CNCS, CNAFS, the
numerical velocity along the diagonal can be smaller than that along the axes when the
Courant number is larger than the “zero-anisotropy Courant number” [153]. ADI in 3D
behaves similarly. Thus they have stricter limit as shown in Fig.7-1.

Table 7-2 Different tOransition mesh densities and quantities B in 2D

Method B N transition

CN 2 tan’(ns / N) T s
s tan” (s)

ADLCNAD,CNDS 2(J tan(7zs/ N) +1 - 1) z_s
52 tan ' (s)

CNDG,CNCS i+ i-tan* (z5/ ) )
s* tan’ (75 / N) ’

YEE 2sin’ (s / N) TS

s? sin” (s)
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Table 7-3 Different transition mesh densities and quantities B in 3D

MethOd B transition
CN 2tan’(zs/ N) TS
3s? tan ' (5)
ADL 23+tanz(izs/N)i\/92+62an2(m/N)—3tan4(7zs/N) N
a I+tad(s/N) I_[g_ { a _2(1+tarf(7zs/N))}
CNAFS dtan@s/N)  atangs/N) 2| 2tangs/N)  atanfs/N)
2
s
/3
a= (4(1 + tanz(m/N)X—S* tan(zs / N) + \/5 *tan® (25 / N) — 4)) 4.3s
s
————— 435
tan"1 (V475)
2sin’ (ns/ N) s
YEE 3S2 Sin—l (S)

For 3D AD], this transition mesh density is at 3s, because now the velocity along the
diagonal can be smaller than that along the axes. For CNAFS, the limit is stricter than
that for CNDG and CNCS. Note that for smaller Courant numbers, if the numerical
velocity along the diagonal is larger than that along the axes, the limits for CNDG,
CNCS, CNAFS and the 3D ADI are the same as the 1D limit.

The transition point and the numerical velocity are given by

B, ::AAx (7-13a)
2¢
U, = A= (7-13b)

The parameter 4 (which is reciprocal of the square root of the number of the dimensions)
can be considered as a “transformer” to transfer higher dimensions to “1D”. In higher

dimensions, the mesh density along one coordinate axis is N for a square (cubic) mesh.
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The equivalent 1D mesh density N, for N is N/A. Then Eqn. (7-13b) can be re-

written as

“n =N (7-13c¢)

which is the same as Eqn. (7-7). Thus if N, reaches the coarsest mesh density --the

Nyquist limit of 2, Eqn. (7-13c¢) indicates that the faster-than-light phenomenon cannot
happen along the diagonals. However, the propagation along the axes will have this

phenomenon since now N = AN, <2.

This section stresses that the ADI-FDTD and CN-based methods do have an upper-
bound limit to the time step size. This upper-bound does not come from the stability
requirement as in Yee’s FDTD, but arises from the fact that in a lossless medium there
must be no attenuation, which leads to a stricter limit than the Nyquist criterion. In
reality, the meaningful maximum allowable time step size to be used in the
unconditionally-stable FDTD methods should be determined from the desired accuracy,
which is much smaller than the upper-bound limit.

7.6 Choosing a Proper Time Step Size for a Desired Accuracy

In solving a practical problem using an USM, the first parameter to be chosen is the
mesh density, which is determined by the finest geometrical feature that must be
resolved. The second parameter is the desired numerical accuracy, namely the largest
numerical dispersion error that can be tolerated. To maintain this desired accuracy

defined as

m

p=i——= (7-10)
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where u,, corresponds to the numerical velocity at the desired accuracy p , the time step

size must be chosen properly [146].
7.6.1 Choosing a time step size according to axis dispersion accuracy

For CN and ADI methods, and for other CN-based methods with a Courant number
no larger than the zero-anisotropy Courant number, the numerical dispersion error along
the axes is the largest along all directions of travel. Thus only the 1D equation (7-2a) will

be discussed. Suppose the largest cell size is A_,, = max(Ax,Ay,Az). For a desired

accuracy p and a given mesh density, the time step size can be chosen from [155]

tan(wAt/2) _ Sin( ﬁAzm J -

cAt/ A,

The minimum numerical velocity is u, =@/ f. Thus combining (7-10) and (7-11)

obtains

sin V4 J_tan(frs/N)
a-pN)" s (12)

is the Courant number, and N=A/A is the minimum mesh

max

where s=cAt/A

max
density corresponding to a maximum mesh size of A . Eqn. (7-12) is the relation
between the desired dispersion accuracy p, the minimum mesh density and the Courant
number. Thus giving a maximum mesh size A__  hence minimum mesh density N, a

simple, direct way to determine the time step size to achieve desired dispersion accuracy
is to solve Eqn. (7-12) for the Courant number s using a simple root-finding algorithm,
and then evaluate the time step size as

At=sh,. /¢ (7-13)
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Note that the time step size for the desired dispersion accuracy is only a function of the
largest mesh size, and not the aspect ratio [155] for ADI and other CN-based methods
when the Courant number is smaller than the zero-anisotropy Courant number.

Fig. 7-2 graphs the Courant number s as a function of the mesh density N for
various dispersion accuracy values. Solving (7-12) shows an almost-linear relation

between the Courant number and the mesh density.
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Fig. 7-2 Relation between the Courant number s and the mesh density N,

for various dispersion accuracies p .
7.6.2 For methods with negative anisotropy
For CNDG, CNCS and CNAFS, when the Courant number is larger than the zero-
anisotropy Courant number, the numerical dispersion error is the largest along the
diagonals. In this case, the time step size must be chosen from the diagonals. The time
step sizes for 2D and 3D square mesh can be found from the following equations

. 7 _ . o4 T tan’(ms/ N)
2sin (Am)—[l+s sin” (4 (l—p)N)J o7 (7-14a)
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3sin2[A(l_’;)N)=(1+3s“sin“(A % yys®sin®(A—2 )jtanz(s’f/m (7-14b)

(A-pN (I-p)N

where A4 is given in Eqn. (7-12¢). For non-square mesh, the Courant number is a
function of aspect ratio, and can be determined numerically from the numerical
dispersion relation by a similar method to that given above.
7.6.3 Relative Courant number

In practice, to evaluate whether an unconditionally-stable method is more efficient
than Yee’s FDTD for the same dispersion accuracy, the relative Courant-Friedrich-Levy
number (RCFLN) is used [158], defined as the ratio of the time step size for the
unconditionally-stable method to the Courant time step size limit for the Yee’s FDTD

At
RCFLN = At Yee (7-1 5)

max

where the Courant limit for Yee’s FDTD is

A

Yee __ “max
Al == o~ (7-16)

and the aspect ratio of the mesh R is defined as

(7-17)

R=yf(A, /Axf +(A,, /&) +(A,, / Az)

It can be shown that the RCFLN can be expressed in terms of the Courant number and the

aspect ratio as

RCFLN =sR (7-18)

This RCFLN is the same as the CFLN defined in [146]. For an USM to be more efficient
than Yee’s, the RCFLN must be 4 to 5 in the 3D case, to compensate for the larger

number of arithmetic operations in the USM. RCFLN of 4 to 5 corresponds to a Courant
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number of 2.3 to 2.9. Thus the relation (7-18) can be used to evaluate whether an USM is
suitable for a specific problem in terms of over-all CPU time consumption.
7.7 Intrinsic Temporal Numerical Dispersion

In Yee’s FDTD, because of the Courant constraint, the time step size is limited by the
mesh size. Therefore numerical dispersion disappears if an infinitely-fine mesh is used. In
contrast, ADI and CN-based methods have no such constraint. As the mesh size
decreases to zero, the time step size does not need to go to zero to maintain stability.
Thus for a given time step size At, there will be some numerical dispersion, no matter
how small the mesh size. The dispersion at zero mesh size is called “intrinsic temporal
numerical dispersion” (ITND) [153-154] due to time discretization.
7.7.1 1D case |

From the 1D dispersion equation (7-2), letting Ax go to zero leads to
tan® (wAt/2) = (cfAt/ 2)? (7-19)
The numerical phase constant is 8 = tan(wAt/2)/(cAt/2), thus the intrinsic temporal

numerical dispersion is expressed as

u_ oAt/2
¢ tan(wAt/2) (7-20)

Fig. 7-3 graphs the ITND according to (7-20) at four different frequencies f, 2f,3f

and 4f . The x-axis is the relative time step size At / At where At =1/2fis the

Nyquist > Nyquist

Nyquist limit for frequency f. The ITND can be quite large. For example, when the

relative time step size is chosen to be Ar/At =0.10, the numerical dispersion is

Nyquist
2n/ p=mn/20/tan(x/20) = 0.9918 at frequency f and the velocity error is about

0.82%. At the Nyquist limit Az, /At =0.25 for the signal of 4f, the numerical

Nyquist
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wave speed is zero and the wave does not travel even though it is not discretized in space.
From Eqn. (7-4b) it can be seen that the attenuation is infinite at the Nyquist limit. It
should be pointed out that the ITND is the same for higher-dimensional CN scheme as it
is in 1D. However, ADI and other CN-based methods have different behaviors in higher

dimensions.
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Fig. 7-3 The intrinsic temporal numerical dispersion at different frequencies.
7.7.2 2D case
In the 2D case, as the cell sizes goes to zero, the intrinsic temporal numerical

dispersion can be derived from the numerical dispersion relation as [153]

u_ oht)2 \/1 + 1+ gltan(@Ar/2)sin 26)°

c tan(wAt/ 2) 2 (7-212)
1 ADI,CNAD,CNDS
g= 0 CN (7-21b)
~tan’(wA?/2) CNDG,CNCS

Numerical calculations using Eqn. (7-21) show that the temporal intrinsic numerical
dispersion as a function of the direction of travel is similar to the dispersion curve at
finite cell size. From Eqn. (7-21) it can be seen that the relative velocity is not a function

of direction of travel for the CN method. Therefore CN’s anisotropy is zero at the zero
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mesh size limit. But for ADI and CNDG, there is anisotropy, as shown in Fig. 7-4 and
Fig. 7-5. This anisotropy is termed the “intrinsic temporal anisotropy.” Note that the
ADT’s anisotropy is about 30 times larger than that of CNDG at the time step size of one-

tenth of the Nyquist time step size limit.
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7.7.3 3D case

The equation to be solved for the 3D intrinsic temporal numerical dispersion is

tan®(wAt / 2) + (@At / 2u, ) sin () cos? (8) sin* (@) cos* ()

= (@ 12,)? + g(@At/20,)" sin* @)sin’ (p)cos’ () +sin® @) cos’(@)
By _u
“TB T (7-22b)

where g,and g, are given in Eqn. (6.52). In practice, the mesh density is never zero, and

the numerical dispersion is larger than the intrinsic temporal numerical dispersion,
therefore the intrinsic temporal numerical dispersion is the fundamental limit of accuracy
of USMs.
7.8 Classification of Problems Suitable for Unconditionally-Stable Methods

Problems suitable for the USMs have been identified partly in [84] [103] [155], and
can be classified as: 1) entire domain problem, previous called the ADI class [155], and
2) hybrid problem where a coarse mesh encloses a fine mesh, in which the coarse mesh
uses an explicit FDTD method, and the fine mesh uses an USM. Each of the two
categories can be further classified into two sub-categories according to the aspect ratio
of the mesh: that with very large aspect ratio and that with relatively small aspect ratio,
such as 5. For problems with large aspect ratio, to save CPU time, the “hybrid implicit-
explicit” FDTD scheme [147] can be used, where the explicit operation is applied on the
axis with coarse mesh density, the implicit operation is applied on the axis with fine mesh
density. The time step size is determined from the explicit method. The USMs proposed
in this thesis are better suited in efficiency for problems where the aspect ratio is not too

larger, though they can be used in such cases.
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For the entire domain problem with not-too-large aspect ratio, the time step size
chosen for a desired accuracy is described above. However, for hybrid problems, to avoid
time interpolation between the coarse mesh and the fine mesh, the time step size is
usually chosen to be the same for both meshes, which is limited by the Courant
constraint, and according to the accuracy requirement of the coarse mesh enclosing the
fine mesh for USMs. In this case, the accuracy in the fine mesh is determined from the
chosen time step size. The next section will describe the accuracy of the hybrid problems.

Keep in mind that USMs are favored over their explicit counterparts for some
problems, in which the time step size necessary for procuring a required temporal
accuracy may be significantly larger than that dictated by the explicit stability condition,
or the explicit methods consume so much CPU time that it is prohibitively long.

7.9 Accuracy of Hybrid Schemes for Sub-Gridding

A hybrid scheme uses a sub-grid of fine cells embedded within a coarse mesh of Yee
cells [88]. Such a “hybrid scheme” updates the coarse mesh with Yee’s FDTD and the
fine sub-grid with a USM. In [88], ADI-FDTD is used. When Yee’s FDTD advances one
time step, ADI-FDTD advances only one sub-step using the Yee time step size, and the
non-physical intermediate values are incorporated to update the Yee cell space. After
updating the Yee space, the ADI sub-grid is updated with the 2™ sub-step. But the
erroneous intermediate values are propagated into the Yee grid. A better approach is to
advance the ADI sub-grid using half the Yee time step for both sub-steps, each time the
Yee grid is updated. In the following we assume that the ADI-FDTD uses the same time

step size At as the Yee’s grid for a complete update cycle of ADIL
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Define m = Ax,,, / Ax ,;, as the coarse-to-fine ratio, where Ax,, is the coarse mesh

Yee

size for explicit method, and Ax ,,, is the fine mesh size for ADI-FDTD. Using the same
time step size for both grids, it can be shown that the Courant number s, for ADI-

FDTD is related to the Courant number s,,, of Yee’s FDTD as
Sapr = MSy, (7-23)

It can be seen that the higher the coarse-to-fine ratio, the larger the Courant number for
ADI-FDTD. Analysis shows that as long as the time step size is chosen so that the Yee
grid is stable, ADI-FDTD cannot reach the time step size limit shown in Fig. 7-1. Thus,
the ADI grid will not experience any numerical attenuation.

Since the accuracy of the ADI-FDTD increases with a finer mesh size, it is expected
that for a given Yee mesh size, the accuracy of the ADI sub-grid improves as the coarse-
to-fine ratio increases. Fig. 7-6 shows the relative velocity in the ADI sub-grid as a
function of the ADI mesh density for Yee mesh densities of 10 and 20 cells per
wavelength, and for two Courant numbers in each case. For reference, the relative
velocity in the Yee coarse grid is shown for s,, =0.707 (corresponding to the 2D
Courant limit) at the top of the figure. If the Yee coarse grid uses a mesh density of 10
cells per wavelength and Courant number 1.0, then the velocity error in the ADI sub-grid
is about 3.3% with mesh density 100 ( m=10). If a smaller time step size is used in the
coarse grid, for example, s,,, =0.707, the velocity error in the fine grid decreases to
1.7% at mesh density 100. But note that the smaller time step size decreases the velocity

accuracy in the coarse grid. If the Yee grid is finer with N=20, then the velocity error in

the ADI-FDTD can be made less than 1.0%.
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Fig. 7-6 Numerical dispersion of ADI-FDTD when hybridizing with Yee-FDTD.

It can be seen from Fig. 7-6 that the velocity increases sharply for ADI-FDTD from
mesh density 10 to 30 and then increases slowly from 30 to 100. Though the accuracy of
ADI-FDTD increases with a finer sub-grid, the CPU time and memory requirements will
be larger. Little increase in accuracy in the ADI sub-grid is achieved for coarse-to-fine
ratios greater than 5, which is close to the intrinsic temporal dispersion error. In Fig. 7-6,
the velocity error improves about 0.05% from mesh density 50 (m=5) to 100 (m=10) for
the ADI-FDTD in all cases. This analysis assumes the same time step size for a complete
update cycle of ADI as in the Yee coarse grid. If the time step size is chosen in the Yee
grid for high accuracy, then to have the same accuracy in the ADI sub-grid as in the Yee
coarse grid, a smaller time step size would be needed in the ADI sub-grid. Thus a time
interpolation between the Yee coarse mesh and the ADI fine mesh is required. The above
discussion is effective for other CN-based methods provided that the time step size does

not exceed the zero-anisotropy time step size discussed in Chapter 5.
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7.10 Amplification Polynomial and Amplification Factors
It has been noted that the amplification polynomials for the Yee’s FDTD, ADI-

FDTD, and the CN-based methods in this Thesis can be written in a unified form as

PE)=(1-&)" (po + P&+ pE")™ (7-24)
where
0 1D 1 1D
m, =11 2D m, =<1 2D (7-25)
2 3D 2 3D

The parameter m, is the number of stationary solution with £ =1, and the parameter m,

is the number of non-stationary solutions, which have given by

g TP EINADD: — P (7-26)

2p,

The condition of stability is derived from the quantity inside the square-root by requiring

that 4p,p, = p? . The magnitude of the amplification factor under the stability condition
is Ifl =p,/p, : if p, > p,, there is numerical growth; if p, < p,, there is numerical
dissipation; if p, = p,, there is neither growth nor dissipation, thus the method is

strictly non-dissipative. Therefore, if the constant p,and the quadratic coefficient p, are

the same, the scheme should be stable. It can be shown that the amplification polynomial
of the full update cycle for ADI-FDTD fulfills this condition, thus is strictly non-
dissipative for the overall ADI-FDTD method. However its individual sub-marching
procedures behave growth or dissipative because of p, # p, .

From Chapter 2 it is known that the number of solutions of the amplification

polynomial is related to the number of dimensions, which is m, +2m,. But what is the
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role of the stationary mode solution & =1? Some authors refer it as static eigenmode with
eigenfrequency @ =0 [148]. This may mislead people to believe that the FDTD method

has static field inherently. Analysis shows that m, corresponds to the number of
longitudinal field components, and m, corresponds to the number of transverse field

components. Thus it is understood that the solutions reveal the fundamental property of
the electromagnetic wave: the transverse wave. The Fourier analysis is the approximate
result of a far field cylindrical or spherical wave, which has no longitudinal components.
Thus the stationary solution corresponds to the longitudinal mode. In addition, the

parameter m, also corresponds to the number of Divergence Theorems, and the total

number of solutions corresponds to the total number of the electromagnetic field

components.

In addition, the amplification factor shows the time evolution part of e*/“.

Therefore, a stable FDTD scheme must have the amplification polynomial written in the
form of Eqn. (7-24), particularly the m, term. Otherwise, the solution that corresponds to

the non-stationary modes will have two different frequencies, which is not correct, since

the Fourier method uses a monochromatic wave. However, in the literature, it has been

found that there are some papers that obtained two different frequencies (TAP, Vol.51,

No.7, pp.1615-1622, July, 2003). From this example it can be seen that we need to
understand more mathematically more about FDTD.
7.11 Summary

This Chapter has discussed several fundamental characteristics of the

unconditionally-stable methods. For some choices of cell and time step sizes, the mesh

will not propagate the numerical wave. Although the time step size in USMs is not
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limited by the cell size, it is governed by the Nyquist criterion, and the numerical
dispersion relation implies a time-step-size limit which is more strict and smaller than the
Nyquist limit. The intrinsic spatial dispersion is the same as Yee’s FDTD. However,
different from Yee’s FDTD, an USM has the intrinsic temporal numerical dispersion, and
thus there is an accuracy limit as the mesh density becomes finer. Problems suitable for
USMs have been classified as the entire domain problems and hybrid problems. The time
step size for a desired accuracy is given for the entire domain problems. In the hybrid
scheme, the same time step size is used in both the Yee grid and the fine sub-grid. In the
fine sub-grid a numerical wave can always be propagated without numerical attenuation,
but the sub-grid will have a larger dispersion error than for the Yee coarse grid.

A stable FDTD scheme must have the amplification polynomial that can be written in
Eqn. (7-24). The number of stationary solutions of the amplification polynomial is the
number of longitudinal field components, and the number of non-stationary solutions of
the amplification polynomial is the number of transverse field components, which reveals
the transverse property of the electromagnetic wave.

The “faster-than-light” travel does not occur neither in Yee’s FDTD nor in the
unconditionally-stable methods introduced in this thesis when the mesh density along
each axis is above the Nyquist limit. Note that the transition mesh density given in Tables
7.2 and 7.3 should be compared to Eqn. (7-8) and use the largest to determine the faster-

than-light phenomenon.
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Chapter 8 Discretization Error Quantification

With the Fourier Method

From previous Chapters, it can be seen that numerical dispersion error only
measures phase error. This Chapter proposes a method that can quantify the discretization
error of the difference equations, which is a measure of the magnitude error, based on the
Fourier mode. In addition, this chapter reviews all the methods proposed previously and
casts them into more general formulation if possible. For simplicity, only the lossless
case is considered.

8.1 Introduction

In order to overcome some limitations in the traditional Yee’s FDTD method, many
altemnative schemes have been proposed. To compare numerical schemes, truncation error
analysis using the Taylor Series and numerical dispersion are often used. The former
indicates the order of accuracy of a scheme. The latter shows how the numerical wave
velocity differs from physical speed. A third approach is to quantify the amplitude of the
error numerically with some benchmark problems. However, these measures are
sometimes insufficient to quantify, distinguish and compare different methods. For
example, bench-mark problems may be case-dependent. Both ADI-FDTD and CNDS
(CNAP) are (2, 2) schemes and have the same numerical dispersion in the 2D case.
However, the actual magnitude error of the two methods is different, which will be
shown in this Chapter.

The Fourier method has been used in amplitude error analysis for parabolic problems

[76] [127]. 1t has been found [161] that the Fourier method can also be used to analyze
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the order of accuracy of an FDTD scheme, to characterize the discretization error and
compare quantitatively the accuracy among different FDTD schemes. Such error is
independent of time, space and frequency.

The “transfer function” concept introduced in [149] is used in this thesis to quantify
and compare schemes, and to give insight into the spectral resolution of the differential or

difference operators. Define the spatial transfer function of a Fourier mode e ™ and the

temporal transfer function of a Fourier mode e ”* as

T (k)= - F(e ™)
Je (8-1a)
F(e.lmr)
T(w)=26_ )
(@)= e (8-1b)

where k is the physical phase constant, to distinguish it from the numerical phase
constant [ previously used, and F is the differential or the finite-difference operator.
Note that the minus sign in Eqn. (8-1a) is intended to obtain positive value of the transfer
function. The basic idea of the Fourier method is to find the difference between the
transfer functions of the continuous-differential equations and of the discrete-difference
counterparts using one Fourier mode. Since Maxwell’s Equations are a system of

equations, a matrix expression is required to connect the relations.

8.2 Theoretical Plane-Wave Matrix

In Maxwell’s Equations given in Eqn. (2-6), £ and H have different units. For
convenience, the electric field components need to be normalized to have the unit of the
magnetic field. For a TE, wave in a linear, isotropic, non-dispersive and lossless

material, the Curl Equations can be written in matrix form as
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oW =0 (8-2)

c'd, 0 -9, E,
o= 0 79, 8, W=\E, (8-3)
-0, 0, c7'9, H,

where 0 is the partial differential operator matrix,E, =E, /n, E, =E /n, and

n=4ul/e 1is the intrinsic impedance. In the finite difference method, the partial

differential operator matrix 0 is approximated with the finite difference operator matrix
D. The Fourier method evaluates the discretization (or truncation) error matrix
0 — D with proper scaling [161].

For a general solution, the discretization error is space- and time- dependent. To
remove such dependence, the Fourier method uses the transfer function [149] with the
fundamental plane wave solution of the PDEs or FDEs, as defined in Eqn. (8-1). The 2D
plane wave or the Fourier mode is given by

w =y,e’e Y (8-4)
where k, =kcosg, k, =ksing, and k = \/m is the physical phase constant. Thus,
for PDEs, the transfer functions are T, = (dy/dt)/(Jy)=w, T,, =—(dy /dx)/(Jy) =
k., and T, , =—(dy/dy)/(Jy)=k,. The subscript “0” stands for theory. For FDEs,
they are 7, =D,(w)/(Jy), T, =-D,(y)/(Jy) and T, =-D (y) (Jy). For example,

for Yee’s FDID, T, =ww,, T, =kw, and T, =kw,, where w, =sin(wAt/2)/(wAt/2),

w, =sin(k, Ax/2)/(kAx/2) and w, =sin(k,Ay/2)/(kAy/2).
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8.2.1 Theoretical coefficient matrix
For the TE, wave, insert Eqn. (8-4) into Maxwell’s Curl Equations given by Eqn. (8-

2) and eliminate the common factor Jy to obtain the following linear homogeneous

equations
AW =0 (8-5a)
W' =|Epe Eno H.of (8-5b)
c’'T, 0.0 0 T,,
4,=| 0 c'T,, -T,, (8-5¢)
TO,y TO,x c_lTOI

where 4, is the theoretical coefficient matrix. By setting the determinant of 4, to zero,

the dispersion relation k£ = wc™' can be obtained.
8.2.2 Normalized plane-wave decomposition matrix
It has been shown that the plane wave must also be decomposed in order to quantify

the error properly [161]. From Fig. 8-1 it can be shown that the plane wave

decomposition is realized with a decomposition matrix 7T,

(Eth EyhO HzO )T = Tp (HZO HzO HzO )T

(8-6a)
-sing 0 O

T,=| 0 cosg O (8-6b)
0 0 1

where ¢ is the direction of wave travel. Thus, the theoretical plane-wave matrix is

-k 0 k
y y (8-7)
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where ¢, =cos¢ and s, =sing. In the following, we define ¢, = cos(wAt/2) and

_=JoAt]2

s, =e to shorten the expressions.

EhO Eyho

Eth

\ 4

Fig. 8-1 Decomposition of a plane wave.
8.3 Plane Wave Matrix for Explicit FDTD Methods
From Chapter 3, a general explicit discretization for Maxwell’s Equations can be

formulated as

c-lDtE;::-l/Z _DHyyH:+l/2 = O (8_8a)
c—lDtE}r’l;l/Z +DH,XH:+1/2 = O (8_8b)
¢'D,H] -D; E; +D; E; =0 (8-8c)

where D, and D, ,stand for the spatial difference operators acting on the E field and

the H field components, where the operator formulas may not be the same for £ and H,
such as in [34] [41] [44]. Inserting the plane wave Eqn. (8-4) into the explicit FDTD

update equations Egs. (8-8), the following coefficient matrix can be obtained

¢’'T, 0 Ty,
Az = O c’'T, -Ty (8-9)
T,, -Tg, c’'T,

By setting the determinant of matrix A, equal to zero, a general numerical dispersion

relation for explicit FDTD methods with 2™ order accuracy in time can be obtained as
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¢TI} =T, Ty +T; Ty, (8-10)
Eqn. (8-10) can be used to derive all the numerical dispersion relations given in Chapter 3
and those in [34] [40] [44].
For an explicit scheme having 2" order temporal accuracy, T, is the same as the
Yee’s FDTD, but the spatial transfer functions depend on the formulation of the spatial-

difference approximations. For Yee’s FDTD, the coefficient matrix is

w, 0 w, 11
Ay, =kl O w, -w,
w, —w, w,

The general plane-wave matrix for the difference equations Eqgs. (8-8) is

—c”lT,s¢ 0 Ty,
A, gy = A T, = 0 ¢'Te, -Ty,

p (8-12)
=Tp,s, —Tg.cy c'T,
Thus the plane wave matrix for Yee’s FDTD is
- WS, 0 w,
(8-13)
A, e =k 0 we, - w,
—W,S, —w. e, W,

The plane wave matrices for other explicit methods can be written similarly.
8.4 Plane Wave Matrices for CN-Based Methods
In this section, the spatial difference operators for CN-based methods use 2™ -
order central difference formula, so the transfer functions will be written as specific
instead of the general for easy understanding.
The Crank-Nicolson scheme [151] [157] is balanced at the time step n+1/2 at both

the LHS and RHS as described in Chapter 4. Other CN-based methods proposed in this
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thesis are formulated by adding some higher-order terms as discussed in Chapter 5. For
the original CN scheme, with similar derivation to the explicit methods, the coefficient

matrix can be written as [161]

w, 0 w,c, (8-14)
Aoy =k 0 w, - w,c,
w.e, =—w.c w,

Eqn. (8-14) differs from Yee’s method in Eqn. (8-11) by the factor ¢, = cos(wAt/2).

The plane wave matrix can be obtained as

-w,s, 0 w,c,
A,ov =kl 0 W,y T WG (8-15)
-w,Cs, =W, w,

For other CN-based methods, one can derive the plane wave matrices from their
update equations. However, such results are complicated and do not reveal explicitly the
fact that they ére modifications of the CN scheme. For clarity, here we use the
formulation that combines the CN scheme with the higher-order terms added to
individual CN-based methods given in Chapter 5. With some manipulation, the
coefficient matrices are listed in Table 8-1 and the plane wave matrices in Table 8-2 for
CNDG, CNDS (CNAP) and CNCS. For CNCS methods, the matrices are almost the
same except that the locations of the perturbation errors are different.

In comparison to the CN and the CN-Based methods, ADI-FDTD has complex error

terms due to unbalanced time marching scheme, and is complicated.
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Table 8-1 Coefficient matrices for CNDG, CNDS (CNAP) and CNCS.

—S4W, 0 w,c,
CNDG AP,CNDG =k 0 cyW, -w,c,
—s,w,e, —cywee, w,(1+b'k wiwl)
w, bk'ww,w,  wpe,
Acpsy =k 0 w, - WC,
w,c, -w.c, w,
CNDS
(CNAP) w, 0 w,c,
Aapsy = k| O°E*w,w,w, W, w.c,
w,c, -w,c, w,
w, 0 w,e,
Ao = k| =0'k*wowiw, w,(1+b°k*wiwl) -w.ec,
w,c, -w,c, w,
CNCS-EI
w,(1+b%%k wiw?) —b4k4wiwywt w,c,
Acyery =k 0 w, - wW,cC,
w,c, -w,c, w,
w, -bYktw wiw, w,e,
Aeyese =k 0 w,(1+b%k*wiw?) —w.c,
w,c, -w,c, w,
CNCS-IE
w,(1+b4k4w§w;) 0 w,e,
Aevy =k =0k wiw,w, w, w.c,
w,c, -w,c, w,
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Table 8-2 Plane wave matrices for CNDG, CNDS (CNAP) and CNCS.

— 54w, 0 w,c,
CNDG Ap,CNDG =k 0 CyW, -w,c,
—s,we, —cwe, w(1+b'k wiw))
- w,s, bZkZWnyW,C¢ w,c,
Ap,CNDSX =k 0 w,Cy -w,c,
T W,C. Sy - W, C.Cy w,
CNDS
(CNAP) - W, 0 w,c,
Ap,CNDSY =k —bzkzwxwyw,s¢ w,C, -w.c,
T W,C.S, —W,C,Cy w,
—W,S, 0 w,c,
Apavesmy = k| bk w o wiw,s, w (1+bk wiwl)e, -w.e,
—w,C,S, - w,c.cy w,
CNCS-IE —W,(1+b4k4wa;)s¢ 0 w,e,
A, encsey =k b4k4WiWyw,s¢ w,Cy -w,ec,
- W,C, 8, - W,C,Cy w,
- w,Ss, 0 w,c,
AP’CNCSELX =k b4k4wxwiwts¢ w, 1+ b4k4iji )C¢ - W.C
—W,CS, - W, Gy w,
CNCS-EI _Wr(1+b4k4wfw;)s¢ _b4k4wi,wywtc¢ w,e,
Ap,CNCSEIY =k 0 w,Cy -w.c,
— WyC,S¢ - wxctc¢ w,

8.5 Plane Wave Matrix for ADI-FDTD

ADI-FDTD is a two-step method and cannot use the same procedure in the preceding
Sections for the one-step methods. To use the Fourier method quantifying its
discretization error, the two sub-steps must be combined into one-step as in Egs. (4-24)

and (4-25). The matrices can be written as
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WL+ bR W) 0 WG
Ay =H =2 s, @) w(+bE W) —we + B Rws f@A) | (g 16,

WG WG W 1+ b4k4WjW}2,)
—w(1+b'k Wwl)s, 0 WG,
A, o1 =| K wnis N@A)s, w(l+b'k'Wowlle, —we +20k wws, /(whr) (8-16b)
-wes, ~wee, w,(1+ b“k“wfwj)

8.6 Error Matrices and RMS Errors
The difference between the theoretical plane wave matrix and the numerical plane
wave matrix reflects the accuracy of the numerical method used. The discretization error

for the plane wave is defined as
e, =kH e=k(4,, -4 \H, H, H,) (8-17)
where e is defined as the time- and space- independent relative error as
e= (e1 e, &) =a4(1 1 1) (8-18)
where e, , e, and e, are the normalized discretization errors of the three FDEs or update

equations for 2D-FDTD methods, respectively. Thus the quantification of the
discretization error lies on the evaluation of the error matrix A4. For explicit FDTD

methods, the error matrix is

_(kc)_l (To,t _'I;)Sin¢ 0 -k (]:),y _TH,y)
M=k (Ao,p “Ap)= 0 (ke)™ (73, —T,)cos¢ K (]:)x _TH,X) (8-19)
KL, - T, Jsing k(T - Ty Joosp (ko™ (T;, - T))

From Eqn. (8-23) it can be seen that, in order to reduce the numerical error, the numerical
transfer functions must be as close to the theoretical transfer functions as possible.

To be efficient, the relative RMS (root-mean-square) error defined as

e = lei]” +leaf +es)’ (8-20)
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can be used to unitize the three individual errors in Egs. (8-18) and (8-19). The errors are

functions of the mesh and time step sizes, as well as ¢, hence are anisotropic.

Based on the analysis mentioned above, the following error matrices for explicit

FDTD methods in this thesis can be obtained. For Yee’s FDTD, the error matrix 1s

—(1-w,)sing 0 (sin¢—wy)
A, = 0 (1 - w,)cos¢ - (cos¢ - wx) (8-21)
- (sin¢ -w, )sin¢ —(cosg —w, )cos¢ (t-w,)
For the optimized methods in Chapter 3, the error matrix is
—(1-w)sing 0 (sin¢—wypw)
A, = 0 (1-w)cosg ~(cosg-w,p,,) (8-22)

—(sin¢—wypw)sin2¢ —(cos¢—wxpm)cos¢ (l—w,)
where p, and p, are method-related, and can be found from Chapter 3. It can be seen

that, in order to reduce discretization error, for a given time marching method, such as
Yee’s leap-frog scheme, the spatial transfer functions due to spatial discretization must be
close to the temporal transfer function.

Table 8-3 gives the error matrices for various unconditionally-stable methods. Once
the error matrices are known from Egs. (8-21), (8-22) and Table 8-3, the discretization
errors of different schemes can be evaluated quantitatively.

8.7 Discretization Errors for Various FDTD Methods
This section demonstrates the properties of the discretization errors for various FDTD
methods.
8.7.1 Explicit methods
Fig. 8-2 shows the individual discretization errors of Yee’s FDTD for a mesh density

of 10 CPW at the Courant limit. It can be seen that equations of E, and E,, have similar
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Table 8-3 Error matrices for the unconditionally-stable methods.

CN —(=w)s; 0 $3—wa)
Mey= 0 (-wley  —(G—wg)
—(s3—wg)s; =G ‘chz)cgs (I-w)
apr|  [wessdk o -
M| ~2%wils f@rs, (w65, ~le,—we +2BPwnls, (@)
% ‘Wy‘%)% % ‘Wﬁ)% (l‘w(1+b4k4“f"§))
—(-w)s;, -bw,w, we, (s¢ —wyc,)
CNDS Adcpsy = 0 (1 - w,)c¢ —ley —w,e,
—(S¢ —Wth)S'¢ _(qu —wxct)c¢ (l_wt)
CNAD - (l - W,)S¢ 0 (s¢ - wyct)
AACNDSY = bszWnyW,S¢ (1 - w,)c¢ —\¢y — W,C,
- (S¢ WSy T (c¢ — WS )C¢ t-w,)
—(l—w,)s¢ 0 (s¢—w c,)
CNDG y
A enpe = 0 (l_wt )c¢ —(c¢ —W,C,
—<s¢ ~-w,c, )s¢ —(c¢ -w.c, )c¢ (1—w,(1+b4k4wfwi )
Adcycspx =
—(1-w,)s, bik*w wiw,e, (s¢ —wyc,)
CNCS- 0 (1—w,(1+b4k4wfw;))c¢ —{c, —w,c,
_(S¢ —wyc,)s¢ —(c¢ _cht)% (1—wt)
E Adeycsiry =
—(1—w,(1+b4k4wfwj))y¢ 0 (s¢—wyc,)
-bYktwiw, ws, t-w,)e, —le, —w,e,
—-(s¢wyc,)y¢ —(c¢ "ch:)% (I“W:)

discretization errors but with 90° shift. However, H, and the RMS errors have a cosine-

like variation w.r.t. the direction of travel. All errors are near zero along the diagonal

because this specific Courant time step size. Thus the diagonal has the highest accuracy,

the same as the numerical dispersion. The maximum error for the three field

components are the same, about 0.008. The RMS error behaves like the numerical
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dispersion error. In other words, the numerical dispersion error is a kind of “RMS”
error.

Fig. 8-3 and Fig. 8-4 graph the discretization errors for IOM and NAI (Chapter 3)
optimized at 10 CPW, at mesh density 10 CPW and their time step size limits,

respectively. For both methods, E has a sine-like and E, has a cosine-like

discretization errors w.r.t the direction of travel, with a maximum error about 0.006,
about 3/4 of the error of Yee’s method. Notice that A, is almost isotropic with an error

of 0.006. The RMS error is highly isotropic, which is expected because IOM is

isotropic.
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Fig. 8-2 Discretization error of Yee’s FDTD with mesh density 10 CPW

at the Courant limit.
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Fig. 8-3 Discretization error of IOM with mesh density 10 CPW
at its time step limit s = 0.848s,,.
NAI is a better isotropic method since it has smaller discretization error than IOM.
The maximum error of the individual field components is less than 0.005. Again H _and

RMS error are isotropic.
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Fig. 8-4 Discretization error of NAI with mesh density 10 CPW at its time step size
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Fig. 8-5 shows the discretization errors for the most accurate explicit method in this

thesis, the NA24 method. The maximum error for E and E y is about 2.4x107°, about

300 times smaller than Yee’s FDTD. Notice that H, has a maximum error of 3x1077,

and is almost isotropic. It can be seen that NA24 has not only a smaller numerical
dispersion error, but also much a smaller discretization error. In contrast, the methods in
[40] [44] have similar numerical dispersion error as NAI but larger discretization errors
similar to Yee’s FDTD, because they have used large stencils only for the electric field
components or magnetic field component, but not both.
8.7.2 Unconditionally-stable methods

Fig. 8-6 illustrates the RMS error for the unconditionally-stable methods of CN,
CNDS (CNAD), ADI and CNCS (CNDG) of Chapter 5. The discretization errors for
CNDG and various CNCS methods are indistinguishable since their perturbation errors
are 4™ —order accurate in space. For clarity only one of the curves is shown. It can be
seen that CN and CNCS(CNDG) are more isotropic than ADI, as expected. In most
directions of travel, the RMS errors for CNDS and ADI are smaller than those of the
more isotropic methods, but over some small angular sectors they have larger RMS
errors. Fig. 8-7 gives the maximum RMS errors for CN, CNDS, CNCS(CNDG) and ADI
as a function of the Courant number. As the time step size increases, the maximum error
increases. However, further data analysis shows that at small time step sizes, the CNDS
has a larger maximum error than other methods (see Fig. 8-6), but as time step size
increases, its maximum error becomes smaller than those for ADI and CNCS. For
example, at mesh density 50 CPW, its maximum error begins to be smaller than ADI’s

for Courant number larger than 4.5.
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Fig. 8-6 RMS discretization errors of various unconditionally-stable methods with
mesh density S0 CPW at the Courant number of 4.
8.8 Discussion
The discretization error discussed above provides information on which field
component is more isotropic and which direction of travel is the most accurate. In
addition, it can be used to analyze the order of accuracy, and suggest how to reduce the

errors, as discussed below.
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A. The orders of accuracy of a scheme

From the error matrix, the orders of accuracy of a scheme can be determined easily by

expanding the terms as Taylor’s Series. Since 1-w, = O(At?), Sy—W, = O(Ax?) and
cy—w, = O(Ay?), the Yee’s FDTD is a (2,2) scheme. For ADI and CN-based methods,
since the lowest orders are s,-w,c, =s,—W, + 2sin’*(wAt/2) = O(Ay*) + O(At?) and
Cy—W.C, = O(Ax*) + O(At?), the ADI and CN-based methods are also (2,2) accurate.

B. Reduction of discretization errors

From the error matrices it can be seen that in the 1D case, if the “magic time step
size” [4] At =+ ueAx is used, Yee’s scheme has neither numerical dispersion error nor
discretization error, because it has w, =w, or w, =w,.

It can also be seen that, in order to reduce the discretization error, using a fine mesh is
effective for Yee’s FDTD because the discretization error is a function of the difference

of the transfer functions of the temporal and the spatial derivatives. Since the temporal

transfer function is a constant for a given time step size, finer mesh makes w, and w,
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closer to a constant but still a function of travel direction. This is where the anisotropy
comes from.

The optimized methods are another alternative for reducing discretization error. By
using large computational stencils, the spatial transfer functions are improved. Thus to
reduce the numerical errors in FDTD, the key issue is to design a kind of “spatial filter”
with a nearly linear transfer function for a wide bandwidth, and smaller variation w.r.t
direction of travel.

8.9 Conclusion

With the fundamental plane wave solution of Maxwell’s Equations, the analytical
expressions of the discretization errors have been derived for the explicit Yee’s FDTD
and the implicit FDTD methods described in previous Chapters. This method for error
analysis can be used to determine the order of accuracy of a scheme and to compare the
accuracy quantitatively between different schemes. The latter is especially important at
the development stage of a scheme, which may have the same order of accuracy as
another scheme, or even have the same numerical dispersion.

The discretization errors provide more information than the numerical dispersion. For
example, it can show which electromagnetic field component has smaller discretization
error and along which direction. This may be useful for some particular applications.

In addition, the plane wave matrices can use the numerical phase constant from the
numerical dispersion relation, resulting to almost the same the discretization errors as
those using the theoretical phase constant. However, using the theoretical phase constant
is much simpler and the method can be used for all cases even when the numerical

dispersion relation is not known. This method can be extended to the 3D case.
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Chapter 9  Numerical Dispersion and

Numerical Loss in Lossy Media

Most analysis of the numerical dispersion inherent in FDTD assumes that the material
is lossless for simplicity. Although in practice lossy dielectrics and conductors are often
encountered in the application of FDTD, the numerical dispersion for lossy materials is
seldom investigated in theory or by numerical experiment. This Chapter will show that
there is numerical loss in FDTD applied to lossy materials, and the numerical dispersion
is also different from lossless case.

9.1 Introduction

The literature in FDTD has ﬁeglected the role of loss constant in analyzing the
numerical dispersion in the lossy case. For lossy materials, Reference [123] presents the
stability analysis of FDTD for a time-average scheme and a time-forward scheme, gives
the numerical dispersion relations. Reference [120] analyzes the stability in solving the
second-degree wave equation. But both do not include explicitly the loss constant in the
Fourier analysis method. Reference [121] generalizes the analysis of stability and
numerical dispersion in discrete-convolution FDTD. Recently Reference [124] extends
the analysis to the (2, 4) scheme and compares numerical dispersion for (2, 2) and (2, 4)
schemes theoretically, using a complex phase constant, but does not mention the loss
constant. Reference [122] addresses the numerical dispersion in homogeneous and
inhomogeneous waves, and accounts for the loss constant, but omits the oF term in
Ampere’s Law. No direct comparison between numerical experiment and theory has been

reported to validate the dispersion relation in lossy materials.
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A correct numerical dispersion relation is required for the understanding and
evaluation of an FDTD scheme. For example, the accuracy of the near-to-far zone
transformation can be improved if the dispersion relation is known and accounted for
[140]. In order to get a correct numerical dispersion relation, both “numerical loss” and
conductivity have to be introduced. However, because the magnitude of the
electromagnetic fields decreases with distance in space, obtaining numerical loss and
dispersion from numerical experiments in higher dimensions with proper accuracy is
difficult. Thus this thesis will only validate numerical dispersion and numerical loss in
the 1D case for Yee’s FDTD, ADI-FDTD and CN-FDTD. In the 2D case, the analysis is
provided.

9.2 Numerical Dispersion and Numerical Loss for 1D Yee’s FDTD
The 1D update equations for Yee’s leap-frog FDTD in a linear, isotropic, lossy and

non-dispersive medium are [4]

. ot H G +1/2)~H 2 (i-1/2
E() = 0,y () -a LA (2D ©-12)

Eri+1)-E"(G)

HM2 G +1/2)=H"*(+1/2)~a, .

(9-1b)
where the coefficients are a, =(1-0At/2¢)/(1+0At/2¢g), a, =(At/¢&)/(1+0At/2¢)

for “time-average scheme” [120], and a, =A¢/u; and ¢,u,0 are the permittivity,
permeability and conductivity of the material, respectively. Since the time-average
scheme has 2™-order accuracy in time, and other schemes have lower-order accuracy,
this thesis will only discuss various FDTD methods with the time-average scheme.

A theorem has been proved [69] that ensures Yee FDTD in lossy materials is stable

within the Courant time-step-size limit. Thus the stability issue will not be addressed
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here. From physics, it is known that in a lossy medium the real-valued phase constant
must be replaced by a complex-valued propagation constant y. In addition, it is well

known that Yee’s FDTD does not give rise to numerical dissipation or growth in time;

thus the numerical plane wave can be written as

v =y, exp(JanAt) exp(-yiAx) 9-2)
where ¥ = a +Jf is the numerical propagation constant, « is the loss constant, and £ is
the phase constant. Because of discretization, the phase constant # and loss constant «

in the computational domain (the difference equations) are generally different from their
physical values.
9.2.1 Numerical dispersion and numerical loss relation

To obtain the relation between numerical dispersion and loss, substituting Eqn. (9-2)

into Eqn. (9-1) results in the following equations

[ a2 -£")  2e7%g, sinh(yAx/z)/Ax}[Ew} -0 9-3)

2a, sinh(yAx/2)/ Ax e’ (£ £V H,
where ¢ is the phase difference between the electric and magnetic fields associated with
the conductivity. The amplification polynomial is

PE) =& ~(1+a,+72, [ +a, (9-4)
where r,,, =2a,a, sinh(yAx/2)/Ax. It can be seen that the ¢ term does not appear in the

polynomial because of cancellation. Later discussion will omit this term. Setting the

polynomial to zero, and expanding the equation in the real and imaginary parts obtains

(1+a,)sin®(wAt / 2) = a,a,[1 - cosh(aAx) cos( fAx)]/ Ax* (9-52)
(1-a,) sin(wAt) = 2a,a, sinh(eAx)sin( SAx) / Ax® (9-5b)
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By substituting the constants a,, a,and a, into the above equations, the numerical

dispersion and loss relation can be obtained as

sin® (wAt/2) _ cosh(aAx) sin® (SAx/2)—sinh® (aAx/ 2)

(CAt)z AxZ (9"63)
sin(fwAt) . sinh(aAx) sin( fAx)
M L ar (9-65)

where 17 =+/u/ ¢ is the intrinsic impedance of the corresponding lossless material. Note

that the conductivity o is embedded in the update equations (9-1), and is equal to its
physical value. Therefore, Eqn. (9-6) indicates that the numerical phase constant and
numerical loss constant do differ from their physical values, and they are coupled.

If o goes to zero, Eqn. (9-6b) is identical by zero and Eqn. (9-6a) becomes the
numerical dispersion equation in lossless case [4]. As the mesh becomes infinitely fine,
the time step size must tend towards to zero because of the Courant limit, and then Eqn.

(9-6) becomes the theoretical relations as
@* =c*(f; - a;) (9-7a)
oun=2a,p, (9-7b)

where ¢, is the physical loss, and f, is the physical phase constant.

In one-dimensional lossless media, Yee’s FDTD has a “magic” time step size [4]
where the numerical velocity is equal to the physical velocity, resulting in zero numerical
dispersion. However, for lossy media, there is no such “magic” time step size. This can
be seen by setting Af = Ax/ ¢ in Eqn. (9-6), which gives

sin? (wAx /(2¢)) = cosh(aAx)sin? (BAx/ 2) — sinh® (aAx / 2) (9-8a)
on sin(wAx / ¢)Ax = 2 sinh(aAx) sin( fAx) (9-8b)
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Thus, neither the numerical phase constant nor the numerical loss constant is the same as
their physical values in Eqn. (9-7) for any time step size, and are still a function of the
conductivity. If a very fine mesh is used, or if the conductivity is very small, the
numerical velocity and loss can be quite close to their physical values.
9.2.2 Numerical verification

To demonstrate that Eqn. (9-6) predicts the behavior of the numerical wave correctly
in the computational domain, numerical experiments were done with a 1D mesh of 500
cells. A frequency of 300 MHz was used. The mesh density was varied using 10, 20, 30,
and 40 CPW in the lossy material. Courant numbers s = cAt/ Ax of 0.25, 0.50, 0.75, and
1 were used. Conductivities o of 1, 2, 3, and 4 mS/m were tested, with the permittivity

and permeability equal to those of free space. Despite the fact that the physical velocity in
the lossy material is different from c¢=./1/ue, we can still evaluate the numerical

dispersion as u/c as in a lossless material. The velocity in lossy media is smaller than
that in the corresponding lossless medium, so u/c <1.

Fig. 9-1 shows the relative numerical velocity u/c as a function of the mesh density
for a conductivity o =1 mS/m, for the four different Courant numbers. For comparison,
the numerical velocity in the corresponding lossless material is shown as a dashed line.
For small Courant numbers and coarse mesh densities, the error in the numerical velocity
is large, and for the Courant limit, the error is the smallest in both cases. In Fig. 9-1 the
results from numerical experiments are also shown with small circles, and they agree
quite well with the theoretical prediction of Eqn. (9-6).

Fig.9-2 shows the numerical loss « predicted by Eqn. (9-6), and the results from

numerical experiments (small circles) with good agreement. The inconsistency at s =1 1s
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due to the very small attenuation, which causes the extraction of the loss constant
inaccuracy. It can be seen that the numerical loss is always larger than its physical value.
Both the numerical dispersion and numerical loss approach their physical values as the

mesh becomes finer.
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9.2.3 Numerical dispersion and loss over a wide-bandwidth

To understand how the conductivity influences the numerical velocity and numerical

loss, Fig.9-3 graphs the numerical velocity percent error, NVPE=100(u,, —u)/u ,, where
u,=w/f, is the physical velocity in the medium. Fig.9-4 shows the numerical loss

percentage error, NLPE=100(e, — @)/ ,, as a function of the conductivity for typical

mesh density 10 cells per wavelength at frequencies of 300 MHz and 3GHz. The
magnitude of the numerical velocity percentage error increases as conductivity increases.
At 300 MHz, for s=1 in Fig. 9-3, NVPE is negative and increases in magnitude with
conductivity, and asymptotically approaches —3.7%. For s=0.707, NVPE is positive for
small conductivity, then crosses zero and increases in magnitude as the conductivity
increases. For very large conductivity, the NVPE approaches —3.7%. Negative NVPE
means the numerical velocity is larger than the physical velocity, which does not occur in
the lossless case. In Fig. 9-4, the NLPE is always negative at both frequencies, so the
numerical loss is larger than its physical value. For s=1 and 0.707, the NLPE increases in
magnitude asymptotically as the conductivity increases. However, for s=0.5, the NLPE
decreases and approaches —~2.97% with large conductivity. In general the numerical loss
is smaller when a fine mesh is used or when a Jarger time-step-size within its Courant
limit is used.

In lossy media, the physical velocity and loss constant are both functions of
frequency. As the frequency increases, the physical velocity becomes faster and the
physical loss becomes larger for a given conductivity. The numerical loss and velocity

are also functions of frequency. Comparing the curves for 300 MHz and 3 GHz in Fig.
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9-3, the numerical velocity can be larger or smaller than the physical velocity, and for

“large” conductivity greater than 0.2 mS/m, the error is always smaller at the higher

frequency. In Fig. 9-4, the numerical loss is larger than the physical value at both

frequencies. The fact that numerical loss is always larger than its physical value indicates

that the conventional FDTD over-estimates the absorption of electromagnetic energy in

lossy media, leading to smaller-than-physical field strength in lossy materials.
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9.3 Numerical Dispersion and Loss for Unconditionally-Stable Methods in 1D

Since unconditionally-stable methods use a larger time step size than Yee’s FDTD,
the numerical dispersion and loss will be larger than that of Yee’s FDTD method. This
section will show that though the numerical dispersion in a lossless material is the same
for ADI and CN, it is different in the lossy case. The CN method has higher accuracy
than the ADI method.
9.3.1 ADI-FDTD

In the lossy case, Eqn. (9-1) is often used to guide the formulation of the 1D ADI as

[85] [104], which is written as

E;H/z =ag 0 Ey - al,ADIDtzMl/Z (-112)
H:H/z =Hz,, _azDXE;:H/Z (9'11b)
E;M = aO,ADIE;H/Z - al,ADIDtznH/z (3-12a)
H:.H - H:+1/2 _ aszE;+l/2 (9'12b)

where ay 4o = (1 —0At/4e)/(1+ oAt/ 4e), a, ;o =(Bt/268)/(1+0Mt/4¢), and

a, = At/2u. Using the matrix form, it is formulated as

(L oo fo

B A o139
where W = (E , H, )T . The two sub-marching procedures can be combined into one as
o S, T s, T e e e

The amplification polynomial and the amplification factor £ can be obtained as

(1 = Taor )4:2 - (1 + ag,,w/ +(1+ag 4, a1 )f * Qo unr (aO,ADI - ”jm) (-152)
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(1 +ay o + (14 ao,w{)r;m)

_ + \/(1 +aq o + (14 g 0 iy )2 —4a, 4y (1 -rly Xao,w, ~rl, ) (9-15b)
(l—r;D,)

~ where 7, =2a, ,,a, sinh(yAx/2)/ Ax. Then substituting & = exp(JwAr) into Eqn. (9-

15a) and after some manipulations obtains the numerical dispersion-loss equations

(1+a} p,)tan*(wAt/2) = 2a, ,,a,(1+a, ,,, )[1 - cosh(aAx) cos( fAx)]/ Ax?
,ADI 1,ADI ™2 0,ADI
+2a, 4pra, (1-a, 4, ) tan(wAt / 2) sinh(aAx) sin( fAx)]/ Ax? (9-16a)

(1—aj 4p;) tan(wAt/2) = 2a, 1,0, (1+ a, 4, ) sinh(aAx) sin( fAx)/ Ax’

—2(1- Ay 4y ), 4y, tan(wAt / 2)(1 — cosh(aAx) cos(BAx)) / Ax? (-16b)
The relation is more complicated than in Yee’s FDTD. The numerical dispersion and
numerical loss from Eqn. (9-16) and numerical experiments are shown in Fig. 9-5 and
Fig. 9-6, for mesh density from 40 CPW to 100 CPW and Courant number from 1 to 4. It
can be seen that the numerical dispersion and loss errors decrease as the mesh density

increases, and increases as the Courant number or the time step size increases. This

differs from the behavior of the explicit, conditionally-stable methods.
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9.3.2 CN-FDTD

From the lossy Maxwell’s Equations, the following CN scheme can be formulated

Er =ay, o E" —a,,,D,(H" +H!) (9-172)
H™ =H! -a,D (E" +E") (9-17b)

where a, .y =(1-0At/28)(1+0At/2¢8), a,q =(At/28)/(1+cAt/2¢). For simplicity,

defining the following matrices

D =( 0 aLCNDxJ D, = [o oj ©-18)
a,D, 0 0 0
Ioy = [a"bc” (1)] (9-19)
then the CN scheme can be written in matrix form as
(I-D,-D, W™ =(I,,+D, +D,)W" (9-20)
where [, is an 2x 2 identity matrix in the 1D case. Then Eqn. (9-20) can be factorized.

Using the efficient-splitting scheme introduced in Chapter 5, the lossy CN scheme can be

split into two sub-steps as
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(I-D)W =(I,,+D,+2D,)W" (9-21a)
{-D)yw™ =W -D,W" (9-21b)

The actual update equations are

(1- a, cy@,D,, )E;H = aO,CNE; - 2“1,CNDtz" + a1,c1va2D2xE; (9-22a)
H" =H! -a,D,(E]" + E}) (9-22b)
and Eqn. (9-17b) if solving implicitly for the electric field, or
(1-a,cya,D,, JH!" = H] —a,(1+ aoen)DLEy +a,cyay, Dy H (9-23a)
E™ =a, Bl —a oD (H™ +H") (9-23b)

and Eqn. (9-17a) if solving implicitly for the magnetic field. The amplification

polynomial and the amplification factor £ can be obtained as

(1 - rCZN )fz - (1 +a, + 2rC2N k + (ao - réN ) (9-24a)
. (1 +a, +2r2, )i \/(1 +ay +2r. )2 - 4(1 -7l Xao - rCZN) (9-24b)
(l —rl, )

where 7.y = 2a, ya, sinh(yAx/2)/Ax. Then substituting & = exp(JwAt)into Eqn. (9-

24a), and after some manipulations obtains
(1+ay oy ) tan® (WAt / 2) = 4a, . a,[1 - cosh(aAx) cos(fAx)]/ Ax® (9-252)
(1-ay ey ) tan(wAt / 2) = 4a, o a, sinh(aAx) sin( fAx) / Ax* (9-25b)
Compared to Egs. (9-5) and (9-16), CN has similar numerical dispersion and loss relation
to Yee’s FDTD, and the relation is simpler than that for ADI-FDTD. The numerical
dispersion predicated from Eqn. (9-25) and that from numerical experiments are shown in
Fig. 9-7 with good agreement, for mesh density from 40 CPW to 100 CPW and Courant
number from 1 to 4 at ¢ =1mS/m. At such small value of conductivity, the numerical
dispersion of CN is about the same as ADI. However, the numerical loss error is much

smaller than ADI. The values of the numerical loss at Courant number 1 to 4 are very
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close, and the differences among them are smaller than the accuracy of the computational

method used to extract the value of numerical loss, thus will not be graphed. Table 9-1

gives the numerical loss data for the CN scheme. Note that to show the small difference,

both the theoretical data and the experimental data have not been rounded.

Table 9-1 Numerical loss in 1D CN-FDTD.

Mesh density >> | 40 48 64 72 80 96

s=1 Eqn. (9-25) | 0.188867 | 0.188686 | 0.188509 | 0.188460 | 0.188427 | 0.188382
s=1 Experiment | 0.188678 | 0.188443 | 0.188355 | 0.188353 | 0.188267 | 0.188063
s=2 Eqn. (9-25) | 0.188875 | 0.188690 | 0.188511 | 0.188461 | 0.188428 | 0.188383
s=2 Experiment | 0.188671 | 0.188494 | 0.188250 | 0.188240 | 0.188320 | 0.188314
s=3 Eqn. (9-25) | 0.188890 | 0.188698 | 0.188513 | 0.188462 | 0.188429 | 0.188383
s=3 Experiment | 0.188677 | 0.188495 | 0.188325 | 0.188304 | 0.188154 | 0.188309
s=4 Eqn. (9-25) | 0.188911 | 0.188708 | 0.188517 | 0.188465 | 0.188431 | 0.188383
s=4 Experiment | 0.188700 | 0.188500 | 0.188301 | 0.188238 | 0.188268 | 0.188116
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9.3.3 Discussion
A. Factorization errors

The factorization error for CN can be obtained from Eqn. (9-20) and (9-21) as
ADg, = DD, (W™ —w™") (9-26)
In the 1D case, because D, is a zero matrix, there is no factorization error for CN.
For AD], since the formulation of the coefficient a,is different from CN, it cannot be

written as a perturbation of the CN scheme. Thus only the factorization error is discussed.

Define
0 a,.,D 00
D - 1,ADI =" x D = R
: (asz 0 2o o ©-27)
a 0
Ly =( e 1) (9-28)

then the ADI-FDTD can be factorized and split as

I-DYW™* =1, +D,)W" (9-29a)
(I —DZ)Wn+] - (IADI +D1 )Wn+1/2 (9-29b)

which is a perturbation to the following equation
(I~D,~D,W™ =(I ,,;+D, +D,))W" (9-30)
Thus the factorization error for ADI-FDTD is
(2 =DW"+( p, =D, +D,)W" + D, D,(W" = W") (9-31)

It can be seen that in lossy case, the error is 1** order in time. Compared to Eqn. (9-26),

ADI has larger factorization error than CN.
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B. Intrinsic temporal numerical dispersion and loss

As discussed previously [153] [154], unconditionally-stable methods have intrinsic
temporal numerical error due to the relaxation of the Courant constraint. When the mesh
size goes to zero, the intrinsic numerical phase constant and loss for ADI and CN can be

obtained with some manipulation as

3 1/2 3 1/2
B, = g(,/n% +1] a, =\/§[1/1+-§—2——1J (9-32)

tan’ (wAt /2) (1-9)*
(cAt/2)* 1-q° tan’*(wAt/2)
tan’ (wAt / 2)
(cAt/2)?
o tan(wAt/2) 1-(1+¢q*)tan’ (wAt/2)/2
sl N2 1— g tan’ (wht/ 2)
o tan(wAt / 2)
At/2

_ oA
T de (9-34)

Where
ADI

(9-33a)
CN

ADI

(9-33b)
CN

q

where subscript ¢ stands for intrinsic temporal. It can be seen that when o goes to zero,
the intrinsic loss constant is zero, and the numerical phase constant reaches its intrinsic
temporal value [154]. As the time step size increases with non-zero conductivity, the
deviation to their physical values increases, since tan(y)/y increases greatly. Fig. 9-8
and Fig. 9-9 show the intrinsic temporal numerical velocity and numerical loss percent
error (NVPE and NLPE) at time step size relative to the Nyquist limit. With conductivity
increases, the error for numerical loss decreases and the error for velocity increases for
CN. For ADI, the relation of NLPE and NVPE with time step size is complicated, but

generally they are much larger than those for the CN scheme.
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Fig. 9-9 Intrinsic temporal numerical loss percent error for CN and ADI.
C. Intrinsic spatial dispersion and loss
When the time step size goes to zero, the numerical error still exists due to spatial
discretization. However, since At — 0 makes the term oAtr — 0, the numerical error for
CN and ADI becomes the same. Such error is termed as “intrinsic spatial error” because

in the lossy case it depends on the approximation of the spatial derivatives and the
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approximation of o, which uses the time averaged approximation in this Chapter. The

relation between the intrinsic-spatial numerical phase constant and loss is simplified as
@’ Ax* /2¢* =1~ cosh(aAx) cos( fAx) (9-35a)
ouwAx*® /2 = sinh(aAx) sin( fAx) (9-35b)
It can be seen that even when there is no time discretization, the numerical phase constant
and loss constant still do not agree with their physical counterparts.
D. Numerical dispersion and loss with time step size
Fig. 9-10 shows the numerical dispersion percent error as a function of time step size
(Courant number), at a mesh density of 50 CPW. Generally, numerical dispersion error
increases as the time step size increases. For small conductivity, such as o = 0.001S/m,
the numerical dispersion is about the same for both CN and ADI. However, the numerical
loss percent error for ADI is much larger than CN, and becomes larger as conductivity is
small because it is expressed in a percentage. For clarity, Fig. 9-11 shows the numerical-
loss absolute error on a logarithmic scale. It can be seen that, as the conductivity
increases, the deviation becomes larger.
E. Numerical dispersion and loss with conductivity
Fig. 9-12 and Fig. 9-13 graph the numerical dispersion and loss percent error as a
function of conductivity at mesh density of 50 CPW. Since it is in percentage, the errors
decrease as conductivity increases. However, the absolute error increases as conductivity

Increases.
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a mesh density of 50 CPW.
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9.3.4 High-accuracy ADI formulation based on the original CN scheme
From above discussion it is known that ADI is less accurate as CN. This is because of
the intuitive treatment of the loss term. From Maxwell’s Equations (2-6a) and (2-6b), the

CN scheme can be generally written (for 1D, 2D and 3D) as

w' =w" —~(D, + D, + D, )(w"™" +w") (9-362)
At 0 &'V x
D +D, =—— -
1 2 5 (u“Vx 0 ] (9-36b)
At la 0
D, =—— ° -
L= ( 0 Ia,,j (9-36¢)

where / is an identity matrix with the same dimension as V, a, =ce™ anda, =c"u™".
For non-magnetic materials, a, =0. Compared to Eqn. (4-11), there is an extra
matrix D, . Apparently Eqn. (9-36) can be factorized as

(I-D,-DYI -D)w"™ =(I+D,+D,)I+D,)w" (9-37a)
(I-D)I-D,-D,)w™' =(I+D)I+D,+D,)w" (9-37b)

which can be decoupled as Eqn. (4-12) for ADI, and Egs. (5-2), (6-10) and (6-11) for
CNDS. The factorization error in Eqn. (9-37a) is DD, +D,D,, which is 2"-order
accurate in time. Thus, with the formulation Eqn. (9-37), ADI has the same numerical
accuracy as the CN scheme in the 1D case. Note that the factorization error in Eqn. (9-
37b)is DD, + DD, . In 1D case, Eqn. (9-37a) has higher accuracy than Eqn. (9-37b). It
has been found that the published papers in ADI-PML usually use the intuitive
formulations similar to Egs. (9-11) and (9-12), and have large reflection errors for large
Courant numbers. If the formulation Eqn. (9-37) is used, the performance of the PML

may be improved. This issue needs further investigation.
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9.4 Numerical Dispersion and Loss in Higher Dimensions

Since the magnitude of the electromagnetic field decreases rapidly with spatial
distance in the 2D and 3D lossy media, this Section will only discuss the theoretical
numerical dispersion and loss for Yee’s FDTD, CN-FDTD and CNCS-FDTD. For ADI
and CNDS, their amplification factors are quite complicated and will not be discussed.
The analysis will illustrate the behaviors of numerical loss and numerical dispersion with
direction of travel for a given mesh density. For conciseness, the update equations, the
amplification polynomial and the amplification factor are given without further

description. In 2D case, the following parameters are defined: y, =a, +Jf,;
y,=a,+Jp, ;a, =acosg;and a, =asing .

9.4.1 2D Yee’s FDTD

For2D-Yee’s EDTD. 4 | :

H!"*=H!"* +a,D E! —a,D,E! (9-382)
E;Hl Z%E:+01D),H:+l/2 (9_38b)
E" =a,E) —a,DH"" (9-38¢c)
The amplification polynomial is
=(n — 2 _ 2,.2
P&) =(a~ )& +a,~(1+0y+7 +7, %) (9-39a)
The amplification factor is
2
_ (1+a0 +r} +ry2 )i \/(1+a0 +r! +ry2) -4a, (9-39b)
2
The numerical dispersion and loss relation is derived as
2sin’(wAr/2) _ [ 1-cosh(e,Ax) cos(S,Ax) s 1-cosh(a, Ay) cos(8,Ay) (9-40a)
(cAt)? Ax? Ay?

o sin(wAr) _ 2[ sinh(r, Av)sin(g,Ax) _sinh(a, Ay)sin( ﬂyAy)J

cAt Ax? Ay? (9-40b)
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9.42 2D CNFDTD

For 2D CN FDTD, the difference matrices are constructed as

0 0 aD, 0 0 0 a, 00 (3-41)
D= 0 0 0 | D=0 0 =-aD, |D,=0 a 0
@D, 0 0 0 -a,D, 0 0 00

The amplification polynomial is

PO === 47 ) +asn =7 +7)- {1+ pcn 422 47 )) (9-422)
The propagating-mode amplification factor is solved as

(1 +ay ey + 207 +2r) )i- \/ (1 +ay0, +2r] +2r] )2 - 4(1 —rl-r} XaO’CN ~-rl - ryz) (9-42b)
2(1 - rx2 - ry2 )

The numerical dispersion and loss relation is

(1+ay ) tan’ (At / 2) _1-cosher, Ax)cos(B,Ax) | 1-coshéx,Ay)cos(B,Ay)
4a, v, Ax? N (9-43a)

4a, ya, B Ax? Ay (9-43b)

9.4.3 2D CNCS methods

The coupled equations for the electric field components are similar to the lossless
case except that a, ., replaces unity before £7 and E in Eqn. (5-9), as given in Eqn.
(9-44). The equations can be decoupled using the methods in Chapter 5. The
amplification polynomial and amplification factor are given in Eqn. (9-45). Compared to
CN in Section 9.4.2, CNCS has an extra higher order cross term due to factorization.
Because of its complexity, the numerical dispersion and loss relation will not be given,

but can be obtained from the amplification factor.
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The coupled equations for the electric field components are

(1-6>D,))E;" +b°D,D,E}" =(ayy +b°D,,)E; =b*D,D,E} +2a,D H] (9-44a)

L e 4 XTyTy

(1-b6°D,,)E;" +b>D,D,E" =(a,cy +b°D,,)E; ~b>D,D,E; —2a,D H (9-44b)

xyHx xyHx

The amplification polynomial and the propagating-mode amplification factor are

PO = (- #E + 1) {4y + 22 ) (9-452)
_ (e —1+27f )if\/(ao,m—1+2r;‘)z —4r(ay oy -1+7)
) vt (9-45b)
where
#* =(1-ae7f1-aar;) (9-462)
rt =(i+agrfi+aar)) (9-46b)

9.4.4. Discussion

From the expressions for the amplification factors of the Yee’s and CN methods, it
can be seen that the 2D case is just a direct extension of 1D case. Fig. 9-14 and Fig. 9-15
show the numerical dispersion and numerical loss for Yee’s FDTD at mesh density 10
CPW at the Courant limit, and Fig. 9-16 and Fig. 9-17 for CN-FDTD at mesh density 50
CPW at Courant number 1 and 5, with conductivity of 0.001 S/m, and 0.005S/m. It can
be seen that the numerical dispersion and numerical loss have higher accuracy along the
diagonals than along the axes for both methods; and both the numerical dispersion and
numerical loss are anisotropic. However, the anisotropy for CN-FDTD is smaller than for
Yee’s FDTD, and the anisotropy of the numerical dispersion is much smaller than that of
the numerical loss for CN-FDTD. In addition, the numerical dispersion and numerical
loss error increase for Yee’s FDTD as the time step size decreases; in contrast, the
numerical dispersion and loss error increase for CN-FDTD with time step size increases.

The numerical error for CNCS is similar to CN-FDTD.
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9.4.5 3D Yee and CN FDTD

For the 3D case, the numerical dispersion and loss relations for Yee’s FDTD and CN
FDTD can be derived similarly to Eqn. (9-40) and Eqn. (9-43) except that the term in z-
axis is added. The equations will not be given.
9.4.6 Anisotropies

Generally it is difficult to compute the numerical dispersion and loss without using a
root-finding algorithm because of the direction-of-travel dependence. However, for the
direction of travel along the diagonals of a square or cubic mesh, the numerical

dispersion term and the loss term can be separated as follows [164]

sinh? (aAx/~d) = 2r? (r,2 —1+r2tan? 5 £+/(1+tan? 5 fr* tan® 5 +(1 - r,z)z)) (0-472)

sin®(BAx/Jd) =2r (1 —r2(1+tan*8) £ /(L + tan? 6 [ tan? 5 + (2 —1)2)) (5-47b)
where r, = sin(wAt/2)/ (s\/g ) for Yee’s FDTD, and r, = tan(wAt/2)/ (s«/g ); and 4 =3 for
3D, 2 for 2D, 1 for 1D and along axes; the physical loss tangent is tand, = o/ we , and

the termtanod =((a)At/ 2)/ tan(a)At/2)tan5c may be called “numerical loss tangent”.
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Using Eqn. (47) the anisotropies for the numerical dispersion and loss can be easily
calculated. Define the anisotropy of numerical loss as

%% % 100% (9-48)

b min{e, a,}

a

Fig. 9-18 shows the anisotropies of numerical dispersion 4, defined in Eqn. (4-22) and

of numerical loss for Yee’s FDTD in the 2D case. 3D anisotropies are similar to Fig. 9-18

but the magnitude is larger. Some data are shown in Table 9-2 for the comparison.
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Fig. 9-18 Anisotropies for 2D Yee’s FDTD.

Table 9-2 Comparison of the anisotropies in 2D and 3D.

o (S/m)>> | 0.001 0.01 0.1 1
4,1n2D 0.0086 0.0064 0.0115 | -0.0181
4,in 2D 0.0265 0.0254 0.0171 0.0142
4,1n3D 0.0114 0.0085 -0.0151 | -0.0239
4,in 3D 0.0354 0.0340 0.0232 0.0194

Although the numerical dispersion and loss depend on the time step size (the Courant
number), as shown in Fig. 9-14 and Fig. 9-15, the anisotropies are insensitive to the time

step size. Thus Fig. 9-18 shows only the anisotropies at the Courant limit for a squared
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mesh, at frequency 300 MHz. The conductivities are 0.001, 0.01, 0.1 and 1 S/m,

respectively. It can be seen that the anisotropy 4, is always larger than zero, which

implies that the numerical loss along the diagonals is always smaller than that along the

axes, and more close to its physical value. However, the anisotropy 4, can be larger

(o0=0.001 and 0.01 S/m) or smaller (o =0.1 and 1 S/m) than zero, which indicates that
the numerical velocity along the diagonal can be larger or smaller than that along the
axes. Further investigation shows that, when the numerical velocity anisotropy is
positive, the numerical velocities for all directions of travel are smaller than the physical
velocity; when the numerical velocity anisotropy. is negative, all the numerical velocities
are larger than the physical value, which has not been found in lossless media. This fact
also demonstrates that the numerical velocity along the diagonals has higher accuracy.

In addition, between the positive and the negative anisotropies of the numerical
dispersion, there is a zero-anisotropy point. For example, at the conductivity 0.02614 S/m
in 2D, at mesh density 10 CPW, frequency 300 MHz, the numerical velocity anisotropy
is about 3x1077, which is almost zero. In the 3D case, the anisotropy is 2x107® with
conductivity 0.02632 S/m. In the lossless case, zero anisotropy means the numerical
wave has the same velocity in all the directions of travel. However, further investigation
shows that it is not true for the lossy case. For a square mesh with a mesh density of 10
CPW at frequency 300 MHz, at the directions of 22.5° and 67.5°, the numerical
dispersion is about 1.00774. At the direction of 0°, 45° and 90°, the numerical
dispersion is about 1.00785. The non-uniformity of the velocity is about 10™, which is
highly isotropic. And at this special condition, it can be seen that the directions of 22.5°

and 67.5° have higher accuracy of numerical velocity than along axes and the diagonals.
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9.5 Conclusion

This Chapter has discussed some important behaviors of FDTD methods in lossy
media. In addition to numerical dispersion, the loss constant of the FDTD methods is also
different from its physical value, which is reasonable since the phase constant and the
loss constant are in the same augment of the Fourier mode. The relations of numerical
dispersion and loss are derived analytically for several FETID methods. Numerical
experiments were performed in 1D, which agree well with analysis. Similar to numerical
dispersion, numerical loss is a function of mesh density, time step size and the
conductivity. Coarser cell sizes or larger conductivity causes larger numerical loss error.
As the time step decreases, the loss error for Yee’s FDTD increases, but the loss error for
CN and ADI decreases. The intuitive formulation of ADI, that is, discretizing Maxwell’s
Equations at each individual sub-step with the ADI methodology in lossless case, has
been shown to be a first-order method in time, and it has larger numerical loss error than
CN. To have the same accuracy as CN, ADI must be written as a perturbation of the
original CN scheme. In the 2D case, the numerical dispersion and loss are anisotropic for
Yee’s FETID, CN-FETID and CNCS. The numerical dispersion and numerical loss are
separated for the diagonal direction of travel for a square mesh or a cubic mesh and along
the axes, which can be used to compute the anisotropies. Similar to the lossless case, the
numerical wave traveling along the diagonal usually has usually a higher accuracy for
both the velocity and the loss constant than along other directions. The numerical velocity
for Yee’s FDTD can be larger than its physical velocity, which is different from the
lossless case. FDTD methods over-estimate the electromagnetic abs.orption, and thus

lead to a smaller-than-physical field strength in lossy materials.
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Chapter 10 Summary, Conclusion and Future Work

This thesis has proposed several new FDTD methods with better performances over
other methods: smaller dispersion error; less anisotropy; unconditional stability. While
working on developing these methods, it has been observed and briefly discussed that
there are some new properties, behaviors and mechanisms of FDTD which have not been
reported previously or have been neglected. This Chapter first gives such observations,
then summarizes the contributions, and finally points out future work to be done.

10.1 Some Observations

It is believed that the advantages of an FDTD method can be fully utilized for certain
applications, based on a good understanding of its properties and limitations. The
following are the observations which are helpful.

A. Nyquist Criterion, attenuation and time-step-size limits

The Nyquist criterion is very important for all discrete systems. FDTD methods are
discrete systems in both time and space; thus the criterion must be obeyed in analyzing
some properties of FDTD methods, such as the numerical stability; Section 2.4 has
pointed out that, for explicit FDTD methods, the mesh density must be smaller than and
not equal to the Nyquist limit. It has been shown in [153-154] and Chapter 7 that though
the unconditionally-stable FDTD methods are “numerically” stable for any time step size,
there is numerical attenuation that prohibits the use of large time step size over the limit
given in Section 7.5, which is smaller than the Nyquist limit. The FDTD community
does not use such a large time step size, because of accuracy requirements. However,
solving elliptic equations may use a very large time step size where the goal of the time

stepping method is to reach steady state as fast as possible, which may lead to an
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erroneous result. In addition, if the mesh density along each axis is larger than 2 CPW of
the spatial Nyquist limit, the faster-than-light phenomenon cannot occur.
B. Amplification polynomials for stable FDTD methods

From Chapters 2, 3, 4, 5, 6 and 9, the amplification polynomial for a stable FDTD

method can be generalized as Eqn. (7-24). In the lossy case of Chapter 9, £-1 is
replaced by&—a,. The stationary solution corresponds to the longitudinal

electromagnetic field, and the non-stationary solution corresponds to the transverse
electromagnetic field or the propagating mode. The total number of the solutions is the
same as the total number of the electromagnetic field components in the Cartesian
coordinate system. There should be only two conjugate, distinct solutions for the
propagation modes regardless of the dimensions. Otherwise the method will generate
spurious solutions.

C. Isotropic error and intrinsic errors

The spatial dispersion error is anisotropic, which is the sole cause of anisotropy for
Yee’s FDTD Eqn. (2-12) and the CN scheme Eqn. (4-5). When the mesh in very fine,
Yee’s FDTD tends to be isotropic; and can have no or very little numerical dispersion
error due to the Courant constraint.

For ADI and other CN-based methods, because of factorization, some cross terms are
implicitly incorporated into the update equations. Thus unlike Yee’s FDTD, these
unconditionally-stable methods have intrinsic temporal numerical dispersion, and such
dispersion is anisotropic. But it is isotropic for the CN scheme only. The CNCS, CNDG
and CNAFS methods [151] [156-157] in Chapter S and Chapter 6 have much smaller

anisotropy than ADI, and can have zero anisotropy at certain mesh densities and Courant
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numbers. ADI and CNDS are more-anisotropic. Note that the anisotropy depends on the
formulation of the spatial derivative approximation and the time step size used. The
intrinsic error gives the accuracy limit for a given time step size. The unconditionally-
stable methods cannot provide better accuracy than its intrinsic dispersion for whatever
fine the mesh is.
D. Splitting schemes

Although the ADI and CNDS methods are based on the same formulation, and they
have the same numerical dispersion relation, they have different computational efficiency
and discretization error. This arises because the splitting method is different given in Eqgs.
(4-12) and (5-2). Therefore developing an efficient, highly-accurate splitting scheme is
important. In addition, to avoid numerical attenuation, one cannot drop out any cross
terms in order to reduce the computational stencil, as pointed out in Section 5.1.
E. Intermediate time step

ADI has an intermediate time step explicitly associated with time step n+1/2; and
the intermediate field values may be used erroneously to couple to a hybrid scheme. CN-
based methods have an intermediate time step that is not specifically associated with any
time step [151] [156-157]; thus the erroneous use of the intermediate field values is
avoided by this construction.

The intermediate time step n+1/2 for ADI causes one sub-step marching procedure
to have growth, and the other sub-step marching procedure to have dissipation. However,
the growth is exactly cancelled by the dissipation; thus the overall ADI scheme is

unconditionally stable [152] [154].
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In addition, since ADI uses the specific time value as the intermediate time step, the
enforcement of the current or voltage source values must be made at both sub-steps.
However, for CN-based methods, the enforcement of such source values is only in the
first sub-step; thus it is more effective.

F. Coefficient-modification technique

Though there are several different methods to reduce numerical dispersion, many of
them can be generalized into the coefficient-modification techniques as described in
Section 3.3. They all modify the coefficients in the update equations and thus modify the
speed. Though they all reduce the numerical dispersion error, from Chapter 9 it can be
seen that the discretization errors may not be improved as much as the dispersion, if not
all of the coefficients are modified by the same amount for a square or cubic mesh [159].

10.2 Summary and Conclusion

The main work of this thesis is summarized and concluded in this section.
A. High-accuracy explicit methods

The high-accuracy explicit methods proposed in Chapter 3 can be generally termed
“optimization methods”. Instead of pursuing nominal “higher-order” in terms of Taylor
Series, the 24-stencil method (024) [159], neighborhood-average method (NA) and the
neighborhood-average-24-stencil method (NA24) are formulated to optimize the exact
numerical dispersion relation, not just an approximation of the relation. In a different
sense, the methods can have better numerical dispersion within a given sector, such as the
axes-optimized method (AOM), the diagonal-optimized method (DOM), and isotropic
method (IOM). Actually the numerical dispersion can be optimized within any given

sector by the search method given in Section 3.2.4. Chapter 3 gives some analytical
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weight formulas in specific cases for illustration. The simple search method is universal
and more powerful in finding such optimal weight parameters once the accuracy criterion
is specified. The significant advantage of the optimized methods presented in this thesis
is that the boundary conditions at the material interfaces can be treated efficiently using
the current 2"%-order methods, without giving rise to new difficulties.

A general dispersion relation for an explicit FDTD scheme with 2™-order accuracy in
time is given by Eqn. (9-10) in the lossless case. It shows that for explicit methods, there
is no cross term, thus explicit methods are more isotropic than many implicit methods.
The numerical dispersion depends on the transfer functions of the difference operators.
To reduce the numerical error, the transfer functions in the plane wave matrices given in
Chapter 9 must be close to unity with direction of travel, mesh density and the Courant
number. Thus designing the difference operator is similar to devising a digital filter.

It is also worth mentioning that the time-step-size limit for the optimized methods is a
“shunt” combination of the two limits of the individual methods.

B. Numerical dispersion relation for ADI-FDTD

The author was the first to identify that there is inconsistency among the published
numerical dispersion relations for ADI-FDTD [160]. This inconsistency has been
removed [152] [154] in Chapter 4. Beginning with the analysis from the 1D case, the
correct numerical dispersion relation has been obtained using the Fourier analysis for the
individual sub-marching procedures, instead of the overall one-step analysis [99] [101].
The by-product is the finding of the numerical growth and dissipation in its individual
sub-steps, and thus the mechanism of the unconditional stability. In addition, the

numerical dispersion relation is numerically validated, and the numerical results extracted
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by the matching method [158] described in Chapter 2 agree very well with the theoretical
prediction. To accurately extract the numerical phase velocity for the verification of the
dispersion relations, the numerical experiments must be carefully designed.

To reduce the numerical dispersion error, an isotropic ADI (IADI) method is
proposed based on the (2, 4) stencil, which is more efficient than the explicit IOM
method.

C. Difference operators and efficient splitting method

While analyzing ADI-FDTD and CN-based methods, the discrete, node-based field
components were used to manipulate the actual update equations for programming, which
is time consuming, and easily leads to wrong results. With trial-and-error, it has been
found that if the abstract difference operator is used, the manipulation is much easier and
the result is usually correct. There is no need to distinguish the difference operators for
the electric field components and the magnetic field components if the operators use the
difference formula [156]. In addition, since the difference operators can be regarded as
common variables, they can be operated with addition, subtraction, multiplication and
division; they can also be incorporated into a matrix, and thus can be split differently.
Without these simple but powerful “tools”, it would have been very difficult to develop
the 3D CN-based methods in Chapter 6.

The “efficient-splitting method” [156] presented in Section 5.1 and Section 6.5 is
used to avoid the large computational stencils caused by the cross terms in CNDG, CNCS
and CNAFS. By the avoidance of large computational stencils, proper material interface

treatment is simpler and easier; and the better numerical accuracy is preserved.
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D. Efficient implementation of CN scheme

Chapter 4 proposes several methods for efficiently implementing the CN scheme in
the 2D case. Originally they were developed intuitively by adding or dropping some
terms using the node-based notations [151] [157]. With the difference operators and the
efficient-splitting method, they are verified rigorously in Chapter 4. The CNDS and
CNAD methods are more efficient than ADI, as indicated by Table 5-1, though they have
the same numerical dispersion. For large Courant numbers, they have less RMS
discretization error than ADI as shown in Fig. 9-7. CNCS and CNDG can have zero
anisotropy for some combinations of mesh density and Courant number. They have
higher numerical accuracy than the ADI method in terms of numerical anisotropy.
Because there is no associated specific time step, these CN-based methods consume CPU
time about the same as or less than ADI. In addition, the coefficient-modification
technique is more efficient for CNCS and CNDG than ADI, because they are inherently
more isotropic. Numerical experiments have been performed which agree well with the
analysis.

Chapter 6 presents several CN-based methods in the 3D case. The CNDS method is
more efficient than ADI, as shown in Table 6-1, though CNDS and ADI have the
numerical dispersion relation. The CNCSU [163] and CNAFS [156] have much less
anisotropy than ADI and CNDS. The CNAFS method is the most suitable for parallel

computation and CNCS is suitable for series computation.
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The strategy in developing CN-based methods for the first-degree Maxwell’s
Equations can also be applied in solving for the second-degree wave equations [162], as
illustrated in Section 5.7.

For all the unconditionally-stable methods proposed in this thesis, the amplification
factor polynomials have been given and the amplification factors have been obtained.
The unconditional stability is verified theoretically and also numerically by coding them
and running them for various time steps.

E. Perturbation errors

The ADI and CN-based methods are all perturbed versions of the CN scheme.
However the perturbation errors are different, and have been derived in this thesis. The
lowest order of perturbation error in time for ADI is second order. For CNCS, CNDG and
CNATFS is 4" order. Since the CNCS, CNDG and CNAFS better preserve the property of
the CN scheme, they are inherently more isotropic. The analysis of perturbation error
gives us a hint that 2™ order or higher-order terms can be added to the formulation in
order to improve the numerical accuracy.

F. Quantification of discretization errors

In the 2D lossless case, a method to quantify the discretization errors has been
proposed in Chapter 8. With the transfer functions for the temporal difference and spatial
difference, the error matrices for the explicit methods and unconditionally-stable methods
[161] in this thesis are derived by decomposing the plane wave. A general error matrix
for explicit FDTD methods has been obtained. The discretization errors for the Yee, 024,
NA, and NA24 methods are compared, as shown in Fig. 9-6, and the results are similar to

the analysis of numerical dispersion. However, the discretization errors shown in Fig. 9-7
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for the unconditionally-stable methods are different from the analysis of numerical
dispersion. This is one reason why we develop such a quantifying method. Another
reason is to quantitatively compare some schemes for which the numerical dispersion
relation is quite complicated, such as 3D CNCS. The discretization errors also show
which field component is more isotropic and along which direction a field component is
the most accurate. Note that numerical dispersion quantifies phase error, whereas the
discretization errors quantify the relative amplitude error.

G. Numerical loss in lossy materials

Chapter 9 points out that in lossy media the loss constant in FDTD is different from
its physical value. The relations between numerical phase constant and numerical loss
constant have be obtained for Yee’s FDTD [164], CN-FETID, CNCS-FDTD and ADI-
FDTD, and with good agreement with numerical experiments in the 1D case. With fine
mesh densities, the errors of the numerical dispersion and loss tend to be small. For Yee’s
FDTD, at the Courant limit, both numerical dispersion and loss have higher accuracy
which is similar to lossless case, but the errors never vanish; thus no “magic” time step
size exists in lossy case. The intuitively-formulated ADI FDTD is first-order accurate in
time, and the larger the time step size, the larger the error of the numerical loss. CN-
FDTD is second-order accurate in time; its error is much smaller than ADI-FDTD. In
particular, the numerical loss error is much smaller than ADI-FDTD. The CN and CN-
based methods have higher numerical accuracy than ADI in lossy media.

However, if ADI is written as a perturbation of the original CN scheme instead of a

direct discretization of Maxwell’s Equations intuitively at each sub-step with unbalanced
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time splitting, ADI can have the same accuracy as CN in the 1D case. This is one
example of improving FDTD’s accuracy after having understood the properties of FDTD.

The relations for the numerical phase and loss constants in higher dimensions have
also been derived for Yee [164], CN and CNCS in Section 9.4. Both the numerical

constants « and [ have anisotropy. The numerical dispersion and loss terms are

separated along the diagonals of a square mesh and a cubic mesh and along axes,
allowing easy computation of the anisotropies. It has been shown that the numerical
accuracy is usually higher along the diagonals than that along the axes, which is similar
to the lossless case. But the numerical velocity along the diagonals can be smaller or
larger than that along the axes, and the anisotropy of the numerical velocity can be
positive or negative. There is a zero-anisotropy of numerical dispersion for certain
conductivities and frequencies. However, the numerical velocities along other directions
are different from the axes and the diagonal even there is no anisotropy according to the
conventional definition Eqn. (3-1). In this special case, the diagonals have a little bit less
accurate compared to other direction of travel, though the non-uniformity of the velocity
is 10™ which is highly isotropic.

The fact that numerical loss is always larger than its physical value indicates that the
FDTD methods over-estimate the absorption of electromagnetic energy in lossy media,
leading to smaller field strengths than in the physics.

H. Other works

In practice, only some problems with very fine geometric features can be efficiently

solved with an unconditionally-stable method. As a guide, Section 7.8 classifies the
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problems suitable for application of an USM. A general method to choose a proper time
step size for a desired accuracy [155] is given in Section 7.6.

A simple method to solve problems with periodic boundaries is discussed and tested
successfully in 2D CNDG and 3D CNAFS. A generalized numerical dispersion relation
in the lossless case for the unconditionally-stable methods is given in Eqn. (6-45).

10.3 Future Work

The development of FDTD relies on progress of applied mathematics, physics and
electrical engineering, as well as the understanding of FDTD. This thesis has done some
preliminary work on developing new methods. However, those methods are by no means
unique and final, and leave a lot of room for further improvement.

For the methods proposed in this thesis, future work will first focus on extending the
new methods to more general cases, such as complex media, and on developing a high-
accuracy PML which is compatible to the methods. Another work is to use these new
methods for problems of interest and explore their advantages and weaknesses.

All the methods proposed in this thesis can be extended to the lossy case, and can be
modified to overcome the staircase error, and can be incorporated into memory-saving
algorithms.

The numerical dispersion relations for 3D CN-based methods in the lossless case are
derived in this thesis. Though at present they are theoretically correct, they need further
validation from numerical experiments. The discretization error analysis needs to be
extended to the 3D case, in which such error quantification is more important because 3D
numerical dispersion relation is sometimes difficult to derive; and to lossy materials, in

which complex variables will be encountered.
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The amplification factors, the numerical dispersion and loss relations for the high-
accuracy 3D CNCS, 2D and 3D ADI methods in lossy media, as well as the PML for
USM needs further investigation.

Besides, our initial analysis for the 2D equal-lateral triangle mesh [166] shows that it
has numerical dissipation though it has very small anisotropy of the numerical dispersion.
The investigation needs to be verified with numerical experiments, and to extend it to
other irregular meshes commonly used in FDTD methods.

All the new methods proposed in this thesis are based on the Yee’s discretization and
the step-by-step time marching strategy. It is also possible to devise some new methods
with a different strategy, such as the no-time-stepping methods, the neural-network
method and a combination of FDTD with a genetic algorithm. In addition, the feed-back
control mechanism from the control theory may be borrowed for explicit FDTD to use a
time step size larger than the Courant limit where it is used to stabilize some originally-
not- stable systems. Because of increasing vitality and popularity of FDTD, new methods
with better performance is always desirable. Working on developing such methods is

challenging and exciting!
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