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ABSTRACT
Minimum Error Tool Path Generation Method
and

An Interpolator Design Technique
for Ultra-precision Multi-axis CNC Machining

Hong Liang, Ph.D.

Concordia University, 1999

This thesis investigates an ultra-precision multi-axis CNC machining problem encountered in
machining sculptured surfaces. Conventional multi-axis CNC machining uses straight line
segments to connect consecutive data points, and uses linear interpolation technique to
generate the command signals for positions between machining data points. However, due
to the multi-axis simultaneous and coupled translational and rotational movements, the actual
machining motion trajectory is a non-linear curve. The non-linear curve segments deviate
from the linearly interpolated straight line segments, resulting in non-linearity errors, which

in turn cause obstacles to ensuring high precision machining.

The problem in multi-axis CNC machining is that non-linearity errors result in total
machining error which is beyond the range of the machining tolerance. The problem arises
from the fact that the linear interpolation technique generates commands for positions along
a straight line segment, while rotational movements superimposed onto translational
movements cause the cutting point moving along a curved machining motion trajectory. The
machining motion trajectory depends on both multi-axis CNC machine tool configuration and

the machining rotational movements. The machining rotational movements are kinematically

iii



related to cutter orientation variations. Thus, The factors causing the multi-axis CNC
machining error problem are the spatially varying cutter orientations and the utilization of

linear interpolation method .

A novel off-line tool path generation methodology for is developed and reported in
this thesis in order to solve the non-linearity error problem in ultra-precision multi-axis CNC
machining. The new off-line tool path generation method reduces non-linearity errors by
modifying cutter orientation changes based on machine kinematics and machining motion
trajectory. A software routine for implementing the new tool path generation methodology
is developed. A simulation of the process for machining a sculptured surface by applying the

novel methodology illustrates that it increases machining precision considerably.

A novel interpolator design technique for solving the non-linearity error problem in
ultra-precision multi-axis CNC machining is also presented. A 3D circular interpolation
principle is developed which is capable of tracking spherical curves with low position errors
and uniform feedrates. On the basis of this (3D circular) interpolator, a combined 3D linear
and circular (L&C) interpolator is proposed for five-axis CNC machining. The proposed 3D
L&C interpolator is able to drive the pivot of rotational movements along a predesigned 3D
curve and conduct the cutting point along a linear spatial path, so that the elimination of non-
lineanty errors in five-axis CNC machining is achieved. A software interpolation routine of
the 3D L&C interpolator is developed, and a computer simulation illustrating the machining

of a sculptured surface validates the novel technique.

iv



ACKNOWLEDGEMENT

I would like to extend the sincerest gratitude and appreciation to my thesis
supervisors, Dr. J. Svoboda and Dr. H. Hong, for their time, encouragement, guidance and
directive supervision, moral and financial support during the course of this research. [ feel
extremely fortunate to have had the opportunity of working with them and sharing their
experience and insight. I am grateful to my former thesis supervisors, Dr. R. Cheng and Dr.

C. Wu, for giving me the opportunity of experiencing the current industry issues.

In addition, I would like to thank Mr. T. Luong and Mr. L. Gagnon, of Pratt &
Whitney Canada Inc., for many useful discussions, suggestions and comments [ have received

from them through this research.

Last but not least I owe many thanks to my family and especially my parents for their
encouragements and help at all stages of my studies. I am very grateful to my husband and
my daughter for their patience, encouragements and support during this work. Without their

unwavering support this would not have been possible.



TABLE OF CONTENTS

Page

LIST OF FIGURES ... iX
LIST OF TABLES e xi
NOMENCLATURE ..o Xii
LIST OF ABBREVIATIONS e Xvi
CHAPTER | INTRODUCTION

1.1 CNC Machining, NC Programming and Postprocessing ................... 1

1.2 Sculptured Surfaces Machining Methods ... 4

1.3 Multi-Axis CNC Machining Characteristics and Machining Errors ... 9

1.4 The Non-Linearity Error Problem in Multi-Axis CNC Machining ... 13

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction U PSR USSR 13
2.2 Tool Path Generation Approaches ... 17
2.3 Command Generation Techniques ... 30

CHAPTER 3 THE OBJECTIVES

3.1 Thesis Objectives 40

3.2 Thesis Outline and Methodology ... . 42

CHAPTER 4 MINIMUM ERROR TOOL PATH GENERATION METHOD

4.1 Introduction ... 45
4.2 Five-Axis CNC Machining Tool Path Generation Methods ... 46
4.3 Development of Machine Kinematic Models ... 58
4.4 Development of Machining Motion Trajectory Model ... 73
4.5 Minimum Error Tool Path Generation Methodology — .................... 79
4.6 Software for Implementing the Algorithm ... 83
4.7 SUMMATY e 85



Chapter 5. AN APPLICATION OF THE MINIMUM ERROR TOOL PATH

GENERATION METHOD
S.1Introduction 87
5.2 Case Study Using the 'Linearization Process’ ... 87

5.2 Case Study Using the 'Minimum Error Tool Path Generation Method' 89

Chapter 6. A 3D COMBINED LINEAR AND CIRCULAR

INTERPOLATOR DESIGN TECHNIQUE

6.1 Introduction ..............ccoiiiiii i 97

6.2 The Conventional Interpolation Methods .................. . ... ... .. 99

6.3 The 2D and 3D DDA Linear Interpolation Principles .. ... 102
6.4 The 2D DDA Circular Interpolation Principle ... . T 107
6.5 Development of a 3D DDA Circular Interpolation Principle .. ... .. [11
6.6 A 3D Combined Linear and Circular Interpolation Principle ............... 122
6.7 The Software Interpolation Routine ....................................... 128
6.8 SUMMAry ... . 131

CHAPTER 7 AN APPLICATION OF

THE INTERPOLATOR DESIGN TECHNIQUE

7.1 Introduction 133
7.2 Interpolation Preparatory Data Processing .................................... 133
7.3 Simulation of Machining Airfoil Surfaces Using Linear Interpolation ... 138
7.4 Simulation of Machining Airfoil Surfaces Using

the Proposed Interpolator. ... 143

vii



CHAPTER 8 CONCLUSION & RECOMMENDATION FOR FUTURE RESEARCH

8.1 Conclusion . 149
8.2 Recommendation for Future Research ... 152
BIBLIOGRAPHY e 155
APPENDIX A Development of Machine Kinematic Models ................. 163
APPENDIX B Development of Cubic Spline Representation of
ToolPath ... .. . 177
APPENDIX C Development of a Combined 3D Linear & Circular
Interpolation Principle ... 184

viii



Figure 1.1

Figure 1.2

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4 4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

LIST OF FIGURES

A Schematic of the Point Milling Process  ......................... 8
The Multi-Axis CNC Machining Errors ... 11
Airfoil Surfaces of An Impeller ... 52
The Marginal Point Technique for Determining

Point Milling Cutter Orientation ... ... 54
The Bind Inclining Technique for Determining

Flank Milling Cutter Locations ... .. ... 56
The Home Position of the OM-1 Milling Centre ... 60
Schematics of Rotation Transformation ... 63
The Rotations about the Moving and Fixed Frames ... 67
Position Change due to Rotation in x-z Plane ... ... . 75
Position Change due to Rotation in x-y Plane ... .. 77
A Machining Position of the OM-1 Milling Centre ................. 78
Flow Chart of the 'Minimum Error Tool Path Generation

Method' Software ... 84

ix



Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

2D Linear Interpolation ... ... 103

3D Linear Interpolation ... SRR ... 106
2D DDA Circular Interpolation ... 108
3D DDA Circular Interpolation ... 116
Flow Chart of the 3D Linear & Circular Interpolation Routine.... 130

The Cutting Curve on the Blade Surface

in Workpiece Coordinate System ... 140
The Cutter Locations for Machining the Blade Surface ............... 140
The Linearly Interpolated CC Point Path ... .. 142

The Interpolated Pivot Point Path by the 3D L&C Interpolator ...... 146

The Interpolated CC Point Path by the 3D L&C Interpolator ........ 147



Table 5.1

Table 5.2

Table 5.3

Table 6.1

Table 7.1

LIST OF TABLES

Sample NC-codes from the AIGP's Linearization Process  ........ 90
Sample Modified Rotary Angle Changes & Cutter Orientations..... 93
Machining Errors at Sample Moves ... 95
3D DDA Circular Interpolation Errors ... 121
Comparison of the Machining Errors from the Linear Interpolation

Method and the '3D Combined Linear & Circular Interpolation

Technique' ... .. U TRUPOPR R 148

xi



NOMENCLATURE

rotation angle about the machine B, axis

assumed fixed rotational axis

rotation angle about the machine C, axis

assumed fixed rotational axis

machine rotational variables

machine rotational variables

moving rotational axis

moving rotational axis

the start coordinate of the B,, axis rotation movement for each move
the start coordinate of the C,, axis rotation movement for each move
the end coordinate of the B,, axis rotation movement for each move
the end coordinate of the C,, axis rotation movement for each move
difference between the interpolated x-point and the end point of the
segment

difference between the interpolated y-point and the end point of the
segment

difference between the interpolated z-point and the end point of the
segment

the rotation pivot of the B,, axis and the C,, axis

fixture length (in chapter 4)

feedrate (in chapter 6&7)

interpolation period

workpiece stacking position

tool gage length

segment length

interpolation increment

segment length in x-axis direction

xii



L, segment length in y-axis direction
L, segment length in z-axis direction
the x-coordinate of the workpiece frame origin w. r. t. the machine

coordinate system

o the y-coordinate of the workpiece frame origin w. r. t. the machine
coordinate system

o, . the z-coordinate of the workpiece frame origin w. r. t. the machine
coordinate system

o, .. the rotated x-coordinate of the workpiece frame origin w. r. t. the
machine coordinate system

o, .. the rotated y-coordinate of the workpiece frame origin w. r. t. the
machine coordinate system

o, . the rotated z-coordinate of the workpiece frame origin w. r. t. the
machine coordinate system

pB position of the B, axis pivot

pC position of the C,, axis pivot

R rotation transformation matrix

A, the i-th interpolated increment in x-axis

AY, the i-th interpolated increment in y-axis

Az, the i-th interpolated increment in z-axis

P direction cosine of cutter orientation angle o

i direction cosine of cutter orientation angle §

kK direction cosine of cutter orientation angle v

kk ..... surface local curvature

r distance between the cutter contact point and the rotation pivot P

n, the unit normal vector to the y-z coordinate plane in Cartesian
coordinate system

n, the unit normal vector to the x-z coordinate plane in Cartesian

coordinate system

xiii



n, the unit normal vector to the x-y coordinate plane in Cartesian
coordinate system

P cutter vector

P cutter vector on horizontal plane

P spindle vector

Pl cutter vector parallel to the spindle vector

X cutter position x-coordinate w. r. t. the workpiece coordinate system

Y cutter position y-coordinate w. r. t. the workpiece coordinate system

z cutter position z-coordinate w. r. t. the workpiece coordinate system

Xp e cutter position x-coordinate on a horizontal plane

Yo o e cutter position y-coordinate on a horizontal plane

Z,2 cutter position z-coordinate on a horizontal plane

x rotated cutter position x-coordinate w. r. t. the "fixed" axes

y.oo rotated cutter position y-coordinate w. r. t. the "fixed" axes

28 rotated cutter position z-coordinate w. r. t. the "fixed" axes

S machine translational variables

Yo e machine translational variables

Z, machine translational variables

Xp e x-coordinate of the rotation pivot P w. r. t. the machine coordinate
system

Yoo oo e y-coordinate of the rotation pivot P w. r. t. the machine coordinate
system

zZ, e z-coordinate of the rotation pivot P w. r. t. the machine coordinate
system

Xe e x-coordinate of the cutter contact point

Yo o e y-coordinate of the cutter contact point

Z. e z-coordinate of the cutter contact point

Xo e x-coordinate of the start point for each segment

Yo oo e y-coordinate of the start point for each segment

xXiv



z-coordinate of the start point for each segment
x-coordinate of the end point for each segment
y-coordinate of the end point for each segment

z-coordinate of the end point for each segment

the linearly interpolated rotation centre x-coordinate

the linearly interpolated rotation centre y-coordinate

the linearly interpolated rotation centre z-coordinate

cutter axis orientation angle relative to the x axis of the workpiece

coordinate system
.......... cutter axis orientation angle relative to the y axis of the workpiece

coordinate system

cutter axis orientation angle relative to the z axis of the workpiece

coordinate system

segment length between a pair of adjacent points
allowable non-linearity error

non-linearity error

maximum non-linearity error

linearity error

linear interpolation scale factor

circular interpolation scale factor

the latitude angle

the longitude angle

the rotational movements interpolation parameter

xv



LIST OF ABBREVIATIONS

AIGP = automation intelligence generalization postprocessor
APT = automatically programmed tools
BLU = basic length-unit

CAM = computer-aided manufacturing
CC = cutter contact

CLDATA = cutter location data

CNC = computer(-ized) numerical control
DDA = digital differential analyzer

FRN = feedrate number

ipm = inch per minute

L&C = linear and circular

MCP = machine control point

MCU = machine control unit

NC = numerical control

OM-1 = OMINIMILL series-1i

rpm = revolution per minute

2D = two-dimensional

3D = ihree-dimensional

Xvi



CHAPTER 1

INTRODUCTION

1.1 CNC Machining, NC Programming and Postprocessing

Computer-aided manufacturing (CAM) is the utilization of computers to assist in the process
of manufacturing. CAM includes the on-line and the off-line applications of the digital
method. Computer Numerical Control (CNC) machining is the on-line application, which uses
a computer with a machine control unit (MCU) to generate commands for controlling the
machining process. The off-line application is the utilization of computers in production
planning and non-real-time assistance in the manufacturing processes. Examples of off-line
CAM are the preparation of NC part programs (referred also as tool paths) or the display of

the tool paths in machining simulation.

In CNC machining, the MCU plays a key role in the on-line control of machining. The
functions of the MCU include (1) reading and decoding the information from the tool path
data and distributing the data among the controlled axes; (2) the tool centre control,
automatic tool selection, and the various compensation functions; (3) the feedrate
calculations, and the preparatory functions, the spindle motions and the miscellaneous
functions control; (4) the interpolation to supply velocity commands between successive data
points; (5) control of simultaneous multi-axis movements; (6) on-line diagnostics and
troubleshooting; (7) display of machining information on the CRT screen and (8) the

communication between the MCU itself and the external devices. The overall design of a



CNC system first requires the selection of the appropriate control techniques (reference-pulse
or sample-data) and the optimal setting of the control-loop parameters. Subsequently, the
appropriate interpolation routines must be written. The function of interpolation is to generate
the successive tool positions, called commands, for each segment of the cutting curve based
on the initial and the final machining tool positions and the desired temporal parameters such
as feedrates. The interpolation method is the core of the CNC system, since the accuracy of
calculated intermediate position directly affects the machining precision of the whole system
and the time for computing the intermediate positions directly affects the controlled axis

velocity, which in turn, affects the quality of the machined surface and the machining time.

The off-line application of CAM includes NC part programming and postprocessing.
NC part programming involves the collection of all data required to produce the part, the
calculation of a tool path along which the machine operations will be performed, and the
arrangement of the given and calculated data in a standard format which could be converted
to an acceptable form for a particular CNC machine. Most CAM systems generate one or
more types of neutral language files containing instructions for CNC machining. The
Automatically Programmed Tools (APT) language is the most comprehensive and popular
system for NC part programming. The APT language enables a programmer to provide the
MCU of a CNC machine with geometric descriptions of the workpiece surfaces and to specify
the tool movements. The output of the APT system, which is called the cutter location data
(CLDATA), defines the tool path with machining conditions (the feedrate, depth of cut and

the spindle speed). In order to realize the machining, the neutral instructions must be

(5]



transformed to the specific instructions required by a particular machine tool. The

postprocessors are the interfacing tools between APT systems and CNC machines.

A postprocessor is a software which is used for translating neutral instructions from
the APT system into the specific instructions required by a CNC machine tool. The CLDATA
defines the tool path with cutting conditions in the part coordinate system. Each Machine
Control Unit/Machine Tool (MCU/MT) configuration, however, has its own machine
coordinate system. Therefore, a postprocessor translates the CLDATA in a part coordinate
system to the NC-codes in the machine coordinate system. With the APT part programming
standard, the postprocessor writes the instructions as a series of commands in a standard
format. Each command contains all required data: the preparatory functions codes (G codes)
for preparing the MCU to perform a specific mode of operation; the miscellaneous function
codes (M codes) which pertain to the auxiliary information; the geometry descriptions of the
workpiece dimensions and cutting conditions, such as the feedrate, the spindle speed and the
tool words. A postprocessor usually consists of five elements: input, motion, auxiliary,
output and control. The main portion of a postprocessor is the motion element which includes
the geometric and the dynamic packages. The geometry package performs the coordinate
transformation of CLDATA from the part coordinate system into NC-codes in the particular
machine coordinate system. It also checks the tool path and makes corrections where
necessary to ensure that the tool path is within the specified machining tolerance. In addition,
the geometric package prevents the movement instructions to the MCU from exceeding the

machine tool axes limits. The dynamic package modifies the feedrates where necessary and



establishes the distances for acceleration and deceleration to prevent overshoots and

undershoots.

1.2 Sculptured Surfaces Machining Methods

A surface that can only be represented as the image of a sufficiently regular mapping of a set
of points in 2 domain into a 3D space is called sculptured surface [1]. A sculptured surface
can be represented by a set of curves that connect the design points of the surface. Two main
approaches are commonly used for obtaining the curved surfaces: the first approach exploits
the parametric curves representation, while the second uses contouring planes (frequently,
geometrically equally-spaced parallel planes) to intersect the surface for obtaining a curved

surface.

In the first approach. straight lines in a parametric domain are used to define the
parametric curves P(u,v) on the actual surface in Cartesian space. By setting one parameter,
say v, a set of cutting curve functions P(u, v;) defines the entire surface. The parametric
curves approach includes schemes of the isoparametric curves and the variable parametric
curves. With isoparametric curves, tool paths are uniformly distributed across the parametric
domain. The step-over interval (which is the distance between tool passes, referred to as
cutting curves) is the same in the parametric domain. The step-forward distance (which is the
segment length along a cutting curve) is the same in the parametric domain and are
independent of the surface geometric properties and of the machining tolerances. This

approach is simple and generally efficient because the tool contact curves are easy to retrieve



from the surface definitions. However, because the geometric properties of the machined
surface are not taken into account, the relationship between the parametric coordinate and
its corresponding Cartesian coordinate is not uniform. Therefore, the accuracy and efficiency
of the isoparametric surface representation may vary depending on the geometry of the
machined surfaces. With variable parametric curves representation, the tool path is generated
by using the local geometric properties of the machined surface (the local surface tangents,
normals and curvatures). The step-forward distance and the step-over interval determined on

the basis of these geometric properties will vary over the machined surface.

Using the contouring planes approach, the resulting numerically derived non-
parametric curves are used to drive the milling tools. With this approach, the tool path
generation can be carried out by employing either the offset surface method or the direct
intersection curves techniques. The offset surface method involves the computation of the
offset surface of the machined surface, after which, the intersection curves of the cutting
planes with the offset surface will be the path of the cutter centre of a ball-end mill. In this
method, the cutter contact (CC) point path is a space curve. In contrast, using the direct
intersection curves technique, the CC point moves along the intersection curves of the cutting
plane with the machined surface, so that the CC point path is a plane curve on the cutting
plane. The cutter centre in this case, in general, moves along a space curve. For unbounded
surface machining, both the direct intersection curve technique and the offset surface method
can be used to generate tool paths. Usually, the direct intersection curve technique results in

a preferable tool path because the CC points are 'restricted’ to the cutting plane. However,



when machining bounded surfaces (which are bounded on one or more sides by surfaces) the
offset surface technique is easier. In this case, the cutter centre moves along a plane curve,
which is formed by connecting the intersection curves of the cutting plane with the offset
surface and the bounded surfaces. With the contouring curves representation method, the
variable step-forward distance and step-over interval can be determined by using the local
surface geometry and the machining tolerance. The advantage of the contouring plane curves
method is that the tool path is a plane curve, so that the distributed tool path is relatively
uniform. However, the method requires proper selection of cutting planes, in that the spacing

and the direction of the cutting plane must be properly determined.

Common methods for machining sculptured surfaces include point milling, end milling
and flank milling techniques. Point milling technique is the traditional machining approach,
in which ball-nosed end-mills with either the cylindrical shape or the conical shape are used.
[n point milling, a curved surface is cut by the ball-end of a cutter following a dense set of
parametric curves on the mathematically modelled surface interpolating the surface design
curves [2, 3]. The historical reasons for using the ball-end mill are that (1) it is easy to
position in relation to curved surfaces, (2) ball-end mills generally require simple and short
NC machining programs, (3) ball-end mills often only require two-dimensional cutter
compensation [4]. In addition, conical shaped ball-end mills are especially suitable for
machining long twisted surfaces with narrow slots between the surfaces because conical
shaped cutters provide rigidity and prevent tool chatter. The major advantage of using point

milling technique is that almost any smooth surface can be point milled. Ball-end mills,



however, cut along an arc that extends from the cutter axis to a point on the spherical profile
of the ball-end. During machining, the cutting point on the spherical surface changes, which
results in a variation in cutting speed. When the cutting point is at the portion of the sphere
near the axis of rotation, the cutting speed is nearly equal to zero which produces a rough
surface. Another disadvantage of point milling is that by its nature, it produces scalloped
surface finish. Fig. 1.1 shows a schematic of the point milling process [3]. The height of the
scalloped ridges is directly related to the ball-end radius and the number of cuts over the

surface.

When machining the flat or low curvature surfaces, end mills with square ends are
used. The profile of an end mill can be made to closely match that of a curved surtace by
inclining it correctly to the surface normal. The effective radius of curvature of the profile of
an end mill can vary from infinity to the cutter radius, as the inclination of the cutter to the
surface normal changes from zero to 90 degrees [4]. Hence. compared to the ball-end point
milling, a better geometric match can be achieved by using end mills. End-milling also
produces scalloped surfaces, but the scallop height on the machined surface can be reduced
by properly inclining the cutter. Another important factor with end milling is that the material
is always cut at the periphery of the cutter at a full and predetermined cutting speed. It is easy
to ensure a constant feedrate and thus to obtain better surface finish. However, end mills pose
tremendous difficulty in the calculaticn of collision-free cutter orientations for complicated
machining. While the end milling technique is suitable for machining of large low-curvature

surfaces, it is not the best choice for machining long and twisted or high-curvature surfaces.
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Figure 1.1 A Schematic of the Point Milling Process



The flank milling technique enables a tremendous increase in productivity and
improvement on surface finish for machining sculptured surfaces. In flank milling machining,
ball-nosed end-mills with either cylindrical shape or conical shape are commonly used. By
using flank milling, the curved surfaces are cut by both the cutting edges on the ball-nose and
on the side surface (either conical or cylindrical ) of a cutter. In conventional flank milling the
entire surface is obtained after one single pass of the cutter through the blank material [2, S,
6, 7]. The flank milling technique tends to give a good, clean surface finish. This is a
productivity improvement factor because it reduces the time required for surface polishing.
However, tool path generation for flank milling machining is very complex. It is generally
held that a curved surface is flank millable if it can be closely approximated by a ruled surface
[8]. Furthermore, the milled surface may deviate from the ruled surface (sometimes quite
significantly) owing to the twist of the surface along a straight line element. In fact. Wu [2]
demonstrated that the ruled surtace criterion for tlank milling is neither necessary nor
sufficient. Many complex arbitrary surtaces are closely flank millable and can be rendered

exactly flank millable with one or more passes per surface.

1.3 Multi-Axis CNC Machining Characteristics and Machining Errors

For machining sculptured surfaces, a tool path is required to contain the spatially varying
cutter positions and its axis orientations (referred to as the cutter locations) in order to
achieve better cutter accessibility for machining non-single-valued surfaces. Five-axis CNC
machining provides more flexibility for the realization of these cutter location spatial changes.

In fact, rotational movements themselves in five-axis CNC machining provide better cutter



accessibility and also result in better surface finish. However, five-axis CNC machining
involves complex kinematic issues. The coordinated translational and rotational movements
are non-linear functions of the cutter locations. These coordinated motion functions not only
depend upon the machine configuration, but also upon the machining set-up information, such
as the relative positions of the fixture and the part mounted on the machine. A different set
of functions is required for each CNC machine tool configuration. In addition, the
simultaneous translational and rotational movements are involved, because each new cutter
axis orientation requires the motion of at least one other (usually more) axis  There are also
coupling effects of the rotary movements on the translational movements, because changing
the orientation of the cutter axis will affect the position of the cutter. These simultaneous and
coupled movements cause the cutter contact point (CC point) moving in a non-linear manner.

As a result, the total machining error in each motion step is made up from two sources.

Many factors contribute to CNC machining errors. One of the factors is due to the
MCU interpolation method. Conventional CNC machines support the functions of 2D or 3D
linear and 2D circular interpolations. The most common method in multi-axis CNC machining
is the 'position contouring’ technique. Essentially, this method connects a straight line between
each consecutive machining data point and then linear interpolation is used to generate the
required commands for positions along each straight line segment. As shown in Fig.1.2, a line
segment is used to connect two consecutive machining data points (the spindle chuck is the
machine control point, MCP) either for the machining of a concave desired surface (a) or

for the machining of a convex desired surface (b). Linear interpolation generates intermediate
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position points along the line segment. The desired surface is the design cutting curve (either
concave or convex). The linear segment approximates the design cutting curve resulting in
the linearity error, 8, Apart from the linearity error, there is an additional machining error in
five-axis machining. Due to cutter orientation changes, the actual cutter contact point
trajectory is a non-iinear segment (since the cutter gage length is constant and MCP is
interpolated along the line segment), rather than a line segment. The CC point's non-linear
trajectory deviates from the linearly interpolated line segment resulting in the additional
machining error, referred to as the non-linearity error, 8. Thus, the total machining error for
each machining step includes the linearity and the non-linearity errors. In the case that the
desired surface is concave cutting curve (see Fig. 1.2a), the total machining error equal to the
difference of the non-linearity error from the linearity error: 8, = &, -8, (since the non-
linearity error is usually smaller than the linearity error). That is, the non-linearity error
compensates the total machining error. Theretore, it is not required to reduce the non-linearity
error. In other words, the 'position contouring' technique with linear interpolation is desired
for machining of concave surfaces, since the total machining error is reduced by the non-
linearity error. On the contrary, for the machining of convex surfaces as shown in Fig.1.2b,
the total machining error for each machining step is the sum of the linearity error and the non-
linearity error: 8, = 8, +4,. That is, non-linearity errors add onto linearity errors resulting
in bigger total machining errors, which commonly cause difficulties for ensuring ultra-
precision machining requirement. Therefore, it is desired to treat the non-linearity errors in
order to meet high precision machining requirement. Non-linearity errors depend upon the

five-axis machining motion trajectory, which is a function of a particular CNC machine



configuration and machine rotational movements. Because rotational movements are
kinematically related to the cutter orientation changes, non-linearity error depend upon the

cutter orientation change.

1.4 The Non-linearity Errors Problem in Ultra-precision Five-Axis CNC Machining

In conventional five-axis CNC machining, linear interpolation method is used with the
'position contouring' technique to generate command signals for driving controlled multi-axis
motions. The actual machining motion trajectory for each step, however, is a non-linear path
segment which deviates from the linearly interpolated straight line segment resulting in a non-
linearity error. In ultra-precision five-axis CNC machining of convex sculptured surfaces
(hereafter it is referred to as sculptured surfaces), such non-linearity errors commonly cause
the total machining error out of the range of the specified machining tolerance. As a result,
these non-linearity errors prevent the assurance of high precision machining. The nature of
the problem is that the spatially varying cutter orientations require the motion of at least one
other (usually more) rotational axes. The rotational movements are superimposed onto the
translational movements, causing the actual cutter contact point to move along a curved
segment. While linear interpolation method cannot tracking along the curved paths, non-

linearity errors are resulted and cause difficulties in ultra-precision five-axis CNC machining.

The ultra-precision multi-axis CNC machining error problem is an important problem
in current industry. The problem is that for machining sculptured surfaces using 'linearization

process’ existing in the current postprocessors, the machine translational axes movements (at

13



some points) are very small or even do not move while the rotational axes move randomly and
rapidly. As a result, the machining tool trajectories are random curves and this damages the
workpieces. When a looser machining tolerance is specified, the problem appears to be
reduced but the machining precision requirements are lost. Without knowing the cause and
nature of the problem, it was normally called the 'linearization problem' in workshops. In
order to discover the nature of the problem and define it clearly, investigation and analysis
based on the phenomenon in the actual machining process were carried out by the author at
Pratt & Whitney Canada, Inc. Through the investigation of the actual machining process, the
nature of the problem was revealed as described above. For the purpose of this thesis, the
problem is defined as 'the non-linearity errors problem in ultra-precision multi-axis CNC

machining'.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Theories and algorithms which relate shapes and geometries of CAD models to the path and
motion controls of CNC machine tools constitute a subject area called 'motion intelligence’
[9]. This area of concerns, consists mainly of three categories: (1) CAD models to tool path
conversion, (2) Tool path to motion trajectory conversion, and (3) Motion trajectory

realization (which deals with control theory and controller design of CNC machine tools).

The category of CAD models to tool path conversion deals with the issues such as the
surface representation methods and the generation of corresponding tool path. In machining
sculptured surfaces, the off-line part programming approaches are utilized, in which the CAM
systems divide the design surface into a set of line segments that approximate the design
surface with the desired tolerance. The end points of each segment and the geometric
properties of the machined surface are then used to generate the cutter locations data
(CLDATA). These CLDATA are further processed by postprocessors to produce NC-codes
for machining realization. The generation of CLDATA and NC-codes are the issues of the
tool paths generation in category (1). The present CLDATA generation approaches consider
only the geometry of the machined surfaces, and disregard the machine-dependent machining
kinematics. As a result, the generated tool paths (the machining NC-codes transformed from

these CLDATA) commonly cause obstacles to meeting the machining precision requirements,

15



particularly for the cutter orientation generations in five-axis CNC machining. Cutter
orientation variations in five-axis CNC machining are kinematically related to the machining
rotational movements, which in turn are functions of the machining motion trajectory as well
as machining errors. Therefore, the problem with present off-line tool path generation
approaches is that the real machining kinematics are not directly incorporated. To ensure
machining precision, cutter orientation generations must be based not only on the geometry
of the machined surfaces but also on the machine-dependent machining kinematics. Although
there are procedures in postprocessors to remedy the machining errors problem caused from
the off-line tool path generation approaches, other undesired consequences raise additional
problems as will be explained below. In this chapter, the existing CLDATA generation
approaches and the existing methods for treating non-linearity errors are reviewed (in section
2.2). Furthermore, the deficiencies of the present tool path generation approaches for actual

multi-axis CNC machining are shown.

The off-line part programming produces NC-codes which are fed into the MCU of a
CNC system. The interpolator in the MCU processes the NC-codes to generate the reference
commands for control loops that drive the machine axes motion. The conversion of tool paths
into motion trajectories is the issue of category (2), referred to also as the '‘command
generation'. The command generation involves kinematics of coordinated motion, machine
dynamics, and interpolator design. The study of machining kinematics requires the machine
kinematic models which reveal the machining geometry and time-based properties. In section

2.3, the kinematic modelling techniques used in practice are reviewed first. Then, the issues
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of interpolator design are discussed. Present five-axis CNC machines utilize linear interpolator
to generate and convert data positions into machining trajectories since most conventional
CNC machine tools provide only linear (2D and 3D) and circular (2D) interpolators. Although
the linear interpolation is the simplest approximation, it generates intermediate positions along
a straight line which results in inherent machining errors, and the applications of linear
interpolations have the drawback of velocity discontinuity occurring at the end points of each
segment. Thus, acceleration and deceleration at each line segment is required, which produces
less smooth curves while substantially increasing machining time. To adapt the practical
demands required from interpolation schemes, research has been carried out, aimed mainly
on 2D curved interpolation techniques that will result in less interpolation position error and
maintain velocity continuity at the segment end points for three-axis machining. Five-axis
CNC machining involves 3D simultaneous rotational and translational movements, and
current linear interpolation techniques are not able to trace the 3D non-linear machining
motion trajectory. Finally, the current status of interpolation techniques from the literature
are reviewed. From which, it is concluded that there exists insufficient research work on
interpolator designs for multi-axis CNC machining, in particular with respect to new designs

of 3D curved interpolators.

2.2 Tool Path Generation Approaches
The goal for tool path generation is to create a machined surface which closely approximates
the CAD designed surface within a certain prescribed tolerance. The concept of tolerance is

central to manufacturing, and its importance cannot be over-emphasized. Therefore, the
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errors introduced by tool path generation algorithms, namely, the errors caused by using the
linear segment to approximate the desired machining curve must be bounded. Machined
surfaces must be gouge free, and the scallop height between tool paths must be controlled.
Below, the CLDATA generation approaches and its related research works are discussed
first. Afterward, the current methods for generating NC-codes and issues related to these

methods are outlined.

The generation of CLDATA (hereafter referred to as tool path generation), may be
carried out through two different approaches: direct tool path generation, and generation of
CLDATA from the cutter contact data (CC data). In direct tool path generation, a tool is
dropped onto the surface with the following constraints: the cutter axis must be in a vertical
plane, and the intersection point of the cutter axis and the surtace normal is the position data
of the CLDATA. The CC data are then calculated from the cutter radius and the surface
normal. Three-axis machining uses this method. For five-axis machining, this approach is
complicated by difficulties in finding the contact points between the tool and the surface, as

well as in finding the best cutter axis orientation.

Using the second approach, tool paths are obtained on the basis of CC data. The
techniques for generating CC data are related to the surface representation methods.
Sculptured surfaces are usually represented either by parametric curves or by contouring
plane curves as mentioned in section 1.2 . Using the parametric curves approach, a sculptured

surface can be generally characterized by a bivariate parametric vector function p (u,v), which
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represents the spatial coordinates of surface points. By keeping one parameter (v for instance)
constant, the surface definition p(u,v) is reduced to a three-dimensional space curve
dependent only on one parameter (u). One possible straight forward approach to generating
CC data is based on incrementing the parameter u along the constant parametric curve. The
step-forward distance can be set at uniform parametric steps, i.e., the isoparametric approach.
This approach to surface representation and tool path generation have been used by most
CAD/CAM package producers and researchers. Advanced commercial CAD/CAM packages,
such as CATIA [10, 11] and SmartCAM [12], generate tool paths by using the isoparametric
curves. Elber and Cohen [13] introduced an adaptive sub-isocurve extraction algorithm to
develop a series of isoparametric sub-paths with uniform separation. The isoparametric
curves approach is simple and generally efficient because the cutter contact curves are easy
to retrieve from the surface definitions. However, the geometric properties of the machined
surface are not taken into account, and the relationship between the parametric coordinate
and the corresponding Cartesian coordinate is not uniform. Also, large CLDATA files, while
potentially more accurate dimensionally, result in unacceptably long processing, verification,
and milling times. To address this trade-off between milling accuracy and CLDATA file size,
non-uniformly spaced parametric distribution of points were explored [14, 15 ] by utilizing
the geometric properties of the machined surface, thus reducing the number of CLDATA

points while maintaining milling accuracy.

By using the contouring planes method, the CC data can be generated from the cutting

curves which are defined by the intersections of a group of parallel planes and the part
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surface. In this case, the cutting curves are plane curves and the CC points are restricted on
the cutting planes, which results in preferable tool paths. The Unigraphics [16 ] CAD/CAM
package uses this method to generate tool paths by finding the intersection curves of the part
surface and the parallel contouring planes. The step-forward distance generated using
contouring planes method can be determined on the basis of the machining tolerance and the
geometric properties of the machined surface. The advantage of the contouring planes method
is that the CC data is a plane curve, so that the distributed tool path is relatively uniform and
the machined surfaces have uniform surface smoothness that meet the specified scallop height

tolerance without sacrificing machining efficiency.

For three-axis and five-axis machining, a great deal of research work have been done
concerning the CC data generation, the CLDATA calculation. the step-forward distance and
step-over interval setting, and the analysis of gouging errors. As reviewed in the following,
the studies are all based exclusively on the geometric preperties of the machined surfaces and

the cutter.

For machining sculptured surfaces on three-axis CNC machine tools, Wysocki [14 ],
Loney and Ozsoy [15] investigated the variable parametric curves tool path generation
techniques. The basis of the research method was to calculate the step-forward distance based
on the chordal deviations. By assuming the furthest point on the curve that deviates from the
chord as having half of the total parametric variation, Wysocki approximated the deviations

between the machined surface and the chord. This technique is generally sufficient for
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surfaces with uniform parametric distribution and is simple to implement, but only
approximates the actual chordal deviation. If the underlying surface is defined by the
nonuniform parametric distribution, this approximation method could yield inaccurate results.
Loney and Ozsoy determined step-forward distances by subdividing the isoparametric curve
into variable parameter segments that yielded the maximum chordal deviation. This variable
cutter step distance algorithm is more robust and provides a numerical method to solve for
the parameter value that yields the maximum chordal deviation. However, both of these
chordal deviation methods suffer from limited accuracy and can produce unacceptable
gouging because they are based only on surface points and do not consider the surface normal
and the geometry of the cutter. Further, the chordal deviation between adjacent CC points is
assumed as the machining error. This is only true if the surface normal vectors at the acjacent
CC points are parallel, and both are perpendicular to the chord. In general. the true machining
error should be determined by considering not only the chordal deviation but also the distance
between the tool tip trajectory and the corresponding chord. Oliver et al. [17] presented a
procedure to determine the chordal deviation by considering the local surface normal and the
geometry of the cutter. This procedure offers improved overall accuracy for characterizing
the chordal deviation at a relatively small computational cost as compared with the nominal

chordal deviation methods.

Huang and Oliver [18] developed an algorithm for three-axis tool path generation in
which the cutting curves are defined by using the contouring planes technique. The step-

forward distance is determined by calculating the true machining errors, which employs the
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orthogonal projection method tc calculate the exact distance between a cutter motion
trajectory and the surface. Since this true machining error calculation method is based on the
physical interference between the cutter and the surface, it is more accurate than those
methods based on nominal chordal deviation. Furthermore, by finding the longest linear
motion that yields the specified machining tolerance, this algorithm effectively minimizes the
total number of tool motions. This technique also provides a higher degree of flexibility in
planning the tool path direction, because the cutting curves are defined by using the
contouring planes method. However, it requires more computational effort in locating cutting

curves as compared to the isoparametric method.

The research work mentioned above deals with tool path generation in three-axis
machining. Five-axis machining offers many advantages over the three-axis machining.
Vickers and Quan [4] compared the three-axis machining with ball-end mills and five-axis
machining with flat-end mills. The effective radius of curvature of a tilted flat-end mill was
introduced. The effective radius of curvature of an end-mill can vary from infinity down to
the cutter radius as the inclination of the cutter to the surface normal changes from 0 to 90
degrees, allowing the cutter to accommodate a wide variation in local curvature. This
property enables five-axis end milling to achieve acceptable surface quality with fewer tool
passes. In comparison, the effective radius of curvature of a ball-mill is restricted to the
spherical radius of the cutter. The research concluded that the five-axis end milling of
sculptured surfaces can reduce the overall cutting time when compared to three-axis point

milling.

2
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Research work in the area of CC data generation for five-axis machining has been
carried out extensively. Marciniak [8,19] analyzed the relationship between the machining
strip width and the CC data generation for five-axis end-milling. The geometric foundations
for CC data generation were presented and the possibility of obtaining the maximum width
of cut of a machined strip by fitting the cutter motion trajectory to the surface shape was
explored. The study concluded that, for machining surfaces which have smoothly changing
curvatures, the broadest machined strip can be obtained when the CC point moves along the
minimum curvature line of the surtace. The maximum width of the machining strip depends
mainly on the difference of the surface main curvatures at the CC point. This result presented
the possibility for reducing the cutting time and promoting the machining efficiency for five-

axis machining,

Li and Jerard [20] used the contouring plane method to determine the CC data by
representing the part surface as a set of parametric triangles. The CLDATA are then
generated by using the CC data and the local surface geometry properties, and through an
interference checking procedure. It is concluded that this distinct CC data determination
procedure with the CLDATA calculation algorithm can be used to avoid gouging the surface

in five-axis end milling.

Choi et al. [21] presented a method for optimizing CLDATA in five-axis end milling
to minimize the scallop height. The CLDATA optimization problem was formulated as a 2D

constrained minimization problem in terms of the cutter orientation angles. The cutter location
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data were initialized based on the local geometry analysis. Then, the final CLDATA were
obtained by solving the 2D constrained minimization formula using the scallop height as a
measure of optimality. The method was successfully applied in the five-axis end milling of
large marine propellers. This method revealed one way to determine five-axis end milling

cutter orientations to produce minimum scallop height errors.

Cho, et al. [22] presented a method for determining cutter orientation angles for five-
axis end milling to produce minimum scallop height surfaces. The cutter orientations were
determined by using a z-map method based on the fact that the bottom plane of the flat-end
mill must not interfere with the machined surfaces. This method is another way to determine

five-axis end milling cutter orientations based on the geometry of the machined surface.

Jensen and Anderson [23] presented an algorithm for generating the tool path in five-
axis end milling by applying differential geometry techniques The cutter positions and its axis
orientations are generated by considering both the tangent plane and the local surface
curvature. By matching the curvatures of a silhouette of the cutter to the curvatures of the
surface at a CC point, excess or gouging amounts of materials in the vicinity of the cutter
contact point can be mathematically determined and eliminated. Therefore, this algorithm
eliminates the gouging errors in five-axis end milling. However, this algorithm assumes that
the surface must have at least first-order continuity at a given CC point, and global

interference is not prevented.



Lee and Chang [24] presented an error analysis method for five-axis end milling which
also applies differential geometry techniques to evaluate the scallop height between adjacent
tool paths. This error analysis method can also be used to generate appropriate tool path

distribution.

Kruth and Klewais [25] used a two-step procedure for generating CLDATA. First,
the cutter inclination was initialized based on the principal surface curvature at the CC point.
Then, the cutter orientation was determined by calculating the distance between the surface
and the cutter, and the distance from the CC point to the cutter axis. This procedure was
aimed to achieve the best combination of scallop height, machined surface accuracy and

machining time.

Lee and Chang [26] proposed a two-phase approach to global tool interference
avoidance in five-axis machining. First, the convex hull of the control mesh was used to detect
potential interference. Then, if the first check fails, the second detailed feasibility checking
calculates the tool interference on the basis of the physical constraints. Methods for correcting

global tool interference were also presented.

Bedi, et al. [3] presented a principal curvature alignment technique for five-axis
machining using a toroidal shaped tool. It was proved that the best fit at a CC point can be
achieved by aligning the maximum principal curvature of the cutter with the minimum

principal curvature of the surface to reduce the scallop height on the machined surface. Rao

[8)
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et al.[27] presented the experimental verification of the Bedi's principal axis method described
above. The use of the toroidal shaped end-mill with the presented technique gave a new

approach to increase the material removal in five-axis end milling.

Liu [28] presented two algorithms for five-axis flank milling tool path generation
based on differential geometry and analytical geometry, which include the single point offset
(SPO) algorithm and the double point offset (DPO) algorithm. These algorithms can be used
in different situations in flank milling. The SPO algorithm can be used to determine the flank
milling CLDATA when the overcut at the middle part of the machined surface is not
permitted. The DPO algorithm can be used to calculate the flank milling CLDATA if the

middle part of the machined surface cannot be undercut.

Liu, et al. [29] summarised the tool path generation techniques for three-axis and five-
axis CNC machining. The procedure of CLDATA generation for five-axis machining

including techniques for point milling, end milling and flank milling is outlined in detail.

Morishige, et al. [30] presented a tool path generation method for five-axis CNC
machining. The method applies the C-space (a 3D configuration space) to determine collision-
free cutter positions and its orientations. The determination of the C-space is based on the
geometric properties of the machined surface and surrounding collision surface, thus, the
method ensures collision free operation, but without considering gouging and 'overcut' (non-

linearity error) problems.
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The tool path generation approaches reviewed above are all based on the pure
geometry analysis of the machined surfaces without considering the CNC machine tools that
will be used to realize machining. Therefore, the generated CLDATA are further processed
by postprocessors into NC-codes which constitute the commands needed to control the axes
motions of machining. Among its numerous functions, a postprocessor checks the tool path
precision for each path segment during the generation of NC-codes, in other words. the
postprocessor checks if the total machining error between the desired cutting curve and the
actual CC point's travelled path is within the machining tolerance. Upon testing, a process,
referred to as the 'linearization process' of NC-codes, is normally uscd to treat out-of-
tolerance errors along the tool path where it is required. The detailed procedures of the
linearization processes' in the existing postprocessors and in the literature are reviewed in the

following paragraphs.

In the Automation Intelligence Generalization Postprocessor (AIGP)[31], a
'linearization process' was designed to reduce the non-linearity machining errors. The method
relies upon testing the amount of deviations of the actual non-linear tool path from the linear
segment of the NC-codes. This method inserts bisectionally additional data points between
adjacent CLDATA, which in turn, are transformed into NC-codes to ensure that the
deviations (non-linearity errors) do not exceed the allowable machining tolerance. The
insertion can be performed until either all points are within the machining tolerance or until
a maximum of 63 points are inserted between each two consecutive data points. The

Vanguard Custom Postprocessor [32,33], the Omnimill Custom Pestprocessor [34], the
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Bosto Custom Post [35], the AIX Numerical Control Post Generator [36] and the ICAM Post
Generator [37] all use the same 'linearization process' to treat the non-linearity errors

problem.

Cho et al. [22] analyzed the non-linearity error in five-axis CNC machining problem
and presented a 'linearization process' procedure for generating the NC-codes in a five-axis
end milling process. The five-axis CNC machining errors were analyzed as two parts: one
portion of the machining errors is the linearity error which is due to the linear line segment
approximation to the desired cutting curve. Another portion known as the 'overcuts', is the
result of the rotational movements from the current position to the command position with
different cutter axis orientations. These 'overcuts' are actually non-linearity errors. The
machining error for each move was the summation of the linearity and the non-linearity errors.
The function relating non-linearity errors to the cutter orientation changes for the considered
five-axis swivel head type CNC machine were developed. Based on this function, actual non-
linearity errors were determined for the original cutter orientations. The allowable non-
linearity errors were calculated on the basis of the specified machining tolerance and linearity
errors determined using the tool tip position change. Upon testing whether the actual non-
linearity errors exceeded the allowable non-linearity error ranges, a set of intermediate cutter
position data were inserted where the test was true. The cutter orientations of the inserted
data were set to vary linearly in successive positions. In this way, the resulting NC-codes
include not only the data transformed from the CLDATA but also the additional inserted data

points. The final NC-codes contain a dense set of unequally spaced machining data points.

28



The algorithm of linearly varying the cutter orientation is simple, but it interpolates the

orientations inaccurately between end points, which in turn causes surface errors.

Takeuchi et. al. [38] presented a 'linearization process' procedure to modify NC-codes
in a multi-axes CNC machining process. The function of the 'linearization process' was to
insert additional data points between the adjacent NC-codes where the total machining error
exceeds the specified tolerance range. The inserted points were calculated by subdividing the
straight line segments into equally spaced intervals and the cutter orientations were set to vary
linearly in the successive insertion positions. Although the final cutter positions were equally
spaced, a rather dense set of machining data resulted. The cutter orientations suffer from the

same problem as in Cho's procedure described above.

The 'linearization processes' discussed above manipulates NC-codes by inserting extra
machining data position points. Although the produced NC-codes satisfy the machining
requirement, they may contain dense sets of non-equally spaced data position points with
constant or linearly varying cutter orientations. The constant cutter orientation algorithm
causes severe roughness around the end points along the surface since the cutter orientation
changes abruptly at these points. Linearly varying cutter orientations produce a better surface,
but still insert the orientations inaccurately since the change in orientation is not necessarily
linear. As a consequence, the dense sets of machining data cause an non-constant feedrate
along the curve, which in turn causes an non-smooth surface finish. In addition, the total

machining time is increased because the mean feedrate is less than the desired value.
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2.3 Command Generation Techniques

Coordinated machining kinematics describe the geometric and time-based properties of multi-
axis movements. The functional relationships between multi-axis movements and cutter
locations, known as the machine kinematic models, depict the kinematic geometric properties.
These kinematic models depend not only upon a multi-axis CNC machine tool configuration,
but also upon the machining setup data (such as the fixture length and the workpiece
mounting positions). A different set of transformation functions is required for each type of
machine configuration. Machining kinematics include the forward and the inverse kinematics:
forward kinematics deals with the problem of determining the cutter locations by knowing the
machine axes movements, while inverse kinematics involves the computing of machining

movements which are used to attain the given position and orientation of the cutting tool.

Two methods are generally used to derive the kinematic models. Paul [39] proposed
the homogeneous transformation method that first derives the forward kinematic model,
which is then used to determine the inverse kinematic model. Lee and Ziegler [40] proposed
a geometric approach which uses the geometric configuration of the mechanism and the
directly perceived geometric senses (geometry intuition) of the machining movements to
determine the inverse kinematic model. The forward kinematic model is then determined from
the inverse kinematic model. The geometrical approaches that have been utilized by

researchers in modelling of machine kinematic models are reviewed below.

Using a geometric approach, Chou and Yang [41] formulated the inverse kinematic
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model for a fixed-bed type of machine tool with Euler angle structure (the machine table
moves translationaly only and the spindle rotates to approach the cutter orientations). The
formulation of the translational motion and the rotational motion were carried out separately.
First, the translational movements were formulated on the basis of the machining setup data.
Then, the rotational movements were formulated on the basis of the geometric intuition of the
rotary motions. Next, by considering the coupling effects of the rotational movements on the
translational movements, the variations on the translational coordinates due to rotational
movements were superimposed on the translational movements coordinates obtained in the

first step.

Cho et al. [22] formulated the inverse kinematic model for a swivel-head type five-axis
CNC machine tool by using a geometric approach. The machine movements of the swivel-
head type five-axis machine tool consist of the spindle rotation movements about the pivot
which translates in space simultaneously. Based on the machine configuration and the
geometric intuition of the machining movements, the inverse kinematic model was formulated.
The machine translational movements thus obtained were the functions of the cutter positions
and orientations. The rotational movements were the functions of the cutter orientation
angles, which shows that the cutter orientation changes result in rotational movements that

are coupled with the translational movements.

Using a geometric approach, Liu [6] formulated inverse kinematic models for five-axis

CNC machines which have the configurations where only the swivel-head moves (the machine



table does not move), and for those in which only the machine table moves (the five-axis
motions are the machine table's movements). The results showed that the machine rotational
movements are related to the cutter orientation changes, and that the machine translational

movements are functions of both the cutter position and the orientation changes.

Lin and Koren [42] formulated the inverse kinematic model for five-axis CNC
machines which have the structure of one tilt table and one rotary table placed on top of a
three-axis machine. The kinematic modelling was based on a geometric approach and was

termed the 'decoupling approach'.

Based on the machine kinematic models, the time-based characteristics of machining
movements can be determined and machining motion dynamics analysis can be carried out.
Chou and Yang [9, 41] presented a procedure for relating the time-based properties of
machining to the geometnical properties of a tool path based on the derived kinematic model.
Further, they established the relationship between the machining kinematics and machining

dynamics.

Interpolators are essential components in CNC machines which generates commands
for tool motion between adjacent tool path data points as per accuracy requirements.
Interpolation methods can be divided into reference-pulse and reference-word techniques [43,
44). In reference-pulse systems, an interpolator produces a sequence of reference-pulses for

each axis of motion, where each pulse generates a motion of one basic length-unit (BLU).
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With the reference-word scheme in the sampled-data system, the control loop of each axis is
closed by software through the computer itself (which generates reference binary words).
The most widely used interpolation method in both of the reference-pulse and reference-word
systems is the digital differential analyzer (DDA) interpolator. The DDA techniques can be
used to perform interpolation of integral, exponential, trigonometric, and polynomial
functions. Mayorov [45] and Sizer [46] detailed how the interpolation of these functions can
be implemented using actual hardware. DDA techniques can be used for both parametric and
nonparametric curve generation as explained by Danielsson [47]. However, some
degeneration errors may occur with losses of interpolation accuracy as shown by Danielsson
[47] and Milner [48]. The hardware DDA interpolation techniques are well known [44, 49,
50], which are capable to perform 2D and 3D linear interpolations and 2D circular
interpolations. Simulating the hardware DDA technique, Koren [51 ] introduced a software
DDA interpolator for CNC system applications. Koren and Masory [52] discussed and
compared four reference-pulse interpolation methods: the software DDA interpolation, the
stair approximation interpolation, the direct search interpolation and the improved direct
search interpolation. It was concluded that only the DDA interpolator produces a constant
feedrate along a circular path. With the other methods, considerable variations can occur
along the circular path. However, the problems of register overflow and integer round-off
limit the adoption of the DDA interpolators in some applications. Gan and Woo [53]
discussed the DDA's register overflow and the integer round-off error problems. It was
pointed out that the overflow has nothing to do with the register size, unlike the round-off

error which is a function of the register size. They applied the DDA technique to parametric
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curves and proposed solutions to the problems of overflow and round-off errors.

There are three major requirements for the interpolated curve in the command
generation stage. The first requires the fitted curve to have second order continuity, because
this results in better machining quality, less vibration, and a longer tool life. The second
requirement is that the interpolated curve should be easily convertible from a position
parameter to the time domain. Thus the required machining conditions, such as the speed,
acceleration, actuating torques, and jerk can be calculated and computer control can be
incorporated. The third requirement is that a fast algorithm is required for an on-line

implementation of this space/time conversion.

To satisfy the second requirement above, linear interpolation is commonly used in
machining sculptured surfaces on five-axis machine tools. The tool path data are interpolated
by the point to point type interpolator using straight lines from one point to another. This
interpolation method, however, has an inherent position error and has the drawback of
velocity discontinuity at the tool path data points. Sata et al. [54] presented an analytical
interpolation method, which used an incremental method for generating the Bézier curves to
connect a series of discrete tool path data points. With this improvement, the number of
interpolation segments were reduced as compared to linear interpolation. Stadelmann [55]
developed a speed interpolator which can be used when the surface topology is available as
a series of Bézier curves. By using parametric discretization, the method significantly reduced

the computation time as compared with Sata's interpolator. Both of these interpolators



ensured velocity-continuity from one segment to the next based on the assumption of constant
acceleration over the entire segment. Makino [56] presented a trajectory control method using
planar Clothoid or Cornu Spiral curves to interpolate two lines or a series of points. By using
the Cornu Spiral curve, the direction and the curvature of the interpolated curve is kept
continuous, so that a higher speed continuous path control of a robot could be achieved.
Papaionnou and Kiritsis [57] presented an extrapolated algorithm in which the next
interpolation point is determined by solving a constrained optimization problem. Liu et al.[27]

presented a summary on the analytical surface interpolation techniques used in practice.

To satisfy the second order continuity requirement, the cubic spline interpolation
technique has been applied by researchers. This interpolation technique entails the fitting of
a composite third order parametric curve to the set of tool path points. Chou and Yang [9,
41] proposed an analytical off-line interpolator for command generation, in which the cubic
spline interpolation technique was used to generate a parametric cubic spline curve tool path,
instead of a straight line segment of the linear interpolation. From the parametric model, the
integrated relationship between the position parameter and time was also formulated and the
dynamic information needed to control the machine motion, the velocity and the acceleration
were determined. On the basis of Chou and Yang's [9] proposition, Huang and Yang [58]
presented a real-time version of the interpolator which determines the intermediate points of
parametric curves under the machining precision, the velocity and the acceleration constraints.
The interpolation position parameter formulated as a function of time, i.e., u = f{t), and the

feedrate function were solved by using the Euler method. This interpolator is capable of
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generating position commands with variable speed control and better speed accuracy for
parametrically represented tool paths. This is the most advanced interpolator in existence; the
design of this interpolator, however, is based on a three-axis machine and therefore it can be

applied only to three-axis machining.

To satisfy the requirement of easy conversion of the position from a tool path to the
machining trajectory and the requirement of fast execution of interpolation, a tool path ideally
should be parameterized in arc-length of the spline segment. However, the arc-length for
each segment is unknown and therefore the method of cubic spline interpolation must
approximate its arc length. Usually, the chordal length is used as an approximation. Because
of this approximation, relatively large undesired speed fluctuations will occur in the execution
of commands. Renner and Pochop [59] and Renner [60] developed methods of fitting a
composite cubic spline with closely being arc-length parameterization. Wang and Yang [61]
presented a composite quintic spline interpolation method. The resultant composite quintic
spline, in comparison with cubic spline, are nearly arc-length parameterized. Since, for a fifth-
order spline, each coordinate has two more coetlicients that can be used to force a better unit
tangent property along the cubic spline curve, the algorithm generates the quintic spline with
nearly arc-length parameterization based on a cubic spline of a set of tool path data. The
nearly arc-length parameter was estimated by minimizing the deviation of the rate of change

of arc length to the path parameter.

Kiritsis [62] presented an incremental step interpolation algorithm which permits



interpolation of any kind of 3D parametric curves. The incremental step algorithm uses two
principles. First, each selected step must follow a given direction of the curve. Secondly, each
selected step must be at closest distance from the curve. Based on these two criteria, the
algorithm was used to generate a 3D helix. The method shows that a non point-to-point

interpolation scheme is another possible direction for accurate interpolator design.

Lo and Hsiao [63] presented an interpolator with a contour error compensation
procedure which is based on previous machining results. Applying the proposed interpolator,
in the initial machining process, the contour-error at every sampling instant is calculated and
a data extracted procedure is conducted. Then, in the repeated machining process, the
contour error is interpolated based on the previous extracted data and is added to the
reference position commands. Thus, the previous contour machining result can be used to
compensate the machining contour errors. The proposed interpolator improves the accuracy
of the subsequent repeated machining, but it is designed on the basis of analysis of 2D

contouring curves.

The off-line part programming approaches decompose the design surface into line
segments. These segments are then interpolated and converted into machining trajectory. The
drawbacks of this off-line procedure are: (1) the acceleration and deceleration at each line
segment is required, which produces less smooth curves and substantially increases machining
time, (2) cutter orientations in five-axis machining are interpolated inaccurately, which causes

position errors and unsmooth surfaces, and (3) the size of the tool path file could be very
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large for complicated parts and could cause memory shortage problems and data transmission
errors [64]. To overcome the drawbacks, real-time interpolators have been designed.
Shpitalni, et al. [65] presented a real-time reference-word interpolator for the implicitly
defined 2D curves and the parametrically represented curves. By using the real-time
interpolator, the CAD system transfers only the information about the curves to the CNC
machine. The curves are broken into segments by the MCU and executed by the interpolator.
The real-time interpolator then calculates new commands for the control loop during the
execution time of the current commands. This approach produces smoother surfaces and
requires less machining time. The real-time interpolator is of the point-to-point type, and
therefore it can be executed by the linear interpolators available on conventional CNC
machine tools. For the parametrically represented curves, the determination of successive
values of the path parameter was based on the curve segments of equal arc-length. The curve
position parameter as a function of time was solved through a recursive procedure based on

Taylor's expansion.

Koren [7] developed a real-time interpolator for five-axis CNC machining. The
interpolator calculates cutter positions and orientations during the same time period needed
for sampling the control-loop feedback devices. The cutter axis for five-axis end milling was
oriented in the direction of the surface normal. For flank milling, the cutter axis was oriented
parallel to the ruled surface. These cutter orientation interpolation methods are not adequate.
In fact, in end milling the cutter orientation cannot be set always in the surface normal

directions, and in flank milling, the cutter orientations may not be always parallel to the ruled



surface, especially for the non-ruled flank millable surfaces. While this real-time five-axis
interpolator is the most advanced interpolator for five-axis CNC machining, the cutter

orientation interpolation methods are not absolutely correct.

Lo [66] presented a real-time surface interpolator which is capable of maintaining
machining feedrate and condensing the cutter location file. Using the proposed surface
interpolator, the surface parameters in both of the tool path (step-forward) direction and the
tool interval (step-over) direction, and the cutting conditions (such as feedrate, scallop height
limit, etc.) are fed into the MCU. Thus, the off-line tool path generation procedure is moved
into the real-time surface interpolator. Since the CC point path is generated in real-time
according to the present feedrate, the desired feedrate can be maintained. However, the
proposed interpolator focuses on the feedrate problem, and it may not provide solution to the

machining error problem in the current tive-axis CNC machining process.



CHAPTER 3

THE OBJECTIVES

3.1 Thesis Objectives

The non-linearity error problem in five-axis CNC machining causes difficulties when high
precision in the machining of sculptured surfaces is required. The problem arises from the fact
that five-axis CNC machining motion trajectories are non-linear curve segments due to the
rotational movements superimposed on the simultaneous translational movements and linear
interpolation technique is not able to generate command signals for positions along curved
paths. The five-axis machining movements are kinematically related to the cutter locations
data, in other words, non-linearity errors are related to the tool path generation. Thus, the
solution can be approached from tool path (CLDATA) generation with the requirement that
the machining errors are minimized. Another route to the solution is from the machining
motion trajectory planning and control viewpoint (i.e. an interpolator design that drives the
machine axes along a predesigned curved path in order to eliminate the non-linearity errors).

This thesis sets two objectives:

The first objective is the development of an off-line tool path generation method that
minimizes the multi-axis CNC machining errors. Tool path generation involves generating
cutter positions and its axis orientations (CLDATA) and subsequent conversion of CLDATA
into machining NC-codes. The review of the literature revealed that the existing methods for

generating CLDATA are all based solely on the pure geometry of the machined surfaces. The
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'linearization processes' treat non-linearity errors by inserting additional cutter positions in
generating NC-codes, which results in the unsmooth tool path, the undesired variations in
machining feedrate and machined surface finish problems. The cause of non-linearity errors
is the superposition of multi-axis rotational movements on the simultaneous translational
movements. Rotational movements are kinematically related to cutter orientation changes,
and non-linearity errors are the functions of cutter orientation changes. Therefore, a
methodology that generates tool path with optimum cutter orientations and reduced non-
linearity errors is required. The research program leading to the development of a minimum
errors tool path generation methodology for the ultraprecision multi-axis CNC machining can
be described as follows. The cutter orientation generation should consider not only the
geometry properties of the machined surfaces, but also the machining kinematics and motion
trajectory characteristics. Specifically, the cutter locations data may be initially generated
based on the geometric properties of the machined surface, and then modification of cutter
orientations based on the particular machine kinematics and motion trajectory should be
carried out to achieve minimum machining non-linearity errors. The proposed new

methodology in this thesis is based on these analysis and is verified through a case study.

The second objective of this thesis is to develop an on-line 3D interpolation technique
that generates the command signals for the control loops to drive the machine axes moving
along a 3D curved trajectory such that the multi-axis machining non-linearity errors can be
eliminated. Linear interpolation techniques generate command signals for positions along a

straight line path, not along non-linear motion trajectories in multi-axis machining. From the
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review of the literature, it was demonstrated that the current interpolators are capable to
perform 2D linear, 2D circular, 2D curved paths and 3D linear interpolation functions. The
multi-axis machining motion trajectories are spatial non-linear paths, and therefore 3D non-
linear interpolation techniques are desired. Since the multi-axis CNC machining motion
trajectory is constructed by 3D circular movements superimposed on 3D linear movements,
the required 3D non-linear interpolator should be capable of tracing 3D circular curves and
also the combined 3D linear and circular loci. The 3D non-linear interpolator should perform
in a way of point-to-point command generation so that the available linear interpolation
function can be utilized as the base to drive the axes motions. The 3D non-linear interpolator
should have accurate position tracking ability and feedrate uniformity along a curved path.
The methodologies presented in research studies in this thesis are innovative and results
encouraging. These studies contribute solutions to some present day concerns in the
manufacturing industry. The motion trajectory functions of the combined 3D linear and
circular movements on the common five-axis CNC machine tools are utilized to develop the
3D non-linear interpolation formula. The 2D DDA circular interpolation principle has the
advantage of the feedrate uniformity and therefore are used to develop the 3D DDA circular
interpolation principle. Finally, by combining the existing point-to-point 3D linear
interpolation function with the new 3D DDA circular interpolation principle, a combined 3D

linear and circular interpolation technique is developed.

3.2 Thesis Outline and Methodology

The research program of investigating the off-line tool path generation methodology in the
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thesis will concentrate on the following items:

)

2)

4)

5)

Development of the kinematic models for a common five-axis CNC machine tool. The
machining kinematics deal with geometry and time-based properties. Therefore,
the inverse and the forward kinematic models are required in tool path generation.
Development of the machining motion trajectory model for five-axis machining on a
common five-axis CNC machine tool. The locus of the cutting point is depicted by the
machining trajectory functions. Hence, a machine-dependent machining motion
trajectory model is required in the determination of non-linearity errors.
Development of a representation approach for the analytic description of the tool path
with which the geometric properties of the machined surface curves can be calculated.
To determine the allowable non-linearity errors for a certain specified machining
tolerance, linearity errors must be pre-determined based on the geometry properties
of the machined surfaces. Thus, an analytic tool path representation of the machined
surface is desired to calculate the curvatures along the curve, which in turn are used
to determine the linearity errors.

Development of an off-line software program to implement the minimum errors tool
path generation method for solving the multi-axis CNC machining errors problem.
Verification of the minimum error tool path generation methodology through a
simulation of the process for machining a typical sculptured surface on a five-axis

machine tool.



The research program of developing a 3D interpolation technique for multi-axis CNC

machining in this thesis will concentrate on the following items:

D

2)

4)

Development of a 3D circular interpolation principle. The multi-axis rotational
movements are 3D circular motions. In order to trace a 3D curved path in multi-axis
machining, 3D linear interpolation or 2D interpolation techniques are not adequate.
A 3D circular interpolation function is required for both the machining of 3D circular
curves and the machining of combined 3D linear and non-linear curves.
Development of a combined 3D linear and circular interpolation principle for muiti-
axis CNC machining systems. The multi-axis machining motion trajectories are
constructed by the simultaneous and coupled 3D rotational and 3D translational
movements, therefore it is necessary to develop an on-line 3D interpolation command
generator that can be applied to combined 3D linear and circular trajectory planning
and control.

Development of a real-time interpolation routine to implement the new designed
'combined 3D linear and circular interpolation technique’ tor five-axis CNC machine
tool systems.

Verification by computer simulation of the machining process using the new

3D interpolator in a five-axis machine tool.
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CHAPTER 4

MINIMUM ERROR TOOL PATH GENERATION METHOD

4.1 Introduction

In the machining of sculptured surfaces, five-axis CNC machining offers many advantages
over three-axis machining which include faster material-removal rates, improved surface
finish, and the elimination of the necessity for hand finish. In general, a single surface which
can be machined by three-axis milling can also be machined in five-axis machining with a {lat-
end mill. But, in some cases, for example, as in the machining of an integral impeller or an
integral turbo-wheel, it is impossible to use three-axis machining because the machined
surface, the drive surtace and the check surface [43] are not single-valued surfaces. The cutter
axis orientation must be changed in order to avoid the non-tool-edge interference between
the cutter and the workpiece. Five-axis machining exploits a machine tool with more flexibility
to realize the cutter position and its axis orientation spatial changes, employing the
simultaneous rotational and translational movements. The actual cutter contact point in five-
axis machining moves along a non-linear trajectory, and the machining errors comprise not
only linearity errors but also non-linearity errors. In ultra-precision multi-axis CNC machining,
non-linearity errors are the main cause of obstacles that make it difficult to ensure the
machining precision. A new methodology for solving the non-linearity error problem in ultra-
precision multi-axis CNC machining is presented in this chapter. The methodology is based

on machine-specific kinematics and the machining motion trajectory analysis. The non-
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linearity errors are reduced by modifying the cutter orientations to ensure the machining
precision, provided that there is no interference between the cutter tip region and the
workpiece. In section 4.2, the basic concepts and the detailed description of the common
techniques for tool path generation in five-axis CNC machining are discussed, and the need
for optimal cutter orientation generation based on machining kinematics and motion trajectory
characteristics is explained. Sections 4.3 and 4.4 present the developments of the kinematic
models and the machine motion trajectory model for a five-axis CNC machining centre. Next,
the proposed methodology is presented in section 4.5. Finally, a software program for

implementing the new methodology is presented in section 4.6.

4.2 Five-Axis CNC Machining Tool Path Generation Methods

In CNC machining, the tool path is the cutting tool's motion locus which is known as the
cutter location data (CLDATA). In multi-axis CNC machining, a set of CLDATA is specified
in terms of the coordinated cutter positions and its axis orientations with reference to the
workpiece coordinate system. The cutter position data are the motion coordinates of the
cutter centre which is the spherical centre of a ball-end mill or the flat-end disc centre of a
flat-end mill. The cutter orientation data are the direction cosines of the cutter axis vector
relative to the workpiece coordinate system. The generation of tool path in multi-axis CNC

machining includes the generation of the cutter position data and the cutter orientation data.

The goal for tool path generation is to create a machined surface which approximates

the design surface within a certain prescribed tolerance. Ideally, the generated tool path
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should contain a set of uniformly distributed cutting curves, equally spread machining errors
and smoothly spaced cutting steps. In sculptured surface machining, the cutter position data
are generated on the basis of the cutter contact point data (CC data) on the machined surface.
The common methods for generating CC data are the parametric curves approach and the

cutting plane contouring curves approach.

The parametric curves approach uses straight lines in a parametric domain to define
the corresponding parametric curves on the actual surface in Cartesian space. A sculptured
surface is described as a two parameter function, P(u, v). Holding one parameter constant
such as P (u, v = constant) defines a parametric space curve (hereafter referred to as the
‘cutting curve'). By setting the parameter v, a set of curve function P(u ,v,) define the entire
surface. The distance between two adjacent cutting curves (i.e., forv=iand v = i+1) is
referred to as the tool pass interval. The methods for determining the tool pass interval can

be classified into the constant parameter method and the non-constant parameter method.

With the constant parameter method, the parametric lines are equally spaced across
the parametric domain. Depending on the machining surface for which it is used, this method
may not lead to equally spaced cutting curves on the machining surface because a constant
line interval in parametric domain does not generally yield a constant tool pass interval in
Cartesian space. If the surface is flat, the tool pass interval is constant for all tool passes, and
the method is accurate and efficient. However, for the machining of sculptured surfaces, the

tool pass interval is generally different from one pass to another, depending on the tool radius
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and the local surface curvature. Therefore, this method may not attain the machining accuracy
and its efficiency may vary depending on the geometry of the surface. The constant parameter
method is simple, but the relationship between the parametric coordinate and the
corresponding Cartesian coordinate is not uniform as it does not consider the geometric
properties of the machined surface. For instance, for machining a fan blade surface with the
constant parameter method [18], the cutting curves are close to one another at one end but
further apart at the other. To ensure the machining accuracy, more cutting curves may be
generated. As a result, the scallop heights on the machined surface vary from one end to the
other: the roughest portion meets the specified scallop height tolerance while the finest

portion is unnecessarily too smooth.

With the non-constant parameter method, the tool pass interval is determined by
calculating the machined strip width on the surface and by controlling the scallop height
between the cutting curves. The calculation of the machining strip width and the scallop
height on the machined surface are based on the geometric properties of the surface. Thus.
the cutting curves can be distributed to ensure surface smoothness that meets the specified

scallop height tolerance without sacrificing machining efficiency.

The determination of the tool pass interval is one aspect of tool path generation.
Another difficult problem is the correct generation of the cutting point step distances along
each cutting curve which resolves the distances between cutter positions. In multi-axis CNC

machining, each cutting curve is approximated by piece-wise linear segments joined together.
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The length of the linear segments is referred to as the step-forward distance. The algorithms
for calculating the step-forward distance include the isoparametric algorithm and the varying
parametric algorithm. In the isoparametric algorithm, the cutting points are a function of
somewhat arbitrary choice of parameterization. The step-forward distance calculated from
this algorithm is not related to the machining errors and the surface local curvature.
Alternatively, the varying-parameter algorithms calculate the step-forward distance by using
the surface local curvature and the specified machining tolerance. The isoparametric algorithm
is simple and generally efficient. In practice, a hybrid approach is used. The isoparametric
algorithm is usually used to obtain a dense set of discrete cutting points, then the varying-
parameter algorithm is used to refine the step-forward distance by sifting the discrete cutting
points. These cutting points are considered as those at which the cutter will contact with the
machined surface. The cutter position data are actually the offset points of the machined
surface. Based on the cutting points, the surface normals to these cutting points and the cutter
radius, the cutter position data can be easily generated. Thus, the cutter position changes

depend upon the cutting points step-forward distance.

In the cutting plane contouring curves approach, the cutting curves usually are defined
by the intersections of a group of parallel planes or cylindrical surfaces with the workpiece
surface. For point milling, the cutter position data of a ball-end mill can be generated by
constructing the offset surface of the machined surface such that the cutter centre moves on
the intersecting curves of the cutting planes and the offset surface of the machined surface.

To construct the offset surface in sculptured surface machining, the common method [6]
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includes the following steps:

1) Divide each cutting curve to obtain a set of discrete cutting points such that the line
segment and the curve are within certain prescribed tolerance;

2) Calculate the equal offset surface points of the discrete cutting points;

3) Use mathematical spline techniques, such as the B-spline technique, to obtain the
offset surface from the offset points.

The intersection curves of the cutting plane with the offset surface will be the path of the

cutter centre of ball-end mills. The cutter position changes can then be determined by

employing the varying parametric calculation methods. With this method, the cutter position

data are generally on the space curves while the cutting points are on the plane cutting curves.

Therefore, the tool path and the resulting scallop height are uniformly distributed, and the

machining efficiency is higher than in the parametric curves approach. This method, however,

requires proper selection of the cutting planes, in terms of determining the spacing and the

direction.

The location of a cutter is completely specified by the cutter centre position and the
cutter axis vector. In five-axis machining, the cutter axis vector cannot be orientated in the
surface normal direction for the following reasons: (i) the cutting velocity at the tool tip of
a ball-end mill is zero; (ii) there is usually no cutting edge on the flat-end surface centre of
flat-end mills; (iii) the cutter axis vector of a flat-end mill must be tilted to avoid the cutter
flat-end contacts with the machined surface and to avoid the cutting edges interference with

the machining surface. Therefore, five-axis contour milling uses a process called 'sturz’
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milling. The German term 'sturz’ refers to the forward tilt of the milling cutter in the direction
of the feed. The 'sturz’ angle is the angle between the cutter axis vector and the surface normal
to the cutting point. The 'sturz angle’ can be divided into a tilting angle and a rotation angle
[22]. The values of the tilting and the rotation angle determine the cutter axis vector at the
cutter position with no interference between the cutter top region and the workpiece. The
cutter orientation data is the representation of the cutter axis vector in terms of the direction

cosine of the vector in reference to the workpiece coordinate system.

The generation of cutter orientation data must consider the constraints of machining.
One of the constraints comes from the revolute joints limit on the CNC machine tool. A five-
axis CNC machine tool has at least two revolute joints. With a particular cutter position, a
considerable portion of the space of the cutter orientation is constrained by the machine
revolute joints limit. Another source of infeasible cutter orientations is the collisions between
the machine structure and the workpiece surtace. Apart from these structural limits, the third
constraint is the 'cutter overcuts' on the machined surface. The 'cutter overcuts', i.e., the non-
linearity machining errors, are caused by the cutter orientation changes which depend upon

the geometric properties of the machined surface and also relate to the machining kinematics.

The present methods for generating the cutter orientations consider only the geometry
of the machined surface. For machining of surfaces with a narrow passage between them, for
instance the airfoil surfaces of a typical impeller shown in Fig.4.1, five-axis point milling is

commonly used.
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To determine the cutter orientations for five-axis point milling, the cutter axis
Marginal Point Technique [6] can be utilized as shown in Fig.4.2. In this technique, the
normal plane of the surface tangent in the feed direction of the cutting point is used as the
cutter axis oscillating plane. In Fig. 4.2, the oscillating plane for the CC point is parallel to the
x-z plane and is perpendicular to the surface tangent of the CC point (the feed direction of the
machining). The cutter axis can vary its orientation in the oscillating plane within a certain
limit. Using the cutter axis Marginal Point Technique, the steps for determining the cutter
orientation are as follows:

1) Determine the marginal point:
In the cutter axis oscillating plane, rotate the cutter axis about the cutter position point
C, to the position at which the cutter contacts the surface at a marginal point Q;

2) Determine the projection point of the marginal point on the cutter axis:

Based on the cutter geometry data (cutter radius and conic angle) and the distance

between the cutter position point C, and the marginal point Q , a projection point Q'

of the marginal point Q on the cutter axis can be determined using the cutter conic

angle, a, and the points of C, and Q through a simple triangle geometry calculation;
3) Determine the cutter axis vector:

From the coordinates of the cutter position point C,and the projection point Q', the

cutter axis vector, T, , is uniquely orientated.

Using such a technique, a set of cutter orientation data can be generated with collision-free
conditions and maximum tilting angle. The generated cutter orientations vary at each cutter

position.



]

Figure 4.2 The Marginal Point Technique
For Determining Point Milling Cutter Orientation
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For the machining of large sculptured surfaces. such as the machining of the blades
of a hydraulic turbine, five-axis CNC machining with flat-end mills is commonly used. The
cutter axis vector for end milling can be determined by estimating the cutter tilt angle from
the surface curvatures for different machining surfaces, and using the surface normals and
tangents in the feed direction [6]. Li and Jerard [20] and Chot, et al. [22] also discussed

techniques of generating cutter orientations for end milling.

Flank milling has wide applications for the milling of small- and medium- dimensional
surfaces, such as the milling of the integral impellers. For machining of impeller airfoil
surfaces, point milling with conic shaped ball-mills can be used. Although the determination
of cutter orientations is more difficult in flank milling, this method is more favourable because
it does not require hand finishing. The generation of the CLDATA for milling the airfoils of
an impeller by flank milling can be determined by applying the Bind Inclining Technique [6]
as shown in Fig.4.3. The Bind Inclining Technique uses the cutter calculation centre and the
equivalent cutter axis vector. The intersection point between the cutter axis of a cylindrical
shaped ball-end mill and the normal to the CC point is the cutter calculation centre. The C,
is the cutter calculation centre for the side CC point as shown in Fig.4.3. The cutter axis of
an equivalent cylindrical shaped ball-end mill is the equivalent cutter axis vector, T,*, to the
conical shaped ball-end mill as shown in Fig.4.3. With a conical shaped ball-end mill (the ball-
end radius is r and the conic angle is ), the Bind Inclining Technique determines the cutter

locations using the following steps:
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Figure 4.3 The Bind Inclining Technique
For Determining Flank Milling Cutter Locations



1)

2)

4)

Determine the cutter calculation centre and the equivalent cutter axis vector:
Consider a cylindrical shaped ball-end cutter with the ball-end in contact with the hub
surface at the bottom CC point as shown in Fig.4.3. By inclining the cylindrical shaped
cutter on the bind surface (i.e., the airfoil surface), a side CC point can be determined.
The vector of the axis of the cylindrical shaped cutter is the equivalent cutter axis
vector T,*. The intersection point of the airfoil surface normal to the side CC point
and the equivalent cutter axis vector is the cutter calculation centre C;

Determine an offset surface of the hub:

Based on the cutter ball-end radius, r, and the surface normals from each of the
bottom CC points, an offset surface can be determined by using mathematical spline
techniques as mentioned above;

Determine the cutter position data:

The intersection point of the offset surface with the equivalent cutter axis vector is the
cutter position C, as shown in Fig.4.3.

Determine the cutter orientation data:

By rotating the equivalent cutter axis vector T, * about the cutter position C, by an
angle of a/2, the resulting orientation of the vector T, * is the desired cutter axis

vector T, of the conical shaped ball-end milis.

Using this technique, under collision-free conditions, a set of CLDATA can be

generated with varying cutter orientations at each cutter position.
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As mentioned above, the cutter orientations are not only dependent upon the pure
geometry of the machined surface, but are also related to the machining kinematics. In fact,
the machine translational movements are functions of position and axis orientation of the
cutter, and the machine rotational movements are functions of the cutter orientation data.
Therefore, the determination of cutter orientation data must also consider the machine
kinematics. Machine kinematic models describe the geometric properties of machining
kinematics, and reveal the relational functions between the cutter locations (CLDATA) and

the machining movement coordinates (NC-codes).

4.3 Development of Machine Kinematic Models

The cutter variables are the cutter's positions and axis orientations in reference to the
workpiece coordinate system. The machine variables are NC-codes which, for tive-axis CNC
machining, consist of the translational axes motion parameters and the rotational axes motion
parameters. The functions that relate the cutter variables and the machine variables are the
kinematic models. Machine kinematics describe the geometrical and time-based properties of
multi-axis CNC machining movements which include the forward and the inverse kinematic
models. The forward kinematics deals with the problem of determining the cutter variables
by knowing the machine motion variables. The inverse kinematics is used to compute the
machine motion variables which are used to attain the given position and orientation of the
cutter. The functional relationship between the machine motion parameters and the cutter
variables portrays the kinematic characteristics of a multi-axis CNC machine tool. This

functional relationship is dependent not only upon a multi-axis machine tool configuration,
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but also upon the machining set up data, i.e., the position of the workpiece coordinate system
in the machine coordinate system which may consist of the fixture thickness and the position
of the workpiece. A different set of transformations is required for each type of machine
configuration. The five-axis CNC machine tools with two rotary tables, one is on top of the
other (hereafter referred to as rotary-table-type), are the common configuration. Therefore,
a five-axis CNC milling centre, OMINIMILL series-1 (OM-1) which is the rotary-table-type,

has been chosen to illustrate the work in this research.

The schematic configuration of the OM-1 five-axis CNC milling centre is as shown
in Fig. 4.4. The machine spindle is honzontal, therefore, the machine z,, axis is horizontal and
parallel to the machine spindle based on the convention of machine coordinate system
specification [67]. The machine x,, axis is horizontal and perpendicular to the z,, axis. The
machine y,, axis is perpendicular to both the x,, axis and the z,, axis, which abides by the right
hand rule of the Cartesian coordinate system. The machine coordinate system (X, . Y, « Zy
0,)) is fixed on the machine table top centre. The rotational B, axis is perpendicular to the
machine table and coincides with the y,, axis. The rotational C,, axis is parallel to the machine
table top surface and is offset from the table top by y,, = 298.4 mm (11.75"). The five-axis
motions of the OM-1 milling centre are rotations about the B, axis and the C,, axis, and
translates along the z,, axis and the x,, axis. The spindle slides vertically relative to the y,, axis.
The given machine configuration data include (1) the home position of the spindle: (x, . Yy
z,) = (381.0 mm, 615.9 mm, 0.0 mm)=(15.0" , 24.25", 0.0"), (2) the pivot of the B, axis

(B0 Which is at the machine table top centre, and (3) the pivot of C,, axis (C,;.,) as shown
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in Fig. 4.4. For the machine setup, the stack value is the distance of the workpiece coordinate
system origin to the face of the fixture. The fixture thickness is set as F = 152.4 mm (6") and
the stack value, in this case, is G = 0.0. Therefore, the workpiece coordinate system position
in the machine coordinate system is known. The machine translational movements coordinates
are measured relative to the machine zeros (0, 0, 0). The rotational angle about the B, axis
is measured from the positive z,, axis direction and the rotational angle about the C,, axis is
measured from the positive y,, axis direction. The points that represent the machine variables
coordinates usually are referred to as the Machine Control Point (MCP). In the case of the
OM-1 milling centre, since the machine table and the spindle translate simultaneously during
the machining process, the machine coordinate system origin and the spindle chuck are the

MCP, as MCP-o and MCP-s respectively.

Modelling machine kinematic models, geometrical approaches use the geometrical
configuration of individual machine tools and the geometrical intuition of the machining
movements to determine the inverse and forward kinematic models. In this research work,
based on the known OM-1 CNC milling centre configuration and the machining set-up data,
a geometric approach is applied to obtain the inverse kinematic model. The torward kinematic

model is then developed on the basis of the inverse kinematic model.

The procedure for deriving the inverse kinematic model is approached in two steps.
In the first step, the machine rotational variables are determined by considering only the cutter

orientation change that can be attained from the machine rotational movements. In the second
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step, the machine translational variables are determined from the cutter position change that

can be attained from both machine rotational and translational movements.

A frame is a coordinate system, where in addition to the orientation of the coordinate
axes a position vector is given for locating the coordinate system origin to some other
embedding coordinate system [68]. The machine coordinate system of the OM-1 milling
centre forms a moving frame (hereafter referred to as the machine coordinate frame) since the
machine coordinate system origin O, moves relative to the machine zeros, and the
orientations of the five axes vary during the machining process. The workpiece coordinate
system with its coordinate axes and the origin in reference to the machine coordinate frame
forms a frame (hereafter. referred to as the 'workpiece coordinate frame'). To formulate the
machine rotational movements as functions of cutter orientations in a generalized machine
setup, without loss of the generality, it is assumed that the workpiece coordinate frame is set
at the position of the machine coordinate frame as shown in Fig.4.5, and the cutter vector, P°,
is a free vector in reference to the workpiece coordinate frame. A free vector refers to a
vector which may be positioned anywhere in space without loss or change of meaning
provided that magnitude and direction are preserved [68]. For generating tool path, the cutter
vector is considered having unit magnitude and the direction cosines of the vector in the space
of the workpiece coordinate frame. During the machining process, the workpiece coordinate
frame translates and rotates simultaneously with the machine table. Hence, the cutter vector

with the workpiece coordinate frame can be considered as a solid part.
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The machine rotational variables are the angles of the machine table together with the
workpiece coordinate frame rotated about the machine moving axes B, . and C,_... To
determine the machine rotational variables, one can pursue the solution by using the method
of the spatial descriptions and transformations. Rotations can be defined as operators to
transform a frame or a vector from one location to another [68]. Hence, a rotation matrix that
represents the machine rotational movements can be used to operate on the workpiece
coordinate frame or/and the cutter vector from one location to another. Since rotations can
also be thought as descriptions of orientations, the rotational matrix can be determined by
describing the orientation of the workpiece coordinate frame with the cutter vector. In
representing the orientation of a frame, the angle sets convention includes fixed angle sets and
Euler angle sets [68]. Fixed angle sets represent rotations specified ibout the fixed reference
frame, while Euler angle sets describe the rotations relative to the axes of a moving frame.
The duality of the fixed and Euler angle sets states that 'rotations taken about the fixed axes
yield the same final orientation as the same rotations taken in opposite order about the axes
of the moving frame' [68]. Based on this theory, the rotations about the moving machine
coordinate frame can be obtained from the rotations about a fixed frame. Using the initial
machining positions and orientations of the machine rotational axes as the fixed frame with
the axes, Bg, and Cy, as shown in Fig.4.5, the rotational matrix can be determined as follows:
1) The machine C,, axis rotational movement rotates the workpiece coordinate frame

and the cutter vector P° about the Cq, axis to a new position which is on a horizontal

plane as shown in Fig.4.5. The mathematical expression is:
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2)

P,° = Rot(C, , C)+P° 4.1)

where, P° is the initial position of the cutter vector. P,° is the position of the cutter
vector after the rotation. Rot (C,, , C) means a rotation about the fixed C axis and
the rotation angle is C.

The machine table rotates the workpiece coordinate frame and the cutter vector P°,
about the By, axis so that the cutter vector is transformed to a new position, P!, .

which is parallel to the spindle vector P! (see Fig. 4.5), one may obtain:

P! = Rot(B, , -B)*P,° (4.2)

where, P,° is the cutter vector before the rotation. P,' is the cutter vector after the
rotation. Rot (B, . -B) is the rotation about the fixed B axis, and the rotated angle
is B in counterclockwise direction. Therefore, the rotations of the workpiece
coordinate frame and the cutter vector from the initial position of P° to the final

position of P,'is:

P! = Rot(B, , -B)*Rot(C, , C)*P°

P! = RsP°

where, R is the rotation transformation matrix that is the product of the rotation

matrices in the order of first about the Cg, axis then about the By axis. Based on the
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theory of the angle sets duality mentioned above, the rotation matrix about the actual
machine moving axes B,,,.. and C_,,. can be determined. As shown in Fig.4.6, the
rotations taken about the moving axes of B . and C_,,.. are equal to the rotations

taken about the fixed axes of C, and By, in opposite order as follows:

R = Rot(C_ ., C) Rot(B_ ., -B)

(4.4)
= Rot(B,_ , -B) Rot(C. . C)

The rotation matrix Rot (Cy, , C) and Rot(B,, , -B) can be determined as given in

Appendix A. The mathematical representation of the rotation matrix R is:

cosB  -sinB .sinC  -sinB .cosC
R = |-sinB -cosB sinC  -cosB .cosC (4.5)
0 cosC -sinC

From Eq.(4.3), the cutter vector initially is at P° with the orientation angle («, B, v)
in reference to the workpiece coordinate frame and, after the rotations, the cutter vector is
at P,' which is parallel to the machine spindle. Since the machine spindle has orientation of
(cos90°, cosl80° , cos90°) in reference to the workpiece coordinate frame, using the

rotational matrix R as an operator, one may obtain:
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Pl (e B ,y) = R«P° (a ,B .v)

cos90° cos a

cos180° | = R+ | cosP

cos 90° cosy | (4.6)
0 cosB  -sinB .sinC -sinB .cosC cos @
1 | = |-sinB -cosB .sinC  -cosB .cosC | = | cosP
0 0 cosC -sinC cosy

By solving the matrix equation (4.6), the machine rotational variables B,, and C, are

determined.

In the second step, considering the cutter vector initially at P° (x, v, z) in reference to
the initial workpiece coordinate frame, the cutter vector after the rotations is arrived at the
position of P,'(x,,y,.z,) in reference to the initial workpiece coordinate frame, one may

obtain:

1 -
P'(x,,y,,2)=R«P°(x,y,2) 4.7)

Since the workpiece coordinate frame is also rotated together with the machine table, its

origin is moved to a new position referred to as:
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r 1 - -
0, 0,
0, |=R=*|0, (4.8)
0! 0.

where, O represents the origin of the workpiece coordinate frame at the initial position. O
represents the origin at the new position. The subscripts x, y and z represents the coordinate
of the origin in reference to the machine coordinate frame. Therefore, by the rotational
movements, the new position of the cutter vector in reference to the fixed machine coordinate

frame is:

!
-
P

H

Qo

(4.9)

where, (x',y', ') is the position coordinate of the cutter vector P,'. The plus and the minus
sign depends on the position of the origin of the workpiece coordinate frame in reference to
the machine coordinate frame. This cutter vector's new position is equivalent to that caused

by the machine rotational movements about the moving axes.

The cutter position change due to the machine translational movements are

determined as follows: since the rotated cutter vector, P,', is parallel to the machine spindle
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and the position change of P,' to the spindle can be attained only by the machine translational
movements, the translational movements can be determined by moving P,' to the spindle
position. The spindle initial position relative to the fixed machine coordinate frame is at (x,,
Ym > Zm) = (PB, PC, 15.0") (where, PB represents the spindle position and is equal to the
position x,, coordinate of the B, axis pivot when the machine is at home position; PC
represents the initial position of the spindle and is equal to the position of the C,, axis pivot
in the y,, axis direction). The cutter vector, P, relative to the fixed machine coordinate frame
has the coordinate of (x', y', z'). Therefore, by translating the cutter vector P,! to the spindle
position, the machine translational variabies are:

x = PB %+ x!

m

PC £ z! (4.10)

<
3
n

[}
[}

PB = y!

where, the plus and the minus signs depend on the relative position of the P,' and the spindle.
In our case, the minus applies. Since the z axis of the workpiece coordinate frame is parallel
to the y, axis of the machine coordinate frame, the machine translational variable y,_, is
calculated from the z'. The same condition applies to the machine variable z,,. The detailed
calculation procedure is outlined in Appendix A, and the derived inverse kinematic model for

the OM-1 five-axis CNC milling centre is as shown in the following equation:
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X = PB—x\/l-cos2a+ycosacosB+ cosccosy (—+G)\/1 cos 2a

1-cos \/1 -cos e

y_ = PC-y cosy cos B

\/l-cosza \/l -cos’a

F

z_ = PB+xcos a +ycos f +zcosy +(;+G)cosa (4.11)
B = tan'Y cos & )

\/cosﬂ2 + cosy?
C_ = tan 'l(———COSB )

™ cos y

where, X, y, z are cutter position coordinates and cosa, cosf3, cosy are the direction cosines
of the cutter orientation coordinates in reference to the workpiece coordinate system. X, ,
Y. » Z, are machine translational movement variables and B, and C,, are machine rotational

movement variables in reference to the machine coordinate system. F is the fixture thickness

and G is the workpiece stacking position data.

The forward kinematic model is derived as follows. From Eq.(4. 6), one may obtain:

P °( cos(a), cos(P), cos(y) ) = R'I*Ph‘( cos (90°), cos (180°), cos (90%) ) (4.12)

Where, R is the inverse of the rotation transformation matrix of Eq. (4. 5). From Eq.(4. 7),

one may obtain:
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Px,y,2) =R+ Plx,,y,z2) (4.13)

From Eq.(4.9) and Eq.(4.10), one may obtain:

+

Qo
[}

Lo

x, = PB

h x ]
y, = PB = Oyl -z, (4.14)
zh=1-"Cz0:1-v'Il

By substituting Eq.(4.14) into Eq.(4.13) and solving Eq.(4.12), the forward kinematic model

is obtained:

x =-(x, -PB)cosB , +(z, -PB)sinB m+(£+G)
2

y = x_sinB sinC +z cosB sinC _+ (PC-y_ ) cosC
-PB (sinB_ + cosB ) sinC -
z = x, sinB cosC _ + z cosB cosC + (y -PC) sinC (415
-PB (sinB  + cosB ) cosC 15
cosa = sinB
cosp = cosB  sinC
cosy = cosB  cosC

The derivation procedure of the forward kinematic model is given in Appendix A.

The kinematic models of the OM-1 milling centre were verified as follows. The

existing postprocessors, such as the AIGP mentioned above, have the function of performing
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kinematic transformations between cutter variables and machine variables for a known
machine configuration. Using the AIGP, a set of CLDATA for machining the airfoil surfaces
of an impeller was transformed to the corresponding NC-codes. Then, the set of CLDATA
was processed through the derived inverse kinematic model. The obtained machine variables
are then compared with the NC-codes obtained from the AIGP. A comparison of results
showed that the calculated machine variables (x,, .y, .z, . B, C,) are exactly the same (up
to five decimal digits) as the NC-codes computed by the AIGP. The result confirms the
correctness of the derived inverse kinematic model. Similarly, the forward kinematic model
is verified by transforming the set of NC-codes for machining the airfoil surfaces of the
impeller into the corresponding CLDATA. The resultant CLDATA were the same as the set

of data obtained from the AIGP.

4.4 Development of Machining Motion Trajectory Model

From the machine contiguration shown in Fig.4.4 , the B,, axis coincides with the y,_ axis
which is perpendicular to the machine table, and the C,, axis is parallel to the z, axis during
machining process. Therefore, the B, axis intersects the C,, axis at a space point, P. During
the machining process, the intersection point P moves translationally only in the x_, axis and
the z,, axis directions since the point is on both of the rotational axes. The point P also acts
as a pivot for the machining spatial rotational movements. Thus, the CC point path is actually
the result of the superimposition of the rotational movements of the machine table about the
pivot P and the translational movements of the pivot P, which results in the combined 3D

circular interpolated and the 3D linear interpolated path. From this geometrical perspective,



it is known that the CC point coordinate on the non-linear segment can be determined from
the pivot P translational coordinates and the machine table rotational movements coordinates.
Thus, the machining motion path can be formulated on the basis of the pivot translational

movements and the machine rotational movements.

The machine home position is defined by the machine table coordinates (x,, y,,. z,,
B, Cn) = (381.0 mm, 0.0 mm, 711.2 mm, 0°, 0°) = (15.0", 0", 28.0", 0°, 0°) and by the
spindle coordinates (X, Y, z,) = (381.0mm, 615.95 mm, 0.0 mm) = (15.0", 24.25", 0.0").
The machining start point is chosen as the machine home position. Since the B,, axis coincides
with the y,, axis, the circular motion in the horizontal plane (the x,-z, plane) about the B,,

axis changes the x, and the z, coordinates as shown in Fig.4.7, one may obtain;

*
]

I sin(B,)
(4.16)

(2]
"

! cos (B)

Similarly, because the C,, axis is parallel to the z,, axis, the circular motion in the vertical plane
(the x,,-y,, plane) about the C, axis changes the x, and the y,, coordinates as shown in Fig.

4.8, one may obtain:

L]
n

! sin(C,)
4.17)
[ cos(C)

‘-
8
0
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The rotation pivot coordinates, x, and z,, are equal to the x,, and z,, coordinates of the
machine coordinate system origin since the B, axis goes through the machine table top centre,
and the rotation pivot y, coordinate is the same as the pivot of the rotation C,, axis, Coivar:
Also, since the CC point is on both the cutter and the workpiece, the CC point coordinates
that correspond to the NC-codes can be determined from the spindle chuck coordinates (..
Ym» 0) and the tool gage length (GL) as shown in Fig.4.9 (please refer to Fig.4.4 for definition

of coordinate Xy, , C,. and GL). Hence, the distance between the CC point and the rotation

pivot P is:

l= \/(xm-xhomc)z M (ym—Cptvor)z * (ZM_GL)z (418)

Thus, combining the linear motion of the pivot P and the rotary movements about the pivot

P the OM-1 machine motion trajectory model can be constructed as

=
"

X, + [*sin(B, ) =*sin(C )

Y, * Ixcos(C,) (4.19)

)
o
1]

z z, * [*cos(B,)

with:

y, = C (4.20)
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where, (X, Y. ) are the coordinates of the CC point, (x,, ¥ , z,) are the coordinates of
the rotation pivot P in reference to the machine coordinate system, / is the distance between
the CC point and the pivot P of Eq.(4.18), B, and C,, are the rotational movements of the

machine table, and C,, is the C,, axis pivot coordinate which is a constant.

4.5 Minimum Error Tool Path Generation Methodology

A methodology to determine the optimum CLDATA for minimum machining error based on
machine kinematics and machine motion trajectory analysis is explored. The machine
kinematic models of Eq.(4.11) and Eq.(4.15) give the OM-1 machining geometrical relations
between the cutter orientations and the machine rotational variables. The machine rotational
movements are kinematically related to the spatially changed cutter orientations, and therefore
the non-linearity errors depend upon the cutter orientation changes. The OM-1 machining
motion trajectory model of Eq.(4.19) mathematically shows that the non-linear path curve
segments depend upon machine rotational variables for the determined translational steps.
Hence, non-linearity errors are a result of the machine 3D rotational movements. Also, by
using the motion trajectory model, the coordinates on each non-linear tool path segment can
be determined, which in turn, can be used with known linearity errors to determine the non-
linearity errors. Particularly, the maximum non-linearity error on each segment can be
determined. In order to calculate the linearity errors, the surface curvature at the machining
data points must be known. To determine the geometrical properties, such as the local surface
curvature, the cutting curve mathematical function is required. The cubic spline curve function

is the minimum order function that can ensure the second order continuity [69]. Therefore,
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the cutting curve can be closely approximated by the cubic spline of the known CLDATA.
The development of the cubic spline functions to represent cutting curves is presented in

Appendix B.

The proposed methodology reduces non-linearity errors by determining the acceptable
machining rotational variables using the motion trajectory model, and also modifies the cutter
orientations through the kinematic relations with the machine rotational variables. For a
specified machining tolerance, the machine rotary movements which will result in an
acceptable machining motion trajectory can therefore be determined. Then, the optimum
cutter orientations which correspond to the obtained rotational variables can be determined.
The procedure starts with the transformation of the CLDATA to the machining NC-codes by
employing the inverse kinematic model of Eq.(4.11). The actual machining motion trajectory
is then determined by using the OM-1 motion trajectory model of Eq.(4.19). The local surface
curvature on the cutting curve and the step-forward distance, i.e., the linear spacing between
a pair of the cutting points, determine the amount of linearity error. From the cubic spline
cutting curve function, the local surface curvature can be determined (refer to Appendix B).
Thus, the linearity error for each move can be obtained from the adjacent CC point data and
the determined curvature. The allowable non-linearity error can be computed by subtracting
the linearity error from the specified machining tolerance. The actual non-linearity error for
each move is the deviation of the non-linear motion trajectory from the linear interpolated line
segment. Representing the linear segment using linear interpolation function based on the CC

point coordinates determined from the OM-1 motion trajectory model given in Eq.(4.19), the
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maximum deviation between the non-linear motion trajectory and the linearly interpolated line
segment, i.e., the maximum non-linearity error, for the step can be determined. In the steps
where the maximum non-linearity error exceed the allowable non-linearity error, the machine
rotational movements change will be modified. The new machine rotational movement
variables are determined based on the modified rotational movement change. These new
rotational movement variables are then used to calculate the resultant non-linearity error,
which in turn is compared again with the allowable non-linearity error. Thus, by using the
difference between the allowable non-linearity error and the modified non-linearity error as
the criterion, the acceptable machine rotational movements can be determined iteratively.
Finally, from the modified machine rotational movements, the corresponding cutter
orientations can be determined by performing the forward kinematic transformation using

Eq.(4.15).

[t must be emphasized that the machining geometrical properties and the motion
trajectory are machine dependent. Hence, the modification of CLDATA has to be carried out
in terms of machining variables and subsequent use of the kinematic transformation to
determine the modified CLDATA. For a set of CLDATA, the modification procedure can
be performed by using the following algorithm.

Tool Path Modification Algorithm:

1) Transform the initial CLDATA into its corresponding machining NC-codes by using

the inverse kinematic model for a particular CNC machine tool (for OM-1 see Eq.

4.11));
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2)

3)

4)

5)

6)

7)

8)

9)

Determine the CC point coordinates by employing the machine dependent motion
trajectory model (for OM-1 see Eq.(4.19));

Compute the desired tool path by cubic spline the CLDATA and calculate the
curvatures k; of the tool path at the CLDATA points;

Compute the linearity error by using the formula given by Faux and Pratt [70], based

on the CC point coordinates from step (2) and the surface curvatures from step (3):

5, = %kf(As)z (4.21)
where, k;is the surface curvature at the CLDATA points, and As is the segment
length between a pair of adjacent CC points.

Compute the allowable value of the non-linearity error: §_, = iolerance -3, .
Determine the points on the straight line segment and on the machine motion
trajectory segment that correspond to the maximum non-linearity error;

Compute the maximum non-linearity error, & .. using the points from step (6);
Modify the machine rotational angle change if 3., > d,,, i.e., increase or decrease
AB,, and AC,, such that the non-linearity error, &, , will satisfy (8, -8,,) <0;

Compute the machining NC-codes of B,;., and C,,., based on the machine

rotational angle variation from step (8):

o
)

=B, £ AB_

miel

(4.22)

a
"

c, % AC,

myel

82



where, (B,,; , C,,;) are the i-th rotational variables, (B Cpi-1) are the (i+1)-th

mi-1 »
rotational variables, and (AB,, ,AC,) are the modified rotation angle change. The
"+'and'-'sign depends on if the angles in step (i+1) increases or decreases.

10)  Determine the optimum cutter orientations by transforming the modified machining

NC-codes using the forward kinematic model (for OM-1, use Eq.(4.15)).

4.6 Software for Implementing the Algorithm

A software program has been written to implement the proposed algorithm described above.
The computation procedure is shown in the program flow chart shown in Fig.4.10. The
program starts by inputting the known CLDATA and machining parameters, which include
machining tolerance, fixture thickness and stack value. These machining parameters can be
changed for different machining requirements and machine setup. The program includes a
function for constructing the tool path curve based on the CLDATA by using the cubic spline
technique, so that the curvatures at the cutter positions can be calculated. The program
consists of an inverse kinematic transformation function of the CLDATA generating the
machining NC-codes, and a function of OM-1 motion trajectory determining the CC point
coordinates. For each step, based on the determined curvature and the CC point coordinate,
the linearity error can be calculated. The allowable non-linearity error is determined from the
linearity error and the specified machining tolerance. Considering that the maximum non-
linearity error usually occurs at the middle point of each linear line segment, the program
determines the points on the linear line segment and on the motion trajectory segment, which

yields the maximum non-linearity error. By testing whether a non-linearity error exceeds the
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Figure 4.10 Flow Chart of the Minimum Error Tool Path Generation Method Software
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allowable non-linearity error determined previously, a procedure for determining the
acceptable rotational angle change is conducted iteratively as follows. Once the test of
whether the actual non-linearity error exceeds the allowable value is true, the machine
rotational angles' changes, AB,, and AC,, are adjusted in each iteration and the corresponding
machine rotational variables B,, and C,, are calculated. The adjusted B,, and C,, are then used
to determine the resultant non-linearity error which in turn is compared with the allowable
value. The iteration is conducted until the final non-linearity error is equal to or less than the
allowable value, and the corresponding B, and C_, which are the desired machine rotational
variables can be determined. Repeating the computation for each step, the whole set of NC-
codes can be processed. For the steps, the non-linearity error is smaller than the allowable
value, the NC-codes remain unchanged. Finally, the NC-codes including the modified points

and the remaining points are transformed into the CLDATA.

4.7 Summary

An off-line tool path generation methodology, which modifies the cutter orientations
to reduce the machining errors, has been proposed. The methodology employs the machine
type-specific kinematic models and the machining motion trajectory model. The new method
reduces non-linearity errors to be within the specified tolerance range by calculating the
allowable machine rotary angle changes. The optimum cutter orientations are then determined
based on these allowable machine rotary angle changes. The new method improves the
machining precision with smoother machining data distribution because the modified

CLDATA contains the original cutter positions. Comparing with the existing methods, the
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'linearization processes' insert cutter positions to reduce non-linearity errors which results in
the feedrate fidelity problem and increases machining time. Alternately, the new method
ensures the machining precision by tackling the cause of the non-linearity errors problem, the

cutter orientation changes, without undesired consequences.

As the result, the software for implementing the proposed methodology can be used
to process CLDATA specifically suitable to the OM-1 milling centre, and to generate NC-
codes for the rotary table type five-axis CNC machine tools by changing the configuration

data.
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CHAPTER 5§
AN APPLICATION OF THE

MINIMUM ERROR TOOL PATH GENERATION METHOD

5.1 Introduction

The highly twisted airfoil of a turbine impeller is a typical example of sculptured surfaces. For
machining such complex surfaces, five-axis CNC machining with conical shaped ball-mills is
usually used because of the highly twisted airfoil surfaces and the narrow passages between
the airfoils. The CLDATA generation technique for machining of such impeller airfoil surfaces
was described in section 4.2. It determines the cutter positions and its axis vector orientations
based solely on the geometrical properties of the machined surfaces. As an application of the
proposed 'minimum error tool path generation method', a set of CLDATA for the machining
of the impeller airfoil surface is processed and the optimum CLDATA with minimum
machining errors is obtained. In the following, a simulation study for processing the set of
CLDATA by using the existing 'linearization process' is described in section 5.2. The
procedure and results for processing the CLDATA by using the proposed methodology are

outlined in section 5.3.

5.2 Case Study Using the 'Linearization Process '
In order to compare the optimized results with those obtained through the 'linearization
process' mentioned in section 2.2, the set of CLDATA is processed by the extensively used

postprocessor, the AIGP[31]. The AIGP generates machining NC-codes using the
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'linearization process' as follows:

1

2)

3)

4)

5)

0)

7

8)

9)

10)

I1)

12)

Transforms a pair of adjacent CLDATA points into corresponding machine NC-codes
coordinates;

Constructs a straight line segment using the two NC-code position coordinates;
Divides the straight line segment and the corresponding rotational movements angle
change into two portions;

Calculates the middle point NC-code coordinate based on the result of step (3);
Transforms the calculated new NC-code into the corresponding new CLDATA;
Tests the deviation of the new CLDATA point from the straight line constructed
between the two considered CLDATA,;

Goes to step 8) if the considered CLDATA are the original data, otherwise, goes to
step 10).

Inserts a middle point between the two initial CLDATA if the deviation is greater
than the specified machining tolerance;

Repeats the process from step 1) to step 6) using the start CLDATA point and the
inserted median point of CLDATA,

Inserts another intermediate point between the considered two CLDATA points if
the new deviation exceeds the specified tolerance;

Repeats the process from step 1) until either all points are within the machining
tolerance range or a maximum of 63 points have been generated;

Repeats the steps 1) to 11) to the next adjacent original CLDATA pairs until all data

points are processed.
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The results for processing the CLDATA of machining the airfoil surfaces using

AIGP's 'linearization process' are as follows.

With the specified machining tolerance of 12.7x10” mm (0.5"x10%), there was no
additional data inserted between any adjacent machining data points. However, the
'linearization process' inserted data points when the machining tolerance was reduced. With
the tolerance of 7.62x10” mm (0.3"x107%), one data point was inserted in the first motion step
(between the first two original CLDATA), in the third motion step (between the third and the
fourth original CLDATA), and in the ninth motion step (between the ninth and the tenth
original CLDATA). Furthermore, by reducing the tolerance to 5.08x10"* mm (0.2"x10™),
more data points were inserted. Table 5.1 shows 25 sets of inserted data (shown as underlined
points) among the complete set of 255 machining data points for the highest attainable
machining precision of 5.08x10" mm (0.2" x 10). The resultant tool path data are more
dense than the original data. Furthermore. the cutter position points are not equally spaced

and the cutter orientation varies incorrectly.

5.3 Case Study Using the 'Minimum Error Tool Path Generation Method'

Using the proposed methodology, the set of CLDATA was also processed with the same
machining parameters as used for the AIGP. With the specified machining tolerance of
12.7x10” mm (0.5"x107), the maximum non-linearity error calculated from the NC-codes
were all smaller than the allowable non-linearity error. Hence, there was no need to conduct

the cutter orientation modifications. This result is the same as the one from the AIGP
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Table S.1 Sample NC-codes from the AIGP's Linearization Process

n

1

B S

10
19

20
73

74

83

103

104

105
122

123
130

131
133

134
139

140

Xm Ym z, B, Cn
18.5829 12.4387 14.4904 353.571 359.271
18.5720 12.4224 14.5123 353.752 359.112
18.5610 12.4060 14.5340 353.933 358.960
18.5499 12.3896 14.5556 353.113 359.812
18.5386 12.3731 14.5770 354.295 358.660
18.5099 12.3366 14.6190 354.610 358.668
18.4882 12.3093 14.6505 354 849 358.671
18.4662 12.2820 14.6818 355.088 358.688
18.3979 12.1049 14.6199 352.548 357.906
18.3822 12.0824 14.6421 352.761 357.672
18.3662 12.0597 14.6639 352.972 357.443
18.1932 11.8937 14.8453 355.036 357.101
18.1833 11.8843 14.8542 355.143 357.071
18.1735 11.8748 14.8629 355.250 357.073
16.8410 11.5210 15.6696 8.346 19.523
16.8258 11.5223 15.6769 8.495 19.841
16.8107 11.5238 15.684| 8.644 20.174
16.5579 11.5384 15.7981 11.204 24.770
16.5420 11.5394 15.8048 11.359 25.051
16.5261 11.5405 15.8113 11.513 25.325
15.8425 11.5423 16.0427 18.365 33.451
15.8246 11.5421 16.0475 18.543 33.622
15.8067 11.5421 16.0521 18.721 33.795
15.7888 11.5420 16.0568 18.898 33.963
15.7709 11.5420 16.0613 19.074 34.128
15.5142 11.5397 16.1199 21.644 36.253
15.4958 11.5398 16.1237 21.825 36.401
15.4774 11.5398 16.1273 22.005 36.551
15.2132 11.5373 16.1740 24.658 38.405
15.1942 11.5372 16.1770 24.849 38.530
15.1751 11.5370 16.1798 25.040 38.657
15.0981 11.5360 16.1909 25.819 39.125
15.0789 11,5358 16.1936 26.013 39.245
15.0597 11.5357 16.1961 26.207 39.361
14.8676 11.5355 16.2197 28.133 40.512
14.8483 11.5355 16.2219 28.307 40.625
14.8289 11.5355 16.2239 28.500 40.726
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Table §.1 Sample NC-codes from the AIGP's Linearization Process (Con't)

n Xm Yen Zy B, C,
145 14.6340 11.5368 16.2424 30.451 41.790
14.6146 11.5372 16.2441 30.645 41,900
146  14.5951 11.5377 16.2458 30.838 42.000
147  14.5562 11.5387 16.2487 31.223 42220
14.5367 11,5393 16.2503 31.415 42335
148 145173 11.5400 16.2517 31.606 42.440
152 14.3601 11.5462 16.2615 33.177 43298
14.3405 11.5470 16.2626 33.372 43.390
153 14.3209 11.5480 16.2636 33.566 43.500
154  14.2828 11.5498 16.2655 33.953 43.715
14.2623 11,5506 16.2665 34.145 43814
155 14.2429 11.5515 16.2673 34.337 43911
166  13.8220 11.5546 16.2782 38.429 45.672
13.8032 11,5545 16.2785 38610 45.746
167  13.7843 11.5544 16.2786 38.791 45813
178  13.3755 11.5577 16.2764 42.676 47333
13.3573 11.5578 16.2762 42.846 47.402
179 13.3392 11.5579 16.2758 43.016 47.460
187  13.0522 11.5525 16.2676 45.692 48.371
13.0348 11,5519 16.2672 45851 48.422
188 13.0173 11.5512 16.2666 46.009 48.479
195 12.7720 11.5409 16.2532 48.307 49.211
12.7550 11.5412 162525 48.460 49,288
196  12.7379 11.5414 16.2516 48.613 49351
198  12.6693 11.5427 16.2474 49.246 49.650
12.6520 11.5429 162461 49.409 49.721
199  12.6347 11.5432 16.2446 49.572 49.801
12.6173 11,5435 16.2431 49.739 49 875
200 12.6000 11.5437 16.2414 49.905 49.952
12,5825 11.5437 16.2397 50.075 50,021
201 12.5651 11.5438 16.2378 50.244 50.098
254 11.5011 11.5970 16.0367 60.766 56.692
11.4846 11.5987 16.0315 60.924 56.821
255  11.4716 11.6005 16.0264 61.082 56.951
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'linearization process' mentioned above. By specifying the tolerance = 7.62x10? mm
(0.3"x107), the program processed the allowable machine rotational angle changes at some
steps and modified the corresponding cutter orientations. For instance, for the first step and
the third step, the non-linearity error exceeded the specified tolerance. Hence, the cutter
orientations in the second block of CLDATA and the fourth block of CLDATA were
modified. Furthermore. by tightening the machining tolerance to 5.08x10-3 mm (0.2"x10%),
the allowable machine rotary angle changes were calculated iteratively at more motion steps.
The cutter orientation modification process was conducted up to nine iterations for the first
step until the non-linearity error was within the allowable range. Three iterations were
performed for the third and the ninth steps. Similarly, the process was carried out for each
motion step of the whole set of CLDATA. The acceptable machine rotational movements B,
and C,, were determined by adjusting the rotation angle changes: AB, and AC,, based on
Eq.(4.22). The corresponding CLDATA were modified by transforming the processed NC-
codes using the forward kinematic model. For the data points where the maximum non-
linearity error calculated from the NC-codes were smaller than the allowable non-linearity

error, the data remained unchanged.

Table 5.2 outlines some modified cutter orientation data and the corresponding NC-
codes. The set (i, j, k) = (cosa, cosP, cosy) are the direction cosines of the cutter axis
vector relative to the workpiece coordinate system. For the first step (from point | to point
2), the adjusted rotary angle change AB, was increased, and the adjusted AC,, was

decreased. The modified direction cosines (i, j, k) result in the modified cutter orientation
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Table 5.2 Sample Modified Rotary Angle Changes & Cutter Orientations

point CLDATA cutter angle angle change Bm.Cm ABm, ACm
onginal modified original modified original modified original modified original modified
N ig.k Li Kk a.f.y a.f.y da dff da dff Bm, Cm Bm.Cm ABm, ABm,
dy dy ACm ACm
0.11196. | 0.11196, | 83.571°, 83.571°, tnitial initial 353.571° 353.571° nitial initial
1 -01263. -.01263, 90.723°, 90.723°, angles angls 359.271° 359.271° angles angles
0.99363 0.99363 6.469° 6.469°
0.09940, | 0.09787, | 84.295°, 84.383°, 0.724°, 0.812°, 354.295° 354.385° 0.724°, 0.814°,
2 -.02326, -.02336, 91.332°, 91.33%°, 0.609°, 0.615° 358.660° 358.656° 0.611° 0.615°
0.00477 0.99492 5.859° 5.774° -0.610° -0.695°
0.09399, | 0.09399, | 84.608°, 84.608°, 354.610° 3s4.610°
3 -02316. | -02316. | 91.327°, 91.327°, | unchanged | unchanged | 358 66R° | 358.668° [ unchanged | unchanged
0.99531 0.99531 5.554° 5.554°
0.08562, | 0.08513. | 85.08%°, 85.116° 0.480° 0.508°, 355.088° 355.118° 0.478°, 0.508°,
4 -.02280, -.02286. 91.306°, 91.309°, -0204° =017, 358.688° 358.687 0.020° 0.018°
0.99606 0.99611 5.083° 5.057° -470° -.0496°
0.12234, | 0.12273, | 82972°. R2.950°, 0.462° 0.404°. 352.972°. | 352.853°. | 0.424°, 0.305°.
10 -.04427, -.04430, 92.537°, 92.539°, 0.460° 0.462°, 357.443° 357.543° -234° -363°
0.99150 0.99144 7.475° 7.502° - 269° -.242°
0.08281. | 0.0R268. | 85.249°, R8.257°, 0.218° 0.223°, 358.250° 355.163°, 0.214°, 0.127°,
20 -05124, -05130. 92,937, 92.941°, 0.082° 0.056°, 357037 357.068° -028° -.033°
0.99524 099512 5.592° 5.663° - 157 -.086°
- 14518, - 14489, 98.340°, 98.330°, 0.303°, 0.287°, 8.644°, 8.515°, 0.298°, 0.179°,
74 0.33060, | 0.33052. | 70.094°, 70.699°, - 6287, -623°, 20,173 19.976° 0.651°, 0.453°
0.93254 0.93342 21.166° 21.028° Q.711° 0.570°
-.19429., -.19593. 101.203", 101.29° 0.316"°. 0.412°, 11.513° 11.495°, 0.309°, 0.291°,
83 041111, | 040763, | 65.725°, 65.943°, =510 -292°, 15.328° 25.182° .555° 0.382°
0.89063 0.89138 27.047° 26.952° 0.622° 0.527°
-.31507, -31432, 108.365°, 108.31° 0.359°, 0.313° 18.721°, 18.665°. 0.356°, 0.300°,
104 0.52325. | 0.52421, | §7.775°, 58.384°, -913°, -.304°, 33.795° 33.692° 0.344° 0.241°
0.79178 0.79183 37.647 37.643° 0.441° 0.437°
-.32096. -32178. 108.721°, 108.77° 0.356°. 0.452°, 19.074°, 18.898°, 0.353°, 0.177°.
105 0.52677, | 0.52125. | 58.213°. 58.583", 0.438°, 0.199°, 34.128° 33.968° 0.333° 0.173°
0.78708 0.78691 38.086° 38.102° 0.440° 0.459°
-.42941, -43024, 115.430°, 115.48° 0.390°, 0.442°, 22.005°, 21.925°, 0.341°, 0.281°.
123 0.56704, 1 0.56615, | 55.456°, 55.517°, -.076°, -.0150°, 36.551° 36.491° 0.298° 0.238°
0.70290 0.70392 45.339° 45.257° 0.372° 0.290°
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angle changes (da, d, dy) which were greater than the original cutter orientation angle
changes. For the second step, since the maximum non-linearity error was smaller than the
allowable value, there was no need to perform the cutter orientation modification and the
direction cosines (i, j, k) at the third point of cutter orientation remained unchanged. For the
third step (from point 3 to point 4), the adjusted rotary angle change AB,, was increased, and
the adjusted AC,, was decreased. The cutter orientation (i, j, k) at the forth point were
modified. The resultant cutter orientation angle changes of da and dy were increased
comparing with the original cutter orientation changes, and the cutter orientation angle
change of d} was decreased comparing with the original value. Similarly, the original and the
modified cutter orientations (i, j, k) at points 10, 20, 74, 83, 104, 105 and 123 are shown in
the table. The increases/decreases of the machine rotational movement angles of (AB,,, AC,,)
and the corresponding cutter orientation changes of (da, dp, dy) are due to the fact that the
machining motion trajectory is constructed by combining the 3D circular and linear motions.
Although the cutter orientation changes either increased or decreased, the non-linearity errors
were reduced as shown in Table 5.3. From Table 5.3 the original non-linearity error for the
step | was 8.788x10” mm (0.346"x10™). The non-linearity error after cutter orientation
modification was reduced to 2.362x10 mm (0.093"x10” ) which was smaller than the
allowable non-linearity error of 2.514x10” mm (0.099"x10”). The reduced total machining
error for this step was up to 56.5%. For step 3, with the modified cutter orientation data the
non-linearity error was reduced from 5.486x10® mm (0.216"x10%) to 3.403x10” mm
(0.134"x10%), which was smaller than the allowable value of 3.784x10% mm (0.149"x107).

The reduced total machining for this step was up to 30.7%. Similarly, for steps at which
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Table $.3. Machining Errors at Sample Moves (tolerance = 0.005mm=0.0002")

linearity original modified reduced
Step\Error (inch x 10°%) non-linearity non-linearity total
(inch x 10?) (inch x 10 (%)
1 0.101 0.346 0.093 36.5
3 0.051 0.216 0.134 30.7
9 0.005 0.210 0.185 11.6
19 0.007 0.197 0.182 74
73 0.002 0.200 0.189 55
82 0.005 0210 0.187 10.7
103 0.001 0.230 0.190 17.3
104 0.025 0.195 0.172 10.5
122 0.001 0.205 0.193 58
130 0.004 0210 0.195 7.0
133 0.003 0.208 0.192 7.6
139 0.002 0.203 0.196 34
145 0.027 0.181] 0.170 353
147 0.029 0.198 0.179 8.4
152 0.018 0.190 0.183 52
154 0.005 0.200 0.194 29
166 0.004 0.198 0.193 25
178 0.016 0.192 0.182 48
187 0.001 0.205 0.198 34
195 0.025 0.183 0.172 53
196 0.027 0.179 0.169 49
198 0.022 0.184 0.175 4.4
199 0.019 0.183 0.170 6.4
200 0.017 0.191 0.182 43
254 0.003 0210 0.195 7.0
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AIGP's 'linearization process' was inserted data points (see Table 5.1), the original non-
linearity errors were reduced to the modified values which were within the allowable ranges.
For each step, the percentage of the reduced total machining error is also calculated as shown
in Table 5.3. It should be noted that the allowable non-linearity error changes depend on the
linearity error changes in each step. For example, in step 3, the linearity error was reduced,

so the allowable non-linearity error was increased.

For the specified machining tolerance of 5.08x10”* mm (0.2"x10™), the AIGP must
insert the additional cutter positions to meet the machining precision requirements.
Alternately, the new method modifying the cutter orientations of CLDATA also ensures the
machining precision without data-point insertion. Specifically, the modified CLDATA has
fewer data points than the one processed by the 'linearization process'. The proposed
methodology improves the machining precision from 12.7x10* mm (0.5"x10”) to 5.08x10"?
mm (0.2"x10*) without reducing the cutter step-forward distance. This result overcomes the
drawbacks from the 'lineanization process'. It illustrates that the proposed methodology results
in higher machining precision and reduced data storage space which in turn reduces machining

time.
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CHAPTER 6
A 3D COMBINED LINEAR AND

CIRCULAR INTERPOLATOR DESIGN TECHNIQUE

6.1 Introduction

Continuous path contouring requires continuous control of spindle head movements with
respect to the machine table (or of the table relative to the spindle), not only of the start and
the end points of movements, but also all of the intermediate points as well. The process of
filling in data about curved surfaces, from a set of point data describing some points on the
curve, is termed interpolation. In conventional multi-axis CNC machining of sculptured
surfaces, the 'position contouring' technique with linear interpolation method are commonly
used to generate the required commands for driving the motion axes. In five-axis CNC
machining, the three translational axes movements are linearly interpolated along the straight
line segment and, simultaneously, the rotational movements are interpolated along space
circles, which have coupling etfects on the linearly interpolated translational movement
positions. Consequently, the actual CC point moves along curve segments, which results in

the non-linearity error problem.

Many factors contribute to the CNC machining errors. One way solving the non-
linearity error problem in ultra-precision five-axis CNC machining process is to modify off-
line the cutter orientation changes to reduce non-linearity errors within the machining

tolerance. This method has been explored as the 'minimum error tool path generation method'
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in ultra-precision five-axis CNC machining as outlined in Chapter 4. Another route is to
pursue new interpolator designs, because one of the factors causing the non-linearity
machining errors is due to the machining interpolation method. The five-axis CNC machining
motion trajectories are non-linear curve segments, therefore, it is desired to design new
interpolators which are capable of tracing non-linear curves and provide solutions to the non-
linearity error problem. This chapter presents a procedure for designing a new interpolator
for five-axis CNC machining systems. The proposed interpolator will coordinate the
translational movements to move along a predesigned curve path, and conducts the CC point
to move along the straight line segment connecting each pair of adjacent machining data
points. Thus, non-linearity errors in five-axis CNC machining are expected to be eliminated.
In the following, in section 6.2, the conventional interpolation methods in CNC systems are
discussed. In section 6.3, the 2D and 3D Digital Differential Analyzer (DDA) linear
interpolation principles in conventional linear interpolation methods are reviewed. Then, the
deriving procedure of the 2D DDA circular interpolation principle is reviewed in section 6.4
since it forms a basis for the development of a new 3D circular interpolation principle
presented in section 6.5. This is followed by the development of an innovative 3D combined
linear and circular interpolation principle in section 6.6. An algorithm for eliminating non-
linearity errors in five-axis CNC machining by using the 3D combined linear and circular
interpolator is presented in section 6.6. Finally, a software interpolation routine for

implementing the proposed algorithm is developed and is outlined in section 6.7.
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6.2 The Conventional Interpolation Methods

The function of an interpolator is to generate intermediate points lying between two
consecutive machining data points. Careful programming of cutter path motions allows the
point-to-point type of milling machine to follow almost any curve within reasonable
tolerances. In CNC machining, an interpolation method is the core of the CNC system since
the accuracy of the calculated intermediate position directly affects the machining precision
of the whole CNC system and the time for computing the intermediate positions affects the
controlled axis velocity, which in turn, affects the quality of the machined surface and the
maciiining time. Basically, the conventional interpolation methods can be divided as the

reference-pulse methods and the reference-word method [44].

In the reference-pulse system, the interpolator routine in the MCU calculates the
intermediate positions and send reference pulse signals to each axis control loop. The
operation of the reference-pulse interpolators is based on an iterative technique controlled by
an interrupt clock. At each interrupt, a single iteration of the routine is executed and produces
an output pulse. Each pulse generates a motion of one basic length-unit (BLU) for the
controlled axis. The accumulated number of pulses represents the axis position and the pulse
(interrupt) frequency expresses the axis velocity. Since each pulse is equivalent to one BLU
and the pulse frequency proportional to the axis velocity, the maximum velocity is
proportional to the attainable interrupt frequency. While the pulse frequency depends upon
the interpolation execution time, the axis velocity (the feedrate) is inversely proportional to

the interpolation execution time of a single iteration. Thus, the maximum axis velocity is
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proportional to the maximum attainable interrupt frequency, which in turn, depends on the
execution time of the interpolator algorithm. For this reason, the reference-pulse interpolation
technique is unsuitable for manufacturing systems requiring high axis velocities. The common
reference-pulse interpolation techniques include the software DDA method, the stairs

approximation method and the direct search method [52].

With the reference-word technique in the sampled-data system, the control loop of
each axis is closed by the computer interpolation software itself, which generates reference
binary words of line incremerits, rather than the pulses. In fact, the interpolator operates
iteratively at an interpolation period of T. At each iteration, with the desired feedrate F, the
interpolator computes the line increment of FT which is transmitted to the corresponding
software loop comparators as the reference word. Then, the control program compares the
reference word with the feedback signal to determine the position error. The error is fed at
fixed time intervals to a digital-to-analog converter, which in turn supplies a voltage
proportional to the required axis velocity. The reference-word interpolation techniques adopt
the time-division idea to divide the curve segment into the line increments and function in an
on-line mode corresponding to the data-sampling of the control system. Thus, the maximum
velocity in the sampled-data system is not limited by the interpolation execution time. The
practical reference-word linear interpolation techniques include the feedrate number method
and the direction cosine method. The reference-word circular interpolation methods include
the linear function method, the reference word DDA method, the extended DDA method and

the improved Tustin method [49, 71].
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Conventional CNC machines support the functions of 3D linear and 2D circular
interpolations. With linear interpolation, the actual path formed consists of either the BLU
increments in the reference pulse system or a set of straight line increments in the reference-
word system. The BLU increments or line increments are used to approximate the line
segments. Using the BLU increments to coordinate the intermediate data points, the
intermediate positions either fall on the straight line segment or positioned within the band of
one BLU. In reference-word linear interpolation, the linearly interpolated line increments are
all on the line segment [49, 61]. The circular interpolation uses the circular arc increments
to approximate the required contour path. Circular interpolated arcs actually are comprised
of either BLU increments in the reference pulse system or straight line increments in the
reference-word system. The basic idea of circular interpolations is to use straight line
increments either in the chord direction or the tangent direction to approximate the arc
increments. The number of the line increments determines the accuracy of the generated
circular arcs. The optimal number of increments is the smallest one which maintains the path

error within the band of BLU.

In selecting the interpolation method, one criterion is the uniformity of velocity along
the path, because variations in milling velocity cause feed variations which affect the surface
finish of the workpiece. It has been shown that the appropriate reference-pulse interpolation
technique for machine tool systems is the software DDA method [52], which provides a
uniform feedrate along the circular path. On the basis of the reference-pulse DDA

interpolation algorithm, the reference-word DDA interpolation method has been designed
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[49] with a selected interpolation period that replaces the differential time interval in the
reference-pulse method. The reference-word DDA method coordinates the intermediate
positions with the specified line increments and functions in an on-line mode, so that it
overcomes the drawback on the limitation of the maximum feedrate in the reference-pulse
DDA method. For this reason, a 3D circular software interpolator and a 3D combined linear
and circular software interpolator for five-axis CNC machining have been designed based on
the reference-word DDA technique. To demonstrate the developments of the new 3D
interpolators, the basic 2D DDA interpolation principles, which are commonly used [49, 50,

51], are first discussed in the following sections.

6.3 The 2D and 3D DDA Linear Interpolation Principles

6.3.1 The 2D DDA linear interpolation principle[48,49]

To drive the cutting tool moving along a straight line segment as shown in Fig. 6.1, with the
start point of p, (X, Yo) and the end point of p, (X, , ¥,). the i-th increment from the i-th point

to the (i+1)-th point for each axis can be determined from the start and the end points:

AX, AL
x,-x, i —L_
AY, _ AL el
wye L

where, AL represents the line increment length in the direction of the velocity. L represents
the length of the segment between the start point py(x, , y,) and the end point p,(x, , y,). If

the specified feedrate for the segment is F and the interpolation period is T, the line increment
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AY

(X1,y1)
(Xi,Yi)
AL Ayi
( Xo.yo) Axi

(Xq . Yo ) === start point coordinate;

(x, .Y, ) -- end point coordinate;

(X;, Y, ) --- the interpolated point;
Ax, --- x-axis interpolation increment ,
Ay, --- y-axis interpolation increment ;

AL --- interpolation increment ;

Figure 6.1 2D linear interpolation



length is AL = FT and the increments of each axis are:

AX, %(xl—xo)

(6.2)

FT
AY, = T(yx-yo)

The 2D DDA linear interpolation can be operated as follows:

1) Preparatory calculation of the scale factor:

A =

!

T
L

2) Computation of the segment length for each axis:

AX =k, (x - x;)
(6.4)
AY

A (v, - ¥)

3) Computation of the (i+1)-th 2D linear interpolated point:

e
H

X + AX,

(2]

(6.5)

i

Y + AY,

il
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6.3.2 The 3D DDA linear interpolation principle

Based on the 2D DDA linear interpolation principle, the 3D DDA linear interpolation formula
is derived as follows. Assume the start point and the end point of the segment are p, (X;, Yo

zy) and p, (x, , ¥, , 2;) as shown in Fig.6.2. The i-th increment for each axis are:

AX,

t

AL
7

AZ = % (z,-2)

where, AL = FT is the line increment length in one interpolation with the feedrate F and the

interpolation period T. L is the length of the segment.

The 3D DDA linear interpolation can be iterated as follows:

1) Preparatory calculation of the linear interpolation scale factor:
FT
k= T (6.7)
2) Computation of the segment length for each axis:
AX, = A (x - x;)
AY, = A, (¥, - ¥,) (6.8)
AZ = A, (2, - 2z;)
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| vy
E (x1, y1,21)
! (Xi,Yi,Z/i)/- :
AL i
Ayi

( xo, yo, 20) Axi
- >

0 X

( Xg .Yy, 2y ) --- start point coordinate;
(x;,¥,.2, ) --- end point coordinate;
(X;,Y,.Z)--- the interpolated point;
Ax; --- x-axis interpolation increment;
Ay, --- y-axis interpolation increment,
Az --- z-axis interpolation increment;

AL --- interpolation increment ;

Figure 6.2 3D Linear Interpolation
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3) Computation of the (i+1)-th 3D linear interpolated point:

an = Xi * AX!
Y.=7% +AY, (6.9)
Z, =2 +AzZ

(34

6.4 The 2D DDA Circular Interpolation Principle [49]

The 2D DDA circular interpolation principle is based on the solution of differential equations.

As shown in Fig.6.3, a partial circular arc in the x-y plane is:

X,-x)} + (Y-y) = R? (6.10)

where, X; = X(t) and Y, = Y(t) represent the interpolation position variable with parameter

t. (x, y) represents the circle centre coordinate and R represents the radius of the circle. By

differentiating, it resuits in:

al dYK
X,-x)— + (Y -y)— =0 (6.11)
dt dr
or,
dyl
v, 7 (X,-x) k(X -x)
- = = - = - (6.12)
v, X, &.-» k(Y -y)
dr

where, k represents a scale constant, and dt represents the differential time interval.
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Figure 6.3

2D DDA Circular Interpolation
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From Eq.(6.12), it is known that each axis velocity depends on the cross-coupled i-th
interpolated point, i.e., the x-axis velocity v, depends on the value of the interpolated
coordinate Y; and v, depends on the interpolated coordinate X;. Thus, the i-th step increment

for each axis is:

AX =v_ Ar

k(Y -y)Ar
(6.13)
AY = v, At

-k X,-x)Ar

where, the plus sign for AX; and the minus sign for AY, is for the case of the clockwise
circular interpolation. From Eq.(6.13), it can be seen that each axis increment is in the
direction of the axis velocity vector. Representing the feedrate by F and replacing the
differential time interval At by the interpolation period T, and letting k = F/R, the i-th

increment for each axis is;

FT
AX = (Y -y)
t R ! y
(6.14)
AY = -E(X, -x)
R
Similarly, for the arc on the z-x plane, the i-th step increment for each axis is:
AX, = v, Ar = -z -y
R
(6.15)
AZ = v, A1 = i:—(X‘.-x)
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And, for the arc on the z-y plane, the i-th step increment for each axis is:

AZ, =v, At = -E(Y,.—y)
: R
(6.16)
AY =v Ar = E(Zi-z)
Y R
The 2D DDA circular interpolation can be operated as follows:
1) Preparatory calculation of the circular interpolation scale factor:
FT
A, = — 6.17
ot (6.17)
2) Computation of the (i+1)-th point of interpolation on the x-y plane if the interpolated
circle is on the plane:
Xlol =Xl+k¢(yx-y)
(6.18)
Y, =Y - A (X -x)
3) Computation of the (i+1)-th point of interpolation on the x-z plane if the interpolated
circle is on the plane:
X, =X -A(Z-2)
(6.19)

Z +A (X -x)

iel
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4) Computation of the (i+1)-th point of interpolation on the z-y plane if the interpolated

circle is on the plane:

N
"

Z -4, (Y, -y)

is]

(6.20)

~
"

Y, + A, (Z -z2)

(24

6.5 Development of a 3D DDA Circular Interpolation Principle
From the 2D DDA circular interpolation formula, the i-th increment in the x-axis direction

includes the increments which resulted from the circular interpolations on both the x-y plane:

AX, = A, (Y-y) (6.21)

and the z-x plane:

AX, = - A, (Z-2) (6.22)

The total increment in the x-axis direction is the summation of Eq.(6.21) and Eq.(6. 22):

AX, = A [n, Y-y - n, (Z,-2) ] (6.23)

where, Y, represents the i-th interpolated y coordinate and Z, represents the i-th interpolated
z coordinate, y and z represent the interpolation circle centre's y and z coordinate
respectively, n,is the unit normal vector of the x-y plane, n, is the unit normal vector of z-x

plane, and A, is the circular interpolation scale factor as given by Eq. (6.17).
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The i-th increment in the y-axis direction consists of the increments which resulted

from the circular interpolations on the x-y plane:

AY, = - A (X,-x) (6.24)

and on the y-z plane:

AY, = X, (Z-2) (6.25)

The total interpolated increment in the y-axis direction is the summation of Eq.(6.24) and

Eq.(6.25):

AY, = A, [n, (Z-2) - n, (X-x) ] (6.26)

where, X; and Z; represent the i-th interpolated x and z coordinates respectively, x and z
represent the interpolated circle centre coordinates respectively, A, is a scale factor as given
by Eq.(6.17). n_is the unit normal vector of the y-z plane, and n, is the unit normal vector

of x-y plane.

Similarly, the z increment due to the interpolation on the z-x plane is:

AZ = i (X -x) (6.27)

and the z increment due to the interpolation on the y-z plane is:

AZ, = - A_(F,-y) (6.28)



The total interpolated increment in the z-axis direction is the summation of Eq.(6.27) and

Eq.(6.28):

AZ = &, [n, (X-x) - n, (¥-p)] (6.29)

where, X, and Y, represent the i-th interpolated x and y coordinates respectively, x and y
represent the interpolated circle centre coordinates respectively, . is a scale factor as given

by Eq.(6.17). n, and n, are the unit normal vectors of the x-z plane and the y-z plane.

Considering that the computer carries out the interpolations in the sequence of (1)
x-axis position; (2) y-axis position; (3) z-axis position, the x-axis i-th interpolated increment
is determined on the basis of the i-th interpolated coordinate of (X,, Y, . Z,) as follows:

AX =X [n (Y -y -n (2 -2)] (6.30)

The interpolation procedure goes to the new position (X,., .Y, . Z). The interpolated y-axis

i-th increment , then, is determined based on the coordinate of (X,., .Y, . Z) as:

AY, = A [n (Z,-2)-n, (X, -x)] (6.31)

Next the interpolation goes to another new point of (X_, , Y., . Z;). The interpolated i-th z-

axis increment is then determined based on the new point coordinate of (X,., , Y;., . Z):

AZ = A [n X, -x)-n (¥, -»] (6.32)



The (i+1)-th interpolated coordinates can be determined as:

an =X + AX,
Y.=7 + 4y, (6.33)
z, =2 + 4z

el

Therefore, by substituting Eq.(6.30), Eq.(6.31) and Eq.(6.32) into Eq.(6.33), one may obtain

the 3D DDA circular interpolation principle as follows:

X,=X +Ar [n (Y -» - n, Z - 2]
Y a=Y, A [n (Z, -2)-n (X, -x)] (6.34)
Zml = Zx‘ + A'c [ ny (Xi'l - x) - nx (Yz'l - -V) ]

The iterative operation of the 3D DDA circular interpolation can be described in the
following steps:
1) Calculate off-line the circular interpolation scale factor based on Eq.(6.17),
2) Compute on-line the i-th increments in each axis direction and the (i+1)-th

interpolated point in the order of x-y-z coordinates based on equations (6.30),

(6.31), (6.32) and (6.33).

To verify the 3D DDA circular interpolation principle of Eq.(6.34), a simulation study
was carried out. The objective of 3D circular interpolation is to interpolate data points along
a space circle or along a path on a sphere. Hence, by assuming a set of data points on a sphere

surface and using the 3D DDA circular interpolation formula of Eq.(6.34), the simulated 3D
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circular interpolated path was generated. A sphere centred at the origin of the coordinate
system and having the radius of 76.2 mm (3") was chosen for the simulation as shown in
Fig.6.4 . The assumed data points are on the space circle with the longitude angle ¢ = 60° and
the latitude angle 8 varying from 0° to 90° on the surface of the sphere. In order to investigate
the interpolation accuracy, the segment arc length between two consecutive assumed data
points was set to be varying. The segment arc lengths were assumed 10° latitude angle apart
for the region that the latitude angle is between 60° and 90° of the sphere circle. The segment
arc lengths were assumed 15° latitude angle apart for the region that the latitude angle is from
30° to 60° of the sphere circle, and for the region that the latitude angle is between 0° to 30°
of the sphere circle, the segment length was assumed corresponding to 30° latitude angle
apart. The interpolation feedrate was chosen as F=1524 mm/min. (60 ipm), and the
interpolation period was chosen as T = 0.2 sec. Hence, the interpolation increment FT = 5.08
mm (0.2"). A detailed discussion on how to select the interpolation parameters F and T is

given in Chapter 7.

The simulation was conducted as follows:

1) Based on the chosen interpolation feedrate, the interpolation period and the radius of
the sphere, the circular interpolation scale factor was calculated by using Eq.(6. 17).
This is an off-line calculation and the scale factor is a constant.

2) Based on the assumed data points on the sphere surface, the calculations of each

segment length on each axis was performed:
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Figure 6.4 3D DDA Circular Interpolation
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L (k) = x(k+1) - x(k)
L(k) = y(k+1) - y(k) (6.35)
L (k) = z(k+1) - z(k)

where, (x(k), y(k), z(k)) and (x(k+1), y(k+1), z(k+1)) represent the start and the
end points of the k-th segment, and L (k), L (k) and L,(k) are the corresponding k-th

segment lengths along each axis direction.

3) The interpolation start point (X, . Y,, Z,) for each segment was initialized:
X, = x(k)
Y, = y(k) (6.36)
Z, = z(k)

4) The interpolation procedure was continued from step 5) when the interpolated
coordinates, X, ,Y, and Z, , had not arrived at the end point of the segment, in which

case they would have satisfied the following condition:

X -X, <L,
Fo-Y <L (6.37)
Z -2 <1,

when one or two of the conditions of Eq.(6.37) were not met, the interpolation
procedure in the axes directions would not be performed and the other axis direction

of interpolation continued from step S). If all of the conditions were not met, the
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3)

6)

7

8)

interpolation procedures went on to the next segment.
The differences between the interpolated point (X;, Y;, Z) and the end point

of the segment (X, , Y, , Z,) were calculated:

D, = L(k) - (X, - X(k))
D, = L{k) - (¥, - 7 (k) (6.38)
D, = L(k) - (Z, - z,(k))

The interpolation procedure was continued from step 7) when the maximum difference

among the D, , D, and D, calculated in step 5) satisfied the following condition:

max ( D_, Dy .D,) 2 FT (6.39)

If the condition of Eq.( 6.39) was not met, the interpolation procedure repeated from
step 3). In fact, this happened when the interpolation procedure approached the end
point of the segment. Since the maximum difference was smaller than the interpolation
increment and usually was a very small value, it was then skipped and interpolation
went on to the next segment.

The interpolation increment in the x-axis direction was calculated based on Eq.(6.30);
The next interpolation point in the x-axis direction was calculated as follows:

= X, = AX, (6.40)

il
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where, the plus and the minus sign depended upon whether the interpolation increased
or decreased.
9) The interpolation increment in the y-axis direction was calculated based on Eq.(6.31);

10)  The next interpolated point in the y-axis direction was calculated as follows:

Y., =Y £ AT, (6.41)

A4

where, the plus and the minus sign depended upon whether the interpolation increased
or decreased.
11)  The interpolation increment in the z-axis direction was calculated based on Eq.(6.32),

12)  The next interpolated point in the z-axis direction was calculated as follows:

Z,=12¢*4Z (6.42)

t+]

where, the plus and the minus sign depended upon whether the interpolation increased

or decreased.

The total number of interpolated points were 33 points among the assumed 7 data
points on the sphere surface. Since the segment arc lengths were purposely set varying along
the sphere circle path, the amount of interpolated points for each segment were different. The
shorter the segment arc length, the less points were interpolated. In fact, in the region when
the latitude angle was close to the equator, the amount of interpolated points were less than
that close to the pole. Fig. 6.4 shows the interpolated path and the space curve on the sphere

surface. It is obvious that the interpolated path is along the space circle and the accuracy is
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better at the region near to the equator, which is due to the fact that the shorter segment arc
length was assigned. The accuracy study results of the interpolation are outlined in Table 6.1.
The maximum interpolation error is 5.0521mm (0.1989") which is smaller than the
interpolation increment: FT= 5.08 mm (0.2"). When the segment arc length is 10° apart, the
minimum interpolation error of 0.0203 mm (0.0008") resulted. The interpolation accuracy can
also be improved by choosing a smaller interpolation period. This simulated result verifies the

usefulness of the new 3D DDA circular interpolation principle.



Table 6.1 3D DDA Circular Interpolation Errors

Segment arc angle

max. error min. error interpolation
increment
-0.6147 mm -0.0203 mm 5.08 mm
10°
(-0.0242") (-0.0008") (0.2")
2.8804 mm 0.3912 mm 5.08 mm
15°
(0.1134") (0.0154") (0.2"
5.0521mm 1.1252 mm 5.08 mm
30°
(0.1989") (0.0443") 0.2
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6.6. A 3D Combined Linear and Circular Interpolation Principle

6.6.1 The Motion Trajectory of the OM-1 Milling Centre

The motion trajectory in five-axis CNC machining depends on different machine
configurations and rotational movements. The common configuration of five-axis CNC
machine tools include both the swivel-head and the rotary-table types. In the swivel-head
type, the spindle chuck acts as the swivel (the rotational) movements pivot. The 3D circular
swivel movements about the pivot superimposed on the 3D linear motion of the pivot
construct the combined 3D linear and circular motion trajectory. In the rotary-table type. the
intersection point of two axes acts as the pivot for the rotational movements. The machine
table's 3D rotational movements, superimposed on the translational movements of the pivot,
form the 3D combined linear and circular motion trajectory. To analyze the 3D combined
motion trajectory, without loss of generality, the OM-1 milling centre, which is the rotary-
table type, is considered in this work. From the OM-1 configuration (see Fig.4.4 ), it is known
that the rotational B,, axis and C,,, axis are perpendicular and intersect at a space point, P, at
all time during the machining processes while the machine table moves. Since the intersection
point P is on both the B, axis and the C,, axis, it moves translationally only. Thus, the
intersection point P acts as a pivot for the machining rotational movements, such that the part
together with the machine table rotates about the moving pivot P tracing out a 3D non-linear
path. In other words, the actual CC point trajectory is constructed by the 3D circular
movements (about the pivot P) which are superimposed on the linearly interpolated
movements of the pivot P. From this geometrical perspective, the CC point trajectory model

for the OM-1 was determined as given by Eq.(4.19) and Eq.(4.20).
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6.6.2 The Rotational Movements Interpolation Principle
In multi-axis CNC machining, the rotational movement increments are angles measured in
degrees. The common interpolation method for rotational movements is using the direct

function algorithm [71] as follows :

)
1

B,+t (B -B,)

H 0

(6.43)

D)
1

i Cort Cl - Co )
where, (B;, C) is the interpolated coordinate of the rotational movements in degree units,
(B, Cp) and (B,, C,) represent the start and the end coordinates of the rotational movements
for the move respectively, t represents a parameter which is proportional to time and varies

in the range of (0, 1),i.e, t=0at(B,.C)and t =1at (B,, C)).

The direct function algorithm is designed for parametric space curves and is
particularly suitable to rotational movement angles. The 3D machine movements are
parametric functions of time, because each axis coordinate (linear position in length or
circular position in degree units) is a parametric function of time. Therefore, the direct

function algorithm is used to interpolate the rotational movements in five-axis machining.

6.6.3 A 3D Combined Linear and Circular Interpolation Principle
In conventional five-axis CNC machining, 3D linear interpolation principle is used to

coordinate the translational movements along each 3D straight line segment and the rotational
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movements are interpolated based on the direct function algorithm of Eq. (6. 43). As a result,
the CC point trajectories are the 3D linear motions of the rotation pivot combined with the
3D circular motions about the rotation pivot as shown by the machining motion trajectory
model of Eq.(4.19). The curved trajectories cause non-linearity errors in multi-axis CNC
machining. To eliminate non-linearity errors, it is desired to conduct the CC point to move
along the 3D straight line segment connecting the consecutive movement points. This can be
achieved if the rotational pivot (or the translational movements ) is interpolated along a
predesigned curve, say a 3D combined linear and circular curve. Based on this geometrical
analysis, a combined 3D linear and circular interpolation principle is developed. The

corresponding 3D DDA linear and circular interpolation formula is:

o
[}

X, 0 k[ - x) onlY, - v) - a2, - 2]

ivl

~
il

Yl * kc [(yl - yo) M nx(zx - ::) - n:(Xxvl - xl'l)] (644)

iel

zi * ls: [(zl - 20) * n}'(an - xnl) - nx(Ynl - ywl)]

tel

The detailed deriving procedure is provided in Appendix C.

Interpolating the rotational movements based on the direct tunction of Eq.(6.43) and
interpolating the pivot P along the curve of Eq.(6.44), i.e., coordinate the translational axes
based on Eq.(6. 44), the CC point is expected to move along the straight line segment with

constant feedrate at each move:



x (i+1) = £ (1) + & (x (1) - x,(0)
y (i+l) = y () + &, (v (1) - y_(0)) (6.45)
z (i+1) =z () + A, (z (1) - z_(0))

where, (x_(i), y..(i), z..(i))and (x_(i+1), v (i+1), z(i+1)) are the present and the next CC
point coordinates respectively, (x..(0), y..(0), z..(0)) and (x.(1), y..(1), z..(1)) are the start and

the end CC point coordinates of the segment, and A, is the linear interpolation scale factor.

6.6.4. Proposed Methodology for Solving the Non-Linearity Error Problem

What follows is the proposal of a methodology which can be utilized to solve the multi-axis
CNC machining precision problem. The method, applying the 3D combined linear and circular
interpolation principle, coordinates the translational axes, or the rotation pivot, along the
predesigned curve segment and conducts the CC point to move along the 3D straight line
segment connecting each two consecutive machining data points. The method interpolates the
CC point coordinates which are determined from the machine motion trajectory model. By
comparing the coordinates of the interpolated point and the end point of the segment, the
iterative interpolation is performed. The procedure for performing the iterative interpolation
can be presented in the following algorithm.

3D Combined Linear & Circular Interpolation Algorithm

1) Compute off-line the start and the ending CC point coordinates for each segment by

using the machine motion trajectory model (for OM-1, using Eqs. (4.19) and ( 4. 20)),
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2)

3)

Calculate off-line the interpolation scale factors for each segment:

2.1) Calculate each segment length:

L=/(x (&)X () +(¥ ()Y () +(z (e) -7 _(s))} (6.46)

where, the index, e, represents the end point and the index, s, represents the start
point.
2.2) Calculate the linear interpolation scale factor: 4,=FT/L;
2.3) Calculate the rotational (3D circular) movements radius, R, which equals
to the distance between the CC point and the rotation pivot. Hence, one may

have:

o

R = i, %0 + 0,-C,.)? * (z,-GL)? (6.47)
where, (X, Y . Z,) are the NC-codes coordinates, X, is the spindle position x-
coordinate, C ., is the C axis pivot constant and GL is the cutter gage length as
shown in Fig.4.4.

2.4) Calculate the circular interpolation scale factor: A.=FT/R;

On-line interpolation routine:

3.1) Interpolate the CC point coordinates based on the start point

(Xcc (), Yee (5), 2..(s)) and the end point (x (), Y. (), z..(e)) of the segment:
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x (i+1) = x (1) + &, (x (e) ~ x (5))
Yli+l) = y () + A v (e) = v (s) (6.48)
z(+1) = 2 () + A, (z.(e) - z(s))

3.2) Interpolate the translational axes coordinates in the following order: x-axis= y-

axis= z-axis. Thus, the 3D linear and circular interpolation of the pivot centre is:

X(i+1) = X()+A [(x,(e)-x, () (Y () -y () ~(Z(}) -z ()]
Y(+1) = Y()+A [(v_(€)-V () +(Z(1) -2, (i)~ (X(i +1) ~x_(i +1))] (6.49)
Z(i+1) = Z(@)+d [(z,(€)~2 () +(X(i+1)=x _(i+1))=(¥(i+1)-y_(i+1))]

3.3) Interpolate the rotational axes circular movements according to the direct

function algorithm as follows:

B(i) = B(s) + t( B(e) - B(s))
(6.50)
C) = Cs) + t(Cle) - C(s))
4) Calculate the length between the start point and the present interpolated CC point:
1) = & D)% )+ (DY () +(z ()2 () (6.51)
5) Compare the coordinates of the interpolated point with the end point of the segment

by performing the test:
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(L - Ig)y) =2 FT (6.52)

If the test is true, perform step 6) , otherwise go to step 7).

6) Repeat the interpolation routine on the present segment by performing the steps 3)
to 5).
7 Determine the modified feedrate if the test is false:

L -y
At U)] - (1) (6.53)
and modify the interpolation scale factors: 1, = F' T/L and A, = F' T/R;
and repeat the step 3) to reach the end point of the segment.
8) Repeat the steps 3) to 7) on next segment until the machining arrives at the end of the

NC-codes.

6.7. The Software Interpolation Routine

The first step in the overall design of a CNC system involves the selection of an appropriate
control technique and the optimal setting of the control loop parameters. Subsequently, an
appropriate interpolator routine that generates the reference signals to the control system
must be designed. The reference-word interpolation technique in the sampled-data system has
been commonly employed in current CNC systems. Therefore, the new 3D combined linear
and circular interpolation technique is designed as a reference-word type interpolator. In the

sampled-data system, the interpolation calculation is performed by the software interpolation
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routine in the MCU. The tool path data input into the MCU must be pre-processed, which

includes decoding the tool path data into a set of computer system data, performing cutter

compensations if needed, and distributing feedrate to each axis of motion. After preparatory

processing, the data are inputted into the interpolation routine and the interpolator computes

the intermediate coordinates of positions based on the appropriate interpolation algorithm.

The proposed software interpolation routine computes the coordinates based on the algorithm

developed in section 6.6. The software interpolation routine includes the following functions:

I) A function accepting the machining NC-codes and the machining parameters such
as the specified feedrate and the chosen interpolation period;

2) A function determining the CC point coordinates that correspond to the end points
of each movement (the machine motion trajectory model is employed);

3) Three functions computing the interpolated translational axes coordinates based on
the 3D combined linear and circular interpolation principle of Eq. (6. 49);

4) Two functions calculating the interpolated rotational movements coordinates based

on the direct function algorithm of Eq. (6. 50).

A flow chart of the new interpolation software is shown in Fig. 6.5. The program
starts by inputting the machining parameters: the specified feedrate F and the chosen
interpolation period T, and the machining NC-codes. Then, the CC point coordinates of the
end points of each segment is computed. Using the machining parameters and the NC-codes,
the linear and circular interpolation scale factors can be determined. These are constants for

each machining step move and are calculated off-line prior to the on-line execution of the
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Figure 6.5 Flow Chart of the 3D Linear & Circular Interpolation Routine



interpolation. Then, real-time interpolation begins by initializing each axis coordinate for each
segment. The interpolated positions of the translational and rotational axes are then computed
successively. The iterative computation of the interpolated positions for each axis is
performed under the conditions that the total interpolation incremented length of /(i) is less
than the segment length of L, and the remaining length of (L - /(i) ) is greater than the
interpolation increment as given in Eq. (6.52). In the case that the remaining length of (L -
I(i) ) is smaller than the interpolation increment, the remaining length is used to modify the
feedrate which, in turn, is used to command the axes to reach the end point of the segment.
This interpolation routine is repeated until all the NC-codes are completed. For the final
interpolation point, it should be noted that each axis may not arrive at the segment end at the
same time since each axis segment length is different. The interpolation process on next
segment, however, is started at the same time for each axis since the iterative interpolation
is performed under the condition of Eq.(6.52) and the feedrate adaptation procedure is used.
The new software interpolation routine is coded in the programming language C. in order to

adapt to general CNC machine tool control systems.

6.8 Summary

In this chapter, a methodology for solving the non-linearity error problem in ultra-precision
five-axis CNC machining was proposed. Based on the 2D DDA circular interpolation
principle, the 3D DDA circular interpolation formula was developed and a simulation using
the proposed 3D circular interpolation principle was performed. The simulated result

demonstrated the validity and the precision achieved by the new 3D circular interpolation
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principle. Then, a 3D combined linear and circular interpolator was designed based on the 3D
DDA linear and circular interpolation principles. A software interpolation routine based on
the 3D combined linear and circular interpolation algorithm was developed. The software is
capable of generating the reference-word signals to the machine axes control loops of the
sampled-data systems, such that the machine translational axes can be driven to move along
the predesigned curve and the machine rotational movements can be driven tc move circularly
in space. The CC point thus can be conducted to move along the straight line segment, so that

the non-linearity errors can be eliminated.



CHAPTER 7
AN APPLICATION OF

THE INTERPOLATOR DESIGN TECHNIQUE

7.1 Introduction

Applying the '3D combined linear and circular interpolation technique' proposed in Chapter
6, the process of machining the airfoil surfaces of an impeller is simulated and is presented in
this chapter. The simulated results demonstrate that the proposed 3D linear and circular
interpolator drives the translational axes along the predesigned 3D curve and conducts the CC
point along the straight line segment that connects each two consecutive machining data
points, so that elimination of non-linearity errors is achieved. In the following, the
interpolation preparatory data processing procedure is outlined in section 7.2. Based on the
data from the interpolation preparatory data processing, the conventional five-axis CNC
machining process for machining the airfoil surfaces of an impeller is simulated and the result
is outlined in section 7.3. This simulation result is then compared with that from the
simulation of machining the same airfoil surface using the proposed 3D linear and circular

interpolator (section 7.4).

7.2 Interpolation Preparatory Data Processing
An NC part program contains the data of the geometric information of the machined surfaces
(the coordinates of the tool path) and the motion information of the machining (the feedrate

and the auxiliary functions data). These data cannot be directly input into the interpolation
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routine in the MCU of the control computer, and must be processed by the data processing

unit in the MCU before the interpolation is executed. This interpolation preparatory data

processing includes: (i) the decoding of the NC-codes into a set of computer system data

based on standard format, (ii) the cutter compensations to obtain the cutter centre tool path

if the tool path is generated based on the contour of the machined surface, and (iii) the

feedrate calculations for each axis of motion to generate commands to the control loops. The

procedure for interpolation preparatory data processing usually involves the following steps:

1)

3)

4)

3)

The NC-codes are input and stored in the NC-codes buffer;

The data decoding routine in the MCU processes a block of NC-codes data and store
it in the decoded data buffer;

The cutter compensation routine in the MCU determines the cutter centre coordinate
based on the surface geometry and the cutter radius if the tool path is generated based
on the contour of the surface to be machined, and then stores the compensated data
in the cutter compensator data buffer;

The feedrate routine in the MCU calculates the feedrate for each axis of motion for
the machining movement and stores the data in the system working buffer;

The MCU transfers the data into the interpolation register and the interpolation

process can be started.

The data decoding process is needed for different computer systems of CNC machine

tools in order to perform the other MCU functions. In this study, however, for the purpose

of simulating the function of the new interpolator, the NC-codes tor machining the airfoil
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surfaces of an impeller are directly used in the interpolation calculation.

In machining simple or regular geometry surfaces, such as a plane or circular shaped
surface, the NC-codes are usually generated from the contour of the surface. Cutter
compensation is required to obtain the cutter centre coordinates of motion. This can be
accomplished by using the cutter compensation techniques as given by Liu and Lei [72] and
Li, et. al. [73]. For machining complex 3D surfaces ( i.e. the sculptured surfaces), the tool
path is usually generated in terms of the cutter centre positions. Hence, there is no need to
perform the cutter radius compensation process, and cutter length compensation is usually
performed by compensating the spindle length. In this study, the available CLDATA for
machining the airfoil surfaces of an impeller were generated in terms of the ball-end cutter
centre position coordinates. therefore, the cutter compensation process is not required in the

simulation study.

The feedrate calculation is closely related to the interpolation process of the machine
axes movements. The feedrate calculation determines the step increment in an interpolation
period for each axes of motion based on the specified machining feedrate. Many factors affect
the machining feedrate, the specification of which must be based on the materials of the cutter
and the workpiece, cutter geometry data (cutter radius and length), depth of cut and cutting
velocity. In this study, assuming that the material of the workpiece is titanium and the material
of the cutter is carbide, and considering the depth of cut is for the finish machining and the

cutting velocity is that equivalents to the spindle speed of 1200 rpm, the feedrate is specified



as 25 mmv/sec (60 ipm).

In conventional five-axis machining, the feedrate specified in terms of the inverse-time
feedrate word (inverse-time FRN) is recommended, since the rotational movements are
involved. The feedrate specified in terms of the direct feedrate word (length/time units) is
defined for linear movements. Changes in rotational movements are measured in degrees.
Therefore, the direct feedrate word is not suitable for angle/time units. The inverse-time FRN
is defined as the time required for the cutter moving in the angular/linear position change of
a machining step. By using the inverse-time FRN and the linear or angular position change
on each axis, the feedrate along each axis can be determined. The specified feedrate
represented as the inverse-time FRN in the NC-codes is by setting the G function as G93. For
point milling, each segment length can be calculated from the cutter position coordinates.
Using the segment length for the k-th machining step move, L, , and the specified feedrate,

F, the inverse-time FRN can be determined as:

k

RN, = £ (1min] (7.1)
Lk

Using the inverse-time FRN, , the feedrate calculation routine in the MCU then

calculates each axis speed for the k-th segment movement as follows:



x k
Fy = FRN, = Ay, [ipm] (7.2)
F,=FRN,6 + Az, [ipm]

Based on these axis feedrates F, , F, , F, and the interpolation period T, the linear

interpolator generates the increments for each axis of motion:

dlx = Fx#T
dly = Fva (7.3)
dI: = F»T

The determination of the interpolation period must consider interpolation accuracy,
which directly affects the machining precision of the whole CNC system. It should be greater
than the time required for performing the actual interpolation calculations since the MCU
performs not only the interpolations but also the other on-line tasks. The Pythagorean
theorem used by Huang [74] gives the relational function of the machining precision measure,
i.e., the machining tolerance t, the machining feedrate F and the interpolation period, T | as

follows:

J 8tp - 412
LP ’ (1.4)

F

T <
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where, p represents the radius of the local curvature of the curve: t. is equal to or less than

the machine BLU to ensure interpolation accuracy.

In this study, for the machining tolerance of t. = 0.005 mm (0.0002"), the minimum
radius of curvature of the curve p = 4 mm and the feedrate F = 25 mm/sec (60 ipm), the
interpolation period T is determined based on Eq.(7.4), and the determined interpolation
period range should be less than 15ms. By considering the required time for executing the
interpolation calculation for the algorithm of the designed interpolator, the interpolation

period is chosen as T = [0 ms.

The feedrate calculation procedure described above is employed when the linear
interpolation method is used in conventional five-axis CNC machining. In the calculation of
the DDA circular interpolation, the feedrate is in the direction of the tangent at the
interpolation point on the circle, hence, the specified feedrate in the tool path data is directly
used. In this study, the new interpolator performs the combined 3D DDA linear and circular
interpolation function. The feedrate is in the direction of the tangent at the interpolation point
on the predesigned 3D curve segment. Therefore, the specified machining feedrate F = 25

mm/sec (60 ipm) is directly used in the simulation.

7.3 Simulation of Machining Blade Surfaces Using Linear Interpolation
In order to verify the multi-axis CNC machining error analysis and the functions of the

proposed 3D interpolator, the machining process for machining the airfoil surfaces of an
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impeller with the linear interpolation technique was simulated. The procedure, as the

conventional five-axis CNC machining, is described as follows.

A set of NC-codes for machining the airfoil surface of an impeller was determined by
transforming the available CLDATA taken from a sample machining process in industry. The
3D cutting curve (or the tool path) on the airfoil surface of the impeller in reference to the
workpiece coordinate system is shown in Fig.7.1. The cutter locations for machining the
airfoil surfaces of the impeller in reference to the workpiece coordinate system is shown in
Fig.7.2. Using the specified feedrate, F = 25 mm/sec (60 ipm), and the G93 function, the
inverse-time FRN was determined for each segment using Eq.(7.1). The interpolation period
determined in section 7.2 was used to calculate the interpolation increments. Then, from the
preparatory data processing, the feedrates F, , F, and F, were calculated for each axis based
on Eq.(7.2) within the interpolation period. The linear interpolation scale factor A, was then
determined based on the axis feedrates, the interpolation period, and each axis segment
length. The translational axes, i.e. the coordinates of the machine rotation pivot P, were then
interpolated based on the 3D linear interpolation principle of Eq.(6.8) and Eq.(6.9). The
rotational axes were interpolated circularly based on the direct function algorithm of Eq.

(6.43).
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Figure 7.1 The Cutting Curve on the Blade Surface in Part Coordinate System
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Figure 7.2 The Cutter Locations for Machining the Blade Surface
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The linear interpolation and the direct function algorithms interpolated the
translational and the rotational movement coordinates in each interpolation period as in the
real machining process. The corresponding cutting point (CC point) moved along the
machining motion trajectory. The CC point coordinates, for the OM-1 milling centre, was
then calculated based on the OM-1 machining motion trajectory model of Eq.(4.19) and

Eq.(4.20).

The resulting CC point path in reference to the machine coordinate system is plotted
as shown in Fig.7.3. It can be seen that the CC point path is formed by a series of space curve
segments, which is a fact that is obvious from the OM-1 non-linear machining motion
trajectory model. The enlarged closer view of the CC point path between adjacent machining
data points shows that the CC point moves along the non-linear curve segments which
deviate from the straight line segments connecting each pair of the machining data points
when the rotation pivot (or the translational axes) was linearly interpolated. The machining
errors, resulting from the simulation using the linear interpolation method, were determined
and a sample of the machining errors are shown in Table 7.1. It shows that the total

machining error for each move consists of both the linearity error and the non-linearity error.

The simulation results confirm the machining error analysis indicating that the non-
linear curve segments deviate from the linearly interpolated straight line segments, which
causes non-linearity errors. The result also shows the inadequacy of the linear interpolation

method when applied to current multi-axis CNC machining of convex surfaces.
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7.4 Simulation of Machining Blade Surfaces Using the Proposed Interpolator

Applying the proposed interpolator, the '3D combined linear and circular interpolation
technique,’ to process the same set of NC-codes for machining the airfoil surface, a simulation
was performed. Using the OM-1 inverse kinematic mode!, a set of NC-codes was determined
by inverse transforming the available CLDATA as shown in Fig.7.2. The procedure followed

the proposed algorithm in section 6.5 and is described next.

The 3D combined linear and circular interpolator is designed to interpolate the
machining translational movements, i.e., the 3D coordinates of the rotational movements
pivot, such that the rotation pivot moves along the predesigned 3D linear and circular curve
segments and the CC point of the cutter moves a small straight line increment from one
command to the next along the 3D straight line segment connecting the end CC points. In the
interpolation calculation, as a precalculation, the CC point coordinates which correspond to
the tool path data points were determined based on the already-known NC-codes and the
OM-1 motion trajectory model. Then, these CC point coordinates were linearly interpolated
and used in the calculation of interpolated positions of the rotation pivot. The specified
feedrate of F = 25 mmv/sec (60 ipm) and the interpolation period T=10 ms were used to
calculate the interpolation scale factor for each interpolation increment. The initial
interpolation coordinates of the rotation pivot P were assigned as the start point coordinates
of each segment. In the first interpolation period, based on the linearly interpolated CC point
coordinate, the first point of translational movements was interpolated by using the 3D

combined linear and circular interpolation formula of Eq.(6.49). The rotational movements
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were interpolated in the same way as in the linear interpolation simulation of section 7.3. The
interpolated position and rotation coordinates were sent to each machine axis control loop
as the reference-words. It should be clarified that the control loops were not simulated in this
interpolator function simulation study. After sending the interpolated position coordinates,
the interpolated CC point increment was compared with the present segment length, L, which
was pre-determined using the CC point coordinates for the segment. Upon the comparison
of the interpolation incremented length with the segment length, L, the interpolation was
continued since the first increment was shorter than the segment length. In the second
interpolation period, the second point of the translational axes and the rotational axes
incremented coordinates were interpolated on the basis of the first interpolated coordinates.
Next, the total length of the interpolated increments was compared with the present segment
length, L. Upon the comparison, the interpolation was performed on the present segment or
continued on to the next segment. This iterative interpolation procedure repeated until the
interpolated point reached the end point of the segment. When the test showed the difference
between the total length of the interpolated increments and the segment length was shorter
than one interpolation increment F*T, the feedrate was modified as in the algorithm presented
in section 6.5 and the interpolation scale factors were also re-calculated. The 3D linear and
circular interpolation was continued to calculate the new increment. Thus, the end point of
the segment was reached. The same procedure was performed on each consecutive segment

of the complete set of NC-codes.

The interpolated pivot point path in reference to the machine coordinate system is
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plotted as shown in Fig. 7.4. It can be seen that the pivot point path is constructed by a series
of 3D curved segments, and the enlarged closer view of the pivot point path between adjacent
machining data points shows that the pivot point moves along a 3D non-linear curve segment
which deviates from the straight line segment connecting the machining data points. The
corresponding interpolated CC point path in reference to the machine coordinate system is
plotted as shown in Fig. 7.5. It clearly shows that the resulted CC point path is formed by a
series of smooth segments. In fact, the CC point path is conrected by a series of line segments
when the rotation pivot was interpolated along the pre-designed 3D curve segments.
Obviously, the non-linearity error for each segment is eliminated. The machining errors
resulting from this simulation were also computed as shown in Table 7.1. The resulting
machining errors using the proposed interpolator consist solely of linearity error for each

move.

Compared with the result obtained from the linear interpolation simulation, the linear
interpolation method is simpler, but it results in both linearity errors and non-linearity errors
which cause difficulties for ensuring machining precision. Alternatively, the '3D combined
linear and circular interpolator ' conducts the CC point to move along straight line segments,
so that the only machining error for each segment is the linearity error. Although the proposed
interpolator needs more calculations to interpolate the position points as compared to the
linear interpolator, the non-linearity error for each segment is eliminated. The simulated
results show that the proposed interpolation technique is superior to the linear interpolation

method since the resulting motion trajectory causes only the linearity machining error.
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Table 7.1 Comparison of the machining errors from the linear interpolation method
and the '3D combined linear & circular interpolation technique'

The hnear interpolator The 3D combined

linear & circular interpolator

Lineanty error Non-linearity Total Linearity Total

(inch x 10?) error error error error

(inch x 107 (inch x 107%) (inch x 107 (inch x 107

1 0.101 0.346 0.447 0.101 0.101
3 0.051 0.216 0.267 0.051 0.051
9 0.005 0.210 0.215 0.005 0.005
19 0.007 0.197 0.204 0.007 0.007
73 0.002 0.200 0.202 0.002 0.002
82 0.005 0210 0.215 0.005 0.005
103 0.001 0.230 0.211 0.001 0.001
104 0.025 0.195 0.220 0.025 0.025
122 0.001 0.205 0.206 0.001 0.001
130 0.004 0210 0214 0.004 0.004
133 0.003 0.208 0.211 0.003 0.003
139 0.002 0.203 0.205 0.002 0.002
145 0.027 0.181 0.208 0.027 0.027
147 0.029 0.198 0.227 0.029 0.029
152 0.018 0.190 0.208 0.018 0.018
154 0.005 0.200 0.205 0.005 0.005
166 0.004 0.198 0.202 0.004 0.004
178 0.016 0.192 0.208 0.016 0.016
187 0.001 0.205 0.206 0.001 0.001
195 0.025 0.183 0.208 0.025 0.025
245 0.003 0.210 0.213 0.003 0.003
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CHAPTER 8

CONCLUSION
AND
RECOMMENDATION FOR FUTURE RESEARCH

8.1 Conclusion

The non-linearity error problem is the main obstacle to ensuring machining precision in multi-
axis CNC machining of sculptured surfaces. The nature of the problem is that superimposing
rotational movements on translational movements yields non-linear machining motion
trajectories, which deviate from the linearly interpolated straight line segments resulting in
non-linearity errors. Five-axis rotational movements are kinematically related to cutter
orientations, therefore, one of the factors causing non-linearity errors is cutter orientation
changes. Another factor contributing the non-linearity error problem is due to the linear
interpolation method which is not able to trace the non-linear motion trajectory in five-axis
machining. The objectives of this thesis work were to develop novel procedures to eliminate
the problem. The first objective was to develop an off-line tool path generation method which
tackles the problem from off-line cutter orientation generation. The second objective deals

with the development of an on-line 3D interpolator design technique.

As the achievement of the first objective, an off-line tool path generation
methodology, the ‘'minimum error tool path generation method', has been developed. This new

method is capable of reducing non-linearity errors to meet machining precision requirements
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and has the following characteristics:

)

2)

3)

4)

5)

6)

Ability to obtain high machining precision is increased without undesired
consequences, compared to the existing off-line methods.

Generation of CLDATA is based on the geometric properties of the machined
surfaces, the machining kinematics and motion trajectory:

Optimum machining NC-codes can be generated by modifying off-line cutter
orientations without inserting extra machining position data;

Capacity for generating smoother tool path is improved, thus ensuring feedrate fidelity
and resulting in better machined surface finish;

Requirement for data storage memory size is reduced;

Machining time can be reduced.

A software package for implementing the proposed off-line 'minimum error tool path

generation method' has been developed. The software can be used (i) to directly generate NC-

codes specifically suitable for OM-1 milling centre; (i) to generate NC-codes for other OM-

series five-axis CNC machine tools by inputting different machine configuration data and

setup data. Case studies were performed by applying the proposed 'minimum error tool path

generation method'. It was verified through simulation that the new method increased

machining precision from 0.0127mm (0.0005") to 0.005 mm (0.0002"). In other words, the

proposed method increased the machining precision by an amount of 30% without undesired

consequences such as the incorrect cutter orientation and the feedrate fidelity problems,

compared with the result of 'linearization process'.

150



An on-line 3D interpolator design technique for solving the multi-axis CNC machining
non-linearity error problem has been proposed which fulfills the second objective of this
thesis. Conventional CNC machining systems support functions of 2D circular and 3D linear
interpolations, which are unfortunately inadequate for the machining of highly complex 3D
surfaces. A 3D software circular interpolation principle has been developed in this thesis,
which is capable of tracking spherical curves with low position errors and uniform feedrate.
To venify this 3D software circular interpolation, a computer simulation of interpolating a 3D
curve has been performed. The interpolated space path shown in Fig. 6.4 illustrates the new
interpolator’s 3D circular interpolation capability, and the interpolation errors analysis results
given in Table 6.1 showed small curve tracking errors. On the basis of this software-based 3D
circular interpolator, a ‘3D combined linear and circular (L&C) interpolation technique' has
been proposed, which provides a solution to the multi-axis CNC machining non-linearity error
problem and has the following characteristics:

1) Applicable to generating command signals for accurate position-tracking of 3D non-

linear trajectories;

2) Applicable to eliminating non-linearity errors in five-axis CNC machining;

3) Applicable to machining 3D curves on five-axis machine tool systems of all types;
4) Uniform machining feedrate for each move can be obtained:

5) Small data storage memory are required.

A software interpolation routine which implements the '3D combined linear and

circular interpolation technique' has been developed. The software is applicable to the
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machining on the rotary-table type five-axis CNC machine tools, and can be extended to other
types of five-axis CNC machine tools. Computer simulations have been performed to verify
the proposed '3D combined linear and circular interpolation technique’ and to compare it with
the linear interpolation method. In the simulation of the machining process in section 7.3, the
elimination of non-linearity errors were conducted successfully. Such capability is unattainable

using the existing linear interpolation method or using the 'linearization processes'.

The results of the research work in this thesis are innovative and contribute solutions
to present day concerns in the manufacturing industry. The 'minimum error tool path
generation method' is readily applicable in off-line tool path generation for OM-series five-axis
CNC machine tools, and can be used to increase machining precision considerably. The off-
line method can be further extended to all type five-axis machine tool configurations. The
proposed '3D combined linear and circular interpolation technique' can be used in five-axis
CNC machine tool systems once implemented and tested in the real-time machining
environment. The proposed technique possesses the ability of eliminating non-linearity errors,
and if the proposed technique is verified by successful experimental study and proves to be
effective in on-line application, the benefits to industry would not only include reduced

machining time and greater precision, but also reduced post-machining processing time.

8.2 Recommendation of Future Research

The following topics are suggested for further research to expand the present work:



)

Generalization of the 'minimum error tool path generation method' software:

The 'minimum error tool path generation method' is machine type-specific since it
uses the individual machine's kinematic models and motion trajectory model. The
software of implementing the off-line method developed in this thesis contains the
functions and machine configuration data which are specific for use with OM-1 milling
centre. In order to adapt the off-line method to different machine tool configurations
and machining set-up, the software requires extension to different machine kinematic
models and machine motion trajectory models. Theretfore, for future work, it is
recommended that the software be extended into a general application which can
apply the proposed off-line method to all types of five-axis CNC machine tool
configurations.

Expernimental study of the 3D combined linear and circular interpolator:

The simulation of using the '3D combined linear and circular interpolation technique’
has been performed, which demonstrated the ability of the interpolator to eliminate
non-linearity errors. To verify and evaluate the whole performance of the proposed
interpolator not only from the machining errors issue but also from actual machining
time concerns, experimental studies are required. Through experiments, the adaptation
of the proposed interpolation technique to CNC control systems can be implemented,
and the required machining time and position tracking accuracy can be verified using
the real-time feedrate and cutting force control. Experimental study can be performed

by modifying the controllers of five-axis CNC machine tool systems.



Feedrate study of the 3D combined linear and circular interpolator:

The 3D combined linear and circular interpolator' is capable of driving the CC point
along the space straight line segments with constant feedrate, but without considering
the feedrate continuity between segments. In addition, the feedrate adaptation
procedure in the proposed interpolator is not a best solution to ensure uniform
feedrate in each machining move. Therefore, it is recommended that research work
is continued on the subject of feedrate continuity and control in machine CNC

systems.
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Appendix A

Development of Kinematic Models of OM-1 Milling Centre

1. Development of the rotation transformation matrix
In representing the orientation of a body with an attached coordinate system {B} in reference to a

coordinate system {A}, a set of three vectors may be used to construct a 3 x 3 matrix with the three

vectors as its columns [68]:

AR, = A, Yy, Az, (A1)

where, *Ry is called a rotation matrix which describes the orientation of {B} and the body relative
to {A}. *xg, yp . *zg denote the unit vectors giving the principle directions of coordinate system

{B} in terms of coordinate system {A}.

Since the rotation matrix has orthonormal columns, the inverse of the rotation matrix is equal

to its transpose:

AR,V = PR, = AR,T (A.2)

A B

where, PR, is the rotation matrix that describes the orientation of { A} relative to {B}, hence, it is the

inverse of the rotation matrix *Rg .

A rotation matrix can be interpreted as a rotation operator which transforms a vector and

changes that vector to a new vector by means of a rotation:
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P, = Rsp, (A.33)

A rotation matrix as an operator, with the axis k is being rotated about, can be represented

as:

p, = Rot(k, 0)*p, (A.3b)

where, Rot( k , 8 ) represents a rotation about the axis k by an amount 6 degrees.

When the axis of rotation is one of the principle axes ( x, y, z ) of a coordinate system with
the x axis and y axis are in horizontal and with the z axis is in vertical, the rotation matrix is as the
following;:

1 0 0

Rot (x, 8) 0 cosO -sinB

| 0 sin® cos® |

cos® 0 sinB
0 1 0 (A.4)

| -sin® 0 cosO |

Rot (v, 0)

1

cos® -sn9 0

sin® cos® 0
o 0 1

Rot(z, 0)

To determine the rotation transformation matrix which as an operator transforms the cutter
vector about the machine moving axes B,... and C,... of the OM-1 milling centre, the fixed axes B,

and C,, are assumed to coincide with the initial position of the machine moving axes, B,,,. and C,,.,
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and the cutter vector , P, is assumed as a free vector in the space of the part coordinate frame. The
rotation transformation matrix that operates the cutter vector P’ to the vector P,° about the axis, Cj,

can be determined as follows.

From the OM-1 milling centre configuration, the Cy, originally is horizontal in the direction

of the x axis, therefore, the rotation matrix is as:

1 0 0

Rot(C. ,C) =] 0 cosC -sinC (A.5)

0 sinC  cosC
Since the machine C,, axis originally is parallel to the machine x,, axis, and it moves to the machining
initial position which is parallel to the spindle, the rotation angle about the C,, should be measured
from the original position which is parallel to the machine x,, axis. i.e., the measured C angle should

plus the angle, 90°, from the machine x,, axis direction to the machine spindle. Thus, one may obtain:

1 0 0 1 0 0
Rot(C. , C) =10 ¢cos(90°+C) -sin(90°+C) | = | 0 =-sinC -cosC (A.6)
0 sin(90°+C) cos (90°+C) 0 cosC -sinC

Similarly, from the OM-1 milling centre configuration, the By, is vertical in the opposite
direction of the z axis, the rotations are in counterclockwise direction. Hence, the rotation matrix for

the rotation about the axis, By, , is as:

cos (-B) -sin(-B) 0O cosB sinB 0
Rot(B. , -B) = | sin(-B) cos(-B) 0 | =| -sinB cosB 0 (A7)
0 0 1 0 0 1
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Therefore, the rotation transformation matrix that rotates the cutter vector in an position to the

spindle position about the machine moving axes, B,,.. and C,,.. . is as

]
"

Rot(C,, , C) Rot(B,, , -B)

= Ral(Bmt -B) Rot(C_ , C)
cosB  -sinB .sinC  -sinB .cosC (A.8)
= |-sinB -cosB .sinC  -cosB .cosC
0 cosC -sinC

2. Development of the inverse kinematic model

The cutter vector p" is operated on by the rotation matrix R to the position p,' . one may have:

Plie,,B,.Y) =ReP°(a,B,¥) (A.9)

where, P,' is parallel to the machine spindle, hence:
h ISP

P'l(a,.B,.v,) =P} (90°,180°,90°) (A.10)
Thus, one may have:
cos 90° cosB  -sinBsinC~ -sinBcosC cos «
cos 180° = | -sinB  -cosBsinC  -cosBcosC cos B (A.11)
cos 90° 0 cosC -sinC cos Y
that is,
cosB cosa - sinB sinC cosP - sinB cosC cosy = 0 (A.12a)
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and,

cosC cosP - sinC cosy = 0

From (A.12.b), one may have:

anCc = 5B
cos ¥

sinC”l = cosBcosC
cos Y

cosCm = cos ¥

b b
ycos “y +cos °f

Substitute ( A.12.c ) into (A. 12.a ), one may have:

cosB cos @ = sinB (sinC cos P + cosC cos y)
= sinB ‘,/cos >y + cos B
or,
tanB = cos a

Veos 3y + cos 2p

(A.12.b)

(A 12.¢)

(A.13)

(A.14)

The cutter vector position initially is p° ( x, y, z ), after rotated by the transformation matrix

R itisamrivedatp,' (x,', y,', 2,') in reference to the initial part coordinate frame. In matrix form,

itis:
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*n cosB  -sinBsinC  -sinBcosC x

y,,.l = | -sinB -cosBsinC  -cosBcosC y (A.15)
21 0 cosC -sinC z
h
Thus, one may have:
rh' = x cosB -y sinB sinC -z sinB cosC
y,! = -x sinB -y cosB sinC -z cosB cosC (A.16)
z,! = y cosC -z sinC

Since the part coordinate frame is also rotated, the frame origin is moved to a new position, one have:

1
0 x cosB  -sinBsinC -sinBcosC o x
0 yl = | -sinB -cosBsinC  -cosBcosC 0o y (A 17)
0 0 cosC ~-sinC 0.

From the machine set up data, the fixture thickness, F , and the part stacking position data, G , the

initial position of the part coordinate frame origin is as:

f

02
2
o1 , (A.18)
0.'

0
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Hence, one may have:

0/ = (£ + G) cos B

2
0, - -(g + G) sinB (A.19)
0'=0

Therefore, after rotations, the cutter position in reference to the 'fixed' machine coordinate frame is

as:

xl = Ihl + ozl

t=ylz0! 2
y yh y (A-O)
z'=z'20

where, the plus sign and the minus sign depends on the position of the origin of the part frame in

reference to the machine coordinate frame. In our case, the minus applies.

The spindle MCP_s initial position in the 'fixed' machine coordinate frame is at:

(X, Yn>2y) =(PB ,PC, PB) (A.21)

where, PB represents the position of the B,, axis pivot in the x;, axis direction which is equal to the
spindle initial position in x,, (see Fig. 4.4) and in z,,. PC represents the position of the C, axis pivot

in the y,, axis direction which is equal to the spindle initial position in y,, as shown in Fig.4.4.
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To move the cutter vector P,' from the position (x', y', z') to the spindle position (PB, PC,

PB), the machine should translate the P, to the spindle by the amount of:

x, = PB £x'=PB % (xl.l + Oxl)
Yo=PC 2z'=PC (' 0} (A.22)
z, =PB +y'=PB i(_vh‘ioy')

where, the plus or the minus sign of (x' , y' , z') depends on the relative position of the vector P,' to

the spindle, in our case, the minus sign applies.

Substitute Eq.(A.20) and using the rotational axes pivot constant, PB = 15.0" and PC =

11.75", the machine translational variables are obtained as:

PB - [xcosB -ysinBsinC -zsinBcosC +(—12i+G)cosB]

Lad
n

PC - [ycosC -zsinC | (A.23)

<
a
n

™
]

PB - [-xsinB -ycosBsinC -zcosBcosC -(§+G)sin8 ]

Since,

cos e + cos?Pp + cosly = 1 (A.24)

one may have:
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1 - cos Y

\/1 + tan’C \/l - cos *a

cosC =

= sin

cosB

(A.25)

sinB = tanB cosB = cos &

cos P

vyl - cos 2a

sinC = tanC cosC =

Substitute Eq.(A.25) into Eq. (A.23), one may obtain:

PB - [x-(y tanC +z) cosC tanB ) cosB -(-};—+G) cosB

x, =
- PB - [x-y—2P PR A 8 1-cos e ~(£+G) sina
V1-cos?a yl-cos?e y1-cos’a y/1-cos’a 2
Y, = PC - [ycosC - z sinC]
=PC-[v—z°°sB] cos Y
’ cos Y /I -cos *a
2, = PB + [x tanB +y (tanC +z) cosC] cosB + (g-*G) sinB

Cos & CoOs
- +y( P z) —
sma Cos Y sina

cos Y

PB + x ] sine + (%*G) cos

Therefore, the inverse kinematic model for the OM-1 5-axis CNC milling centre is obtained as the

following:
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o = PBoxyTocoste vy SELD  con ey

Vl1-cosZa  y/1-cos

cos Y —z cos f

Yo = PC-y

1-cos 2 y/1-cosa
F
z_ = PB +xcos a +ycos P +zcos Y +(—2—*G)cos a

B = (8.!1-1( Cos & )

Veos B? + cos y?

C = an(5R
cos Y

reference to the machine coordinate system.

3. Development of the forward kinematic model

variables. From Eq.(A. 9):

(€-+G)\/l ~cos *a

Phl(“h’ph’Yh)=R’P°(“,ﬂ,Y)

one may have:

Pe ,B,Y)=R'PNe,,B,, v
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(A27)

where, x, y, z are cutter position coordinates and cosa. cosf, cosy are the direction cosine of the
cutter orientation coordinates in reference to the part coordinate system. x, , y,, , 2, are machine

translational movement variables and B, and C, are machine rotational movement variables in

The forward kinematics deal with the problem of determining cutter variables from the machine

(A9)

(A.28)



where, R is the inverse of the rotation matrix R. Since a rotation matrix has the property that its

inverse equal to its transpose as mentioned in Eq.(A. 2) above, one may have:
cosB -sinB 0
R'=RT =| sinB sinC -cosB sinC cosC (A.29)

-sinB cosC -~cosB cosC ~sinC

Thus, one have:

cos & cosB -sinB 0 0
cosP | =| sinB sinC  -cosB sinC cosC ~1 (A.30)
cos Y -sinB cosC -cosB cosC -sinC 0

By solving the matrix equation of (A.30), one may obtain:

cos ¢ = sinB

cos B = cosB sinC (A31)
cosy = cosB cosC
From Eq.(A.15), one may have:
Plx,) , v, .2) =R+P°(x,y,2) (A.32)
and,
Px,y,z2) =RPlx,',y'.2) (A.33)
Hence,
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x cosB -sinB 0
yi1=| sinB sinC -cosB sinC cosC
z -sinB cosC -cosB cosC -sinC

From Eq.(A. 22), one may have:

'=PB 0! -x

'=pPBz0'-:2

—
"

PC

+
Q
" —
|
<

By substituting Eq.(A.35) into Eq. (A.34), one may have:

xh’ cosB

(PB + (§+G) cosB - x,) cosB - (PB - (§+G) sinB - z ) sinB

- yhl sinB

-(x, - PB) cosB + (z

From Eq.(A.19), one may have:

Hence,

. - PB) sinB + (§+G)

0 sinB sinC +0y' cosB sinC

(—§-+G) cosB sinB sinC -(§+G) sinB cosB sinC

0
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(A.36a)

(A.36b)



<
"

-xh‘sinBsinC -yh‘cosBsinC +zk'cosC
-(PB +0 '-x )sinBsinC -(PB +0 '~z )cosBsinC +(PC -y )cosC (A.36¢)
x,, sinBsinC +z_ cosBsinC +(PC -y )cosC -PB (sinB +cosB )sinC

From Eq.(A.19), one may have:

Ox’sinBcosC +0ylcosBcosC

]

({- +G ) cosBsinBcosC -(g +G)sinBcosBcosC (A.36d)

0

Hence,

-xh'sinBcosC -yh'cosBcosC +zh‘sinC
-(PB +0 '-x )sinBcosC -(PB +0 '~z )cosBcosC -(PC -y )sinC (A.36e)
x,_ sinBcosC +z_ cosBcosC -PB(sinB +cosB )cosC -(PC -y, )sinC

~N
]

Therefore, the forward kinematic model of the OM-1 milling centre is obtained as the following

equation:

x =-(x_-PB)cosB  +(z -PB)sinB _+(_2F_+G)

y = x, sinB sinC _+z_cosB sinC_+ (PC-y)) cosC
-PB (sinB  + cosB ) sinC
z = x_ sinB cosC_ + z cosB cosC_+ (v -PC) sinC .

-PB (sinB  + cosB ) cosC (A37)

cosa = sinB_

8
b}

cosB sinC -

cosB _ cosC
m m

2
<
L}
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where, X, y, z are cutter position coordinates and cosa, cosp, cosy are the direction cosine of the
cutter orientation coordinates in reference to the part coordinate system. x_, , y,, . z,, are machine
translational movement variables and B,, and C,, are machine rotational movement variables in

reference to the machine coordinate system.
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Appendix B

Development of Cubic Spline Representation of Tool Path

A common technique is to use a series of cubic spline segments with each segment spanning only two
points. The cubic spline is advantageous since it is the lowest degree curve which allows a point of
inflection and which has the ability to twist through space. To represent the desired cutting curve on
the machined surface and calculate the local surface geometrical properties, cubic spline technique
can be used to approximate the desired tool path. Thus, the cubic polynomial is developed. The

resuitant formula are the same as that by Ragers and Adams[75].

The equation for a single parametric cubic spline segment is given by:

P(t) =B, +B,t +B, 1 + B, (B.1)

4

where t is the parameter which varies between the two end-point values t, and t, corresponding to
the two end-points P, and P, of the cubic segment. By knowing the tangents at the two end-points

of the cubic segment, P, and P',, and considering the normalized parameters, i.e..
g 1 g P

ll=Ostsl=t2 (B.2)

The cubic polynomial for each cubic segment can be determined as follows.
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Fort=20,

P(0) = B, = P,
3
L =B, +2B,t+3B,t’| =B =P/ ®
d ) 2 1
=0
Fort=1,
P(1) =B +B,+B, +B, =P,
dpP (B.4)
~ =B, +2B,t+38,1"| =B, +2B +3B =P
J tm] -
By solving B, and B,, one may have:
B,+B,=P,-P -P/
) / (B.5)
2B, + 3B, = P, - P,
Hence,
B,= -3P +3P, -2p' - P/
(B.6)
B, =2P -2P, +P'+P/

Therefore, by substituting Eq. (B.3), Eq.(B.4), Eq.(B.5) and Eq.(B.6) into Eq.(B.1), the cubic

polynomial is as:

P() = P +P'+(-3P +3P,-2P "-P )t?+(2P -2P +P/+P )¢’ (B.7)
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To ensure second-order continuity for a cubic spline, we impose the condition for constant

curvature at the internal joint between the two spans, namely:

y" = k = constant

where, k represents the curvature at a joint.

From Eq.(B.1), one may have:

P"ty = 2B, + 6B, 1 (B.8)

Since at the end of the first segment (s, ), t =t, = |, one may have:

P"t) = 2B, + 6B, (B.8a)

and at the beginning of the second segment (s, ), t =t, = 0, on may have:

Pty = 2B, (B.8b)

By equating Eq.(B8a) and Eq.(B.8b), one may have:

(2B, + 6B)| = 2B, L, (B.9)

Thus, From Eq.(B.6) and Eq.(B.9), for joint between s, and s, , one may have:

2(-3P +3P,-2P '-P )+6(2P -2P +P '+P))

=2(-3P,+3P,-2P/-P )
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or,

6P,~6P,+2P '+4P = 6P +6P,=4P '-2P ' (B.10)

Therefore,

3P, -3p, = -P' - 4P/ - P/ (B.11)

For a given n =5 data points, there are n-1 = 4 segments. At the joint between s, and s,, one

may have:
(2B, + 6B)) Lz = 2B, L (B.12)
Hence,
2(-3P,+3p -2P/-P/)+6(2P,-2P +P/+P )
=2(-3P,+3P,-2P/-P )
or,
6P,-6P +2P '+4P ' = 6P +6P -4P '-2P/ (B.13)
Therefore,
3P,-3p, =-p/-4P/ - P/ (B.14)
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Similarly, for the joint between s, and s, one may have:

(2B, + 68)| = 2B, |
4

(B.i5)
Hence,
3P, - 3P, = -P/ - 4P/ - P/ (B.16)
Therefore, one may obtain:
P+ 4P/ + P/ = -3P, + 3P,
P/ + 4P/ + P/ = -3P, + 3P, (B.17)
P/ + 4P/ + P/ = -3P + 3P,
or,
4P/ + P/ = -3P +3P - P/
P/ + 4P/ + P/ = -3P, + 3P,
P’ + 4P/ = -3P + 3P, - P/
In matrix form,one may have:
P/ -3p +P -P/’
4 10 2 1 3 1
1 41 P}’ = -3P, + 3P, (B.18)
0 L 4]ip/ -3P, + 3PP/
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Using M to represents the left coefficient matrix, P' to represents the left tangents column, and N

represents the right side matrix, one may have:
(M [P ]=[¥] (B.19)

or,

[p/]=[M7][¥]

By solving Eq. (B. 19), the tangents at the inner joints of the cubic spline curve can be
determined. The coefficients for cubic spline segment, then, can be determined. For example, for

segment s;, the four coeflicients, from Eq. ( B.3) and Eq.(B.6), are:

B, = P,
B,=P/
(B.20)
B, = -3P +3P,-2P' - P/
B,=2P -2P, +P'+P/
In matrix form, one may have
[ P
B, 2 -2 1 1 1
B, -3 03 -2 -1 || P
= (B.21)
B, o o 1 o ||P/
1 0 0 O /
Bl _P2 J
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In general, for all spans, the tangents at the intermediate joint points can be determined from

the following matrix equation:

SRR :
P 3(P,-P)-P/

41000 .0 2
14100 ..01|]|P 3(P,-P)
/ -
01410 ol p| | 3Py (B.22)

| 0000 ... 1 4JP/ 3(P-P,)—P/

The four coefficients for each parametric cubic spline curve can be expressed in the following

matrix form:

B, 2 -2 1 1 k
B, 303 -2 -1 || Pea
= /

B, 0 0 1 0 P, ®23)
1 0 0 o )
B, ] P,

(1 sks<sn-1)
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Appendix C
Development of A 3D Combined

Linear and Circular Interpolation Principle

The 3D DDA linear interpolation principle is as foilows:

X=X, *+ 4 (x -x;)
Yivl = Y.'*A'x(yl —yo) (C.1)
ZM=Z,.+A,(zl—zo)

where, (X5, ¥, . 2 ) and (X, , y, ., 2, ) represent the start point and the end point coordinates of the
interpolation line segment respectively, ( X;, Y, . Z, ) represents the present interpolated point. (X,_,,
Y.., . Z,.,) represents the next interpolating point coordinate, A, represents the linear interpolation

scale factor:

T

l,=L

(C.2)

where, F represents the feedrate, T represents the interpolation period, and L represents the length

of the interpolation line segment.

The 3D DDA circular interpolation principle developed in section 6.5 is as follows:
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X,,1=Xl+l.c[n,(Y,.—y)—ny(Z‘-z)]
Yo=Y+, [n (Z -2)-n X, -x)] (C3)
Zi*l = zl * l’c [ ny (Xi'l - I) - nx (Yiol - y)]

where, (X;, Y;, Z;) is the i-th interpolated point. ( X.., , Y., , Z.., ) is the (i+1)-th interpolated point.
( x,y, z) is the interpolated circle centre's coordinate. A, is the circular interpolation scale factor
which can be determined from the feedrate, the interpolation period and the interpolation circle
radius. (n, , n,, n, ) are the unit normal vectors of the coordinate planes in the Cartesian coordinate

system.

Five-axis CNC machining consists of the simultaneous and coupled three translational
movements and two rotational movements. In conventional five-axis CNC machining, the rotational
movements are about a moving pivot which moves translationally in space. In other words, the
rotation pivot's motion is interpolated based on the 3D linear interpolation principle as given by
Eq.(C.1). The rotational movements are the 3D circular movements about the rotation pivot, which
form a spherical path. This spherical motion can be interpolated by using the 3D DDA circular
interpolation principle as given in Eq.(C.2). The five-axis simultaneous and coupled 3D translational
and rotational movements result in the 3D non-linear motion trajectory. To conduct the cutting point
moving along the space line segments connecting each consecutive machining data points (i.e., to
eliminate the non-linearity errors), one may coordinate the rotation pivot to move along a predesigned
3D curve, say, a 3D combined linear and circular path. From the 3D linear and 3D circular

interpolation principle, the spatial non-linear path can be constructed by coordinating linearly the 3D
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circular interpolation centre. The development of the 3D combined linear and circular interpolation

principle is as follows.

By substituting Eq. (C.1) into Eq. (C.3) as the interpolation circle centre, one may obtain the

interpolated x coordinate:

X... Xi+kc[ ":(Yi-(y-'*l'l(yl-yo)))—ny(zi-(zi"ll(zl—zo))) ]

Xoh [ n(Ymy)-n(Z-2) A n (2,21 0,-5) ] €4

From the 3D DDA circular interpolation, replacing (X,. Y, . Z) by the initial point (x,. v, . z,). and

replacing (X;., Yi.;. Z;.,) by the interpolated point (x;, y, , z,), one may obtain the following equation:

T T R NCASN I J U] (C.5)

Thus, by replacing the interpolated point with the final end point (x,, y,, z,) of the segment, and using

the linear interpolation scale factor ,, one may obtain:

X, - x, = Af nf(z,-z9) = n.0,-y)l (C.6)

By substituting Eq.(C.6) into Eq.(C.4), the (i+1)-th interpolated x coordinate is obtained as:

Xy =X+ A [, - x) + (Y, -y) - n(Z - z2)] (C.7)

From Eq.(C.1) and Eq.(C.3), the interpolated y coordinate may be obtained as:
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~
I

Y+ [ nx(zi-(zi+kl(zl-zo)))—n:(XiOI—(xhl+ll(xl-x0))) ]
Yi*lc[ nx(zi-zi) —n:(X‘ﬂ -xhl) +A'l(n:(xl -xo)_nx(zl-zcr)) ]

iel

(C.8)

From the 3D DDA circular interpolation, replacing (X;, Y;, Z) by the initial point (x,, y, , z,) and

(X1, Yie1» Z;.y) by the interpolated point (x;, y; . z), one may obtain the following equation:

yi - yO = A'c:[n:(xi-x()) - nx(zi-zo)] (Cg)

By replacing the interpolated point with the final end point (x,, y, , z,) of the segment, and using the

linear interpolation scale factor A,, one may obtain:

Yi = Yo = Afn(x-x) - nf(z,-2)] (C.10)

Therefore, by substituting Eq.(C.10) into Eq. (C.8). the (i+1)-th interpolated y coordinate is:

Yi'l = Yl + A’: [('vl - yo) + nx(zl - Z‘) - n:(X - xnl)] (Cl[)

el

Similarly, from Eq.(C.1) and Eq.(C 3), one may obtain the interpolated z coordinate as:

z

zx+lc[ "y(Xm'(xiol*lx(xl'xo)))’"x(Ym'(yiol*}‘l(yl"yo))) ]
zi M lc[ ny(Xid-th)_"x(Yid—yl"l)+Al(nz(yl-y0)-ny(xl—xo)) ]

il

(C.12)

"

From the 3D DDA circular interpolation, replacing (X;, Y;, Z) by the initial point (x,, y, . z,) and

(X1, Yiero Z;.)) by the interpolated point (x;, y; , z,), one may obtain the following equation:

187



z, -z, = Ay - n (x;-x,)] (C.13)

By replacing the interpolated point with the final end point (x,, y, , z,) of the segment, and using the

linear interpolation scale factor A, , one may obtain:

z -z, = An -y - n(x,-x,)] (C.14)

Thus, by substituting Eq.(C.14) into Eq.(C.12), the (i+1)-th interpolated z coordinate is as:

ZM = Z-’ + l’c [(zl - Zo) M "y(Xio! - x"l) - "z(YM - ynl)] (C.15)

Therefore, by combining the Eq.(C.7), Eq. (C. 11) and Eq.(C.15), a combined 3D DDA linear and

circular interpolation principle is obtained as follows:

X=X + A [(x; -x) +n(Y -y) - ny(Z, - z)]

isl

~
1}

Yx M lc [(-vl - yo) * nx(zl - zl) - n:(an - xx"l)] (Clé)

te]

N
[}

Zr’ M lc [(zl - 20) * ny(Xi°l - xnl) - nx(Ynl - ynl)]

ivl
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