INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UM films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

UMI

An Object-Oriented Application of Framework Control Systems

Vincent A. G. Martins

A Report
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

February 1995

(c) Vincent A. G. Martins, 1995

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et .
services bibliographiques

395, rue Wellington
Oftawa ON K1A ON4

Canada Canada

Your file Volre référence

Our file Notra référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-45166-6

Canadi

Abstract

An Object-Oriented Application of Framework Control Systems

Vincent A. G. Martins

We must face the fact that today, systems are becoming fairly large and more
complicated than ever before. As a result of this, the programming environment is also
changing. Every programmer knows the feeling of anxiety and frustration when the time

comes for a system modification, maintenance, quality, efficiency, etc.

Several experts in the field of programming believe that the popular concept of
object-oriented programming is a very useful and effective paradigm in the software
industry. It advocates a partly bottom-up style of programming that offers tremendous

benefits that fall in line with the goals of software engineering methodology.

Object-oriented programming is widely used in a variety of applications. One
important area where this form of programming is continuously growing is in the field of
control systems. In this report, the concepts of object-oriented programming are
discussed. The Model-View-Controller (MVC) framework is explained and applied to
the simulation of control systems using object-oriented techniques in the C++ language.
The various benefits and pitfalls of using the object-oriented programming paradigm are
also discussed.

iii

Acknowledgments

I wish to thank my supervisor Dr. Peter Grogono for the advice he has given me

throughout the course of my project.

I am especially grateful to my parents and family for their encouragement,

patience, confidence and support. I acknowledge the effort of Claude Martins for

drawing the figures used in this project.

iv

Table of Contents

2.2. Popularity of Object-Oriented Programming.

2.3. Requirements for Object-Oriented Programming Languages . .

3. Principal Features of Object-Oriented Programming.
31 Objects. e
32 Classes.ot e e
33. AbstractClasses.ottt
34, Abstraction.c.c.cintiiiiiiiiiiiiie
3.5. DataEncapsulation.ccoiiiiiiia...
36. Inheritance. i
3.7. PolymorphismandBinding............................

4. Benefits of Object-Oriented Programming.

5. Frameworks in Object-Oriented Programming
5.1. Definitionof aFramework

16

16

18

25

5.2. AnExample MVCFramework.......................... 25
5.3. Advantages of the MVC Framework 28

6. An Application of Frameworks Control Systems

(Used in simulation of engines, heating systems, etc.).............. 30
6.1. Application: Automobile Cruise Control System. 30

6.1.1. Model. 31

6.1.2. View..o 32

6.13. Controller ittt 32

6.2. Application: Home Heating System 33
62.1. Model............o i 33

622 ViewW e e 34

623. Controller. ...t 34

7. Results, Problems Encountered and SolutionsFound 37

7.1. Problems Encountered in Using Object-Oriented Programming

to Develop a Framework for Control Systems 38

7.2. Future Prospects of Programming Paradigms in Software

Engineeringccoiiiiiiiiiiiiinininnnnnn 41
8. Conclusions . ..ottt 43
Referencesccvviiinniieeiiiiiiiiiieeieaeeenennnns 47
Appendix A. Cruise Control System.o..... 49

A.1. Code Listing for Variable Definition..................... 51

A.2. Code Listing for Class Definition. 52
A21. Model.....o 52
A211 WorldClass.cooivinn... 52

A212. CarClass............cooivivenunnnnnn. 54

A213. CruiseClass........................... 55

A22 VieW. e 56
A23. Controller.l 57
Appendix B. Heater Control System. 58
B.1. Code Listing for Variable Definition..................... 60
B.2. Code Listing for Class Definition....................... 61
B21. Model....... ... 61
B211 WorldClass........................... 61

B2.12. RoomClass..................conunen. 62

B.2.1.3. ThermostatClass....................... 63

B22 View.......cciiiiiiiiiiii ittt 64
B23. Controller..oiiiiiiiiii e 65

Appendix C. Results Generated from Cruise Control System Simulation. 66

Appendix D. Results Generated from Heater Control System Simulation. 68

vii

Figure 2.1:

Figure 3.1:
Figure 3.2
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 5.1:
Figure 5.2:
Figure 6.1:

Figure 7.1:

Figure A.1:
Figure A.2:
Figure A.3:
Figure B.1:
Figure B.2:

Figure B.3:

List of Figures

Object-Oriented Programming Language Requirements

R0 1993]) ... oot

Composition of a Class [Henderson-Sellers 1992]
Data Encapsulation [Wieland1990]
AbstractClasses.c.ooiiiiiiiinaneeann..
Inheritance and Polymorphism [Wieland 1990]
Class Hierarchy, Inheritance and Polymorphism.
Contrast between OOP and Conventional Libraries.
MVC Framework [Savic 1990].......................

Common Features of MVC Application Examples.

Possible Scenarios for the Future of Programming

Languages[Wegner1990)ottt

Cruise Control Class Definition.
Cruise Control State Transition.
Cruise Control Scenario.ccoeiennnnn
Heater Control Class Definition.
Heater Control State Transition.

HeaterControl Scenarioccoveeevncennens

11

13

14

17

20

25

27

36

42

49

50

50

58

59

59

1. Introduction

The art of programming has changed dramatically over the years. Many
programmers are now concerned more with the maintenance of old programs than
writing completely new ones beginning from elementary steps. The psychological
perspective of the modern programmer is that discarding a program is unnecessary if it
can be altered and reused for a new application. The concept of recycling is even applied
to this field where programming methodology is progressing rapidly in the hopes of
developing a framework to aid the programmer to develop reliable software for

applications.

Object-oriented methodology was developed after structured programming and
has become increasingly popular in the software industry. As software becomes more
complex and difficult to manage, another concept in the process of developing software
has been introduced which is different from conventional programming. This concept is

called the object-oriented programming paradigm.

The term "object-oriented” is such a popular concept that it tends to be overused,
and is misleading particularly in the field of software development where different design
methods, environments and languages tend to be classified in this methodology. By
defining the term and describing the basic principles of object-oriented programming we

will try to clarify some misconceptions.

1.1. Scope

In this report we discuss the features of the object-oriented programming
paradigm. In particular, the Model-View-Controller (MVC) framework is described and

applied to the simulation of two control system applications.

Chapter two defines the meaning of the object-oriented paradigm, what led to the
motivation for its discovery and popularity. The requirements for a language to be

considered as an object-oriented language are also explained.

Chapters three and four describe the main features of an object-oriented language
such as objects, classes, inheritance, polymorphism and binding along with the

advantages of using this form of programming methodology.

Chapter five presents the Model-View-Controller (MVC) architecture which is a

good tool for the simulation of control systems.

Chapter six illustrates the MVC framework by simulating two applications of
control systems-- a cruise control system and a home heating system. Common features

of control systems are also identified.

Chapter seven discusses the results, problems encountered and solutions found in
developing the framework for control systems. Future trends in programming paradigms

are also introduced.

2. Object-Oriented Programming Paradigm

What is the object-oriented programming paradigm?

The object-oriented programming paradigm is a software development process
that aims to provide an organizational framework for the development of large, complex
systems. It is a tool designed to aid the programmer in the development of an application
which is beneficial to a variety of users in the long run. It uses a "data-oriented"
approach (as opposed to the functional approach) for software development where the
data is encapsulated into objects and manipulated via operations or methods, thus
strongly linking data and behavior together. Although several authors in this area have
defined this methodology, one that offers a clear conceptual definition is given by Booch
(1991}

"Object-oriented programming is a method of implementation in which

programs are organized as cooperative collection of objects, each of

which represents an instance of some class, and whose classes are all

members of a hierarchy of classes united via inheritance relationships.”

He points out that there are three parts to this definition:
(i) object-oriented programming uses objects instead of algorithms as the
building blocks,

(ii) each object is an instance of some class, and

(iii) there is an inheritance relationship among the classes.
Depending upon the characteristics displayed by a programming language, it can

be placed within one or more of the following sets. [Wegner 1990]

An object-based programming language is one where by its syntax and semantics
support the creation and functionality of objects without their management (e.g. Ada,
Actors). A class-based programming language is one that has the characteristic of an
object-based language in addition to supporting the creation of classes and management
of objects but offering no support for class management (e.g. Clu). An object-oriented
programming language (e.g. C++, Simula, Eiffel, Smalltalk) supports the creation and
functionality of objects, object management by classes, and management of classes
through two types of inheritance--single inheritance (a subclass is derived from one
superclass) or multiple inheritance (a subclass is derived from more than one superclass).
Thus an object-based language is a subset of a class-based language which in tum isa

subset of an object-oriented language.

2.1. Motivation for Object-Oriented Programming

The growing size and complexity of programs in software engineering led to the

motivation for object-oriented programming as different tools are needed to tackle the

various engineering problems. These problems include:

- High cost of software development and maintenance in delivering low
quality systems.

- The lack of good tools to create, use, access and interpret data according
to user specification.

- Development needed of sophisticated, self-documented, user-friendly
interfaces and extendible programming environments that can be easily
customized according to the users' requirements.

- The need for advanced tools for rapid prototyping, including the
development of libraries adapted for a wide range of applications.

- Improvements required both in the areas of heterogeneous knowledge
representation and programming environments that can provide several

programming paradigms to deal with problems according to their nature.
[Masini 1991]

It is conceivable that the concept of object-oriented programming will provide
some of the methodologies that will enable a programmer to develop better programs that

will in turn, hopefully, lead to reliable systems.

2.2. Popularity of Object-Oriented Programming

Why is object-oriented programming popular?

Object-oriented programming has adopted a set of principles that, if used, help
the programmer initially to tackle complex tasks. The basic principles of modularity
(splitting the problem domain into smaller manageable components that can be tackled
separately), abstraction (separation of concerns among different components), and
information hiding (concealing irrelevant detail at a particular level of abstraction), have

contributed to the popularity of the object-oriented programming paradigm.

As the name implies, the programming structure for an application is achieved
through using "objects”. Real world scenarios can be viewed as collections of objects
that have certain characteristics and operations which can be performed on those objects.
For example, automobiles are objects that consist of objects such as engine, accelerator,
brake, gear etc. and perform operations such as start car, depress accelerator, depress

brake, shift gear etc.

The object-oriented approach views the program as a "model” of the system being
studied consisting of a set of interacting "objects”, thus closely resembling real world

situations. If the software product is produced according to object-oriented principles,

the expectation is that it can be easily modified, extended and maintained, thus

promoting software reusability and interoperability of large complex systems.

As today's software is geared towards reusability, maintainability and
extendibility, the object-oriented programming paradigm offers some advantages over
traditional programming, making it a popular tool for developing complex systems in the

software industry.

2.3. Requirements for Object-Oriented Programming Languages

In order for a programming language to be classified as an object-oriented
language, certain requirements must be fulfilled. Some of these are the support for the
creation of objects and abstract data types, strong typing, encapsulation such that
information pertaining to specification and implementation are hidden appropriately,
inheritance, genericity, concurrency, some form of message passing between modules,

binding and the support for polymorphism characteristics (see Fig. 2.1). [Nielsen 1992]

Object-oriented
programming

Fig. 2.1: Object-Oriented Programming Language Requirements

Although most programming languages do not exhibit all the requirements, some
languages such as C++, Smalltalk etc. are capable of displaying many of these features

and hence are described as object-oriented programming languages.

3. Principal Features of Object-Oriented Programming

3.1. Objects

The concept of an object in an object-oriented programming language (e.g. C++,
Simula) is that it acts as a mechanism for modeling the problem domain of real world
situations. The entities in the problem domain are modeled as objects and the operations

pertaining to r=al world situations are modeled as methods for those objects.

An object can appropriately change its state, be manipulated, or relate to other
objects in the system according to the integrity, operations and invariant properties

defined for that object in relation to other components in the system.

Booch [1991] has defined an gbject as an entity that can be abstracted, classified
or categorized by its type, i.e. an object is an instance of a class. The class of an object
has associated with it a set of operations that are allowed on the objects belonging to that -
class. An object is denoted by a specific name that provides a unique identity for the

object and allows the user to distinguish it from other objects.

3.2. Classes

In object-oriented terms, each object in the system is viewed as an instance of a

class.

A class is defined as a collection of objects possessing similar attributes used to
determine their compatibility in a system. It is an implementation of an abstract data
type (ADT) that characterizes the behavior of an object as a set of properties and a list of
operations that can manipulate these properties. A class exhibits the property of data
encapsulation when the data in an object cannot be manipulated directly by other objects

in the system.

According to Henderson-Sellers [1992], a class is composed of features that can
be either attributes or methods. Attributes are defined as the class' variables that
represent the characteristics of the class rather than its behavior. Methods can be divided
into functions which query the state of the object, and procedures which change the state

of the object. The figure below illustrates the composition of a class.
CLASS

FEATURES METHODS

FUNCTIONS PROCEDURES

Fig. 3.1: Composition of a Class

1§

A class has two views associated with it, an éxtemal view and an internal view.
The external view refers to the class specification and is comprised of interface
functions which define the operations that can be performed on instances of the class.
The internal view represents the implementation of the class and is comprised of details
pertaining to data representation and implementation of the interface functions. It is
quite possible for a programmer to create more than one version of a class which
implements the same ADT, since the ADT is the specification and the class is the

implementation of the ADT.

In an object-oriented programming language, the concept of a class is supported
as one of the basic constructs in the language for the implementation of an object. The
purpose of class creation in an object-oriented programming environment is to reduce the

complexity of a large system through the use of different techniques.

Through the principle of modularity, a problem can be partitioned into smaller
manageable tasks. Independent entities are created and can be developed separately, thus
providing some sort of framework for the creation of software components that can be
easily modified and extended without a major redesign process. Also, by using classes
within a given application, software components are created that can be reused. This
may reduce the overall cost of the software product if a series of similar or related
products are constructed.

12

The abstract properties of an object and its operations are implemented as
variables and functions in the programming language and are defined in the class
interface. A class's variables and functions are called member variables and member
Junctions to differentiate them from other vanables and functions that are not part of a
class in C++. A syntax for class specification is as follows:

class class_name
{ private: declarations of the private members of the class

public: declarations of the public members of the class

¥

In the class definition, any member functions declared after the keyword "private”
are accessible only to other members of that class. The member functions declared after
the keyword "public” are the interface functions or methods for the users of the class and

are accessible from outside the class. Fig. 3.2 illustrates these concepts.

Ermeme—- infeal OCCENS €——— Extemal accen

Fig. 3.2: Data Encapsulation

13

3.3. Abstract Classes

Abstract classes are used for the purpose of deriving other classes, a method
called subclassing in object-oriented programming. By using object-oriented concepts,
the subclassing approach implies that new classes of objects can be defined through the
process of inheritance, encapsulation and behavior modification of an existing class.

Classes can also be derived from concrete classes.

An important point to note is that a class acts as a pattern for objects whereas an
abstract class acts as a pattern for classes. Abstract classes do not have implementation
details and thus cannot be instantiated. By identifying common behavior and
characteristics between various classes, a hierarchy of classes can be formed with an
abstract class as the root. Fig. 3.3 shows how abstract classes called Shape, Vehicle,
Bank Account were used to derive concrete classes such as Square, Rectangle, Polygon,

Car, Bus, Checking Account, Savings Account, etc.

SHAPE VEHICLE BANK
ACCOUNT

SQUARE RECTANGLE CAR Bus CHECKINGS SAVINGS

Fig. 3.3: Abstract Classes

Other characteristics of object-oriented programming include abstraction,

encapsulation, inheritance, polymorphism and dynamic binding.

14

3.4. Abstraction

One of the fundamental ways to cope with complexity is through the process of
abstraction which is a high level description of a complex entity. Abstraction can be

defined as follows:

"An abstraction denotes the essential characteristics of an object
that distinguish it from all other kinds of objects and thus provide
crisply defined conceptual boundaries, relative to the perspective

of the viewer." [Booch 1991]

Data abstraction allows for the definition of abstract operations on abstract data
types. Objects are instances of a class and they encapsulate the data called the instance
variables which are accessible only through the interface functions. Thus data abstraction
promotes modular programming where classes are encapsulated modules and the internal

states of their instances are manipulated only through accessible operations.

15

3.5. Data Encapsulation

Encapsulation is concerned with information hiding, which is the ability to hide
implementation details while providing a public interface to the "client”. Various
application modules using the objects are loosely coupled, and changes to the
implementation detail of the object can be made without major modifications rippling
through the entire system (which is often the case in structured programming). Without

changing their interfaces, encapsulated objects can be reused in different systems.

3.6. Inheritance

Through the process of inheritance, new classes can be derived from existing

ones. The existing class that serves as a mechanism for inheritance is called a base class

or superclass, and the new class that is derived from the base class is cailed the derived

class or subclass.

If a subclass is derived from one superclass, it is called single inheritance. Ifa
subclass is derived from more than one superclass it is referred to multiple inheritance.

Also, there can be more than one derived class from one base class.

16

PARENT CLASS

T P
L__voury
CHILD CLASS CHILD CLASS
int 5 Cc1 ; Cz
e —we]C2]
s e
it 0;, : vodfg;
CHILD lCLASS
ne m |3
1ol 10 it 90; [l defined in class
T inherited from parent
| woidh(; | N redefined in class

Fig. 3.4: Inheritance and Polymorphism

Usually, a base class defines a generic class of objects while a derived class
defines a specific class of objects. Thus one can create a hierarchy of related types where
code and interface can be shared. The derived class inherits the properties of the base
class and is a technique used for coping with complexity. Within a class hierarchy, one
can identify specialization and generalization processes in moving from leaf to root.
Specialization is the process of creating new specialized subclasses from the existing
class and generalization is the process of creating a superclass or parent class (see Fig.

34).

17

3.7. Polymorphism and Binding

Polymorphism enables one method name to be associated with many different
actions. This phenomenon occurs when a concrete operation inherits its definition and
properties from a generic operation, such as a name denoting objects of many different
classes all related by a common base class. Polymorphism allows a programmer to
provide the same interface to different objects. According to Rao [1993], there are three

different varieties of polymorphism:

"Inclusion polymorphism: An object may belong to many different types that
need not be disjoint. The object type may include one or more related types, as
found in subtyping. In the class hierarchy, objects belonging to a class in the
hierarchy are manipulatable as belonging not only to that type, but also to its
supertypes. Thus, certain operations on objects can work not only on objects of

the subclasses but also on objects of the superclasses.

"Parametric polymorphism: An implicit or explicit type parameter is used to
determine the actual type of argument required for each of the polymorphic

applications. Thus, the same operation can be applied to arguments of different

types.

18

"Ad hoc polymorphism: When a procedure works or appears to work on several
types, it is called ad hoc polymorphism. It is similar to overloading, and not

considered to be a true polymorphism."

Depending upon the processing time, polymorphism can be either static (resolved

at compile-time), or dynamic (resolved at run-time).

"Polymorphism at compile-time is a form of overloading and allows
a derived class to re-implement a service already implemented

in its parent class; objects of the derived class will then execute

the derived class' version of that service, while objects of the base
class still act according to the original definition of the service.

At runtime, polymorphism allows an object to reference objects of
varying class without having to specify the exact class of the

referenced object.”" [Wieland 1990]

19

Consider the example illustrated in Fig. 3.5.

wsrydrows{ro] pwe sowwyuroyuy Lyarezayyy ssey) :5°€ Sd

21diDads LOV4roOens -
4 ANNXNT
SLHOIS -
3NV DUV 4
STYIIHM-GI IDNV oduvD 3TN -
!u...L u:n;“_ NYARNIN ADVANOD

..(.o..u!.uo_uw _ _ _ _
MNINNISINND onuy sng NVA ¥YO

ANV ivog < <

NOOTIVE dMs
NILLODMAH ODNVYD ;!._/\.PIU.J
MY v3s OGNVl

20

Vehicles can be classified into light and heavy vehicles. Light vehicles can be car
or van. Similarly, heavy vehicles can be bus or truck. For instance, an operation such as
start automobile may be defined for all vehicles. Thus by inclusion, start automobile
will be applicable to car, van, bus or truck. But an operation such as accelerate may be
defined for car and bus. In this case, there is no concept of inclusion between car and
bus. Thus, the accelerate operation must be interpreted in the context of each call. By
using parametric polymorphism, the accelerate operation could be interpreted generally

to apply to all automobiles.

Thus inclusion polymorphism and parametric polymorphism can be applied to
these scenarios depending upon the definition of the operation which lies in the hands of

the programmer developing the application.

Another characteristic feature of object-oriented programming is binding
Binding refers to the time at which a decision is made concerning what function to

execute. There are two forms of binding--static and dynamic.

In static binding the decision as to which function to be called is made by the
compiler at runtime and depends mainly upon the scope rules of the language. In
dynamic binding the decision of which function to apply to an object is delayed until the
last possible moment namely to the time of execution of a program when a function is

actually called and this is dependent upon the class of the object itself. [Wieland 1990]

21

4. Benefits of Object-Oriented Programming

The key elements of object-oriented programming are object, class and

inheritance. Using these concepts give rise to certain benefits over traditional

programming methodologies.

Object-oriented programming can be viewed as one of the latest tools in the
software methodology that help the programmer to accomplish the task of problem
solving. Object-oriented programming exhibits different mechanisms that support the
following features:

- A high level of modularity for the support of loose coupling methods

- Encapsulation of data to support information hiding techniques

- Data abstraction for object creation

- Classification and inheritance mechanisms that provide reusability and

extendibility.

For a given application, by concentrating on data and behavior through the
process of modularity, different components can be identified as self-contained entities,
each consisting of a set of data and operations to manipulate it. Each of these
components are described as an object, an instance of a class. The advantage of using
objects is that the data is encapsulated and implementation details are hidden from

outside manipulation except through defined operations at a given interface level. Data

abstraction helps the programmer to represent changes to objects and their behavior

without affecting a drastic change to the entire system.

The characteristics of polymorphism along with dynamic binding allow a
programmer to concentrate on the operations performed on a data object without
worrying about the precise effect of the operation at runtime. Thus an application is
flexible in case there are later changes to be made to it. In addition, any changes made to
a class specification is limited to one place, namely the class itself, and do not cause a
ripple effect throughout the entire program wherever an object of that class has been
used.

The "class” construct in object-oriented programming supports abstraction and
modularity of an application by serving as the unit for modules. Through the use of
classes, it becomes easier to tackle complex problems by splitting them up into smaller

modules.

Through the process of inheritance, relationships and commonalties between
classes can be brought out in the class framework through related class hierarchies where
classes inherit features from their superclasses. Also, there is support for differential
programming where a new class of objects can be created by making few changes to an
existing class. Any enhancements made to the base class are propagated automatically to

its subsequent derived classes.

23

Object-oriented techniques provide a framework to define a class hierarchy where
the higher levels define general properties such as abstract concepts, common protocols,
shared code, and the lower levels define specific properties such as concrete

implementations of applications for complex systems.

There is the benefit of reusability in object-oriented programming. It seems more
feasible to write code once and have it used again and again rather than starting from
scratch or "reinventing the wheel” every time an application is developed. This can be
achieved by placing more emphasis on creating reusable classes that are well tested and

documented for future applications.

Inheritance, encapsulation, polymorphism and dynamic binding enable the reuse

and sharing of code between related classes and support flexibility, refinement and

modification of existing applications and systems.

24

S. Frameworks in Object-Oriented Programming

S.1. Definition of a Framework

A framework is a collection of concrete and virtual classes that defines a software
architecture intended to be reused for a specific purpose by different users and

applications (see Fig. 5.1).

OOP CONVENTIONAL
LIBRARY LIBRARY
FRAMEWORK MAIN
Mué\'nou LlBéRY
OBJECTS FUNCTIONS

Fig 5.1: Contrast between OOP and Conventional Libraries

5.2. An Example: MVC Framework

The Model-View-Controller (MVC) framework was designed as a tool to help
programmers develop graphical user interfaces (GUI) through the reuse of software
components paying particular attention to the presentation and interaction aspects of the

application. An important point is that the Model, View and Controller are independent.

One can improve software productivity by reusing user interfaces for different
applications and providing support for multiple ways of viewing and interacting with the
application model. For example, for a given model, some users may prefer to view their
data in the form of tables while other users may prefer viewing their data as graphs.
Different views can be mapped onto one model for a given application. Through this
process, the development cost involved in implementing the model is incurred only once

and different models can be presented with similar user interfaces.

The Model-View-Controller principle allows for the systematic development of
an interactive application. Any interface within this type of framework consists of three

components:

Model: A collection of objects representing the application domain of the user
interface.

View: A collection of objects that contribute to the user interface. Itisa
specification of how various aspects of the model are presented to the
user.

Controller: A collection of objects that control the flow of information between
the model and the view. It specifies how the user can interact with the

application by requesting changes either in the view or the model.

26

These three components constitute the MVC framework. The controller "C" is
responsible for handling the user input and communicates with the model "M” and view

"V" via message passing. Fig. 5.2 illustrates the MVC framework.

User Command

affect

Display Screen
update g

Fig. 5.2: MVC Framework

For example, a user issues a command to change data. The controller receives the
user's command and sends a message to the model requesting a change. The model
executes the appropriate procedures pertaining to the user's command and then notifies
the view that it has changed. As a result, the view inspects the current state of the model
and updates or redisplays the effects of a change in state to the user on the screen. A key

point to note is that the Model and View are independent.

A typical process for developing a software application under the MVC

framework is for the software developer to focus on the design and implementation

27

components with respect to the model. After completion of the model, the developers
search their library for reusable user interface components and select the appropriate
ones according to the user's requirements. Thus by varying the user interface, different

implementations are produced quickly.

In order to use the MVC approach, the system is decomposed into three
categories of objects, namely Model, View and Controller objects. Objects described in
the Model form the main composition of the system and are responsible for informing
Views and Controllers of changes in their state. Objects defined in the View are
responsible for graphical representations of a Model as defined in the specification of the
system. Objects defined in the Controller are responsible for controlling the flow of

information between Model and View, handling user interaction, etc.

5.3. Advantages of the MVC framework

Using the MVC framework offers the advantage of multiple viewing,

development productivity and quality for the development of an application or system.
[Goldberg 1990]

28

Multiple Viewing
As the Model and View are independent, a model can be mapped onto several
interfaces. For example, a cruise control system model can have different graphical user

interface such as analog, digital, graph etc.

Development Productivity

While retaining the model, it is possible to create new views and controllers
through the refinement of existing ones. Thus the reusability of existing MVC
framework components can significantly reduce the amount of programming required in

order to develop a system.

Quality
Through the reuse of existing components the quality of these components

improves as they undergo a refinement process under different circumstances and

environments.

29

6. An Application of Frameworks Control Systems

(Used in simulation of engines, heating systems, etc.)

Given an application for a control system, a framework can be constructed and
then object-oriented concepts applied to develop the system in an object-oriented
methodology. But do control systems have enough common features for a framework?
To answer this question, two simplified versions of real world applications are
discussed--an automobiie cruise control system and a home heating system. The

application is described in terms of the MVC framework which is good for simulation.

6.1. Application: Automobile Cruise Control System

An automobile cruise control system tries to maintain a cruising speed set by the
driver over varying terrain. There are external and internal factors affecting the cruise
control system. Some external factors are those pertaining to the environment such as
weather conditions, gradient of the road, condition of the road surface, friction, and
temperature of the environment. Internal factors are those that relate to the system itself

such as speed, accelerator pedal, brake pedal, vehicle weight, gear position etc.

6.1.1. Model

A model is defined by those classes which are specific to the components to
which it belongs. For example, the model associated with the cruise control system is an
instance of the World, Car and Cruise classes, which are all subclasses of the Model

class.

A model of the cruise control system can be constructed by examining the

features that affect the system.

External factors
World Conditions

Gradient- The gradient of the road surface (e.g. 35deg)
Weather- The driving weather conditions (e.g. clear, foggy,
snow, rain)
Road surface - The condition of the road surface (e.g. smooth, icy, wet)
Temperature - The temperature of the environment (e.g. 20C, -30C)

Friction - The force acting against the car

Internal Factors
Car Behavior

Setspeed- The speed set by the driver (¢.g. 100km/h)

3l

Pedal Change -The pedal change determines whether the car is braking or
accelerating to meet the set speed of the vehicle depending
upon the external factors of the environment.

Gear - The gear position of the car (e.g. 1,2,3.4)

Mass - The weight of the car (e.g. 1000kg)

Acceleration needed = Set speed - Current speed

The behavior of the car is simulated according to the environment factors and
tries to meet the desired speed as set by the user. The operations performed on the model

are Update World and Update Car.

6.1.2. View

The view constitutes the visual interface between the user and data. It describes
the various displaying formats the user can choose to view the data of the application.

For example the view can be in the following formats: digital, graph, analog etc.

6.1.3. Controller

The controller is responsible for controlling the flow of information between the
user and the application. The main operations in control systems are usually update
operations that produce a change on the data as desired by the user of the application. In

our example, the controller is responsible for updating the Model and View.

32

6.2. Application: Home Heating System

The function of 2 home heating system is to regulate the flow of heat in the home.
The user sets the desired temperature of a room in the home. Depending upon an
external factor such as environment temperature, heat dissipates accordingly to the
environment. By sensing the amount of heat required, the system controls heat flow to a

room.

6.2.1. Model

A model is defined by those classes which are specific to the components to
which it belongs. For example, the model associated with the heating system is an
instance of the World, Room and Thermostat classes, which are all subclasses of the

Model class.

A model of the heating system can be constructed by examining the features that

affect the system.

External factors

Temperature - The external temperature of the environment

Internal rs

Temperature - The internal temperature of the room

33

Furnace - The component that generates heat to the room
Volume - The capacity of the room
Thermostat - Sets the desired temperature of the room

Heat needed = Set temperature - Internal temperature

The behavior of the heater is simulated according to the environment factors and
tries to meet the desired heat in a room as set by the user. The operations performed on

the model are Update World and Update Room.

6.2.2. View
The view constitutes the visual interface between the user and data. It describes
the various displaying formats the user can choose to view the data of the application.

For example the view can be in the following formats: digital, graph, analog etc.

6.2.3. Controller

The controller is responsible for controlling the flow of information between the
user and the application. The main operations in control systems are usually update
operations that produce a change on the data as desired by the user of the application. In

our example, the controller is responsible for updating the Model and View.

In describing these control systems, the common features are identified. The

common feature of control systems is that they control the behavior of the system by

34

