Architecture and Circuit Techniques for a 2 GHz

Advanced High-Speed Bus SoC Interconnect Infrastructure

Alexandre Landry

A thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the degree of Master of Applied Science (Electrical Engineering) at
Concordia University
Montréal, Québec, Canada

April 2005

© Alexandre Landry, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04379-2
Our file Notre référence
ISBN: 0-494-04379-2
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Architecture and Circuit Techniques for a 2 GHz
Advanced High-Speed Bus SoC Interconnect Infrastructure

By: Alexandre Landry

A key issue with high performance SoC platforms is how to interconnect their
modules to effectively transfer large amounts of data in real-time. Today’s most practical
communication infrastructures are bus-based due to the small number of processing
elements residing on a silicon die. Since the bandwidth of a shared bus goes down with
the number of bus masters, hierarchical structures are used to parallelize transfers and to
obtain a higher throughput. Hence, a novel shared memory SoC communication
infrastructure based on the Advanced High-Speed Bus (AHB) is defined in this thesis.

The objective of this dissertation is to explore various avenues to design a bus
operating with a clock in excess of 2 GHz when targeting a 0.18 pm CMOS process. As
a first iteration, the fastest circuit techniques are reviewed so as to traverse the learning
curve that a designer must experiment with very high-speed designs. To enhance the
understanding of high-speed circuit styles, the main cores of an AHB are implemented
from a novel, and aggressive, true-single-phase-clocking (TSPC) circuit style. The 2
GHz AHB arbiter has been laid out to prove the performance of the circuit techniques
explored with the full-custom SoC infrastructure. In addition, an innovative 2 GHz

pipelined memory has been created to respond to the hard IP requirements.

iii

v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Yvon Savaria for his
excellent guidance during my graduate career. He is surely the giant upon whose
shoulders I stand. In the same line of thought, I would like to acknowledge my sincere
recognition to Professor Mohamed Nekili for his accurate supervision of this research and
his precious help to overcome unusual difficulties. I would like to thank all the members
of the Very Large Scale Integration (VLSI) group at Concordia University and give a
special thanks to Tadeusz Obuchowicz who took care of difficult CAD tool issues. I
gratefully acknowledge the support of the Microelectronics Research Group (GRM) from
Ecole Polytechnique of Montréal for their valuable collaboration, particularly Normand
Bélanger who reviewed this thesis.

I also express my deepest gratitude to my beloved family and my only sister,
Marie-Eve, who have always supported me in all decisions. Finally, I would like to thank

my many friends for their understanding and endless support.

TABLE OF CONTENT

LIST OF FIGURES A 11
LIST OF TABLES X
LIST OF ACRONYMS XI
1 INTRODUCTION 1
1.1 BACKGROUND.......ceeteuiireereerareteeeseseeresiresissesessstessenesesessesseseereessaessessassssssesessesensasessasessesessessseensnos 1
1.2 OVERVIEW OF THESIScccvtuemmureeerieireneremnsenessssssessssssssssssesessssassssessesssssssssssessssesassssessossssesenens 2

1.3 SUMMARY OF THESIS....c.cuietitictirieiereieresteensretestssesessesoneeeeseasasessesseesssessesensssssssessssssessssssessssssssssssnes 4

2 STATE-OF-THE-ART 5
2.1 DESIGN TOOLS LIST....coviuirieuisteieietirereecetiteestetesieseeseeesseseesesseseessessesssss e ssssasessassssesessassssssensensssnes 6
2.1 AMS ERVIFONIMENLc.ccecoiueieieiernesiaresieses s enes e ees et es s eenasseseasesesnanenenaos 6

2.1.2 Affirma Analog Artist and SPECtreSVerilogcoovovoeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeseereees s ee e 7

213 VerilOgXL.........ooooeoiiiiisesesicses ettt ee s e ee s en e et 8

2.1.4 Virage Memory COMPIIEr..............c.cccccouemvmieueiieeeeevesisiseies st esvevesesesese e eesseesse e s s sennes 8

2.2 STANDARD ON-CHIP BUS OVERVIEW.ocoueuiniiveireeeeeesseeeseseesesssesesssssesssssesesesessssssesessesesessssnsssons 8
2.2.1 Advanced Microcontroller Bus Architecture (AMBA)c...coocoeoeeoeeeeeeeeeeeeseseseeeererrns 9

2.2.2 COPEQUOMNECEcoveieetieieieiree et se e reses ettt s et ee st s s s e et sensess e anenens 11

2,23 STBUS ..ot ettt ettt ee et neenn 12

2.3 STANDARD INTERFACES OVERVIEWocuouiuireiieitenisiistseeneeseseeseseseseessssasssesssesesassssssnssssassssesssons 13
2.3.1 Advanced eXtensible INEITACE.cvuuveveeeereeeeeeeeeseeeeeeeees e eer et es e ee e es e eeeen 13

2.3.2 0PN COFE PFOIOCO...........eooveeoviriienreeireeeieeiiieee e ee et e e e e es e e e eee e es s s eee e 14

2.4 HIGH-SPEED CIRCUIT STYLES OVERVIEWoovviuieuiereereereneeneseseeseseesseeeesssessssssessasseesesssssesssssssssns 15

2.4.1 NORA Dynamic LoGic Style..............ccovieoeiieiirereeeeiereieeieieesiesseseseesesssssssses s saesosanoronoen
2.4.2 True-Single-Phase-CIOCKing SIVIeoueeuemeeereeeeieceieeeeeeeeeeeseee e seseeeeeeee e seseen
2.4.3 MOS-CUrtent-MOAe-LOZIC.............ccocoeuvereosreeeteeeeseeeeeeeeieeeeeesee e st es e everereverseaeseseseoes

2.5 SUMMARY ..ottt sttt st st stonasssasaasesesesesanessssssassssssnssa st sesasasasasasssasassessnsnsneseasessssens

3 FULL-CUSTOM CIRCUIT METHODOLOGY AND TECHNIQUES

Vi

16
18
20

21

22

3.1 ESTABLISHING A DESIGN METHODOLOGYcoevrerereriaeeeisisenereneseeseesaseseessesseseesessesssssssssssssssases
3. L1 Architectur@l PIGRIING.cccoocvevirieeeeeeaeieeeeeeeeeeeeeeeeeeeeseeeeeeee s s s eesessvesese s ssas
3.1.2 Protocol DeSigr PRASE..............ccocoeeevererereeeiereeneeseeseeeeseseseeeveseesereseeesassessesesessssss s sssssesssssssns
3.1.3 Logic Design................ ettt E e ettt et R et et eh et b s e e ete et et sat et es b s e e e s e ene et neneenaennen
3.1.4 TeChnology MAPPINGccooouieecieiieeteeeeeee ettt e e er s e s s n s s e s s s sssasns
3 L5 PRYSICAIAESIGN ...t e ee ettt

3.2 SIMULATION PROCESSccoviiiitiieieteseseteeereisesseceseeeseseseoscsssessenssseseseessseesesssssssossssssesssssssssssssssssaos

3.3 CIRCUIT TECHNIQUEScoveveteteuirerereteeseeesenesesenesssesassteassenssesssssssessesnsassssssssssssasassmsssassssesssessesssnons
3.3.1 Selecting @ TSPC StYle......cucceuiueireeeeeeeeeeeeeeeeeeeeee et eere oo eseses e s s es e resese s eeeesseseseesees
3.3.2 TSPC DVICE SIZINGceererreeerirerriereree e s en st ean st es s et s s eeeses s s s araens
3.3.3 Logic style and DeSign RUIESc.covvveveorieriieceoseeseeeeeeeeeereeeseeesseeseseses s e s e

34 SUMMARY ...oviiiietiirietetetet et tes st et stes et ees e e s eeeesseseesassssasessessresensasensessseesnessems e seses s s e e nn

4 AHB INFRASTRUCTURE ARCHITECTURE

23

24

25

25

26

26

27

29

30

32

34

35

36

4.1 AHB INTERCONNECT MEGACELL OVERVIEW........ccceovvirimrrrrnrirnssssssinaesessessessssssssssssssasssesenersoras
LD CIOCK DOMGINS.............coooieeiiveeeeseeee e ves sttt een e e eeeee et re e e s e erenes
4.1.2 Architectural Overview of the Communication FabFIC................c.oormveeeeeeereeeeesisescerereresennns
4.1.3 Specialized AHB SIGNAISccococoeiriviiiiiierereeeeiseie e eeeeseev e e eeneese st esesesseeseseene

4.2 INTERLEAVED MEMORYcoviuiuririrninrnntsretetsseesesnesssesssssssssssn s sssasassssseseessessssesesessssassssssasasasssss

431 TQIFIC ANGLYSIS ...ttt e e e s s st s s
4.3.2 TiminG MOdel..............coooiririiieeersieeecesete e eve ettt ee et eeee e e ee e eeranana s

4.4 MASTERBRIDGESc.cuouerieriierecttntiesasssssetesesessse s ssssssssessssssstssosssssstesosaensssosassesessessesssssssassases

vii

44] READ BFidgecoooueeiuerieseeiee e eie ettt vt ar s s s e s s evesne e s s e aeaeans 62
4.4.2 WRITE BFIAGE.........coooereererersseeeerereeeseeeeeeesess sttt es st esaet s s s evses e s s s sesasannensanas 65
4.5 SUMMARY ...ttt ecseeetseacsesaesesas s s st s et st et s s s s s s s sae st essstssasassassossssssasaesaeneen 67
5 CIRCUITS IMPLEMENTATION 68
5.1 SPECIALIZED-TO-STANDARD AHB BRIDGEcovcseeuririririninnnenisssnnesaesesessesesssssersssssssssssscssssanes 69
3.1.1 Master Finite State MACRINe.................ocoveovoeeeereieeeerneeeeeaesever et tss e ese e 69
3.1.2 Slave Finite S§1ate MACRINEccoouvueeereereereeeeeeeeeesereseeeseee s veses e es e ses s eesesesseeen 75
5.1.3 SYNCRYORIZING REGISIET ..ottt e oot seeeeee s e e s er et e se e st s e e eeee e 77
5.1.4 High-Speed Resource SRAriNG AVBILerscovovevveeieeeeesveeeesieesieesseereseeseeneesesesessesesees 78
3.1.5 Address and Data Datapath..................c.oeeeeeeeeoveereereeeeseeeeeveeeeeeses e eeseeee e revssssesssse s sens 81
5.1.6 Implementation RESUILSccoeueveeeremeeeeeeeecieeeeeeeeeeeeee st eeee e reves s s s s s een 82
5.2 VERY-LONG-INSTRUCTION-WORD AHB ARBITERc.c.cucuimimerireemeeerereeeesesessssssesesesesssssessssseses 85
F.201 SRIEREGISIEN ...ttt ee st e s eeees e s st ses e s ens e e 85
5.2.2 DECOET ...ttt e et nns 86
3.2.3 Layout and Implementation RESUILSocoveeeeeeeveeeeeeeeeeeeeeeeseeeeeeeeeeeees oo es e e ase s 88
5.3 HIGH-THROUGHPUT MEMORY AND ITS WRAPPERS........cvcuttreverereeeeeereseresssesssssarasesssesasesessssssenens 90
5.3.1 MEMOTY WEADDEES ...ttt eeeee oo s et et r et s s e e senesas 92
5.3.2 AQAress COMPAFQLOFo.ooeeeeeeeeeeseieieeereeneereseeeveeeeseees v s s eseres st e e e sestes et eeeeeesesesases 93
54 SUMMARYcoimiirieirenreeniissietseese ettt tese s sessatsttstesesessesenesseresesasasasasssessessassasaseneesssssaresesonssees 94
6 CONCLUSION AND FUTURE WORK 96
6.1 FUTURE WORKoouimiricmirerecrinineiicenentessastessssssssssessesessssstesssssssssssssssnsasseessmssssassssssneseosesessssssssess 96
6.2 CONCLUSION AND SUMMARYocruimemmmmienemisessessnsmsssnssssssssssssssssssssssssssasssssnsssssssssssssesensenssneen 98

7 LIST OF REFERENCES 100

viil

LIST OF FIGURES
Figure 2.1. Multiplexed AMBA AHB interconnections [2].cevveeveereereeeeeererssenn. 10
Figure 2.2. Complex Multi-layer AHB system example. ereernee e rresaae e earas 11
Figure 2.3. CoreConnect organizational diagram (reproduced from [19]).coce........ 12
Figure 2.4. AXI channel configuration.c.oeeueiieiieieieeeeeeneee e eeeeeeeeeesessesans 14
Figure 2.5. System showing an NoC with OCP instances (reproduced from [26]).......... 15
Figure 2.6. C?MOS dyNamic I0ZIC.uueeveeeeerereessereeoesssssssseseseseessseesssssessesssoeooon, 17
Figure 2.7. NORA dynamic LOZIC.ceeuevereriuirerireririeiecceeectesereeeeeeeseesesseesssssssesesessseans 17
Figure 2.8. True-single-phase-clock 1atChes.c.ovuivevevrieerieiieieeeeeeeee e ereseeeesnn 19
Figure 2.9. MCML MEthOQ.c.ooovieeeeeiieieteieee et eeesss s s ee s ene 20
Figure 3.1. Proposed design floW...........cceeuiuiuereveiircrieiccerereeeeee e eeeesesesssese e e 24
Figure 3.2. Test fixture used for full-custom simulation.ceceeerveeeeeeeverersrersrnn. 28
Figure 3.3. Positive edge-triggered latch candidates for the 2 GHz AHB. (a) TSPC-2, (b)
SPLE-0ULPUL, (€) CZMOS....o.voeeeeeeeeeeeeeeeeeeeeeereeeeeessss e sesseeesess s s e s e 31
Figure 3.4. Buffering TSPC Stages.ccovevveereiririrereeeeisiieseseseeseeneeeesessssessessssssssesens 33
Figure 4.1. Clock domains diVISION.ccceeveeeveveeiieieiseieiieeseseeeeeeeeeeeeseeeeseseseseseseses 38
Figure 4.2. Overall structure of the proposed communication infrastructure. 41
Figure 4.3. Block diagram of the high-throughput interleaved memory. 44
Figure 4.4. Interleaved memory timing diagram.ccccoveveemececeeneeveeeeeeeeeesenenns 45
Figure 4.5. Block diagram of the bypass SYStem.cccovvveeeemeeerereereeeeeeeesseeererens 48
Figure 4.6. Timing diagram of a conflict TeSOIUtioN.c.cevvvevereverereeeeeeerereeeserereeronns 49

X

Figure 4.7. Arbitration with phases: problem definition. (a) Round-Robin arbiter, (b)

Target dataflow, (c) Memory map, and (d) Resulting dataflow...........cccccocevververerememeneee.. 50
Figure 4.8. Block diagram of the VLIW micro-programmed arbiter.coueen...... 53
Figure 4.9. Exclusion zone to steal the address to a processing element.......................... 55
Figure 4.10. Exclusion zone to deliver READ data.ccoecvveereeinemereeereeeneserenenns 56
Figure 4.11. Performing 16 READ cycles with no apparent latency................c.co.......... 57
Figure 4.12. Performing 16 WRITE cycles with no apparent latency.oovvemnee... 59
Figure 4.13. Block diagram of the READ master bridge.ccccoeveereremeeeeeereernenennns 62
Figure 4.14. Detailed READ Master Bridge block diagram..............cccoevevevevevecveeeennnn.. 64
Figure 4.15. Triggering pulse WavefOrm...........coouiieiieiuieiniiereeeeeeeeeeseeeseeeeseeesessesesenans 66
Figure 5.1. Controller’s state diagram............cccoeverereieeerevieiieceeeeevsceeeesesesesessssssessesens 70
Figure 5.2. Circuits of the Master Finite State Machine.cooeevveeeuemveeeeereeenereenns 73
Figure 5.3. Circuits of the Slave Finite State Machine.ocovuveveeeerereerereeeerererenens 77
Figure 5.4. Circuits of the Synchronizing register.cooovuvuveereeeeeeeeeeeeeeeeseserererenns 79
Figure 5.5. Circuits of HGRANTF arbiter.ccevevivivivivinceincieneeneneneereesessesssesesesens 81
Figure 5.6. Circuit slice of the address datapath.coouvveveveieveenreeeeeeeeeeeeseenerns 83
Figure 5.7. StS WRITE Bridge (a) controller and (b) datapath output waveform......... 84
Figure 5.8. C*MOS latch with 2-to-1 multiplexer cell. (a) Schematic, (b) Layout......... 86
Figure 5.9. Structure of the 4-to-16 bit logarithmic decoder.oceuveuvmereereverereernnn.. 88
Figure 5.10. (a) Layout of the 4-to-16 bit decoder, (b) Simulation results. 91

Figure 5.11. 5-bit XNOR comparator transistor organization.cceeeeeeevverreennnns. 94

LIST OF TABLES
Table 3.1. Comparison parameters of three TSPC latches...........covuvuevvveeeereececrererenenne. 31
Table 4.1. Specialized AMBA AHB Signals..........cccoereirierenieceieicireeseeeeeeeeseneeesenens 43
Table 4.2. Proper scheduling for a continuous dataflow.............cc.e.eeeeeeeeeeeeervreererernnnn, 51
Table 4.3. Timing parameters definition.cceveiieierieiciieeeeeeeeeeeeeeeeeeeeesesenes 60
Table 4.4. Tracing the state of the standard AHB.ccooviveeeeeeeeeeeeeeeeeeee e, 63
Table 4.5. Specialized READ AHB pipeline Structure.eeevveveeeeeeereereeererersreesssennn, 64
Table 5.1. State equations for the WRITE Master FSM.coceveeereveereereeeeersereeseseenns 71
Table 5.2. SFSM state relationship with the standard AHB.cccoeeveeeeeevereeereereennn. 76
Table 5.3. Truth table of HGRANTEFX arbiter.ooooveveviiiimiiereceeeeeeeeeeeeeeeeeeneeeenas 81
Table 5.4. StS WRITE Bridge Circuits and Simulation Summary.cccovveverennn.... 84

ADC:

AHB:

AMBA:

AOL

APB:

ASB:

ASIC:

AXI:

C*MOS:

CAD:

CIw:

CMC:

CMOS:

CTMC:

DAC:

DCR:

DCVSL:

DMA:

DSM:

DSP:

xi

LIST OF ACRONYMS

Analog-to-digital converter.

Advanced High-Speed Bus.

Advanced Microcontroller Bus Architecture.
AND-OR-INVERTER standard gate.
Advanced Peripheral Bus.

Advanced System Bus.

Application specific integrated circuit.
Advanced eXtensible Interface.
Complementary CMOS.

Computer aided design.

Command Interpreter Window.

Canadian Microelectronics Corporation.
Complementary metal-oxide semiconductor.
Custom-Touch-Memory-Compiler.
Digital-to-analog converter.

Device Control Register.

Differential cascade voltage switch logic.
Direct memory access.

Deep submicron.

Digital signal processing.

DUT:

FIFO:

FSM:

GALS:

GRM:

HDL:

HVL:

1C:

IP:

LHS:

MCML:

MESI:

MFSM:

NMOS:

NoC:

NORA:

OAL

OCP:

OPB:

PCB:

PDN:

PE:

PLB:

Device under test.

First-in-first-out register.

Finite state machine.
Globally-asynchronous-locally-synchronous.
Microelectronics Research Group.

Hardware description language.

Hardware verification language.

Integrated circuit.

Intellectual property.

Left-hand side.

MOS-current-mode-logic.

Modified-Exclusive-Shared-Invalid invalidate protocol.

Master finite state machine.

n-type MOS field-effect transistor.
Network-on-a-chip.

No-race.

OR-AND-INVERTER standard gate.
Open Core Protocol.

On-chip Peripheral Bus.

Printed circuit board.

Pull-down network.

Processing element.

Processor Local Bus.

xii

PLL:
PMOS:
PUN:

QoS:

RC:

RT:
RTL:
SFSM:
SoC:
SSRAM:

StS:

tf:
TSPC:
UDSM:
VHDL:
VIH:
VIL:
VLIW:
VLSI:
VOH:

VOL:

Phase-lock-loop.

p-type MOS filed-effect transistor.
Pull-up network.
Quality-of-service.
Resistor-capacitor.

Right-hand side.

Real-time.

Register transfer level.

Slave finite state machine.

System-on-a-chip.

Synchronous static random access memory.

Standard-to-Specialized.
Rise time.

Fall time.
True-single-phase-clocking.

Ultra deep submicron.

X1ii

Very high-speed integrated circuit hardware description language.

Input high voltage

Input low voltage.

Very long instruction word.
Very large scale integration.
Output high voltage.

Output low voltage.

1 INTRODUCTION

1.1 Background

Advances in deep submicron (DSM) technology allow integrating so many
transistors on a single silicon die that complete systems can be merged into a single chip.
Typically, systems-on-chip (SoC) are conceived from a mixture of custom circuits and
preexisting intellectual property (IP) macrocells (sometimes called megacells).
Intellectual property macrocells may be designed with two distinct approaches: (1) a soft
IP follows a semi-custom flow in which hardware description files are synthesized to
obtain the circuits, while (2) a full-custom flow is more appropriate to design a hard IP in
which only the masks are available. However, for SoC integration, it is not critical
whether we use hard or soft IP megacells. What is really important is to meet the system
requirements and reduce time-to-market.

The momentum in the industry hints that SoCs are taking the path that printed
circuit boards (PCB) systems took two decades ago. At first, microprocessors were
implemented with discrete components over a PCB, and then VLSI improvements
allowed packing enough transistors in a chip to merge complete microprocessors on a
single chip substrate [1]. In a short time span, electronic systems grew more complex
and interconnect standards became most needed to keep up with performance
enhancements. Nowadays, PCB interconnect standards span over a large range of

applications. SoCs do not escape this movement as their performance is partly set by the

efficiency of the on-chip communication infrastructure used to transfer large amounts of
data. To this regard, interconnect standards, tuned for the SoC realm, help achieving
high-throughput and reduce design efforts.

Key issues with SoC communication infrastructures are testability, flexibility, and
their ability to exchange data at high rates on demand between system modules. For the
time being, SoCs are characterized by a small number of processing elements, so a shared
memory accessed from a shared bus is a practical SoC interconnect infrastructure to use.
To this regard, the Microelectronics Research Group (GRM) of Ecole Polytechnique of
Montréal has performed significant work using AMBA standards [2] prior to this
research. Hence, different bus standards have been studied in [3], and a novel
architecture was invented in [4], [5]. All previous interconnect infrastructures at GRM
were implemented with a semi-custom design flow (synthesis followed by placement and
routing). This abides by the AMBA specifications since this norm describes
synthesizable buses. Yet again, the performance obtained by this design flow is limited
by the use of standard libraries, and sparse layouts created by automated placement and
routing [6], [7], [8]. Hence, interconnecting high-performance cores with an AMBA bus

is a problem that remains unsolved.

1.2 Overview of Thesis

As presented earlier, the design of communication infrastructure’s architecture is
a critical issue with systems-on-chip. The complete shared memory interconnect fabric
proposed in this thesis consists of a hierarchical AMBA Advanced High-Speed Bus
(AHB), a group of processing elements and a shared memory acting as a communication

buffer. Since the heart of this SoC communication infrastructure operates at a frequency

in excess of 2 GHz, it is imperative to implement the main system cores with full-custom

circuits to optimize the speed of the AHB shaping the hard IP.

The purpose of this research is to undergo the learning curve involved with the
design and the optimization of high-speed circuit, and the many twists involved with their
layout. To enhance the understanding in high-frequency circuit design, a thorough study
of dynamic logic is completed so as to isolate the fastest avenues. The work reported in
this document spans a wide range of abstraction levels. An implementation as ambitious
as the one presented in this dissertation requires a sequence of actions carefully planned
to overcome the many obstacles to be encountered in the design process.

To accomplish this research goal, three tasks have been identified:

1. Architectural definition: A chain is never stronger than its weakest link. Defining a
robust architecture forms the first link of the design chain. Though the architecture of
an AHB is defined by its specifications, the AHB hierarchy, the pipeline structure,
and the communication protocol of the entire high-speed hard IP must be described in
a first step.

2. Circuit Decisions: Designing sequential circuits operating above the GHz mark is no
easy task. Conventional circuit techniques may not be applicable since their structure
limits the maximum frequency. A careful study of high-speed methodologies is
required to select appropriate sequential logic style.

3. Circuits Design: Once a high-performance architecture is defined and a high-speed
sequential logic style is selected, circuits design may start. Finite state machines

(FSM), registers, combinational logic blocks, and datapaths need to be designed.

1.3 Summary of Thesis

The design of a very high-performance SoC communication infrastructure is a
thorough commitment that forces engineers to work over several levels of abstraction.
Based on the tasks identified in this chapter, the complete hard IP is described in the next
chapters. State-of-the-art computer aided design tools (CAD) utilized in this project,
along with the well-established on-chip cdmmunication industry standards are presented
in Chapter 2. In addition, Chapter 2 surveys circuit styles known to be the fastest with
CMOS IC design. The design flow and circuit techniques used with the novel
interconnect infrastructure are presented in Chapter 3. Chapter 4 presents the global
architecture of the proposed communication fabric. An ambitious arbitration procedure
and the high-level description of a pipelined high-throughput shared memory are
described in the same chapter. Circuit implementations with their results are described in
Chapter 5, and an AHB arbiter layout is presented to prove the accuracy of the
investigated methodology. Finally, Chapter 6 concludes this document and presents the

many avenues available for improvements as future work.

2 STATE-OF-THE-ART

Systems-on-chip (SoC) design in the forthcoming ultra deep submicron (UDSM)
technologies will be dominated by multi-core (multi-processor) platforms in a number of
application areas [9]. A key issue to enable this type of platform is to develop a
communication-centric interconnect infrastructure to effectively transfer large amounts of
data within the SoC. Obviously, such communication-centric fabrics are characterized by
a number of tradeoffs, e.g., with regards to latency, parallel programming capability,
design effort and circuit complexity. The requirements of the target application set the
boundaries for tradeoffs to be considered. For instance, the type and the structure of the
communication fabric is a significant factor that directly influences the performance of a
network-on-chip (NoC). Outstanding NoCs allow for record-breaking SoC platforms’
performance, as far as the SoC cores can keep up. The computer-aided-design (CAD)
tools at hand impact the design flow and the overall complexity envisioned for a design.
Inadequate design tools often entail excessive time-to-market delays and possibly project
failure.

This chapter lists the CAD tools used for the design of the high-performance
communication infrastructure. The main tools and their capabilities are documented so
as to shorten the learning curve that other designers could experiment when undertaking a
project of similar target frequencies with significant design efforts. Then, various NoC
standards are surveyed. Abiding to a standard facilitates design integration since they

encourage uniform interfaces with specific protocols. Finally, high-performance circuit

styles are discussed since full-custom design requires selecting the best logic style

manually.

2.1 Design Tools List

The Canadian Microelectronics Corporation (CMC) distributes tool sets, for many
IC design styles, to its member universities across Canada. Hence, all tools utilized in the

design of the high-speed communication fabric were obtained from the CMC.

2.1.1 AMS Environment

The AMS flow uses the_: AMS Environment™ and a set of tools tuned to facilitate

the development of mixed-signél designs [10]. In essence, the AMS Environment is a
feature within Cadence’s toolbox that enables mixed-signal and mixed-language designs
to be developed by analog and digital designers from the same environment. When large
full-custom designs are developed using Cadence tools, means to create and tune
transistor circuits are required, along with a solution to create a test fixture with
functional testbenches to stimulate the digital “analog-like” circuit. A variety of Cadence
tools are necessary within the AMS flow to achieve that:

1. Command Interpreter Window (CIW).

2. Cadence Hierarchy Editor [11].

3. AMS netlister [10].

4. AMS compiler [10]

5. AMS Design Prep [10]

6. AMS elaborator [10]

7. AMS simulator [10], using SimVision [12] as waveform viewer.

The AMS Environment presents a familiar interface to both digital designers and
analog designers. For instance, analog designers typically work at the transistor level
using a graphical editor. On the other hand, digital designers specify circuits using a text
editor and they rely on digital synthesis to map the behavioral circuit description into
physical circuits. AMS provides means to seamlessly integrate these two types of design
entry tools together in the same design flow.

The CIW is the root of the Cadence environment. It is used to invoke different
tools, set design options (such as AMS options), and monitor status, warning and error
messages issued by Cadence tools. Virtuoso is used to build the target system. Its
versatility allows specifying cells at different levels of abstraction: functional, spectre,
hspice, schematic, layout, extracted, etc. The Hierarchy Editor is used to complement
Virtuoso. It is this editor that recognizes mixed-signal designs within Cadence, and it
provides accurate representations of analog/digital interface boundaries used by AMS to
automatically insert interface elements. AMS works intimately with the Hierarchy Editor
to generate, compile, and simulate Verilog-AMS™ netlists. Finally, the AMS Simulator
is used to run the Verilog-AMS netlist and it displays mixed-signal circuit results using

SimVision.

2.1.2 Affirma Analog Artist and SpectreSVerilog

Affirma Analog Artist™ is the typical simulator used for analog design
simulations within Cadence. It encapsulates a variety of simulators tuned to simulate
different types of designs. For instance, Spectre™ [13] and Hspice™ [15] are both used to
simulate flat analog designs. On the other hand, SpectreSVerilog™ [13] is a super-set of

Spectre as it can simulate mixed-signal circuits. Unfortunately, the waveform viewer

used by Affirma only displays a small number of signals at a time, and it does not support
buses. Hence, some workarounds are required to export the waveforms to other

waveform viewers.

2.1.3 VerilogXL

VerilogXL™ [15] is another toql distributed by Cadence. As its name suggests, it
is used to compile, simulate, and synthesize Verilog [16] hardware description language
files. Even though, it is tuned for digital designs, it turns out to be a handy tool to
elaborate and verify Verilog testbenches to be included later in the AMS test fixtures.

Here again, SimVision is used to display simulation results and process them.

2.1.4 Virage memory compiler

Virage offers a specialized memory compiler optimized for various memory
structures. Embed-It! Integrator™ and Custom-Touch-Memory-Compiler™ (CTMC) are
used to rapidly create high-performance memories. Synopsys VCS does not recognize
memory structures effectively and the results it offers are often disappointing. Unlike
Synopsys, CTMC generates high-speed memories on much smaller footprints from a
specialized standard cell library. With CTMC, it is possible to generate a memory with

its description, and a RTL VHDL and/or Verilog files in less than five minutes.

2.2 Standard On-Chip Bus Overview

Since SoC platforms emerged as feasible VLSI circuits, a number of industrial
norms appeared to standardize on-chip communication infrastructures. As of today, large
SoCs asking for scalable NoCs are almost inexistent for a number of reasons [17]. It

makes sense to use smaller types of interconnect fabrics to link cores on the same

substrate with modern SoCs. As the complexity of those systems will eventually scale
up, it is expected that the set of available standards will grow so as to offer a variety of
solutions tuned for different requirements, similarly to what happened with printed circuit

boards (PCB). Hence, this section surveys the main bus standards in the industry.

2.2.1 Advanced Microcontroller Bus Architecture (AMBA)

ARM"? owns one of the most accepted shared buses for SoCs in industry. The
reason for it is simple: ARM owns a significant market share of embedded processors
that are commonly sold with a built in AMBA interface. The AMBA Specification 2.0
[2] defines a set of three fully synchronous SoC buses: Advanced High-Speed Bus
(AHB), Advanced System Bus (ASB), and Advanced Peripheral Bus (APB). Both AHB
and ASB buses are used with systems requiring the highest performance. On the other
hand, the APB bus is oversimplified. It makes no provisions for multiple bus masters and
it is used with modules that are so simple, and yet so slow, that using an AHB or ASB
bus would increase their complexity without any gain in return.

The AHB standard supersedes its ASB predecessor. ASB suffers from tri-stated
bus signals known to be impossible to test with integrated circuits. It was issued rapidly
after SoCs emerged, to fill in the gap between the available standards of that time.
Unfortunately, it is inspired from standard PCB buses, which makes ASB maladapted to
its environment. The AHB norm was introduced as a remedy to testability problems. In
addition, it offers a new set of functions related to split transactions, a feature that is not
supported by ASB. Therefore, ASB is not recommended for new designs.

The architecture of an AMBA AHB is illustrated in Figure 2.1. It is characterized

by five different actors. Firstly, the bus master is an entity that initiates transfers on the

10

AHB, i.e., it issues addresses and READ data while it receives WRITE data. Note that
the bus master has no authority over the AHB as it must wait for a bus grant issued by the
bus arbiter. Secondly, the bus slave is the reciprocal of the bus master. It is the entity
that answers the transfer request issued by a master. Hence, it receives addresses and
READ data while it issues WRITE data. Thirdly, the bus arbiter rules over the AHB to
grant the bus to only one bus master at a time. Many algorithms can be implemented by
the arbiter and the specifications leave the arbitration policy open to be chosen by system
architects. Fourthly, the AHB decoder interprets addresses to select the one slave
corresponding to the target destination. Finally, multiplexed interconnections link all
AHB entities together to form the communication infrastructure. Further details are

available from the AMBA specification 2.0 [2].

Arbiter
HADDR HADDR
AHB ATA HWDATA| AHB
Master 0 | HRDATA HRDATA Slave 0
HADDR Address mux HADDR
AHB | HWDATA N HWDATA| AHB
Master 1 | HRDATA W HRDATA| Slavel
DDR HADDR
AHB | HWDATA — HWDATA| AHB
Master 2 Write data mux
HRDATA HRDATA Slave 2
Read data mux
HADDR

HWDATA| AHB
HRDATA| Slave3

Decoder

Figure 2.1. Multiplexed AMBA AHB interconnections [2].

An advanced concept of AHB allows defining a hierarchy of buses to effectively

augment the bandwidth of a NoC made of AHBs. To achieve that, an interconnect matrix

11

is used [18], as illustrated by Figure 2.2. The interconnect matrix is shaped as a
specialized bridge that accepts multiple AHB “masters™ as inputs, and then it multiplexes
those AHBs with some arbitration policy toward a number of AHB “slaves”. This
advanced structure allows the creation of high-throughput communication fabrics where

several Advanced High-Speed Buses may evolve in parallel, i.e., concurrently.

AHB AHB
Master 1 Master 0 -
Multi-Layer
AHB Interconnect Matrix
Master 2
*~—
AHB R AHB
Master 0 T Slave 0
AHB
Slave 0 | Decoder VT N
AHB L Slave 0 | | Slave 1
Master 0 AHB
| Arbiter l Slave 2
AHB l AHB AHB
* ® - Slave 4 | | Slave 3
Master 1

Figure 2.2. Complex Multi-layer AHB system example.

2.2.2 CoreConnect

CoreConnect™ is another well accepted on-chip standard bus and it is owned by
IBM [19]. 1t offers similar characteristics as the AMBA AHB standard, yet its typical
structure is more complicated than AMBA, as shown in Figure 2.3. The Processor Local
Bus (PLB) is similar to an AHB or ASB as it is used where the best performance is
needed. The On-chip Peripheral Bus (OPB) is used with low performance cores.
Interestingly, the OPB supports multiple bus masters, which is an added value over its
equivalent APB. The traffic over the PLB is lightened by the use of a dedicated control

bus called Device Control Register (DCR).

12

DCR Master |—{ Master |—§ Master

I | l
On-chip Peripheral Bus '
| | I

Master] Master Slave }—{ Slave |

Figure 2.3. CoreConnect organizational diagram (reproduced from [19]).

Slave }— Master |—] Slave

BUS

CoreConnect supports advanced features such as split transactions, decoupled
read and write buses to perform two transactions concurrently, address pipelining to
reduce overall bus latency, and it is a fully synchronous bus. Even though the many
advanced features supported by CoreConnect boost its performance to a higher level than
AMBA, its increased complexity makes it less appropriate to implement with full-custom

circuits. This is the main reason why CoreConnect was not considered for this research.

2.2.3 STBus

In a multi-processor environment, the system bus is the main shared resource. To
this regard, the STBus [20] is a true split-transaction bus. As a matter of fact,
CoreConnect PLB and AMBA AHB support split-transaction transfers, but they should
occur rarely since they tend to increase the latency. STBus is shaped as a split-
transaction bus by definition [21]. The STBus address bus is completely decoupled from
the READ data bus and the WRITE data bus, i.e. they are separately arbitrated. This bus
is designed to minimize the average latency in a multi-processor system where several
simultaneous requests are made for large amounts of data. In addition, the STBus
supports shared memory multiprocessing with data coherence using a modified MESI

write-invalidate snoopy coherence protocol [21], [22]. The STBus, as any other split-

13

transaction bus, is extremely complicated to design since each interface must be equipped
to keep track of a number of transfers in order to assemble data with the corresponding

address. This action is performed with the transaction tags and a tag index.

2.3 Standard Interfaces Overview

_An alternative to standard buses that gains acceptance with the SoC industry is to
use standard interface protocols to design a custom NoC. Intuitively, standard interfaces
define the protocol to exchange data from one instance to the next. Hence, the
interconnect architecture is left free to system architects. With this approach, the cores
are wrapped into a standard interface and they exchange data with the NoC via the
specified unidirectional channel protocol. Simple bus-based NoC to complex
interconnect infrastructures, such as butterflies, meshes, or trees [21] can be implemented

with such standard interfaces.

2.3.1 Advanced eXtensible Interface

The Advanced eXtensible Interface™ (AXI) [23] protocol is the newest AMBA
SoC infrastructure offered by ARM. The AXI protocol is burst-based. Each transaction
has the address and control information on the address channel that describes the nature
of the data to be transferred. The data is transferred between a master and a slave using a
write channel to the slave or a read channel to the master. In write transactions, in which
data flows from the master to the slave, an additional write response channel is used to
allow the slave to signal completion of the write transfer to the master. The AXI protocol
permits address information to be issued ahead of the actual data and enables support for

multiple outstanding transfers as well as out-of-order completion of transactions. An

14

identification tag is associated with every transactions issued between two interfaces.
Hence, address and data association is seamlessly performed by the interface. Figure 2.4

shows the AXI channel configuration.

Address & Control
—
Read Data Interconnect
D Fabric
Initiator
Werite Data
—_—

Write Response
«—

Figure 2.4. AXI channel configuration.

AXI is well suited for high-speed designs since its unidirectional channels allow
for register slicing. This feature is used to pipeline interconnects that are known to
become increasingly slow with respect to gate delays [24], [25] as the technology scales
down. A possible drawback of AXI is that it does not offer dedicated signals to exchange
system flags through its normalized interface. Then again, this drawback comes with the

advantage of simplicity so as to reduce design efforts and time-to-market.

2.3.2 Open Core Protocol

The Open Core Protocol (OCP) [26] is maintained by an international partnership
composed of industrial and academic members. The idea behind OCP is similar to AXI.

Here again, different interconnect architectures are possible with OCP as it simply

15

encapsulates an ASIC core into a standard interface to communicate with the interconnect
infrastructure. Figure 2.5 illustrates the resulting system organization (also applicable to
AXI). Each SoC core is wrapped into a slave and/or master interface to communicate
with the interconnect fabric, which is itself wrapped into standard interfaces, via a
unidirectional channel. Unlike AXI, OCP supports several options that are more or less
required, depending of the system requirements, which may create diversity within a

number of implementations.

Figure 2.5. System showing an NoC with OCP instances (reproduced from [26]).

2.4 High-Speed Circuit Styles Overview

Designing circuits that operate in the GHz range requires state-of-the-art circuit
structures and innovative system architectures. Traditionally, high-speed CMOS logic is
achieved with the use of dynamic logic [27]. The circuit style employed to design a
circuit makes a significant difference when it comes to challenging the limits of a given
technology. Though transistor sizing plays a vital role in circuit speed, the structure of
the circuit ultimately sets an upper bound on the maximum achievable performance.
Over the past decade, emitter coupled logic, which was widely used with high-

performance circuit, has faded away because high-speed CMOS structures become more

16

and more competitive with more traditional methods (ECL) [27]. This section surveys
three sequential logic styles that offer very high performance: no-race (NORA), true-

single-phase-clocking (TSPC) dynamic logic, and MOS-current-mode-logic (MCML).

2.4.1 NORA Dynamic Logic Style

In typical CMOS circuits, both static and dynamic CMOS logic are used. For the
purpose of system timing, a synchronization strategy [24], [27] is always involved,
except for self-timed systems [27]. One of the early popular clocking strategies is
clocked CMOS logic (C*MOS) [27], which uses a non-overlapping pseudo-two-phase
clock, as shown in Figure 2.6. Four clocks have to be distributed in such a system in a
way that prevents overlaps between two clock pairs. Obviously, clock skew is a serious
problem that threatens this requirement and it becomes more apparent with increasing
circuit speed [24]. A dead time must be settled between two pairs of clocks to avoid
races. Combining clock skew problems with race issues, the dead time must be large
enough to provide sufficient stability guaranties. As a result, a significant time is lost
with each clock phase to avoid failures and this tends to limit the maximum attainable
clock frequency.

NORA stands for NO-RAce CMOS logic [27], [28], and targets the
implementation of fast, pipelined datapaths using dynamic logic. NORA uses a true-two-
phase clock signal (¢ and ®’). Forcing some rules on circuit structures avoids races in
NORA systems. Two types of stages are used within a NORA pipelined system, ®-
C*MOS and ®’-C?MOS latches (see Figure 2.7). To avoid races, a designer must ensure
that the number of inversions between two C*MOS latches is even. Furthermore, if

dynamic nodes are present, the number of static inverters between a latch and the

17

dynamic node should be even. Finally, the number of static inversion between the last
dynamic node and the C*MOS latch should be even as well. Adhering to the above rules
is not always trivial and requires a careful analysis of the logic equations to be
implemented. Nonetheless, the elimination of races in case of clock overlap allows speed

optimization that qualifies NORA logic as a high-performance design styles.

e ——
ol _._ql o2 _._4

Logic Logic
Block 1 Block 2

4)1_._' <D2__._{
B S

[
o1

2
2

Deadtime _8 8 & B B 0 B B B B B A

Figure 2.6. CMOS dynamic logic.

SV ol —
T |
el I R =

L — L

O-section

@'-section

O _J 1 I 1
[+ M - L LT - I

Figure 2.7. NORA dynamic logic.

18

2.4.2 True-Single-Phase-Clocking Style

NORA logic introduced a dynamic CMOS circuit style that avoids races. It turns
out that a further development in clocking strategy is possible, so that a single clock is
used to operate dynamic-sequential circuits. The never-ending quest for higher clock
rates has led to the proposal of true-single-phase-clocking (TSPC) [27], [29], [30], a
powerful design style. Its efficiency partly comes from its use of a single clock phase
with no inversion. This leads TSPC to enhanced speed in comparison with NORA logic
by eliminating intra-cell clock skew [29]. Yuan and Svensson were the instigators of
TSPC logic style. They introduced four level-sensitive latches initially: double-C2MOS,
split-output, TSPC-1, and TSPC-2 (see Figure 2.8). Construction of pipelined-sequential
circuits is possible by alternating n-blocks with p-blocks, as with NORA.

Since then, a considerable amount of work has been invested in TSPC and more
complex TSPC elements appeared. For instance, edge-triggered TSPC latches were
invented so that positive, negative, and double-edge triggered TSPC latches are now
commonly used with high-performance systems. For example, a positive-edge triggered
TSPC latch may be constructed from the fusion of a p-block with an n-block. In addition,
a new variety of TSPC latches makes them appropriate for an increasing number of
applications. Non-differential semi-static TSPC flip-flops, dynamic ratio-insensitive
differential TSPC latches, static ratio-insensitive differential TSPC latches, and single-
transistor-clocked TSPC dynamic and static differential latches are only few examples of
the diversity within this powerful design style [30]. Hence, the TSPC circuit technique is
not only suitable for high-speed designs, but it also becomes attractive for low-power

systems, static and dynamic random access memories for example.

19

In summary, true-single-phase-clocking has the advantages of simple and
compact clock distribution, high-speed, and logic design flexibility. No intra-cell clock
skew problem exits with this design style. At a larger scale, clock skew caused by clock
delay between different logic blocks in a large system may be minimized with clock
TSPC has been used

distribution networks, and reverse clock distribution [24].

successfully for the implementation of a number of very high-speed CMOS circuits.

— —L
@ —'-I ® _._‘ Bli.:):»cgli(c1 L] _..4 [_..4
Double N-C*MOS Double P-C'MOS
_.-4 _.'4
' *—1
—.—{ —.—+
Split-output (N-latch) Split-output (P-latch)
°— —
S ®—q
®— |_i —=
TSPC-1 (N-block) TSPC-1 (P-block)
*—od __.4 ® —ad
[S Logic
—'-l —'-{ Block 1 —“{
.| JD_..4] _.4
v —
TSPC-2 (N-block) TSPC-2 (P-block)

[

Figure 2.8. True-single-phase-clock latches.

20

2.4.3 MOS-Current-Mode-Logic

Traditionally, very high-performance digital circuits were implemented using
bipolar current-mode-logic (CML) [27]. A MOS-Current-Mode-Logic (MCML) [31],
[32] circuit consists of differentially operating MOSFET transistors and a constant
current source. Its performance at low voltage is comparable with that of a CMOS circuit
and bipolar current-mode-logic circuits. MCML circuits can be used to construct any
logic circuits. High-speed compact circuits are feasible, because MCML circuits output
complementary signals. An MCML has good characteristics and is widely applicable to
logic circuits. It is a useful circuit method for producing GHz processors. It is important
to note that the voltage swing is not rail-to-rail with MCML gates but in fact much less,
in the order of hundreds of mV [32].

Figure 2.9 shows the theory of operation of an MCML gate with a basic inverter.
An MCML gate consists of a differential NMOS pair used to perform logic equations, an
NMOS constant-current source used to determine drive current, and two PMOS loads
used to determine the voltage swing. Even though MCML is very appealing for high-
speed circuits, its design is far more involved than CMOS logic since MCML circuits are

much closer to analog design.

1] T

Ourat BO0ut Out’ Out

R — & N

o — 2
IN

Vref .——'—I

MCML gate principle MCML basic inverter

Figure 2.9. MCML method.

21

2.5 Summary

The high-speed communication infrastructure is implemented using top notch
computer aided design tools. Even though the design flow is particularly involved
compared with conventional digital logic design methods, a full-custom design flow is
used to implement an AMBA AHB SoC infrastructure. The circuits are built with TSPC
logic to obtain GHz circuits. AMBA AHB is preferred over other standards for its
simplicity and its past history within Microelectronics Research Group (GRM, Ecole
Polytechnique of Montréal). Finally, TSPC is selected for its speed, compactness, and
ease of use over MCML. MCML can possibly offer better performance, but the
complexity of the system to be developed over several levels of abstraction leaves no

room to stress design efforts further.

22

3 FULL-CUSTOM CIRCUIT METHODOLOGY AND

TECHNIQUES

As integrated circuits become less expensive and more compact, many new types
of products are being introduced, based on digital systems. Consequently, digital logic
design is being performed under different motivations. Since each case is different,
different design problems are encountered. As a result, different design flows have been
established to respond to different needs. For instance, semi-custom design (recently
referred to as ASIC design) exists to speedup time-to-market and to reduce design efforts
at the expense of reduced speed, higher power consumption, and increased area. On the
other hand, deliberate design for high-performance is called full-custom design because
each design is manually tuned to high-performance. Digital systems’ speed can be
significantly improved by deliberate logic design.

This chapter defines the full-custom design flow used to realize a novel 2 GHz
AHB SoC infrastructure. The complete design methodology, acquired with experience,
is detailed. In addition, a complicated simulation process has been researched in order to
fill the gap created by an unusual design approach within Canadian universities. The
complexity of the circuit and the relatively complicated set of inputs required for
complete stimulus controllability and observability. For instance, a mixed-signal
stmulation approach has been employed to integrate HDL testbenches into the analog-

like circuit simulation process.

23

Finally, circuit techniques are surveyed in this chapter to further detail the
methodology used. Hence, the selection of a TSPC style is explained together with

accurate logic design styles and rules enforced in this project.

3.1 Establishing a Design Methodology

Designing a 2 GHz AMBA High-Speed Bus (AHB) [2] is not straightforward.
The fastest reported implementation prior to this research adopted a semi-custom design
flow. The AHB resulting from the logic synthesis could operate up to 510 MHz
according to circuit simulations [33]. This bus is indeed fast considering the numerous
bottlenecks raised by limitations of the synthesis process, standard cell libraries, and
relatively sparse layouts created by automatic placement and routing [6], [7], [8]. To
overcome those bottlenecks caused by the ASIC flow used, a full-custom flow is most
appropriate [6], [7], [8]. This led to the implementation of a hard IP operating at 1.4 GHz
[34] initially, and that was further improved to sustain a clock rate in excess of 2 GHz
[35], the initial target. Nevertheless, achieving a digital VLSI circuit clocked in the GHz
range requires careful planning since the best design cannot compensate for an
underperforming circuit stage. Hence, this section describes the design methodology
followed to develop the 2 GHz AHB fabric.

Even though digital systems’ performance can be significantly improved with
deliberate logic, every steps of the full-custom design flow is important to achieve
performance requirements. Actually, the design of the 2 GHz AHB fabric spans multiple

levels of abstraction and follows a long sequence of design stages, as illustrated by Figure

3.1.

24

3.1.1 Architectural Planning

Defining the bus architecture is the first of many design steps. The structure of a
digital system is, without any doubt, a determining factor in obtaining the required
performance. This is true regardless of the design flow that is used. Then again, the
pressure goes up when a full-custom design is employed. As a matter of fact, the
iterative process involved with full-custom design directly threatens time-to-market and
profitability. For instance, a product being introduced on the market one year before the
competition has a potential of more than twice the profit of the latecomers. The firm that
introduces the product has free way to capture the majority of the market share at higher
prices, whereas the latecomers can only gather leftovers of the market share at lower
prices [8]. Actually, an architectural limitation discovered in a latter design phase may

require redoing a significant portion of the design to set the architecture right.

L Architectural definition }

v

| Protocol planning - "
(”.—_m ."-'.‘ _.m_.-.-\
Behavioral definition ¢ e ,1_)1109{_(2}59“&%& 3
Logic design 1‘_
Transistor level L 2 i RT1L simulation 3

I Technolo mappmg —I ————————————

(Pre-layout simulation)

Polygons

I Physical design |

((Layout vs. Schematic check)

(Post-layout simulation)

I Chip fabrication |

Figure 3.1. Proposed design flow.

25

To be successful with the architectural design phase, an intimate understanding of
the application under development is required. That implies being comfortable with the
specifications and requirements of the system, thoughtful planning of modules’

interactions, and foreseeing architectural implications on hardware and firmware.

3.1.2 Protocol Design Phase

The communication infrastructure being addressed by this research shapes a
network-on-chip (NoC). For this reason, the communication protocol must be
meticulously designed since the overall SoC performance depends on the NoC efficacy.
Luckily, the AMBA AHB standard helps setting the communication protocol between
different systems’ actors. As a matter of fact, the AHB standard sets the bus architecture
and it defines the signals’ behavior. This allows interconnecting modules from different
design teams with less effort since a standard interface is strictly compulsory.
Nevertheless, the hard IP under development may require going beyond the standard to
optimize the SoC infrastructure. In Chapter 4, the hard IP architecture is explained and
some amendments to the standard are formulated. Amending the protocol set by the
standard brings a risk that must be tackled appropriately. Obviously, a bug in the

protocol would force time consuming iterations to fix it.

3.1.3 Logic Design

The logic design phase involves defining the behavioral model of the
communication infrastructure. Logic networks with pipelining are described by this
design phase. With careful partitioning, it is possible to establish behavioral equations

manually. However, when the functions of a partition are too involved for human minds,

26

it is possible to describe the behavior of the component using a hardware description
language to extract the logic functions [8]. The resulting equations will be given under
an AOI (AND, OR, and INVERTER) or OAI shape in most cases. Then, it is possible to
map those equations into transistor circuits. Yet again, the full-custom circuit resulting
from that approach is similar to what CAD tools would create using standard libraries.

Hence, the performance gain may be limited.

3.1.4 Technology Mapping

Technology mapping consists of translating logic networks into transistor circuits.
Of course, it is possible to use a simple AOVOAI design style (standard AND, OR,
INVERTER / OR, AND, INVERTER gates) to perform this step, but deliberate logic
design allows for more aggressive circuit structures. As a result, each equation is studied
cautiously so as to research an optimized transistor structure minimizing fanin effects,
logic depth, and intrinsic delays. Obviously, technology mapping is the first design phase
where a significant speed improvement is achieved from meticulous circuit techniques.
The freedom brought by full-custom design often results in unconventional transistor

constructs outperforming any equivalent semi-custom designs.

3.1.5 Physical design

The physical design phase is the last phase capable of great speed improvements
over automated designs. Performing layout for a full-custom design is a painstaking
endeavor to most draftspersons. However, circuits laid out using handcrafted polygons

are more compact than those obtained from CAD tools. Needless to say, physical design

27

is critical to high performance if meticulous done, yet a lousy layout can rapidly destroy

all speed gains made previously.

3.2 Simulation Process

Interestingly, the full-custom design flow utilized with the 2 GHz AHB fabric
raised a serious problem regarding simulations. The digital design flow [36] maintained
by the Canadian Microelectronics Corporation (CMC) is inadequate for full-custom
design since it is meant for ASIC design. Intuitively, the 2 GHz AHB fabric resembles
more to an analog design, since the work is performed at transistor level in an analog
way. For this reason, the analog design flow [37] is more appropriate to the design style
employed with the hard IP. However, digital circuits are often characterized by
numerous digital signals where a specific bit organization is important. In order to
stimulate the circuits with relevant test vectors, or simply to activate a specific state,
controllability of the test vectors is required. Achieving this objective with the analog
design flow at hand is not easily realized. Furthermore, a great number of signals are to
be observed in order to attest the correctness of the design. WaveScan™ [38], the
waveform viewer provided by Affirma Analog Artist™ , does not support the notion of |
bus. For this reason, WaveScan explodes groups of signals to display them, so groups are
difficult to read and they consume precious space on the display to analyze the response
of the modules. Here again, a solution had to be envisioned to observe the system
response to test vectors. Therefore, an alternate simulation flow has been researched in
order to apply test vectors from either a hardware description language (HDL) or a

hardware verification language (HVL), and to observe them accurately.

28

The solution for the above stated problem resides in Cadence mixed-signal design
tools and Verilog [16] as the hardware description languages used to specify test cases. It
is possible to specify functional ‘Views into Cadence Virtuoso'™, so as to create test
fixtures including the analog component with a Verilog file to control the stimulus
applied to the device under test (DUT). The Hierarchy Editor inserts digital-to-analog
(DAC) instance in between the digital stimulator and the DUT to effectively convert the
digital signal into an analog signal. Options allow specifying Vi, Vi1, t,, and t; to shape
the signals according to the specifications of the DUT. Similarly, an analog-to-digital
(ADC) instance is used to interpret the out coming analog signal by the testbench.
Hence, Vor, Vou, and the maximum transition time can be specified for conversion.

Figure 3.2 shows a typical test fixture used in the design of the 2 GHz AHB fabric.

View: functional

i) » vcd
Digital output Verilog testbenchi | Digital input file

< :7\1 DAC AV ADC

View: schematic (or extracted)

DUT

Analog inpu Analog output

Figure 3.2. Test fixture used for full-custom simulation.

SpectreSVerilog™ is a mixed-signal simulator that combines SpectreS™
capabilities with Verilog XL™ to effectively simulate analog and digital cell views
cooperatively. Hence, Verilog XL feds the virtual DAC with test vectors that are applied
to the analog cell view. On the other end, the response of the DUT is converted back to
digital signals that are dumped in a .VCD file. The .VCD file saves all signals involved

in the Verilog file. Hence, observability is possible from Verilog XL since the ADC

29

provides a mean to read back the DUT response. Afterward, it is possible to enter post-
processing in Verilog XL™ and verify the correctness of the design with SimVision'™, the
waveform viewer included with Verilog XL. The resulting waveform is similar to a
typical RTL simulation. Any signals that remain in between Voy and Vor. longer than the
maximum transition time specified for the ADC interface are shown with a red rectangle,
meaning undefined value. Hence, voltage level problems along with slow transitions are

seamlessly traced with this simulation method.

3.3 Circuit Techniques

Designing digital circuits clocked in the GHz range is a thorough commitment
that requires state-of-the-art circuit techniques combined with aggressive transistor
sizing. The never-ending quest for higher clock rates led to the proposal of true-single-
phase-clocking (TSPC) [27], [29], [30], a powerful design style. This dynamic circuit
technique allows reaching high frequencies. Its efficiency partly comes from its use of a
single clock phase with no inversion. This leads TSPC to improved speed in comparison
with the no-race (NORA) [28] as it avoids intra-cell synchronization bottlenecks [29].
Yuan and Svensson [29], [30] proposed four high-speed TSPC latches: TSPC-1, TSPC-2,
C’MOS, and split-output. Even though they claimed that TSPC-1 and TSPC-2 should
perform faster, other researchers have shown that C2MOS and split-output outperforms
the former latches [39]. However, beyond this debate, the question of which TSPC style
is best suited for a design remains unanswered. This section attempts answering this
question based on the experience gained through the design of a 2 GHz communication

infrastructure targeting high-end SoCs.

30

In addition to the TSPC style employed, a discussion on transistor sizing is
included in this section, along with the preferred logic styles, and the design rules
enforced to improve the probability of success. The aim here is to transmit the
knowledge on high-speed circuits, acquired through experience, to possibly shorten the

learning curve that other designers targeting this kind of performance could experiment.

3.3.1 Selecting a TSPC Style

To implement 2 GHz AHB cores, three positive edge-triggered latches have been
studied: TSPC-2, split-output, and C*MOS (see Figure 3.3). Even though all candidates
meet the target speed, there are timing issues to account for in selecting an optimal style
(speed wise). As a matter of fact, besides the transistor count, the optimal TSPC solution
should maximize the slack time allotted to useful computation (tiogic) and interconnect
delays (twvt). Hence, the maximum allowable slack time (ts.) between two sequentially
adjacent registers is given using equations (3.1) and (3.2) [24]:

tsL < tcp — (tc.q + tseTup) (3.1
where,

tsL = trogic + tint (3.2)
and tc.q is the time from rising clock edge to output valid, tcp is the clock period, and
tseTup is the setup time of a register.

Table 3.1 summarizes various parameters of the TSPC latches obtained by circuit
simulations. Even though the hold time of TSPC-2 (Figure 3.3a) outperforms any other
style, its high setup time severely hinders the slack time. This is further aggravated by a
slower clock-to-output delay, which creates the worst slack time of all three styles.

Hence, TSPC-2 is considered the least effective for the design of 2 GHz AHB cores.

31

Qn

+ £ o1 d

Vint 3

Vine 2 | Qn

Figure 3.3. Positive edge-triggered latch candidates for the 2 GHz AHB. (a) TSPC-
2, (b) Split-output, (c) CMOS.

TABLE 3.1. COMPARISON PARAMETERS OF THREE TSPC LATCHES.

TSPC-2 Split-output CMOS

Transistor Count 10 9 8
tserup (PS) 195 170 50
tuorp (PS) 0 165 55

tco (MAX) (pS) 125 105 81
ts (ps) 180 249 345

The reduced clock fan-in of split-output latches (Figure 3.3b) is an advantage that
cannot be overlooked, since the power consumption in clock distribution networks is a

very significant factor in modern ICs [24]. The reduced transistor count of the split-

32

output TSPC latch has a tendency to speedup clock-to-output delay, but these latches
require a long setup and hold (more than half the clock period). Another possible
drawback of the split-output approach is that all internal nodes (Vint_x) do not have a full
voltage swing, as some single transistors are used to propagate high and low logic [29].
Therefore, accounting for all factors, split-output latches are used sparingly with the 2
GHz AMBA bus, where there is no logic involved in signals path, as in the case of the
datapath. For instance, the datapath is mostly made of 2-to-1 multiplexers, used as an
enabling mechanism, and latches. As the bus width and address space increases, the
complexity of the datapath explodes. This damps the clock distribution network
significantly. For this reason, a reduced clock fanin is appropriate to reduce the burden
put forward to the clock drivers.

Finally, C*MOS (Figure 3.3c) offers the best trade off to obtain the fastest logic as
its slack time appears to be the best of all three TSPC techniques. For this reason, it is
largely used in the design of the high-speed bus, especially where complex decisions
need to be computed between two sequentially adjacent registers. In addition, its internal
nodes offer improved stability over split-output latches so that PMOS and NMOS are

used more effectively. Also, it is easier to embed logic into C*MOS latches.

3.3.2 TSPC Device Sizing

The design of a digital circuit operating in the GHz range requires aggressive
transistor sizing. Each component must drive a sufficiently large current to overcome the
parasitic capacitance and resistance, which are extracted from the process used for the
physical design. Since gate delays decrease as the technology scales down, an ever

increasing disparity between wire delays and gate delays is seen [24], [25], [40]. This

33

phenomenon is mainly due to parasitic RC components that, in a sense, create a low pass
filter limiting the maximum frequency of a circuit. Hence, it is desirable to size the
memory elements in a way that minimizes input load and maximizes output current.

In essence, an edge-triggered TSPC latch is made of three inverting stages. This
hints at using buffer theory to gradually boost the current capabilities of each succeeding
stage [27]. Furthermore, each device is configured with the minimal gate length
specified by the process used, whereas its gate width is optimized for speed. Proper
transistor sizing significantly impacts a device performance, as discussed in [6], [8], [27],
[29]. To perform TSPC device sizing, the output stage is sized in the first place to match
the attributes of an inverter driving a large output load. From that point, the second stage
is scaled down by a factor of two and the first stage by a factor of four, with respect to the
output stage so as to maximize current driving capabilities within the latch. Figure 3.4
illustrates the buffering theory applied with TSPC stages. This approach generates a
small latch input capacitance with respect to its output current capabilities. Hence, the
third stage can muddle through with a large fanout, while the fanin of the latch is small to
minimize RC delays experienced by the input logic, and to allow for longer

interconnects.

1/4 1/2 1
i

Figure 3.4. Buffering TSPC stages.

34

3.3.3 Logic style and Design Rules

The maximum clock frequency in synchronous systems is constrained by logic
coupled with interconnects delays, from one latching instant to the next [24]. One way to
minimize this delay is to decompose the complexity of each logic block so as to create
small and manageable sub-blocks that operate within one clock period. Even though this
approach suffers from an initial delay, this is acceptable in pipelined structures, yet a
practical limit to logic reduction sets the system efficiency [41]. To a certain extent, the
logic style employed makes a difference.

The complementary CMOS circuit technique allows the creation of complex logic
functions. Unfortunately, this design style is particularly sensitive to RC delays caused
by connecting transistors in series. It is quite obvious that the number of transistors
interconnected in series should be minimized to obtain high-speed logic.

As a result, a design rule was created to limit the number of transistors used in
series. Simple decisions were implemented using pass logic [8], [27] while complex
computations were designed with a parallel static-NAND (or a parallel static-NOR)
structure close to pseudo-NMOS logic, as described in Chapter 5 and [35]. This is
seamlessly implemented, since many logic networks can be reorganized in a parallel
static NAND structure with simple algebraic manipulations. Note that with CMOS
technology, inverter delays are still small so that extra inverters can be accepted in the
blocks.

In addition, to guide logic design, a supplemental rule was enforced with the high-
speed AHB circuits to obtain successful “at speed” simulations after layout extraction.

With the 0.18 pum CMOS process in use, it was expected that the parasitic capacitances

35

would double from circuit level simulations to extracted layout simulations, due to the
many added wires. This affects the slack time by a factor of two, as suggested by (3.3):

ty =R-2C, 3.3)

where C;, represents the total parasitic capacitive load attached to a device. Obviously,
the capacitive load has a linear relationship with the slack time. Hence, logic blocks were
not allowed to consume more than 50% of tg;, during circuit level simulations so as to
prevent exceeding the time budget after layout extraction.

Finally, keeping the transition times below 100 ps in circuit level simulations
ensured further room for degradation. In addition, Voy and Vo were kept within VDD +

10% to respect industrial practice to this regard.

3.4 Summary

The aim of this chapter is to describe various methodologies used to cope with the
design of a novel 2 GHz communication infrastructure. The full-custom design flow
employed is explained in details. In addition, a difficult simulation process has been
researched and described in details in this chapter. This mixed-signal simulation method
is most needed to apply well thought test vectors and to verify the correctness of the high-
speed fabric.

Finally, a section is devoted to circuit techniques since deliberate logic has the
potential of improving system performance significantly. In addition, designing for high-
frequencies is poorly documented in the literature as most books only define the
problematic. Hence, metrics for choosing a TSPC style over another are discussed, along
with means for sizing the device for high-performance. Preferred logic styles with design

rules are also enumerated.

36

4 AHB INFRASTRUCTURE ARCHITECTURE

The performance of high-end SoCs is characterized by their processors’ ability to
communicate effectively within the silicon die. Even though a number of communication
standards exist to answer this concern, none were designed to interconnect high-speed
modules in a simple fashion. As a result, the throughput offered is low, and complex
parallel structures need to be constructed to achieve the data crunching rates required by
modern applications. A new communication infrastructure, based on the AMBA AHB
specification [2], is described in this chapter. Its architecture supports multiple-
outstanding data streams through a pipelined shared-memory, specifically designed to
meet the data rates required by the new communication fabric. The derived structure is
simple, yet powerful, to interconnect a small number of bus masters. In addition, its
components support clock rates outperforming every shared bus reported in the literature
to our knowledge. The internal targeted frequency is 2 GHz.

This chapter explores the architecture and the operations of the major components
of the new communication infrastructure. The master bridges required to link the
platform’s processor with the high-speed bus are explained. Finally, the structure of the
pipelined shared memory is presented with its conflict resolution mechanism, and the

arbitration method is detailed.

37

4.1 AHB Interconnect Megacell Overview

Modern SoCs are typically developed using a semi-custom design flow
(commonly referred to as ASIC flow) [6], [7], [8). This hints that new communication
infrastructure interfaces mainly with soft intellectual property (IP) modules, and
sporadically with hard IPs when enhanced performance is needed. As a result, the high-
performance AHB requifes a cautiously designed architecture that combines seamless
integration of the modules to provide high-throughput. Obviously, the communication
fabric’s interfaces must be capable of accepting different clock rates, sometimes much
lower than its 2 GHz frequency. This solicits multi-frequency bridges. In addition,
several modifications are implemented with respect to the AHB standard so as to obtain
the highest possible performance [34]. They range from protocol leveraging techniques
to interconnect reconfiguration with an increased pipeline depth. This section introduces
the many modules of the new SoC infrastructure together with initial assumptions made

to reduce the complexity of this research project.

4.1.1 Clock Domains

As mentioned previously, the 2 GHz communication infrastructure is a hard IP
intended to enhance the bandwidth offered by the most demanding SoCs. This suggests
that the proposed megacell is surrounded by a number of processing elements that
sometimes operate from a much lower clock frequency. This situation is the result of
performance bottlenecks caused by the synthesis, placement, and routing processes [6],
[7], [8]. Hence, a module developed using an ASIC flow and a 0.18 pum CMOS
technology typically operates up to 200 to 300 MHz. This phenomenon must be taken

into consideration when designing a high-performance communication infrastructure.

38

Three distinct clock domains have been considered in designing the 2 GHz AHB
fabric. The first domain, referred to as the standard AHB domain, is formed by the
processing elements and their local AHB. All standard AHBs share an equal fraction of
one specialized AHB’s bandwidth. Hence, the standard AHB domain works from a clock
frequency of 125 MHz. The second clock domain encapsulates specialized READ and
WRITE AHBs. Both specialized AHBs operate with a 2 GHz clock frequency. The third
clock domain of interest is again encapsulated by the hard IP. It provides a 500 MHz
clock frequency to synchronize the operation of the high-throughput shared-memory.
Figure 4.1 illustrates the three clock domains and their components. It is important to
mention that synchronization of the different domains is beyond the scope of this
research. For the time being, it is assumed that the clocks are generated and

synchronized by a phase-lock-loop (PLL) [42].

Module 1
Module 2
Module 3
Module 4
Module 5
Module

Module 8

Low-Speed
Module 9 Standard AHB

Interface

(125 MHz)

High-Speed

Shared Memory
(500 MHz)

Specialized AHB
(2 GHz)

Module 10

odule 11
Module 12
Module 13
Module 14

Module 16

Figure 4.1. Clock domains division.

39

The new high-speed bus infrastructure does not include advanced synchronization
mechanisms such as a globally-asynchronous-locally-synchronous (GALS) wrappers,
asynchronous FIFOs, nor synchronizers to decouple the clock domains. For this reason,
clock edge alignment is required from the PLL to avoid synchronization failures. This
imposes a limitation on the clock rates that a designer may select. As a matter of fact, the
clocks of the standard AHB and the clock of the memory must have a period that is a
multiple of the period of the 2 GHz clock used by the specialized AHB. This safeguard is
required to ensure that edges from interacting clocks coincide with each other on a
regular and predictable basis.

Note that even though a unique clock frequency is assumed for the standard AHB
domain, it may use multiple clock frequencies in practice, since typical SoCs are
composed of several modules of different nature often provided by different vendors.
Then again, to simplify the complexity of the first implementation of the high-speed
AHB infrastructure, the standard AHB domain has been constrained to use only one

clock frequency.

4.1.2 Architectural Overview of the Communication Fabric

The architecture of an Advanced High-Speed Bus is mostly determined by its
specifications [2]. However, there exist some grey spots that give room for
customization. The new hard IP makes effective use of those grey spots to elaborate an
architecture slightly different from what has been specified to effectively provide an
aggregate bandwidth that corresponds to a 4 GHz clock speed. Thus, the heart of the
high-speed bus is derived from the AHB standard. Still, to obtain the fastest possible

speed out of this interconnect infrastructure, READ and WRITE operations have been

40

separated on two physically independent AHB, referred to as specialized AHB. In
addition, all superfluous signals to the shared memory were screened out from the
implementation to simplify the circuits. Finally, the pipeline depth has been adjusted to
optimize the throughput of the specialized READ and WRITE AHBs.

The specialization made to the high-speed AHB buses is not forbidden by the
standard. In addition, it allows doubling the effective bandwidth since the READ and the
WRITE buses operate concurrently. Furthermore, several processors offered by ARM
(the owners of AMBA standards) are available with specialized AHBs, here also to
increase the processors’ bandwidth. As an example, the ARM1136J(F)-S processor [43]
is offered with five concurrent AHB master interfaces: one interface is dedicated to
instruction fetch, the second to data write, the third to data read, the fourth to peripheral
access and the fifth handles direct memory access (DMA) only.

The proposed communication infrastructure guarantees high-performance access
to all the modules it services. An AHB interface supporting the basic features of the
standard is provided to facilitate modules integration with the high-performance
communication infrastructure, as shown in Figure 4.2. Standard AHB interfaces are used
by the processing elements as AHB slaves to access the high-performance
communication fabric. Each specialized bus resembles strangely to what has been
specified by the standard, except for the AHB decoder which is absent from this design.
Banning the decoder is perfectly acceptable since the memory bank forms a single slave.
The memories are accessed upon a specific clock phase and not upon the address criteria
as in conventional shared-buses. Hence, it is the bus arbiter that determines which

SSRAM from the memory bank is accessed at what time. This is not against the

41

specifications since the preferred arbitration method depends on the specifics of a

particular application. It is thus left open to the designer.

ol Write Bus
Slow AHB Domain | Pt ppecilized
'
Wit HADDRW |
Processing | Write AHB B Bri dgee A b . HADDRW
Element | 4 AtB By #1 = HADDR__‘LH
#1 ; ddress and
Wi control mux vJ
e N
Processing | Write AHBBys | | Bridge : ﬁ HDATAW
Element | Read AHP Bug #2 —T A
#2
WI Write data mux
rite
Processing M&Lﬁ_ Bridi
- ge - .
Element Specialized Write
43 | Read AHB Bu| #3 "AHB Slave
[
N . i
-) Write High mm
Processing — Bridge) s
Element Read B} 44 MEMORY
#4 ' bank
H ! Read Bus Specialized Read
i | ARB Slave
§ 1
e Read HADDRR |
Upto 16 “— Bridge ‘ S
PEs #1)
| Address and
Read control mux
ea
Bridge
#2
'
Read
Bridge
#3
Read
B;lcige HDATAR

Standard __ 4\ 4 Specialized
AHB Slave I AHB Master

Figure 4.2. Overall structure of the proposed communication infrastructure.

The example shown in Figure 4.2 represents the hypothetical SoC used to create
the new communication infrastructure. Sixteen AHB compliant processing elements
(PEs), communicate through the novel 2 GHz AHB fabric. Each PE can perform a
READ and a WRITE operation concurrently via their local AHBs that are directly
connected to the hard IP. Hence, with a bus operating at 2 GHz, it is possible to
guarantee a bandwidth of 125 MHz with a one cycle latency delivery time up to sixteen

processors [34].

42

The high-speed AHB fabric is best suited for a hierarchical bus model. This
concept is known as a Multi-Layer AHB, and it was introduced by ARM in 2001 [18]. A
Multi-Layer AHB uses an interconnect matrix that multiplexes several AHB masters
interacting with a varying number of AHB slaves. In a sense, this interconnect matrix
can be seen as a special bridge routing transfers inside a hierarchy of AHBs. The
interconnect matrix that ARM suggests is indeed flexible and offers a high throughput
since it allows many transfers to occur concurrently. However, when many PEs compete
to access the same resource (e.g. a shared memory, a FIFO, etc.), the bandwidth of the
Multi-Layer AHB goes down to that of a single semi-custom AMBA AHB bus. The
novel AHB fabric queués the transfers and processes them one-by-one through a
collection of high-speed bridges creating, for the soft-cores connected to its ports, the
illusion that their requests was served with no apparent latency. by the 2 GHz

communication infrastructure.

4.1.3 Specialized AHB signals

The specialized READ and WRITE AHBs are designed as light versions of the
standard. Except for the increased pipeline depth on the READ bus, all signals interact as
specified by the standard. Then again, all unused signals were screened out from the 2
GHz interconnect infrastructure to ease its design. For this reason, a list of remaining
signals is provided in Table 4.1. Note that suffixes W and R are used to differentiate the
WRITE bus from the READ bus. For further details on AHB signals interactions, the

reader is referred to AMBA specification 2.0 [2].

43

TABLE 4.1. SPECIALIZED AMBA AHB SIGNALS.

Name Source Description
HCLKF Clock source This clock times all bus transfers. One
‘ clock cycle is equivalent to one bus cycle.
All signal timings are related to the rising
edge of HCLKF.

HRESETn Reset controller This signal is used to reset the system and
the bus. HRESETn the only is active LOW
signal.

HADDRW[4:0] WRITE/READ bridges The 5-bit address bus is used to specify the

HADDRR[4:0] (master) memory location to be accessed.

HTRANSWI[1] WRITE/READ bridges Indicates the type of the current transfer.

HTRANSR][1] {master) 1 =NONSEQ and 0 =IDLE.

HDATAW][31:0] WRITE/READ bridges The 32-bit write data bus is used to transfer

(master) the data from the WRITE bridge to the

interleaved memory.

HDATARJ31:0] Interleaved memory The 32-bit read data bus is used to transfer
(slave) the data from the interleaved memory to the
READ bridge.
HBUSREQWx WRITE/READ bridges A signal used to notify the arbiter that
HBUSREQRx (master) bridge x requires access to the bus.
HGRANTWx Micro-programmed arbiter ~ This signal is used to indicate to bridge x
HGRANTRx that it is currently the highest priority

master. In contrast with the standard,
bridge x gets ownership of the bus only on
HGRANTW/Rx.

HMASTERWx[3:0]
HMASTERRx[3:0]

Micro-programmed arbiter

These signals from the arbiter indicate
which bus master is currently accessing the
bus. They are used by the micro-
programmed arbiter to follow up on the
access sequence.

4.2 Interleaved Memory

The availability of a high-throughput memory is a key to the success of the new

AHB communication fabric. Indeed, the development of a memory supporting a 2 GHz

clock rate is extremely difficult [27]. For this reason, the shared memory rapidly turned

into a serious treat to the feasibility of the 2 GHz AHB infrastructure. The architecture of

the high-speed communication infrastructure relies on a high-performance memory to act

as a communication buffer. However, if the shared memory offers a bandwidth inferior

44

to the 2 GHz AHB, the throughput of the communication fabric is degraded to that of its
buffer. Therefore, the shared memory has been subject to intensive research.

It was decided early that designing both an AHB and a memory supporting a
clock rate of 2 GHz was unacceptable considering the resources at hand. The fastest
embedded memory available through the Canadian Microelectronics Corporation (CMC)
is a synchronous static random access memory (SSRAM) from Virage [44]. This
memory compiler provides a high-density memory with a clock frequency up to 500
MHz when targeting a 0.18 um CMOS process. The gap to reach the required
performance is still important, but pipelining is possible to create a memory bank
emulating a 2 GHz memory.

The memory bank is made of four dual-port random access memories from
Virage to create a memory sustaining two billion data accesses per second on both ports
(Figure 4.3). Each memory port interfaces to one of the specialized AHB so as to offer

this aggregate bandwidth of four billion data accesses per seconds.

500 MHz + 0°
1Kbit SSRAM

HTRANSW HTRANSR
HADDRW/[4:0] : m Y 500 MHz + 90° 8 : HADDRR[4:0]
1E €| 1Kwit ssRam g £l

8 8
E £ =g
o
8 E NE
= 5| 500MHz+180° |§ %
8 Q 1Kbit SSRAM o/
2 [-%
&5 &3

HDATAW([31:0] _

' a

HDATAR[31:0}

500 MHz + 270°
1Kbit SSRAM

Figure 4.3. Block diagram of the high-throughput intedeaved memory.

45

The four SSRAMs are pipelined with an interleaved clock, i.e. the memories’
clocks are shifted by 90° with respect to one another so as to obtain a memory bank
clocked at 2 GHz. A timing diagram reveals how the four SSRAMs’ clocks are
organized in Figure 4.4. A 90° phase shift on a 500 MHz clock results in a delay of 500
ps. This delay is equivalent to one 2 GHz clock cycle. Thus, the 90° phase shift provides
a mean to align one SSRAM clock edge with every positive clock edge on the specialized
AHB. This method generates a memory that accepts a new address and completes a new

operation every 500 ps.

1 .2 3 4 5 6 7 8 9 10 11

Memory CLK_1

MemoyClk 2 | § — L

Memory CLK_3. {
Memory CLK_4 : I .
- R B S D B
R - —— S R
HADDRR |+ & - S S i
f : L A _E
A S S S S———
HDATAR ! ;: — —x=C
s £ % £ E
‘ [} f
HADDRW | — —
e A Y .
€ § B % ; R S—
WOATAW, L e e — S

Figure 4.4. Interleaved memory timing diagram.

As mentioned previously, the pipeline depth of the specialized AHB had to be
increased from two to eight levels as a means of optimization. The motivation to increase
the depth of the AHB pipeline becomes evident from the memory operations. On the
high-speed AHB, a new address phase is initiated every clock cycle. However, when a
read operation is attempted, the 500 MHz memories are slow to provide data with respect

to the high-speed AHB. This is where an increased pipeline depth becomes necessary.

46

When a memory accepts a new address, six 2 GHz clock cycles are needed by the
SSRAM to fetch the data. To avoid wasting four bus cycles, a new access is initiated on
each memory until the arbiter rolls back to the first memory with the first data item ready
to be delivered. This principle is illustrated in Figure 4.4.

It should be noted in Figure 4.4 that the specialized READ bus (denoted by
HADDRR and HDATAR) and the specialized WRITE bus (denoted by HADDRW and
HDATAW) are processed differently by the buffer memory. As a matter of fact, a
READ operation is performed over two 500 MHz clock cycles whereas a WRITE is
committed over only one cycle. For this reason, WRITE and READ operations have
been split over two independent AHB systems. This is required to simplify the circuits,
and it allows developing a specialized AHB optimized to take advantage of the shared
memory operations. Hence, for a READ operation, it is appropriate to issue the address
phase on the high-speed AHB as soon as possible to obtain the data within the allowed
time frame. For a WRITE operation, it is preferable to hold on the address until the
standard AHB delivers the data to be written to the memory. As a result, the specialized
WRITE AHB issues the transfer late whereas its converse bus issues the transfer early.

A READ cycle is more critical than a WRITE cycle. This is explained from real-
time deadlines envisioned to acquire the READ data. This is why READ transfers are
issued as soon as addresses are available: to provide time to return the READ data to its
PE. Then again, WRITE operations also have real-time deadlines to respect, but the PEs
do not have to wait on the WRITE cycle to be completed to proceed with their work as
long as a guarantee that the write will be committed properly is provided. This is always

the case with the SSRAMs under use: a write operation is guaranteed to be completed.

47

For this reason, the processing elements may consider a WRITE cycle completed as soon
as the 2 GHz bridge takes delivery of the data.

Another important component required by the interleaved memory bank is the
memory wrapper. It is used to decouple the 2 GHz clock domain from the 500 MHz.
The duration of each bus cycle on the fast AHB is of short duration compared with the
memory cycles. It is for this reason that wrappers need to be used. Their task consists in
sampling and holding address, control, and data (data only for WRITE operations) bits
for the duration of a memory cycle.

Finally, there exists a possibility that the READ AHB and the WRITE AHB
attempt an access to the same memofy location simultaneously. If this situation occurs,
the data being read may be corrupted. An easy way to handle address contention is to
raise an error flag to re-attempt the memory access. However, this strategy may severely
hinder the system’s determinism since the probability of failure over a small address
space is substantial. As an example, consider the head and tail pointers associated with
each virtual buffer in the memory. The probability of address contention over one of
these pointers cannot be overlooked. Unfortunately, every failure tends to build cycles of
latency which ultimately leads to clogging SoC communications. A better way to resolve
this type of conflict is to equip the shared memory with a bypass system, so as to directly
route the data being written by the WRITE bus onto the READ bus via the write-through
port provided with the SSRAM. The bypass mechanism reacts only upon conflict
detection.

In case of address contention, the internal operation of Virage’s SSRAM

prioritizes the WRITE over the READ operation. Therefore, when a conflict arises, the

48

WRITE operation is committed successfully and the data being read must be considered
as corrupted. It is the responsibility of the designer to detect address contention. Figure
4.5 shows the bypass system. This circuit exploits the write-through feature offered by
Virage’s SSRAM. In effect, when activated, the SSRAM’s write-through mechanism
copies the data from DA to QA in the successive memory cycle. Therefore, the data to
be read may be corrupted if it is taken from the meémory cell itself, but the SSRAM has a
mechanism that holds the write data long enough to be used by the specialized READ
bus. The role of the bypass mechanism is only to detect address contention, and select
the alternate data source in case of positive conflict detection. Figure 4.6 shows a timing
diagram illustrating the operation of the bypass circuit. As it is shown, the address
contention has no incidence on the successful completion of the read operation since the
alternate source (QA) provides valid data with no extra latency. Therefore, the
deterministic behavior of the high-speed communication infrastructure is preserved,

which is an important characteristic for real-time applications.

1 OEA OEB

HADDRWIO o Faveaa | S00MHz oy v HADDRR(4:0]
HDATAWBLOL L Toapto | 4 gy Sglz;:M DB[31:0]
QAP1:0] QB[31:0]
il l
| Comparator Il

Figure 4.5. Block diagram of the bypass system.

49

¢

ADRA e

D. A' pa 03:17’&!/15(\78 >

Qa :
Comparator

Figure 4.6. Timing diagram of a conflict resolution.

The specialized AHBs operate in a similar way of a Multi-Layer AHB
interconnect matrix [18], [35]. As a mattér of fact, a Multi-Layer Interconnect Matrix
physically multiplexes several AHBs toward a number of slaves at low-speed. The new
AHB based interconnect infrastructure time-multiplexes several AHBs towards a shared
resource at a high-speed. Thus, the new solution avoids resource conflicts by satisfying
many simultaneous transfers at a very high-speed, but this can only work with a proper

arbitration mechanism.

4.3 Very Long Instruction Word Arbiter

As mentioned in Section 4.2, the high-throughput dual-port memory bank can
support a bandwidth of 4 GHz. This allows emulating a multi-port memory provided that
a “phase-aware” arbitration mechanism is developed to manage the traffic on the shared
bus. Indeed, the arbiter must be aware of which memory bank a processing element
writes shared data into so that it can be read by the destination processor. This adds, on
the arbiter, the extra burden of granting the shared bus on a specific memory phase

determined by the physical location to be accessed. Figure 4.7 shows an example

50

defining the difficulty produced by independent memory phases. The arbitration policy
used is a naive implementation of a round-robin static arbiter (Figure 4.7a). The target
data to be implemented by this arbitration policy is as shown in Figure 4.7b. However,
when the memory phases are taken into account, a discontinuity in the data flow is
revealed. This is due to a side effect caused by the operation of the memory bank. The
communicating PEs are not mapped to the same physical memory within the memory
bank (Figure 4.7c). Hence, they cannot communicate since their requests are never
phased together. This naive arbitration policy results in the dataflow discontinuity

illustrated in Figure 4.7d.

D

[

S [[
BRI
v"“ v S \4 b v s v ' v £ v S v'°°
(@
Q1 D=2 M3 D) D5 D)—>(Me M7 D)D)
(b)
M1 M5 <—— memory #1
M2 M6 <“+—— memory #2
M3 M7 <+—— memory #3
M4 M8 <«4——— memory #4
©
(d)

Figure 4.7. Arbitration with phases: problem definition. (a) Round-Robin arbiter, (b)
Target dataflow, (c) Memory map, and (d) Resulting dataflow.

51

To design a “phase-aware” arbitration schedule for the above example, distinct
schedules must be executed on the READ and on the WRITE bus. Different schedules
makes possible mapping communicating entities on the same physical memory. Hence, a

solution to the above problem is shown in Table 4.2.

TABLE 4.2. PROPER SCHEDULING FOR A CONTINUOUS DATAFLOW.

Memo hases
PEs schedule ve

1 2 3 411 2 3 4 1 2 3 4 1 2 3 4

WRITE AHB 12 3 4 5 6 7 8 9 10 t1 12 13 14 15 -

READ AHB 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 --

Indeed, the arbitration schedule shown in Table 4.2 is simple to establish since the
hypothetical application is simple. Nonetheless, a real application with dynamically
changing bandwidth needs and» deadlines may be more difficult to compile with the
unconventional memory bank designed for the very high-speed AHB. There exist two
fundamental approaches to design arbiters: those that execute a static schedule and those
that adapts dynamically to incoming requests. Yet, both arbitration methods must
account for memory phases. To obtain better determinism and ease the design phase, the
specialized READ and WRITE AHBs use a pre-defined arbitration schedule. In addition,
the arbiter provided to both high-speed AHBs is structured in a way that resembles
typical very long instruction word (VLIW) micro-programmed processors [1], [45].
VLIW machines typically result in simpler architectures and simpler circuits. However,
an effort must be made to determine an arbitration schedule at compile time [1], [45].
This task is better performed with a predictable application [46]. It is realistic to assume
a predictable application behavior with the new communication infrastructure since most

SoCs are used with digital signal processing (DSP) platforms. Predictability is a

52

characteristic of most DSP applications. Therefore, a VLIW arbiter appears particularly
attractive with a DSP platform, such as a video converter platform, where multiple
outstanding data streams are present simultaneously. The VLIW arbiter creates a channel
between a source and a destination processor by forcing the communicating entities to
access the specialized AHB upon the same memory phase following a pre-determined
bus access schedule.

Figure 4.8 details the block diagram of the micro-programmed arbiter. Its
architecture is not so different from that of a modern microprocessor. The arbiter is
composed of three main components that interact closely. First, the memory of the
micro-program holds 64-bit words. Each 64-bit word represents a sequence of up to 16
bus masters. Second, the arbitration controller programs the shift register with those long
words acquired from the memory. Finally, the shift register circulates the long word
thoroughly. Its output stage is composed of a pipelined logarithmic decoder to generate
HGRANTF. HMASTERF[3:0] signals are four bits representing a unique bus master. A
feedback path from the shift register to the controller is provided in order to trace the
status of the access sequence on the bus. Monitoring the access sequence lets the
controller execute complex schedules where multiple long words are required to run an
application. ~ Moreover, this mechanism allows loading a new application by
reprogramming the arbitration sequence online. Such a feature is interesting for SoCs
that are flexible enough to execute a set of different applications. To go further, the
content of the micro-program memory may be altered online with a new schedule [46].

Finally, the micro-program approach has been proven extremely powerful in

implementing a microprocessor’s controller [1], [45]. A wide variety of schemes can be

53

accomplished from this type of architecture. Even though the VLIW arbiter executes a
statically determined schedule, it offers great flexibility and a performance level that
cannot easily be challenged by other arbitration policies. Yet again, a significant amount
of work must be accomplished in order to acquire an absolute schedule. The difficulty to
establish the arbitration schedule resides in the complexity, the predictability, and the

efficiency of the target application.

MEMORY
holding the
SCHEDULE

ARBITRATION 64
CONTROLLER A

wfp L

REGI
SHIFT EG STER HMASTERF[3:0,

4-to-16 BIT DECODER

HBUSREQF 0] 1 ’ | HGRANTF_0

HBUSREQF_1 HGRANTF_1
HBUSREQF_2 HGRANTF 2
HBUSREQF_3 HGRANTF_3
HBUSREQF_16 HGRANTF_16

Figure 4.8. Block diagram of the VLIW micro-programmed arbiter.

4.3.1 Traffic Analysis

As previously mentioned, there are several parameters involved in achieving
quality-of-service (QoS) under real-time constraints. The 2 GHz AHB fabric
outperforms the processing elements (PE) by completing multiple memory accesses
while the PEs are attempting a single access. To generate a proper access schedule, it is
important to be aware of the time window available to complete the transfers, and the
permissible time to provide the response to a PE. Since timing is particular to every PE,

their scheduling priority may be much different. In addition, the application to be run

54

plays a significant role in bus utilization. Hence, a cautious traffic analysis is the key to
avoid clogging the communication infrastructure.

Before timing parameters are further examined, some simplifying assumptions
must be formulated to facilitate the arguments:

1. The PEs place their requests upon the 2 GHz communication fabric

simultaneously;

2. All PEs run on the same system clock, i.e. 200 MHz;

3. Each PE is guaranteed a communication bandwidth of 125 MHz;

4. For more realistic results, interfacing with an ARM946 processor [47] is

assumed.
At a later time, the above simplifying assumptions will be relaxed to give a more
appropriate picture of the possibilities offered by the new high-speed communication
infrastructure.

Since the delivery time is an important parameter, a study has been conducted to
discover different ways of accelerating the response time of the hard IP. It turns out that
it is possible to exploit aggressive, yet realistic, timing parameters to steal precious
nanoseconds to the PEs. Thus, it is viable to initiate a transfer on the 2 GHz AHB before
it is officially made available by the PEs.

Figure 4.9 shows how it is possible to capture the address before its time. The
shaded area represents the address exclusion zone where the address appears unstable to
the hard IP. The time from the rising edge of HCLK to HADDR valid appears as Toya.
To get an accurate estimate of what this parameter could be, ARM processors have been

studied. Regardless of the family of ARM processors, the upper bound on Ty,

55

corresponds to 30% of the system clock (not to be confused with the bus clock). Tpab
models the propagation delay for the address to travel along the standard AHB. This
parameter is hard to estimate because it varies greatly with the length of the AHB wires
(dependant on placement and routing), the parasitic capacitance on the wires (dependant
on the number of cores), and other electrical parameters [24], [27], [40]. However, AHB-
Lite links, with a single slave, are assumed in this research, and the associated wires are
expected to be short. Therefore, a Tpagr value of approximately 0.5 ns is assumed at this
time. As a result, the address can be sampled at the rising edge at the end of the sixth
cycle. This allows the hard IP to begin transfers early on the READ bus to deliver a
response as early as possible. Hence, in the example of Figure 4..9', the address could be
issued as early as the sixth HCLKF cycle on the hard IP.

Address Phase
1.2 3 4 5 6 7 8 9 10 11 1213 4 15 16

Figure 4.9. Exclusion zone to steal the address to a processing element.

Now that the timing encroachment feature is unveiled, there are other parameters
associated with the data exclusion zone to consider. As a matter of fact, once the hard IP
has accessed the aimed data, some parameters must be considered to deliver it safely
according to the particulars of each PE. Figure 4.10 defines the exclusion zone to respect
when returning data to its PE. The data is fetched from the memory on the ninth cycle.
The tenth cycle is needed to transmit data to the READ Bridge while the eleventh cycle is

used to latch the data. Meanwhile, READ data appear on the standard AHB. Then, Tora

56

represents the propagation time required by a word to travel across the standard AHB.
Yet again, its value is assumed to be around 0.5 ns. The most significant parameter is
represented by Tisq (input setup time on HDATAR), and it must last at least 30 % of an
ARM processor’s system clock. Hence, 1.5 ns of setup time are required to satisfy this
parameter. The last compulsory timing constraint is Ty, which models the hold time on
the data bus. Ting must be greater than zero, meaning that READ data must remain valid

beyond the rising HCLK edge.

Data Phase
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4.10. Exclusion zone to deliver READ data.

Figure 4.11 illustrates an example with a burst of 16 simultaneous READ
requests. Again, the two exclusion zones for address and data words are shown at the
extremities of the timing diagram. The time slot left in between the exclusion zones
represents the time window available to commit all READ transfers. It can be observed
that addresses are issued early on the 2 GHz AHB fabric, henceforth encroaching the
time credited to each PE to transfer addresses. As explained earlier, this is acceptable if
the address timing is guaranteed. If there is insufficient knowledge about the system
timing, we advise against the time-stealing feature. As a result, request A is sampled
early by the bridge and is immediately issued on the specialized READ AHB at the sixth
bus cycle. Address A is delivered 500 ps prior to the rising clock edge of memory

number 4. Though the address is delivered at the last minute, it easily meets the setup

57

time requirements of the SSRAM memory. The time needed by the SSRAM memories
to fetch data is too long to steal time from those elements. Hence, data word A is latched
at the end of the eleventh bus cycle by the memory wrappers, and READ data is issued
on HRDATAR during the next bus cycle. As a result, data A could appear on HRDATA
before the data phase begins. The READ Bridge has the responsibility to hold those data
and deliver them with the proper data phase.

It should be observed that the last few transfers are more critical. The 2 GHz
AHB infrastructure serializes all accesses. The first request to proceed has plenty of time
to be executed, as shown in Figure 4.11, but the last transfer is more critical. In this
example, if the exclusion zones grow larger, then it would not be possible to sati‘sfy a
complete burst of 16 READ operations with zero latency. There are two ways to cope
with this case: (1) reduce the bus frequency of the PEs to extend the time window, or (2)

resign to accept one (or more) cycle of latency for transfers exceeding the time window.

EVLBEIIAL 5 6 7Add:” Psh’:um o2 13 M 1Bt ¥ o8 v N A 2B ?;’ thas” % 2 28 ?/ / 4
ncxxp;// 7 — L L : f - — ‘ b ‘
m% —— ——snor ‘ | ZzzzZ
HRDATA/ . D T 5 = = |

/ 7778% . : 1,% 1

Figure 4.11. Performing 16 READ cycles with no apparent latency.

58

At this point, it should be mentioned that a WRITE cycle does not have to compel
to the same data exclusion zone. For a WRITE cycle, the guarantee that the operation
will be committed successfully is a sufficient condition for a PE to complete the transfer.
Therefore, when a WRITE operation is processed, the 2 GHz communication
infrastructure only needs to return an OKAY response with HREADY asserted to satisfy
the processors. This feature contrasts with a READ cycle since the data must be returned
with an OKAY response for a processor to complete the transfer. For this reason, READ
operations are considered more critical than WRITE operations.

Figure 4.12 illustrates the difference with data exclusion zones when a burst of 16
WRITE operations is attempted. In this example, time stealing is performed on the
address bus and on the data bus. However, it is not required to steal time for a WRITE
operation to complete with no apparent latency. The hard IP acquires the address in the
same manner as for a READ operation. The difference stems from data origin: it is
issued by the processors. This contrasts with a READ operation where the data is issued
by the shared memory. For this reason, the communication infrastructure must acquire
the data from the processors in a safe manner, i.e., in a manner respecting the exclusion
zones at the beginning of the standard AHB cycle. From Figure 4.12, the address is
sampled before the data phase, but the WRITE Bridge does not issue it until the data
phase begins. At the beginning of the data phase, the bridge waits for the exclusion zone
to expire and it receives the data. At this point, address A is issued to the hard IP, and its
associated data follows immediately on the 22™ bus cycle. The memory cannot fail to
write the data, unless it is damaged. Therefore, the specialized WRITE Bridge does not

have to wait for the memories to return an OKAY response. The PEs are notified of a

59

successful transfer even if the actual WRITE operation has not yet been completed. This
feature allows keeping the normal AHB pipeline depth at two levels, as required by the
AMBA specifications [2].

Note that in both cases, READ and WRITE transfers, the pipelined activities of
the standard AHB is not compromised. The data phase can overlap with the next address
phase without clogging the 2 GHz AHBs. As a matter of fact, the next wave of transfers
would simply line up with the present sequence, as with the transfers shown with dashed

lines in Figure 4.12. The same principle applies for the specialized READ AHB.

Address Phase Data Phase Address Phase
1 o12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 X 31 321234»567_39!0

HaLK : : : T -
HADDR * - = ~——— LT ———io ABC.BAL v Co
HWDATA | Lo k . 7 ABC.P mmim (A.E.Eu<.6_+J-_f__;-_____i
. _OKAY : ; TS S R KAY Ll
TRESP A7 77N — ; : ; :
HREADY : 7 — ~ s e S S e
HaLke? A {"‘o..;l i |
HADDRW : . Ao B oD B o G o L s | 5Ky L 3 My NS QP A+lx,B oy
HWDATAW | HE : / AB?CDEvFGH‘I LyeK sl seMgNGO Pi ._«
LT b NI L IR s ISR s v WS

ADRAI’ (—5-——>:x—-l-—>_:(—-lﬂ—gg:(-—1’.ﬂ~—a:

L 1 1 1. f

ADRAI: Co é G ' K 5 | o, s,

MCLK 3, § 1 f 1 . B LN e NN
ADRAI{ i H_5 L5 Py P e_DhL_y
DM: H // _ . -(_H_) : ‘_]__) f : (_.P_, : *D_u)%

MK IR s WD e SRR o TR e s D
ADRA; —4 SIS o SRR TE. S TR B B
DA’ 5 *—E-i L e S et

Figure 4.12. Performing 16 WRITE cycles with no apparent latency.

4.3.2 Timing Model

All parameters described above can be equated to model the upper bound on the
time window available for a burst of READ transfers. In addition, the behavior of the
high-speed READ bus can be modeled in a way representing the minimum amount of
time required to perform a burst of transfers. The resulting relationship is expressed by

the following equation and its timing parameters are defined in Table 4.3:

60

(@drRAW +rdR+ N=1)tyuer <2+ L)ty ~tosa Foats Hats Homa Ha o) (421,

The left hand side (LHS) of equation 4.1 defines an accurate model of the

minimum time required to perform a burst of N transfers with 100 % bus utilization. For

instance, it is possible that some masters do not require the total bandwidth dedicated to

them for the entire application execution. In this case, the N parameter is adjusted to

reflect a reduced total utilization. Hence, the above relationship must be revisited each

time an application enters a new task requesting different resource scheduling needs.

TABLE 4.3. TIMING PARAMETERS DEFINITION.

Symbol Parameter

adrR Cycles required for address phase on the fast AHB.
w Number of wait states

rdR Cycles required for data phase on the fast AHB.
N Maximum number of masters.

tHCLKF HCLKEF cycle time.

L Tolerable latency expressed in HCLK cycles.
thck HCIK cycle time.

tova Rising HCLK to HADDR valid.

toadr HADDR propagation time.

tisadr HADDR input setup time.

tovrd Rising HCLKF to HRDATA valid.

tord HRDATA propagation time.

tierd HRDATA input setup time.

In contrast with the LHS, the right hand side (RHS) may not be unique: it is most

likely dependant on individual processors attached to the hard IP and on the application.

As a matter of fact, the L parameter modeling the latency is particular to each PE’s

architecture, role, and task evolution. Other parameters, such as to, and tigg, vary

according to the implementation of the processing core. In addition tyg, and tord Vary in

61

accordance to the distance of the PE (wire length) and the complexity of the standard
AHB. For these reasons, the time window varies greatly from each PE’s point of view.
There are two ways to cope with this variation: (1) consider only the worst case scenario,
and (2) adjust the arbitration schedule according to the particulars of every PE. The first
solution is the easiest avenue; however, it may hinder the performance of the
communication infrastructure. The second solution is more complex since it requires
intimate knowledge of the system at hand, but it allows for improved performance when

an first come first served schedule is compiled.

4.4 Master Bridges

To interface the new interconnect infrastructure with the SoC cores, two types of
bridge are needed: one for the READ bus and the other for the WRITE bus. Even though
their implementation varies in many points, the tasks accomplished by these entities are
numerous. In effect, the bridges provide a standard AHB slave interface for SoC cores,
while a specialized AHB bus master initiates the transactions on the high-speed bus
fabric. Finally, protocol filtering is performed by the bridge since a variety of unused
signals and features of AHB were screened out. Hence, the only transfer modes kept for
the very high-speed AHB are IDLE and SIMPLE transactions, without any possibility of
inserting wait states or signaling errors.

Leaving out burst transfer mode may look like a severe drawback, however it is
not. The PEs interconnected with the high-speed bus can still perform transfers in burst
mode. The internal operation of the hard IP is hidden from the processors sitting on the

SoC. Therefore, PEs transfer bursts of data while the bus arbiter multiplexes simple

62

transfers from all PEs on the high-speed bus. This mechanism allows processing multiple
concurrent bursts by the interleaved memory.

The illustration below (Figure 4.13) shows the internal organization of the READ
master bridge. Its architecture is divided in a way similar to that of a typical
microprocessor [1], [45]: the first logical division is the controller (shown in light grey),
then the datapath, and finally the input and output interfaces. "This section explores

algorithms and functionalities of both bridges.

ConTROL o | conTRoL,
PATA DATAPATH H le——RATA_

Figure 4.13. Block diagram of the READ master bridge.

4.4.1 READ Bridge

The READ Master Bridge is controlled by three finite-state machines (FSM):
The first FSM operates as a slave at the speed of the slow standard AHB. The slave FSM
receives a request from a PE and it launches one of the fast FSMs. The slave FSM has
two states and it monitors the state of the standard AMBA AHB. Table 4.4 details the
state-phase relationship of the slave FSM with the standard AHB. Note from Table 4.4
that, even though the slave FSM never inserts wait states, it remains sensitive to extended
data phases. The master FSMs personify the masters of the 2 GHz specialized AHB.
They are alternately triggered by the slave FSM. This is required to reflect the pipelined
architecture set by the AHB standard. Thus, at the moment where a master FSM

launches an address phase, the other may complete a data phase. This process keeps on

63

repeating endlessly. This strategy works correctly provided that some arbiters are
planned to allocate shared resources.

Table 4.5 describes the improved pipeline structure. A first discrepancy from the
AHB standard should be noted on the READ master FSMs in Table 4.5. As a matter of
fact, states T3 to T7 inclusive form illegitimate wait states. The reason forcing this delay
between address and data phases was explained in details in Section 4.2. Though this is a
deviation from the AHB standard, it is not difficult to implement. With a standard AHB,
data input buffers are enabled by signal HGRANT delayed by one bus cycle. For the
specialized READ AHB, the same mechanism is used but data input buffers are enabled
by HGRANTR delayed by six bus cycles. Adding wait states to the AHB protocol is the
key to increase the AHB pipeline depth. Then again, the gain in throughput obtained
greatly justifies this deviation from the AHB standard.

Figure 4.14 shows a detailed block diagram of the READ master bridge. The
bridge controller is kept apart from the datapath’s implementation. This divide-and-
conquer methodology is often used in complex architectures such as microprocessors.
Though the controller of the READ Bridge has been greatly simplified to ease its
construction, the full-custom design methodology in use further complicates

implementation of this core.

TABLE 4.4. TRACING THE STATE OF THE STANDARD AHB.

Standard AHB cycle 1 2 3 4 5 6 7
Slave FSM state T0 T1 TO T0 T1 TO T1
Standard AHB phase Adr0 Adr1 Adr 0 Adr 0 Adr1 Adr0 Adr1
Rd1 Rd0 Rd1 Rd1 Rd O Rd 1 Rd O
HREADY 1 1 0 1 1 1 1

64

TABLE 4.5. SPECIALIZED RE AD AHB PIPELINE STRUCTURE.

Transfers

Arbitration phase A B C D E F G H I J K L M N

Address phase A B C D E F G H I J K L M

Data phase A B C D E F G

HGRANTRx
HCLKF
HTRANS[1:0}
HWRITE
HSELX
HCLK
HTRANSR1
HREADY, @1 E) HBUSREQRx
Master Read FSM —
#1 DATA IVA1
ADDR_OVAT
Slave Read FSM WTRANSRZ \j> HTRANSR
HBUSREQR:

Master Read FSM

#2 DATA IVA2
DATA_set / ¢ HRESP[O]1

ADDR_OVA2
HRESP[0]

N\ HRESPR

HADDRI5:0] N
Go1 | Address N
L0 5 Register P
#
HOLKF HADDRRIS:0}
A
>
Address.
£02_ | Register >
#
HOLKE
HREADY HRESPIO]
RESPIT HRESP[O]1
P HRDATAR[31:0]
<
Read Data
< Rogieter |4 RATA VA2
#
HROATA[1:0] MCLKF
HRESP[1:0 je— HCLKE
o
Read Data |
- | (DATA VA1
< Register
#2
HCLKF

Figure 4.14. Detailed READ Master Bridge block diagram.

65

The datapath has one particularity resulting from the controller. In fact, it has a
double input single output buffer to accommodate the two master FSMs (see Figure
4.14). This architecture is necessary to in order to enable the bridge to collect as many
samples has required by the two master FSMs. The single output is cooperatively
controlled by slave and master FSMs. In addition, some arbiters are provided to resolve

resource sharing conflicts between both master FSMs.

4.4.2 WRITE Bridge

The WRITE Bridge is simpler in its control logic than the READ Bridge. This is
mainly due to its conformity to the AHB standard. The controller’s operation of the
WRITE Bridge is close to the READ Bridge’s controller, but no extra wait states are
added. The same pulse mechanism is used to trigger one of the sister FSMs, but the pulse
activates upon reception of the write data. In contrast with READ master FSMs, the
WRITE master FSMs trigger only when address and data are available for the transfer.
WRITE transfers are performed as specified by the AHB standard. Latches within the
interleaved memory wrappers stabilize address and data for safe SSRAM sampling. The
last variation with the WRITE Bridge stems from the datapath, whose data direction has
been adjusted to point toward the interleaved memory. For this reason, the slave FSM
does not control the output data. Then again, the WRITE Bridge always provides an
OKAY response with HREADY stuck-at-one. Furthermore, this bridge remains sensitive
to wait states insertion on the standard AHB.

Some glue arbiters are required to ensure stability of the controller since, under
special circumstances, both master FSMs compete for the same resources. In fact, there

is a possibility that one master FSM catches up on the other. As an example, such a

66

possibility arises when one master FSM stalls waiting for a positive HGRANTF and its
sister FSM is launched. At this point, both master FSMs reach the same state and they
will both proceed with a transaction when HGRANTF is asserted. For this reason, an
internal arbiter is required to let only the first master FSM that asserted HBUSREQF
proceed with HGRANTF. The other FSM has to wait for the next bus grant. Similarly,
another possibility of conflict exists with the selection lines of the address multiplexer.
These two conflicts are removed with arbiters made of Muller-C elements [27]
(their implementation will be discussed further in Chapter 5). The last problem to foresee
is related to synchronization. The slave FSM is clocked at the rate of the standard AHB
whereas the fast FSMs are clocked at 2 GHz. A synchronization mechanism must be
provided to bridge the two clock domains. Triggering a fast FSM from a naive
association to the slave FSM’s state is not possible. Consider the timing diagram in
Figure 4.11. It is clearly shown that some transfers (e.g. transfer A) can complete within
the address phase. A simple association with the slave state could cause a fast FSM to
launch twice to perform the same transfer since the slave FSM does not toggle its state
fast enough. The same situation is possible with any transfer when wait state are inserted
by another slave on the standard bus. For this reason, the slave FSM launches a fast FSM
through a synchronization register that generates a short pulse whose waveform is shown

in Figure 4.15.

Figure 4.15. Triggering pulse waveform.

67

4.5 Summary

In this Chapter, a high-performance AHB-compliant communication
infrastructure for high-end SoC platforms is presented. It uses a time multiplexed high-
speed AHB to interconnect modules operating at variable frequencies. Means to create a
high-throughput interleaved memory serving the high-speed bus are discussed. In
addition, a simple, yet powerful, arbitration mechanism is detailed to provide good
quality-of-service under real-time constraints. The SoC platform is reconfigurable by
altering the content of the arbiter’s memory. Support for multiple outstanding data

streams is possible.

68

S CIRCUITS IMPLEMENTATION

Designing high-speed digital systems clocked in the gigahertz range is a
painstaking endeavor that requires state-of-the-art circuit techniques combined with
aggressive transistor sizing. Even though architectural innovations may lead to improved
clock rates, low level circuit design is the only way to achieve maximum performance.
This chapter explores the collection of circuits used to implement three decisive modules
that compose the 2 GHz AHB fabric: (1) the Specialized-to-Standard (StS) AHB Bridge,
(2) the specialized VLIW AHB arbiter, and (3) the pipelined memory bank and its
wrappers. Unlike the fastest AHB reported in the literature prior to this research [36],
this implementation is achieved from a full-custom design methodology [6], [7], [8].
Utilizing the interconnect architecture presented in Chapter 4, the circuits necessary to
built this communication infrastructure are defined. Feasibility of the proposed hard IP is
supported by circuit simulations of its main modules.

To further support the circuit methodology characterized in this chapter, circuit
simulation results of the VLIW AHB arbiter, after layout extraction, are detailed.
Achieving a digital circuit clocked in the GHz range requires careful planning to keep
speed attributes with parasitic capacitances that appear after layout extraction, a factor
largely dominated by interconnects as the technology is scaled down [27], [28], [44].
Nevertheless, laying out a decisive component represents an accurate metric to verify the
feasibility of the design style employed to achieve a 2 GHz AHB communication

infrastructure.

69

5.1 Specialized-to-Standard AHB Bridge

Due to its complexity, the Specialized-to-Standard (StS) AHB Bridge consumes
more resources then any other module used to build the interconnect infrastructure. Its
circuit complexity comes, in majority, from the multiplexed datapath. Then again, the
controller required to manage StS Bridge’s activities is mostly irregular since it involves
an innovative group 6f circuits, all different in their functions and sizes, molding its
structure. For this reason, emphasis is given to the controller circuits since the datapath
can be implemented with multiplexers and TSPC latches using more intuitive methods.
In addition, due to their great similarities, only the WRITE Bridge is discussed in this
section. The circuits involved with the READ Bridge can seamlessly be deduced from

the following discussion.

5.1.1 Master Finite State Machine

Perhaps the most challenging component to design in this system, the Master
FSM (MFSM) combines complex high-speed decisions with large fanins and fanouts.
The interaction between the WRITE Slave FSM (SFSM) and both WRITE Master FSMs
is described by Figure 5.1. The SFSM triggers the MFSMs in an alternate manner via the
signal TRIG (represented by a dotted arrow). Hence, the WRITE SFSM acts as a master
to the WRITE MFSM, which is composed of four states: IDLE (T0), ARBITRATE (T1),
ADDRESS (T2), and DATA (T3). Note that the arbitration phase may be skipped if the
bus master is already in possession of the specialized AHB bus. Obviously, to get the
fastest finite state machine possible, a one-hot encoding method [52] must be used. Table

5.1 lists the state equations used to implement the MFSM.

70

Splitting the traditional D-input of TSPC latches means that we can use pairs of
nodes Set” and Reset to control the TSPC latches. This technique hints at minimizing the
input function complexity, since the logic input equation is decomposed into smaller
physically independent circuits. With high-speed digital circuits, it is better to create a
component from many small Boolean equations than from a single large one. Similarly,
the input load splits in proportion to transistors geometries given that the D-equation of
TSPC latches is broken into pairs of equations Set” and Reset (denoted by S’ Tx and RTx

in Table 5.1, respectively).

A A

lo/
T1 l 01 /I 0 . T2 10
Release TRIG1 > HREADY Rel TRIG2
| i
1 1
I 1
I]
I]
1 I
!]
]]
T0 iff 0001 ‘ 13 1000 T0 lff 0001 0 T3 1000
(|
HBUSREQW <=0’ | HBUSREQW <="'0" HBUSREQW <='(f i HBUSREQW <=0
HTRANSW <="(' | HTRANSW <='¢" HTRANSW <= "¢ i HTRANSW <='(r
addr_ova <= '0' ! addr_ova <= '0' addr_ova <= 0 : addr_ova <= '0’
data_ova <= '0’) data_ova <= 'Y’ data_ova <= '0' ' data_ova <= '1'
i |
I I
t !

T2 0100 T2 0100

HBUSREQW <='0"
HTRANSW <="1'
addr_ova <= "1’
data_ova <= '0/

HBUSREQW <="'0'
HTRANSW <='{'
addr_ova <= '’
data_ova <= '0

A A A A

rg/_.

GRANTI RA
A A
HBUSREQW <=1 HBUSREQW <="1"
HTRANSW <='0" HTRANSW <=0
addr_ova <= ‘0’ addr_ova <= '0'
data_ova <= '0' data_ova <= 'O/
| [

Figure 5.1. Controller’s state diagram.

71

TABLE 5.1. STATE EQUATIONS FOR THE WRITE MASTER FSM.

State Name State Equations State Encoding
IDLE RT0=TO - (TRIG + HSEL + HWRITE + HTRANS) 0001
S'T0 = T3 + HRESETn’
ARBITRATION S°T1=HGRANTF’ (TO - (TRIG + HSEL 0010
phase + HWRITE + HTRANS)+ T1)
RT1 =T1-HGRANTF
ADDRESS S’T2 = HGRANTF (TO - (TRIG + HSEL 0100
phase + HWRITE + HTRANS)+ T1)
RT2=T2
DATA phase S'T3=T2 1000
RT3=T3

Implementing the WRITE MFSM requires well thought-out circuit structures.
This is necessary due to the large fanin experienced by the majority of the states. As a
matter of fact, several circuit styles were explored to implement the logic functions:
C2MOS, pseudo-NMOS, and pass transistor logic [8], [30]. It turned out that these
circuits are not well suited to large fanins since the RC delay created by long transistor
chains limits the maximum clock frequency. In addition, the states of the WRITE MFSM
cannot be further partitioned since the AMBA standard sets the protocol to use. To speed
up critical circuits, series of transistors are systematically reorganized into faster parallel
networks.

Figure 5.2 shows how the WRITE MFSM is implemented with a group of non-
conventional circuits. All memory elements are designed with a positive edge-triggered
C*MOS TSPC latch [30], [33]. The traditional D-input is split into Set’ and Reset nodes
(shown by arrows 1 and 2 in Figure 5.2, respectively) to minimize the complexity of the
input logic blocks. This is acceptable provided that Set’ and Reset circuits assert in a

mutually exclusive manner. In addition, a keeper [8], [30] (indicated by arrow 3 in

72

Figure 5.2) is placed after the input stage to guarantee internal stability of the dynamic
latch in the advent that both Set’ and Reset inputs stay negated for a long period of time.
The feedback inverter from the keeper is small enough to ensure the speed of the latch,
yet it drives enough current to overcome the leakage current [8], [30], that slowly
discharges the internal node between the first and the second stage. This circuit method
prevents this dynamic latch from loosing its state provided that the clock keeps running.
Therefore, the MFSM can be left in any state for a long period of time without risking
consistency of the system’s state. This is attractive with embedded systems since most
systems spend the majority of their life in a dormant state [53].

In summary, a cautious design is required to guarantee that both Set’ and Reset
input are not activated simultaneously. Failure to provide this guarantee may result in
system malfunction since both PUN and PDN could turn on simultaneously. With such a
situation, the value in which the output settles into is as random as tossing a coin.
However, it may be acceptable in some circumstances to use embedded ratioed-logic that
could violate the above requirement. In Figure 5.2, this is the case with HRESETn that
may be asserted together with Set’ of some states. Proper transistor sizing is used to
ensure that the PDN wins against the PUN when this rare, but possible, system reset
occurs. On the other hand, both Set’ and Reset inputs may stay inactive for an infinite
period of time provided that the clock pulse is uninterrupted. The weak inversion keeper
maintains the charge on the internal nodes to secure the stability of the dynamic latch.

The circuits used to generate Set’ and Reset inputs are similar to a C*MOS NAND
structure. They are called parallel static NAND circuits [38], and an example is shown

with arrow 4 in Figure 5.2. Obviously, these methods differ in their pull-down networks

73

(PDN). The series of transistors created by a large fanin with a complementary CMOS
approach is avoided with the new parallel structure. To achieve maximum speed, the
depth of the pull-up network (PUN) is limited to one decision level plus one inversion.
Note that with CMOS technology, inverter delays are still small so that extra inverters
can be accepted to generate input complements. Therefore, the speed of parallel static

NAND circuits is practically independent of their fanin.

: S TETE e
od [T
/ 1{1

4——'—"‘3

ET?j“
JE

I——o<]-—¢HGRANTF

.

:

L

e ot . e
S e
4 o : f
E %)
iﬂ%%?%ﬁfxwg
T LT

Figure 5.2. Circuits of the Master Finite State Machine.

74

To reduce power consumption, the last signal to be asserted is connected to the
NMOS pull-down transistor. In the case of the MFSM, this pull-down transistor is
connected to TRIG. As mentioned in Chapter 4, a signal TRIGx is connected to each
MFSM in order to control their activation. This signal stays asserted with logic ‘1’ for a
duration of one clock cycle and then goes negated until a new request needs to be served.
Hence, the parallel static NAND structure is said to be in evaluation phase when TRIG is
asserted. A ‘0’ is produced to activate Set” input if all PMOS are in cut off region. If a
minimum of one condition fails, any PMOS that turns on drives a current éufﬁciently
large to override the pull-down network and to force a ‘1° on the latch input. Note that
the PMOS attached to TRIG is required since TRIG may drive Set’ to ‘1” like any other
signals participating in the PUN’s logic. This circuit method borrows the idea of ratioed-
logic in pseudo-NMOS design style [30]. Then again, the power consumption is reduced
and its speed properties are guaranteed since it is forbidden to stack transistors in series in
the pull-up network. Furthermore, it is applicable to multiple Boolean equations since
any sum of products (or products of sum) can be reorganized in a NAND only structure
from basic algebraic manipulations. Interestingly, the parallel static NAND circuit
reminds of dynamic logic design, but it is different. In effect, the output is always
connected to one of the power supply rails making this configuration static.

Set’ and Reset inputs of state TO are logically inversed, i.e., TO goes to ‘0’ when
Set’ is asserted and it goes to ‘1 when Reset is asserted, since its output goes through an
additional inverter. This is done to simplify the reset logic in the advent that HRESETn
goes asserted. With a one-hot encoding method, only one state gets asserted and all other

states are negated. This is required to ensure stability of the MFSM. Since it is easier to

75

embed logic in the PDN of the C*MOS TSPC latch than in its PUN, system reset logic
was embedded in the PDN for all state. The PDN is faster since it is made of only one
NMOS initially, and NMOS are faster than PMOS [6], [8], [30]. Therefore, TO’s output

had to be inverted in order to embed system reset logic in its PDN.

5.1.2 Slave Finite State Machine

Even though the Slave Finite State Machine (SFSM) is not as complex as the
MFSMs, its importance cannot be overlooked. The role of the SFSM is to witness the
state of the standard AHB attached to it, and to trigger one MFSM in the advent a new
request comes in. Obviously, its clock runs at the speed of the standard AHB, i.e. 125
MHz. Here again, non-conventional circuits are used to speed up the operations of the
SFSM. As explained previously, the SFSM snoops on a bus operating at 125 MHz, but
its intrinsic delays must challenge those of the MFSM since some signals (e.g. TRIG) are
intercommunicating. Furthermore, compiling a complex schedule with non-uniform
standard bus rates may require a SFSM to operate much faster than 125 MHz. For this
reason, it is designed with the same philosophy as the MFSM to get the fastest possible
operation.

To follow up with the state of the standard AHB, two states are needed, they are
named: (1) ADRI1 (associated with state TO0), and (2) ADR2 (associated with state T1). A
simple system analysis allows proving that two states are sufficient. From the AMBA
specifications [2], an address phase taking place on the i bus cycle is accompanied by
Data phase i-I. Similarly, Address phase i+] is takes place with Data phase i.
Associating a state with these two possibilities allows covering adequately all states of

the standard AHB since the SFSM loops back infinitely. In addition, the SFSM is

76

designed to be sensitive to signal HREADY. When HREADY is negated (i.e. 0), the
SFMS freezes in its current state until HREADY is asserted again. This avoids false
positives when another slave inserts wait states on the standard AHB, or responds with a
non-OKAY HRESP[1:0]. Table 5.2 shows the relationship of a sequence of transfers on

the standard AHB with the state of the SFSM.

TABLE 5.2. SFSM STATE RELATIONSHIP WITH THE STANDARD AHB.

Bus cycle 0 1 2 3 4 5 6 7 8

SFSM State TO T1 TO TO T1 TO T1 T1 T1

Addrphase ADRO ADR1 ADR2 ADR3 ADR4 ADR5 ADR6 ADR7 ADRS

Data phase DAT1 DATO DAT1 DAT2 DAT3 DAT4 DAT5 DAT6 DAT7

HREADY 1 1 0 1 1 1 0 0 0

The circuits of the SFSM are effectively built using techniques invented to design
MFSMs. Here again, a C2MOS positive edge-triggered TSPC latch is used with
disconnected PUN and PDN, as shown in Figure 5.3. The PDN activates upon assertion
of HREADY and the local latch output. For instance, when HREADY and T1 are both
set to ‘1°, the PDN pulls Vint 1 to logic ‘0’ as to reset T1. State T1 controls the PUN of
the other latch. Therefore, when T1 goes low, it enables the next state’s PUN to pull
Vint_1 high and to assert TO upon the next rising clock edge. If HREADY is pulled low
by another slave on the standard AHB, the PDN is instantly disabled and the SFSM stalls
until HREADY resumes logic ‘1°. A keeper is used again for means of state refreshing in
the advent that a C*MOS latch PUN and PDN would remain off for a long period of time.
A toggle latch style is sufficient to implement this small state machine, and a one-hot

encoding method is used to unify the design styles and to associate one latch per MFSM.

77

HCLK ® T T
HRESETn B> - bl = o
] —T0
_._4 Vint_1 __{ _._|
A
&
S
>~
2
% e—- 1'>o—.T1

Figure 5.3. Circuits of the Slave Finite State Machine.

5.1.3 Synchronizing Register

Since AHB contains two pipeline levels, the bridge must process two transfers
that are in different states. To do so, two MFSM are used in parallel for simplicity. Then
again, this strategy brings a problem related to clock synchronization. As mentioned in
Section 4.1.1, the different clock domains are synchronized via a PLL, whose design is
beyond the scope of this thesis. Thus, the question on how to communicate between
different clock domains remains unanswered.

The SFSM regulates the triggering of the MFSMs. It monitors the incoming
standard AHB to detect state changes and it takes proper action toward the next MFSM to
be activated. A synchronizing register is needed to signal the MFSM when to start. The
synchronizing register generates a pulse, named TRIGx, for a duration of one HCLKF
cycle. The time at which TRIGx is pulled to ‘1” depends on t,y, (time to output valid).

The shape of signal TRIGx has previously been presented in Figure 4.15.

78

Coming back to the MFSM state equations (Table 5.1), signal TRIG must be
asserted to enable the state machine to leave state TO. The state diagram, shown in
Figure 5.1, suggests that TRIGx, represented by the dashed arrows, is generated directly
by the SFSM. It turns out that this is not accurate as a synchronizing register is needed
between the SFSM and the MFSM. This is necessary to model an accurate toy, and to
adapt to two different clock domains.

Figure 5.4 illustrates the synchronizing register used to perform this action. It
follows the same philosophy as TSPC circuits previously discussed. A 2-input C°MOS
NAND gate detects the enabling conditions. A logical ‘1’ propagates down the register
upon reception of a positive transition of HCLK. The delay is modeled by the fast clock
(HCLKEF) according to valid address input delays exhibited by the standard AHB. The
chain resets synchronously upon assertion of the signal TRIG or HRESETn (system
reset). A pulse of one HCLKF cycle duration is created by the register. This is ensured
by the circuit shown at the bottom right of Figure 5.4 that synchronously resets the chain
of latches upon assertion of signal TRIGXx. When HCLKEF is ‘0’, all Reset inputs are
negated. On the other hand, when HCLKEF is ‘1°, TRIG is connected to all Reset inputs
through the pass gate. At this point, if TRIG is ‘1°, the chain of latches is reset together
with TRIG. The state of the slave FSM determines which synchronizing registers will be

launched since one synchronization register is associated to each SFSM states.

5.1.4 High-Speed Resource Sharing Arbiters

Operating two independent MFSM raises problems associated with resource
sharing. This situation emerges since the two MFSMs snoop on the same interface

signals. In addition, their independence makes them unaware of the state of their sister

79

FSM. For these reasons, arbiters are required to allocate shared resources within the StS
Bridge on a first-come-first-served basis. Three arbiters are needed in the design of the
MFSM (READ or WRITE): one to allocate HGRANTF to only one MFSM, and the

others to control address and data datapaths’ multiplexers.

HREADY
HCLK

HCLKF -—-

Tx

5

pTRIG

@HRESETn

Figure 5.4. Circuits of the synchronizing register.

Asserting HBUSREQFx is a trouble-free task to perform from either MFSM. A
simple OR gate is sufficient to fulfill this task. Then again, complications arise when
HGRANTFX is returned by the bus arbiter. It may happen that both MFSM are awaiting
this signal under the condition that they are both triggered, and the first MFSM to activate
is delayed by the bus arbitration process. When these conditions are satisfied, the second
MFSM activated shall catch up on the first one. As a result, both MFSM awaits
HGRANTFx and a danger exist that the wrong MFSM proceed with the transfer, or even
worst, they could both process their transfer, henceforth contending the 2 GHz WRITE
AHB. Actually, the contention problem could be solved in a straightforward manner by

fixing MFSM priority in advance. Yet again, the AHB standard requires in-order

80

completion, i.e., two transfers cannot be swapped on the bus since they would not
complete in the order they are issued.

To keep the speed attributes of the 2 GHz AHB fabric, a simple yet fast
arbitration mechanism is created to demultiplex HGRANTFx toward the proper MFSM.
The arbiter is made of two Muller-C elements [30] controlling a 1-to-2 demultiplexer, as
illustrated by Figure 5.5. Since the demultiplexer stands on the path of HGRANTFYX, it is
preferable to set the channel as soon as possible. For this reason, two Muller-C elements
are used in parallel to speedup the creation of the select signal and its complement. This
strategy allows saving one inverter delay. In addition, the demultiplexer is constructed
from a structure reminiscent of a differential cascade voltagé switch logic (DCVSL) gate
[8], [30]. Yet the PDN do not always act in a complementary manner as since they can
both be turned off concurrently. For this reason, both PMOS must remain open as with
ratioed logic gate. This ensures the negation of HGRANTF_A and HGRANTF B when
both PDNs are turned off. Table 5.3 defines the truth table of this arbiter. Finally, two
pull down transistors are used to initialize the arbiter. At power up, the state in which the
arbiter will settle into is uncertain. For this reason, it is imperative to force a stable value
at the output of the Muller-C elements.

The last type of arbiter is required to solve conflicts in the datapath. The address
bus in Figure 4.14 illustrates a good prelude for the conflict to be solved. When both
MFSM stall at state T1, they compete to control the address datapath. To solve this
conflict, the pair of Muller-C elements discussed previously is used to control the group
of 2-to-1 multiplexers on a first-come-first-served basis. The same approach is used to

control the data output multiplexers.

81

HBUSREQF_AD—DO— D—Id p———aHBUSREQF_A
HBUSREQF_Bm»- HBUSREQF_B
- e
o]
il
—.—' I—.——

v
f HRESETnz

Figure 5.5. Circuits of HGRANTF arbiter.

TABLE 5.3. TRUTH TABLE OF HGRANTFX ARBITER.

A B MC HGRANTF HGRANTF_A HGRANTF_B
0 0 No change® 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

1 1 No change® 0 0 0

0 0 No change® 1 No change® No change®
0 1 0 1 0 1

1 0 1 1 1 0

1 1 No change® 1 No change® No change®

a. No change means that the output kept its previous value, it could be ‘0’ or ‘1°.

5.1.5 Address and Data Datapath

The datapath is implemented with a group of 2-to-1 multiplexers and latches. The
positive edge-triggered latches used are of type split-output TSPC. Even though spilt-
output latches appear slower than C2MOS latches, they were deemed advantageous for
the datapath design. In particular, their speed satisfies the requirements of the 2 GHz

AHB infrastructure and they lower the clock load by a factor of two as opposed to

82

C®MOS TSPC latches. Considering the quasi absence of logic along addresses and data
paths, the slight speed reduction is not significant since they do not constitute critical
paths.

Figure 5.6 illustrates a circuit slice of the address datapath. Its input multiplexer
is used to emulate a pseudo-regenerative mechanism for the split-output latch. When
TRIGI is asserted, it selects the input address for the next sample. On the other hand,
when TRIG1 is negated, the output of the split-output latch is fed back to its input. This
enabling mechanism allows refreshing the dynamic latch when it is disabled.
Subsequently, output multiplexers enable the set of latches associated with the controlling
MFSM to propagate on the 2 GHz AHB infrastructure. This output stage is cohtrolled by
the Muller-C arbiter discussed in Section 5.1.4. Note that the slice shown in Figure 5.6
contains an odd number of inversions. This is required since another multiplexer placed
on the specialized bus restore the number of inversion to an even number. Hence, the

true data value is sampled by the shared-memory module.

5.1.6 Implementation Results

The high-performance StS Bridge was implemented using Cadence Virtuoso™ at
the transistor level. Its functionality was verified through detailed circuit-level simulation
using the Verilog test benches and the SpectreSVerilog™ simulator, as explained in
Chapter 3. In addition, circuit techniques and design rules stretched in Chapter 3 were
followed to improve immunity of the StS Bridge to speed reduction caused by parasitic
elements unveiled by layout extraction. Unfortunately, a bug with the simulation tools
prevented a combined simulation of the bridge’s controller and datapath. For this reason,

simulation results are presented separately for these two entities.

&3

TRIG_A D - HADDRF<x> A
HADDR<x>B-
ADDR_sel B
ADDR_sel -4 HADDRF<x>
* | TRIG_B—4 8 HADDRF<x>_B

Figure 5.6. Circuit slice of the address datapath.

Figure 5.7a illustrates simulation results for the StS WRITE Bridge clocked at 2
GHz. In this simulation, all standard AHBs operate at 125 MHz. In a first operation, a
slave FSM triggers the master FSM B (via TRIG_B) which initiates a bus arbitration
process for a WRITE operation to the high-performance share-memory. Upon reception
of the grant signal, an address phase follows then the MFSM enters the data phase to
complete the transfer. Note that MFSM B is triggered only when address and data are
available to it. On the next standard AHB cycle, MFSM A is triggered and it performs a
WRITE cycle. Some glitches are visible on some signals. This is acceptable with
synchronous sequential circuits if glitches occur in a dead time between two positive
clock edges. Figure 5.7b shows simulation results of the datapath. For example, when
EN1 goes asserted, A[31:0] is sampled on the rising edge of CLKA. The data appears on
OUT~ (OUT~ is the complemented value of OUT to improve clarity) when SEL goes to
‘0. And finally, Table 5.4 summarizes some circuit and simulation statistics of the

WRITE StS Bridge.

Waveform 3 ~ SimVision Froge tof 4

Almeandre Landry
Conoontia Unkwersity aos Eccis Reiytachiniqus de Mootraat

(a)

Data Path - SimVision Page 1 of1

Alsxandre Landry
Concordia University - Ecole Polytachnique de Moitreal

Cursor = 4204p8
Basaiina = 40D0ps
Cixsor-Basaline = 204ps M 34ns [3ens [3sns s80s | 5208]5.4:; |5.ens 5,808 Iﬁns l
e B S IR YIRS TR AT W i
@‘ ApLY ‘RIB4SBTIC 44CIETES " Yasansao {3B4s730)) Yeozms07a Yaameasay

-9y opBBIN rhsarsie
i SEL

(b)
Figure 5.7. StS WRITE Bridge (a) controller and (b) datapath output waveform.

TABLE 5.4. STS WRITE BRIDGE CIRCUITS AND SIMULATION SUMMARY.

Speed Power supply = Max, transistion No. of active Area Temperature
(GHz2) V) time" (ps) devices (pmz) °C)
2.2 GHz 1.8 <100 1933 975.8 27
a. Time measured between the 10% and 90% marks of full voltage swing..

84

85

3.2 Very-Long-Instruction-Word AHB Arbiter

The very-long-instruction-word (VLIW) AHB arbiter used by the 2 GHz
communication infrastructure is structured as a micro-programmed processor [1], [37],
[49]. Its design is split into three logical entities: (1) the controller which is responsible
for the access schedule, (2) the shift register that cycles a sequence of sixteen
HMASTERF<3:O> to access the AHB, and (3) a modified logarithmic Barrel shifter
organized as a 4-to-16 bit decoder. For the time being, the controller’s function is
performed by an external dedicated processor, so only the shift register and the decoder

were designed to arbitrate the access sequence on the 2 GHz bus.

5.2.1 Shift Register

The shift register is designed to hold a complete sequence. This implies providing
enough stages to hold a sequence of sixteen bus grants (represented by
HMASTERF<3:0>), which corresponds to the maximum number of bus masters
operating onto an AHB. Even though the arbitration sequence is determined at compile
time with a VLIW approach, it is not possible to use a simple round-robin shift register
that circulates one bit at a time around the sixteen bus master, since the target application
may require reconfiguring the sequence of accesses as it progresses [37]. As a result, a 4-
bit wide shift register is designed to hold encoded binary numbers representing a unique
bus master and a load capability is provided to ensure programmability of the register.

Figure 5.8a illustrates the transistor organization of one register cell. It is shaped
by one C*MOS positive edge-triggered TSPC latch, one 2-to-1 multiplexer designed from
pass logic, and one inverter to obtain an even number of inversion at the output of the

C*MOS latch. All transistors in series have been sized in a progressive manner to

86

compensate for added internal nodes’ capacitances, as shown in Figure 5.8b. This
precaution is needed the most with a large fanin, yet again this design targets clock
frequencies in the gigahertz range, so progressive transistor sizing helps reaching that
target even with small fanins [6], [30]. The cell illustrated hereinafter forms the basic
building block of most circuitry of the AHB arbiter, henceforth offering a regular

structure to ease manual placement and routing in the physical design phase.

HC T
- £ O
Vine 2| Q
LOAD B — o -
e L L Ly

(b)
Figure 5.8. C'MOS latch with 2-to-1 multiplexer cell. (a) Schematic, (b) Layout.

5.2.2 Decoder

Decoding four bits into sixteen to generate HGRANTFx signals is a task that
could not be accomplished in a straightforward manner within the allowed time budget.
To avoid instability on the AHB bus, it is important that only one HGRANTF goes

asserted at a time. Therefore, pipelining is considered to break down the logic along the

87

critical path. Since the decoder is made of a shift register, it is possible to start the
decoding process early with respect to the output to take advantage of pipelining.

As a result, a pipelined logarithmic Barrel shifter is envisioned to perform
decoding [54]. This shifter is constructed from four 2-to-1 multiplexer levels. The total
shift value is decomposed into powers of two to provide up to sixteen positions with four
levels. Hence, the i stage either shifts over 2! or passes the data unchanged, depending
on the value of HMASTERF<i>. For instance, decoding binary number “1010” is
equivalent to shift over five bits, the first stage is set to shift mode, the second to pass
mode, the third to shift mode, and the final stage to pass mode.

The structure of the decoder is shown in Figure 5.9. It should be noted that the
structure of the logarithmic shifter is rather unconventional. In effect, a simplification is
made to minimize the circuit complexity by tfuncating the stages where only zeros are to
be inserted, so as to create a triangular structure. As a matter of fact, only one ‘1’
propagates through each decoder stage at a time. This implies that a limited number of
‘1’ is inserted at the first stage. Examining the behavior of the logarithmic decoder
reveals that the i™ stage only needs to be 2' bits wide. The balance, i.e. M-2, is
condemned to pass or to shift only ‘0’ values, where M represents the width of the shifter
in bits. Hence, with proper wiring, those stuck-at-zero cells can be removed. Again, pass
logic is used to construct the fastest possible multiplexer. A C°MOS register decouples
adjacent levels to minimize the number of transistor interconnected in series. With this
approach, the basic cell developed for the shift register could be reused to implement the

logarithmic shifter, here again with a regular shape.

88

HMASTERF<3> -
HMASTERF<2>
HMASTERF<1>B——
HMASTERF<(> l—l

HCLKF®»

®

— i HGRANTFO

— i HGRANTF1

—» HGRANTF2

Basic Cell

—» HGRANTF3

—» HGRANTF4

— HGRANTF5

—» HGRANTFG6

—» HGRANTE7

—i» HGRANTFS

—» HGRANTF9

—I» HGRANTF10

—» HGRANTF11

— HGRANTF12

—» HGRANTF13

—» HGRANTF14

—» HGRANTF15

Figure 5.9. Structure of the 4-to-16 bit logarithmic decoder.

5.2.3 Layout and Implementation Results

Full-custom design is most often used to attain highest performance or smallest
size. In contrast to semi-custom design, full-custom design requires handcrafted
transistor layouts with manual placement and routing [6], [7], [8], [30]. Obviously, an

irregular full-custom structure of VLSI complexity rapidly becomes a painstaking

89

endeavor to which many draftspersons are not disposed to commit. To validate the
circuit techniques used in the implementation of the 2 GHz AHB infrastructure, a layout
implementation is most needed. Amongst all modules shaping the communication
infrastructure, the AHB arbiter subsystem is the most regular, yet its complexity is high
enough to give significant results of much credibility. Therefore, the high-speed VLIW
AHB arbiter was implemented and laid out using Virtuoso™ layout editor from the
Cadence toolbox [55]. Its functionalities were verified using exhaustive test benches and
the SpectreS™ simulator. All circuits are laid out using 0.18 pm TSMC CMOS process.
The main techniques, i.e. the true-single-phase-clock technique and the effective arbiter
structure, have been proven experimentally. All parasitic resistors and capacifors were
extracted from the layout to get the most accurate results prior to a chip fabrication.

The resulting overall structure of the high-speed arbiter is shown in Figure 5.10a.
It comprises 1708 transistors and the rectangle area is 5095.68 um?. The architecture is
bit sliced to ease physical design. Scanning the layout from left to right, the decoder is
the triangular structure on the left, signal buffers are inserted in the center, and finally the
shift register is the rightmost array. A subset of the simulation results is illustrated in
Figure 5.10b. Decoded signals HGRANTF6, 7, 14, and 15 are shown to exhibit the
performance of the ultra-fast arbiter. In addition, HMASTER<3:0> is exploded in this
figure to show the matching between decoder results and the value of HMASTER<3:0>.
The maximum frequency was explored and physical level simulations established that the
arbiter operates at up to 3 GHz at 27 °C. This undoubtedly meets the initial speed target
of 2 GHz. The maximum frequency is reduced to 2.77 GHz when the worst case

temperature, i.e. 125 °C, is simulated. This speed reduction is normal since material’s

90

conductivity degrades as the temperatures scales up [6], [27]. Yet again, the initial speed

objective is met even at worst temperature.

5.3 High-throughput Memory and its Wrappers

Designing an embedded memory is a sustained and thorough process, especially
when the target clock frequency is very high. The learning curve involved with full-
custom memory design is unacceptably high. Therefore, a semi-custom design is
considered for this component. The Canadian Microelectronics Corporation (CMC)
distributes a memory compiler named Custom Touch Memory Compiler™ (CTMC is
manufactured by Virage) [48] to its member Canadian universities. This memory
compiler is a powerful tool that can substantially reduce design efforts. From a simple
graphical user interface (GUI), it is possible to synthesize a double port SSRAM memory
that can sustain operating at up to 500 MHz. In contrast to Virage, the Synopsys tools
cannot compile a memory as effectively. In effect, the Synopsys tools fail to recognize
memory structures. This implies that it builds it from discrete logic gates with all the
drawbacks it involves: numerous gates to form a memory cell, a sparse layout created by
automatic placement and routing tools, and the memory resulting from the synthesis
process is slow due to those cumulative drawbacks. Obviously, Virage’s memory
compiler tackles memory structures with a standard library optimized to build high-speed

or compact memories.

(v)

)

V)

)

§

)
!

(v)

)
§

~180m
5.

(2)

TeAThtz e PROS.STATGLARELTTY schemaily £ &b 14 44:53:17 7335
Trunafent Response
HGRANTF 14

F\v: /HGRANTF15

»: /HGRANTFS

+: JHVASTERF<I>

o1 HMASTERF<2>

v: /HMASTERF<1>

ot HMSTERF<I>

.8n 8.0n 7.8n B.8n 8.8n 1én n

(b)

Figure 5.10. (a) Layout of the 4-to-16 bit decoder, (b) Simulation results.

91

92

Hence, CTMC was used to synthesize a 1 Kb dual port SSRAM memory that
works up to 500 MHz with minimal efforts. Yet again, four SSRAMs are needed to build
the interleaved memory, hereby calling for a wrapper interface to decouple the clock
domains and to unite the four memories into a single entity. In addition, a comparator is
needed to compare the WRITE address with the READ address applied to a SSRAM so
as to avoid conflicts, as explained in Section 4.2. When a conflict is detected, the
comparator raises a flag and the data is taken from an alternate source: the write-through

data port of the memory.

5.3.1 Memory Wrappers

The memory wrappers form the unique slave on each specialized AHB. Even
though the shared memory is constructed from four SSRAMs operated in an interleaved
manner, it is considered as one logical AHB slave. For this reason, the memory is not
accessed with the address as it is common with typical shared buses. It is rather accessed
on a time basis, i.e. on a specific 500 MHz clock phase. Each wrapper on a specialized
AHB is connected to a different clock net. This allows triggering one wrapper at a time
to sample the address and data on the specialized AHB.

On the WRITE AHB, the address and the data word are both sampled by the
wrappers. Their role is to stabilize address and data long enough for the memory to
safely sample those signals. This is required to bridge the 2 GHz clock domain with the
500 MHz one. In effect, the specialized WRITE AHB is so fast compared to an isolated
SSRAM that, without wrappers, the address phase terminates before the SSRAM samples

it. Hence, address and data wrappers on the WRITE AHB extend address and data

93

phases according to specific requirements set by the SSRAM. Similarly, READ
wrappers sample the address in the same manner, but obviously not the data bus.

The wrappers are implemented with fast logic in a straightforward manner. The
basic cell presented in Figure 5.8a is reused to implement the latching wrappers. The
input multiplexer is used as an enabling circuit that feeds back the latch’s output Q to its
D1 input when it is not enabled. Signal HTRANSW conveys the presence of a valid
transfer when it is set to ‘1’. Hence, connecting HTRANSW to LOAD input in Figure
5.8a creates an enable signal that activates the basic cell when valid address and/or data
words need to be sampled on input D2. Obviously, this mechanism works properly only

if the latch is clocked at the speed of the specialized bus, i.e. at the rate set by HCLKF.

5.3.2 Address Comparator

The address comparator is an important component complementing the wrappers.
The SSRAM has no internal mechanism to detect address contention. The address
comparator fulfils that task as an external component that works jointly with READ and
WRITE wrappers. Since both specialized AHBs operate on the same clock domain, their
addresses are sampled at the same time by the memory wrappers. Yet again, a danger
exists that both addresses are identical. The address comparator is used in association
with the SSRAM’s write-through mechanism to effectively resolve address contention
issues (see Section 4.2 for further details).

Figure 5.11 shows the implementation of the 5-bit wide comparator. It is
constructed using typical pseudo-NMOS logic style. The PDN consists of five XNOR
PDNs embedded in one gate. This is acceptable since the number of transistors in series

in the PDN is kept small, i.e. it does not exceed two. In addition, all transistors’ size is

94

scaled up by a factor to compensate for a higher parasitic capacitance at the output.
Hence, the speed of this 5-bit XNOR comparator is virtually independent from its fanin.
If at least one bit is different between both addresses, the PDN is enabled and MATCH
goes to ‘0’. Similarly, if the bit pattern of both addresses is identical, the PDN is turned
off and MATCH is drive to ‘1’ by the PMOS. The outcome of the comparison is saved
by a C®MOS TSPC latch to be used when data are being issued by the SSRAM.
Actually, a 2-to-1 multiplexer selects which data source from the SSRAM is to be
returned to the StS READ Bridge from the address comparison upshot. This explains

why the comparator’s result needs to be secured until the data phase on the specialized

<
i

READ AHB goes on.

Figure 5.11. 5-bit XNOR comparator transistor organization.

5.4 Summary

This chapter focuses on circuit details used to implement the 2 GHz AHB
infrastructure. At the beginning, unconventional circuits used to create the StS Bridge
are described. Fast, TSPC-based logic can be derived from the circuit methodology

utilized to shape the master finite state machines. As a matter of fact, a novel circuit

95

design style, based on TSPC, is effectively used to implement StS Bridge. A parallel
static NAND gate has been invented to speedup decisions within the 2 GHz AHB fabric.
In addition, unconventional C*MOS positive-edge triggered latches are created to be used
as S’R flip-flops. Their design ensures the stability of their output as long as the clock is
active.

In addition, a 2 GHz VLIW AHB arbiter was laid out using a 0.18 pm CMOS
process from TSMC to validate and prove the value of the techniques used to implement
the high-speed communication infrastructure. Most notable, post layout simulations,
performed with all parasitic capacitances extracted, demonstrated that the AHB arbiter
operates at up to 3 GHz at room temperature (i.e. at 27 °C).

Finally, memory wrappers are presented with the implementation of an address
comparator capable of solving address contention issues. As a result, address contention
is dealt with by the wrappers with no extra latency injected in the system.

It is important to mention at this point that complete system validation, i.e.
simulations after system integration, could not be performed due to signal inaccuracies
created within the simulation process. This clearly results from a simulator limitation or

a simulator bug.

96

6 CONCLUSION AND FUTURE WORK

This chapter briefly outlines possible extensions to this dissertation that can lead

to future research avenues. These extensions include: (1) using MCML to implement the

circuits of the high-speed AHB fabric, (2) establishing a bypass mechanism to speedup

high-throughput memory, (3) implementing improved split-transaction features, (4)

inserting register slices, and (5) making the hard IP asynchronous with respect to its

environment. In addition, this chapter contains the conclusion and summary of this

dissertation.

1.

6.1 Future Work

System Validation: Despite significant efforts to validate the communication
infrastructure through extensive simulations, this task remains to be done. A
limitation with the simulator created a discrepancy between applied test
vectors and what was sensed by the device under test. It is expected that AMS
Environment provides all means to fulfill this task seamlessly, but the current
design is incompatible with this flow. The importance of the system
validation cannot be overstretched and it is subject to ongoing efforts.

MCML Circuits: As stated in Chapter 2, MCML circuits have the potential to
perform faster than TSPC circuits since the voltage swing is greatly reduced
with MCML style. It is expected that further speed improvements are

possible with this aggressive circuit style. Furthermore, a lower logic swing

97

may reduce the power dissipated by the hard IP. MCML gates produce
complemented outputs. This opens a door to generate differential signals to
transmit data across a longer distance with improved noise immunity.

. Bypass Mechanism: The bypass mechanism suggested is different from the
one described in this thesis, which is required to resolve address contention on
the dual-port memory. A high-speed register bank, capable to challenge the
frequency of the high-speed AHB communication infrastructure could be used
to store one word with rapid access time. If the READ operation is performed
before a second WRITE operation, the wait states could be bypassed to
provide data with reduced latency. Obviously, this is a complex improvement
since a tag field is needed for a controller to determine where to fetch the data
from. This improvement is based on the principle of cache memory in
modern microprocessors [21].

. Improved Split-Transaction Feature: This extension is tightly coupled with
extension 2. As a matter of fact, extension 2 implies that two response times
are possible. To achieve that, a mechanism must be provided so as to notify
the master how long it will take before the transfer completes, and the VLIW
AHB arbiter needs to account delayed responses since it directly impacts bus
traffic.

. Slicing Wires with Registers: Insertion of register slices is a method
borrowed to AMBA AXI. The impact of ;his strategy is to speed up the

maximum clock frequency over long distances since a long wire is broken in

98

multiple segments with shorter delays. Hence, insertion of register slices
correspond to an extension of the pipeline introduced in this research.

6. Asynchronous Interfaces: One of the main challenges with today’s CMOS
chips is to distribute the clock over a large circuit area while maintaining a
clock skew within tolerable bounds. Keeping in mind that the hard IP should
facilitate system design by lowering time-to-market, a flexible interface would
be most welcome. Hence, a standard-to-specialized AHB bridge that totally
decouples the clock by being insensitive to the standard AHB clock would
ease the integration of SoC modules. This principle is called globally-
asynchronous-locally-synchronous (GALS) [56] and it constitutes one of the

main obstacles to the conception of large SoCs.

6.2 Conclusion and Summary

The design of communication infrastructure’s architecture is a critical issue with
systems-on-silicon. The complete shared-memory interconnect fabric invented in this
research consists of a hierarchy AMBA Advanced High-Speed Bus (AHB), a stack of
processing elements and a shared memory acting as a communication buffer. Since the
heart of this SoC communication infrastructure operates with a frequency in excess of 2
GHz, it is imperative to implement the main system cores with full-custom circuits to
optimize the speed of the AHB utilized to build the hard IP.

The purpose of this research is to undergo the learning curve involved with the
design and the optimization of high-speed circuits, and the many subtleties involved with

their layout. To enhance the understanding in high-frequency circuit design, a thorough

99

study on dynamic logic is completed so as to isolate speediest avenues. The work
reported in this document spans over a wide range of abstraction levels. An
implementation as ambitious as the one presented in this thesis requires a sequence of
actions carefully planned to survive the many obstacles to be encountered in the design
process. To accomplish this research goal, three tasks have been identified, including (1)
architectural definition, (2) circuit decisions, and (3) circuit design.

There are several new and significant contributions in this dissertation. These
contributions are as follows: (1) a new architecture supporting multiple data stream in
real-time is defined; (2) means to implement a pipelined memory to obtain a 2 GHz dual-
port memory from four 500 MHz SSRAMs are provided; (3) a novel VLIW AHB arbitef,
understanding the concept of phases necessary to operate the pipelined memory, is
presented; (4) a new parallel static NAND structure, nearly fanin independent, is
proposed; (5) an aggressive, yet unconventional, TSPC style is developed; and (6) circuit
techniques to achieve beyond-1GHz circuits are synthesized. In addition, from this

research, several extended research fields are possible.

(1]

[3]

[4]

[5]

(6]

(7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

100

7 LIST OF REFERENCES

Hayes, J. P., Computer Architecture and Organization, McGraw-Hill, 3™ ed.,
1998.

ARM, Technical Specification: AMBA Specification, Doc No.: ARM IHI-0011A,
Issued: May 2001.

Marc Bertola, Conception, réalisation et étude d’une plate-forme générique basée
sur le protocole AMBA AHB, M.A.Sc. thesis, Universite de Montréal, April 2003.

Jean Pepga Bissou, Conception de haut niveau d’une plate-forme SoC et de son
systéme d’interconnexion, M.A.Sc. thesis, University of Montréal, March 2003.

Martin Dubois, Modélisation et conception d’une plate-forme de traitement et
transmission de signaux vidéo numérique, M.A.Sc. thesis, University of Montréal,
July 2004.

Weste, N. H. E., K. Eshraghian, Principles of CMOS VLSI Design, Addison
Wesley, 2™ ed., 1992.

Smith, M. J. S., 4pplication-Specific Integreted Circuits, Addison Wesley, 1997.
Chen, W.K., The VLSI Handbook, CRC Press, 1999.

P. Magarshack, P. G. Paulin, “System-on-Chip Beyond the Nanometer Wall”,
Proceedings of Design Automation Conference (DAC) 2003, June 2003.

Cadence, User Guide: Cadence AMS Environment User Guide, Product Version
5.0, September 2003.

Cadence, User Guide: Cadence Hierarchy Editor User Guide, Product Version 5.0,
March 2003.

Cadence, User Guide: SimVision Analysis Environment User Guide, Product
Version 4.1, March 2003.

Cadence, User Guide: Spectre Circuit Simulator User Guide, Product Version 5.0,
June 2003.

Cadence, Reference Manual: Hspice/Spice Interface and Spice 2G.6 Reference
Manual, Product Version 5.0, October 2003.

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

101

Cadence, User Guide: Verilog-XL User Guide, Product Version 4.1, November
2002.

Palnitkar, S., Verilog HDL, Prentice Hall, 2™ ed., 2003.

L. Benini, G. De Micheli, “Networks on Chips: A New SoC Paradigm,” Computer,
Jan. 2002, pp. 70-78.

ARM, White Paper: Multi-Layer AHB: Overview, Doc No.: ARM DVI 0045A,
Issued: 2001.

IBM, Technical Specifications: 64-Bit Processor Local Bus, Doc No.: SA-14-2534-
01, Issued: May 2001.

B. Ackland, A. Anesko, D. Brinthaupt, S. J. Daubert, A. Kalavade, J. Knobloch, E.
Micca, M. Moturi, C. J. Nicol, J.H. O’Neil, J. Othmer, E. Sackinger, K.J. Singh, J.
Sweet, C. J. Terman, and J. Williams, “A Single-chip, 1.6-Billion, 16-b MAC/S
Multiprocessor DSP,” IEEE Journal of Solid-State Circuits, March 2000, pp. 412-
424,

Culler, D. E,, J. P. Singh, Parallel Computer Architecture: A Hardware/Software
Approach, Morgan Kaufmann, 1999.

Handy, J., The Cache Memory Book, New York: Academic, 1993.
ARM, Technical Specifications: AMBA AXI Protocol, Doc No.: ARM IHI 0022A.

E.G. Friedman, “Clock Distribution Networks in Synchronous Digital Integrated
Circuits,” Proceedings of the IEEE, Vol. 89, No. 5, May 2001, pp. 665-692.

International Technology Roadmap for Semiconductors, Interconnect:
Semiconductor Industry Association, 2004.

OCP-IP Association, Technical Specifications: Open Core Protocol Specification,
Doc No.: 161-000125-0001.

Rabaey, J.M., Digital Integrated Circuits, Prentice Hall, 1996.

N. Goncalves and H. J. De Man, “NORA: A Racefree dynamic CMOS technique
for pipelined logic structures,” IEEE Journal of Solid State Circuits, vol. SC-18, PP-
261-266, 1983.

J. Yuan, C. Svensson, “High-Speed CMOS Circuit Technique,” IEEE Journal of
Solid-State Circuits, February 1989, pp. 62-70.

J. Yuan, C. Svensson, “New Single-Clock CMOS Latches and Flipflops with
Improved Speed and Power Savings,” IEEE Journal of Solid-State Circuits,
January 1997, pp. 62-69.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

102

M. Yamashina, H. Yamada, “An MOS Current Mode Logic (MCML) Circuit for
Low-Power Sub-GHz Processors,” IEICE Transaction on Electron, vol. E75-C,
NO. 10, October 1992, pp. 1181-1187

J. M. Musicer, J. Rabaey, “MOS Current Mode Logic for Low Power, Low Noise
CORDIC Computation in Mixed-Signal Environments,” ISLPED 2000, pp. 102-
107.

J.P. Bissou, M. Dubois, Y. Savaria, G. Bois, “High-Speed System Bus for a SoC
Network Processing Platform,” IEEE International Conference on
Microelectronics, December 2003, pp.194-197.

A. Landry, Y. Savaria, M. Nekili, “A Beyond-1 GHz High-Speed Bus for SoC DSP
Platforms,” IEEE International Conference on Microelectronics, December 2004,

A. Landry, Y. Savaria, M. Nekili, “A Novel 2GHz Multi-Layer AMBA High-Speed
Bus Interconnect Matrix For SoC Platforms,” IEEE International Symposium on
Circuits and Systems, To be published in May 2005.

Canadian Microelectronics Corporation, Tutorial: Digital IC Design Flow, Doc
No.: ICI-134, July 2004.

Canadian Microelectronics Corporation, Tutorial: Tutorial on CMC'’s Analog IC
Design Flow, Doc No.: ICI-098-1, September 2000.

Cadence, User Guide: WaveScan User Guide, Product Version 5.0, September
2003.

S. Ghannoum, D. Chtchvyrkov and Y. Savaria, “A comparative study of single-
phase clocked latches using estimation criteria,” IEEE International Symposium on
Circuits and Systems, 1994, pp.347-350.

R. Ho, K. W. Mai, M. A. Horowitz, “The Future of Wires,” Proceedings of the
IEEE, vol. 89, NO. 4, Apr. 2001, pp. 490-504.

M.S. Hrishikesh, N.P. Jouppi, K.I. Farkas, “The Optimal Logic Depth Per Pipeline
Stage is 6 to 8 FO4 Inverter Delays,” IEEE International Symposium on Computer
Architecture, 2002, pp. 14-24.

Baker, RJ., H. W. Li, D. E. Boyce, CMOS: Circuit Design, Layout, and
Simulation, IEEE Press, 1997.

ARM, Technical Reference Manual: ARM1136JF-S and ARM1136J-S, Doc No.:
ARM DDI 0211D.

Virage Logic, Software User Guide: Embed-it! Integrator / Custom-Touch Memory
Compiler, Release 3.4.4, August 2003.

[45]

[46]

[47]

[48]
[49]

(50]

[51]

103

Hennessy, J. L., D. A. Patterson, Computer Architecture: A Quantitative Approach,
Morgan Kaufmann, 3™ ed., 2003.

M. T. J. Strik, A. H. Timmer, J. L. van Meerbergen, G.J. van Rootselaar,
“Heterogeneous Multiprocessor for the Management of Real-Time Video and
Graphics Streams,” IEEE Journal of Solid State Circuits, Nov. 2000, pp. 1722-
1731.

ARM, Technical Reference Manual: ARM946E-S, Doc No.: ARM DDI 0155D,
Issued: August 2001.

Mano, M., Digital Design, Prentice Hall, 1991.

K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C. Brock, K. L.
Ishii, T. Y. Nguyen, J. L. Burns, “A 32-bit PowerPC System-on-a-chip With
Support for Dynamic Voltage Scaling and Dynamic Frequency Scalling,” IEEE
Journal of Solid State Circuits, vol 37, pp. 1441-1447, November 2002.

A. Landry, Y. Savaria, M. Nekili, “Cicruit Techniques for a 2 GHz AMBA AHB
Bus,” IEEE Northeast Workshop on Circuits and Systems, to be published in June
2005.

D. Chapiro, Globally-Asynchronous Locally-Synchronous Systems, PhD Thesis,
Stanford University, October 1984.

