Some Inference Problems for Inverse Gaussian Data

Debaraj Sen

A Thesis
in
The Department
of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
- Concordia University

Montreal, Quebec, Canada

October 2004

(©Debaraj Sen, 2004



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04044-0
Our file  Notre référence
ISBN: 0-494-04044-0
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Abstract

Some Inference Problems for Inverse Gaussian Data

Debaraj Sen

This thesis deals with some inference problems relatéd with inverse Gaussian
models. In Chapter 2, we investigate the properties of an estimator of mean of an
inverse Gaussian population that is motivated from finite population sampling
[see Chaubey and Dwivedi (1982)]. We demonstrate that when the coefficient
of variation is large, the new estimator performs much better than the usual
estimator of the mean, namely the sample average. In Chapter 3, we provide
simple approximating formulae for the first four moments of the new estimator
which may be used to approximate its finite sample distribution. Chapter 4
investigates some properties of the preliminary test estimator for mean of an
IG population. Such an estimator was proposed and studied in detail in the
statistical literature for Gaussian and other distributions [see Bancroft (1944),
Ahmed (1992)]. Our conclusions for the inverse Gaussian model are similar
to the case for Gaussian model. Next, in Chapter 5, overlap measures for two

inverse Gaussian densities are studied on the lines of Mulekar and Mishra (1994,

2000).
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Chapter 1

Inverse Gaussian Model,

Preliminaries and an Overview

of the Thesis

1.1 Introduction

The normal distribution, because of its analytical elegance and the simplicity
of the associated inference methods is ubiquitous in statistical modelling and
data analysis. However, as réﬁected in Geary’s (1947) provocative declaration,
“Normality is a myth; there never was, and never will be a normal distribu-
tion”, there have always been doubts and reservations about the common and

uncritical use of the normality assumption. This is especially so when the data



indicate pronounced skewness. For modelling such data, lognormal, gamma,
Weibull and inverse Gaussian distributions are often recommended.

Chhikara and Folks (1989), in the introduction of their monograph on the
inverse Gaussiaﬁ family of distributions, argue that “Although the lognormal,
gamma, and Weibull distributions enjoy extensive use in certain special areas,
none of them allow for a wide range of statistical methods comparable to those
based on the normal distribution” and illustrate the argument using “one and
two-sample t-tests, analysis of variance, confidence intervals, regression analy-
sis, and so on”. They also note that “Although, some exact results exist for all
of these distributions, they have not lent themselves to the development of a
comprehensive statistical methodology for skewed data analysis.” Their review
paper read before the Royal Statistical Society in 1978, which highlighted the
remarkable similarities between the properties and the inference procedures for
the normal and the inverse Gaussian families, was received with considerable
interest and enthusiasm. It lead to a widespread use of inverse Gaussian mod-
els for skewed data, a large follow-up research on the family and publication
of the monographs by Chhikara and Folks (1989), Seshadri (1993), and an up-
dated chapter in the recent edition of Johnson, Kotz and Balakrishnan (1994).
Jgrgensen’s (1982) monograph presents a generalization of the inverse Gaussian
family.

Natarajan and Mudholkar (2002) have catalogued some more analogues in



addition to those brought out by Chhikara and Folks (1989). This distribution
is now widely used in modelling positive and positively skewed data in such
diverse areas of applied research as cardiology, hydrology, demography, linguis-
tics, employment service, labor d;sputes and finance. The following references
may be cited with respect to applications in different areas: Bhattacharyya and
Fries (1982a,b) and Chhikara and Folks (1977) in reliability, Whitmore (1979)
and Padgett and Tsai (1986), Eaton and Whitmore (1977) in social sciences, |
Banerjee and Bhattacharyya (1976) in marketing, Chaubey et al. (1998) in
actuarial science, Marcus (1975) in traffic engineering, Lancaster (1972) in in-
dustrial management, Wise (1966) in cardiology, and Hasofer (1964) in civil
engineering. In a recent paper, Huberman et al. (1998) use the data from
America On Line, to provide an interesting application in the area of internet to
the distribution of the number of links an internet user follows before the page
value reaches a threshold. Chaubey (1991) and Chaubey, Nebebe and Chen
(1996) have demonstrated the use of inverse Gaussian distribution as a super
population model in finite population sampling. Further, Babu and Chaﬁbey
(1996) and Chaubey (2001) investigated Bootstrap method in the context of
an inverse Gaussian regression model introduced by Bhattacharyya and Fries
(1982a). Chaubey and Nebebe (1999) demonstrate the difficulties of a Bayesian
analysis for one-way ANOVA using inverse Gaussian distribution in contrast

to Gaussian distribution, where as Mudholkar, Natarajan and Chaubey (2001)



proposed a goodness-of-fit test based on the following characterization due to
Khatri (1962): A random sample (X, X3, ..., X,,) is from an inverse Gaussian
population if and only if, X = 3" X;/nand V = {37 (1/X; — 1/X)}/n are
independently distributed, assuming that the expected values of X, X2, 1/X
and 1/ )" X; exist and are different from zero., [see also Seshadri (1983)], as in

Lin and Mudholkar (1980) for the Gaussian distribution.

1.2 Preliminaries of the Inverse Gaussian Dis-
tribution

The inverse Gaussian distribution was obtained almost simultaneously and in-
dependently by Schrédinger (1915) and Smoluchowski (1915) as that of the first
passage time in Brownian motion with positive drift. It appeared later in Had-
wiger (1940), Halphen’s work published as Dugué (1941) (see Seshadri and Law
(1997)), Wald (1947) and Tweedie (1945). It was Tweedie who observed that
the cumulant generating function of the inverse Gaussian distribution is the
inverse of that of the Gaussian distribution and aptly gave its name in current
usage. In what follows, we catalogue some basic properties relating to inverse
Gaussian distribution, which can be found in Chhikara and Folks (1989).

The probability density function (p.d.f.) of the inverse Gaussian random

variable X, with mean y and dispersion parameter A, denoted by X ~ IG(u, A),



is given by

A2 A .
Sz, A) = {W} exp{—Quzx(r—u) }, z>0, p>0, A>0. (1.2.1)

Figure 1.2: Graphs of Probability Densities of IG Distribution with Varying .

Figure 1.1 shows the graphs of probability density functions for IG(u, A) for
=1 and varying A, whereas Figure 1.2 displays those for A = 5.5 with varying
values of u. These graphs clearly show that the inverse Gaussian distribution

5



can be used to accommodate models covering a large range of shapes.

The cumulative distribution function (c.d.f.) of IG(u, ) can be written as

Pz | \) = @{ % <% _ 1)} 4 exp{%%} ® {—\/g (5 4 1)} . (122)

where ®(.) denotes the c.d.f. of a standard normal variable. The characteristic

function of IG(p, A) is

2.\ 1/2
o(t) = exp [2- {1 - <1 - 2‘&”) }] , (1.2.3)

and the corresponding cumulant generating function is given by

K(t) = % {1 - (1 - 2“72’5)1/2} . (1.2.4)

Thus, for any integer r > 1, the 7" cumulant of IG(u, \) is given by

2r—1
M

nr=1x3x5~~x(2r—3)F. (1.2.5)

The first four cumulants of the IG(u, A) distribution are, therefore, given by

3 3 5 15 7
K1 =, Ko = 'UT, K3 = —)%, Ky = Tl;— (1.2.6)

The coefficients of skewness and kurtosis of the family are

VE=3[t m=a+ 12 (127)

and, hence, in the Pearson (f, ;) plane the inverse Gaussian points fall on
the straight line 8 = 3 + 508,/3 which lies between the gamma (Type III) and
reciprocal gamma (Type V) lines. In terms of (81, B2), IG(u, A) family is very

6



close to the lognormal family.
This thesis deals with some inference problems similar to the case of Gaussian

data, when the population concerned follows an inverse Gaussian distribution.

The following section presents an overview.

1.3 Overview of the Thesis

Chapter 2 is motivated by the problem of estimation of the mean of a finite
population following an inverse Gaussian distribution. In many such applica-
tions, the coefficient of variation is assumed known, in which case the usual
'sample mean can be improved (Searles (1964)). This motivates our estimatdr,
where we consider a plug-in estimator by replacing the coefficient of variation
by its estimate. Such an estimator has been studied for the Gaussian case by
Srivastava (1974) and Chaubey and Dwivedi (1982). We investigate how far
these results hold for the inverse Gaussian case with respect to bias and mean
square error relative to the sample mean. Chapter 3 investigates the finite sam-
ple distribution of the estimator introduced in Chapter 2. Here, we develop an
approximation to moments intended to be used in an Edgeworth expansion as
studied in Chaubey and Srivastava (1996) in the context of lognormal distribu-
tion.

Chapter 4 introduces a Preliminary Test Estimator for the mean of an inverse

Gaussian population similar to that studied for the case of a Gaussian popula-



tion by Bancroft (1944, 1963), Paul (1950), Huntsberger (1954a) and others. In
practice, the preliminary test of significance uses the data in hand as an aid in
determining an appropriate model for some subsequent inferences. Such tests
are used in establishing a prior guess from an expert as a credible value which
is then built-in the estimator.

Chapter 5 is devoted to the study of overlap measures of densities of two inverse
Gaussian populations. Overlap measures have often been used to study simi-
larity between two pqpulations. This chapter is motivated from the study by
Mulekar and Mishra (1994, 2000) concerning two Gaussian populations. Here
we obtain parallel results to those obtained by Mulekar and Mishra (1994).
The final chapter outlines directions of further research with respect to IG pop-
ulations regarding hypothesis tests for coefficients of variation, preliminary test

estimation for k(> 2) samples and generalization of overlap measures.



Chapter 2

Properties of An Estimator of
Mean of An Inverse Gaussian

Population

2.1 Imntroduction

Consider a population with mean p and variance o2. It is well known that
when the coefficient of variation (CV) C = £ is known, the sample mean
X = %ZLI X;, based on a random sample X3, Xs, ..., X,, can be improved
by considering the class of estimators {kX, k > 0}. The minimum mean square

error estimator for p in this situation is given by (see Searles (1964))

1
X 2.1.1
% (21.1)

b=



where 1 denotes the square of the coefficient of variation, namely,

2
o
n=C%=F. (2.1.2)

For a variety of populations, the sample mean is the best estimator in the
sense of being unbiased and having smallest variance. On the other hand, the
estimator given in Eq. (2.1.1) introduces a little bias but leads to significant
reduction in the mean square error (MSE). This improved estimator, however,
requires the exact value of the coefficient of variation. When this exact value
of the coeflicient of variation is not available, Srivastava (1974) and Thompson
(1968) proposed estimators similar to that given in Eq. (2.1.1), but with 7
replaced by 7 = )—‘5;27, X > 0, where S? is the sample variance, leading to the

estimator

X
= — 2.1.3
7 5 (2.1.3)

For X = 0, the estimator is defined to be zero. This estimator loses the optimal
property of the estimator in Eq. (2.1.1) Srivastava (1980) studied the finite
sample bias and MSE properties of [i, for the case of a Gaussian population,
where as Chaubey and Dwivedi (1982) studied similar properties of a modified

estimator
X
1+ k1

b = (2.1.4)
where k is a non-negative constant. Our aim is to investigate such proper-
ties for the case of an inverse Gaussian population. For a random sample

(X1, X2, ey X,;), from an IG(p, A) population, a minimal sufficient statistic for

10



(1, )) is given by (X,n/ Y%, ;ﬁ:) (see Chhikara and Folks (1989), pp. 56). It

is also interesting to note (Chhikara and Folks (1989), pp. 61) that

_ /11
i=1 ¢

As such, X provides the best unbiased estimator of x4 and

v- L3 (-4 219

i=1

provides that for i, and moreover they are independent. The square of the
coefficient of variation 7, in this case, is therefore given by n = § and its natural
estimator is given by

A= XU. (2.1.7)

Using the above estimator in Eq. (2.1.4), we aim to investigate the bias and

MSE properties of the estimator

. X

When the estimation of mean concerns a normal distribution then unbiasedness
may be an important criterion, but for skewed distributions robust estimation
of the tail may be more important. However, this thesis does not address the
robustness issue.

In Section 2, we develop some series expansions for the moments of fi,
similar to those derived in Chaubey and Dwivedi (1982). Section 3 presents

these moments in an univariate integral form that is found to be suitable for

11



computation. The final section presents a comparison of the new estimator with

the sample mean.

2.2 A Series Representation for the Moments
of [i

Theorem 2.1 For 0 < k < n—1, the r** moment of fix = Ilf—x—i may be given

as the following convergent infinite series

s = o 3 S (55) & (v

~where V ~x3(n - 1), § ~ IG(n'n, 1) and V'R W

PRroOOF: We can write

. nA Q
= —, 2.2.1
= TRy (22.1)

where

Q=£andV=(n—1))\U.

nA
Further, letting W = é, we find that
nA
fy = ——— 2.2.2
R T L (2.22)
nA n-k-1 vV 17

- 1— 2.2.3

W4V n—1 W+ V] ( )
Since,('—l—ﬁf—l) (—W!_;V—) < 1for 0 < k < n—1, using a negative binomial expansion

gives the representation in the theorem.

12



The formula developed in Theorem 2.1 forms a basis for developing other
computational formulae for exact moments of ji;. First, we present a double

series representation for the exact moments similar to the one developed in

Srivastava (1980).

Theorem 2.2 For 0 < k < n —1, the r** moment of fix may be represented as

o ) S~ (r+i-1) (n—k 1Y 1
Bld) = 25T( )ZZ il(r —1)! ( n-1 ) (5+i+7)

v pr(-1/2) (1

where 1/W ~ IG(m,1),m =1,v=n~1, and Lg-r)(x) denotes the generalized

Laguerre polynomial of order j with indezx r given by

i

Lgf‘)(x) — i(_l)J(—Oj—Lx_ (2.2.5)

P J=)lG+r)i!

The expression for the first and second moments may now be obtained by

putting r = 1 and r = 2 respectively, as given by

N nA = n—k—1 : 1 v_1r(-1/2) 1
v . . L‘ o ovrr bl
Bi) = 231( Z;: ( n—1 ) (5+1 +])E (W2 I 2m*W

e | (2.2.6)
B = 3 gogo (557w (v (g
(2.2.7)

13



These expressions provide a convenient way to find the moments as the expec-

tations in Egs. (2.2.6) and (2.2.7) can be evaluated as follows,

J s
5—r (_l 1 1 Y _s—r
E(Wz L <m2W)) 2; G s—l) <2m2> SE Wi,

(2.2.8)

The formulae for the 7** moment of W for any integral value of r can be obtained

as (see Chhikara and Folks (1989)),

BW) = - Z {r+s)l (T)s r=1,2,. (2.2.9)

Hr — s)!
m" £ sl(r — s)!

ProOF: To derive the formula for the rth moment given in Eq. (2.2.4), we

need to evaluate E[V*/(W + V)**"|. Note that the joint distribution of (W, V)

is given by

hence

Vi o oo v
E [W] =/0 /0 m;f(w,v)dwdv

) +2-1
—¢ / VTR WTE ) e st e dwdo (2.2.10)
o Jo (wHuv)Hr :

N .
= em i 1 = — =
where ¢ = Er Ve Using the transformation w = wi(1 — ws),v = wiws, 0 <

wy < 1, 0 < wy < o0, the above equation can be written as

e 2’“"”1‘ w2 dwodw; (2.2.11)

14



Now using the generating function of the generalized Laguerre polynomials [see

Szegd, 1967, ( Eq. 5.1.9)] given by,

x<
S LP@ = (1N, 2>, (2.2.12)
we can write, using z = (7,571),
PR G S (%)
1-— ) 2m wy l-wy — JL 2
- e S (1),
Using the fact that
1 1 —L—F—tw)
g(wl) = em e 2 ;2"1—1
21wy

represents the probability density function of reciprocal of IG(m,1) random
variable and
/°°w il _1_._',
0 (§-+i+7)
in Eq. (2.2.11) together with Eq. (2.2.12) the result in Eq. (2.2.4) follows.

C

The representation given in the above theorem réquires a large number of
terms for computation and the truncation error is not stable. Such problems
were also reported in Chaubey and Dwivedi (1982) for computation of the mo-
ments in the Gaussian case using a similar series representation. In addition, the
computational complexity increases here, because, we also have to evaluate the
value of Laguerre series coefficients and a large number of moments involving an
inverse Gaussian random variable. The exact formula for moments given in Eq.

15



(2.2.9) is suitable only for sample sizes which are even. Hence, we follow the
approach of Chaubey and Dwivedi (1982) to develop an alternative expression
in the form of a univariate integral, which is found to be more appropriate for

computational purposes.

2.3 An Univariate Integral Representation for

The following lemma is useful in developing a univariate integral representation

of ().

Lemma 2.1 (Chaubey and Dwivedi, 1982) Let the random variable X, be pos-

itive almost everywhere and assume that the joint moment generating function

Of Xl, XZ
M(tl, tg) = E[exp(t1X1 + thz)],
exist in some neighbourhood of (0,0) then forr > 1,.

Xl r . 1 0 ,...larM(tth) —
P|(&) = L T et r=1a

Proof: Since,

0" M (t1,t2)

31571‘ lt1=0 = E[X;ehxz]’

16



we have

1[0 1 0" M (t1,t2)
) L g

= E [X{ (ﬁ /_ ;(—h)"letz)‘?dtz)]
el gy o)

= EXTX;",r=12.,

because

/ 2Pe™%*dz = a7PT(p).
0

O
The above lemma helps us in establishing the following theorem.
Theorem 2.3 The r** raw moment of fix is given by
W '
B = —* / on (w)duw (2.3.1)
=t Jo ¢

v ni]— Wy % -
where, gr(w> — 'wr_l(l—'w)f_r_le"[l (1+c_'5(1_w ) ] (1 4wy ) andc = n(:’ll)_

PROOF: We can write ji; as

R pZ
1+ n{n—1)

where Z =

® P

~IG(L,2) and V = (n— AU ~ 23,V ¥ Z ie.

~

Bre __Z___
o 14cZV’ (2:33)
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where ¢ = n(_:zT) Now letting Z; = Z and Z, = 1 + cZV, we find, the moment

generating function of (Z;, Z;) as

Mti,ts) = E[enZi+ta]

= FE [et1Z+t2+ct2ZV]
—_ et2E [et1Z+ctsz]

— etzEZ[etxZEVIZ(ecthV)]

1

= €?Ez7 ["?(1-2ct,2)7%]; —co<ty< ——
€ Z[C( 02)2]a 0 2<QCZ’

because My (t) = (1~ 2t)% for t < 1. Therefore, using Lemma, (2.1), we have

ﬂk r Zl T
E{=) = E[Z
(N) (Zz)
_ 1 /0 (_t2)r_18’M(t1,t2)

ol B o dia (234)

But,

0" M(ty,t5)

li=0=€"E [Z7(1 — 2ct,2)" )],
ot

hence, Eq. (2.3.4) becomes

E(&) _
7

—ty) e Ez [Z7(1 - 2ctyZ)7%] dt,

88

”l ”l ”l
—_ S N =

/ A ‘t2EZ[Z’ (1+ 2ct2Z)~%]dt,

tr 1, —t2/ T(1+2ct2z)_§fz(z)dzdt2

18



Now, using the transformation t; — y = 2ctez, dt; = % gives

A~ T 1 o0 To's) r—1 Y
E(%) - _/ / ei _y‘ Z’(1+y)'7fz(2)idydz
1
= o058 / / e zy 1+9y)” 2fz( )dydz
1

)@
- T [ v [/ e fo(a)dz | dy
1

°° umy} _1
= Fay | et Uy

Substituting, y = —2-,dy = (lf—“’w)g, into the above integral we get

2 R S L ey
2(%) =ty [ v T R3)

Wy ~2
(1+—F1_w>) dw
1

1 /
—_— gr{w)dw 2.3.6
TmEy Jo (2:3.5)
i) -}
where, g-(w) = w1 — w)z "} erl- (s (1 + k(;"_"w)) . This com-

pletes the proof of Theorem 2.3.

2.4 Computations and Comparisons

We wish to evaluate the estimator proposed here in terms of its bias and mean
square error. The criteria for comparison used are relative bias (RB) and relative

mean square error (RMSE) as given below:

RB(ji) = "u = ~1, (2.4.1)



RMSE(fi) = _ B o E() +1. (2.4.2)

The values of k considered here are motivated by different estimators of A. For
the unbiased estimator of $, k = 1; for the MLE of A, k = (ﬂ;—l) and for the
mode estimator k£ = (ZL:% (see Hoglund (1974)). For various values of n and 7,
absolute relative biases are tabulated in Table 2.1, the relative MSE’s are given

in Table 2.2 and the relative efficiencies are given in Table 2.3.

For computational purpose, we need to evaluate the integral in Eq. (2.3.6).
In practice, the computation of such type of functions arising in presents prob-
lems. In most of the sitﬁations, we may alleviate this problem by using the
following technique. Let us denote wy, the approximate value of w where g(w)
takes its maximum values. The value of wy can be found by plotting g.(w)
against w, which may be computable. For the computation of the integral we
use the area function in R-code given in Appendix Al.
This function works quite well, except for the cases where the function f may
take extremely small values for a wide range of arguments. For example, if
f(z) < eps for z in an interval (¢, b),c < (a +b)/2, and f(a) = f(b) = 0, the
algorithm will produce a small but wrong value of the integral. To avoid such
situations, we evaluate the integral over two intervals, (a,wg) and (wp, b), where
wy is the approximate value of the argument where the function peaks. The

approximate peak is obtained by taking the maximum of g(w) evaluated over a
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grid of w—values.

Based on the graphs and tables referred to earlier, we draw the following con-

clusions, similar to those given in Chaubey and Dwivedi (1982):

(1)

(2)

(4)

Relative mean square error decreases as n increases.

There is a positive gain in efficiency of jix over X. Substantial gains in

efficiency are achieved for small samples with large coefficient of variation.

Efficiency and bias go in the same direction i.e. larger efficiency is accom-
panied by a larger bias, hence attention must be paid on the amount of

bias in specific situations.

Where we obtain positive gains in efficiency, estimator fi; seems preferable

due to its higher efficiency.

We see that, for n > 0.1, the gain in relative efficiency is always positive.
Hence, we may wish to use i if a statistical test accepts the hypothesis
Hy : n > 0.1. This type of problem comes under the area of a preliminary
test estimator. This is discussed in Chapter 4.

The integrand occurring in computations for the moments is very steep for
small values of 7. This necessitates special considerations in computations '
as mentioned in the previous section. For large sample sizes, adequate

approximations may be developed. This is addressed in the next chapter.
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Table 2.1: Absolute Relative Bias of fig

n 20 40 60 80 100

n k= 2zl

00.01 0.000475 0.000243 0.000160 0.000123 0.000098
00.05 0.002374 0.001218 0.000819 0.000617 0.000495
00.10 0.004748 0.002437 0.001639 0.001234 0.000990
01.00 0.047167 0.024330 0.016373 0.012337 0.009897
05.00 0.216125 0.118380 0.080823 0.061228 0.049241
10.00 0.370854 0.222431 0.156437 0.120038 0.097181

k=10

00.01 . 0.000499 0.000249 0.000162 0.000124 0.000098
00.05 0.002498 0.001249 0.000833 0.000624 0.000499
00.10 0.004996 0.002499 0.001666 0.001249 0.000999
01.00 0.049509 0.024938 0.016646 0.012491 0.009996
05.00 0.224471 0.120999 0.082069 0.061951 0.049713
10.00 0.381689 0.226641 0.158613 0.121353 0.098057

_n=1
k= n—3

00.01 0.000559 0.000263 0.000168 0.000127 0.000101
00.05 0.002791 0.001317 0.000862 0.000641 0.000510
00.10 0.005579 0.002634 0.001725 0.001282 0.001020
01.00 0.054968 0.026247 0.017221 0.012812 0.010199
05.00 0.243308 0.126605 0.084682 0.063450 0.050682
10.00 0.405543 0.235567 0.163152 0.124071 0.099858
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Table 2.2: Relative MSE of ji,

20

40

60

80

100

k= ol

00.01
00.05
00.10
01.00
05.00
10.00

0.000499
0.002482
0.004930
0.043543
0.142442
0.221891

0.000249
0.001246
0.002483

0.023254

0.088981
0.139673

0.000163
0.000831
0.001659
0.015867
0.065685
0.107487

0.000126
0.000623
0.001246
0.012045
0.052102
0.088371

0.000098
0.000499
0.000997
0.009709
0.043163
0.075204

k=1.0

00.01
00.05
00.10
01.00
05.00
10.00

0.000499
0.002478
0.004927
0.043385
0.142524
0.225273

0.000249
0.001175
0.002481
0.023228
0.088742
0.139727

0.000159
0.000830
0.001658
0.015858
- 0.065569
0.107333

0.000126
0.000611
0.001246
0.012042
0.052042
0.088248

0.000098
0.000499
0.000998
0.009706
0.043128
0.075119

— n—1
k= n~3

00.01

00.05
00.10
01.00
05.00
10.00

0.000499
0.002477
0.004919
0.043077
0.143665
0.234333

0.000249
0.001245
0.002479
0.023177
0.088299
0.140057

0.000161
0.000830
0.001658
0.015845
0.065342
0.107064

0.000124
0.000623
0.001246
0.012036
0.051922
0.088010

0.000098
0.000499
0.000998
0.009703
0.043058
0.074951
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Table 2.3: Relative Efficiency of ji

20

40

60

80

100

_ n—-1
k= n

00.01
00.05
00.10
01.00
05.00
10.00

1.001686
1.007201
1.014204
1.148303
1.755096
2.253357

1.002981
1.003227
1.006774
1.075098
1.404798
1.789899

1.025570
1.003286
1.004911
1.050378
1.268683
1.550580

0.995324
1.002630
1.003611
1.037741
1.199572
1.414485

1.018444
1.001806
1.002997
1.030005
1.158413
1.329710

k=10

00.01
00.05
00.10
01.00
05.00
10.00

1.001525
1.008752
1.014803
1.152468
1.754091
2.219526

1.003235
1.063543
1.007596
1.076272
1.408572
1.789199

1.051090
1.003412
1.004934
1.050962
1.270921
1.552805

0.994706
1.022828
1.003481
1.038062
1.200955
1.416462

1.020217
1.001809
1.002288
1.030256
1.159344
1.331222

_ n~1
k= n—3

00.01
00.05
00.10
01.00
05.00
10.00

1.001361
1.009150
1.016444
1.160706
1.740157
2.133719

1.003458
1.004130
1.008288
1.078668
1.415652
1.784985

1.032752
1.003673
1.005000
1.051841
1.275346
1.556695

1.008956
1.003409
1.003523
1.038527
1.203725
1.420288

1.024315
1.001416
1.002093
1.030645
1.161218
1.334206
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Chapter 3

Finite Sampling Distribution of

A

Hi

3.1 Introduction

For an i.i.d.- sample X, ..., X, from an IG(u, u/n) population, it follows from

large sample theory that

\/n/n(X;u) fEN(O,l) as n — oo.

In this case, however, the large sample distribution is not important because,

we have the exact distribution, namely

X ~ IG(u,n/n). (3.1.1)
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Since, # = XU in (2.1.7) is a strongly consistent estimator of 7, it follows that

as n — oo,
1 1 a.s.
ll+k%—1+k%’ll_)0’ (3.1.2)
hence,
| 1 X|%0 (3.1.3)
— T — U. 1.
Sy

Furthermore, it is known from Chhikara and Folks (1989, pp. 13) that if X ~
IG(u, A), then for any constant a > 0, aX ~ IG(ap, a)). This together with Eq.
(3.1.1) provides the following large sample approximation to the distribution of

fu as

. n n

i 16 (G G )
In finite samples, we may still use this approximation, especially for moderate
sample sizes, however'the moments may be quite different to the large sample
moments, unless the coefficient of variation is small. We will actually see later
that closeness of the approximate moments to large sample moments depends
on the value of the ratio n/n. Furthermore, the moments are useful in develobing
Edgeworth series expansion for the probability distribution of the statistic of

interest [see Chaubey and Srivastava (1996)].
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3.2 Approximate Moments of /i

3.2.1 First Method

Here, we follow the method developed in Chaubey and Srivastava (1996), to de-
velop approximations to moments of fi in terms of powers of 1/n. This requires

expressing the estimator fix in (2.1.8)in terms of the standardized random vari-

ables €; = \/H(X;“) and g = %(Li) where ¢ =

=2
A

3. We can then express,
X in terms of €; and € as, X = i(n +vVnrE)and U=19y + V2iey(n — 1)~2
where again 9 = %-and n=5.

Expanding (n — 1)~2 in a power series in n we may further write

1 3

='(/}[1+\/§€2(71_ﬁ ot e T )]
So
XU = —1—(77+\/$E—1) 1+\/—£( ! S 4 )
¥ vn VRN RN
- \/562 €9 3eq \/ﬁel \/_6182 E1E2 3e1€9 .
Sl LRy b ey oy \/_+\/‘< \/§n2+4\/§n3>:|

Now, [ir can be expressed in terms of €; and €9 as

kn

fr = (1+\f\/_)(1+ —(1+Xx)*t S (3.2.1)

where
X = e.ptertegtestestest Op(n_3) (3.2.2)
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and

2 V2
e_1= \/jsz + \/551,6—1 = —176162,6_§ = 2
2 n n n 2 2nyn

_ \/55152 e s = 3eq o = 3e1€9
Von2 ' Tt 4antyn’ 0 4v2nd

€_2

Expanding further the expression in the exponent we get

. Mk k k2P
i = ull+ %51 - ;”(1 +X) - n"\/\/ﬁﬁelu +X)+ n—Z(l +X)?
k*n’ym 2, K7 3
+Wsl(1+X) ~7(1+X) + .. (3.2.3)
Thus up to order O,(n~3) we have
Be) g ye e y+eatbyti (324
where
£, = \/ﬁe £, = _kn € 5= V2knes 2kny/Tiey
-3 n 1y6-1 n 16-3 TL\/ﬁ n\/ﬁ
o= _2\/§kn\/ﬁ6162 _ knPe} N k*n?
2= n? n? n2’
€ 5= knes V2kn*ele, " 2v/2k*n%e, N 3k%n? /e
-5 V2n2\/n n2/n n2/n n2/n
B _\/ikn\/ﬁslez N 6v2k2n?, /fie162 . 2k2ne2 N 3kl kS
-3 = nd n3 n3 n3 n3

Approximate expression for m,(fx) = E(ix — p)";7 = 1,2,3,4 up to order

O(n~3) are obtained from the above expansion,

ma(fx) = uE[E_% Tla+la+téatis +€_3)
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~

ma() = WEEL, +&2 + &g+ 26 161 +26 16s +26 16+ 2 16 s
+2618_s +2618]
ma(fue) = W E[E2, +62,+362,61 436216 3 +3€2 18 5+3¢_1 €2, +66 16116 5]
ma(fix) = M4E[§4_% + Eiéf_g + 6&%531]

Now we evaluate the following expectations to be able to obtain approximate

expressions as

E(§_y) =0,B(¢-1) = —%, B(é_g) = 0, E(62) = &, E(6_5) = 0,

E(¢-16-9) =0, E(¢-) = % + %8 - EF 5(&,) = 1, (&%) = BF,

n3 ?

k23

E(§y) = %30 + 40 B(6162) = 0, B¢ ) = %, B(&) = -5F,

B(€461) =~ B(E_36-1) = 0, E(§_3€_5) = ~ 2, B(e_y¢-0) = - %F,

E(€,6 3) = %, B(6_36_3) = ¥ B(616) = BF - EF,

2

E(fi%) - %ZL 4 17 E(§E%§_2) = —3%2; + B E(‘fi%f—l) = —ii%ﬁ

n3 L)

n3 nd3

E(€,6.3) = —6%% B(€2,€2)) = BF  E(¢_ 1616 y) = 25F.

Substituting appropriate expectations gives

k k22 k2 2k22 3k23 k33
_kn n m 2k 3kTm n

ma () = n + n2  n? nd nd  n3
k*n?  4kn®  2k%n?  12k%n®  2k%n3  6knP
mali) = L4 TSk 2w 12KPn0  2K%P Gk
n n? n? n3 nd n3 nd -
R 3 3kn* K33 2Tkn® 15k
ma(fn) = —p =~ T 3
. 3n?2 1593  12kn® 6k
malite) = n2 + nd  nd + nd
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3.2.2 Second Method

Here, we want to express fi; in terms of its asymptotic limit [ix. This requires,
therefore, the variations in 7 with respect to . Hence, we develop first a repre-
sentation of fi in terms of X. Since X ~ IG(u,n)) then (n — AU ~ x¢, ;).
Also
BE(X)=pB(X?) =5+ B(X®) =12 + 3 + 35
B =pt+ % L 30 L0 p) =L BUY) = (142 4+ 3+ 5+
EUN=%0+8+48+5+ ) BUY=%(1+3+8+8+ )

Let 7 = XU then

Which can be written as

Vi) = (T4m)a+ =) -7

Q
|

So, V(v/nf) = n?(2 +n). Consider, ¢; = \/n?(2+1n) and e = \/4—;'2;4}_% then,



Now i in terms of X can be written as

. X
S
_ X
C (14
x [ i 77
= 142
+2) | 0+%)
_ X 1+ keie ]_1
1+52) 1" vn(n+kn)
X keie k%c2e? k3cied
- (1+54) | C Valn+kn)  nn+kn)?  nvn(n+ kn)? to
Therefore
f = nX 3 kvncieX — k*ZelX k3c3e3X . (325)

(nt+kn)  (n+kn? " (n+kn)®  Valn+kpt

Now for computing the moments m,(fix) of order O(n=3) we list below some

expectations;
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_ Vn 2 K2n
- Cy n
B(eX?) = v [3utn’ 12u377 | Louiyt
C1 ns
> n u n 9u2n4 + 120%0° + 2p%n?
E(62X2) = 22— |:2/.1, n2
1
+30u2n4 + 15p2n° + 12203 + 2u2n2]
n3

Now for order O(n=3)

3.2.3 Third Method

Here, we treat fix as a function of two independent statistics X and U and use

Taylor’s series expansion around (u, ). Writing

n

g



and using Taylor’s expansion of g(X,U) around (u,), we have

(X, U) =g(u, %) + (X — g (m,9) + (U — )ay (1, ) + ( — 1gP (. )+
S0 =002 () + (X = (U — )9 (1,) + 3l<X ) 1, )+
3(U 9395 (1, %) + o
(3.2.6)
where gff) %Z— and g(’“’”ﬂ) _(1;1%_ We have
gt 1 @ — 3) %‘ﬁ
(1, 9) = m,gu (1, 9) = m,gu (#,¢)=uTk_T?)z
s 202" ekt
(1) n (2 n2 (3) n3
(k) = m,&p (k) = mg (m¢) = 1+ 5y

E(U>=§,E(X—u)2=ﬂ-ffé,E(X—~) =Y B(X%) =8+ 3y

3
E(UZ) (nn-{;)l,\z, (U d)) _1) (U ¢) (n81/)1)2,
E(XY) = ut+ % + 3 + 2.
Using the above expressions in Eq. (3.2.6), we can obtain,
2,2 3k2n4(n
[ b D ( 3n _312) S
ploo1+E (14 Ay (14 ks no nt)  (1+%fy
8k3n3 .
m—rﬁf 1457 67) 1577 + 1573
(1+ 42y )
(3.2.7)
. k2 (n+1 2 4k?
E(;_@)z: 1, o) (15n5+3n> A )
p (L+5y2  (1+5me\ nd  n2) (148 (14 43y

6k2n*(n+1) 16k
oy 3P 8t e e R 157" , 1o
a1+ () n '
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3.3 Comparison of Approximations

The three approximations developed above are compared in Tables 3.1, 3.2 and
3.3 along with the corresponding errors plotted in Figures 3.1, 3.2 and 3.3.
It is seen that all the three approximations are qualitatively the same. The
approximations are good for values of 7 < 1, and improve further as the sample
size increases. Conversely, the value of 17 increases, the approximations lose their

accuracy.
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Table 3.1: First Approximation for the Mean of jix

20

40

— n—1
k= n

60

80

100

00.01
00.05
00.10
01.00
05.00
10.00

0.999525
0.997625
0.995251
0.952838
0.794080
0.766953

0.999756
0.998781
0.997563
0.975669
0.882247
0.787776

0.999836
0.999181
0.998361
0.983625
0.919294
0.845579

0.999877
0.999383
0.998766
0.987662
0.938807
0.880584

0.999901
0.999505
0.999010
0.990102
0.950776
0.903067

k=1.0

00.01
00.05
00.10
01.00
05.00
10.00

0.999500
0.997501
0.995003
0.950500
0.787500
0.775000

0.999750
0.998750
0.997500
0.975063
0.879688
0.784375

0.999833
0.999167
0.998333
0.983352
0.918056
0.843519

0.999875
0.999375
0.998750
0.987508
0.938086
0.879297

0.999900
0.999500
0.999000
0.990004
0.950300
0.902200

_ n=1
k= n—3

00.01
00.05
00.10
01.00
05.00
10.00

0.999441
0.997208
0.994419
0.945053
0.773353
0.799191

0.999737
0.998683
0.997366
0.973753
0.874224
0.777301

0.999828
0.999138
0.998275
0.982778
0.915461
0.839233

0.999872
0.999359
0.998718
0.987188
0.936501
0.876639

0.999898
0.999490
0.998979
0.989800
0.949332
0.900419
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Table 3.2: Second Approximation for the Mean of [ix

20

40

- n—1
k= n

60

80

100

00.01
00.05
00.10
01.00
05.00
10.00

0.997626
0.997625
0.995251
0.952784
0.779727
0.610986

0.998782
0.998781
0.997563
0.975666
0.881102
0.773891

0.999181
0.999181
0.998361
0.983624
0.919047
0.842432

0.999383
0.999383
0.998766
0.987662
0.938726
0.879512

0.999505
0.999505
0.999010
0.990103
0.950736
0.902607

k=10

00.01
00.05
00.10
01.00
05.00
10.00

0.999500
0.997501
0.995003
0.950437
0.771200
0.600000

0.999750
0.998750
0.997500
0.975058
0.878464
0.769600

0.999833
0.999167
0.998333
0.983351
0.917797
0.840233

0.999875
0.999375
0.998750
0.987508
0.938001
0.878189

0.999900
0.999500
0.999000
0.990004
0.950265
0.901728

— n-1
k= n—3

00.01
00.05
00.10
01.00
05.00
10.00

0.999441
0.997206
0.994418
0.944967
0.751983
0.575988

0.999737
0.998683
0.997366
0.973748
0.872820
0.760506

0.999828
0.999138
0.998275
0.982777
0.915178
0.835646

0.999872
0.999359
0.998718
0.987187
0.936500
0.875455

0.999898
0.999490
0.998979
0.989800
0.949294
0.899921
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Table 3.3: Third Approximation for the Mean of [

20

40

- n=1
k= n

60

80

100

00.01
00.05
00.10
01.00
05.00
10.00

0.999525
0.997625
0.995251
0.952794
0.779883
0.611357

0.999756
0.998781
0.997562
0.975666
0.881115
0.773931

0.999836
0.999181
0.998361
0.983623
0.919049
0.842441

0.999876
0.999383
0.998765
0.987661
0.938726
0.879515

0.999901
0.999505
0.999010
0.990102
0.950736
0.902608

k=1.0

00.01
00.05
00.10
01.00
05.00
10.00

0.999500
0.997625
0.995002
0.950448
0.771368
0.600389

0.999750
0.998781
0.997500
0.975059
0.878477
0.769641

0.999833
0.999181
0.998333
0.983351
0.917800
0.840243

0.999875
0.999383
0.998750
0.987507
0.938002
0.878192

0.999900
0.999505
0.999000
0.990003
0.950265
0.901729

_ n=1
k= n—3

00.01
00.05
00.10
01.00
05.00
10.00

0.999441
0.997625
0.994418
0.944980
0.752178
0.576422

0.999736
0.998781
0.997365
0.973748
0.872835
0.760550

0.999827
0.999181
0.998275
0.982777
0.915180
0.835656

0.999871
0.999383
0.998717
0.987187
0.936501
0.875458

0.999897
0.999505
0.998979
0.989800
0.949294
0.899922
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Table 3.4: Exact Mean of ji

20

40

. n-—1
k= n

60

80

100

00.01
00.05
00.10
01.00
05.00
10.00

0.999881
0.999405
0.998808
0.987708
0.932453
0.858495

0.999939
0.999695
0.999389
0.993796
0.967048
0.930558

0.999959
0.999795
0.999589
0.995853
0.978343
0.954772

0.999969
0.999846
0.999691
0.996886
0.983893
0.966611

0.999975

0.999876
0.999752
0.997507
0.987184
0.973579

k=10

00.01
00.05
00.10
01.00
05.00
10.00

0.999875
0.999374
0.998746
0.987072
0.929224
0.852534

0.999937
0.999687
0.999374
0.993638
0.966236
0.928935

0.999958
0.999792
0.999583
0.995783
0.977985
0.954047

0.999969
0.999844
0.999687
0.996846
0.983693
0.966205

0.999975
0.999875
0.999749
0.997482
0.987057
0.973319

_ n—1
k= n—3

00.01
00.05
00.10
01.00
05.00
10.00

0.999860
0.999300
0.998598
0.985576
0.921738
0.838935

0.999934
0.999670
0.999340
0.993296
0.964487
0.925449

0.999957
0.999784
0.999568
0.995635
0.977232
0.952525

0.999968
0.999839
0.999679
0.996765
0.983277
0.965362

0.999975
0.999872
0.999745
0.997429
0.986794
0.972786
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Table 3.5: First Approximation for the Variance of [i

20

40

_ n—1
k= n

60

80

100

00.01
00.05
00.10
01.00
05.00
10.00

0.000499
0.002483
0.004930
0.043409
0.127910
0.225094

0.000250
0.001245
0.002482
0.023244
0.086893
0.126506

0.000167
0.000832
0.001659
0.015870
0.065157
0.102763

0.000125
0.000624
0.001245
0.012047
0.051915
0.086420

0.000099
0.000499
0.000997
0.009708
0.043084
0.074278

k=1.0

00.01
00.05
00.10
01.00
05.00
10.00

0.000499
0.002482
0.004928
0.043250
0.131250
0.275000

0.000249
0.001245
0.002481
0.023219
0.086719
0.128126

0.000167
0.000831
0.001658
0.015861
0.065046
0.102778

0.000125
0.000624
0.001245
0.012043
0.051855
0.086328

0.000099
0.000499
0.000997
0.009706
0.043050
0.074200

_ n-—1
k= n=3

00.01
00.05
00.10
01.00
05.00
10.00

0.000499
0.002481
0.004923
0.042945
0.142272
0.412309

0.000249
0.001245
0.002481
0.023167
0.086462
0.132302

0.000167
0.000831
0.001658
0.015849
0.064832
0.102912

0.000125
0.000624
0.001245
0.012036
0.051737
0.086164

0.000099
0.000499
0.000997
0.009702
0.042981
0.074050
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Table 3.6: Second Approximation for the Variance of f

20

40

__ n—=1
k= n

60

80

100

00.01
00.05
00.10
01.00
05.00
10.00

0.000500
0.002509
0.005034
0.051775
0.198301
0.155588

0.000250
0.001253
0.002510
0.025802
0.126035
0.202547

0.000167
0.000835
0.001672
0.017085
0.087165
0.160065

0.000125
0.000626
0.001253
0.012753
0.065804
0.127111

0.000100
0.000500
0.001002
0.010169
0.052604
0.104065

k=1.0

00.01
00.05
00.10
01.00
05.00
10.00

0.000500
0.002511
0.005043
0.052413
0.202051
0.158519

0.000250
0.001253
0.002512
0.025902
0.127249
0.204516

0.000167
0.000835
0.001672
0.017117
0.087658
0.161147

0.000125
0.000626
0.001253
0.012767
0.066048
0.127732

0.000100
0.000500
0.001002
0.010177
0.0562741
0.104447

— n-1
k= n—3

00.01
00.05
00.10
01.00
05.00
10.00

0.000501
0.002517
0.005066
0.054081
0.211390
0.165844

0.000250
0.001254
0.002514
0.026130
0.129982
0.208889

0.000166
0.000835
0.001673
0.017187
0.088727
0.163476

0.000125
0.000626
0.001253
0.012797
0.066565
0.129047

0.000100
0.000501
0.001002
0.010192
0.053029
0.105248
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Table 3.7: Third Approximation for the Variance of fix

20

40

k= n=t

60

80

100

00.01
00.05
00.10
01.00
05.00
10.00

0.001498
0.007465
0.014860
0.136593
0.451594
0.361796

0.000749
0.003741
0.007464
0.071458
0.292866
0.441026

0.000499
0.002496
0.004984
0.048397
0.212042
0.355788

0.000375
0.001872
0.003741
0.036589
0.165691
0.291466

0.000299
0.001498
0.002994
0.029414
0.135855
0.245488

k=1.0

00.01
00.05
00.10
01.00
05.00
10.00

0.001498
0.007463
0.014853
0.135939
0.438968
0.312338

0.000749
0.003740
0.007463
0.071371
0.291012
0.434505

0.000499
0.002496
0.004983
0.048369
0.211455
0.353680

0.000374
0.001872
0.003740
0.036578
0.165433
0.290527

0.000299
0.001498
0.002994
0.029408
0.135719
0.244989

. n~1
k= n—3

00.01
00.05
00.10
01.00
05.00
10.00

0.001498
0.007459
0.014836
0.134419
0.410273
0.196578

0.000749
0.003740
0.007461
0.071182
0.287041
0.420603

0.000499
0.002496
0.004983
0.048314
0.210222
0.349274

0.000374
0.001873
0.003740
0.036554
0.164899
0.288585

0.000299
0.001498

'0.002994

0.029396
0.135442
0.243964




Table 3.8: Exact Variance of [ix

20

40

_ n—1
k= n

60

80

100

00.01
00.05
00.10
01.00
05.00
10.00

0.000499
0.002495
0.004976
0.047553
0.185896
0.261041

0.000249
0.001249
0.002494
0.024380
0.108681
0.183794

0.000167
0.000833
0.001664
0.016391
0.076127
0.137054

0.000125
0.000624
0.001249
0.012344
0.058471
0.108429

0.000099
0.000499
0.000999
0.009900
0.047434
0.089461

k=10

00.01
00.05
00.10
01.00
05.00
10.00

0.000500
0.002493
0.004975
0.047430
0.183280
0.253937

0.000249
0.001249
0.002494
0.024364
0.108305
0.182465

0.000166
0.000832
0.001664
0.016386
0.076013
0.136621

0.000126
0.000624
0.001248
0.012342
0.058423
0.108241

0.000099
0.000500
0.000999
0.009899
0.047409
0.089363

— n—1
k= n—3

00.01
00.05
00.10
01.00
05.00
10.00

0.000499
0.002494
0.004971
0.047142
0.177351
0.238394

0.000250
0.001249
0.002493
0.024331
0.107499
0.179637

0.000166
0.000833
0.001663
0.016376
0.075773
0.135714

0.000125
0.000626
0.001249
0.012338
0.058322
0.074410

0.000099
0.000501
0.000999
0.009897
0.047357
0.062688
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3.4 Empirical Approximation to Moments

Method 1 provides a polynomial approximation in 7/n to the moments of ji.
This may be used to develop a working approximation for these moments us-
ing the least square polynomial approxixhation. We have investigated differ-
ent polynomial approximations using ordinary least squares and weighted least
squares (weight o« sample size) using the correct moments for sample sizes

n = 10(10)100. The following approximations are obtained which are correct

up to 4 decimals.

E{(fwy)/u] = 0.996 — 0.935(%) + 1.13(%)2 — 0.274(%)3 + 0.0171(%)4

El(y/pw)? = 1.01-— 1.14(%) + 1.36(%)2 . 0.330(%)3 + 0.0205(%)4
- 37 _ i M2 7.3 M4
Bl(iw/n)’) = 0942 - 1.47(1) +1.92(])° - 0.474(1)" + 0.0206 ()

El(awy/w)"] = 1.03- 1.74(%) + 2.28(%)2 - 0.563(%)3 + 0.0352(%)4

These are obtained by polynomial least square fits. The residuals from the
regression are plotted in Figures 3.1-3.4. They show decreasing dispersion with
sample size. This feature was used in weighted least squares polynomial fits
with weights inversely proportional to the sample size. However, there were

negligible differences in the resulting estimates. Hence, we have reported the

results of the simple least square fit only.
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Figure 3.1: Residuals for the Approximation of the First Moment of 'L—‘
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Figure 3.2: Residuals for the Approximation of the Second Moment of 1;—1
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Figure 3.3: Residuals for the Approximation of the Third Moment of "L—l
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Chapter 4

Preliminary Test Estimator of
the Mean of an Inverse (Gaussian

Population

4.1 Introduction

Tests of hypothesis are often used to validate a givenA model. Such tests are
referred to as preliminary tests of significance. In practice, the accepted value of
a parameter under a null hypothesis may be considered the true value. Bancroft
(1944) proposed to use such prior guesses to be used in place of the qsual
estimator if the prior guess is ascertained using a test of hypothesis, otherwise
the traditional estimator is to be used. The resulting estimator is termed as the
Preliminary Test Estimator (PTE) or simply a testimator. To fix the basic idea
behind this procedure, let us consider estimating the mean y of some infinite
population. Suppose, g is the prior guess of the parameter . For a given

sample, let X be the sample mean, then under a variety of situations/models,
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it is a “good” estimator of y. However, there may be strong evidence in favor
of pg, in that case, the statistician should choose py as the proper estimator.
If the evidence is taken from the sample based on a test statistic 7', such an

estimator may be represented as

fpre = XIrecr + polrgcr

where CR denotes the critical region for testing Hy : u = uo vs. Hy : p # po,
based on a test statistic 7'

Bancroft (1944) considered the case of a Gaussian population and showed
that such estimators may provide large gains in efficiency especially if the true
value of the parameter is near the hypothesized value. They further provided
guidelines for choosing the level of significance. This method has been adapted
in various other situations by Bancroft (1963), Paul A. E. (1950), Huntsburger
(1954a), Arnold and Katti (1972), Bock et al. (1973), Ghosh and Sinha (1988),
Upadhyay et al., Yancey et al. (1989), Han (1978) and many others.

In this chapter, we investigate the performance of the PTE of the mean
in a single population inverse Gaussian set-up. Section 2 considers the case
of a known dispersion parameter A and Section 3 considers the unknown case.

Section 4 presents the relative bias and relative MSE properties of the resulting

estimator.
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4.2 Preliminary Test Estimation of the Mean

with a Prior Guess

4.2.1 Known )\ Case

As explained above, the PTE requires testing about the prior guess. In this
case, we first test Hp : p = po against H; : 4 # pg. In this case, the uniformly -

most powerful unbiased test is given in the form of the critical region:
CR={E‘ZE<IC1 07'2_/'>k'2},

where kj, ko are determined from the conditions

k2

ka2
/ o)t =1—a and [ te(t)dt = u(l —a)
k1 k1

and g is the pdf of Z. Chhikara and Folks (1989) show that this is equivalent to

considering the test statistic

VIA(Z — o)
Z - =
toVT
and corresponding critical region,
|Zl > zl—a/27

where 21_q4/2, is the 100(1 — &/2)% percentiles of the standard normal distri-
bution. Using the above critical region, the constants k; and k; can be found

as,

2
k= MoC1 + / ugC? + 4#072/\
! 2v/nA
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and

2
ko — | HoC2 + \/udck + dpon
2 QM s

where ¢ = ~2z1_qo/2 and c; = z;_o/2. Now the computation of a preliminary

test estimator of the mean yu is given by

fi. = Xlgeor+ tolzgcr

= X- (X — NQ)[[k1<X<k2]- (4.2.1)

4.2.2 Unknown )\ Case

For unknown A, the UMP-unbiased test for Ho : p = uo against Hy : p # uo is

given in the form of the critical region:
CR={X<,C3 0’/‘X>k‘4},

where k3 and k4 are determined by
ka k4 0
h(u|v)du =1 —a and uh(u|v)du = (1 — a)/ uh(ult)du
kg k3 . -0

and h(u|v) denotes the conditional density function of X given V. Chhikara

and Folks (1989) show that it is equivalent to consider the statistic,

Vn =T(X — o)

T = — ,
wVVX

where



and corresponding critical region,

> tl—%)

‘ﬂn— 1)(X — o)
#O\RXV)

were t1-g, is the 100(1 — $)% percentiles of the student’s t distribution with

(n — 1) degrees of freedom. This gives k3 and k4 in terms ti-g, as

ke — pociVV + /123 + dpuo(n — 1) ’
: 2vn—-1

and

fu = poc2VV + /13 3V + duo(n — 1) ’
‘T 2Wn -1 '

And hence, the PTE of 4 in this case is given by

~

g = Xlgeor+ polxgcr

= X — (X — poMiky<<ky- (4.2.2)

In order to judge the performance of PTE, we need compute its bias and MSE.

This is explained in the following section.

4.3 Bias and the MSE of PTE’s

4.3.1 Known )\ Case

The moments of the PTE with known ) depend only on the distribution of X.
The following propositions will be used in computing the bias and MSE for the

known A case.
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Proposition 4.1 The power function for the test Hy : p = po against Hy : p #
Ko 1S

w(p) =1 —Prk; < Z < ka|p),
which may be written as

m(u) =1 — F(ka; p,n ) + F(ky; p,nd), (4.3.1)

where F(.; p,A) denotes the cumulative distribution function of IG(u, ).

Now we provide a figure for the power function for n =16, yg =1, A = 1.

1.0

power
0.6

0.4

0.2

mu

Figure 4..1: Power function for the UMP unbiased test in IG case, Hy : p =1
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Proposition 4.2 The ezpressions for the bias and the MSE of [i,, are respec-
tively given by

k2
Bias(ii) = o[l — ()] — /k wfz(w)dw, (4.3.2)
and
'u3 k2
MMMJ=E+%&M@HWW—MM—41WMMW (433)

where w(u) is the power function of the UMP-unbiased test for testing Hy : p =
to vs. Hy: pu# po, and B(fi;) denotes the bias of i, given in Eq. (4.8.4).

Proor: Using the expression in Eq. (4.2.1), a straight forward calculation

provides,

k2
Em»=u—/(w~mﬁﬂwwa

ki

and the expression for the bias follows, noting that

— k2
m(p) =1—Prlk; < X < ko] = fx(w)dw.
k1

To simplify the MSE expression, using Eq. (4.2.1), we note that

-

(B — 1) = (X = p)* + [ — X* + 20X — po) I, <2<y
and hence, the result follows.

4.3.2 Unknown A\ Case

We note in this case that the critical region depends on the values of V. Hence,
for computing the moments of [, first we compute the conditional moments
b(v) = E[(fi — )|V = v], and m(v) = E[(fis — p)%|V = v] using the Proposition
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(4.2) replacing ki, k2 by k3(v) ~ ks, ka(v) = k4. Hence, we obtain the following
expressions for bias and the MSE in the unknown case.

Proposition 4.3 The expressions for the bias and the MSE of [, are respec-
tively given by

Bias(fig) = /0 ” b(v) fy (v)dv
and
MsB() = | " m() fo(w)dv,

where fy(v) is the probability density function of the Chi-square distribution
with (n — 1) degrees of freedom.

4.4 A Numerical Comparison of the Estima-

tors

The above formulae are used to compute the bias and the MSE for various sam-
ple sizes and different values of u. The integrals involved were computed using
the Splus integrate function. The value of A was fixed at 1. Figures 1.2, 1.3,
1.4, 1.5, 1.6, 1.7 summarize these computations, however, some representative
values are tabulated.

Table 4.1 gives the bias of ji, for n = 16 and Table 4.2 presents that for n = 20
for two different values of «, namely, 1% and 5%. Similarly Tables 4.3 and 4.4
present those for unknown A case. Table 4.5 presents the relative MSE’s for
n = 16 where as Table 4.6 presents the relative efficiencies of the PTE’s i,

and [i; with respect to the sample mean for @« = 5%. To visualize the effect
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of the preliminary test on the bias and to assess the gain in efficiency, we plot
the relative bias and relative efficiency (with respect to X) for different sets of
parameters, sample sizes and significance levels.

Based on these graphs and tables, we draw the following conclusions:
(1) Bias decreases as n increases.

(2) When g < 1 then bias increases, for 1 < u < 1.5 then bias decreases
but when 1.5 < u then again bias increases. As « increases the bias also

increases.

(3) For fixed u, the bias increases as pg increases, but for fixed pg the bias

decreases as 4 increases.

(4) The maximum possible loss of efficiency increases for 4 = 1 and u > 1.5,

but when p = 1.5 the efficiency decreases.
(4) The effective difference of efficiency is greater when « increases.

(5) The results indicate that the IG estimator is effective in reducing the

maximum loss of efficiency and increasing the effective difference.

(6) By examination of the values in graphs and tables, it will be seen that
when A is known, the preliminary test of significance controls the bias well

for larger values of u, resulting in substantial gains in relative efficiency.
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Table 4.1: Bias of ji, for n = 16

Iz po =1 Bo = 2 Bo =3 po=1 o = 2 to =3
a=1% a=5%
0.5 0.135169 0.001663 0.000017 | 0.033591 0.000014 0.000000
1.0 0.000000 0.666944 0.701347 | 0.000000 0.33155 0.165811
1.5 -0.274586 0.459349 1.209603 | -0.157975  0.361778 0.755871
2.0 -0.231333 0.000000 0.918142 | -0.106140 0.000000 0.720122
2.5 -0.151435 -0.404113 0.469159 | -0.061421 -0.284178 0.382874
3.0 -0.099347 -0.651850 0.000000 | -0.037523 -0.409260 0.000000
3.5 -0.068564 -0.756061 -0.429436 | -0.024774 -0.434245 -0.316430
4.0 -0.049948 -0.530559 -0.552975 | -0.017527 -0.415125 -0.535160
4.5 -0.038148 -0.745209 -1.032303 | -0.013118 -0.381317 -0.668068
- 5.0 -0.030303 -0.700645 -1.202236 | -0.010269 -0.345466 -0.738977
Table 4.2: Bias of ji, for n =20
b o me=1  po=2 =3 o =1 po =2 po =3
a=1% a=5%
0.5 .073691 .000545 .000004 | 0.013155 0.000001 0.000000
1.0 .000000 .556286  .394361 | 0.000000 0.232133 0.060848
1.5 -.025092 .453104 1.010851 | -0.138439 0.349072 0.618549
2.0 -.017663 .000000 .901902 | -0.075309 0.000000 0.685998
2.5 -.097573 -.399575 .467579 | -0.036206 -0.278504 0.379441
3.0 -.055609 -.625242 -.00000 | -0.019052 -0.383887 0(.000000
3.5 -.034233 -.696693 -.428009 | -0.011162 -0.387064 -0.314403
4.0 -.022715 -.682034 .767887 |-0.007169 -0.351793 -0.523547
4.5 -.060613 -.631524 -1.00486 | -0.004956 -0.308290 -0.640477
5.0 -.011960 -.571377 -1.15-792 | -0.003631 -0.267625 -0.692917
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Table 4.3: Bias of fi; for n =16

p po=1 po =2 Bo =3 Po=1 o =2 Mo =3
a=1% a=5%
0.5 0.220419 0.056914 0.0194914 | 0.063415 0.001149 0.000075
1.0 0.000000 0.754592 1.051109 | 0.000000 0.412151 0.321653
1.5 -0.320748 0.465899 1.277217 | -0.185183 0.375385 0.848951
2.0 -0.322579 0.000000 0.931265 {-0.139115 0.000000 0.747992
2.5 -0.238804 -0.425646 0.473027 | -0.086274 -0.306782 0.393048
3.0 -0.169686 -0.726898 0.000000 | -0.055011 -0.462131 0.000000
3.5 -0.123476 -0.893645 -0.444393 | -0.037340 -0.509779 -0.335851
4.0 -0.093282 -0.960589 -0.827869 | -0.026917 -0.502651 -0.582566
4.5 -0.073113 -0.966792 -1.134207 | -0.020412 -0.472982 -0.745113
5.0 -0.059190 -0.940561 -1.363285 | -0.016134 -0.436640 -0.842185
Table 4.4: Bias of ji; for n = 20
7 po=1 Ko =2 Ko =3 po=1 po =2 po =3
a=1% a=5%

0.5 0.154391 0.009589 0.001245 | 0.027164 0.000031 0.000002
1.0 0.000000 0.686583 0.776284 | 0.000000 0.298308 0.138373
1.5 -0.303374 0.465515 1.225797 | -0.159564 0.361638 0.706735
2:0 -0.261062 0.000000 0.928041 | -0.096314 0.000000 0.712842
2.5 -0.16503 -0.426797 = 0.475417 | -0.049367 -0.296960 0.388071
3.0 -0.102495 -0.712976 0.000001 | -0.027020 -0.426232 0.000000
3.5 -0.066754 -0.848150 -0.447743 | -0.016238 -0.445135 -0.330139
4.0 -0.046032 -0.878382 -0.829270 | -0.010609 -0.416043 -0.562023
4.5 -0.033447 -0.851539 -1.124489 | -0.007423 -0.372609 -0.702414
5.0 -0.025408 -0.799343 -1.333576 | -0.005486 -0.328976 -0.774574
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Table 4.5: Relative MSE of 4, and ji; for n =16, a = 5%

b opo=1 pw=2  p=3 | mw=1 pw=2 p=3

Known A Unknown A _

0.5 0.120303 0.031362 0.031250 | 0.186201 0.039450 0.032097
1.0 0.017443 0.454858 0.471961 | 0.015725 0.523701 0.800750
1.5 0.131528 0.119756 0.647558 | 0.133363 0.118039 0.689564
2.0 0.165866 0.034885 0.242931 | .175505 0.031451 0.241816
2.5 0.181158 0.116823 0.065896 | 0.189792 0.109330 0.063769
3.0 0.202221 0.209199 0.052328 | 0.208383 0.204601 0.047176
3.5 0.227908 0.273657 0.114466 | 0.232186 0.275439 0.104433
4.0 0.256054 0.316686 0.197398 | 0.259088 0.323892 0.185390
4.5 0.285477 0.348612 0.275665 | 0.287699 0.359163 0.265356
5.0 0.315591 0.375782 0.341917 | 0.317272 0.387956 0.335461

Table 4.6: Relative Efficiency of fi, and j; for n = 16, a = 5%

b opmo=1 pw=2 p=3 | w=1 p=2 pp=3

Known A Unknown A

0.5 0.259759 0.996401 0.999997 | 0.167829 0.792141 0.973609
1.0 3.583147 0.137405 0.132426 | 3.974425 0.119343 0.078052
1.5 0.712775 0.782836 0.144774 | 0.702970 0.794223 0.135955
2.0 0.753619 3.583147 0.514549 | 0.712229 3.974425 0.516921
2.5 0.862507 1.337489 2.371157 | 0.823269 1.429157 2.450233
3.0 0.927205 0.896272 3.583147 | 0.899786 0.916418 3.974425
3.5 0.959816 0.799356 1.911042 | 0.942130 0.794186 2.094635
4.0 0.976356 0.789425 1.266476 | 0.964922 0.771862 1.348508
4.5 0.985193 0.806770 1.020260 | 0.977581 0.783069 1.059895
5.0 0.990206 0.831599 0.913964 | 0.984956 0.805503 0.931552
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Chapter 5

Inference on overlap in two
inverse Gaussian populations:

equal means case

5.1 Introduction

Let Fy and F; be two distribution functions with the corresponding density
functions with respect to the Lebesgue measure. Four commonly used measures
that describe the closeness between F; and F; are described below;

Matusita’s Measure:
o= / F1(@) f2(@)dz. (5.1.1)

Morisita’s Measure:

d= 2 [ fi(x) faz)d .
7 TR@Pds + J(o)de

(5.1.2)

Pianka’s Measure:

o = [ h@hieds (5.1.3)

VI Pdz [(fo(e)Pdz
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Weitzman’s Measure:

A= /min(fl(x),fg(x))dx. (5.1.4)

These measure are widely studied in the literature [see Mulekar and Mishra
(1994, 2000)] when the two densities correspond to the normal case. In this
note we consider inference for these measures for the case of inverse Gaussian
densities. Due to the wide use in applications, as mentioned in Chapter 1, it
is of interest to study the properties of the overlap coefficients for two inverse
Gaussian populations in contrast to two Gaussian populations. In Section 2
the expressions for the measures described above are derived under various con-
ditions together with their properties along the lines in Mulekar and Mishra
(1994). In Section 3 we provide their maximum likelihood estimates along
with approximate variances and covariances. Some striking similarities to the
Gaussian case are noted. In Section 4, we present a confidence interval estima-
tion for these coefficients and finally in Section 5 a simulation study is carried

out to compare different methods for finding the confidence intervals.

5.2 Properties of Different Overlap Measures

Let fi(z) denote the inverse Gaussian density with mean p and dispersion pa-
rameter );. Then using the form of the IG(u, A) density from Eq. (1.2.1.), we

get

1
A2 Ai 2 .
f(x‘l) {271_2:3} emp{ 2'“2:1:("r :U') }7 ? 1,2,.’1:1_0
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Now

{h@ @)} =152 f(@), (5.2.1)

where f(z) denotes an inverse Gaussian density with mean p and dispersion

parameter A and

AL+ Ag

A= 3

Hence, we have from Eq. (5.1.1).

VA1
=2
P vz AL+ Ao

[ 2C

where

2 —
C—/\l.

For deriving the form of the Morisita’s measure, we recall the definition of the
modified Bessel function of the third kind of order j (see Abramowitz and Stegun

(1972) for its properties), given by

Kj(u) =

DO} k=

/oo tj'lea:p{—g(t +t71)}dt. (5.2.3)

Then, for x,v > 0,

/000 x,\—lexp[-%(2/1$ + X:L'_l)]d:z,‘ = 2—%7—:?—) (5.2.4)
Now
() fala) = Y222 o3, TAE — B (5.2.5)

2 P 2u2x
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Using the above definition, with A = 5%’\—2 , we have

[ s = Oy (2 (30

Adg)? 2 2
s 22)2 exp (—) K, (—) . (5.2.6)
T 7 7
Hence, the Morisita’s measure of overlap as given in Eq. (5.1.2). becomes,
2uda)? 2) 22
5 e () Ka (2)

Meap () Kp(2) + Meap (22) Ky(222)
2()\1/\2)1/2 exp(2)\/,u)K2(2/\/u)
A1€xp(2X1/ 1) K221 /1) + Az exp(2he/ ) Ka(2X2/ 1)

(5.2.7)

We also get from Eq. (5.1.3)., Pianka’s overlap measure as
(Ahe)} exp(2E2) Ky (A )
(Aho)? exp(2t), [Ky(B0) Ky (22)
Ka(2X/p)

v K2(201 /1) K2(2)2/ 1)

The Weitzman’s measure is obtained by evaluating the common area under

*

(5.2.8)

the two intersecting curves y = fi(z) and y = fo(z). Let the intersecting points

be given by z; < zg, then for A\; < Az, (f), has shorter tails than f,)
A = F2($1) + Fl(l'Q) - Fl(.’l,‘l) +1-— FQ(IL‘Q)
= 1-{Fy(z2) — Fa(z1)} + {Fi(z2) — Fi(z1)}, (5.2.9)

where F; denotes the cumulative distribution function corresponding to f;. We
note that the distribution function corresponding to a IG(, A), distribution as

given by Eq. (1.2.2). can be written as
2X/ 2 4\
F(z) = 2(y) +e*/H0 | —4 [y ) z >0, (5.2.10)
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where y = \/: £ and ®(.) denotes the cdf of the standard normal distribution

(see Chhikara and Folks (1989), Eq. 2.16). -

To compute the intersection’s point z; and z2 we have to solve fi(z) = fa(z) as

1 — 2 1 - 2
Aexrp (——*——/\l(x 5 “) ) = AMezp (—L(x 5 b ) ;

2utx 2utx

1 Az —p)? 1 Ao(z — p)?

PO P L/ MG WA A/

g A 22 g A2 22
(z—p? Ing

pix B A — A
Since ’X\l = ¢? then
2

Aoz ~p)?  2Inc
wr -1

It can be easily seen that the points of intersection satisfy

@xl_ - _b
[TRVET) ’
i/\—z_xz__—,u = b
TRV ’
where
—2InC
b= ,/——1 — (5.2.11)
Now
4
Fy(z) = ¢(y1)+€$;0 (/@2 + =22)
where
BRVACO (Gl DR
.u'\/_-'L'l
Further
4
Fy(z2) = ¢(y2) + exp \/— + — 2 T9 > 0,
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where

" \/_/\2 1‘2 - =}
,U\/_ (z2)
Therefore
9 4/\2
Fy(z1) = 1 — ¢(b) +ezp (v + 22), >0,
and
Fy(z;) = ¢(b) + e:):p (—/(¥* + z3 > 0.

Similarly, we can write

4)

Fi(zq) = ¢(cb) + ezp(QT)“MS(—\/(czb2 + ——M—)), zz > 0.

and

44X

Fuay) =1 - (ch) + exp(z—}m—ﬂc%? +20) mso,

Thus, we have

Fl(.’l?g) - Fl((L'l) = 2@(01)) -~ 1,

Fy(zg) — Fo(zy) = 29(b) — 1,
and hence assuming C < 1, we get
A =1-20(b) + 29(Ch).
For C' > 1, we can similarly show that

A =1+ 28(b) — 28(Ch).
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Note that the above expression also tallies with the expression in the Gaussian
case. We can now establish the following properties.
Lemma 5.1 (i) For p and A, OVL measures, OVL(C) = OVL(1/C).

(ii) p and A do not depend on u, however a* and A depend on u though the
parameters A1 /u and Ao/ p.

(i) 0 < OVL < 1.

Proof: The form of p and A are similar to those obtained in the case of
the Gaussian populations with equal means. Thus, we need only prove these
properties for the measures a* and A only. For this purpose, we shall need the

following lemma on log-convexity of the Bessel function K,(z).

Lemma 5.2 Let g(z) = log K,(z), then we have g"(z) > 0, for z > 0, i.e. the
function K,(z) is log-convez.

Proof: Clearly,

¢'(z) = Kal@) _ [K‘/‘(‘”)r. (5.2.14)

K,(z) K, (z)
Since, the function K(z) is a solution to the modified Bessel equation
y"+ly’—(1+£)y=0 (5é15)
- p . 2.

the first term in equation Eq. (5.2.14) becomes

Ki(z) _ _ Ki(z) @
Kiz) - sk LT (5.2.16)

We get for a solution y to Eq. (5.2.15)

2 1.1

]‘ a A 7 7
355y ) =2y +z(y)? = (2 + ¥y,
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i.€.,
8 8
55 (@)1= (@ +a%) 5y, (5.2.17)

Since, K, and K, vanish exponentially as z — oo, we can write Eq. (5.2.17) by

using integration by parts as,

PRUOPE = (2 + RO -2 [ K20 (5.2.18)

T

Using the above equation we can rewrite the second term of Eq. (5.2.14) as

K!(z)]? 2002 [ (Kit))
[K—Eig] =(1+%)—P/z t(K((x))) dt. (5.2.19)
Therefore, Eq. (5.2.14) becomes

¢"(z) = —% + %/:ot (K“(t)) dt. (5.2.20)

Since,
K,(z) = —%[Ka—l(l‘) + Kor1(z)],

we note that K(z) > 0 and we conclude that ¢”(z) > 0, and the result in the

lemma follows.

Using the above lemma, therefore, it follows that,

1 1
log Kz()\l + /\2) S 5 log K2(2)\1) + 5 log K2(2/\2).

This shows that

K(2)) < KR (20) K (2)s).
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Table 5.1: Dependence of A and a* on

Values of A

1 0.1 2 100
A =1,C? =15 09825295 0.9598499 0.9412238
A =2,C?=15]0.9836466 0.9679075 0.9418291
Values of o*

I 0.1 2 100
A =1,C?=1.5]009856234 0.9637654 0.9600027
A =2,C?=1.5|0.9876336 0.9685528 0.9600106 |.

It shows that 0 < a* < 1.
Again using the log-convexity of K5, we have for A,

2

AL+ A 2 A A PYIUD Y 1
Vardeexp(B—2) Ko (Z2) < [ exp(22) Ko (228 ) A g exp(222) Ko (222)
7 B 7 7 B Iz
A1 exp(232) Kp(238 + Ap exp(222) K5(232)
— 2 b

the latter inequality following from AM-GM inequality, which in turn proves
that 0 < § < 1.
The dependence of the measures o* and A on y is demonstrated by some cal-

culations given below.

Due to the dependence of  and o*, on y, in contrast to p and A, the latter
measures, namely p and A, may be preferred. As mentioned in Lemma 5.1
(ii), a* and § depend on A;/p and Ao/p, we may reparametrize the family in

terms of the parameters, 71 = p/\; and 12 = pu/Ag, which are the coefficients
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of variation (CV) for the two populations. Now we have C? = ny/n;. Mulekar
and Mishra (1994) also noted that A < p and A < p, for the Gaussian case. We
may also establish the following parallel result for the inverse Gaussian case.
Lemma 5.3 For p,d,a* and A defined in equations Eq. (5.1.1)-Eq. (5.1.4),
we have (i) A < p and (i) § < o, equality holding in case 1, = 7.

Proof: The proof of the first part follows from Lemma 2(ii} of Mulekar and
Mishra (1994). The proof of the second part is as follows.

It is easy to see that

5=a* [ . -2:73] , (5.2.21)
where

Since, max,»o [%] = 1, part (ii) of the above lemma follows. In the next
section, we address the estimation of these measures based on two independent

samples from inverse Gaussian populations with the same mean.

5.3 Estimation of OVL Measures

Parallel results to those for the two normal populations can be established as in
Mulekar and Mishra (1994) for the inverse Gaussian populations with common
mean. This is based on the following results (see Chhikara and Folks (1989,
Chap. 5)). Suppose that (X;;;7 = 1,...,ni;¢ = 1,2) denote independent obser-
vations from two independent IG populations. An unbiased estimator of A, is
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given by

1 /1 1
U"—ni—lizz:(i_f) (5.3.1)
Then we may define an estimate of C? as
N U;
Ct=—.
U,
Therefore, since,
(Tli — l)AzUz ~ an—l' (532)

replacing S? by U;, Lemma 3 of Mulekar and Mishra (1994) follows, which is

given below.

Lemma 5.4
E(C?) =% C?, Var(C?) = yC4,

where
ng —1 (ng —1)%(ny + 1) 0

ng — 3’ = (ny — 1)(ng — 3)(ny — 5) e

mn=

The results in the above lemma become apparent, by noting that

CA,2 02V2 XI2/1

¥
11 X?Q

where v; = n; — 1, and the chi-squares appearing in the above équations are
independent.

Consider a function g(f) of some parameter 6, and let 6 be an almost sure
consistent estimate of #, then the mean and variance of g(é) may be obtained

using the linear Taylor approximation

9(d) ~ g(6) + (6 — 0)g'(6). (5.3.3)



Then
E[g(6)] = 9(6) + E(6 - 6)'(6).
For the estimator of p, we let § = C?, we have

-

p=g(0), g(6)=v20"41+06)"12

Since, in this case,

g0 1 1 1 1-6

!
9(0) " 46 21+6 40(1+0)

from Eq. (5.3.3) we have

o o (= Dpl-CP
E@)~p=EO0-0d0) =777 (5.3.4)
and
5 — Var(d) o/ (g = 2L =C?
_r(1-6)7
= Ty (5.3.5)
Also
E(p) —p=(m—-1)C%(6),
and
Bias
C%*g'(9) = :
g'(9) po—
The above can also be expressed as
Var(p) = —2— Bias?(p). (5.3.6)
CES VG
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We have from Eq. (5.2.12), for 0 < C < 1,

g9(6) = A =1 — 28(b) + 28(Cb),

where
—In@
b= 1—6
(1-6)~}(In(3)}
]
Now
d(Ch
9(6) = ~29(0) 30 +20(CH) ),
but
8 1/ In6\7[flng+1-9¢
06 2\ 1-96 6(1 —8)Iné
a(Ch) 1 1 1
a6 _QCb{9(1—9)+91n0]
Therefore

EA = A+(m-1)¢ [‘b(Cb)Cb (c? 1-07) " C?ln 02)
—9(b)b (1 —102 C? ln02>]
= A4+ (n—-1) {(Cqb(cb) ¢(b)) ( Y )) + qus(Cb)}

b1 -
R 252
Bias(A) = (7 - 1) {(c¢(Cb> ) (%} " cb¢<0b>}
and
Var(A) = Bias*(A).

(71 - 1)2
This is the same result obtained in Theorem of Section 3 of Mulekar and

Mishra (1994) about the bias and variance of p. Proceeding in a similar fashion
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since A also involves only C? as the random variable, we get the same result as
given in Theorem of Mulekar and Mishra (1994) in Section 3. This is reproduced
below.

Theorem 5.1 Suppose that p and A are the estimates of p and A, respectively
by substituting C? for C?, then forny > 1,ny > 5, we have approzimate expres-
sions for the bias and variance of p and A given by

Bias(p) = n ; L)p 1 :L 22’
Var(p) = (—717_—21)5&%2@),
R 2p2
Bias(d) = (m—1) {(Cqb(cb) —4(6)) (,)%”_71)) +Cb¢(Cb)}IC,
Var(A) = (%—’yjﬁBiaf(A),.
where

1 for 0<C<«1
Ic =
-1 for C>1.

Corollaries to the theorem for n; = ny also remain valid. Next we compute
the approximate mean and variance for the other two measures.

The estimates of a* and § require estimation of 7; and 7,. These are given

by
M = XU, i=1,2, (5.3.7)
where X = ﬂ%—}ﬁ‘;’—& Consider, iy = XU;. Since Ui\ ~ x2, then
1 v + 2
E 2y — E 2 2'° 2,
(Ul ) (Vl/\1)2 (Xul) ll1ﬂ2 ™

and

BUE?) = Var(X) + 4 = 2 (w2 + 03 ) + 2
1 2
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Then

E(}) = E(X)E(U) =
Therefore
. v+ 2
Var(i) = -
141
Similarly
. Vg + 2
Var(fz) = 2
19}
Also

Vi = E(f1 — m)(2 — m2) = mme (wln_l + w2——) .

v+ 2
2 (w2 g 1))
n 1 n2
nf( 2—1+wQ@>+—2=V2
e 2, o 1
2 w2—1+w2@ I Sy
2\ 2 2 2"

2™ 272

n2

Lemma 5.5 #; is unbiased for n; and

. n; + 1
Var(7;) —_n1 1 ;
(]

Cov(f,T2)

where w = ——,
ni+ng

(-

2Tt 272
LTI 12
M2 (w 1 ( w) nz)

——n =V

= i

2 - w)2@) +
ny No

The above lemma follows from the independence of X;, U;, fori = 1,2, and

their distributional properties. Using the first order Taylor expansion in two

variables, we obtain the following theorem.

Theorem 5.2 Suppose that &* and b are the estimates of o* and 6, respectively,

by substituting 7y, and 7y for m1 and ne respectively, then for ny > 2,n2 > 2, we

have that &@* and & are approzimately unbiased with approrimate variances given

by
Var(a")
Var(ﬂ)

Vg2 + Vg + 2Viagiga,
VEG + VEds + 2Viaquge,
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where

o = X [KQ(Q/TH) Ky + n»{l)]
mLKe(2/m)  Ko(mt+mph))]
2r -1 % Ka(2/m)
% = 179 [g" GRSy (5 Ry )

where §; = 1, fori =1, and -1, for i =2, and V2,V and Vi3 are as given in
Lemma 3.2. The derivative Ki(x) may be computed from the formula

K'(z) = —% (Kaor(z) + Kona(z)), >0,

and 7 is as given in Eq. (5.2.22)

Proof:

Consider # = aU;, for i = 1,2, where U; = n—f_—lzg‘zl(){%} - )%:) and (n; —
VUM ~ x2._ for i = 1,2. Now Eq.(5.2.8) can be written as

PO . OV):)
VEKa(2h /) Ko (200 /)

By using Taylor’s theorem,

= 9(771,772)-

. N 0 R o
& = g(m,m2) + (M — 771)%; + (2 — 772)-3—77% + ...

Then it can be easily shown that

E(&") ~ g(m,n2)

and



But

1 2 ! 1 1
dg(m,m) _ o |Kela) Helwta
mo T ra(z) m(hR

[
r
=
N TN TN

) =91,
)
)

1 [ 2 (1 1
9g(m,me) _ o Bol\m) Kelmtu - o
One 3 Kz(nz_z) Kz(ni %> )

and the result for Var(a*) follows. To find the variance of §, we can write the

Eq.(5.2.7) as
o 2Kﬂﬁ+§2
(34)7 exp(5; — ) Ka(Z) + (32)7 exp(5; — 55) Ka(£)

_ 2o*
1 Ka(2)\ 2 1 KD
Consider
_ A1 K2(,\lz) ’ x (i___l_)

Ao Kz(%) TN

Then
. 2r
6—0[1+ﬂ} (5.3.8)
Suppose
2r

q(A1, A) = [m] ’

then

GQ()\l, )\2) _ __2(7‘2 - 1) 87'()\1, )\2)
6)\1 h (7'2 + 1)2 ’ 0/\1 '
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But

1, | K%
Or(A1, A2) _ % At 2(,\21) +1
Similarly
o d) _ 1 |1 2(5%)
=\ 2 1
D N2 TR T
Therefore

G _ 2 [ . =l (A K@) ]
an 1+ T RNET )\ 2 T K/ - a
and

ﬁ.— 2r |: +a*i:1_ E+M+1 —
e 1+ T NET)\2 T K2/ = o

and the result for Var(é) follows.

5.4 A Numerical Study

In this section we perform a numerical -study comparing the approximate for-
mulae for the bias and the mse derived in the previous section for different OVL
measures. Random samples of size n are generated from two inverse Gaussian
distributions with p; = 1,4 = 1,2, A\; = 1,Ay = C?);. The exact mean and
variance is approximated by using 1000 replications for n taking values 10, 25,
50, 100, 200 and 500 and for values of C taking values 0.2, 0.5 and 0.8. The
choice of these values have been motivated by the paper of Mulekar and Mishra
(1994). All the computationsv have been performed using the R Software where
the random number generation for the inverse Gaussian distribution has been
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performed using the function rinvgauss. The random samples are generated
using the algorithm due to Michael et al. (1976). The R-code for this random
number generator appears in Appendix A2. The Bessel function required in the
computation of the OVL measures is computed using the function Bessel.f,
the R-code appears in Appendix A3. Tables 5.2 and 5.3 summarize the results
of the bias and the mse respectively, for various combinations of n and C. The
conclusions are similar to those mentioned in Mulekar and Mishra (1994) for
Gaussian populations.

From the expressions for the bias of the estimators of p and A, it is clear that
these are approximately zero when C = 1. In our numerical study, generally
the actual OVL's are found to be underestimated; only for small values of C
and small sample sizes, they show overestimation. For sample sizes larger than
50, the bias is fairly close to zero. Matusita’s measure has less bias than others
but Weitzman’s measure has the largest bias. As C approaches 1, then the
standard deviation of A increases. The bias decreases as sample size increases,
as expected and the MSE goes to zero. The approximations for the bias and

the MSE seem to be appropriate for sample sizes larger than 50.
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Table 5.2: Bias of Estimators of OVL Measures Based on 1000 Samples

Note: Approximate values are in brackets.

n 10 25 50 100 200 500
Matusita’s Measure p
0.2 | 0.00335 0.00107 -0.00172 0.00232 0.00067 -0.00021
(0.02586) (0.00823) (0.00385) (0.00187) (0.00092) (0.00036)
0.5 | -0.01067 -0.00807 -0.00427 -0.00142 -0.00055  0.00031
(0.03833) (0.01219) (0.00571) (0.00277) (0.00136) (0.00054)
0.8 | -0.02574 -0.01081 -0.00471 -0.00180 -0.00113 -0.00062
(0.01959) (0.00623) (0.00292) (0.00141) (0.00069) (0.00028)
Weitzman’s Measure A
0.2 | 0.01070  -0.00479 -0.00169 0.00019 -0.00003 -0.00033
(0.03904) (0.01242) (0.00581) (0.00282) (0.00139) (0.00055)
0.5 | -0.00705 -0.00171 0.00134 -0.00086 0.00067 -0.00045
(0.06149) (0.01957) (0.00915) (0.00444) (0.00218) (0.00087)
0.8 { -0.00181 -0.00416 -0.00139 -0.00372  0.00007 -0.00070
(0.06828) (0.02173) (0.01017) (0.00493) (0.00243) (0.00096)
Morisita's Measure ¢
0.2 0.05030  0.02395  0.01040 0.00732  0.00276  0.00050
0.5} 0.00975  0.00520 0.01025 0.00095  0.00041  0.00268
0.8} -0.06794. -0.02788 -0.01225 -0.00577 -0.00477 -0.00212
Pianka’s Measure o*
0.2 | 0.03713  0.01987  0.00732  0.00408 0.00201  0.00049
0.5 | 0.00960  0.00987  0.00432 -0.00161 -0.00082 -0.00024
0.8 | -0.06855 -0.02735 -0.01278 -0.00716 -0.00380 -0.00168
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Table 5.3: MSE of Estimators of OVL Measures Based on 1000 Samples

Note: Approximate values are in brackets.

n 10 25 50 100 200 500
Matusita’s Measure p
0.2 0.01062  0.00347 0.00166  0.00079  0.00041  0.00016
(0.01029) (0.00193) (0.00079) (0.00035) (0.00017) (0.00006)
0.5| 0.00759  0.00314  0.00143  0.00078  0.00034  0.00013
(0.02262) (0.00425) (0.00174) (0.00078) (0.00037) (0.00015)
0.8 | 0.00296 0.00075 0.00030 0.00014  0.00006  0.00002
(0.00591) (0.00111) (0.00045) (0.00021) (0.00009) (0.00004)
Weitzman’s’s Measure A
0.2 | 0.00647 0.00205 0.00098  0.00045  0.00020  0.00009
(0.05967) (0.00021) (0.00004) (0.00002) (0.00001) (0.00001)
0.5 | 0.02023 0.00620 0.00329  0.00173  0.00083  0.00032
(0.14811) (0.00053) (0.00009) (0.00002) (0.00001) (0.00001)
0.8 | 0.02508  0.00910 0.00455  0.00235 0.00123  0.00042
(0.18258) (0.00065) (0.00012) (0.00003) (0.00001) (0.00001)
Morisita’s Measure § ‘
0.2 | 0.01329  0.00371  0.00148  0.00079  0.00034  0.00012
(0.06679) (0.01997) (0.00895) (0.00423) (0.00205) (0.00081)
0.5 | 0.04076  0.01896  0.01096  0.00554  0.00266  0.00099
(0.27539) (0.09654) (0.04619) (0.02259) (0.01117) (0.00444)
0.8 | 0.01492  0.00528 0.00240  0.00109  0.00063  0.00024
(0.03605) (0.01303) (0.00630) (0.00310) (0.00154) (0.00061)
Pianka’s Measure a*
0.2 | 0.01258  0.00431 0.00184  0.00088  0.00042  0.00017
(0.00623) (0.00181) (0.00078) (0.00037) (0.00018) (0.00007)
0.5 | 0.03721 0.01828 0.01002 0.00497 0.00254 0.00092
(0.05743) (0.02011) (0.00962) (0.00470) (0.00233) (0.00092)
0.8 0.01433  0.00470  0.00236  0.00113  0.00055  0.00022
(0.01301) (0.00470) (0.00227) (0.00112) (0.00055) (0.00022)
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Chapter 6

Directions for Further Research

6.1 Tests for Coeflicient of Variation

It is seen that the coefficient of variation plays an important role in the problems
considered earlier. There have been numerous tests involving the coefficient of
variation for the one sample and the many samples case. Gupta et al. (1986)
considered an exact test for the normal mean for known coefficient of variation
where as Gupta and Liang (1987) considered the problem of selecting the best
unknown mean amongst the normal populations with constant coefficient of
variation. Pagurova and Orlov (1984) and Miller (1991) presented and studied
some tests for the coefficient of variation in normal populations. Recently, Rao
and Vidya (1992) have evaluated the performance of a test for the coefficient of
variation in the normal population. Testing equality of coeflicient of variations
for two independent normal samples and for a bivariate normal sample was
considered in Bhoj and Ahsanullah (1993a, 1993b). Nomachi (1983) considered

the estimation of the common mean utilizing their coefficients of variation for
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k > 2 normal populations where as Samanta (1984) considered the problem of
estimating k& means when the coefficients of variation are considered equal but
unknown.

On the other hand, in the case of IG population, estimation of mean with
known coefficient of variation has been considered by Joshi and Shah (1991) and
Farsipour (1997) where as Hsieh (1990) has studied the likelihood ratio test in
the one sample case and Choi and Kim (2003) has considered testing equality
of coefficients of variation of two inverse Gaussian populations. Here we show
that the most powerful invariant test in a single sample case, for simple null
hypothesis vs. a simple alternative coincides with the Likelihood Ratio test
derived by Hsieh (1990).

We will find it convenient to parametrize the density of IG(u, A) in terms of

(u,9), where ¥ denotes the inverse of square of coefficient of variation denoted

by

9=2

The testing problém about the coefficient of variation C' can be stated in
terms of the parameter 9. Given a realization (x) of the random sample X =

(X1,X2,...,Xy) from IG(u, ud), we find that the likelihood function £(u,9|x)

factors as follows;

u, %) = ﬁ ()" —iZ T
(b, 9lx) = paley © 29mx3 xp 2u T X
= go(T).h(x)
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where

n

a(7) =] {e" (;‘f,%)ﬂ P {*% 2% H;le}

=1

is a function of parameters only through

T@) = (32, ¥ i)

and

1

i=1 Tj
is a function of the data only. Thus, by the Neyman’s factorization theorem,
it follows that the bivariate statistic (3_ X;, > Xi) is sufficient. Note also that
IG(u, A) is a convex exponential family (see Seshadri (1993), Prop. 2.6), T(X)
is complete sufficient. Furthermore, this family is closed under the group G, =

{gc}, where g.(y) = cy,c > 0, we may consider the reduction of the data as a

maximal invariant under scale changes given by
Y =M,Y, ..., ),
where
Vi = Xi/Xit1, i=1,.,n—1,
Y, = X,

The distribution for Y has been worked out in Jorgenson (1982) (see Eq.
3.21) for the generalized inverse Gaussian distribution, whence, the joint pdf of
Y is given by
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—n/2

TR A L Hyf" exp [—— <m92Hy + = ZHy)] . (6.1.1)

k=1 i=k k 1 i=k

Integrating out y,, the joint density of the maximal invariant (Y7,Y3,..., Y1)

is given by (see Eq. 3.23 of Jorgenson (1982));

K29y ()T(w) vy —i-1 (Ti(y)\ 72
/1_11(2) 2(y)) v ® 1( 1(3})) (6.1.2)
1KY, (9) 41 Ta(y)
where
ZHyz_l’ T2 Znyl
k=1 i=k k=1 i=k

The above analysis shows that the distribution of the maximal invariant
(Y1,Ys,...,Y,_1) depends on the maximal invariant in the parameter space,
namely ¥. Jorgenson (1982) shows that the statistic T = X X_;, where X =
Yo X;and X_ =) XL,-’ is maximal invariant in the space of sufficient statistics,
and since Ty (y)Ta(y) = VT, the distribution of T depends only on ¥ and the
most powerful test of Hy : ¥ = ¢y against a simple alternative may be based
on the distribution of the test statistic 7. The distribution of T is not simple,
however, it is shown in Jorgenson (1982) (see Eq. 5.6), that the ratio of the

non-null pdf to that of the null pdf of T is given by

Kn/2('l9 ) K?/2(190)
K75(8) Knya(t90)

U(t;90,9) =

This shows that there is no uniformly most powerful test for a composite alterna-
tive. The most powerful test for simple null vs. simple alternative, Hy : ¥ = ¥y
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vs. H; : ¥ = ¥ is based on the test statistic T, since K,(tu) is monotone

function of ¢, the critical region is given by
CR:{X : T(X) > ta},
where ¢, is obtained from
Pr[T > to]9 = %) = c.

The exact percentage points ¢, can be obtained from those of the modified

statistic

1 - 1 1
T* = _— — = =
(n — 1)190X(Z(X, X ZV’

where Z ~ IG(1,%), and (n — 1)V ~ x2_,. Hence the distribution function of

T* under Hy is given by

Fre(z) = /0 " Gla/2) f(2)dz.

This equation can be used for evaluation of the exact percentage points of T,
however, Hsieh (1990) provides some approximations for the distribution of 1/T™*

as well as some selected exact percentage points for some odd sample sizes.

6.2 Preliminary Test Estimatdr Using Coeffi-

cient of Variation

Preliminary tests of significance on 1 may be used to propose new, hopefully,

improved estimators of mean. For example, suppose we accept a null hypothesis,
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Hy : n > 1y, we use the estimator proposed in Chapter 2, otherwise, we may
use the sample mean as an estimator of the mean of the /G population.

The other direction in the use of the preliminary test estimator is that of
Ahmed (1995) which considered the problem of estimation of coefficient of vari-

ation when it is a priori suspected that the two coefficients of variations are the

same.

6.3 Preliminary Test Estimation in £ Samples

PTE’s have been adapted and studied in depth to shrinkage estimators for
multi-sample case in a series of papers by Ahmed (1992), Ahmed and Saleh
(1988), Ahmed and Saleh (1999), Saleh and Sen (1985a, 1985b, 1986, 1987a,
1987b) and Saleh and Han (1990). The case of more than two IG populations
for estimating means or coefficients of variation may also be of interest where
procedures similar to those studied in the normal case, as mentioned above may

be investigated.

6.4 Overlap Measures in Unequal Means Case

Mulekar and Mishra (1997) have considered the inference procedures for overlap
measures in the Gaussian case when the corresponding means are not the same.

It is of interest to study such procedures for inverse Gaussian populations.
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Appendix

A1l. R-code for Area function

area<-function(f,a,b,...,fa=f(a,...),fb=f(b,...),
1imit=50,eps=1.0e-06)
{

##Program to integrate a function f using recursive Simpson’s

##rule eps is the absolute target error limit is max. number of
##iterations.

h<-b-a

d<~(b+a)/2

fd<-f(d,...)
al<-((fa+fb)*h)/2
a2<-((fa+4*fd+fb)*h)/6
if ( abs(al-a2) < eps )

return(a2)
if (limit ==0){
warning(paste("recursion limit reached near x= ",d))
return(a2)
}
Recall(f,a,d,...,fa=fa,fb=fd,limit=limit-1,eps=eps)+
Recall(f,d,b,...,fa=fd,fb=fb,limit=1limit-1,eps=eps)
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A2. R-code for the Generation of IG Random

Numbers

rinvgauss <- function(n, mu = stop("no shape arg"), lambda = 1) {

##Reference: Michael, Schucany and Haas, R.W. (1976). Generating
##random variables using transformation with multiple roots,
##American Statistician, vol. 30, 88-90.

if (any (mu<=0)) stop("mu must be positive")

if (any(lambda<=0)) stop("lambda must be positive")
if (length(n)>1) n <- length(n)

if (length(mu)>1 && length(mu)!=n) mu <- rep(mu,length=n)
if (length(lambda)>1 &% length(lambda)!=n)

lambda <- rep(lambda,length=n)

y2 <- rchisq(n,1)

u <- runif(n)

rl <- mu/(2xlambda) * (2*lambda + mu*y2 -

sqrt (4«xlambda*mu*y2 + mu~2%y2°2))

r2 <- mu"2/r1

ifelse(u < mu/(mu+rl), ri, r2)

1

A3. R-code for Computing Bessel Functions of
the Third Kind

Bessel.f<-function(u,a)

##Bessel function of order a: {
Bessel .kernel<-function(x,uk,ak)0.5*x" (ak-1.0)*
exp(-0.5%uk* (x+(1/x)))

integrate(Bessel.kernel,lower=0,upper=Inf, ak=a,uk=u)$value
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