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ABSTRACT

AN ITERATIVE SOFT-DECISION DECODING

ALGORITHM FOR REED-SOLOMON PRODUCT CODES

Ronen Leibovici

Efficient and reliable transmission of data has become a necessity today for any
communication system. This transmission depends on the reliable transport of in-
formation between a source and a destination. Researchers are left with the task
of finding an appropriate trade-off between performance and complexity. While the
decoding of turbo codes, specifically block turbo codes, is already deemed to be
performant, it is possible to improve this performance while not rendering the com-
munication system overly complex. This thesis presents an iterative soft-decision
decoding algorithm for Reed-Solomon product codes. This algorithm differs from
existing ones in the method it uses for selecting competing codewords, used for the
soft-input soft-output iterative decoder. Selection of these codewords is based on the

notion of suboptimum soft-decision decoding which will be discussed in detail.
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Chapter 1

Introduction

The need to communicate with others has always existed. Different civilizations
found different ways to carry out this task. With pre-historic man, it was the out-
stretched skin of an animal over a wood frame that was used as a drum. This sound
could be heard over long distances and served as warnings of danger or other mes-
sages. In the Middle-East, sheep horns were being used as horns. In the Far East,
the gong was being used. The American Indian used smoke signals and drums. In
1837, Samuel Morse developed the telegraph and what is now known as the Morse
Code. Communication lines for this telegraph were being installed all over the United
States and Western Civilization was introduced to its first long distance rapid com-
munication system. Nowadays, communication technology is a fast growing market
in the world. This technology affects all aspects of life including business, education
and leisure. The word “telecommunication” is defined as the branch of electrical engi-

neering concerned with the technology of electronic communication over distance [1].
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It provides users services ranging from voice telephone calls, Internet access, cable
television to video-conferencing and satellite communications. Due to its widespread
use, researchers are now presented with the task of continuously innovating and find-
ing better solutions than existing technologies. With these new solutions, emphasis
remains on speed, reliability and, of course, cost-effectiveness which will present users

with error-free transmission of all kinds of data in any type of communication system.

1.1 Composition of a Standard Digital Communica-
tion System

In a standard communication system, problems arise from the introduction of
noise and interference occurring between an information source and its destination.
Noise is the unwanted electrical or electromagnetic energy that degrades the quality
of the information signal. Engineers constantly strive to reduce the effects of noise
in order to minimize errors and render the transmission of information more reli-
able. The field of error control coding is aimed at devising efficient encoding and
decoding procedures to achieve reliable transmission of information across channels
which may be corrupted by noise. One such method uses redundancy to encode the
information at the source allowing the destination to reliably decode the received
message. Practical applications of error control coding include satellite and deep
space communications (e.g., Voyager, Pioneer 9, U.S Army Satellite Communication
Agency) [2], storage and wireless communications. Figure 1.1 illustrates the layout

of a standard digital communication system.
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The information source is the location from which the message to be sent origi-
nates. This message, depending on the type of source, can be either digital or analog.

The source encoder takes the message to be sent and transforms it into a sequence
of bits. This is the information sequence. If the source was continuous, then an analog
to digital converter would be necessary.

The channel encoder transforms the information sequence into an encoded se-
quence, called the codeword. 1t is at this level that redundancy is added in order to
minimize transmission errors.

The modulator maps the codeword into a series of analog waveforms which is
suitable for transmission across the physical channel (e.g., wireless channels, fibre-
optic channels, satellite links). This channel is vulnerable to various types of noise
(e.g. internal, external, thermal, distortion, interference) which can cause decoding
errors. The demodulator takes the received waveform, which is now corrupted by
noise, and produces an estimate of the transmitted codeword.

The channel decoder inspects the estimate of the transmitted codeword. The
strategy which was used to first encode the codeword is now used in the decoding
process. Actually, the physical separation between the demodulator and the decoder
is conceptual. That is, in modern systems, these two steps are combined, i.e., soft-
decision decoding. The purpose of this process is to obtain an information sequence
that replicates the transmitted sequence as closely as possible, i.e., with the fewest
number of errors.

The source decoder uses the estimate of the information sequence to obtain an

estimate of the source output. This message is then delivered to the destination. If
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the destination is continuous, then a digital to analog converter would be necessary.

In an ideal system, the decoder output would be an exact replica of the source [3].

1.2 Error Correcting Codes and the Channel Coding
Technique

In general, there are two methods used in error control coding in order to minimize
the number of errors caused by a noisy channel, namely, Forward Error Correction
(FEC) and Automatic Repeat Request (ARQ). Due to limited amounts of power and
bandwidth in a transmission system, the choice of the above scheme becomes very
important.

In ARQ, the receiver or destination has the ability to detect errors which have
occurred during transmission, and to request that the sender or source retransmits
the erroneous messages. Usually, the receiver will ask for a retransmission of the
message until it is correctly received or until a predefined number of retransmissions
has occurred. This method causes the system to be very efficient since the overhead
of error detection is much less than the overhead required for error correction. With
respect to real-time applications, ARQ is not favorable because the retransmission of
information will delay the system and render it “non real-time”. Until the source has
had confirmation that the receiver has successfully received the information (an ac-
knowledgment) which has just been sent, it will stall on sending the next information
message. This results in delays which are too time-consuming for todays’ applica-

tions. ARQ protocols include Stop-and-Wait, Selective Repeat, and Go-Back-N.
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In FEC, errors which occur due to the noisy channel are automatically detected
and corrected at the receiver. This is accomplished by the addition of redundant
bits to the transmitted information using a variety of predetermined algorithms.
Evidently, this scheme enables its users to accommodate any time-constrained ap-
plication. However, this method also uses additional bandwidth since more bits are
added to the transmitted information before going out over the channel. With this
in mind, engineers constantly strive to find a medium through which reliability of
the received data is maintained while limiting, as much as possible, the amount of
required bandwidth. The two main categories of FECs are block codes and convolu-
tional codes.

With respect to the performance of error correcting codes, the main parameters
are usually the Bit Error Rate (BER) and the Signal to Noise Ratio (SNR). As its
name indicates, the BER is the ratio between the number of incorrect bits transmitted
to the total number of bits while the SNR is the ratio of the magnitude of the signal
to the magnitude of the noise in the system. The SNR is often expressed in decibels
(dB). The increase in efficiency that a coded signal provides over an uncoded signal
(due to redundancy) is termed the coding gain, also expressed in dB.

In October 1948, a mathematician named Claude E. Shannon laid the foundation
of modern information theory [4] when he stipulated the capacity of the Additive
White Gaussian Noise (AWGN) channel as follows:

C = Wlogz(l—f—%) (1.1)
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where W is the channel bandwidth in Hertz (Hz), P is the average transmitted
power, and N is the variance of the white Gaussian noise (i.e., P/N is the
signal-to-noise ratio). Although this theory was developed over 50 years ago, an
eternity when it comes to modern day science, they still remain as relevant today as
the day it was formulated. Today, the performance of all error correcting codes are
compared with the Shannon Limit (calculated using Equation (1.1)). One thing
that should be noted is that Shannon’s theory was not specific in that it did not
point to codes which did attain this limit. Since then, researchers have been
striving to discover codes which could satisfy this limit. Shannon was also aware
that for long codes, his theory would not be practical due to complexity issues.
Along with his colleagues P. Elias, R.G. Gallager, R.W. Hamming, and J.M.
Wozencraft, to name a few, Shannon set out to solve this problem. They observed
that the solution did not lie in finding good long codes but rather, in designing
codes with a low decoding complexity. Several techniques, influenced by these

researchers, are briefly described as follows.

The first coding technique developed is block coding. In this scheme, the encoder
accepts a message of k information symbols and produces a codeword of n coded sym-
bols. Based on predetermined encoding rules, the n-k redundant symbols are added
to the £ information symbols to produce the codeword which is to be transmitted
over the channel. This is referred to as an (n,k) block code. Hamming [5] devised the
first set of error correcting block codes principally used for digital communications
and data storage systems. Research in this area led to the discovery of Reed-Muller

codes, in which a varying amount of errors in the same information sequence could
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be corrected. This, in turn, pavéd the way for the Bose-Chaudhuri-Hocquenghem
(BCH) code and the most important set of block codes, the Reed-Solomon (RS) code.
A detailed study of these codes will be undertaken in Chapter 2. Gallager worked on
Low Density Parity Check (LDPC) codes along with an iterative probability-based
decoding algorithm in the early 1960’s, although his studies went unnoticed until the
discovery of the turbo code [6].

In 1954, Elias [7] introduced the convolutional code as an alternative to block
coding. In the case of convolutional codes, the source encoder now contained memory.
Hence, the n encoder output bits does not solely depend on the £ input bits, but also
on the previous m input bits. Wozencraft [8] thought of using Sequential decoding
as a decoding algorithm for long convolutional codes. Soon after came the Viterbi
Algorithm [9] (VA) which was found to be a solution for both maximum likelihood
(ML) and maximum a posteriori probability (MAP) decoding for convolutional codes.

It was not until 1993 when a group of French Researchers, headed by Berrou
[6], presented an FEC that finally came within a few tenths of a dB of the infamous
Shannon limit. They called this FEC scheme “Turbo Coding”. This scheme contained
a combination of two (or more) recursive convolutional codes, an interleaver, and a
MAP iterative decoding algorithm. This iterative decoding process enabled improved
error correction by allowing the soft output from the decoders to be fed back and
used as the input to the subsequent decoders. Therefore, as the number of iterations
increases, the quality of the data being passed to the next decoders contain fewer
errors in order to improve the overall quality of the process. One must be careful,

though, not to allow too many iterations to occur since this is time-consuming and
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irrelevant as the decoding converges at a certain number of iterations. It is important
to note that instead of using convolutional codes, one could use block codes. Chapter

3 will further study these types of codes.

1.3 Thesis Contribution

Although it has already been stated that turbo codes provide superior perfor-
mance compared to other error correcting codes, it is also vital to state that the
complexity involved in decoding these types of error correcting codes is elevated.
Our main objective is to improve the performance of the codes while either improv-
ing the complexity or not rendering the complexity an insurmountable barrier. I
would kindly ask the reader to be patient while the details of these issues are pur-
sued in the coming chapters. In this thesis, we study the effect of combining an ML
algorithm for RS codes in conjunction with an iterative decoding algorithm for RS
block turbo codes. This hybrid scheme, which will be the proposed algorithm, aims to
improve the already near-Shannon limit performance while not rendering the system
overly complex. In addition, this hybrid scheme will use a suboptimal soft-decision
decoding algorithm, which does not cause too much performance degradation while

highly improving the complexity vis-a-vis the already existing ML SDD algorithms.

1.4 Outline of the Thesis

Being that the main goal is to further improve the BER performance by modi-

fying existing algorithms, the rest of this report is organized as follows. Chapter 2
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will be dedicated to an in-depth study of FEC and RS codes. This will begin with a
description of both linear and non-linear block codes. Then, the properties of both
the BCH code and, more importantly, the RS code will be discussed. We will also re-
view the existing decoding methods which are mainly hard-decision decoding (HDD)
algorithms. This will include the Berlekamp Iterative algorithm and the Euclidean
algorithm. The soft-decision decoding (SDD) algorithm on which the proposed al-
gorithm is based will be introduced. But first, the Vardy-Be’ery Algorithm will be
presented which inspired the ML algorithm used.

In Chapter 3, the second element of the hybrid scheme needs to be analyzed. This
chapter will focus on product codes, both serial and parallel concatenated. This will
begin with a brief example to explain convolutional codes. Then, the most important
decoding processes used for these codes will be reviewed in detail, including turbo
decoding and iterative decoding. This will be followed by a look at the iterative
decoding algorithm, based on Pyndiah’s ideas|36|, which we used as part of the
proposed algorithm.

In Chapter 4, a new iterative soft-decision decoding algorithm based on facts
presented in Chapter 2 and 3 will be discussed. A method for reducing the complex-
ity in decoding the codewords will be introduced. Also, a method for determining
the competing codewords, differing from the currently used Chase Algorithm, is dis-
cussed. Our simulation results will then follow, thereby illustrating the improvement
in performance while not increasing much of the complexity.

Lastly, Chapter 5 will revisit the main ideas discussed throughout the thesis

and summarize the proposed algorithm and its potential significance in terms of
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applications. The potential for future work and possible further research are also

discussed.



Chapter 2

Reed-Solomon Codes

Error Control Coding is the method of adding redundancy to information in order
to allow the receiver to both check and correct the received sequence, which has been
corrupted by noise in the channel. In this thesis, it will be assumed that the noise
injected by the channel is Additive White Gaussian Noise (AWGN). RS codes are
the most widely used block codes. Some of their uses are storage devices (compact
disc, DVD, etc), wireless/mobile communications (cellular, microwave, etc) as well
as satellite communications. Interestingly enough, RS codes are so useful that they
are also used in conjunction with convolutional codes in turbo coded systems. In this
chapter, we study the basics of linear block codes. This will commence with a look
at field arithmetic and the properties of RS codes. Then, a few HDD algorithms for
RS codes will be overviewed. Finally, an in-depth look at a SDD algorithm for these

codes will be reviewed.

12
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‘ Addition | Multiplication ‘
a+b=b+a ab = ba
(a+b)+c=a+(b+c) (ab)c = a(bc)
a(b+c)=ab+ac (a+b)e =ac + be
a+0=a=0+a a-1l=a=1-a
a+(—a)=0=(-a)+a|asl=1=alaifa#0

Table 2.1: Field Axioms

2.1 Introduction

2.1.1 Finite Fields: The Galois Field

A field is any set of numbers with two operations that satisfy the properties shown
in Table 2.1.

If the number of elements in a set is finite, this field is called a Galois field (GF)
[10]. The number of elements contained in a field is either a prime number or a
power of a prime. The binary field, noted GF(2), is an important field in the study
of channel coding and its use is widespread in the area of digital transmission. This
can be explained by the fact that information is very often coded in a binary form.

GF(2) is described as:
GF(2) ={0,1}

and arithmetic in the field follows modulo-2 addition and multiplication. Both
encoding and decoding centers around these types of fields. In our discussions,

fields and their associated arithmetic will be used extensively [10].
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2.1.2 Linear Block Codes

Although not the only type of block code, the linear block codes are definitely the
most popular. These block codes are expressed in terms of generator and parity-check
matrices. Channel coding is the procedure of mapping a length-k message word into
a length-n codeword, where k < n. The rate of the code, expressed by the ratio
k/n. determines the amount of redundancy present in a code. If we have a message
of length k, m = (mq, my,...,mg_1), it is then transformed, through encoding, into
an n-tuple codeword ¢ = (cg, ¢y, ...,¢n_1). Thus, if we began with a linear binary
block code, belonging to GF(2), with k bits, there is a total of 2* distinct messages
which would produce 2* codewords. This set of 2% codewords is called a block code
and belongs to the code space. For a block code to be linear, the sum of any two
codewords must also be a codeword.

An (n, k) linear block code, C, is defined by a generator matrix G with dimensions

(k x n). The rows of this matrix generate the (n, k) code C.

9o goo go1 902 <+ Gomn—1

4 q10 g1 g12 v Qip—1

Gk—1 Gk—1,0 Gk-11 YGk-12 -+ Gk-1pn-1
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where g; = (o, 9i1, Gizs s Gin—1), for 0 <4 < k. If m = (my, my,...,mi_1) is to be

encoded, the corresponding codeword can be written as follows:

o
0
c = mG=|my, my, .. mp
9k-1
= mogo+mlgl+...+mk_1gk_1 (22)

Based on Equation (2.2), it is easy to see that the (n, k) linear block code is
completely specified by the rows of the generator matrix (see Equation (2.1)). The
other way to describe a code is by using the parity-check matrix, H. As its name
indicates, this matrix is used to verify the validity of a codeword. Assuming we have
an (n, k) linear block code C, the codeword c is valid if and only if cHT = 0, where
HT is the transpose of the H matrix. The H matrix is a (n — k) x n matrix.

Often, it is desirable for a linear block code to be expressed in its systematic
form. When in this form, a codeword is divided into two parts. One being the
original message (length-£) sequence and the other being the redundant information
(length n — k) added on by the encoder. This structure makes the encoding and

decoding much simpler. In this case, the encoder generates n — k parity symbols and
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appends it to the message. In turn, the decoder must just strip the n — k parity
symbols to obtain the message. Now, both the generator and parity-check matrices

take on a structured form (Equations (2.3) & (2.4)).

G = [P|L] (2.3)

H = [L/P7] (2.4)

where Ij; is a k x k identity matrix, P is a k x (n — k) matrix, and I,,_y is a

(n — k) x (n — k) identity matrix [11].

It is essential to introduce the reader to the terminology: minimum distance,
dmin- This distance is equal to the Hamming weight of the lowest-weight non-zero
codeword, where the Hamming weight is defined as the number of non-zero elements
in the codeword. This can also be viewed as the distance of the codeword to the all-
zero codeword. This parameter is of significant importance because it determines the
error correcting and detecting capability of a code. For example, a linear block code
having a minimum distance d,,;, guarantees detection of all error patterns containing
up to dyuin — 1 errors and has the capacity to correct up to t = [Mg;ljerrors.

An important subclass of linear codes is that of cyclic codes. As its name indicates,

if you take a codeword belonging to the code space and cyclically shift one place to

the right, we have another codeword belonging to the code space. One of the mostly
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used cyclic codes is the BCH code. BCH codes are either binary or non-binary. Of
this latter, the RS code is the most important and was introduced by Reed and

Solomon in 1960 [12].

2.2 Properties of RS Codes

We have discussed codes belonging to GF(2); these are called binary codes. There
also exist codes with symbols from the Galois Field GF(q). These are called g-ary
codes, in which q is a prime or a power of a prime. In RS codes, a symbol is
represented by m bits. An (n,k) RS code has n = 2™ — 1 code symbols of m-bits
and k message symbols of m-bits. There are n — k parity symbols of m bits each.

Here are a few parameters:

Block length: n =q¢—1

n—k

Error-correction capability: ¢ = #3=

Number of parity-check symbols: n — k = 2t
Minimum distance: dy, = 2t+1=n—k +1

For a linear (n,k,d) code over GF(q), the Singleton bound states that d < n —
k + 1. Because RS codes meet this bound with equality, they are called Maximum
Distance Separable (MDS) codes. Instead of being generated by a generator matrix,
RS codes (all cyclic codes) use a generator polynomial. The generator polynomial of

an RS code is:
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2t
g(z) = [[(z + ') = (z+ a)(@+ ) - (z + ™) (2.5)
i=0
where « is a primitive element in GF(2™), meaning that it can generate all the

non-zero elements belonging to this field. The codeword is constructed using:

c(z) = m(z)g(z) (2.6)

where the message sequence m(z) = mg +my + - -+ + my_y. All valid codewords are
divisible by the generator polynomial. The parity polynomial, which has degree
2t — 1, is the remainder of %ﬁ. It is easy to see that the encoder of RS codes

need only contain very simple feedback circuitry (see Figure 2.1).

After all k information symbols (stored in m(z)) have made their way through
this circuit, the contents of the 2t shift registers will contain the parity symbols.
The codeword is formed by appending these 2¢ parity symbols to the & information
symbols. The properties of RS codes make thein suitable for applications where burst
errors occur. It does not matter how many bits of a symbol are incorrect because if
one or all bits in a symbol are erroneous, it only counts as a single erroneous symbol.
Therefore, if the channel is known to produce burst errors, using an RS code would
be a good choice. Now that we have been introduced to the encoding of RS codes,

it is important to become familiar with its decoding.
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Figure 2.1: RS Encoder Circuit
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2.3 Several Hard-Decision Decoding Algorithms

After passing through the channel, the sent codeword may have now been affected

by noise. The received vector at the channel decoder now takes on the following form:

r(z) = c(z)+e(x) ' (2.7)

where c(z) is the transmitted codeword and e(z) is the polynomial representing errors
which have occurred. The RS decoder has the ability to identify the position and
magnitude of up to t errors and correct them. Any RS code has 2¢ syndromes that
depend solely on errors. If the roots of the generator polynomial are substituted into
r(z) , the outcome is the syndrome. The syndrome calculation is performed on the
received vector to verify whether it is a member of the codeword set or not. If the
received vector is, in fact, a valid codeword, then the resultant syndrome would be
the all-zero vector. Otherwise, errors are definitely present.

The location of symbol errors in an erroneous codeword is found by solving a set
of simultaneous equations with ¢ unknowns. There are two main steps in determin-
ing the location of the errors. Firstly, one must find the error location polynomial.
The roots of this polynomial provide an indication of where the errors are located.
Two well-known algorithms for finding this polynomial are the Berlekamp Iterative
algorithm (which can be modified into the Berlekamp-Massey algorithm) and the
Euclidean algorithm. The Berlekamp-Massey algorithm finds the shortest linear re-

currence that will produce the errors. While this algorithm usually leads to more
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Figure 2.2: RS Decoder Architecture

efficient hardware and software implementations, it is the Euclidean algorithm which
is more widely used in practice because of the fact that it is easier to implement.
Independently of which algorithm is used, the roots of the error location polynomial
are usually determined using the Chien Search[13]. Thus, once the error locations
are determined, the correct symbol is given using the Forney algorithm by solving
the equation with ¢ unknowns. In summary, each error value and its corresponding
location need to be established in order to successfully decode RS codes. The HDD

for RS codes can be seen in Figure 2.2.

2.3.1 Berlekamp Iterative Algorithm

The steps of the Berlekamp Iterative algorithm will be enumerated before demon-

strating it with an example.
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fum—y

. Compute the syndromes (0, - - -, 2t) for the received codeword.
2. Set the variables: p=—1, 0#(z) =1,d*=0,1* =0

3. Set = pu+ 1. Compute the discrepancy using:

dt = SH-H + 0'(”)(1')5“ + Ugu)5u71 + -+ a,(f)S,‘H_lu (28)

4. If d, = 0, then set ¥ (z) = oW (z) and {41 =1,

5. If d, # 0, go back to the step, called p, where d, # 0 and p — [, has the largest

value and

oD (z) = a(“)(a:)+dﬂd;1x(“_”)a{”)(3)) (2.9)

6. When p 4 1 = 2t and ¢®(z) is found, the error locator polynomial is found.

An example will now be presented to clarify the procedure [14]. Assume that we
have a triple-error correcting RS code (i.e., ¢ = 3) with symbols from the finite
field GF'(2%) = GF(16). As per our previous discussions (see Equation (2.5)) , the

generator polynomial of such a code would be:

2%x3

o) = [[l+a)

i=0
= o’ + o’z + o’ + o'r® + o2t + a2 + 2° (2.10)



CHAPTER 2. REED-SOLOMON CODES 23

Lp [ o¥(x) [dy [L | p—1,
-111 1 0] -1
0 |1 a0 [0
1 |1+a'%x a’ |1 | Otake p=—1
2 | 1+o’z 1 111
3 |1+ a2+ a%2? a” [2 [1take p=0
4 |1+ a'r+ ot?z? al® 12 2
5 |1+a'z+atz?+a82% |0 |3 |2take p=2
6 |1+a’z+alz?+a2® | — | — | —

Table 2.2: Example for determining Error Location Polynomial

Assume that we have transmitted the all-zero codeword, ¢ = (0000000000000 00)
and have received the vector 7 = (0002002000000 00). The received code-
word polynomial is thus 7(z) = o’z + a32® + a*z'?. The first step is to determine

the syndromes for the received vector, as follows.

Sy =r(a) =a®+a®+a=a'

Se =71(ab) =

Secondly, the error-location polynomial, o(z), must be found. To demonstrate
this step, it is easier to use a table (see Table 2.2).

From the table, it can be seen that ¢ (z) = 1 4+ a’z + az? + ofz®. This was
our main goal. Berlekamp’s iterative algorithm enabled us to determine the error-

location polynomial. After certain calculations, the roots of o(z) can be found to
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be a®, a®, a'?. The error location numbers of the error pattern are the reciprocals of
these roots which give a3, a8, o!2. This means that the errors occur at positions 3, z°
and 712, We can then determine the error pattern to be e(r) = a’z% + o®z® + o*z'2.
It can be seen that this error pattern is the exact difference between the transmitted

vector ¢ and the received vector r. To complete the decoding process, one has to just

compute the following:

z) = r(z)—e(r) (2.11)

where ¢é(z) is the estimate of the transmitted polynomial after decoding has been
completed. In this case, the decoded polynomial is the all-zero polynomial which
identically matches the transmitted polynomial. Although the Berlekamp Iterative
algorithm was initially created in order to decode BCH codes, it is also used in the
decoding of RS codes.

Another algorithm which is a simplified version of the above algorithm is the
Berlekamp-Massey algorithm. Massey simplified the algorithm by demonstrating
that finding the error-locator polynomial can be equivalent to a shift register synthe-
sis problem. The syndromes are first determined through hardware with Massey’s
linear feedback shift register (LFSR) [15]. The syndrome equations can be likened
to a filter with the taps given by the coefficients of o(z) These taps are not known
initially but are determined iteratively such that the smallest LFSR generates the 2¢

syndromes. The smallest LFSR will then guarantee the error locator polynomial hav-
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ing the smallest degree. A complete description of the Berlekamp-Massey algorithm

can be found in [16, 17, 18].

2.3.2 Euclidean Algorithm

Before delving into how this algorithm is applied to RS codes, it is important
to understand the basics of the algorithm. Euclid’s algorithm is used to find the
greatest common divisor (ged) of two polynomials. This can be achieved through
matrix recursion. Assume that we would like to find the ged of a(z) and b(x), where
Deg(a(z)) > Deg(b(z)) Let a®(z) = a(z) and b (z) = b(zx). The first step of the

Euclid algorithm allows us to express a(®(z) as

d@(z) = QU(z)b(z)+bD(z) (2.12)

where Q¥ (z) is the quotient and b!)(z) is the remainder. From (2.12), it is easy to
see that b1 (z) = a®(z) — QW ()b (z) The ged(a®(z),b ) (z)) divides bV (z). If

we let oV (z) = b (), we can write:

aM(z a®(z
(@ _ |0 1 (z) (2.13)
b (2) 1 Q) | | ¥O(z)

This process can be repeated as long as the remainder 4! (z) is non zero. This

recursion can be expressed as:
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a(z
Q(z) = lb(’)é.’v;J (2.14)

where r is the recursion step. This is done until the remainder is zero.
Now, for the purpose of RS codes, here is a list of the steps to perform this

algorithm [19]:
1. Compute the Syndrome Polynomial, called S(z).

2. Initialize s©(z) = 2%, ¢ (z) = S(z), and B = I,, where I, is a 2 x 2

identity matrix

3. Solve the following recursive formulas until deg(c")(z)) <t — 1

s (z
Q) = Lm((x))J (2.15)
BUY = ’ ! B™ (2.16)
1 —Q"(x)
s+ (z s (x
@ | _ |0 1 (z) 2.17)
a" () 1 -QW(z) | | 0™(x)
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4. Then, let A = Bég)lm:g. The solutions are then:

e(r) = Ao (x) (2.18)

o(z) = A'B) (2.19)

The first thing that should be noticed is that the HDD algorithms for RS codes that
have been mentioned are very algebraic in nature. Another important thing to realize
is that while these algorithms have been extensively used, they are becoming less
attractive because of the ever-growing need to have more reliable results. Because
these decoders make hard-decisions, they are less favorable to newer innovations
which have come in the form of soft-decision decoders. While SDD does produce
better results as opposed to its counterpart (HDD), they have a downside. They are
much more involved and hence complexity is increased. For proof of the superior

performance of SDD over HDD, the reader is referred to [11], [20] and [21].

2.4 Soft-Decision Decoding of RS Codes

As already discussed, SDD has a very high complexity in comparison to HDD
algorithms. One of the first attempts at using soft information in order to improve
the decoding performance was made in 1966 by Forney [24]. In Forney’s Generalized
Minimum Distance (GMD) decoding method, a series of errors and erasures decoding

is performed on the hard-decision until such time that the GMD criterion is satisfied.
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This will be discussed in more depth in Section 3.3.1. Another attempt was made
in 1972 by Chase [25], where a list of candidate codewords is generated; this is a
list-decoding algorithm and will be discussed further in the next chapter.

One important quote states that “the major drawback with RS codes (for satellite
use) is that the present generation of decoders do not make full use of bit-based soft-
decision information [22|”. The first algorithm discussed below will try to address
this issue by making use of bit-level soft-decision information. The second algorithm
can be considered as an extension to the first in that it attempts to improve the

complexity of the first algorithm.

2.4.1 Description of the Vardy-Be’ery MLD Algorithm

The Vardy-Be’ery algorithm (VBA) [23] was developed in order to make use of
bit soft-decision information of RS codes. This algorithm was proven to be several
orders of magnitude more efficient than any decoding techniques available at the time
of discovery. The complexity reduction of this technique can be explained in large
part by the symmetric structure of the RS generator matrix over GF(2).

Let us begin with an(n, k) RS code, called R, over GF(2™). Assuming that we are

dealing with a binary channel, the encoder must convert the sequence of n symbols

into mn bits. Thus, we would begin with a codeword ¢ = (co, ¢4, -+, ¢n_1), where ¢ €
GF(2™) and transmit it as ¢(c) = (cf, 3, -+, e, et ¢ e en A ek e
- 0 Y03 5 =0 s V1 Mo [ ) ' n—17 *n—1» ’

where m is the number of bits per symbol. Let us now define the binary BCH code

B, having the same zeros as R. We can now define the codes By, B, -+, B,, as
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B; = {(vbo,¥jbr,"++,¥ibu—1)|b = (bo,b1,- -+, bp_1) € B}

forj=12,---.m (2.20)

where b; € GF(2) and v;b; € GF(2™). The m BCH codes defined in Equation (2.20)
are subcodes of . The resultant binary BCH code has dimensions kpcpy < k and

dpin > n — k + 1 R can be expressed as a union of cosets

R o= UZ;C (2.21)

such that A = m(k — kpcy) and C; = {r' +c|lc € C}, where C = By ® B, ® - - -®B,
is a direct sum of the m BCH codes found in (2.20), and r! are cosets of C' in . In
sum, this will allow for the breakdown of an RS code into a binary BCH code and
its coset leaders (¢ = b+ r) which we can then use to obtain an RS generator matrix
(see Figure 2.3). In this figure, the empty spaces (illustrated by a circle) represent
all-zero elements.

It is possible to generalize the above for the case where we would breakdown an
RS code into several subcodes, where GF'(2) C GF(2P*) C GF(2P?) C --- C GF(2™)
considering that m = pyps---p,. We would then have the following: B ¢ BW C
B® c ... c BW =®R. This means that we could potentially represent a given code
by its constituents subcodes and produce a binary version of the RS generator matrix

(as seen in Figure 2.3). This is demonstrated in the upcoming pages by an example.
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Figure 2.3: Recursive Structure of RS Generator Matrix
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Consider the (15,11) RS code, denoted R(15,11), with elements belonging to
GF(2%) and dy;, = 5 and t = 2. According to Equation (2.5), we get grs(z) =
i+ a3+ ab2? + o®2® + . The factorization of m = 4 yields 4 = 2-2,i.e. p; = 2
and ¢ = 2. So, we have GF(2) C GF(2%) C GF(2*) and B@ = R(15,11). BW is a
BCH code with n = 15, d = 5 over GF(2?) C GF(2%). This is a 4 — ary BCH code.

Equation (2.5) can also be rewritten as

g9(x) = LCM{$:1(z), da(z), - dzu(2)} (2.22)

where ¢;(z) is the minimal polynomial of of. After evaluating the values of the these

minimal polynomials, we obtain:

So, from (2.22), g(z) = ¢1(z) - ¢2(z) - ¢3(x) = 28 + 01%2° + 2% + 2% + oP2% + Pz + 1.
This results in the (15,9,5) BCH code, BV, Now, B is a BCH code with n = 15,
d =5 over GF(2) C GF(2*). Again, using Equation (2.22) and skipping a few
steps, we obtain g(z) = 2® + 27 + 2% + 2* + 1. The resultant code is the (15,7, 5)
binary BCH code, B”. We have just shown how the (15,11) RS code can be
broken down into parts and expressed by a (15,7) binary BCH code. For additional

information about the generator matrix and its exact construction, the reader is
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referred to [19] where every component of Figure 2.3 is explained.

With this background information, it is now possible to list the VBA. Note that

the steps listed must be performed for each of the 22 cosets and each coset leader r;:

1. Determine the m codewords 51,52, e ,Bm, where Ej € B by maximizing

M;(b) = %logf(vflbi+r{) (2.23)
1=0

for all b where v is the observed output (received vector at the output of the

channel) and r is the coset leader.

2. Then, calculate

M) = Y Mylb) =30 log f(vl]c) (2.24)

where ¢ is the sum of the BCH and coset leader parts.

1

3. Decoding terminates when we find ¢ € R that maximizes (2.24).

Although this original algorithm is more of a conceptual nature because we assume
a memoryless channel, it is easy to slightly modify the algorithm in order to render
it more practical. If we now assume independent noise for each transmitted symbol,

we can define the binary channel, including memory, by the 2™ probability densities:
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f(U/E) = f(vl’v2v”'7vml€17£27'"agm) (225)

where £ € GF(2™). Then, if we keep step 1 of the above algorithm, only step 2 has

to be modified in order to take into account the channel memory.

M@ = 3 log )

n—1
= Y log f(v}, v}, -, v*b} + 7}, 03 + 12, B+ 1) (2.26)
i=0

Decoding is carried out until ¢ € ¥ maximizes Equation (2.26).

Although these were the first attempts for using the bit properties of RS codes
in their decoding process, it is obvious that this algorithm is not suitable for longer
RS codes. This algorithm, albeit innovative, was just the beginning in maximum-

likelihood RS decoding using bit soft-decision information.

2.4.2 Description of the Vucetic-Ponnampalam MLD Algo-

rithm

The algorithm proposed by Vardy and Be’ery [23| was based on the structure of
the generator matrix of RS codes. Another MLD algorithm has since been developed
by Vucetic and Ponnampalam which takes full advantage of the structural properties

of RS codes. It shows that an RS codeword is formed by interleaving a binary BCH
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codeword with one of its cosets. Because of the nature of the RS codeword and its
ability to be broken down into codes, it is feasible to derive a ML SDD algorithm to
exploit this property.

The steps required to decode will be shown and this will be followed by a brief
discussion about the differences which lie between this algorithm and the one dis-
cussed in Section 2.4.1.

To understand this algorithm, a few variables must first be defined:

62,y l) = min di(y,s(b+1)) (2.27)

beCpen

where d%(a, b) is the squared Euclidean distance between @ and b, i.e.,

dy(a,b) = Y (a; —b;)? (2.28)
i=1
+1 ifz=1
s(x) = . . (2.29)
-1 1tz =
Zamm D19 (2.30)

1. Calculate 62

min (

Nl for 1 < j<mand 1< s < 2" Fen where I, is a coset
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leader belonging to Cgey + s

~

2. Find [, such that [ € L and A2(y,1) < A%(y, 1)

3. Calculate b using

B9 = arg min 3D, s0+19)) for1<j<m 2.31
E

beCpcn

4. The estimated codeword is found by computing: v = I+5

The Vucetic-Ponnampalam algorithm [26] differs from the VBA in the way which
steps 1 and 2 above are carried out. In VBA, step 1 requires that the distance be-
tween each BCH code to its coset to be calculated separately for all 2"~%8or cogets.
There is a way to calculate the distance of the received segment, y), to each coset
of the BCH code simultaneously. This involves the construction of a trellis based
on the parity-check matrix (see Equation (2.4)) of the BCH code. Since the con-
struction of the trellis is based on the parity-check matrix, it can be shown that the
path corresponding to codewords from the same coset arrive at the same final node.
Further discussions on this as well as an example for the (15,7,5) binary BCH code
(subcode of the (15,11, 5) RS code) will be presented in Chapter 4. In step 2, a total
number of 2™¥~kzcn) possible coset patterns need to be checked to determine the
valid coset, pattern. To determine the coset pattern I needed in step 2, Vucetic and
Ponnampalam use an algorithm based on partial ordering. They accomplish this by

generating and then ordering the coset patterns (which are interleaved combinations
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of BCH coset leaders). First, an ordering function 2 is defined in which all coset
leaders are numbered: Q : ¢ — {0,1,---,27 %8c# — 1} where ¢ is the set of coset
leader terms. Then, each coset pattern A is assigned a level, denoted L(\), which is
calculated as follows:
m
L) = S o0v) (2.32)
j=1
Knowing that 0 < Q(AY) < &, it is evident from Equation (2.32) that 0 < L()) <
mk, where k = 2"~%8c# — 1. A diagram which illustrates this algorithm is shown in
Figure 2.4 [26].
This flow chart represents the optimal way of finding the estimate of the coset
pattern, I, whereas the method to be described in Chapter 4 will be suboptimal in

the sense that the decoding complexity is reduced with only a slight degradation in

the performance.
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Figure 2.4: Flow Diagram for Vucetic-Ponnampalam Search Algorithm
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2.5 Summary

In this chapter, we introduced the basic concepts of linear block codes as well as
finite fields. The properties of RS codes were also presented in order to familiarize
the reader with the discussions that will follow in the coming chapters. Two widely
used hard-decision decoding algorithms were also presented, namely the Berlekamp
Iterative Algorithm and the Euclidean Algorithm with the former being illustrated by
means of a numerical example. Then, this sets the tone for the SDD algorithms which
are the basis for this thesis. The Vardy-Be’ery and the improved version by Vucetic
and Ponnampalam were also discussed in detail with the latter to be discussed even

further in Chapter 4.



Chapter 3

Product Codes

One of the main concerns in data communications over a noisy channel is how to
deal with the errors introduced by the channel. Shannon showed that this problem
could be tackled by channel coding. With his ideas in mind, the search for the
most powerful codes (i.e., with good error correction capability) began. As it has
already been reviewed in the previous chapter, RS codes are the most widely used
block codes. The ideas of making these codes even better, by concatenating thém,
as well as their properties will be reviewed. This will be preceded by a quick look at
convolutional codes which can be used as an alternative to block codes. Then, the

decoding algorithms used for such codes will be studied.

39
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3.1 Introduction

3.1.1 Convolutional Codes

It has been shown that block codes are of a fixed length. Those codes were
described by n, the length of the codeword at the output of the encoder, k, the
length of the message at the input to the encoder. The ratio k/n is termed as the
code rate which determines the amount of redundancy present. In convolutional
codes, there are three integers considered: n, k, and K. The ratio k/n is still the
code rate. K is the constraint length which represents the number of stages in the
encoding shift registers. Generally speaking, convolutional encoders have kK shift
registers and n adders. In Figure 3.1, there are 2 modulo-2 adders and K = 3.
The rate of this encoder is 1/2. This is evident from the fact that if one bit is
input to the system, the output is 2 bits. The generator polynomial for the upper
connection is ¢;(z) = 1 + z + z? while the lower one is g(z) = 1+ z2. Now,
assuming we had an input message of 3 bits, namely m = 101. This is equivalent
to m(z) = 1+ z?. It is imperative that after this sequence is sent into the shift
registers, two more “0” bits must be sent in to “flush” the register. Without this,
the 3 message bits would not make their way fully through the shift registers of
the encoder. The number of flush bits needed is found to be K — 1 = 2 in this

case. Now, the first output u;(z) = m(z)gi(z) = 1+ z + 2° + z*

and ug(z) =
m(z)gs(r) = 1+ z*. By combining these two results, we get the output of the
encoder U(z) = (1,1) + (1,0)z + (0,0)z2 + (1,0)z + (1,1)z*. It is clear now that

although we had only 3 message bits, plus two flush bits, at the input of the encoder,
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we now have 10 bits at the output.

There is another tool used to represent the encoder of convolutional codes. This
is called a state diagram. The number of states depends on the amount of memory of
the encoder. In Figure 3.1, there are 4 states. Generally, the number of states is 2M,
where M is the memory of the encoder or, in other words, the K — 1 stages. When
given an input, a transition occurs between the present state and one of two next
states, depending on whether a 0 or a 1 was input. A state diagram corresponding
to the encoder of Figure3.1 is shown in Figure 3.2. We can see that there are nodes
representing the contents of the shift register at a present time (these are called
states-usually present state). These nodes are connected by links labeled by m/u.
The m label signifies the input bit while the u label represents the output bits (2, in

this example) corresponding to each state transition [27].

ul

——{nput bit m-e \-Output Word-»

u2l

Figure 3.1: Non-Recursive Convolutional Encoder with ¥ = 1,n =2 and K =3
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After observing the state diagram of Figure 3.2, one can see that the structure
repeats itself. For any given sequence of input bits, it is possible to follow through
the state diagram and determine the output bits. Given this property, there is
another useful way of representing the encoder structure. This is called the trellis
diagram. A sample of a trellis for block codes will be shown in the upcoming chapter.
The encoder shown in Figure 3.1 is known as a non-recursive convolutional encoder
whereas the one shown in Figure 3.3 is recursive. Moreover, this encoder is also
systematic meaning that the input bit is also part of the output sequence. The
generator polynomials associated with the encoder of Figure 3.3 are go(D) =1+ D+
D? and ¢;(D) = 1+ D?, and has a rate of 1/2 since for every one input bit, there are
2 associated output bits [35]. Also, the discussion about state diagrams and trellis

applies in the same way to this type of encoder.

Figure 3.2: State Diagram of Convolutional Encoder
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A
<
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Uy

Figure 3.3: Recursive Convolutional Encoder

3.1.2 Concatenated Coding Scheme

This coding scheme uses two levels of coding, an inner and outer code to achieve
the performance required. The purpose of these codes is to obtain long and powerful
codes by using simple constituent codes. The objective is to attain good performance
while having a complexity which is lower than that of a single long code. There are
different types of concatenation with the most popular being serial and parallel. One
important process that is used for most types of concatenation is that of interleaving.
This device receives a given sequence of bits and rearranges it into a new sequence
having identical length. The purpose here is to combat burst errors which occur
in practical communication systems which are not memoryless. With the use of
an interleaver, we are effectively turning a channel with memory into a memoryless
one and error correction works better in a bursty channel. In addition, interleaving

removes the low-weight codewords and reduces the correlation between the extrinsic
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information from the two decoders. Now, we will follow with a brief description of

two concatenated schemes.

3.1.2.1 Parallel Concatenated

In this scheme, the k information bits are encoded twice. In essence, the infor-
mation is first passed through the first encoder. The same information sequence is
also passed through the interleaver where it is permuted and encoded again. So,
at the output, we have the original information accompanied with two parity bits
which have come from the two encoders. This can be better seen in Figure 3.4. In
this figure, the encoder could represent either systematic block encoders or recursive
systematic convolutional encoders (i.e., this scheme can be used for both block and

convolutional codes).

information

Bitg
i!"if\‘.}g{:éilit}i‘? Encodert
s :
” (block or Parity 1
sonvoluhional)
Y
&
-
o
2
3
£
Encoder? o
(block or Parity 2

convolutional)

Figure 3.4: Parallel Concatenated Encoder



CHAPTER 3. PRODUCT CODES 45
3.1.2.2 Serial Concatenated

In this scheme, the k information bits are passed through the first encoder after
which the output is a codeword. Then, this sequence is passed through an interleaver
which permutes the codeword. Finally, this new sequence gets fed into a second
encoder. Product codes are derived from this concatenation scheme and they will be

the focal point of this thesis.

3.2 Product Codes

3.2.1 Definition

These codes were first introduced by Elias in 1954 [28]. The concept allows for
the construction of long codes from the concatenation of two or more smaller codes.
Assume we have two block codes A and B with the following parameters: (n4, k4. d4)

and (np,kp,dp). The rates of these two codes are equal to:

Ta = k‘A/TLA ,TBZICB/TZB (31)

C', the product code of A and B can be obtained as follows:
1. Place k4 x kp information symbols in an array of kg rows and k4 columns
2. Code the kg rows using A

3. Code the ny columns using B
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The construction of this code is shown in Figure 3.5. The resulting product codes
parameters are (nang,kakp,dadp) and the resulting rate will be r4r5. Another
way to define product codes is by saying that codewords can be represented by all
n4 X mp matrices in such a way that each row and each column are codewords
of A and B, respectively. We will use the notation (na,ka,ds) x (np,kg,dp) to
denote the product code so as to avoid confusion. Also, it must be said that the
minimum distance of the resulting product code is much larger than that of either of

the constituent codes, A and B [29].

Checks
on
kp [OWS

n

Checks

Checks on Columns Ccljlrclacks

Figure 3.5: Product Code Construction
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3.2.2 Properties and Advantages

Although product codes have minimum distances which are much smaller than
that of RS codes of the constituent codes of comparable length, product codes remain
invaluable because of their error correcting capability. This capability will now be
illustrated. Product codes are especially useful for burst error correction. All error
patterns that occur on a given number of rows (being less than half the minimum
distance of the column code) are correctable. The same can be said for the columns.
In addition, if we have random errors; if these errors are not more than half the
minimum distance of the row code, these too are correctable. Interestingly, even if
the errors are more than half this distance, it is still possible (not definite) to correct
these errors. Another important property is the inherent presence of an interleaver
in all product codes. As discussed earlier, the interleaver causes these types of codes
to excel at burst-error correction. Finally, a major, yet simple, advantage is the basic
structure of product codes which makes them even more attractive from a decoding

perspective.

3.3 Decoding of Product Codes

Since their introduction in 1954 by Elias|28|, there have been numerous decoding
algorithms for such codes. Elias suggested that the rows of the received message be
decoded using a decoder for A that can decode up to half the minimum distance of
A. Then, the columns of this new array would be decoded using a decoder for B that

could decode up to half the minimum distance of B. It was shown that this type
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of decoder was only capable of correcting up to (dadg/4) errors. We will present
some important decoding algorithms followed by the one used for the purpose of this

thesis.

3.3.1 Generalized Minimum Distance

The idea of GMD was first suggested by Forney|24]. This method for decoding
binary block codes would make use of the soft information from the channel while
at the same time still using an algebraic decoder making hard decisions (i.e., either
a 0 or 1 for each symbol). An easy way to define the generalized distance between
two sequences is by taking the sum of the distances between the two regardless of
what type of distance metric is being used. For example, if we were working with
Hamming distances, then the generalized distance would be the hamming distance
between the two sequences. If we were working with Euclidean distances, then the
generalized distance would be the Euclidean distance between the two.

GMD refers to the minimum generalized distance that is correctable between a
sequence and a codeword used in transmission using Forney’s algorithm. If we had
a code with minimum Hamming distance d,,;,, the GMD would be proportional to
dpmin- Instead of using generalized distance as the metric, one could use the squared
Euclidean distance when decoding using GMD and the obtained results would be
identical.

With GMD decoding, it is assumed that there are two separate decoders for both
the row and column codes that can correct all errors up to half the minimum distance

of the respective error correcting code. The first step that the GMD decoder takes
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is to decode each row of the received array up to half the minimum distance of the
row code. Then, each column of the new array is decoded up to half the minimum
distance using the column code. The GMD decoder proceeds to delete two rows at
a time, which are deemed less reliable, as long as the number of rows deleted is less
than minimum distance of the column code. Each time, the columns are decoded
over again. In the final step, the decoder chooses the codeword which was closest
to the received array. In [24], it is shown that GMD decoding can correct all error
patterns of Hamming weight less than half the minimum distance of the code.
It is important to note that the GMD decoder can take into account soft-information

by decoding the rows of the product code using a GMD decoder instead of a decoder

that corrects up to half the minimum distance of the row code.

3.3.2 Maximum Likelihood

A simple way to obtain the ML codeword is to compare all the distances between
the codewords in a given code to the received codeword and select the codeword
which is nearest to the received sequence. It is obvious that such a method is highly
impractical because it is very time-consuming. This method can be useful in the case
where the codes are extremely short and therefore the amount of comparisons that
would have to be made are few. Viterbi [30] came out with a decoding algorithm
for convolutional codes that would make ML decoding less impractical. Forney was
then able to show [31] that the Viterbi algorithm (VA) would allow one to find the
shortest path between the start and end node in a trellis of a code.

A trellis T representing a code C having a length n is made up of a set of vertices,
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V', aset of edges, F, and a set of labels, L. These vertices are split into sets dependent
on time. Edges connect the vertices V;_; with V; and then with V; ;. For a trellis,
each path following a sequence of edges, having a length n, is a codeword of the code
C [32].

Although it had been known for a long time that the codewords of a linear block
code could be represented by a trellis, a simple method of producing such a trellis
was put forward by Bahl, Cocke, Jelinek and Raviv [33] and later popularized by
Wolf [43]. It was also shown that this trellis was minimal in the sense that at any
time in the trellis, the number of vertices was less than any other possible trellis
representation for the same code.

The number of operations needed to perform Viterbi decoding on a Trellis T is
equal to 2|E| — |[V| + 1. Also, one can show that the number of edges is related to
the number of vertices. So, by looking at the number of vertices, this should give an
appropriate estimate of the complexity that will be involved in the decoding of such
a code using the Viterbi algorithm.

This discussion serves to show that the complexity of Viterbi decoding on the
trellises of product codes is exponentially increasing with the size of the code in
question. So, it should be noted that ML Viterbi decoding is not useful for the
decoding of codes with large constraint length except when these codes are made
from shorter constituent codes, or if the code has either a very high or a very low
rate. When the BCJR algorithm was first introduced, it was seldomly used. It was

not until Berrou that its full use was exploited in Turbo decoding.
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3.3.3 Turbo Decoding

As has already been mentioned in Chapter 1, Turbo codes were introduced by
Berrou and his fellow researchers in 1993. Their proposed algorithm was initially
designed to iteratively decode two parallel concatenated convolutional codes using a
Maximum Aposteriori Probability (MAP) soft decoder of the constituent convolu-
tional codes. Berrou’s MAP algorithm performed ML bit estimation which yielded
information for each outputted bit. Berrou’s algorithm can be viewed as a soft-input
soft-output (SISO) decoder. This will be discussed in the next chapter. The decoder
introduced in [33] is, in fact, a rework of the MAP algorithm which allows for de-
coding of a trellis representation of a code. MAP decoding on a trellis of a code is
similar to Viterbi in that it starts at the beginning of the trellis until the end or from
the end to the beginning. The complexity of MAP is similar to that of Viterbi de-
coding but the number of operations needed in the former is more than that needed
in the latter. In terms of performance, using the VA results in a reduced frame error
rate (FER) while the use of MAP results in a better bit error rate (BER) [34]. The
Viterbi algorithm and the MAP algorithm are two widely used decoding algorithms
often referred to as “trellis-based decoding algorithms”

In turbo decoding, the received sequence is first MAP decoded using the decoder
for the first constituent code. Then, the real values obtained are used as the input to
be MAP decoded using the decoder for the second constituent code. This procedure
is repeated in the coming iterations using real soft values which have been output by
the MAP decoders in previous iterations.

Assuming that the output of the AWGN channel is the following sequence: y =
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(Y1, Y2,y Uk, = -+ Un). The output of the MAP decoder is defined as the a posteri-
ori log-likelihood ratio (LLR) for a transmitted “+1” and a transmitted “1” in the
information sequence [39]. If we want to compute the value for the k** term of the

information sequence, when we are going through a transition from state s’ to s, we

have:
(s',s) ’
P = +1 4P ,
L(ug) = In (u = + |y):ln Zz‘s’j_s;rl (s',s,y) (3.2)
P(uy, = —1ly) Yl P(s',5,y)
where

P(s',s,y) = P(s',y5<k) - P(s,9x]8") - P(yj>kls)

= P(s',yj<k) - P(s|s") - P(yils', 8) - P(yj=i|s)

N— s VRN v
N~ "

= opa(s) - w(ss) Br(s) (3:3)

® a;_;(s') is based on the first & — 1 terms of the received sequence y. This is
expressed by y;«; meaning the sequence of received symbols from the start of

the trellis until time k£ — 1

® (s, ) is the branch transition probability which is a measure of the

information symbol u; based uniquely on the received symbol y;,

® [i(s) is a prediction measure (i.e. it is based on the future), from & + 1 to the

end of the trellis
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These three parameters form the basis for the MAP algorithm.

Since the complexity associated with MAP decoding the constituent codes is rel-
atively high, numerous attempts have been made to improve on this. Hagenauer
[35] developed an algorithm known as the Soft Output Viterbi Algorithm (SOVA)
that can be used to approximate the results obtained with MAP decoding. Later,
Pyndiah et al. [36] developed another algorithm in which the MAP decoder is ap-
proximated by using a Chase decoder which returns a list of codewords that are then
used to compare with the received sequence instead of using the entire code set. This
is no longer a trellis-based decoding algorithm but a list-decoding algorithm. This
algorithm is of particular interest to us in this thesis and will be described in the

coming section.

3.3.4 Iterative Decoding using Pyndiah’s Method

As we have already seen, RS codes are block codes having non-binary symbols
belonging to GF(q). These codes have the best rate for a given minimum Hamming
distance. The original turbo codes used convolutional constituent codes. Pyndiah
set out to try and achieve similar performance results with block turbo codes (BTC)
using RS codes. The decoding algorithm they used deviates from the customary
algorithms in that decisions are made from a reduced set of codewords as opposed
to the entire codeword set. This algorithm is still based on soft-input soft-output
decoders for the purpose of decoding each of the constituent codes of the product
code. This iterative algorithm will now be described, which will include a deeper

look into the list-decoding method that is used, namely the Chase algorithm.
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Pyndiah considered the transmission of binary symbols {0, 1} using Quadrature

Phase Shift Keying (QPSK) over an AWGN channel. The observation

R = E+N (3.4)
€11 €15 €in
is at the input of the decoder, where E = : Py : is the
€m1 emj €mn
TL].I .« e nl] ) nln
transmitter codeword and N = : Fong : is a matrix of AWGN
nml o s e nm] .. nmn

samples. Note that n is the block length and m is the number of bits per symbol.

To decode R using ML, the optimum decision D would be:

D = cif [R-ci| <|r-Cf (3.5)

where | # i, C is the " codeword, and |R — C|*> = Yoy Xfea(ris — ¢if)? is the
squared Euclidean distance between R and C'. Now, it is important to notice that
for an (n, k,d) RS code, there are ¢* codewords and that it would be very complex
to attempt to optimally decode these codes.

Chase’s algorithm is a suboptimal algorithm for near-ML decoding of block codes

which has a much lower complexity while maintaining a high level of performance.
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Chase observed that at high SNR values, the ML codeword D was on the sphere of

Y 0 Wy o Y
radius (6 — 1) centered on ¥ = : Cooyy : |, where y;; = 0.5(1 +
Ym1  Ymj " Ymn

sgn(rjs)) and y;;y € GF(2). The procedure was meant to reduce the number of
reviewed codewords by only looking at the most probable ones within the sphere.

Here is the outline of this procedure:

1. Determine the position of the p least reliable elements by taking a hard decision

on R which would give the first word Y

2. Form the 2P — 1 test patterns by modifying the signs of the elements that were

deemed unreliable. These words are called Y, where [ =1,2,---,27 — 1

3. Algebraically decode the 2P words to obtain the subset of codewords C! used

in the soft decoding process (see Equation (3.5))

Now that the decision D of a row or column has been found, it is important to
compute the reliability of this decision in order to generate soft decisions at the

output of the decoder. This reliability is given by the LLR of d;f as:

Pr{e;; = +1|R}

LLR,: = 1
Bir = e = 1Ry

(3.6)

where e;; = {—1,+1} in position (j, f) of £ (1 < j <nand 1 < f < m). Equation

(3.6) can be approximated and normalized to obtain:
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2
g
T;f = 7LLRN =Tjf+ Wy (3.7)

where 7}, is the estimated normalized LLR of the decision d;;. To determine the
normalized LLR;;, a search for the codeword, among the codeword set produced by
the Chase algorithm, at minimum Euclidean distance from R must be carried out.
Let this code be called C™™+9 A search must then be performed for a codeword,
C™(=) at minimal Euclidean distance from R such that c;-"mei) # cﬁi"(—i). If there

is a codeword that satisfies this condition, then the soft output for d;; is given by:

Mmin(—i) _ Mmz'n(z') min(i
e o= y x ¢l (3.8)

where M™™~%)is the Euclidean distance between C™"(~) and R, and M™in() ig
the Euclidean Distance between C™™*% and R. Now, it should be mentioned that
the probability of finding a codeword for Equation (3.8) increases with the value
of p. However, if p is increased, there will be more codewords in the codeword set
attributed by the Chase algorithm and the complexity of the decoder will increase
exponentially. So, there are cases when a competing codeword may not exist. The

relation to be used is then:

rip = B (3.9)
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Figure 3.6: Block Diagram of RS Turbo decoder
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Given that we can now determine the soft-outputs using Equations (3.8) and (3.9),

we can illustrate the turbo decoding process used (see Figure 3.6).

By subtracting the soft input from the soft output, we obtain the extrinsic in-

formation, labeled [W(m + 1)] in Figure 3.6. So, if we were considering the second

decoding of the product code, we would have [R(2)] = [R] + a(2)[W(2)]. This turbo

decoding algorithm considers a couple of parameters which must now be explained:

e weighting factor a: to reduce the dependency of o on the product code. This

factor is used to reduce the effect of the extrinsic information in the soft de-

coder in the starting steps when the BER is high. « takes on a small value in

the first iterations and increases to 1 as the BER approaches 0 [36]:

a(m) = [0.0,0.2,0.3,0.5,0.7,0.9,1.0, 1.0]
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e reliability factor £: normally determined as a function of the BER. In these

simulations, the increase in 8 has been fixed as follows:

B(m) = [0.2,0.4,0.6,0.8,1.0,1.0,1.0,1.0]

Moreover, the term steration used for turbo decoding corresponds to a row decoding
followed by a column decoding of the product code. If the readers are interested
in delving further into this algorithm, they are kindly referred to [36, 37, 38]. This
encompasses all the information needed to carry out the suboptimal decoding of RS

BTCs.

3.4 Summary

In this chapter, the reader was introduced to the alternative of block coding,
namely convolutional coding. In addition, code concatenation was discussed which
brings us to the topic of serial concatenated codes or product codes. The definition
as well as the properties and advantages of using product codes were also presented.
Finally, various approaches for decoding product codes were presented, ranging from
GMD and MLD to turbo decoding algorithms. A near-optimum turbo decoding
algorithm was presented in detail because of its importance in the development of

the proposed algorithm.



Chapter 4

SDD of RS Product Codes

As has already been discussed in Chapter 3, Soft-Input Soft-Output (SISO) de-
coding algorithms are used for iterative decoding. By using log-likelihood ratios,
these decoders can accept soft inputs and produce soft outputs which can be bro-
ken down into three terms: the soft channel inputs, the a priori information and
an extrinsic value. The latter is then used as a priori information at the following
iteration. The decoding algorithm has three independent estimates for LLRs of the
information bits: the channel value L. -y , the a priori values L(u), and the values
from an independent third estimator, L.(%) which is in fact the extrinsic information.
It is obvious that before decoding has begun, there is no a priori information and
this value is initialized to zero. This SISO decoder which is used for product codes

can be seen in Figure 4.1{39].

59
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For the iterative decoding process, the SISO Decoder of Figure 4.1 can be ex-
panded as to show the inputs of the row and column decoder which are used for
product codes (see Figure 4.2). From the above Figure, we can see that the extrinsic

value for the first iteration is given by:

Lea(@) = Ly(@) = (Le -y + L(u)) (4.1)

The second decoder will use the result of Equation (4.1) as a priori information and

will produce extrinsic information in the form of:

Lea(@) = Ly(@) ~ (Lo -y + Ly (u)) (4.2)

The resultant of Equation (4.2) will then be used for the second iteration and this
process will continue until there is not much variation between iterations. Once the
iterations have been completed, the second decoder combines the extrinsic informa-
tion from itself and Decoder 1 and a decision is made. In this thesis, a method is
devised through which a soft-decision is made. The algorithm for carrying out the
soft-decision decoding is based on the one described in Section 2.4.2 with a modi-
fication rendering that algorithm suboptimal for the purpose of keeping the overall
complexity as low as possible. The performance, as we will see, is an improvement
over the currently existing methods in which a hard decision is taken once the itera-

tions have finished.
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4.1 System Description and Model

The simulations performed considers the transmission of information using binary
phase shift keying (BPSK) signaling over a Gaussian Channel. The RS product codes
can be constructed based on bit concatenation or @-ary symbol concatenation. In
the first category, there are (k4 X kp X ¢?) information bits as per the definition in
Section 3.2.1 where ¢ is the number of bits per symbol. In this case, each bit belongs
to different @)-ary symbols in the row and column coding. In the second category,
the product code is constructed from (k4 % kp) @Q-ary information symbols which
means (ka4 X kg X ¢) data bits. The ¢ binary elements which correspond to the Q-ary
symbol are located at the intersection of a row and a column (see Figure 4.3) [40].
It should be noted that ¢ and @ are identical.

This second category is the one used throughout the simulations. Also, the RS
product code is constructed using two identical constituent codes with R4(n4, ka,da) =
Rp(npkp,dp) therefore , we can say that ng =ng =n, ka =kp =k, ds=dg =d
and r4 = rg = r . The system model on which this thesis is based is presented in
Figure 4.4. It is proposed that by using a SDD algorithm to both select the set of
reviewable codewords used to calculate the LLRs and make the decisions on the final
codewords after iterations have been completed, we can improve the performance of
these important codes and render them even more powerful than they presently are.
While Pyndiah uses a Chase Decoder to obtain his list of reviewable codewords and
later makes a hard decision to obtain his estimate, it would be more advantageous
to make use of all the available channel information when making a decision because

soft-decision decoding is an optimal detection method which achieves a lower prob-
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ability of error (i.e. better performance) [41]. The performance calculation can be
easily derived by taking a closer look at Figure 4.3. Given the fact that the product

code 1s constructed in such a manner, it is possible to state:

Bit Errors

PB'l:tETTOT' - T . hite
Blocks x bits
block

B Number of bit errors (4.3)
~ (Number of blocks x k x k x q) '

where the numerator is a reflection of how many bit errors have occurred during the
transmission over the channel and number of blocks signifies the number of product
codes that have been sent over the channel. Equation (4.3) is used in Section 4.3 to

obtain the simulation results.

4.2 Suboptimum SDD of RS code

4.2.1 Complexity Reduction by means of a Trellis

One important way to simplify the decoding complexity in the SDD process is
by reducing the amount of operations performed for determining the coset pattern
(refer to step 1 of Section 2.4.2). If one were to use the Vardy-Be’ery algorithm to

caleulate 62, (y\,1,), the distance between each interleaved segment of the received

signal from each coset of the BCH code would have to be calculated separately. So,

for a (15,11) RS code which is broken into a (15,7) binary BCH code, this would

require a total of 2!5 Euclidean distance calculations for every 15-bit pattern. This
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could be explained by the fact that the binary BCH code has 2" ~*8¢# cosets and
2kscH codewords. The standard array, containing all possible 2" (and in this case
21%) possible codewords, is an organizational tool used to contain information about
a code. The first column of this array contains all possible coset leaders (27 *scn)
and the first row contains all the BCH codewords (2¥5¢#) The rest of the array is
filled out by modulo-2 adding the rows and columns (for example, Elementy =
Rowgy @ Columnyy). In the end, the array will contain all possible 21° 15-tuples for

the BCH code. The standard array has the form:

cly/cwy cuw e cw; “e CWakgoy
cly cwy + cly e cw; el - CWokpey + Cly
cly cwy + cly ceecwyFcly - CWakpey + Cly
cl; cwy + cl; ceeocwi ol CWokpoy + Cl;
Cl2"_kBCH Cw]_ + Cl2n_kBC'H ot Cl2n»kBCH ce CkaBC’H _+_ Cl2n—kBCH

where cl; represents the 0 < j < 2n7kBoH coset leaders and cw; represents the
0 < i < 2k BCH codewords. Note that the array contains every n-tuple without
any missing and without any replicas [42)].

For longer codes, this amount of calculations is unacceptable. One way to reduce
this amount is by calculating the distance of y\¥) to all 27 ¥8¢# cosets simultaneously

using a trellis. A Wolf Trellis [43] based on the parity-check matrix can be constructed
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based on the Equation (2.4) of Section 2.1.2. Each node is represented by a binary
(n — kpcm)-tuple, Sp(a) = (a1, as, -+, an_ky.y) Where p represents the depth. The

trellis can then be formed by following these steps:
1. At depth 0, there is only one node calted S¢(0) = (0,0, ---,0)

2. Each node has 2 branches coming out of it based on whether the input was a

0 or 1. Therefore, Sp(a) would branch out to Sp41(ag) and S,41(a)) according to

Sp+1(afoy) = Spla) +{0,1} x h;l; (4.4)

where h,, is the p'* column of H

3. The branch that led to S,41(ag) is marked with a 0 and the one that led to

Sp+1(ay) with a 1.

4. The trellis stops when p = n and the nodes at this depth are called terminal

nodes.

Once constructed, the trellis will contain 2" different paths which correspond to all
2" binary n-tuples. Finding the closest n-tuple from each coset to yYcan be likened
to determining the shortest path (using squared Euclidean distance as the branch
metric) from the initial node Sp(0) to the 2"~#8c# terminal nodes. The VA is used to
determine this shortest path. This concept will be better illustrated with an example
for the (15,7) BCH code. After several calculations, it is possible to present the

parity-check matrix which has the form shown in Equation (2.4) of Section 2.1.2:
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-10000000 110 1000-
0100000001 1O01CO00

001 0000O0O0O0O11O0T10

H 000100000001 10O01
- 000010001101 110
0000010001 10111
0000001011 10011
LOOOOOOO 11010001

Based on this matrix, it is possible to construct the associated trellis (seen in Figure
4.5). In this trellis, all the transitions after depth p = 8 are not drawn so as not to
clutter the figure. These branches can be determined from Equation (4.4) and H.
The dotted lines represent transitions based on an input of 0 and solid lines represent
transitions based on a 1. The two paths terminating at S;5(0) demonstrates how 15-
tuples of the same coset share a unique terminal node. In this case, the all-zero and
all-one 15-tuple, which belong to the first coset of this code, both terminate at node
0 when p = 15 Now, since the VA uses 3 operations for every node, namely two add
operations to update the metrics and one comparison to select the survivor, we can

compute the total number of operations needed to search through the trellis [26]:

N(Cpcr) = 3[(kpon +2)2"Fmen — 2] (4.5)
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For our example, this comes out to N = 3[(7 + 2)256 — 2] = 3[2304 — 2] = 6906
operations which is much less than that required if we were to compute the distances

for each 15-tuple of the standard array separately.

4.2.2 Complexity Reduction by putting a constraint on Levels
Searched

A second way that would improve the complexity is to put a constraint on how
many levels are to be examined (refer to Equation (2.32) and step 2 of Section 2.4.2).
In step 2 of 2.4.2, we saw that through partial ordering, we separated the coset
patterns and grouped them into levels. Back to our example of the (15,11) RS code,
there were a total of L = 1020 levels. This means that the search for a coset pattern
would continue until the conditions specified in Figure 2.4 is satisfied. Although this
method guarantees the return of a coset pattern [ that satisfies the ML criterion,
it is possible that the complexity at later levels causes the systems performance
to degrade. This complexity could be reduced by relaxing the ML criterion and
placing a constraint on the levels to be checked. A suboptimum search algorithm is
also presented in [26] which differs from the one that is being proposed. In [26], if
the suboptimum search has not yielded a valid coset pattern, a decoding failure is
immediately declared and the next packet is sent for decoding. In the case of our
suboptimum algorithm, a decoding failure is not immediately declared and the last
valid pattern that was found is used as the coset pattern for the rest of the decoding

process. This can be better understood after referring to Figure 4.6.
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L Ll S ]
10 1001
30 16376
50 | 316251

80 | 1.9295 x 10°
100 | 4.59813 x 10°
1021 | 4.29497 x 10°

Table 4.1: Number of Coset Patterns from level 0 to L

The differences between the suboptimum search algorithm and the one in Figure
2.4 of Section 2.4.2 is clear. As can be seen, if the maximum level Lgrop has been

reached without the final condition being satisfied (i.e. A%,

< A*(y, 1)), a subop-
timum coset pattern is returned and used for the remainder of the decoding process.
Let us analyze this for a moment by first presenting a formula used to calculate the

total number of coset patterns in levels 0 to L:

LL/s+1] m m+ L —t(k+1)
= Y (-1 (1.6
=0 t m

Based on this we can show that, using the same (15,11) RS code, the following
number of coset patterns need to be checked. It is important to first remember that
the total number of levels is L,q; = 1021 with m = 4 and k = 255 for this code (see
Table 4.1).

Obviously, although we would always desire to find the coset pattern satisfying

the ML criterion, the number of patterns to be checked as L grows makes this task
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very difficult. We would always hope that [ is found in one of the lower levels, but
if this is not the case, the decoding complexity is much too elevated not to use the
suboptimum algorithm. The best tradeoff between performance and complexity was

found when Lgrop was set to 50 as will be seen shortly.

4.2.3 Simulation Results

After applying the complexity saving methods described above, it was clear that
a noteworthy and usable suboptimum algorithm has been found that could aptly
be used to decode RS codes. The savings in complexity are shown with respect to
a variable P,,. which represents the average number of coset patterns that need to
be checked when performing the search for the required coset pattern I. At lower
values of the SNR, it is understandable that since the system is corrupted by a lot
of noise, the suboptimum search algorithm will usually reach its stop level Lgrop
before satisfying the ML criterion. The ML search algorithm will continue searching
through the levels until it has found the coset pattern satisfying the ML criterion.
This explains why at lower SNR, the suboptimum algorithm performs less operations
then the MLD. We can also see that at higher values of SNR, the curves for MLD
and the suboptimum algorithm converge. This can be explained by saying that when
the signal is much stronger than the noise in the communication channel, the ML
criterion is usually satisfied before reaching Lgrop in the suboptimum search and
thus the number of cosets checked is almost identical. Based on Figure 4.8, we can
say that this proposed algorithm is better at low SNR because as the SNR increases,

the complexity of the proposed suboptimum algorithm (denoted “Proposed SUB”)
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approaches that of the MLD algorithm. In terms of performance, we can observe
that the curves based on the MLD and that of the proposed suboptimum algorithm
are similar in nature with the latter experiencing a slight decrease in performance.
For a block error rate of 107°, the difference between the MLD algorithm and
the proposed suboptimum algorithm is about 0.2 dB which is acceptable when tak-
ing into account the savings that have been made in terms of decoding complexity.
Therefore, the suboptimum algorithm achieves near-MLD performance whilst lower-
ing the overall system complexity. It should also be noted that in this section, we are
dealing with block error rate as opposed to bit error rate which will be used in the
following section. In order to calculate the block error probability which is shown in

Figure 4.7, the following formula is used:

number of block errors
total number of blocks

PBlockEr'ror (47)

where a block error occurs when any bit in the sequence has been found to be erro-
neous. Therefore, if even 1 out of the 44 (11 in formation symbols x 4 bits per symbol)
information bits is found to be wrong, a block error is declared. This is different from
Equation (4.3) in which the bit error probability is calculated. Also, the MLD al-
gorithmm achieves a Ppjiprror = 1072 for an SNR value of 5.3 dB (see Table II of
[26]) whereas the suboptimum algorithm achieves the same Pgiigror at an SNR of

approximately 5.5 dB.
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Figure 4.7: Error Performance of the (15,11,5) RS Code
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Decoding complexity of the (15,11,5) RS Code

10 1 | I I |

Figure 4.8: Decoding Complexity of the (15,11, 5) RS Code



CHAPTER 4. SDD OF RS PRODUCT CODES 77

Using this proposed suboptimum decoder of RS codes in tandem with RS product
codes would seem to be a good way to achieve better results than have already been
achieved by Pyndiah who used a List-decoder and performs a hard-decision. This

will be investigated in the following section.

4.3 TIterative SDD of RS Product Codes

4.3.1 Incorporating Suboptimum SDD into Iterative Decod-

ing Process

Now, the main issue lies in trying to find a way to incorporate the suboptimum
algorithm devised in Section 4.2 into the RS turbo decoder illustrated in Figure 3.6.
It would have been possible to just use the suboptimal RS decoder to make the
decisions on the rows/columns of the product code but this idea was taken further
and used prior to the last iteration of the decoding process. The procedure used
by Pyndiah (and based on the Chase Decoder) to identify the set of most probable
codewords has already been discussed. Now, the procedure which has been used in

the proposed algorithm will be enumerated and examined.

1. Determine the position of the p least reliable elements of a given row or column,
denoted R, in the RS product code P. Note that for the results contained within

this thesis, p has been set to 5.

2. Form the 27 potential test patterns by modifying the signs of the elements that

were deemed unreliable in R
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3. Do the following for R:

e Break down each sequence y of mxn bits into m n-bit sequences y), where
we have y= (yg)a y?)) T ygm)a yél)v T y7(1,m) and y(]) = (y§1)7 ygj)7 e 7y'5i7))

e Calculate 62,

(y9,1,) for 1 < j <mand 1 < s < 2" F8cH where [, is a

coset leader belonging to Cgey + s

e Find a valid coset pattern ! using the suboptimal search algorithm of

Figure 4.6
e Calculate b using b9 = arg minpecy, (Y9, s(b +19)) for 1 < j < m

e The decision D is found by computing: v = I+
4. Do the following for each of the 27 words:

e Break down each sequence y of mxn bits into m n-bit sequences y¥), where

1 2 m 1 : j j :
we have Y= (y£ )ay§ )a o ’y§ )7yé )a o 7y£Lm) and y(]) = (y§])ayéj)7 T 51,]))

e Calculate 62,

(y, 1) for 1 < j <mand 1 < s < 2" ke where [, is a

coset leader belonging to Cpcy + I,

e Find a valid coset pattern lAusing the suboptimal search algorithm of

Figure 4.6
e Calculate b using b9) = arg minyecye., (y9, s(b +19)) for 1 < j <m
e The potential test pattern is found by computing: v = I+b

5. Compare the list of 2P potential test patterns and compare with the decision

D obtained from R. If any duplicate patterns exist in the set of reviewable
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codewords, discard those patterns. There is now Z codewords that belong to

the set of reviewable codewords where 0 < Z < 2P

Clearly, this differs from Pyndiah’s method in several places. First of all, the received
vector is sent as is into the suboptimum decoder and returns what will later be used
as the decision for the LLR calculations rather than using Equation (3.5). This step
is important because a hard decision is not made on the received vector. Instead, we
use all the channel information and trust that the soft-decision decoder will produce
a worthy decision D. Another major difference is the manner through which the
list of reviewable codewords is obtained. Evidently, it is probably quicker and less
complex to just make a hard-decision on R and then create the test patterns by simply
modifying the signs of the unreliable bits. However, by sending these potential test
patterns through the decoder (as listed in step 4 above), we are obtaining a better
set of reviewable codewords to calculate the a priori and extrinsic information that
is vital in the overall turbo decoding process.

Once we have the decision D as well as the set of reviewable codewords, we can
now verify the reliability of each component of D and compute the soft-decision at the
output of the soft-input decoder. Now, we conduct a search for a codeword, belonging
to the subset of codewords (see step 5 above), that is at minimum Euclidean distance
from R such ¢; # d;, where 0 < j < m xn. If such a codeword can be found amongst

the subset, the soft-output of bit d; is given by:

J

ro= (M) x d; (4.8)
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where MP is the Euclidean distance between the decision D, and the received code-
word R and M€ is the Euclidean distance between the found codeword C and R. If
we cannot find a codeword belonging to the subset such that ¢; # d; or if there are
no codewords belonging to the set of reviewable codewords, the following relation is

used:

7‘;- = T'j‘Fﬁde (49)

It is easy to see that Equations (4.8) and (4.9) are very similar to Equations (3.8)
and (3.9) of Section 3.3.4. One could notice that in (3.9), the estimated normalized
LLR of the decision is calculated using only the reliability factor B and the decision
bit. This is slightly different from (4.9) in which the estimated normalized LLR of
the decision is calculated using (3, the decision bit and the soft input bit. When
determining the soft decision, it would seem only reasonable to take into account the
most likely decision as well as other factors which include the previous soft input.
While [38] does not include the soft-input in their formulas, [40] does and it was
determined through experiment that the performance results obtained are better

when using Equations (4.8) and (4.9).

4.3.2 Selecting p

If we are hoping to always find the ML codeword, then it would be best to set

p in such a way that all possible codewords are verified. If this were the case, we
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would always find the most likely codeword. The only problem here is that with
longer codes, this is a waste of time as well as an unnecessary increase in system
complexity. In the above description of the steps, it was stated that p, in this thesis,
has been set to a value of 5. Consequently, there is 27 = 2% = 32 potential test
patterns which will each be decoded using the suboptimum algorithm. Even when
the iterations have made the information more reliable, this process will continue
to decode 32 potential test patterns for each row and column of the product code
until the final iteration and the next product code is sent for decoding. Therefore, if
we are considering the (15,11, 5)RS code, for each row, there would be 32 potential
test patterns created as well as the decision D. This means a total of 33 words sent
into the suboptimal decoder. After 4 full iterations (i.e. row and column decoding),
this means that a total of 3960 codewords have been sent into the proposed decoder.
Even though the decoder was seen to produce effective results in Section 4.2.3, it is
still unreasonable efficiency-wise to decode all those words to obtain the decoding of
one product code. If p was set to 4, the number of words to be decoded would be
2040. If p were 1, there would be 360 words to decode. Complexity-wise, this last
value of p would be the most favorable. However, it would also rarely be able to
produce reliable decisions from the decoding process.

It should be observed that as the iterations increase, the reliability of our decisions
should be getting better. Therefore, it would be wise to take advantage of our
previous decodings (in the lower iterations) to render our system more efficient (in
the later iterations). If we continuously search out the least reliable bits even when

they are not unreliable, we are wasting valuable time to the decoding of unnecessary
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words. Let us look at an example assuming we have a codeword length of 6 and the

following received sequence:

Yinitisl = [ 0.89 —0.01 —1.24 0.04 0.95 —0.98 ]

and let us also assume that p = 3 Therefore, we would take the 3 least reliable bits
out of these 6 and create 2% potential candidates. The 3 least reliable bits in terms
of absolute value would be |0.89|, | — 0.01], |0.04| corresponding to bits 1, 2 and 4,
respectively. Although it is already clear that 0.89 is most probably a +1. Assume

that three iterations have gone by and the vector is now:

Yiteration=3 = [ 1.75 —0.72 —1.80 —0.94 1.56 —2.24]

For this vector, the three least reliable bits are | —0.72|, | — 0.94] |1.56| corresponding
to bits 2, 4 and 5. Now, most of the bits seem to be converging to either a +1 or a
-1. Despite this, there will still be 23 words that will be sent through the decoder at
this stage. This should make it clear why it becomes redundant to the point of being
wasteful to maintain a fixed value of the parameter p.

It is the contention of this thesis that by setting an upper limit on p and then
looking for at most p least reliable bits that fall within a preset range of reliability
that we can save time in decoding the product code. Again, let us refer to the example

from above. Assuming we set this range to look for any bit that lies within —0.2 <
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ly;] < 0.2, then initially, the bits which would be modified would be | — 0.01], |0.04].
This would produce 4 vectors to be decoded. Then, after 3 iterations, when looking
at Yiteration=3, there is not any bit that lies within our initial range and thus, there
are no additional vectors to be decoded and the next row/column of the product
code will now be checked. This saves a lot of time in addition to taking advantage
of the reliabilities of the decisions made after each iteration. Thus, as the number
of iterations increase, the bits will begin to converge and stray away from the preset
range. This will reduce the decoding time as opposed to the methods described in

36, 37, 38].

4.3.3 Simulation Results

Using the methods described in Sections 4.3.1 and 4.3.2, the simulation of the

(15,11,5) x (15,11,5) RS Product code was carried out. This product code has the

following properties:

11 11
rate r = —lgxig—().53778, d=5x5=25

Figure 3.6 of Section 3.3.4 is still a good representation of the decoding process
where we still need the weighting factor « as well as the reliability factor 8. Simula-

tions that have been performed used the following values for these variables:
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a(m) = [0.0,0.2,0.3,0.5,0.7,0.9,1.0, 1.0]

B(m) = [0.2,0.4,900.6,0.8,1.0,1.0,1.0,1.0]

These variables can be modified slightly without experiencing a noticeable degrada-
tion in the overall system performance. Also, the value of the preset range through
which the set of reviewable codewords is created is —0.1 < |y;| < 0.1 Obviously, the
larger this range is made, the higher the decoding complexity is made. The num-
ber of iterations used for obtaining the results was 4. For each additional iteration,
the complexity still increases while for a BER of 107, the improvement in terms
of Ey/N, becomes small enough to make these additional iterations unnecessary. In
Figure 4.9, the BER of the (15, 11, 5)? product code using the proposed algorithm is
shown. We can see that the coding gain improves between each of the 4 iterations.
Looking specifically at a BER = 1075, there is a gain of 1.2 dB, 0.45 dB and 0.1 dB
between the 1% and 4™ iteration. After iteration 4, there is not much coding gain
because the slope of the curve is already too steep. In Figure 4.10, the BER versus
signal to noise ratio of the simulated RS turbo code and a similar RS turbo code
simulated using Pyndiah’s method are shown at the 4" iteration. At BER = 1075,

there is a coding gain of approximately 0.63 dB.
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The two following figures illustrate the success in merging a soft-decision decoding

algorithm for RS codes into the iterative decoding process of RS product codes.
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Performance of (15,11,5)x(15,11,5) RS Product Code

Uncoded
lteration (1)
lteration (2) |]
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Figure 4.9: Performance of (15,11,5)? RS Product Code
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Figure 4.10: Performance of Proposed Iterative Decoder
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4.4 Summary

This chapter presented the details of the proposed algorithm. This began with
the description of a method to make a maximum likelihood soft-decision decoding
algorithm for RS codes suboptimum while, at the same time, maintaining decent
performance values. Then, a method for applying this type of suboptimal decoder in
the iterative decoding process was also explained in addition to a discussion on the
selection of the variable p that determines the number of test patterns to be created
and used as competing codewords. We also discussed the importance of not setting a
fixed value for p which reduced the overall decoding complexity significantly. Looking
at the results obtained for the (15,11,5) x (15,11,5) RS product code, we can say
that the algorithm is an improvement over already-existing algorithms for similar

error-correcting codes.



Chapter 5

Conclusion

In communication systems design, the complexity of the decoder is the main ob-
stacle in our quest to use powerful codes. This is explained by the fact that in most
cases, the primary desire is for the communication system to be inexpensive. Using
a powerful code in transmission has the advantage that the probability of resending
data because of a noisy message is lowered. By decreasing the number of retrans-
missions, we are effectively minimizing the time needed for reserving the available
bandwidth for each transmission. This is especially important when the bandwidth is
limited. The major goal of this research was to develop a performant SISO iterative
decoder using a secondary decoder. We started by introducing the error-correcting
code used throughout this work, namely, the Reed-Solomon Code. An introduction
into the existing decoding methods for RS codes was also reviewed, which included
both hard and soft decision algorithms. Then, we looked at another error-correcting

code formed using RS codes, the product code. The history as well as several meth-

89
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ods currently used to decode these types of error-correcting codes were examined.
After having discussed these topics, we were then presented with the problem of
incorporating one algorithm into another in order to better the performance of the
iterative decoder. This process was composed of two steps: reducing the complexity
of the RS soft-decision decoder and incorporating this reduced complexity decoder
into the RS Product code iterative decoder.

For the first step, instead of optimally searching for the maximum likelihood coset
pattern for each RS codeword, we decided to put a constraint on the amount of levels
being checked by the algorithm. Also, a decoding failure was not immediately stated
if this level had been reached without satisfying the conditions of the search. Instead,
the coset pattern which had been found to have the minimum Euclidean distance up
to that point is used for the remainder of the decoding process. The process of placing
a constraint on the levels checked showed a degradation in performance of about 0.2
dB when compared to the ML algorithm for the same code. This was deemed an
acceptable trade-off between complexity and performance.

For the second step, the major concern was to find a suitable way to create the test
sequences using the suboptimal decoder. Although the Chase decoder has been used
successfully in the iterative decoding process, it is a hard-decision decoder and could,
theoretically be improved upon. By using the suboptimal SD decoder to obtain the
test sequences, we would hope to get better performance from the codes. Another
important step was in determining the effect of least reliable bits p. We saw that
by just setting an upper bound on this value, we are actually taking advantage of

the previous decoding steps and thus, saving in terms of complexity. Because of this
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method of searching for the least reliable bits in a range, not all the rows and columns
need to be re-decoded at each iteration. The decrease in complexity associated with
this feature as opposed to using a fixed number of test sequences throughout the
entire decoding process is huge. The simulation results for the proposed iterative
algorithm of the (15,11,5) x (15,11,5) RS product code were seen to exhibit a better
performance than a similar code as well as a coding gain after each iteration.

Many parts of this thesis can be extended into future work. It would be useful
to investigate how these simulations could be adjusted to perform testing on various
other communication channels besides AWGN such as fading channels. In addition,
performance of longer and more powerful block codes could be carried out. Another
interesting area would be the hardware implementation of the proposed algorithm

and the complexity analysis of carrying out such an implementation.
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