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Abstract

A technique of designing Two-Dimensional Recursive Filters
with Flexible Characteristics

Himanshu Bhupendrabhai Shah

Different kinds of two-dimensional recursive filters are used in signal processing
and pro-imagining processing process and communication systems where flexible
frequency responses of the digital filters are necessitated.

The focal intention of this thesis has been to propose a technique of designing
different kinds of 2-D recursive filters with adaptable properties. From the 2-variable
existing VSHP (Very Strictly Hurwitz Polynomial), a 2-D digital transfer function has
been obtained through the application of the double generalized bilinear transformations
with some changeable coefficients. 2-D LPF and 2-D HPF are designed from this 2-D
transfer function, and the frequency response of either of them changes when one or more
of these coefficients change.

Other t wo i mportant t ypes o f 2 -D digital filters, 2-D b and-pass filters and 2-D
band-elimination filters could also be achieved by combining a 2-D LPF and a 2-D HPF.
One of them, 2-D band-pass recursive filter has been designed in this thesis work.

The manner how each coefficient of the designed filters affects the frequency
response is analyzed in detail with simulation results — 3-D amplitude plots and 2-D
contour plots. We also derived required constrains for each case to obtain a stable

response.
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1. INTRODUCTION

1.1 General

2-D digital filters are increasingly being used in many applications in modern day
devices, soft-wares for the processing of spatial data (e.g. radar arrays, image arrays,
biomedical data arrays, geographical data arrays etc.) in order to fetch some desired
information from a 2-D data array. This leads to the focusing of considerable research
efforts in studying 2-D digital systems. [1-4]

Interest has been directed by researchers into the area of 2-D digital systems due
to several reasons: high efficiency due to high speed computations, permitting high
quality image processing and analysis, great application flexibility and adaptability,
decreasing cost of software and hardware. The 2-D digital systems perform important
operations which include: 2-D digital filtering, 2-D digital transformations, local space

processing, data compression and pattern recognition. [2, 3]




Digital filtering and data transformations play important roles in preprocessing of
images, performing smoothing, enhancement, and noise reduction. [2, 3] In many of the
applications of 2-D filters, variable filter frequency response is required in terms of
bandwidth and gain of the system; hence researchers have shown particular interest in 2-

D digital filters with flexible characteristics.

1.2 2-D digital filter types

Similar to 1-D digital filters, 2-D digital filters can be classified into two distinct
types: Finite Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters.
FIR filters are also known as nonrecursive digital filters. On the other hand IIR filters are
known as recursive digital filters. [1-3]

A nonrecursive digital filter is the one whose impulse response possesses only a
finite number of nonzero samples. For such a filter, the impulse response is always
absolutely summable; and therefore FIR filter is always stable. Formally, a 2-D FIR filter

can be characterized in the z domain as A/ (z1 R zz) , where

N Ny

H(Zl’zz)=szg'Z;zg’ (1.1)

i=0 j=0

where, X is a real constant.

Similar to 1-D FIR filters, the main properties of 2-D digital filters are precisely linear
phase and the advantage of being very well understood. FIR filters have zero-phase
property hence, the design problem is simplified. Along with that, the symmetry
constraint on the impulse response of the filter can be exploited in the implementation of

the filter.




AnTIR (Infinite Impulse Response), or recursive, filter is one whose input and
output satisfy a multidimensional difference equation of finite order. These filters may or
may not be stable, but in many cases they may be less complex to realize than equivalent
FIR filters. Formally, a 2-D FIR filter can be characterized in the z domain as H(z,, z, ),

where

M, M,

(Z Z) zzymnzlizg
122

Hlz,,z,)= oina) L F (12)

D(Zl’z2) %ixvyzlfz{

i=0 j=0

where, X, =1,X; and Y, are real constants.

1.2.1 2-D recursive filters

The 2-D IIR filter does not have the phase linearity feature of the 2-D FIR filter
but it substitutes this limitation by providing an improved magnitude frequency response.
Because of the feedback structure of the 2-D IIR f;JIter, it allows passing the desired
frequency domain behavior and attenuates the undesired one. 2-D Recursive structure has
reduced c omputational complexity over that of the nonrecursive filter form, e.g. fewer
arithmetic operations, smaller memory requirements etc, so it seems more suitable with
small-scale hardware implementations. And for these reasons, 2-D IIR filters are widely
used in communications, controls, biomedicine, geophysics, vibration analysis, radar,
sonar and so on, where high performance frequency selectively is required. And this
widespread application of recursive filters motivates more researchers to study the

different properties, e.g. variable magnitude response, phase response and group delay, of




such filters. Though, the stability testing is one of the prime issues in 2-D recursive
filters. [2, 3, 4, 10]

From a practical viewpoint, a realizable 2-D recursive digital filter must produce a
bounded output ifstimulated by a bounded input. Similarto the case ofa 1-D digital
feedback filter, a 2-D recursive filter can be unstable. The output array can be
unbounded, though we give a bounded input array. Hence, in order to assure the stability
of the 2-D recursive filter, we need to put constraints on the coefficients of the 2-D

recursive filter. The coefficient of the denominator D(z,,z,) determines the stability of

the 2-D recursive filter. The stability criterion for the filter is given by following theorem,

Ny N o
S X,z £0; |5 <1n]n|<1 (13)

=0

D(szz)=

1
i=0

.

“In other words, if there are any values (real or complex) for z, and z,, for which
D(z,,2,) is zero and for which z, and z, are simultaneously less than or equal to one in
magnitude then the filter 1/D(z,,z,) will be unstable. If there are not any, then
1/ D(z,, z,) will be stable.” [6, 7, 8, 9]

In the early age of designing of 2-D recursive filter, one can divide design approaches
into two noticeable groups, those involving spectral transformations [11-13] and
parameter optimization. [14-16]. Usually, a spectral transformation must have the
following characteristics.

¢ It must produce an IIR stable transfer function from a stable transfer function.

e It must transform a real rational function into a real rational function.

e It must preserve some basic characteristics of the magnitude response.




After keeping these characteristics in mind, one can design a 2-D recursive filter
using 1-D analog or digital filters or 2-D analog or digital filters. These kinds of filters
are also known as rotated filters because they are obtained by rotating 1-D or 2-D filters.
Parameter optimization technique is also called as approximation technique. In this kind
of approach, the first step consists of choosing an approximating function. Then the
problem mathematically is formulated and the optimization technique is developed to the
design filter. Most of the designs mentioned above have quite typical design methods and
limited filter forms. This limitation in the frequency response opened a new era in
development of more simplified and flexible designs.

Most of the existing design methods for 2-D recursive filters have variable frequency
domain characteristics based on frequency transformations. [17-19]. And using these
methods all kinds of filters, e.g. low pass, high pass, band ﬁass and band elimination, can
be designed with variable cutoff frequencies. But when more complicated and detailed
variable specifications are given, these methods fail because of the intrinsic limitations of
the frequency transformation.

Another general approach to design 2-D recursive filter is to start with a two-variable
Strictly Hurwitz Polynomial (SHP). “D,(s,,s,) is known to be a SHP, if 1/D,(s,,s,)
does not possess any singularities in the region
{(s1 ,5, )| Re(s,) = 0,Re(s, ) > O,where|s1| <oc and[szl < oo}”. SHP contains all its zeros

strictly in the left-half of s-plane. After generating a SHP, apply that SHP to the
denominator of a referenced 2-D analog filter wherein the SHP coefficients are used as

the variables of optimization for a guarantied stable 2-D analog filter. Then, a stable 2-D




recursive filter is obtained by applying the bilinear transformation S ——)G_—Z) to this
+z

2-D analog filter. [20]. But in this designed 2-D recursive filter if non-essential
singularities of the second kind' will show up on the closed unit circle of (z1 ,zz) biplane,
then the filter may be unstable. [23]
And to overcome these stability problems, the analog transfer function must meet the
following conditions.[26, 27]
e Transfer function must contain its zeroes strictly in the left half of the s-plane.
e Transfer function does not posses non-essential singularity of the first kind®
because its occurrence always results in an unstable filter.
e Transfer function does not posses non-essential singularity of the second kind
because its occurrence may cause instability.
This argument leads us to a new kind of polynomial called “Very Strict Hurwitz

Polynomial” (VSHP). [26]

1.3 “Very Strict Hurwitz Polynomial” (VSHP) and 2-D recursive
filter design [26]

“A polynomial D,(s,,s,) is known to be a VSHP, if 1/D, (s,,s,) does not
possess any singularities in the region of 2-D plane(S,,S,) such that,

{(s1 ,5, )| Re(s,) = 0,Re(s,) > 0, where|s1| <ec and[szl Soc}”

! Where the relatively prime numerator and denominator polynomials share a common zero, the transfer
function is said to have a non-essential singularity of the second kind.

2 Where the relatively prime numerator polynomial is non zero and denominator polynomial is zero, the
transfer function is said to have a non-essential singularity of the first kind




After carefully reviewing this definition, one can say that a VSHP must be a SHP. So,
one can generate 2 VSHP from a SHP after making sure of the absence of any kinds of
singularities at points of infinity. The points of infinity are studied by taking into account

the reciprocal of the variable. In a 2-D plane(S,,S,), considering two complex planes, S,

and §,, the points of infinity can be divided into three classes:

e S, =finite and §, = infinite (1.4a)
e §,=infinite and §, = finite (1.4b)
e §,=infinite and S, = infinite (1.4¢c)

1.3.1 Some properties of VSHP

In this section, we discuss some of the important properties of VSHP. We can

express a 2-D analog transfer function H,(S,,S,) as,

H,(S,,S,) = Na(50,5,) | (1.5a)
D,(S,,5,)

where,

N,(S,,8,)=>">"B,S/S] (1.5b)
i=0 j=0
k1 L

D,(8,,8;,) =D > 4,8/S] (1.5¢)
i=0 j=0

By applying the transformation to the value of the function on each of the three points
defined in (1.4a-1.4c), it can be shown that k > m and I > n. And if this is true then no

kind of singularities exist at the set of points of infinity in the closed right-half of the

(S,,5,) biplane. [23] So after assuming k > m and 1 > n, one can state the following

properties.




. The transfer function H_(S,,S,) does not possess any singularity in the closed right-
half of the (S1, S;) — biplane, if and only if D,(S,,S,) is a VSHP where, the closed

right-half biplane is {(s,,s, )| Re(s,) = 0,Re(s,) > 0, where]s,| <oc and|s, | <oc}

D(S,,S8,) =[D,(S,,5,)] . [D,(S,,S,)] shall be a VSHP, if and only if D,(S,,S,)

and D,(S,,S,) are individually VSHPs.

oD, (S,,5,) |, D, (5,S)

are also VSHPs.
oS, oS,

. If D,(S,,S,) is a VSHP,

We can always write D,(S,,S,) as
D,(S8,,8,)=E,(8,)S{ +E, (8,)S/" +..+E, ()87 +E(S,)S, +E,(S,) (1.6a)
or

D, (8,,8,) = F,(S,)S% + F,,(S)SI™ + ..ot F,(8,)S2 + F,(5,)S, + F,(S,)  (1.6b)

. The polynomials Ei(S,), i = 0,1,2,....,p and F;(S;), j = 0,1,2,....,q defined in above

equations are SHPs in S; and S, respectively.

k1 o
. If a real two-variable VSHP can be written as D, (S,,5,) = ZZA,.].SI’ S;, then the

i=0 j=0

coefficient 4,4, >0 foralliandj.




6. Each of the functions

1=1,2, ..., p, is a minimum reactive positive real

F,(s)

function® in S,. Similarly, each of the function——j—(——j, where j = 1, 2,....q is a
FI\M1

minimum reactive positive real function in S;. [26, 27]
After revising the previous techniques [21, 22}, it is guaranteed that the polynomial in the
denominator of the analog filter does not have any non-essential singularities of the
second kind at all time, which means a stable 2-D analog filter. This can be achieved via
the constraints for the denominator of the filter to be a VSHP as a consequence of the
variables of optimization. Though, this guarantee bears a profound price in calculation. If
we use the various properties of VSHP discussed above, then it is possible to generate
such polynomials. [28-31] And once we have a stable 2-D analog filter, we can easily
develop a ensured stable 2-D recursive filter by applying double bilinear transformations

to the 2-D analog filter.

1.4 Generalized Bilinear Transformation

The bilinear transformation maps the entire “(S,, .5, ) biplane” (analog domain) on
the entire “(z,,z,) biplane” (digital domain) on a one-to-one basis. As a result, by the

—Zl

andS2—>1_

C . . 1
application of the double bilinear transformation (.S, - ) one can
+z, 1+2z,
3 , : pP(s) . N . , ”
A rational function F'(S) = w with real coefficients is called a minimum reactive positive real

function, if and only if
e P(S)+Q(S)isaSHPinS
e ReF(85)=0 for Re(S) 20

e It has no poles or zeroes on the imaginary axis of S.




change the domain (e.g. from analog to digital) with the same functional behavior. Usage
of this principle is one of the most common methods to design a stable 2-D recursive
filter from existing stable 2-D analog filter. However in order to design a 2-D recursive
filter with variable characteristics and more flexibility, it would be better to introduce a
new generalized bilinear transformation with changeable coefficient in the digital filter
transfer function. [32, 33]

A generalized bilinear transformation can be defined as

S; —>k,-“z"+a°", i=1,2 (1.7)

z; + by,
After applying the above transformation, one can change the value of %;,a,, and b, in

order to vary the characteristics of the designed 2-D stable recursive filter (e.g. low-pass
or high-pass filter with different cutoff frequencies). However there are some restrictions

as a penalty for the ensured stability in the designed filter. For k,> 0, the condition for

the generalized bilinear transformation to an analog transfer functions are:

la, <1 (1.8a)
b <1 (1.8b)
ayby; <0 (1.8c)

After carefully reviewing this condition, without loss of any generality we can assume

k,to be positive and a,; andb,, are opposite in signs. As well, when we map from an
analog domain to the digital domain, the imaginary axis in (S,,S,) biplane will be

mapped to the unit circle in the (z,,z,) biplane, and the left-half of the (S,,S,) biplane

10




will be mapped to the inner part of the unit circle, and the right-half of (S,,S,) biplane

will lie outside of the unit circle of (z,, 2, ) biplane. [31]

1.5 Symmetry in the 2-D magnitude response

There might be different kind of symmetries present in the frequency responses of
2-D systems. Usually, the values of the desired filter response at the different points of
the frequency domain are interrelated in a certain symmetrical way. One can use this
interrelation feature of the 2-D system to reduce the complexity of the design and the
implementation of 2-D recursive filter. In this section, we study the possible frequency
domain symmetries that result in savings in the filter design and implementation

complexity. [34 - 38]

1.5.1 Reflection symmetry about axis

Figure 1.1a and Figure 1.1b show reflection symmetry about axis. A 2-D magnitude
response has reflection symmetry about axis, if the two-variable transfer function

H(w,,,) satisfies the following conditions:
o Reflection symmetry about @, axis:
H(a)l,a)z) = H(a)1 ,—wz), ‘v’(a)l,a)z) (1.9a)
o Reflection symmetry about w, axis:

H(o,0,) = H(- 0, 0,), Y(o,,o,) (1.9b)

11




D—

(a) ©

® @4

©
Figure 1.1: (a) Reflection symmetry about o, axis, (b) Reflection symmetry about

o, axis (c) Reflection symmetry about w,=w, diagonal (d) Reflection symmetry about
o, = -, diagonal (¢) Centro Symmetry.

1.5.2 Reflection Symmetry about Diagonal

Figure 1.1c and Figure 1.1d show reflection symmetry about o,=w,or

o, = —m,diagonal. To posses this kind of symmetry, the two-variable transfer function

H (a)1 ,@, ) must satisfy the following conditions:

e Reflection symmetry about o, =w, diagonal

12




H(a)l,coz)= H(a)z,a)l), ‘v’(a)l,a)z) (1.10a)

o Reflection symmetry about @,=-w, diagonal

H(w,,0,) = H-wo,,~0,), Y(o,,0,) (1.10b)

1.5.3 Centro Symmetry

Figure 1.1e shows Centro symmetry characteristic. It is also known as twofold
rotational symmetry (rotation by180°). To reflect this kind of symmetry in the counter

response, the two-variable transfer function must meet the following conditions:

H(wl’w2)=H(—wn"w2)’ V(wvwz) (1.11)

)

Figure 1.2: (a) Quadrantal symmetry, (b) Diagonal symmetry, (c) Four-fold rotational
symmetry, (d) Octagonal symmetry. [37]
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1.5.4 Quadrantal symmetry:

Quadrantal symmetry is common in 2-D recursive filter and is shown in Figure
1.2a. One can say that a magnitude response has this kind o f symmetry if the s ystem
transfer function complies with the following condition

H(o,0,) = H(-0,,~0,)=H(o,~0,)=H(-0,,0,), Y(o,,0,) (1.12)
In the designing of a 2-D recursive filter with this symmetry; the first step is to start with
the magnitude response in the first quadrant. And then reflect the response in the second,

third and the fourth quadrant using the symmetry techniques mentioned above.

1.5.5 Diagonal Symmetry

If the 2-D transfer function has reflection symmetry about o,=w,and
o, = -, diagonal with Centro symmetry, it becomes diagonal symmetry. The diagonal

symmetry is shown in Figure 1.2b. The necessary condition to reflect this kind of
symmetry is when the transfer function satisfies the below condition

H(w17w2)= H(_wl’_a)z)=H(w2:“w1)=H(—a)27wl)’ V(wlaa’z) (1.13)

1.5.6 Four-fold rotational Symmetry

Figure 1.2c shows the four-fold 90° rotational symmetry. If the transfer function
meets the following condition, then one can say “four-fold rotational symmetry” is
present in the frequency response of 2-D recursive filter

H(a)l,a)z)= H(_a’w—a’z)=H(_0’270)1)=H(wza—wl): V(a’va’z) (1.14)

14




We can also say that Quadrantal symmetry is four-fold reflection symmetry about

o, and w, axes, and Diagonal symmetry is four-fold reflection symmetry about the +45°

lines in(w,,w, ) plane.

1.5.7 Octagonal Symmetry

The characteristic of octagonal symmetry is shown in Figurel.2d. Octagonal
symmetry possesses both quadrantal and diagonal symmetries. And, from whatever we
discussed so far, one can say that octagonal symmetry also includes four-fold rotational
symmetry. The necessary condition for appearance of octagonal symmetry in the
magnitude response is on the next page

H(a)l,a)z) = H(— o,,~0,)=H(- a)z,—a)l)=H(a)2,a)1)=H(col,—a)2)

=H(-0,,0,)=H(-0,,0,)=H(0,,~,), V(o,0,)  (1.15)

1.5.8 Circular Symmetry

In many applications of the 2-D recursive filter, e.g. image processing, the signal
does not have any specific spatial direction, hence the transfer function of such filters
possess circular symmetric frequency response characteristic. A four-fold rotational

symmetry is an example of the 4™ order circular symmetry.

1.6 Objective of this research

In this research, we will concentrate on a new method of generating 2-D stable
recursive filter with variable magnitude response in the frequency domain. The two main

objectives are:

15




e Design a stable 2-D digital filter whose transfer function has one or more
changeable coefficients.
e Investigate how those coefficients change the filter type of and the frequency
magnitude response of the filter.
Previous m ethods o f d esigning 2 -D r ecursive filters have many problems discussed in
section 1.2. 2-D recursive filter has a widespread application and many real time
applications need the flexibility in the frequency domain. As a result, researchers are still
motivated to explore new methods to design 2-D recursive filter with more flexibility and
variable characteristics. For this purpose, we use the generalized bilinear approach to
develop the digital filter. Stability is one of the main problems in the recursive filter
designing; hence we also study the stability conditions for the developed 2-D recursive

filter.

1.7 Organization of the following chapters

Chapter 2 lists the previous studies done in designing of 2-D recursive filters,
stability criteria, different methods of generating VSHPs and different kinds of
symmetries in the magnitude response of the filters.

Chapter 3 first explains a method to get a two-variable analog transfer function
using one of the methods of generating VSHPs. It also discusses how we get the 2-D
digital transfer function with variable magnitude characteristics after applying the
generalized bilinear transformation to the analog transfer function

In Chapter 4 using the 2-D digital transfer function derived in Chapter 3, we

design a 2-D recursive low-pass filter with variable magnitude response. We also derive
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the stability conditions for this kind of filter. The manner in which each coefficient
affects the magnitude response of the filter is studied in detail and simulation results are
given.

Chapter 5 shows a designing method of a 2-D high-pass recursive filter with a
flexible frequency domain response using the same 2-D digital transfer function derived
from Chapter 3. The variable coefficients in the transfer function of the filter are
constrained by the stability condition introduced in Chapter 3. The effect of each
coefficient on the resulting 2-D high-pass digital ﬁltér’s magnitude response is
investigated in depth.

Chapter .6 shows the procedure of designing 2-D band-pass filter by cémbining
double generalized bilinear transformation for LPF and HPF with stability criteria. We
also determine the effects of some of the coefficients of this filter on the frequency
response.

Chapter 7 reviews the study coﬁducted in this research with our contribution and

suggests what can be done as further study.
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2. LITERATURE REVIEW

In this chapter, we review the literature in the field of two-dimensional recursive
filter with special concentration in designing via bilinear transformation. And we also
study some papers presented on some approaches of generating a 2-variable Very Strict
Hurwitz Polynomial (VHSP) and its application.

Extensively used applications, which required use of two-dimensional signal
processing, increased the demand for designing two-dimensional filters, and it compelled
researchers to s witch from o ne-dimensional filters to t wo-dimensional filters. In d epth
studies have been done in the field of designing two-dimensional filter since the
early1970s.

Similarly for 1-D filters, scientists started studying on both recursive and
nonrecursive two-dimensional filters. Hall [10] did the comparison between these two
kinds of filters for calculations for spatial filtering. He suggested that recursive filters are
best fitted in the spatial data applications, because of their reduced computations

complexity over that of nonrecursive filters, e.g. fewer arithmetic operations, smaller
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memory requirements, etc. as well as, the recursive structure seems more suitable with
the realization of small-scale hardware.

One of the prime issues with the 2-D recursive filter is the stability. Hence, much
progress has been done in developing stability criterions in mid 70s. Shanks, Treitel and
Justice [6] gave the general theorem for stability of multidimensional filter with
examples. They have shown that two-dimensional recursive filter would be stable only if
the denominator array of the filter has minimum phase® characteristic. They had also
demonstrated how to make a non-minimum phase array stableiwith examples. Because
Shanks’ procedure is not finite, Huang [7] came out with an easier version of the stability
theorem with a finite procedure, which requires bilinear transformation.

Anderson and Jury [8] developed a new stability technique for 2-D recursive
filter, which is almost same as Huang’s technique [7]. They replaced Hurwitz testing idea
of Huang with the S chur-Cohn and related theory. M aria and F ahmy [ 9] presented an
alternative stability test, which requires less computation with the case of Huang [7]
because of the lower order of the determinants. Ramachandran and Ahmadi [41, 42] have
also shown some stability tests, which can be performed using mirror-image and anti-
mirror image polynomials.

Costa and Venetsanopoulos [11] discussed some basic concepts of 2-D recursive
filter and used Shanks’ method [6] to develop rotated filters® with stability conditions.
They have shown few examples of designing 2-D recursive filters with a chosen cutoff

frequency via circular symmetry. Chakrabati and Mitra [12] have shown two different

* An array H is two-dimensionally minimum phase if and only if the polynomial H (Z1 ,Z,)=0has no

zeroes for which |le <land |Zz| <1 simultaneously.

% Rotated filter is the one which is designed by mapping one-dimension into two-dimension with based on
desirable 2-D frequency response.
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design methods for 2-D digital filters, using spectral transformation. The first type is a
rotation of 1-D filter into 2-D digital filter and second type shows the designing of 2-D
digital filters using 2-D transfer functions. Ali [13] used the type I-A design approach of
Chakrabati and Mitra [12] and designed 2-D recursive filter from 1-D analog filter with
examples.

Maria and Fahmy [14] proposed a technique for designing a stable 2-D recursive

230 for

filter via an optimization algorithm, which uses “minimize the p-error criterion
stability, with many solved examples. Bednar [15] used rational Chebyshev

approximation which minimizes the difference between the desired function

F(z,,z,)and the rational function A(z,,z,)/B(z,,z,), where A(z,,z,), B(z,,z,) are
two-dimensional polynomials such that 1/B(z,,z,) is stable.

Ramamoorthy and Bruton [20] have suggested a general approach to design a 2-D
recursive filter by applying a bilinear transformation to a stable 2-D analog filter. And
they have also shown that we can design a stable 2-D analog filter using a 2-variable
Strictly Hurwitz Polynomial (SHP). Prasad and Reddy [21] and Ahmadi et al. [22] have
followed the same technique shown by Ramamoorthy et al [20] and designed 2-D
recursive filters by applying double bilinear transformations to a stable 2-D analog filter.

Goodman [23] has shown that applying the double bilinear transformation to the
stable 2-D analog filter will not always guarantee the stability of the designed filter,
because of the presence of non-essential singularity of the second kind. He states that if
the numerator of the analog filter transfer function has higher degree than the

denominator then, the transfer function does not possess any kind of singularity and vice-

® Minimizing p-error criterion ensures that the chosen distance function © is the best approximation or the
chosen approximation is the best fitted for the real-valued function, which gives minimum p-error.
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versa. Bickart [24] gave two criteria to check the existence of the non-essential
singularities of the second kind. As a result Rajan , Reddy et al [26] introduced a new
kind of SHP which does not contain any kind of singularities, e.g. first kind or second
kind, namely VSHP and showed that a 2-D analog filter always will be stableifitis
implemented by a VSHP. And this 2-D analog filter will generate a guaranteed stable 2-D
recursive filter via double bilinear transformation.

Ramachandran et al. [28-31] designed many stable 2-D recursive filters by
generating VSHP using different methods. They showed that it is possible to design
different kind of 2-D recursive filters by assuming value for some variables in the 2-D
digital transfer funtion. Using the properties of 2-variable frequency independent n-port
networks and the properties of the determinants of the immittance matrix, Ramachandran
and Ahmadi [28] came up with a new method of designing a VSHP, which is called
VSHP generated via terminated n-port gyrator networks. Using this VSHP, they designed
a stable 2-D digital filter. The number of conditions shall be equal to the number of
coefficients in the denominator polynomial.

Ramachandran and Ahmadi [29] designed another VSHP using the properties of
the derivative of Even and Odd parts of Hurwitz Polynomials and designed a stable 2-D
discrete filter using the VSHP. This approach does not necessitate any constraint
optimization method and can be extended to multidimensional. Abiri, Ramachandran and
Ahmadi [31] presented how to generate a VSHP using the matrix theory. They have also
showed that it is possible to design a stable 2-D digital filter with desired magnitude

response using this technique. This method is also expandable to multidimensional digital
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filters. This is one of the important researches for this thesis because we use the same
matrix theory to generate a VSHP.

Till late 90's in the field of designing two-dimensional recursive filter, most
studies were done in a very few specific manner to design a 2-D recursive filter without
any flexibility in the frequency response. And this gave motivation to design a more
simplified and flexible system.

Mitra, Neuvo and Roivainen [17] developed a quite effective method of designing
2-D recursive filters with desirable tunable characteristics, e.g. cutoff frequencies and
central frequency, via single variable coefficient in the transfer function. And for
frequency transformation, they used the Taylor series expansion theory. The simulation
results show that this method is very efficient for elliptical filters. Gargour and
Ramachandran [18] designed variable magnitude 2-D recursive filters without having
delay-free loops. To keep the proposed design stable, the variable coefficients in the
design are bounded in certain limits. They also noticed different kind of symmetries in
the simulation results, which depend on the value and the sign of the variable coefficient
of the system.

Ramachandran and Gaugour [27] derived the various properties of VSHP and
proved them carefully. They also showed how these properties could help in generating
VSHPs. There are very wide possibilities of generating VSHPs. They have also
illustrated how to design different kinds of stable 2-D digital filters using any of these

generated VSHPs, and explained the process in detail with many examples.
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Gaugour and Ramachandran et al. [25] introduced one more technique of
designing a very promising stable 2-D recursive filter with variable characteristics. By
adding a multiplier K as a changeable variable either in the feedback path or in the
forward path to the stable 2-D digital filter, one can get the variable characteristics of the
filter. Because the stability criterion determines the range of K, sometimes it is
impossible to achieve desired frequency portion.

The research work of Gaugour and Ramachandran et al. [32] is important in this
research, since we also use the same methodology to design stable 2-D recursive filter
with variable characteristics, while they have designed 1-D IIR discrete filter via the use
of the general bilinear transformation to a starting analog filter transfer function. They
have also given a theorem to determine certain conditions for the stability purpose and
ensured a stable discrete filter. The magnitude characteristics can be varied in a large
number of ways because the coefficients in generalized bilinear transformation are
inequalities, which create infinite number of possibilities. They proved this by giving a
numerical example of a Butterworth filter. I can say that my study is the extension of this
research work.

Gaugour and Ramachandran et al. [33] modified 1-D filter response by
generalized bilinear transformation and the inverse bilinear transformation. In this paper
they have shown the conditions in the designed transfer function, those will generate
different form (e.g., low-pass, high-pass, band-pass and band-eliminate). In this paper
they designed band-pass and band-eliminate filters by combining low-pass and high-pass

filter properly.
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3. An alternative method of designing 2-D RECURSIVE
FILTER

As we have seen so far, it is very important to design 2-D recursive filter having
various magnitude characteristics. And in this chapter we will design one of these kinds
of filters (with variable magnitude and bandwidth response) by following the steps given
below:

e Generate a VSHP of a second order by any one of the methods of generating it.

e Apply the generalized bilinear transformation to obtain the corresponding 2-D
polynomial discrete transfer function. ( keeping stability conditions showed in
section 1.8 in mind)

e Assume value for some variables to design different kind of 2-D filters.

In section 3.1, using the previous approaches of generating VHSP and the properties of
VSHPs, we generate one two-variable VSHP. In section 3.2 we propose a 2-D recursive
transfer function by applying the generalized bilinear transformation to the generated
VSHP. In section 3.3, we determine the stability conditions for this designed 2-D discrete

transfer function in terms o f the range for those v ariable c oefficients. In the next two
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chapters, we show how to design different forms of the 2-D recursive filter by changing

the values of some variables.

3.1 Generation of a second order VSHP

Using the previous approaches of generating VHSP and the properties of VSHPs,
we generate this kind of two-variable Polynomials. For this, we can start with the
generation of a 2- or n- variables Strict Hurwitz Polynomial (SHP). We know that it is
always possible to realize an even or an odd part of a SHP via the input immittance
(impedance or admittance) of a k-variable physically realizable network and degree of the
SHP depends on the corresponding number of variables. We discuss different
possibilities of generating a VSHP below:

(a) In [29] it has been shown that the network of n-port gyrator results in n-variable
reactances, each of degree unity. And the determinant of the immittance matrix yields in
an even or an odd part of an n-variable Hurwitz polynomial. By discreet choices of some
n-variables as positive real constants in this generated Hurwitz Polynomial, we can
generate VSHPs. Using this method we can generate a VSHP with very few
computational efforts.

(b) In [28], instead of playing with some constants, by the addition of this
determinant of the terminated n-port gyrator to its derivatives with respect to the n-
variables, we can generate a SHP. And using the different properties of VSHP, we can
easily produce a VHSP from this developed SHP, which opens many directions

(c) It is well known that a positive definite or positive semi definite matrix is

physically realizable and we can decompose this matrix A in the form of

A=B.B’ 3.1
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Where B is either an upper or lower triangular matrix and B’is the transpose of B [31].

Using this decomposition technique and matrix theory we can write,
D=AVYA'S,+BAB'S,+RTR +G (3.2)

In equation 3.2, A, B and R are lower triangular matrices given by

(¢, 0 O . ... O]
a, a, 0 . . .. 0
e Q; 4y ay . . . . 0 (3.3)
_aln aZn a3n ann n
b, 0 0 ]
b, by 0 0
B — b13 b23 b33 0 (34)
_bln b2n b3n ° bnn i
r, 0 0 0]
Fo Fp 0 0
R fy Ty By - . . . 0 (3.5)
Lrln r2n r3n oot rnn n
And W, T and A are diagonal matrices given by
2 0]
¥,
Y= . (3.6)
| 0 Va
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4
4,
A:
_0
~?’1
Va2
=
_0

Vn

As well as, G is a skew-symmetric matrix given by

0

— 81
—&n
G=|-g,

_gln

812
0

— 8
— 8

—an

i3
82

— 814

_g3n

gln

g3n
g4n

0

(3.7)

(3.8)

(3.9)

Here we use transpose of the matrices A, B and R; hence it does not make any difference

if they are upper-triangular matrixes instead of lower-triangular matrixes. If all y;’s, A;’s

and y;’s are positive, A, B and R are the positive-definite matrices, and they are

physically realizable. If we make some of the y;’s, Ai’s and ¥;’s to zero; A, B and R

become positive semi-definite matrices respectively; hence it will not affect their physical

reliability. If T’ is a null matrix, det D, (determinant of D,) becomes a strictly even or

strictly odd polynomial depending on whether n is even or odd. By the use of derivatives,

we can generate VSHPs from this even or odd HP. To generate second order VSHP, we

have taken n=2 in above equation 3.2
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For n=2, we can rewrite equation 3.2 as below

I:au 0 }[% 0 :”ian a, :|S1 +[b11 0 }l:ﬂ'l 0 }I:bn by, :!SZ 4
a, an |0 yw, |0 ay b, b, |0 4|0 by,

[:cu 0 }}:7’1 , O]I:cll cnz:|+[ 0 g12]
¢, ul0 7|0 ¢y -g&, O

In above equation for simplicity we put a,, =b,,=c,,=1; a,=b,,=c,,=0; a,,=a;

(3.10)

b,=b ; c,=c ; g,,= g then we can rewrite it as below

ol P L

D2=107,o1c 0 g Gl
clO}/201+—-gO

The above equation will result in 7 term and we do not want this term in the final

<o

equation, so in order to get rid of it, we should make y, = 0. If y; is made equal to zero,
the quantity ‘a’ will disappear in the determinant. Similarly, the above equation will also

result in 7 term and we neither want this term in the final equation. So in order to get

3

rid of it, we should make A, =0. If A, is made equal to zero, the quantity ‘b’ will

disappear in the determinant. After substituting vy, =0 and A, =0, we can write D; as

2=l: WS, + A4S, +7, ay,S, +bA4,S, +cy, +g :| (312)

ay,S, +bAS, +cy, —g a’y,S,+b’AS, +c’y, +7,
And from this, we can always write | D; | or determinant of D, as
det Dy = y, 2y (a~bY'S,S, +yifla—cf +7, 5, + Al =< +1.5, +(nr, +8%),
(3.13)
After carefully reading the above equation and using the properties of VSHP, we can say

that if a # b and y, # 0 then it can be a VSHP.
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As we have discussed above, if we make ' matrix null means in our casey, =y, =0, we
get an even polynomial in S; and S;, which is:
M, =y 2@-b)sS,+g?, (3.14)

assuming a #b

And wusing this even polynomial we can easily obtain one VSHP by

oM oM
D(S,,8,)=M, +Y,—%+Y, —= 3.15
(5..5,) o B (3.15)

Where, Y, and Y, are constants.

D(Ssz)= ‘//121(‘1_[7)2‘5’1*92 +Yy, 4 (a-b) S, +YyA(a-b)'S, +¢° (3.16)

whichisa VSHP,if a # b

This treatment permits us to introduce four extra variables and these can be varied
in order to change the magnitude characteristics. In this section, we have generated two
VSHPs (equation 3.13 and 3.16), and for our future purpose we will consider the VSHP

given in equation 3.16.

3.2 Designing of a 2-D recursive TF by applying the generalized
bilinear transformation

If we consider a VSHP shown in equation 3.16 then,
D(SI’SZ):: (//1/,{1(a—b)2S1S2 +Y11//1/11(a—b)2S2 +Y21//lﬂ1(a—b)2S1 +g2

=y, A (a-b)'{s,S, + 1,8, + 1S, }+g* (3.17)
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By applying generalized bilinear transformation in above equation for S; and S,

then, S, =K, (MJ and S, = KZ[MJ. And as discussed in 1.4 to make the
z, + by, z, + by,

system stable, we will follow the stability conditions in this case, which are:

lag K516, IS
lag IS1] 05, IS1;

3.18
ao1by < 0;a0,b4, <0; G18)
K, >0,K,>0
Now, by substituting the value of S; and S, in equation 3.17 then,
+

S b e e
D(Zl,22)= l//lﬂ,l (a—b)2 1 01 2 02 1 01 2 ,

Y, Kz( z, +a,, J

z, + by,
(3.19)

2 K1K2[(21 +a01)(22 +aoz)]+YzK1 {(21 +a01)(22 +bg, }
A(a _b) I:"'Yle {(Zz +a02)(z1 +b01)} ]-‘_
gz[(zl +b01)(zz +b02)]

D(z 4 )=
. {(Zl + by, )(Zz + by, )}
(3.20)
If we more simplify the equation then we will have
KK, [lez +agz, +ayz, + a01a02]+
‘//1/11(“ _b)2 1K, {2122 +by,z, +ay 2, +aoxboz}+ +
Y K, {lez +agz; +byz, +aozbm} (3.21)

g2[2122 + b4z, +by 2, +bmboz]

D(ZI’ZZ)= {szz +by,z, + by, 2, +b01b02}
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and for the stability purpose we have to keep a # b in above equation, we can also

rewrite the above equation as below,

{u/lﬂ'l(a—b)z(KlK2 + 1K, +YIK2)+gZ}Zl‘ZZ +
{V’l’ll (a_b)2(a02K1K2 +by,Y,K, +a02YlK2)+bozg2}Zx +
{vllﬂ’l (a _b)z(amKle +ay YLK, +b01YlK2)+b01g2}Zz + (3.22)

D(Z Z )= {‘/’1/11 (a "'b)z (amaozKle +ayb,l K, +a02b0,Y1K2)+b01b02g2
v {2122 +byyz; + by 2, +bo1b02}

By applying this D(zl,zz) to denominator of a unity numerator, we can realize a 2-D
recursive filter. And the transfer function H(z,,z,) can given as below,

A(ZI’ZZ) _ 212y +by,z) + by z, + by, by,

H(z,,z,)= = (3.23)
v B(ZI’ZZ) Onz12, + Q021 + 0012, + oo
where, O, =y, A4 (a~b) (KK, +,K, +YK,)+g%; (3.23a)
Qu=vi4 (a - b)2 (aozKle +b,1,K, + ‘102YlK2)+ b02g2 ) (3.23b)
On =14 (a - b)2 (amKle +ay, 1K, + b01Y1K2)+ boxg2 ; (3.23¢)
O =¥ (a _b)z (a(naozKle +ayb, 1K, + a02b01YlK2)+ bubng®; (3.23d)
WA >0a#b; (3.23¢)
lag [SL] by €1
a, <Llb, K1;
| ag I€1;] by, | (3.236)

ag by < 0;a4,by, <0;
K >0;K, >0

By introducing the generalized bilinear transformations, one introduces more number of

variables in the transfer function to change the magnitude characteristics.

3.3 Stability conditions of the designed 2-D digital filter

Stability is always a prime concern in designing 2-D digital filters. Intensive study

has been done on the stability criteria of the 2-D filters. And using the properties of
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VSHP we can say that, D(Sl,Sz) will be Very Strict Hurwitz Polynomial only and only
if all coefficients of this polynomial are positive.

Our designed transfer function is in (z,,z, )Jdomain and to convert it to (S,,S, )domain
we have to apply generalized inverse bilinear transformation to equation 3.23. Gargour et
al [33], has proposed inverse bilinear transformation and using it we can define
generalized inverse bilinear transformation as below.

bS—-ak .
z, >t Tl i g (3.24)
K-S,

After substituting this value of z1 and z2 from equation 3.24 into the denominator of
equation 3.23, we can obtain the designed transfer function in the (S,,S, Jdomain and this

can be expressed as

11b01boz - Q10b01 - Q01b02 +Q00 )S1S2 +

0118010, K + Q10001 K, + 04100, K, — Qo K )Sl +
Qi1 Ky + Qa0 Ky + Qb Ky = 0n0 K, )Sz +
11801802 K, K — Q1900 K K — 0100, K K, +Q00K1K2)

(
B(S,,S,) = E: (3.25)
(

where, Q11, Q1o, Qo1 and Qo are given in equation 3.23.

Now, as we have already discussed all the coefficient of the above equation should be

positive for stability purpose and this guides us to

1160160, = O10b01 = O + Qoo >0 (3.26a)
— Onbyan K, + Qiobon K + D100, K — Do K, >0 (3.26b)
— 01150200, K + 01006, K, + Op b, K, — Qo K, >0 (3.26¢)
QnamaozKle - QloamKle - Q01a02K1K2 + Q00K1K2 >0 . (3.264)

where, Q11, Q10, Qo1 and Qg are given in equation 3.23.
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But the generalized bilinear transformation has already conditions of K, >0;K, >0 for

stable result and using this fact we can reduce above equation to

11861067 = Crobor — Qorboz + Qoo >0 (3.27a)
Q1100180 = Qioboy = Qi + Qe >0 (3.27b)
011002801 = Q101 = Qorbg; + Q>0 (3.27¢)
On80i80; = Qoo = Do + Qop>0 (3.27d)

And using the above relations we can find the stability condition on y,,4,,Y;,Y, and g.

Finally we can rewrite the transfer function of the designed 2-D recursive filter

with all stability condition as below

H(anz) - A(ZI’ZZ) - %1% +byzy +by 2, + by by, (3.28)
B(ZI’Z2) 012,25 + Q102 + Oz, + Ogo

where, Q11 wA(a-bf (KK, +Y,K +YK,)+g*; (3.28a)

( b)2 (aozKle +b LK, + YK, )+ b8 (3.28b)

W1’11(a )z(aoxKle +ay, 1K, +b01YlK2)+b01g2; (3.28¢)

( )2 (ao1a02K1K2 +ayb, 1K, + aozme;Kz)"' b01b02g2 ; (3.284d)

a# b ; (3.28¢)

|ag K110y €1,
| ag, IS3;] 0, IS5

agby <0;a4,by, <0; (3.281)
K, >0,K,>0

Q11801b0; = Qiobor = Qorbor + Do >0 (3.28g)
O11b01a0; = Q1obo; = Qi@ + P00 ™0 (3.28h)
anozam - Q10a01 - Q01b02 + Qoo >0 (3.281)
01190190 = Qio@o — Qo@gr + Qo>0 (3.28))

3.4 Summary

In this chapter, we have shown one of the procedures to obtain 2-D recursive
transfer function with the stability conditions. Using the previous techniques of

generating VSHP and the properties of VSHP, we have formed a 2-D VSHP. The 2-D
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discrete transfer function has been derived from the analog transfer function by applying
double generalized bilinear transformation. And the stability conditions have been
obtained for the designed 2-D discrete transfer function with a unity degree denominator.

By changing the values of the bilinear coefficients and four extra variables (Y;, Y,, g and

A=y A, (a - b)z), we can change the type and the frequency response of the 2-D digital

filter. In the next few chapters we design different kinds of filters, e.g. low-pass, high-

pass, band-pass, and we study the effects of different coefficients on the filter responses.
Thus, in this Thesis, this chapter is an important work towards the study of 2-D

recursive filters with flexible characteristics.
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4. 2-D LOW-PASS RECURSIVE FITLER

Filters are generally classified in terms of the filter function they perform. The
basic filter functions are Low-pass, High-pass, Band-pass and Band-stop, hence, there are
four basic kinds of filter. In this chapter we design a 2-D recursive low-pass filter with
some examples.

Section 4.1 gives definition of 2-D low pass filters with transfer function and the
graphical definition. In section 4.2, we define the necessary conditions to designe 2-D
low-pass filter from the general 2-D recursive transfer function, derived in the previous
chapter. Section 4.3 focuses briefly on the effects of different coefficients of the transfer
function on the designed 2-D low-pass recursive filter. Section 4.4 shows how We.can
design a 2-D low-pass recursive filter with desirable characteristics. And we summarize

results in section 4.5

4.1 Definition of 2-D Low-pass filters

Low-pass filter rejects the unnecessary high frequency components and passes

only lower frequency components. Graphically we can show low-pass filter as showed in
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figure 4.1, where R is the pass-band, R, is transition-band and Rj is the stop-band of a 2-

D low-pass filter.

®1

@2

Transition-band

Pass-band

Stop-band

Figure 4.1: Graphical definition of a low-pass filter

Transfer function of a 2-D low-pass filter is given on the next page,

H(w,0,) =1 Os(a)12+a)22)E <w,,i=1,2
1
=0 a)12+a)22)5 >w,,i=1,2

Where : @ ,is called pass-band radius
w,; is called stop-band radius

And transition band is the region in-between w,, and @
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4.2 Defining the conditions for 2-D low-pass filter

In the previous chapter in section 3.2, we have already obtained transfer function
of a 2-D recursive filter. But its very important to find out under what circumstances this
designed transfer function will work as a 2-D low-pass recursive filter. In one of the
published paper Gargour, Ramachandran et al. [32] have given conditions on the
coefficients of the generalized bilinear transformation to design 1-D low-pass recursive
filter form analog transfer function. They have shown that if we keep b, greater than or
equal to zero then and then only the general transfer function will work as a low pass
filter. As well as in Chapter 1, we mentioned that for guarantied stability, when K is

greater than zero in the generalized bilinear transformation, a, must have the opposite

sign than that of b, . If we extend these conditions for two dimensions then we can define
the conditions on the coefficients of the generalized bilinear transformation for low-pass
response, which are as below for i=1, 2.

e K,>0; (4.2a)

o -1<gq,<0;and 02, 21; (4.2b)

where, a,b,; <0

We can get a 2-D low pass transfer function by applying these conditions on the
designed transfer function showed in equation 3.28 of the previous chapter. In the next
section we study how different coefficient of the 2-D low pass transfer function effects on

the frequency response of the designed filter.
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4.3 Frequency response of the designed 2-D low-pass recursive filter

To obtain the contour and 3-D magnitude response plots of the resulting 2-D low
pass filter, we write a program for the designed transfer function of the low-pass filter
using MATLAB ®. And after assigning value for each coefficient of the transfer function
in the program “himthlp.m”, we can get the contour and 3-D magnitude plots for the
specified values.

There are so many coefficients to analyze in the designed low-pass transfer
function. We divide these coefficients into two groups to make the scenario simple,
coefficients introduced by the generalized bilinear transformation and the coefficient
introduced in the transfer function while generating VSHP. We generated VSHP using
matrix theory, so we call the second group as coefficients of matrix. While studying the
effects of the coefficients of one group, we keep the coefficients of another group to some
constant value for simplicity purpose.

4.3.1 2-D Low-pass recursive filter response with each different coefficient of
the generalized bilinear transformation

In this section, we study how each different coefficient of the generalized bilinear
transformation affects the designed filter response. In order to determine the effect of the
coefficient, we keep changing the coefficient under study, while keeping the other
coefficients to some constant value. Equation 4.2 shows the range of each coefficient of
the generalized bilinear transformation for the low-pass filter. As well as, we also fix

each coefficient of the matrix to some specific value. We have used, Y¥,=0.9367, ¥,=0.7,

g=2and A=y A (a-b)'=6.1
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Low Pass frequency response with different v;alues of X,

In order to separate the effects of the other coefficients beside K, , we keep them
to some constant value. Not to lose any generality, we have used K, = b, =b,, =1 and
ay =ag, =-1. We also have checked the range for this coefficient using MATLAB®,
andit gave use stableresultupto K, =10,00Q, when we have fixed other generalized

bilinear coefficients to unity with proper signs. Figure 4.2 shows the contour and the 3-D

magnitude response plot for different values of K.

Figure 4.2(b): K,=0.5
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2 1 0.25.

Figure 4.2(e): K, =20

Figure 4.2: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of K, with K, =b,, =b,, =1 and a, =a, =-1.
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This is clearly seen that the value of X, is inversely proportional with the

bandwidth in @, domain, and it does not make any difference in the bandwidth in o,
domain. As well as, it does not have any effects on the amplitude of the low-pass
response as it remains constant approximately 0.17 for all values of K, .1t is easily seen
that the contour plot has Quadrantal symmetry for each case.

Low Pass frequency response with different values of X )
K, also gives stable response up to 10,000 value, when other coefficients of the
bilinear transfer function set to unity with proper signs, e.g. K =b,=b, =1 and

ay =4y =—1. 3-D magnitude response and contour plot for X, =1 are already showed

Figure 4.3(b): K,=0.6
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Figure 4.3(d): X,=20

Figure 4.3: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of K, with K, =b,, =b,, =1 and a,, =a, =-1.

in Figure 4.2(c). Above Figure 4.3 shows few responses for various values of X, .
After looking at the figure, one can say that value of K, is inversely proportional
with the bandwidth of w,, while it does not make any difference in the bandwidth of , .

Same as the K, case, in this case too it does not make any effects on the gain of the low-

pass response as amplitude remains constant approximately 0.17 throughout. In this case

too, each contour plot has Quadrantal symmetry, which is observable.
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From this discussion, we can say that K, and K, are band-effective coefficients

and using this property of K, andK,, we can design a 2-D low-pass filter with a
desirable bandwidth. For an example, we want to design all pass filter and if we use the
above relationship then we can say if we keep K , and X, very small then we can achieve
this characteristic. And if we want to design really very narrow banded low-pass filter

then in that case we have to keep K, and K, high. This is shown in the below figure.

024
[ALRSEEE
0.1+

0.05 .-

0
I

Figure 4.4(b): K,=K,=5
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Figure 4.4(c): K,=K,=10

Figure 4.4: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of K, and K, with by, =by, =1 and a, =a, =-1.

Another noticeable thing in this case is the contour plot is having almost
Octagonal symmetry. They are having Quadrantal symmetry but they are missing the
Diagonal symmetry, hence they do not contain Octagonal Ssymmetry.

Low Pass frequency response with different values of a,,

There are many combinations o f the coefficients exit, but to keep the situation

simple and not to lose any generality, we keep the other coefficients to unity with proper

signs, e.g. K, =K, =by, =b,, =1 and a,, =—1. With this specification, we have

=

Figure 4.5(a): a,,=-0.1
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Figure 4.5(b): a,,=-0.5

Figure 4.5: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of a,, with K, = K, =by, =b, =1 and a, =-1.

checked that the designed low-pass recursive filter gives stable output for the complete

range of a, from -1 to 0. The contour and 3-D magnitude plots with different values of
a,, are given in figure 4.5. As we have already presented the response for a, = -1 in
figure 4.2 (c), here we only give the results for a, =-0.5 and a, =-0.1.

This is evident that the main effect of a,, is on the gain of the designed filter. It is

inversely proportional to amplitude of the low-pass filter. As the value decrease from

— 0.1 to -1, the amplitude approximately increases from 0.12 to 0.17. a,, also affects the
bandwidth in @, domain, it is obvious that as a,, decrease, the bandwidth in @, domain

also decrease. It is also important that the contour plots have Quadrantal symmetry in
each case.

Low Pass frequency response with different values ofa,
To study the effect of a,,on the frequency response of the designed filter, we

keep o ther c oefficients o f the bilinear t ransformation to unity in order not to lose any
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generality and to make the situation simple, e.g. with K, =K, =b, =b,, =1 and
a, =—1. Same as a case of a,;, ag,also gives stable response for the whole range, e.g.
from -1 to 0. Below figure shows simulation results for different values of a,,.

Simulation result for a,,= -1 is already shown in figure 4.2 (c), so we do not show it

again in the below figure.

Figure 4.6(b): a,,=-0.5

Figure 4.6: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of a, with K, =K, =b, =b,, =1 and a,, =-1.

Same as the a,, case, here too the value of a,is inversely proportional to the

magnitude of the filter and directly proportional to the bandwidth of w,. And it can be
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seen that, the response in this case is approximately 90 degree rotated with respect to the

relative case of ay, .

018
0.14..
0.1240.

Figure 4.7(b): a,,=a,,=0

Figure 4.7: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of a, and a,, withK, =K, =b,, =b,, =1.

It is obvious that the effect of aj and a,,on bandwidth is limited in comparison

of the effect of K, and X, is limited. They are mainly gain affected coefficient. So we
call them gain-effective coefficients. And using this knowledge we can say that if we

reduce both a,, and a,, simultaneously then the magnitude value will drop more, which is

shown in above figure.
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It is noticeable that when we keep a,, equal to a,,, the contour plot tries to obtain

Octagonal symmetry same as we have seen earlier for the K, =K, case. The magnitude

0.03

0.025 4.

0.02-4-

0015

0.01.

0.006- -

20

0025 -7

0.02+ -

0.015-

001y

=)

002+,
00154+ '
0.01.4

0.005+..

a0

Figure 4.8(c): K, =K,=5; a, =a,=-0.1
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Figure 4.8(d): X,=K,=10; a,,=a,,=-0.1

Figure 4.8: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of X, ,K,,a, and a,, withd, =b,, =1.

changes from 0.07 to 0.17 when a,anda,,change from upper boundary to lower

boundary. We could change the magnitude value dramatically as shown in above figure,

when we combine the effect of a , with bigger K ;.
And it can be seen that, the response in case of K,=10 and K,=1 is

approximately 90 degree rotated with respect to the case of K,=1 and K,=10. And in

this case the magnitude value does not change a lot with comparing other two cases of

K,= K,=5 and K,= K,=10. It is also visible that the bandwidth of pass band of the
response decrease with higher values of XK, and X, .
Low Pass frequency response with different values of b,

For analyzing the consequences of b, on the frequency response of the designed

filter, we maintain other coefficients of the bilinear transformation to unity in order not to

lose any generality and to make the condition simple, e.g. with K, =K, =b,, =1 and

a, =a, =—1. We have verified that b, gives stable response for the entire scale, e.g.
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from 0 to 1. Below figure shows simulation results for different values of b,, . Simulation
result for b, = 1 is already shown in figure 4.2 (c), so we do not show it again in the

below figure.

Figure 4.9(b): b,=0.5

Figure 4.9: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of b, with K, =K, =b,, =1 and a,, =a,, =-1.

It is evident in the above result that if b,, is not equal to one will result in non-zero

gain in the stop-band portion. And it also little bit affects the bandwidth of the pass-band
of the filter in w, domain. It is also observable that each contour plot has Quadrantal

symmetry and the magnitude value remains same in each case.
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Low Pass frequency response with different values of 5,

In many ways we can combine the coefficients of the bilinear transformation, but
to maintain the scenario simple and not to lose any generality, we hold the other
coefficients to unity with proper signs, e.g. K, =K, =b, =1 and a,, =a,, =-1. With
this condition, we have checked that the designed low-pass recursive filter gives stable

output for the full range of b,, from 0 to 1. Below figure shows the contour and 3-D

magnitude plots with different values of b,,. As we have already studied the response for

Figure 4.10(b): b,,=0.5

Figure 4.10: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of b, with K, =K, =b,, =1 and a,, =a, =-1.
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by, =1 in figure 4.2 (c), hence in the above figure we only give the results for ,, = 0.5
and by, =0.1

It is visible that the response with b,, is approximately 90 degree rotated w ith
respect to the response of b, . In this configuration too the non-zero gain in stop-band
region appears and that because of the non unity value of &,,. It is observable that as the
value of b;, increase the non-zero gain in the stop-band region decrease. Along with this
by, does not make any changes on the magnitude o f the response, and it has little bit

effect on the pass band of the response in ,region. Presence of the Quadrantal
symmetry is clear in the contour plots.

Non-zero gain in the stop band of the filter response might change the filter
polarity from low-pass to high-pass, so we call b,and b, as polarity-effective
coefficients. And to nullify this problem we can use the band-effective coefficients

K,and K, . Presence ofboth non unity b, and b, coefficients will produce unwanted

non-zero gain at the higher frequency in both the domains, e.g. @, and @, domains.

Figure 4.11(a): K, =K, =1; b, =b,,=0.6
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Figure 4.11(b): K, =K, =3; b,,=b,,=0.6
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Figure 4.11(c): K,=K,=10; b, =b,=0.6

Figure 4.11: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of K, K, b,, and b, witha, = a,=-1.

It indicates that with bigger value of K, we can reduce the non-zero gain in the

stop-band region, but as a cost we obtain smaller bandwidth in the pass-band of the
response. So we have to trade-off in between these two parameters, non-zero gain in the

stop-band region and bandwidth of the pass-band, for the particular application.

4.3.2 2-D Low-pass recursive filter response with each different coefficient of
the matrix

In this section, we investigate how each different coefficient of the matrix

influences the designed filter response. In order to establish the effect of the coefficient
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on the response, we change the coefficient under the examination continuously, while
keeping the others to some specific value. As we mentioned early, we should keep each
coefficient of the generalized bilinear transformation to some specific value. Not to lose
any generality, we should keep K, =K, =b, =b, =1 and a, =a, =-1 for the
simplicity.

If we plug in these values of the bilinear transformation in the Equation 3.27 then

we can get conditions on the matrix coefficients, which are as below.

¢ Equation 3.27a gives condition, y,4, >0 (4.32)
e Equation 3.27b gives condition, ¥,>0 (4.3b)
¢ Equation 3.27c gives condition, ¥;>0 (4.3¢)
e Equation 3.27d gives condition, g # 0. (4.3d)

For the quadrantal symmetry, transfer function H (z1 ,Z, )must be expressible as
H(zl,zz)=Hl(zl+zl'1,zz).H2(zl,zz+zz“). (4.4)
And after carefully studying the designed 2-D low pass transfer function, it is

possible to make our transfer function as product of two different two-variable

polynomials shown in above equation, if it follows the below condition

2

h=-—2= 4.5)

zyl/?.le(a—b)z
One of the possible combinations for matrix coefficients satisfying the above
condition is A= w,4(a-b) =6.1, g=2, ¥,=0.937, Y, =0.7. We have used this

combination for studying the effects of the coefficients of the generalized bilinear
transformation on the filter response, and this is the reason we had Quadrantal symmetry

in all the cases we have studied so far. With reference of these values, we analyze the
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effects of the matrix coefficients on the designed 2-D low-pass recursive filter in this
section.

We have also investigated that the frequency response of the designed filter for a
particular value of A=y, (a~b), using different combinations of v,,a,b and 4,
remains same. So instead of studying them individually we study them as a common

variable A, where A=y, 1, (a-b)’.

Low Pass frequency response with different values of A =y, 4, (a - b)2

There are many possibilities exit for the different combinations of the matrix
coefficients, but to maintain the scenario simple and not to lose any generality, we hold
the other coefficients to the specific value showed above, e.g. g=2, ¥,=0.937, Y, =0.7 to
study the effects of A on the designed filter. With this condition, we have checked that
the designed 2-D recursive low-pass filter gives stable output for A equal to 1 to 1000.
Below figure shows the contour and 3-D magnitude plots with different values of A. As

we have already studied the response for A = 6.1 in figure 4.2(c), which is our reference.

Figure 4.12(a): A=2
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Figure 4.12(d): A=40
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Figure 4.12(¢): A=200

Figure 4.12: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of A =y, 4,(a —b)" with g=2, ¥,=0.937, Y, =0.7.

It is clear that the magnitude of the frequency response remains same for all the
values of A. If we compare these different simulation results for different values of A,
with the reference response for A=6.1 then we can say that if we decrease the value of A
from the reference value 6.1 then the response rotates anti-clock direction and vice-versa.
Along with this, it is also observable that value of A is inversely proportional to the
bandwidth of the frequency response. Existence of the Centro symmetry in each contour
plot is noticeable.
Low Pass frequency response with different values of g

To see the effect of g on the designed filter, we should keep the other matrix

coefficients to some specific value. To maintain the situation simple, we keep each of

them to the reference value, e.g. A =y, 4 (a—b)'=6.1, ¥,=0.937, ¥, =0.7 and at the

same time we change the value of g. The reference simulation result is given in figure

4.2(c), where value of g is 2.
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Figure 4.13(c): g=3
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Figure 4.13(d): g=6

Figure 4.13: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of g with A =y, 4 (a—5)*=6.1, ¥,=0.937, Y, =0.7.

It is visible that the magnitude of the frequency response changes noticeably with
different the values of g, and we decease the value of g from the reference value then the
magnitude increase and vice-versa. Also the frequency response rotates clock wise if we
decrease the value of g from the reference frequency response and rotates anti-clock wise
if we increase the value of g from the reference value. Beside this, it is also evident that g
is directly proportional to the bandwidth of the frequency response, and each contour plot
has Centro symmetry. Effect of g on the magnitude is very observable than the effect on
the bandwidth. Because of this reason, we should consider g as gain-effective
coefficient.

If we combine the value of A and value of g in some particular manner then we
can change the gain of the frequency response significantly. Below figure shows some
cases and after carefully observing these cases we can say that if we divide g by a factor

“x” and A by the square of the factor “x”, then we can increase the gain by square of that
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factor “x”, while contour plots remain same for all the cases. And this is very evident

from the transfer function of the designed filter.
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Figure 4.14(c): A=610 and g=20

Figure 4.14: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of A =y, 4, (a—b)’ and g with ¥,=0.937, ¥, =0.7.
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Low Pass frequency response with different values Y,

We keep the other parameters of the matrix to the reference value e.g., Y,=0.7, g

=2, A=y, A, (a —b) =6.1, with the purpose of understanding the effect of ¥, on the
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Figure 4.15(c): Y, =1.5
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Figure 4.15(d): ¥,=20

Figure 4.15: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of ¥, with A =y, 4, (a—b)*=6.1, g=2 and Y, =0.7

designed low pass filter. We have checked that Y, gives stable response up to 1000 with
keeping other coefficients to the specified value as showed above. Figure 4.2(c) shows

the reference response for ¥;=0.937 and we analyze the effect of ¥, with this response.
After thoroughly investigating, we can say that the main effect of ¥,is on the

bandwidth in @, domain, while there is no effect on the bandwidth in @, domain. It is

inversely proportional to the bandwidth in @, domain. Another observable thing is ¥, has

no effects on the amplitude of the response. In this case too, presence of the Centro
symmetry in the contour plots is evident.

Low Pass frequency response with different values Y,
To realize the effect of ¥, with the reference response showed in figure 4.2(c), we should
keep ¥,=0.937, g =2 and A =y, 4 (a—b)’=6.1. With this specification, for stability

purpose we checked the frequency response of the designed filter with different values of

Y,, from 0.1 to 1,000. Above figure shows the response for different values of 7, .
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Figure 4.16(c): Y¥,=20

Figure 4.16: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of ¥, with A =y, 4,(a—5)’=6.1, g=2 and ¥, =0.937
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If we explore the above results in details then we can disclose that the main effect
of Y,is on the bandwidth in w,region, while there is no effect on the bandwidth in
@, domain. There will be bigger bandwidth with smaller value of Y,. It is apparent that
each contour plot has Centro symmetry. Same as the case of Y., Y, is also not having any

effects on the amplitude of the response. Because of this, we can consider them as band-

effective coefficients. When we change Y, and Y, together, we were expecting the same
results we have got for K andK,. But we do not get same results. Above figure shows

some simulation results for different values of ¥, and 7,

Figure 4.17(b): ¥,= Y,=1.5
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Figure 4.17(c): ¥,= Y,=5

Figure 4.17: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of ¥, and Y, with A =y, 4, (a—b)*=6.1, g=2.

If we analysis the above results cautiously then we can say instead of Increasing
or decreasing the bandwidth in @, and @, region, it increases or decreases the bandwidth
diagonally either @, = w,orw, = -w,. Another remarkable thing is the presence of

Diagonal s ymmetry in e ach contour plot. And this leads us to theidea of m aking the

value of Y equal to the value of Y,with fulfilling the equation 4.5, so that we can

combine Diagonal and Quadrantal symmetry, which results in the Octagonal symmetry.

Figure 4.18: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
A=y A (a-b)'=6.1,g=2, ¥,=0.81 and ¥,=0.81
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In order to obtain Diagonal and Quadrantal symmetry in the frequency response,
we change the value of ¥, and ¥, from 0.937 and 0.7 to 0.81 and 0.81 in our reference
case. Figure 4.18 shows the contour plot and magnitude plot for these new values. Still
the combine effect of ¥, and Y, on the bandwidth is not evident. In order to study further
we should keep changing value of ¥, and ¥, with satisfying the equation 4.5 for g=2.

Below figure shows some simulation results for this case.
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Figure 4.19(b): ¥,= Y,=3 and A = 0.44

Figure 4.19: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
different values of Y;, ¥, and A =y, 4, (a — )’ with g=2.
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From these results the effects of ¥, and Y, on bandwidth are obvious. We can say
that after satisfying equation 4.5, the effect of Y,and Y,on bandwidth is directly
proportional with the value of Y and Y,. But the more effective and easy way to obtain
the desirable bandwidth is by changing the value of K, and K,, because in this case we

do not have to fulfill any conditions.

4.4  Designing low-pass filter with a desirable response.

With this knowledge of various effects of different coefficients of the matrix and
generalized bilinear transformation, now we can design a low-pass filter with a desirable
response. For an example, we want to increase the gain and we want to keep the
bandwidth of the response showed in figure 4.18. This we can achieve with decreasing

the value of g, lets say 0.5, and maintaining the same value of Y,=Y,=0.81 with

satisfying the equation 4.5.

Figure 4.20: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
A=y A (a-b)=0.38,g=0.5, ¥,=Y,=0.81, K, =K, =b, =b,, =1 and a,, =a,, = -1
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It is evident that the above response has same bandwidth characteristics as figure
4.18, but the magnitude is almost 15 times more. Now, at this point if we want to make

some minor changes in the gain then we can obtain this by changing the value of a,, and
a,,, which will change the bandwidth little bit and that can be adjustable with either

K,and K, or Y, and Y,. Figure 4.21 shows the simulation results for this case and Figure

4.22 shows that we have achieved almost same bandwidth characteristics as that of the

Figure 4.20.

Figure 4.21: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
A=y 4 (a-b)=044,g=05, ¥,=Y,=0.75, K, =K, =by, =b,, =1 and a,, =a,, =-0.8
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Figure 4.22: Overlapping of the contour plots showed in figure 4.20 and 4.21
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And we want to keep the gain same but we want to decrease the bandwidth in the
response shown in figure 4.18. This kind of response we can achieve by increasing the

value of K, and K, while keeping all the matrix coefficients same, e.g. g=2, A = 6.1, and

Y,=Y,=0.81, which is clearly showed in below figure.

Figure 4.23: The contour and 3-D magnitude plot of the resulting 2-D low pass filter for
A=y 2(a-b)=6.1,g=2, ¥,=Y,=0.81, by, =b,, =1, K, =K, =3 and a,, =a,, =1

4.5 Summary and Discussion

In this chapter, we have introduced the procedure used to design 2-D low-pass
recursive filter by double generalized bilinear transformations. The manner how each
coefficient of the 2-D low-pass transfer function affects the magnitude response of the
resulting 2-D low-pass filter has been studied in detail with simulation results.

Stability is always the most important problem in 2-D recursive filter design. The
stability ¢ onditions have b een o btained for the resulting 2-D digital filter with a unity
degree denominator for each variable. Using the link between the stability conditions and
the coefficients of the double generalized bilinear transformations, we have got the stable

range for each coefficient of the 2-D low-pass transfer function when the others are
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specified. Also, every time we try to obtain the magnitude response for a 2-D low-pass
recursive filter, these conditions need to be satisfied.

This chapter is an important work towards the study of the variable magnitude
characteristics of 2-D Low-pass recursive filters by double generalized bilinear
transformation. It is noted that by changing the values of the variables, the contour and
symmetry characteristics can be varied. Also using the results presented in this chapter
and some optimum techniques, it should be possible to design 2-D low-pass filter having

desired magnitude characteristics.
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5. 2-D HIGH-PASS RECURSIVE FITLER

In the previous chapter we discussed about 2-D low-pass recursive filter. And in
this chapter, we study about the another basic form of the filters, 2-D High-pass recursive
filter, with illustrated examples

In Section 5.1, we review some basic concepts of a 2-D high-pass filter with a
graphical illustration. In section 5.2 we show the c onditions on the c oefficients o f the
generalized bilinear transformation to design 2-D high pass filter from the general 2-D
transfer function derived in Chapter 3. In section 5.3 we determine the effects of the
different coefficients of the 2-D high pass transfer function. And with the knowledge
gained from section 5.3, in the section 5.4 we show how to design 2-D high pass

recursive filter with a desirable characteristics. Section 5.5 is the summary of this chapter.

5.1 Definition of 2-D High-pass filters

From the name itself, it is clear that high-pass filter allows the high frequency
components and filters out the lower frequency components. Figure 5.1 is the graphical

representation of a 2-D high pass filter with pass-band, transition band and stop-band.
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Pass-band

Transitionsband

Stop-band

Figure 5.1: Graphical definition of a high-pass filter

Mathematically we can describe 2-D high-pass filter as below,

H(w,»,) =0 Os(a)f+a)22)2 <o

1
=1 copi<(a)f+a)22)2 <m,i=1,2

Where : @, is called pass-band radius

w,; s called stop-band radius

And transition band is the region in-between w,, and o,
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5.2 Defining the conditions for 2-D high-pass filter

It is possible to design a 2-D high-pass filter from the general 2-D transfer
function under some conditions. We have already obtained a 2-D recursive transfer
function (equation 3.28) in chapter 3 by applying the generalized bilinear transformation
to the 2-D analog transfer function. So the next step is to find out the conditions to
develop a 2-D high-pass recursive filter from the equation 3.28.

In one of the published papers, Gargour, Ramachandran et al. [32] have proposed
condition on the coefficients of the generalized bilinear transformation to design 1-D
high-pass recursive filter from analog transfer function. This says that the coefficient
by of the generalized bilinear transformation must be zero or negative to design a high
pass filter. On the other hand in section 1.4, we already showed that for guaranteed
stability, when K is greater than zero, a, must have the opposite sign then that of b, -
And we have checked that these conditions are also very true for two-dimensions so we
can define necessary conditions to designed 2-D high-pass recursive filter as below.

e K. >0 (5.2a)

o ~1<b,<0;and 0>gq, =1, (5.2b)
where, i=1, 2 and a,b,, <0

After putting these conditions in the general 2-D transfer function showed in equation

3.28, we can obtain 2-D high pass recursive transfer function. And we can express it as

below

A(Zlazz) _ 52y +byyz, +byz, +byby,

= (5.3)
B(ZI’ZZ) 01212, + Q102 + 0z, + Qg

H(Zl,22)=
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where, Q11 wiA(a-b) (KK, +Y,K, +YK,)+g%; (5.3a)
i

a-b)(a, KK, +b,Y,K, +a,Y,K, )+by,g*; (5.3b)

vid(a-b)(a, K K, +anY,K, + b, YK, )+ b, g°; (5.3c)

(a b)z( 030, K\ K, +ay,bp VK, +ag,by KK, )+b01bozg ; (530
a# b ; (5.3¢)
-1<b,, <0;and 02a, 21; i=1,2 (5.36)
K. >0, i=1,2 (5.3g)
Q11b01b02 —QIObOI "'meoz + Qoo >0 (5-3h)
Onboiao, = Gioboy = Coiag, + 0ye>0 (5.31)
Oi1bypag = Qo — Qb + Q>0 (5.39)
oo ~ Qo = Qo e + Q>0 (5.3k)

In the next section, we study the effects of different coefficients shown in above equation

on the high pass filter response

5.3  Frequency response of the designed 2-D high-pass recursive filter

We can simulate the above 2-D high pass transfer function in MATLAB ® and
obtain 3-D magnitude plot and contour plot for a particular set of the coefficients. After
writing a function “himthhp.m”, we assign value to each and every coefficient of the high
pass transfer function in the function “himthhp.m” to get the contour and 3-D magnitude
plots for the specified values.

It is hard to analyze the effects of one particular coefficient on the high pass filter
response because of the presence of many coefficients in the 2-D high pass transfer
function. To assist this situation, we explore the coefficients into two groups

o coefficients offered by the generalized bilinear transformation
¢ coefficients offered by the 2-D analog transfer function
To make the situation simpler, while investigating the effects of the coefficients of one

group, we keep the coefficients of another group to some content value. We have
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obtained 2-D analog transfer function using a VSHP, which was generated with the help
of matrix theory, so we call the second group as “coefficients of matrix”

3.3.1 2-D high-pass recursive filter response with each different coefficient of
the generalized bilinear transformation

In this section, we investigate how the effects of each different coefficient of the
generalized bilinear transformation modify the designed filter response. In order to study
the effects of the coefficient and to make the analyzing job easy, we keep changing the
coefficient under the examination, while setting the others to some constant values.
Equation 5.2 shows the range of each coefficient of the generalized bilinear
transformation for the designed 2-D high-pass recursive filter. As we have already

discussed, we also assign each coefficient of the matrix to some specific value. In this
section (section 5.3.1) we use, ¥,=Y,=0.81,g=2and A=y, 4, (a - b)=6.1
High Pass frequency response with different values of K,

In order to distinguish the effects of the other coefficients beside X, and not to

lose any generality, we keep other coefficients to some constant values. We have used

K, =ay, =ay, =1and b, = b, = -1, with these values we have checked the range for

Figure 5.2(a): K,=0.1
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Figure 5.2(d): K, =5
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Figure 5.2(e): K, =20

Figure 5.2: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of K, with K, =a,, =a,, =1 and b,, = b, = -1.

K, using “himthhp.m” in MATLAB®, and it gave us stable result response up to
K,=10,000. Figure 5.2 shows the contour and the 3-D magnitude response plot for
different values of X .

This is detectable that the value of K, is inversely proportional with the
baﬁdwidth in @, domain. Also, it does not modify the amplitude of the response and the
bandwidth in @, domain. We can see that the amplitude remains constant approximately
0.23 for all values of K, and each contour plot contains Quadrantal symmetry
High Pass frequency response with different values of X )

K,also offers stable 2-D high pass response up to 10,000 value, when other

coefficients of the generalized bilinear transfer function fix to unity with proper signs,

e.g K, =a, =ay, =1 and b, =b, =-1. Below figure shows few responses for

different values of K,. The frequency response for K, = 1 is already showed in figure

5.2(c), so we do not show it again here in the below figure.
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Figure 5.3(b): K,=0.5

]

Figure 5.3(c): K,=2.5
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Figure 5.3(d): K, =25

Figure 5.3: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of K, with K, =a,, =a,, =1 and b,, =b,, =-1.

After reviewing the frequency response we can say that value of K , 1s inversely
proportional with the bandwidth ofw, and it does not alter the bandwidth of w,. 1t is
visible that it does not have any effects on the gain of the high-pass response as the
amplitude value in the 3-D magnitude plot remains constant approximately 0.23
throughout, and each contour plot has Quadrantal symmetry.

The main effect of K and K,is on the bandwidth of the designed high-pass
frequency response, so we can call them as band-effective coefficients. And using this
characteristic of K, andK,, we can design the 2-D high-pass filter with a desirable
bandwidth. For an example, we want to design a high-pass filter with bigger bandwidth
response and if we utilize the above knowledge then we can say that by setting smaller
value to K, andK, we can achieve the desirable response. And to design really very
narrow b anded high-pass filter, we have to assign higher valuesto K,andK,. Thisis

evident in the below figure.
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Figure 5.4(b): K, =K,=5
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Figure 5.4(c): K,=K,=17

Figure 5.4: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of K| and K, with a, =a,, =land b, =b,, =-1.
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Another noticeable thing in this case is each contour plot has Quadrantal
symmetry, Diagonal Symmetry and Four-fold symmetry. In a single word each contour
plot contains Octagonal symmetry.

High Pass frequency response with different values of a,,
To reduce the complications and to detect the consequences of a,, on the high

pass filter response, we assign the other generalized bilinear coefficients to unity value

with proper signs, e.g. K, = K, =a,, =1 and. b, =b,, =—1. With this setting, we have

0.12-.

02+

0.154

014

Figure 5.5(b): a,,=0.5

Figure 5.5: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of a,, with K, =K, =a,, =1 and.b,, = b, = -1
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signs, e.g. K, = K, =a,, =1 and.b,, =b,, =-1. With this setting, we have checked that
the designed 2-D high-pass recursive filter gives stable results for the complete range of
a,, from 0 to 1. The contour and 3-D magnitude plots with different values of a,, are
given in figure 5.5. As we have already presented the response for a, =1 1in figure
5.2(c), here we only show the results for a,, =0 and a,, =0.5.

After analyzing the above figure, we can state that the main effect of a,, is on the

gain of the designed filter. It is directly proportional to amplitude of the high-pass filter.
As the value increases from 0 to 1, the amplitude approximately increases from 0.14 to

0.23. ay, also affects the bandwidth in @, domain, it is obvious that a,, is inversely
proportional to the bandwidth in @, domain and the contour plots have Quadrantal

symmetry.

High Pass frequency response with different values of a,,
To understand the effects of a,,on the frequency response of the designed filter,

we set other coefficients of the generalized bilinear transformation to unity with proper

sign, e.g. K, =K, =a,, =1 and b, = b, =~-1. Same as the case of a,,, a,,also gives
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Figure 5.6(a): a,,=0
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Figure 5.6(b): a,,=0.6

Figure 5.6: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of a, with K, =K, =a,, =1 and b,, =b,, =-1.

stable high pass filter for the entire range, e.g. from 0 to 1. Below figure shows

simulation results for different values of a,,. Simulation result for a,= 1 is already
showed in figure 5.2 (c), so we do not show it again in the above figure.

It is evident that a,is also directly proportional to the magnitude of the high pass
filter and inversely proportional to the bandwidth in®, region. Another interesting thing

is the frequency response in this case is approximately 90 degree rotated with respect to

the relative case of a,, .
It is clear that K| and K, has greater effects on the bandwidth of the response
than the effects offered by a and a,,. a, and a,, are mainly gain affected coefficient.

So we call them gain-effective coefficients. In the below figure we show that we can

reduce the gain of the designed filter response by setting lower values of a,, and

a,, together.
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Figure 5.7(b): a,,=a,,=0

Figure 5.7: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of a, and a,, withK, =K, =1and b, =b,, = -1

It is observable that when we assign equal values to a,, and a,,, the contour plot
obtains Octagonal symmetry same as the case of K, =K,. When a,, and a,, change from

lower boundary to upper boundary, the magnitude of the response change from 0.09 to
0.23. We noticed that the gain of the designed filter reduce significantly when we

combine the effect of a,, with bigger K ,.
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Figure 5.8(b): K,=K,=10; a,,=a,,=0.1
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Figure 5.8(c): K, =K, =10; a,,=a,,=0.5

Figure 5.8: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of X, X, ,a, and a,, withd, =b,, =-1.
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And it can be seen that, this combination gives us a wide range of the gain of the
designed 2-D high pass filter from 0.23 to 5.3*10. But at the same time, we can only
reduce the gain, we can not increase the gain and this inspires us to find another gain
effective coefficient for the designed high pass filter to achieve desirable gain. It is also
visible that the bandwidth of pass band of the response decrease with higher values of
K andK,.

High Pass frequency response with different values of by,

To analyze the consequences of b,, on the frequency response of the designed
filter and to make the situation easy, we hold other coefficients of the generalized bilinear
transformation to unity with appropriate sign, e.g. K, =K, =a,, =a,, =1 and b, =-1.
We have verified that b, gives stable output for the full range, e.g. from -1 to 0. Below

figure shows simulation results for different values of 4,, . Simulation result for by =-11is

already showed in figure 5.2 (c).

Figure 5.9(a): b, =0
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Figure 5.9(b): b,,=-0.5

Figure 5.9: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of b, with K, =K, =a,, =a,, =1 and b,, = —1.

It is visible in the above results that assigning non unity value to &,, is resulting in

non-zero gain in the stop-band portion in @, domain. And it is also inversely proportional
to the bandwidth of the pass-band in @, domain. It is also observable that each contour
plot contains Quadrantal symmetry and the magnitude value remains same in each case.

High Pass frequency response with different values of 5,

In many ways we can combine the coefficients of the bilinear transformation, but
to make the scenario simple and not to lose any generality, we hold the other coefficients
to unity with proper signs, e.g. K, =K, =a, =a, =1 and b, =-1. With this
condition, we have checked that the designed 2-D high-pass recursive filter gives stable
output for the whole range of b, from -1 to 0. Below figure shows the contour and 3-D

magnitude plots with different values of b,,. As we have already studied the response for

by, =-11n figure 5.2(c), here we only give the results for b, =0 and b, =-0.4
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Figure 5.10(b): b,,=-0.4

Figure 5.10: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of b, with K, =K, =aq,, = a, =1and b, =-1.

It is obvious that the response with b, is approximately 90 degree rotated with
respect to the response of b,, . In this case too, we can see non-zero gain in the stop-band
region when the non unity value to b,, is assigned. Non-zero gain in @, region is directly
proportional to the value of b,,. Another noticeable thing is that b,, does not modify the

gain of the high pass response and presence of the Quadrantal symmetry in the contour

plots.
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Non-zero gain in the stop band of the filter response might be change the filter
polarity - from low-pass to high-pass, so we call b, and b, as polarity-effective
coefficients. By changing the band-effective coefficients K, and X,, we can rectify the
problem of the non-zero gain in the stop band. If we set non unity values to both
coefficients by, and by,, it will produce unwanted non-zero gain at stop-band in both o,
and o, domains. Below figure shows the non-zero gain for b, = b,,= 0 and the solution

of this problem.

T

Figure 5.11(b): K, =K, =3; b, =b,,=0
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Figure 5.11(c): K,=K,=T7; b,,=b,,=0

Figure 5.11: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of K|, K, b,, and b, witha,= a,,=I.

It indicates that with bigger value of K, we can reduce the non-zero gain in the
stop-band region, but on the other hand we get smaller bandwidth in the pass-band of the
response. So we have to bargain in between these two parameters, non-zero gain in the
stop-band region and bandwidth of the pass-band, for the particular application.

5.3.2 2-D High-pass recursive filter response with each different coefficient
of the matrix

In this section, we analyze how each different coefficient of the matrix changes
the designed high pass filter response. In order to explore the effect of the coefficient on
the response, we keep changing the coefficient under the test, while holding the others to
some specific values. To make the situation simple and to investigate the effects of the
coefficients of the matrix, we should keep each coefficient of the generalized bilinear

transformation to some specific values. We use K, =K, =a, =a, =1 and

by, = by, =—1 in the section 5.3.2 for simplicity.
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If we plug in these values of the generalized bilinear transformation in the
Equation 3.27 then we can derive conditions on the matrix coefficients for the high pass

frequency response, which are as below.

* w4>0 (5.4a)
o Y,>0 (5.4b)
e Y>0 (5.4¢)
e g#0. (5.4d)

Same as the case of 2-D low pass filter, in this case too if we follow the condition showed
in equation 4.5, then we can rewrite the 2-D high pass transfer function showed in 5.3 as
a product of two different two-variable polynomials showed in equation 4.4. This is the
necessary condition to have Quadrantal symmetry in the response.

One of the possible combinations for matrix coefficients satisfying the condition
showed in equation 4.5 is A=y, 1,(a-b)’=6.1, g=2, Y=Y, =0.81. We have used this
combination for studying the effects of the generalized bilinear transformation, and this is
the reason we had Quadrantal symmetry in all the cases we have studied so far. In this
section, with reference of these values of the matrix coefficients, we investigate the
effects of the each matrix coefficient on the designed 2-D recursive filter.

We have observed that the frequency response of the designed filter for a value
A=y A (a-b), using different combinations of ¥,,a,b and A, remains same. So

instead of studying them individually we study them as a common variable A, where

A=y 4, (a - b)z'
High Pass frequency response with different values of A =y, 1, (a - b)2

To study the effects of A on the frequency response and to make the job easy, we

hold the other matrix coefficients to the specific value showed above, e.g. g=2, ¥;= ¥,
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=0.81. With this specification, we have checked that the designed 2-D high-pass

recursive filter gives stable output for A equal to 1 to 1000. Below figure shows the

contour and 3-D magnitude plots with different values of A.

Figure 5.12(c): A=10
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Figure 5.12(d): A=50
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Figure 5.12(e): A=200

Figure 5.12: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of A =y, 1,(a —b)’ withg =2, Y=Y, =0.81.

Itis obvious that A does not change the gain o f the frequency r esponse. A fter
comparing these simulation results to the reference response with A =6.1, we can say that
if we decrease the value of A from the reference value 6.1 then in the frequency response,
first and third quadrant obtain more bandwidth than the second and forth quadrant and
vice-versa. In general value of A is inversely proportional to the bandwidth of the
frequency response. In this case we did not follow the condition showed in equation 4.5,
hence we did not obtain Quadrantal symmetry in the response. Though, presence of

Diagonal symmetry and Centro symmetry are noticeable.
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High Pass frequency response with different values of g

For exploring the consequences of g on the designed filter, we should keep the
other matrix coefficients to some specific value. To make the situation simple we set each
of them to the reference value, e.g. A =y, 4 (a-b)’=6.1, ¥,= Y, =0.81 and we keep
changing the value of g. Another thing we have noticed that absolute value of g makes
difference in the response not the real value of g, means g = 2 and g = -2 give the same
response. So for simplicity we study effects of g with all positive values. Figure 5.2(c) is

the reference frequency response with value of g = 2.

3 -2 -1 0 1

Figure 5.13(a): g=0.5

Figure 5.13(b): g=1
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Figure 5.13(c): g=3

Figure 5.13: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of g with A =y, 1, (a - b)*=6.1, ¥,=¥, =0.81.

It is evident that g has significant effects on the magnitude of the frequency
response and g is inversely proportional to the magnitude value of the designed high-pass
response. Also in the frequency response, first and third quadrant obtain more bandwidth
than the second and forth quadrant when we increase the value of g from the reference
value and vice-versa. Beside this, it is also evident that g is directly proportional to the
bandwidth of the frequency response and this effect is alrﬁost counter part of the effect of
A on the bandwidth. We can see that each contour plot has Diagonal symmetry and
Centro symmetry. Because of the significant effect of g on the magnitude of the high pass
filter, we should consider g as gain-effective coefficient.

If we combine the value of A and g in some particular manner then we can change
the gain of the frequency response drastically. Below figure shows some simulation
results for different values of A and g, and after observing these cases in details we can
say that if we divide g by a factor “x” and A by the square of the factor “x”, then we can

increase the gain by square of that factor “x”, while there are not any effects on the
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bandwidth of the frequency response. And this is very evident from the transfer function

of the designed filter.
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Figure 5.14(c): A=610 and g=20

Figure 5.14: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of A =y, 4, (a~5)* and g with ¥,=Y, =0.81.
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High Pass frequency response with different values Y,

With the purpose of realizing the effect of Y, on the designed high pass filter, we
set the other parameters of the matrix to the reference value e.g., Y,=0.81, g =2, A
=y, A (a~b)=6.1. With these values, we have checked that Y, gives stable response up

to 1000. Figure 5.2(c) shows the reference response for ¥;=0.81 and we analyze the

effect of ¥, with this response.

Figure 5.15(a): ¥,=0.3
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Figure 5.15(b): ¥,=2

97




w w
S

&

Figure 5.15(c): ¥, =20

Figure 5.15: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of ¥, with A =y, 4,(a—b)’=6.1, g=2 and Y, =0.81

After thoroughly investigating, we can say that the main effect of Y,is on the
bandwidth in @, domain, while there is no effect on the bandwidth of the stop-band in
@, domain. It is inversely proportional to the bandwidth in @, domain and directly
proportional to the bandwidth of pass-band in @, domain. Another noticeable thing is that

Y has no effects on the amplitude of the response, and the presence of the Centro
symmetry in the contour plots.

High Pass frequency response with different values Y,
We should keep ¥,=0.81, g =2 and A =y, 4,(a—5)’=6.1 in order to understand
the effects of ¥, on the high pass filter response with the reference high pass response

showed in figure 5.2(c). With this arrangement, we have checked that Y, gives stable

response up to 1,000. Below figure shows few high pass responses for different values of

,.
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Figure 5.16(c): ¥,=20

Figure 5.16: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of ¥, with A =y, 4,(a—b)’=6.1, g=-2 and ¥, =0.81
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If we observe the above results in detail then we can disclose that the main effect
of Y, is on the bandwidth in ®, region, while there is no effect on the bandwidth of stop-
band in @ domain. Y, is inversely proportional to the bandwidth in ,region. It is
apparent that each contour plot has Centro symmetry. Same as the case of ¥, ¥, also

doest not modify the amplitude of the 2-D high pass response. Hence we can consider

them as band-effective coefficients.
When we change Y, and Y, together, we were expecting the same results we have
got for K, and K, , But we do not get same results. Below figure shows some simulation

results for different values of Y, and ¥,
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Figure 5.17(b): ¥,= ¥,=1.5
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Figure 5.17(c): Y= Y,=15

Figure 5.17: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of ¥ and ¥, with A =y, 4, (a -b)'=6.1, g=2.

After investigating the above simulation results carefully, we can say that the
bandwidth of the frequency response changes diagonally rather than horizontally or

vertically. Another observable thing is the presence of Diagonal symmetry in each
contour plot. And this leads us to the idea of making the value of ¥, equal to the value of
Y, with fulfilling the equation 4.5, so that we can combine Diagonal and Quadrantal
symmetry. In our reference case we have already choused equal values to ¥, and Y, with
fulfilling the equation 4.5 and this is the reason sometimes we have seen Diagonal and
Quadrantal symmetry in the high pass response.

Still the combine effect of ¥, and Y, on the bandwidth is not known. In order to
determine this effect in details we should keep changing value of ¥, and ¥, with

satisfying the equation 4.5 for g=2. Below figure shows some simulation results for this

case.
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Figure 5.18(a): Y= ¥,=0.05 and A=1600
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Figure 5.18(c): Y¥,= ¥,=40 and A = 0.0025

Figure 5.18: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
different values of ¥;, ¥, and A =y, 1,(a —b) with g = -2.
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From this simulation results we can easily understand the effects of ¥,and ¥,on
bandwidth of the frequency response. When we assign equal value to ¥ and ¥, with
satisfying the equation 4.5, value of Y and ¥, is directly proportional to the bandwidth of

the frequency response. It is visible that each contour plot is having Octagonal symmetry
in above figure. But the more effective and easy way to obtain the desirable bandwidth is

by changing the value of K, and X, , because we do not have to satisfy any conditions in

this case,

5.4 Designing High-pass filter with a desirable response.

With this knowledge of various effects of different coefficients of the matrix and
generalized bilinear transformation on the behavior of the 2-D high pass filter, now we
can design a 2-D high-pass filter with a desirable response. For an example, we want to
increase the gain and we want to keep the bandwidth of the response same as the

reference case showed in figure 5.2(c). We can achieve this by reducing the value of g,

Figure 5.19: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
A =y A(a-b)=0.14, g = 03, Y¥=Y,=081, K, =K,=1, by =b,=-1 and

Ay = Ay =1
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lets say 0.3, and keeping the same value of ¥,=Y,=0.81. Now, for these values of Y, 7,

and g , we calculate value of A from the equation 4.5, which comes 0.14. As well as, we
also keep the generalized bilinear coefficients to unity value with proper sign. Above
figure shows the simulation results of a 2-D high pass filter with these values.

Now for an example, let’s say we want to obtain a 2-D high pass filter with high
gain and greater bandwidth. To build this kind of high pass filter we start exactly in the
same manner as above and we achieve the high gain in the response. And at this point
now we can always alter the bandwidth of the response by changing the values of band-
effective coefficients K,andK,or ¥, and Y,. But for the simplicity purpose we use
K and K, to achieve the desire bandwidth. And we know that K, and K, are inversely
proportional to the bandwidth, so by assigning lower values to them we can obtain a
response with greater bandwidth. Below figure shows the simulation results for this

example.

Figure 5.20: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
A =y, (a-b)=0.14, g = 03, ¥%=Y,=0.81, K,=K,=0.1, b, =b,=-1 and

Ay =g, =1
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Now, let’s say bandwidth of the frequency response is fine but for some reasons
we have to reduce the gain of the response little bit. And the minor changes in the gain of

the response can be achieved by changing the values a,, and a,,. But we also know that
a, and a, also have some minor effect on the bandwidth and we can readjust the
bandwidth of the response with ¥},Y, and A. We have obtained the desirable response by
setting a,, =a,,=0.5, ¥,=Y,=0.9 and A=0.11, while keeping all other parameters to the

same value. Below figure shows simulation result for this example

Figure 5.21: The contour and 3-D magnitude plot of the resulting 2-D high pass filter for
A =y A(a-b)=0.11, g = 03, ¥=Y,=09, K,=K,=0., b, =b,=-1 and

ay =ay, =0.5

Figure 5.22: Overlapping of the contour plots showed in figure 5.20 and 5.21
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5.5 Summary

It is amply demonstrated that the designed 2-D high-pass recursive filter response
can be modified by changing one or more coefficients of the 2-D high-pass transfer
function. In this chapter, a large family of responses of 2-D high-pass recursive filter is
analyzed in detail with 2-D contour plots and 3-D magnitude plots. Effects of each
coefficient of the proposed 2-D high-pass digital filter on the filter behavior are
investigated with simulation results. It is evident that in addition to contour
characteristics, symmetry of the 2-D high-pass digital filter can also be changed.

One of the prime issues with 2-D high-pass filters is stability. With the unity
degree denominator, stable range for each coefficient for the proposed 2-D high-pass
recursive filter is analyzed. We use it as stability test criteria for 2-D high-pass filter
design procedure.

Designing of a 2-D high-pass recursive filter with the desirable magnitude,
contour and symmetry characteristics is feasible using the technique presented in this

chapter. This approach was demonstrated via several examples with guaranteed stability.
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6. 2-D BAND-PASS RECURSIVE FITLER

Different c ombinations of a 2 -D low-pass filter and a 2 -D high-pass filter will
result in different kind of filters, e.g. 2-D band-pass filter, 2-D band-elimination filter. In
this chapter we study 2-D band-pass filter, one of these kinds of combination filter.

Section 6.1 is a brief introduction of a 2-D band-pass filter with a graphical
illustration. In section 6.2 we show how to design 2-D high pass filter by applying the
double generalized bilinear transformation to the 2-D analog transfer function derived in
Chapter 3. In section 6.3 with the knowledge gained from Chapter 4 and Chapter5, we
determine the effects of the different coefficients of the 2-D band pass transfer function

on the filter response. Section 6.4 is the summery of this chapter.

6.1 Definition of 2-D Band-pass filters

A band-pass filter p ermits the signal c omponents within a s pecified range, and
attenuates the other signal components with a higher and a lower frequency than the

specified frequency range. A 2-D band-pass filter can be plotted as shown below:
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Transition-band’

Figure 6.1: Graphical definition of a band-pass filter

A typical 2-D band-pass recursive filter has the specification in the frequency domain as

below:
H(w,,) =0, o,| <,
=1, 0, <|lo|<o, (6.1)
=0, o, <|lo|<z

Where : @, is called pass-band radius, i =1, 2.

108




w,;1s called stop-band radius, 1 =1, 2.

1=1,2.

Si

And transition band is the region in-between @, and @
There are few possibilities to design 2-D band-pass filter from a 2-D LPF and a 2-D HPF.
Some of them are as below:
e A cascade connection of a 2-D LPF and a 2-D HPF
e A cascade connection of a 2-D HPF and a 2-D LPF
e By implementing the double generalized bilinear transformation to a to the 2-D

Z, =~ ay, zZ,+a

i’z , which is a combination of a

analog function, § > K, +K,

z,+1 Z, —
low-pass filter and a high-pass filter. [33]

In this chapter, we design a 2-D band-pass filter by implementing the double generalized

bilinear transformation.

6.2 Designing 2-D band-pass filter
If we consider a VSHP shown in equation 3.16 then,
D(S1»S2)= ‘//1’11(“ _b)2 S8, + Yll//lﬂ’l(a "b)z S, + Yz‘//1ﬂ'1(a _b)2 S, +g’

=¢//,/11(a—b)2{S1S2+Y2S1+Y1S2}+g2 (6.2)

By applying the double generalized bilinear transformation in above equation for S; and

S, then, S, = K| 2290 | g | A0 | g s | BT |y e [ B2 ¥ du | Ay
z +1 z, -1 z, +1 z,—1

as discussed in Section 1.4 to make the system stable, we will follow the stability
conditions in this case, which are:

O<a, <1

where,1=1, 2, 3, 4. (6.3)
K, >0
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Now, by substituting the value of S; and S, in equation 6.2 then,

2,

KK, ( le "j{n )(
1

z, +1

Z,

KK, [ RS j[
1

D(szz):‘//lﬁ'l(a—b)2

Y1K4(Zz +a04)
| z,~1

z,+1

z, —a
Y,K|1-—"2|+Y.K
2 1( ZI+IJ 2 3( z

Z, +(103

—a z, +a
02)+K3K4( 1 03

—ay J +K1K4£Z;_+a101
1

Zy Ty n
z,~1

z,~1

+YK,| 22" |,
1 z,+1

Z, +ay, N
z,—1 )

(+8

(6.4)

By applying this D(zl,zz) to denominator of a unity numerator, we can realize a

2-D band-pass recursive filter. And the transfer function H (z1 ,Z,) can given as below,

1

H(Z"ZZ)zf(;z_)’
1><2

where, D(z,,2,) is given in equation 6.4

vi,A4 >0a#b;

O<ay <1; |
,1=1,2,3,4,

K, >0

(6.5)

(6.53)

(6.5b)

In the next section, we study the effects of different coefficients shown in above

equation on the band pass filter response

6.3 Frequency response of the designed 2-D band-pass recursive filter

First we write a program “himthbp.m” for the above 2-D band-pass transfer

function in MATLAB ®. Then assign value to each and every coefficient of the band

pass transfer function in the program to get the contour and 3-D magnitude plots for the

specified values.
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The designed 2-D band-pass filter is a combination of a 2-D LPF and a 2-D HPF.

In Chapter 4 we briefly studied 2-D LPF and in Chapter 5 we studied 2-D HPF. So if we
use the summary of those two chapters then we can predict the response of this designed
2-D band-pass filter.

In this chapter too we classify the coefficients in two groups same as last two
chapters.

e coefficients offered by the generalized bilinear transformation

¢ cocfficients offered by the 2-D analog transfer function or matrix coefficients
To make the situation simpler, while studying the effects of the coefficients of one group,
we keep the coefficients of another group to some content value.

6.3.1 2-D band-pass recursive filter response with each different coefficient
of the generalized bilinear transformation

Using the knowledge gained in last two chapters, in this section we study the
effects of each different coefficient of the generalized bilinear transformation on the
designed 2-D band-pass filter response. As usual, we keep changing the coefficient under
the examination, while setting the others to some constant values. Equation 6.5b shows
the range of each coefficient of the generalized bilinear transformation for the designed
2-D band-pass recursive filter. As we have already discussed, we also assign each

coefficient of the matrix to some specific value. In this section we use, Y,=Y,=0.81,g=2
and A=y, * 1 *(a-b)=6.1
High Pass frequency response with different values of K ;s

To study the effects of Ks, we assign unity value to all the o ther generalized

¢

bilinear coefficients, e.g. a,, =a, =-1;a, =a, =1. From the previous two chapters,
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we can say that Ks only affect the bandwidth of the response. They do not have any
effect on the magnitude of the response. Also we know that K;s related to S, affect
bandwidth response only in @, direction and Ks related to S, affect bandwidth response
in o, direction. Figure 6.2 shows the contour and the 3-D magnitude response plot for
different values of Ks related to S, e.g. K, and K, and Figure 6.3 presents the

simulation results for different values of K srelated to S,,e.g. K, and K,

I
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Figure 6.2(b): K,= K,=1
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Figure 6.2(c):K,= K,=5

Figure 6.2: The contour and 3-D magnitude plot of the resulting 2-D band pass filter for
different values of K, and K,with K, =K, =ay, =a,, = Lay =ay, =-1
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Figure 6.3(b): K,= K,=5

Figure 6.3: The contour and 3-D magnitude plot of the resulting 2-D band pass filter for
different values of K, and K, with K, =K, =1; ay =ay, =-lLay, =a, =1.
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After reviewing the Figure 6.2 and Figure 6.3, we can say that value of K, and
K, together are inversely proportional with the bandwidth inw, direction, while K, and
K, together are inversely proportional with the bandwidth inw, direction. It is clear that
K;s have very minor effect on the gain of the band-pass response as the amplitude value

in the 3 -D m agnitude p lot remains almost c onstant a pproximately 0.2 t hroughout, and
each contour plot has Quadrantal symmetry.

We can call K;s as band-effective coefficients, because they mostly affect the

bandwidth of the designed band-pass frequency response. With this knowledge we can

Figure 6.4(a): K,s=0.1.

3
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Figure 6.4(b): K;s=10

Figure 6.4: The contour and 3-D magnitude plot of the resulting 2-D band paiss filter for
different values of K;s,i=1, 2, 3, 4 with a,, =a,, =-L;a, =a,, =1.
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design a 2-D band-pass filter with bigger pass-band region or with a smaller pass-band
region as shown in the above figure.

Another noticeable thing in this case is both the contour plots have Quadrantal
symmetry, Diagonal Symmetry and Four-fold symmetry. In a single word each contour
plot contains Octagonal symmetry.

Band Pass frequency response with different values of a, s

With the information obtained from last two chapters, we can say that a,,s mostly
affect the gain in the pass-band of the designed filter. a,,s related to LPF are inversely
proportional to the gain of the response, while a,s related to LPF are directly
proportional to the gain of the response. Figure 6.5 shows the results for a,,; s related to
LPF, e.g. a, and a; and Figure 6.6 shows the simulation response for a,,s related to

HPF, e.g. a,, and a,,

Figure 6.5(a): a,,=-0.1 and a,,=-1,
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Figure 6.5(d): a,,=-0.5 and a, =-1

Figure 6.5: The contour and 3-D magnitude plot of the resulting 2-D band pass filter for
different values of a,, and ay,with X, =.a,, =a, =1
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It is evident in the above figure that a,, related to LPF is inversely proportional to
amplitude of the high-pass filter. As the value decreases from -0.1 to -1, the amplitude
approximately increases from 0.12 to 0.2. a,, s also has small effect on the bandwidth of
the response and the contour plots have Quadrantal symmetry.

It is clear that a,, related to HPF is also directly proportional to the magnitude of

the band pass filter and affect the bandwidth of the response. Another interesting thing is

in this case too, the a,, s related to ), e.g. a,,and ay,, affect bandwidth response only in

Figure 6.6(b): a,,=0.5 and a,,= 1
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Figure 6.6(d): a,,=0.5 and a,=1

Figure 6.6: The contour and 3-D magnitude plot of the resulting 2-D high band filter for
different values of a,, and a,, with K, =1 and a, =a,, =-1.

@, direction and a,;s related to §,, e.g. a,, and a,, affect bandwidth response in @,
direction.

It is clear that Ks has greater effects on the bandwidth of the response than the
effects offered by a,;s. a,;s are mainly gain affected coefficient. So we call them gain-

effective coefficients. In the below figure we show that we can reduce the gain of the

designed filter response by setting lower values to a,,;, a,,, @, and a,, together.
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Figure 6.7(b): |a,;,| = 0.5

Figure 6.7: The contour and 3-D magnitude plot of the resulting 2-D band pass filter for
different values of a,, swith K, =1 and a, =a, =-1.

It is observable that when we assign equal values to a,,s, the contour plot obtains
Octagonal symmetry same as the case of K;s. When each a,, changes from the lower

boundary to the upper boundary, the magnitude of the response changes from 0.042 to
0.2 and the bandwidth of the response decreases noticeably. Another noticeable thing is
using the a,,s we can only reduce the magnitude of the response, we can not increase it

more than 0.2. So we need to find some other gain-effective coefficient to increase the

flexibility of the 2-D band-pass filter.
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6.3.2 Effects of the Matrix coefficients on the 2-D band-pass recursive filter
response

In this section, we analyze the effects of the matrix coefficients on the designed 2-
D band pass filter response. As usual while studying the effects of the coefficient of this
group, we keep the coefficients of another group, the double generalized bilinear

coefficients, to some specific value. For simplicity we use K,s=a, =a, =1 and
ay, = ay, =—1 in the section 6.3.2.

We can get the conditions on the matrix coefficients for the band pass frequency
response after putting these values of the generalized bilinear transformation in the

Equation 6.5, which is given below.

e y A4, >0 (6.6a)
e 1,>0 (6.6b)
e Y>>0 (6.6¢)
e g#0and a=b (6.6d)

Same as the case of 2-D LPF or 2-D HPF, in this case too if we follow the condition
showed in equation 4.5, then we can rewrite the 2-D band pass transfer function, equation
6.5, as a product of two different two-variable polynomials showed in equation 4.4. This

is the necessary condition to have Quadrantal symmetry in the response. A combination,
A=y, * 1 *(a-b)=6.1, g=2, Y =Y, =0.81, satisfy this condition and we have used the
same combination to study the effects of the coefficients of the generalized bilinear

transformation, which resulted in the present of Quadrantal symmetry in the response.

Below figure shows some simulation results for different values of the matrix parameters.
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Figure 6.8(c): A=6.1,g=1, Y, = ¥,=0.81
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Figure 6.8(h): A=6.1,g=2, Y, =0.81and ¥, =2

Figure 6.8: The contour and 3-D magnitude plot of the resulting 2-D band pass filter for
different values of A, g, ¥, and 7.

After exploring the above figure in details, one can say that A, Y; and Y, .do not
have any effects on the magnitude of the response individually. g is inversely

proportional with the magnitude of the 2-D band-pass filter response. ¥, is inversely
proportional with the bandwidth in the @, domain of the designed filter and Y, is
inversely proportional with the bandwidth in the @, domain of the band-pass response.

And if you recall the effects of these coefficients on the 2-D LPF then you can see that

the e ffects o f e ach matrix c oefficient on the 2-D b and-pass filter response are exactly
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same as the effects of that coefficient on the 2-D low-pass filter. Hence rather than
analyzing each matrix coefficient individually, we only study gain-effective matrix
coefficients A and g together and band-effective coefficients ¥, , ¥, and A together.
High Pass frequency response with different values A and g together

Same as the case of 2-D LPF or 2-D HPF, A and g together in some particular
manner change the gain of the frequency response drastically in the case of 2-D band

pass filter too. Below figure shows some simulation results for different values of A and

g.

&
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Figure 6.9(a): A=0.061 and g=0.2
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Figure 6.9(b): A=0.00061 and g=0.02
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Figure 6.9(c): A=610 and g=20

Figure 6.9: The contour and 3-D magnitude plot of the resulting 2-D band pass filter for
different values of A =y, * 1, *(a—b)" and g with ¥,=Y, =0.81.

After observing these cases carefully, we can say that if we divide the reference
value of g by a factor “x” and the reference value of A by the square of the factor “x”,
then we can increase the reference gain by square of that factor “x”, while there are not
any e ffects on the bandwidth of the frequency response. This is also evident from the
transfer function of the designed 2-D band-pass filter.

High Pass frequency response with different values A, ¥, and Y,

Figure 6.10(a): Y¥,= Y,= 0.3 and A=1600
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Figure 6.10(c): ¥,= ¥,=20 and A = 0.01

Figure 6.10: The contour and 3-D magnitude plot of the resulting 2-D band pass filter for
different values of ¥, ¥, and A =y, * 4, *(a —b) with g = -2.

In last two chapters we have seen that behavior of ¥, and Y, on the bandwidth is
understandable, if we change the values of ¥, and ¥, with satisfying the equation 4.5 and

keeping the value of g = 2. Above figure shows some simulation results for this case.

From this simulation results we can say that when we assign equal value to ¥, and
Y, with satisfying the equation 4.5, the values of Y,and Y, are directly proportional to

the bandwidth of the frequency response of the 2-D band-pass filter. It is visible that each

contour plot is having Octagonal symmetry in above figure. But the more effective and
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easy way to obtain the desirable bandwidth is by changing the value of K s, because we

do not have to satisfy any conditions in this case.

6.4 Summary

In summary, this chapter has shown a new technique of designing 2-D band-pass
recursive filter with variable properties by implementing double generalized bilinear
transformations to 2-variable analog function. We have dealt with one of important
combination filters, 2-D band-pass recursive filter. The purpose of this chapter has been
to study the effects of different coefficients of the 2-D band-pass transfer function on the
frequency response. In this case also, contour and symmetry properties can be varied by
assigning different values to the variables in the 2-D transfer function.

In general from the results obtained in this chapter, it is realistic to develop a 2-D
band-pass filter with required bandwidth and amplitude properties.

There are many combination filters are possible, and this chapter is one of the first
stages towards the study of combination filters. These combination filters use in the

modern image processing to enhance image quality.
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7.  CONCLUSIONS

In the modern Image Processing world, 2-D systems are widely being used and 2-
D digital filters are one of the main uses in them. Different kinds of 2-D filters are used
for many Image processing purposes e.g. smoothening, sharpen, edge detection, etc. In all
the above applications data used is mainly 2-D. Hence necessitates the study of various 2-
D digital filters with flexible characteristics, which motivated us to work on this thesis. In
this chapter, we conclude our wok with the contribution to this thesis and suggestions for

future work

7.1 Summary

It is amply demonstrated that a 2-D recursive filter response can be modified by
the application of a suitable double generalized bilinear transformation, providing the
designer with the modified 2-D digital transfer function. The cases considered are the 2-D

low pass recursive filter, 2-D high-pass digital filter and 2-D band-pass recursive filter.
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7.1.1 2-D Low-pass recursive filter

The double generalized bilinear coefficients K,s(i = 1, 2) and matrix coefficients
Ys (1=1, 2) mainly affect the bandwidth characteristics of the 2-D low-pass recursive
filter. The coefficients Y,s also has minor effect on the magnitude response, SO we

suggest to use the double generalized bilinear coefficients K,s for any changes in the

bandwidth of the 2-D low-pass recursive filter because it has no effects on the magnitude
response of the designed filter.

Double generalized bilinear coefficients a,,s and Matrix coefficients A and g

together are inversely proportional to the magnitude response of the designed low-pass

filter. Because of a,s also affect the bandwidth characteristics of the 2-D low-pass

recursive filter, for big changes in magnitude we put forward to use matrix coefficients A
and g together.

The coefficients b,s act as polarity-effect coefficients. b,,s determine whether
the resulting filter is either a low-pass filter or a high-pass filter. The effect of b,;s results
in non-zero gain of the stop-band of the designed filter. If one keepK, =K,, b, =b,
and a, =a,, satisfying equation 4.5 will result in the Quadrantal symmetry in the

response of the filter. As well as, by keeping Y, equal to Y,, we can obtain Diagonal

symmetry. And by combining the both conditions, one can get a 2-D low-pass filter

response with an Octagonal symmetry.
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7.1.2 2-D high-pass recursive filter

The double generalized bilinear coefficients K,s(i = 1, 2) are inversely
proportional to the bandwidth of the 2-D high-pass filter and have no effects on
magnitude response. Matrix coefficients Y,s (i = 1, 2) also affect the bandwidth
characteristics of the 2-D high-pass recursive filter. To understand the effects of Y.s on
the magnitude response, one has to satisfy some conditions as discussed in section 5.3.2.
Hence, we propose to use the double generalized bilinear coefficients K;s for any
changes in the bandwidth of the 2-D high-pass recursive filter.

Double generalized bilinear coefficients a,s are directly proportional to the
magnitude response of the desighed high-pass filter, while Matrix coefficients A and g
together are inversely proportional to the magnitude response of the filter. As a,s have
minor effects on the bandwidth characteristics of the response, hence for big changes in
magnitude we suggest to use matrix coefficients A and g together.

The coefficients b,,s act as polarity-effect coefficients. The effect of b,s results

in non-zero gain of the stop-band of the designed filter, which might be change the

polarity of the filter. One of the solutions for this problem is change in K ;5 as shown in

section 5.3.1. If we satisfy the symmetry conditions discussed in Chapter 4.3.2, 2-D high-
pass recursive filter also hold all the symmetries shown in the previous chapter “2-D low-

pass recursive filter”
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7.1.3 Combination filter, 2-D band-pass recursive filter

The double generalized bilinear coefficients Kis(i =1, 2,3, 4) are inversely
proportional to the bandwidth of the 2-D high-pass filter and also have small effects on
magnitude response. Double generalized bilinear coefficients a,s related to HPF are
directly proportional to the magnitude response of the designed filter, while a,s related
to LPF are inversely proportional to the magnitude response of the 2-D band-pass filter.
a,;s also affect the bandwidth of the frequency response. a,,s and X ;s related to S, have
effects on the bandwidth in @, domain and a,s and K.s related to S, affect the

bandwidth in w, region.

Matrix coefficients A and g together are inversely proportional to the magnitude
response of the 2-D band-pass recursive filter Matrix coefficients Ys (1=1, 2) with
satisfying Equation 4.5 and g=2, are inversely proportional to the bandwidth of the 2-D
band-pass recursive filter.

We propose to use the double generalized bilinear coefficients K;s for any
changes in the bandwidth of the 2-D band-pass recursive filter, because in this case we do
not have to satisfy any conditions.. As a,s have minor effects on the bandwidth
characteristics o f the response, hence for big changes in m agnitude we suggest to use
matrix coefficients A and g together. 2-D band-pass recursive filter also hold all the

symmetries shown in Chapter 4 and Chapter 5, if we fulfill the symmetry conditions

discussed in the Section 4.3.2.
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7.2  Contribution

This thesis is one of the initial steps towards the study of “Different kinds of 2-D
recursive filters with flexible characteristics”. We have obtained 2-D digital transfer
function with few variable coefficients from an existing 2-variable VSHP by
implementing the Double generalized bilinear transformation.

We have also shown under some conditions the designed 2-D transfer function
works as 2-D low-pass recursive filter or 2-D high-pass recursive filter with stability
conditions. Then we investigated the effects of each coefficient on the frequency
response of 2-D LPF or 2-D HPF with simulation results — 3-D magnitude plots and 2-D
contour plots. This study helps to design a 2-D LPF or a 2-D HPF with desirable
characteristics in terms of magnitude, bandwidth and Ssymmetry.

It is possible to develop new kinds of 2-D filters by combining a 2-D LPF and a
2-D HPF. Keeping this idea in mind, we designed 2-D band-pass filter with some
variables. We determined the effects of some effective variables on the frequency
response with simulation results. 2-D LPF and 2-D HPF with desirable characteristics can
be designed with the help of this study; one can design a 2-D band-pass digital filter with

expected properties such as magnitude, bandwidth and symmetry.

7.3 Suggestions for future work

e In this thesis we have studied one combination filter — 2-D band-pass filter. The

work can be extended for different combinations e.g.. band-elimination filter, all

stop filter..
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e We came up with the conditions to obtain Quadrantal symmetry, Diagonal
symmetry and Octagonal symmetry in the frequency response of the designed 2-D
filters. One can further investigate the response of these designed filters to find
constrains for other kinds of symmetries.

¢ This study may lead to the design of 2-D all-pass filters by appropriately
associating the numerator polynomial to the transfer function.

e In Chapter 3, we have formulated two 2-variable VSHPs. We chose one of them
and designed different kinds of 2-D recursive filters with flexible characteristics.
One can always start with another 2-variable VSHP (Equation 3.13) and design 2-
D recursive filters by applying the double generalized bilinear transformation to

Equation 3.13.
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Appendix
_—

A1. Program for Chapter 4: 2-D Low-Pass Filter

$-.-.-.-.-.- 2-D Low-Pass Recursive Filter Designing -.-.-.-.-.-%

clear all;
clear workspace;

% sail = -6.1;

% laml = -1;

$ a=1;

$ b =2;

¥ g = 2;

% yl= 0.81;

$ y2= 0.81;

answ = [-6.1 -1 1 2 2 0.81 0.81];

prompt={'Enter the value for sail ',
'Enter the value for laml',
'Enter the value for a’',
'Enter the value for b other than a',
'Enter the value for g
'Enter the value for y1',
"Enter the value for y2'};

def={'-6.1','-1','1','2",'2",10.81",'0.81"'};
dlgTitle='Matrix Coefficients for 2-D Low Pass Filter';
lineNo=1;

answer=inputdlg (prompt,dlgTitle, lineNo, def) ;

abc = char (answer) ;
e=gize (abe) ;
for n = 1:e(1)

S = abc(n,1);

for m = 2:e(2)
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S = [S abc(n,m)];
end
answ(n)= sscanf(s,'$f');
end

sail = answ(l);

laml = answ(2);
a = answ(3);
b = answ(4);
g = answ(5) ;

vl = answ(6) ;
y2 = answ(7);

% k1l = 1;

% k2 1;

% a0l = -1; a02 = ~1; b0l = 1; b0o2 = 1;
answ = [1 1 -1 -1 1 1];

1t

prompt={'Enter the value for ki1 ',
'Enter the value for k2',
'Enter the value for a0l inbetween -1 to 0',
'Enter the value for a02 inbetween -1 to o',
'"Enter the value for b0l inbetween 0 to 1°'
'Enter the value for b02 inbetween 0 to 1'};
d8f={'1','l','—1','-1','1','1'};
dlgTitle='Double Generalized Bilinear Coefficients for 2-D Low Pass
Filter';
lineNo=1;
answer=inputdlg (prompt,dlgTitle, lineNo, def) ;

abc = char (answer) ;
e=size (abc) ;
for n = 1:e(1)
S = abc(n,1);
for m = 2:e(2)
S = [S abc(n,m}];

end
answ(n)= sscanf (s, '%f');
end
k1l = answ(1);
k2 = answ(2);
a0l = answ(3);
a02 = answ(4);

b01 = answ(5);
b02 = answ(e);

tl 1;
t2 1;
conl = 1;

[X,Y] = meshgrid(-3.14:0.05:3.14);

for wi = ~3.14:0.05:3.14
conz = 1;
for w2 = -3.14:0.05:3.14

zl = 2.73%(wl*j*t1l);
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z2 = 2.73% (w2*j*t2) ;

ansl =(sail*laml*kl*k2*[(a-b)*2] *
[{z1*22)+(a02*z1)+(a01*%22) +(a01*a02)]);

ans2 =(sail*laml*y2*kl*[(a-b)*2]*
[(21*z2)+(a01*22) +(b02*z1) +(a01*b02)]) ;

ans3=(laml*sail*k2*y1*[(a-b)*2]*
[(z1*z2) + (b01*2z2) +(a02%z1) +(a02*b01)]) ;

ans4=([g"2]* [(21%22) +(b01*22) + (b02%z1) + (b01*b02)]) ;

ans5 = ansl + ans2 + ans3 + ans4 ;

ansé [(z1%22) + (b01*z2) + (b02*21) + (b01*b02) ] ;

an = ansé6 / ansS5 ;
An(conl,con2)= abs(an);
con2 = con2 +1;
end;
conl = conl+ 1;
end;

sail = -0.444;

g = 0.5;

yl = 0.75;

y2 = 0.75;

a0l = -0.8; a02 = -0.8; b0l = 1; bo2

It
[

conl = 1;

for wl = -3.14:0.05:3.14
con2 = 1;
for w2 = -3.14:0.05:3.14
z1l = 2.73" (wl*j*tl);
z2 = 2.73% (w2*j*t2);
ansl =(sail*laml*kl*k2*[(a-
) %21 % [(21%22) + (a02*21) + (a01*%z2) + (a01*a02)]) +
(sail*laml*y2*kl* [ (a-
)A2]*[(zl*22)+(a01*22)+(b02*zl)+(aOl*b02)])+
(laml*sail*k2*yl1* [ (a-
)A2]*[(zl*z2)+(b01*22)+(a02*z1)+(a02*b01)])+
([g"21*[(21%22) + (b01*z2) + (b02*%z1) + (b01*b02) 1) ;
ans2 = [(z1*z2)+(b01*z2)+(b02*2z1)+(b01*b02)];
an = ans2 / ansl;
Anb (conl, con2) = abs (an) ;
con2 = con2 +1;
end;
conl = conl+ 1;

A I K WK A NT T T I I N NN NN I O I I I I OO

mesh(X, Y, An);%, 'FontSize',12);

set (gca, 'FontSize',12);

xlabel ('\omega_1', 'FontSize', 14);

ylabel ('\omega_2', 'FontSize', 14);
% title('al0l = -0.1; a02 = 1l; b0l = 1; bo2 = -0.1', "FontS8Size',12) ;
figure;

contour(X,Y,An) ;
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set (gca, 'DataAspectRatio', [1 1 1]);

figure;

contour (X, Y,Anb) ;

set (gca, 'DataAspectRatio!, [1 1 1]);
figure;

contour (X,Y,Anb, 'b--1) ;

hold on,

contour(X,Y,An, 'r-.")

set (gca, 'DataAspectRatio', [1 1 1]);
set (gca, 'FontSize',12) ;

xlabel ("\omega_1', 'FontSize', 14);
ylabel ('\omega_2', 'FontSize', 14);

title('a0l = -0.1; a02 = 1; b0l = 1;
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A2. Program for Chapter 5: 2-D High-Pass Filter

%-.-.-.-.-.- 2-D High-Pass Recursive Filter Designing

clear all;
clear workspace;

% sall = -6.1;

% laml = -1;

% a=1;

% b = 2;

g = 2;

% yl= 0.81;

% y2= 0.81;

answ = [-6.1 -1 1 2 2 0.81 0.81]

prompt={'Enter the value for sail ',

'Enter the value for laml?,

'Enter the value for a',

'Enter the value for b other than a!',

'Enter the value for g’

'Enter the value for yil',

'"Enter the value for y2'};
def={'-6.1','-1','1','2','2','0.81"','0.81"'};

dlgTitle='Matrix Coefficients for 2-D High Pass Filter':

1lineNo=1;
answer=inputdlg (prompt,dlgTitle, lineNo, def) ;

abc = char (answer) ;
e=gize (abc) ;
for n = 1:e(1)

S = abc(n,1);

for m = 2:e(2)

S = [S abc(n,m)];

end

answ(n)= sscanf (S, '$f');
end

sail = answ(1l);
laml = answ(2);
a = answ(3);

b = answ(4);

g = answ(5);

vyl = answ(6) ;

y2 = answ(7);

% k1 = 1;

% k2 = 1;

% a0l = 1; a02 = 1; b01 = -1.0; b02 = -1;

answ = [1 1 1 1 -1 -11;

prompt={'Enter the value for k1 ',
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'Enter the value for k2',

'Enter the value for a0l inbetween 0 to 1°',

'"Enter the value for a02 inbetween 0 to 1!,

'Enter the value for b0l inbetween -1 to 0

'"Enter the value for b02 inbetween -1 to O'};
def={'1','1',’1','1',’—1‘,’—1‘};
dlgTitle='Double Generalized Bilinear Coefficients for 2-D HPF';
lineNo=1;
answer=inputdlg (prompt,dlgTitle, lineNo, def) ;

abc = char (answer) ;
e=gize (abc);
forn = 1:e(1)
S = abc(n,1);
for m = 2:e(2)
S = [S abc(n,m)];

end

answ(n)= sscanf (S, '%f');
end

k1 = answ(l);

k2 = answ(2);

a0l = answ(3);
a02 = answ(4);
b0l = answ(5);
b02 = answ(6);

tl = 1;
t2 = 1;
conl = 1

[X,Y] = meshgrid(-3.14:0.05:3.14);

for wi = -3.14:0.05:3.14

conz2 = 1;
for w2 = -3.14:0.05:3.14

zl = 2.737 (wl*j*t1);

22 = 2.73%(w2*j*tg2);

ans01 = (sail*laml*kl*k2*[(a-b)*2]1*
[(z1*z2) +(a02*z1)+(a01*z2)+(a01*a02)]);

ans02 = (sail*laml*y2+*kl*[(a-b)”2]*
[(z1*22)+(a01*22)+(b02*z1) +(a01*b02)1]);

ans03 = (laml*sail*k2*yl*[(a-b)*2]*
[(z1*22)+ (b01*z2) +(a02*z1) +(a02*b01)]1) ;

ans04 = ([g"21*[(z1*22)+(001*z2)+ (b02%2z1) +(b01*b02)1]) ;

ansl = ans0l + ans02 + ans03 + ans04;
ans2 [(z1*z2)+ (b01*z22) +(b02*21) + (b01*b02) ] ;

an = ans2 / ansl;
Anhp (conl,con2)= abs(an);
conZz = con2 +1;
end;
conl = conl+ 1;
end;
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$ g = 0.3;

$ yl = 0.81;

%$ y2 = 0.81;

% a0l = 1; a02 = 1; b0l = -1; b02 = -1;

% k1l = 0.1;

% k2 = 0.1;

% conl = 1;

%

% for wl = -3.14:0.05:3.14

% con2 = 1;

% for w2 = -3.14:0.05:3.14

% z1l = 2.73"% (wl*j*tl);

% z2 = 2.73% (w2*j*t2);

% ansl =(sail*laml*kl1*k2*[(a-b)"2]1*

[(z1*z2) +(a02*%21) +(a01*22) +(a01*a02)]) +

% (sail*laml*y2+*kl* [ (a-b)”*2]*
[(z1*22)+(a0l*z2)+(b02*21)+(a01*b02)]) +

% (laml*sail*k2*yl*[(a-b)"2]*
[(Zl*z2)+(b01*z2)+(a02*zl)+(a02*b01)])+

% ([9*2]*[(zl*zz)+(b01*22)+(b02*zl)+(b01*b02)]);
% ans2 = [(z1*22)+(b01*22)+(b02*z1)+(b01*b02)];
% an = ans2 / ansl;

% Anb (conl,con2)= abs(an);

% con2 = con2 +1;

% end;

% conl = conl+ 1;

% end;

% ______________________________________________________________________

mesh (X, Y, Anhp);
set (gca, 'FontSize',12) ;

xlabel ('\omega 1', 'FontSize',14);
vlabel ('\omega 2','FontSize',14);

% title('a0l = -0.1; a02 = 1; b0l = 1; b02 = -0.1', '"FontSize',12) ;
figure;

contour (X, Y,Anhp) ;

$title('al0l = -~0.1; a02 = 1; b0l = 1; b02 = -0.1', 'FontSize',12);

set (gca, 'DataAspectRatio', [1 1 1]);
set (gca, 'FontSize',12);

Bt e e i i — =
% figure;

% contour(X,Y,Anb);

% set(gca, 'DataBbspectRatio', [1 1 1]);

% figure;

% contour(X,Y,Anb,'r--"');

% hold on,

% contour(X,Y,Anhp, 'k-.")

% set(gca, 'DataAspectRatio', [1 1 1]);

% xlabel('\omega_1', 'FontSize', 14);

% ylabel('\omega 2','FontSize',14);

B T T = =
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A3. Program for Chapter 6: 2-D Band-Pass Filter

%-.-.-.-.-.~- 2-D Band-Pass Recursive Filter Designing

clear all;
clear workspace

7

for sai1l ',

for laml',

for at,

for b other than a‘',
for g!

for yir,

for y2'};

% sail = -6.1;

% laml = -1;

$ a=1;

% b 2;

g =2;

% yl= 0.81;

% y2= 0.81;

answ = [~6.1 -1 1 2 2 0.81 0.81];

prompt={'Enter the value
'Enter the value
'Enter the value
'"Enter the value
'Enter the wvalue
'Enter the value
'"Enter the value

def={'-6.1",1-1',11','2"

dlgTitle='Matrix Coefficients for 2-D Band Pass Filter';

lineNo=1;

'2','0.81','0.81"'};

answer=inputdlg (prompt,dlgTitle, lineNo, def) ;

abc = char (answer) ;

e=size (abc) ;

for n = 1:e(1)
S = abc(n,1);
for m = 2:e(2

)

S = [8 abc(n,m)];

answ(n)= sscanf (s, '%f');

end
end
sall = answ(
laml = answ(
a = answ(3);
b = answ(4);
g = answ(5);

vyl = answ(6)
y2 = answ(7)

1);
2);

i

i

% low pass double generalized bilinear coefficients for 2-D Bandpass

filter

% kl = 1;

% k3 = 1;

% a0l = -1; a02

-1; bol

answ = [1 1 ~1 -1 1 1};

= 1; b02 = 1;

prompt={'Enter the value for k1 ',
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'Enter the value for k2',

'Enter the value for a0l inbetween -1 to 0',

'Enter the value for a02 inbetween -1 to 0!,

'Enter the value for b0l inbetween 0 to 1'

'Enter the value for b02 inbetween 0 to 1'};
def={l1lllll,l_ll,l_ll,lllllll};
dlgTitle='Lowpass D.G.B. Coefficients for 2-D Band Pass Filter';
lineNo=1; i
answer=inputdlg (prompt,dlgTitle, lineNo, def) ;

abc = char{answer) ;
e=gize (abc) ;
forn = 1:e(1)
S = abc(n,1);
for m = 2:e(2)
S = [8S abc(n,m)];

end
answ(n)= sscanf (S, '%f');
end

k1 = answ(1);

k3 = answ(2);

a0l = answ(3);

a02 = answ(4);

b0l = answ(5);

b02 = answ(6);

Q

% high-pass double generalized bilinear coefficients for Band-pass
filter

% k2 = 1;

% k4 1;

$ a03 = 1; a04 = 1; b03 = -1.0; b04 = -1;
answ = [1 111 -1 -1};

prompt={'Enter the value for ki ',

'Enter the value for k2°',

'Enter the value for a0l inbetween 0 to 1°',

'Enter the value for a02 inbetween 0 to 1!,

'Enter the value for b0l inbetween -1 to 0!

'Enter the value for b02 inbetween -1 to 0'};
def:{’l','1','1','1','—1','—1'};
dlgTitle='Highpass D.G.B. Coefficients for 2-D Band Pass Filter';
lineNo=1;
answer=inputdlg (prompt,dlgTitle, lineNo,def) ;

abc = char (answer) ;
e=gize (abc) ;
for n = 1:e(1)

S = abc(n,1);

for m = 2:e(2)

S = [8 abc(n,m)];

end

answ (n)= sscanf (s, '$%f');
end

k2 = answ(1);
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k4 = answ(2);

a03 = answ(3);
al04= answ(4);
b03 = answ(5);
b04 = answ(6);

tl = 1;

t2 = 1;

conl = 1;

[X,Y] = meshgrid(-3.14:0.02:3.14);

for wl = -3.14:0.02:3.14
con2 = 1;
for w2 = -3.14:0.02:3.14
zl = 2.73% (wl*j*t1);
z2 2.73% (w2*j*t2) ;

ansl = sail*laml*kl*k2*[(a-b)”2]*[(z1+a01)*(22+a02)] /
[(21+b01) * (z2+b02) ] ;

ans2 = sail*laml*kl*k4*[(a-b) 2]*[(z1+a01)*(z2+a04)] /
[(z1+b01)*(z2+b04)];

ans3 = sail*laml*k3*k2*[(a-b)"2]*[(z1+a03)*(22+a02)] /
[(z1+b03) *(224+b02)1];

ans4 = sail*laml*k3*k4*[(a-b)”*2]*[(z1+a03)* (z2+a04)] /
[(z1+b03) * (22+b04) ] ;

ans5 = sail*laml*y2*kl*[(a-b)"2]*[(z1+a01)] / [(z1+bol)];

ans6é = sail*laml*y2*k3+*[(a-b)”*2]*[(z1+a03)] / [(z1+b03)];

ans’?7 sall*laml*yl*k2* [{a-b) 2] *[(z2+a02)] / [(z2+b02)1];

ans8 = sail*laml*yl*k4*[(a-b)*2]*[(z2+a04)] / [(z2+b04)];

ans9 = g*2;

an = 1 / (ansl + ans2 + ans3 + ans4 + ans5 + ansé + ans7 +
ans8 + ans9);

Anbp (conl, con2)= abs (an);
con2 = con2 +1;
end;
conl = conl+ 1;
end;

o e Cascading Method ---------~----------c-—-
% conl = 1;
% [X,Y] = meshgrid(-3.14:0.05:3.14);

%
% for wl = -3.14:0.05:3.14
% con2 = 1;
for w2 = -3.14:0.05:3.14

a° oe

2zl = 2.73" (wl*j*tl);

% z2 = 2.73% (w2*j*t2);

% ansl =(sail*laml*kl*k2*[(a-b)”*2]*
[(21*z2)+(a02*z1)+(a0l*z2)+(a01*a02)])+

% (sail*laml*y2*kl*{(a-b)*2]*
[(z1*z2)+(a01*2z2) + (b02*z1) + (a01*b02)] )+

% (lami*sail*k2*yl*[(a-b)*2]*
[(21*22) +(b01*2z2) +(a02*z1) + (a02*b01)]) +
% ([gAZ]*[(Zl*ZZ)+(b01*22)+(b02*zl)+(b01*b02)]);
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ans2 = [(21*z2)+(b01*z2)+ (b02%21)+(b01*b02)];
an = ans2 / ansl;

o oe

% Anlp(conl,con2)= abs(an);

% con2 = con2 +1;

% end;

% conl = conl+ 1;

% end;

%

% conl = 1;

% [X,Y] = meshgrid(-3.14:0.05:3.14) ;

%

% for wl = -3.14:0.05:3.14

% conz2 = 1;

% for w2 = -3.14:0.05:3.14

% zl = 2.73%(wl*j*tl);

% z2 = 2.73%(w2*j*t2);

% ansl =(sail*laml*kl*k2*[(a-b)"2]*
[(z1*z2) +(a02*z1)+(a01*z2)+(a0l1*a02)]) +

% (sail*laml*y2*kl* [(a-b)*2]*
[(21*22)+(a01*22)+(b02*z1) +(a01*b02) 1) +

% (laml*sail*k2*yl* [ (a-b)*2]*
[(z1*22)+(b01*22)+(a02*z1)+(a02*b01)]) +

% ([g”21* [ (21*22) +(b01*22) + (b02*21) + (b01*b02)]) ;

ans2 = [(z1*z2)+(b03*22)+(b04*z1)+(b03*b04)1];
an = ans2 / ansl;
Anhp (conl,con2)= abs(an);
conz = con2 +1;
end;
conl = conl+ 1;
end;
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mesh(X, Y, Anbp);

set (gca, 'FontSize', 12);

xlabel ('\omega_1','FontSize', 14);
ylabel ('\omega_2', 'FontSize', 14);
figure;

contour (X, Y, Anbp) ;

set (gca, 'DataAspectRatio’', [1 1 1]);
set (gca, 'FontSize',12);

xlabel ('\omega_1', 'FontSize',6 14);
ylabel ('\omega_2', 'FontSize', 14);

o0

figure;

contour (X,Y,Anbp, 'r. ') ;

hold on,

contour (X,Y,Anlp,3, 'b--");

contour (X,Y,Anhp, 3, 'k:");

set (gca, 'DataAspectRatio’, [1 1 1]);
set (gca, 'FontSize',12);

xlabel ('\omega 1',6 'FontSize',14);
ylabel ('\omega 2', 'FontSize',14);
hold off;
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