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Abstract

Scattering of Electromagnetic Waves by Two Parallel Chiral

Circular Cylinders

Shafiqur Rahman

The electromagnetic scattering from two parallel chiral circular cylinders is analyzed
using a boundary value problem approach. Both cylinders are assumed to be illuminated
by either a transverse electric (TE) or transverse magnetic (TM) wave. The separation of
variable technique and proper transformation theorems are used to formulate the solution.
The incident fields, scattered fields, and transmitted fields are expanded in terms of the
cylindrical Vectoy wave functions. Drude—Bom—Fedorov (DBF) constitutive relations and
Bohren decomposition formula are used to express the electromagnetic fields inside the
chiral cylinders. The boundary conditions are imposed in conjunction with the addition
theorem of the Hankel function on the boundary surface of each cylinder. The boundary
conditions yield a system of linear equations for each type of polarization which can be
numerically solved to obtain the unknown expansion coefficients by a proper truncation

of the infinite sums into finite sums.
Numerical results are given to show the effects on co- and cross-polarized echo widths

for some selected parameters and geometries. The effects on the back and forward

scattering co- and cross-polarized echo widths are also given with respect to the

1ii



separation distance between two cylinders and angle of incidence. From the numerical
results, it can be evident that chirality parameter plays an important role controlling the
echo width. The validity and accuracy of the results are compared with available
published results for special and limiting cases. Several numerical results are also given
for the scattering of electromagnetic waves by single chiral cylinder for both the TM and

TE cases and validated with existing published results.
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Chapter 1

Introduction

Chiral media has drawn much attention in the scattering problems because it responds
with both electric and magnetic polarization to either electric or magnetic excitation. The
electromagnetic scattering of chiral objects is relatively complicated and different from
conducting and dielectric objects since chiral objects generate both co- and cross-
polarized scattered fields. Bohren [1] analyzed the problem of electromagnetic wave
scattering by an optically active cylinder using the cylindrical vector wave functions. He
has also analyzed the scattering of electromagnetic waves by an optically active sphere
{2] and an optically active spherical shell [3]. The problem of scattering from single
chiral cylinder of arbitrary cross section has been treated by several numerical methods.
Several researchers [4}-[6] used an integral equation approach combined with the Method
of Moments (MOM) to solve the scattering problem for a chiral cylinder of arbitrary
cross section. Kluskens and Newman [7] investigated an efficient recursive eigenfunction

solution for the problem of scattering by a multilayer chiral circular cylinder.

Multiple scattering of electromagnetic waves by conducting or dielectric cylinders has
been analyzed by various researchers using different technidues such as an integral
equation fofmulation, partial differential equations, and hybrid techniques combining the
partial differential equations with an eigenfunction expansion method. Twersky [8]
analyzed the multiple scattering of electromagnetic waves by parallel conducting

cylinders where the total field is considered as the sum of the incident field and different



orders of scattered fields. Olaofe [9] investigated the problem of scattering by two
dielectric cylinders using a boundary value problem. Young and Bertrand [10]
investigated the backscattering of a plane acoustic wave by two parallel conducting
circular cylinders using the boundary value problem. Ragheb and Hamid {11] analyzed
the scattering problem by N parallel conducting cylinders. Elsherbeni and Kishk [12]
analyzed the plane wave scattering from an array of parallel conducting and dielectric
circular cylinders using the boundary value problem. Sebak investigated electromagnetic
scattering for both parallel conducting elliptic cylinders [13] and two parallel dielectric
elliptic cylinders [14] using the separation of variable technique in conjunction with the

addition theorem for Mathieu functions.

Recently re‘searchers have become interested in analyzing the scattering of
electromaénetic waves by multiple chirél objects. Elsherbeni and Sharkawy [15]
analyzed the electromagnetic scattering from parallel‘ chiral circular cylinders using an
iterative procedure. Yin, Lee, and Leong [16] investigated the electromagnetic scattering
of plane wave by multiple eccentrical cylinders in bianisotropic media. In this thesis,
niultiple scattering of electromagnetic waves by two parallel chiral circular cylinders is
analyzed using a boundary value problem approach and computed for both the TM and
TE polarizations. The incident fields, scattered fields, and transmitted fields are expanded
in terms of the cylindrical vector wave functions. Drude-Bomn-Fedorov (DBF)
constitutive relations {17] and the Bohren decomposition formula [3] are used to express
the electromagnetic fields inside the chiral cylinders. The separation of variable technique

and proper transformation theorems are used to formulate the multiple scattering from



two chiral circular cylinders. The scattered field from each cylinder is considered to be
the incident field for the other cylinder. The addition theorem for Hankel functions [18] is
then used to enforce the boundary conditions on the surface of each cylinder which
permits the field expansions for both cylinders to be referenced to a common co-ordinate.
Boundary conditions yield a set of linear equations which is solved numerically. After
evaluating the unknown expansion coefficients, scattered far fields and echo widths can
be computed. Several numerical results are presented to show the effects on the co- and
cross-polarized echo widths with respect to different chirality parameters, frequencies,
radii, incident angles, and separation distances between two cylinders. The numerical
results are validated with existing scattering results for the special cases of two dielectric
cylinders and single chiral cylinder. The effects on the back and forward scattering co-
and cross-polarized echo widths are also given with respect to the separation distance
between two cylinders and angle of incidence. In addition to, some numerical results are
given for the scattering of electromagnetic waves by single chiral cylinder for both the

TM and TE polarizations and validated with existing published results.

1.1 Literature Review

1.1.1 Chiral Media

The electromagnetic characteristics of chiral media are different from other dielectric and
magnetic media and became the topic of interest at the beginning of the nineteenth
century. Chirality is a property of a molecule that results from its structure. A material
that is not superimposible on its mirror image by translation and rotation is called chiral

and this phenomenon is called chirality or handedness. A material that is superimposible



on its mirror image is said to be achiral. The term chiral comes from the Greek name
kheir meaning "hand" and apparently was invented by Lord Kelvin [17] in 1904. Many of
naturally occurring and man-made objects fall into category of chiral objects. DNA,
amino acids, proteins, hormones, and sugar solutions are examples of some natural chiral
objects while wire helices, hand gloves, irregular tetrahedron, and stringed instruments

are considered man made chiral objects. Fig. 1 shows some examples of chiral objects.

Mirror Mirror

Canonical helix 3 turn helix

/ ;

Se-H

24,

Hand gloves A tertiary amine

Fig. 1: Some chiral objects.



Chirality supports the property of optical activity and circular dichroism. A material
which rotates the plane of incident linearly polarized light is said to be optically active.
“ Circular dichroism indicates the property (as of an optically active medium) of unequal
absorption of right and left plane-polarized light so that the emergent light is elliptically
polarized. Some substances that rotate the plane clockwise (to the right) are said to be
dextrorotatory (from the Latin dexter, "right") [19]. Those that rotate the plane
counterclockwise (to the left) are called levorotatory (from the Latin laevus, "left"). The
property was discovered in quartz in 1811 by Arago [20]. He found that crystals of quartz
rotate the plane of polarization of linearly polarized light and two different crystalline
structures of quartz produce dextrorotatory and levorotatory. A year later, Jean Baptiste
Biot [17] noticed that plane-polarized light was rotated either to the right or the left when
- it passed through single crystals of quartz. He found that optical activity depends upon
the tilickness of the plates of crystal and on the light wavelength. He also discovered that
optical activity appears in certain liquids such as solution of tartaric acid and oils of
turpentine. In 1822 Fresnel [17] discovered that when a linearly polarized ray of light is
traveling along the axis of crystal quartz, it is divided into two circularly polarized rays of

opposite handedness and different velocities.

Pasteur [17] was the first to postulate that optical activity is caused by the chirality of
molecules in 1847. He noted that sodium ammonium tartrate forms two different kinds of
crystals that are mirror images of each other, much as the right hand is a mirror image of
the left hand. By separating one type of crystal from the other with a pair of tweezers he

was able to prepare two samples of this compound. One was dextrorotatory when



dissolved in aqueous solution, the other was levorotatory. The optical activity remained
after the compound had been dissolved in water. Pasteur therefore concluded that there
must be some asymmetry in the structure of this compound that allowed it to exist in two
forms. In 1920, Lindman [17] %ntroduced a novel approach to study chirality by using
small helices and man made chiral objects instead of chiral molecules. He demonstrated
the phenomenon of optical activity using microwaves instead of light. A number of useful

literature reviews of the chiral media are provided by the references [17] [19] - [21].

Chiral material is characterized by either left-handedness or right-handedness. Hence left
circularly polarized (LCP) and right circularly polarized (RCP) fields propagate with
different phase velocity in a chiral media. Normally chiral material is specified by the
parameters of permittivity, permeability, and chirality parameter. The third chirality

parameter of the chiral material gives more flexibility to control the scattering properties.

Chiral medi_um has focused considerable attention in recent years due to its potential
applications in the fields of antennas, waveguide propagation, optics, radar absorbing
materials (RAM), and scattering. Several researchers have investigated radiation from
antenna arrays in chiral media. Jaggard and Sun [22] examined the radiation of
electromagnetic waves from a set of canonical arrays. Mahmoud [23] has studied the -
radiation characteristics of a chiral-coated slotted cylindrical antenna. Pozar [24]
analyzed the radiation of electromagnetic waves from microstrip antennas and arrays on a

chiral substrate.



Pelet and Engheta [25] introduced a new type of waveguide structures, called
chirowaveguides. They analyzed the propagation properties of electromaénetic waves for
cylindrical and parallel plate chirowaveguides in chiral medium. They suggested that
these types of chirowaveguides can be used in integrated optical devices,

telecommunications electronic systems, and printed-circuit elements.

Chiral materials have an extra degree of freedom for scattering problems because the
chirality parameter plays a vital role to control the echo width for scattering objects.
Bohren has analyzed the scattering of a plane wave incidence by an optically active
cylinder [1] and sphere [2] as well as spherical shell [3]. Several researchers [4]-[6]
investigated the scattering problem of a chiral cylinder of arbitrary cross section. The
electromagnetic scattering from parallel chiral circular cylinders [15] and bianisotropic

circular cylinders [16] has also been.investigated.in recent years.

Chiral materials have also played vital role in the design of microwave devices such as
reciprocal phase shifters, directional couplers, and antireflection coatings since these
materials have the property of rotating the plane of polarization of the eleétromagnetic
waves propagating through them. Magnetized ferrite materials have also same property of
rotating the plane of polarization but they are nonreciprocal. Chiral materials have been
used as coatings for reducing the radar cross section (RCS) because chiral material which
is invisible to incident electromagnetic energy by virtue of zero reflectance makes it

invisible to radar [26]. Recently researchers motivated to work in the fields of remote



sensing, radiation through plasma {27], and radomes [28] because of birefringence and

circular dichroism properties of chiral materials.

1.1.2 Multiple Scattering

The scattering of electromagnetic waves from many objects has been investigated by
several researchers in recent years and drawn much attention in many practical
applications such as modeling of complex structures and controlling of echo width of
different objects. For this reason, researchers have chosen two-dimensional objects such
as circular cylinders, strips, and elliptic cylinders to study the multiple scattering
characteristics. The formulation of scattering of electromagnetic waves by multiple
scatterers is different from single scatterer since coupling effects are taken into
cénsidération to solve this type of problem. The theoretical solutions of multiple
scattering from conducting and dielectric cylinders hé{/é been analyzed by several
researchers using an integral equation formulation, partial differential equations, and
hybrid techniques combining the partial differential equations with an eigenfunction
expansion method. Twersky [8] first analyzed the multiple scattering of electromagnetic
waves by parallel conducting cylinders. In his analysis, the total field is considered as the
sum of the incident field and different orders of scattered fields. The required expansion
coefficients were generated by an iterative procedure. Olaofe [9] investigated the problem
of scattering by two dielectric cylinders using a boundary value problem. He solved a
system of simultaneous linear equations for the multiple scattering unknown expansion

coefficients in terms of the known single particle scattering expansion coefficients.



Young and Bertrand [10] investigated the backscattering of a plane acoustic wave by two
parallel conducting circular cylinders. Their analysis was carried out using the boundary
value problem. Ragheb and Hamid [11] developed Twersky’s technique in a matrix form
to analyse the scattering problem by N parallel conducting cylinders. Elsherbeni and
Kishk [12] analyzed the plane wave scattering from an array of parallel conducting and
dielectric circular cylinders using the boundary value problem. Sebak investigated
electromagnetic scattering for both parallel conducting elliptic cylinders [13] and two
parallel dielectric elliptic cylinders [14] using the separation of variable technique in

conjunction with the addition theorem for Mathieu functions.

The electromagnetic scattering from chiral cylinders is much more complicated than from
achiral cy}inders because the scattered field has both co- and cross-polarized fields.
Henpe, the number of unknown expansionsv coefficients to be solved here doubles
compared to dielectric cylinders. Elsherbeni and Sharkawy [15] analyzed the
electromagnetic scattering from parallel chiral circular cylinders using an iterative
procedure. In their analysis, the boundary conditions are applied on the surface of each
cylinder in an iterative procedure in order to solve for the unknown expansion
coefficients and showed that it is possible to reduce the Radar Cross Section (RCS) in
forward or backward scattering by proper choice of the chirality parameter of the chiral
media. Yin, Lee, and Leong [16] analyzed the electromagnetic scattering of a plane wave
from a planar array of eccentric bianisotropic cylinders. They also investigated the
multiple scattering characteristics of two-dimensional bianisotropic objects of arbitrary

cross section.



In this thesis, scattering of electromagnetic waves by two parallel chiral circular cylinders
is analyzed using a boundary value problem approach and computed for both the TM and
TE polarizations. The separation of variable technique and proper transformation
theorems are used to formulate the multiple scattering from two chiral circular cylinders.
The scattered field from each cylinder is considered to be the incident field for the other
cylinder. The addition theorem for Hankel functions [18] is then used to enforce the
boundary conditions which permits the field expansions for both cylinders to be
referenced to a common co-ordinate. The unknown expansion coefficients can be solved
for numerically by enforcing the boundary conditions on the surface of each cylinder.
After evaluating the unknown expansion coefficients, scattered far fields and both co-

and cross-polarized echo widths can be computed.

1.2 Overview

The remainder of the thesis is organized as follows:

Chapter 2 reviews Maxwell’s equations, constitutive relations, and electromagnetic field
equations in the chiral medium. Cylindrical co-ordinate systems and vector wave
functions for cylindrical structure are also described for review. Both TM and TE
scattering of electromagnetic waves by single chiral cylinder are briefly analyzed. The
incident, scattered, and transmitted fields inside the cylinder are expanded using the
cylindrical vector wave functions. DBF constitutive relations and the Bohren

decomposition formula are used to express the electromagnetic fields inside the chiral

10



cylinder. Then the boundary conditions are applied on the surface of the cylinder to
obtain the unknown expansion coefficients. The boundary conditions yield four linear
equations for four unknown expansion coefficients for each type of polarization which
can be solved numerically. After evaluating the unknown expansion coefficients,
scattered far fields and both co- and cross-polarized echo widths are computed. Several
numerical results are given to show the effect of different parameters on the co- and

cross-polarized echo widths which compare well with existing published results.

Chapter 3 presents the complete analysis of the scattering of electromagnetic waves by
two parallel chiral circular cylinders. The excitation type for this scattering problem is
transverse magnetic (TM). The incident fields, scattered fields, and transmitted fields are
expanded using the cylindrical vector wave functions.. DBF constitutive relations and the
Bohren decomposition formula are used to express the electromagnetic fields inside the
chiral cylinders. Boundary conditions are applied in conjunction with the addition
theorem for Hankel functions for solving the unknown expansion coefficients. Several
numerical results are given to show the co- and cross- polarized echo widths for selected
geometries and parameters. The effects on the back and forward scattering co- and cross-
polarized echo widths are also given with respect to the separation distance between two
cylinders and angle of incidence. The validity and accuracy of the results are compared

with available published results for special and limiting cases.

Chapter 4 presents the analysis of the transverse electric (TE) scattering of

electromagnetic waves by two parallel chiral circular cylinders. The incident fields,

11



scattered fields, and transmitted fields are expanded using the cylindrical vector wave
functions. DBF constitutive relations and the Bohren decomposition formula are used to
express the electromagnetic fields inside the chiral cylinders. Boundary conditions are
applied in conjunction with the addition theorem for Hankel functions for solving the
unknown expansion coefficients. Finally several numerical results are given to show the
co- and cross-polarized echo widths for selected geometries and parameters. The effects
on the back and forward scattering co- and cross-polarized echo widths are also given as
a function of separation distance between two cylinders and angle of incidence. The
validity and accuracy of the results are compared with available published results for

special and limiting cases.

Chapter 5 summarizes the results and outcome of the thesis.

12



Chapter 2

Chiral Media-Electromagnetic Field Equations

and Single Scatterer

2.1 Maxwell’s Equations and Constitutive Relations

The electromagnetic fields are governed by the time harmonic Maxwell’s equation. If

time dependence e is assumed then Maxwell’s equations [20] for a linear, isotropic,

and homogeneous media are

VxE—-joB=0 (2.1)
VxH+joD=0 (2.2)
V-D=0 (2.3)
V-E=0 (2.4)

where E s H s D , and B denote the electric field, magnetic field, electric flux density, and

magnetic flux density, respectively. o is the angular frequency.

The electric and magnetic fields [18] can be expressed as

i =i1TT“(V><FI) (2.5)
.1 -
H:H(VXE) (2.6)

where k = w4/pe , is the wave number , p is the permeability, and € is the permittivity

of the medium.

13



The usual constitutive relations for the electromagnetic fields can be expressed as

—

D

¢E (2.7)

B

I

uf (2.8)

These constitutive equations are merely inadequate for chiral medium because they admit
a single phase velocity that is generally frequency dependent. The chiral medium has two
different phase velocities for right circularly polarized (RCP) and left circularly polarized
(LCP) waves. Several sets of constitutive relations have been proposed to illustrate the
electromagnetic characteristics of chiral media. One of the sets is called Lindell-Sihvola

constitutive relations [17] and can be expressed as

D=¢E+ (x - jK)JuOsO H 2.9)
]§=uﬁ+(x+j1<) TIS-N E (2.10)

where k measures the chirality of the material and y measures the non reciprocity of the
material. A material is said to chiral when « # 0 and called reciprocal when ¢ =0. It is

nonreciprocal when 7y # 0. Material with « = 0 is called achiral.

Another set of constitutive relations named after Post [17], can be expressed as

D=¢E-j¢ B+y B (2.11)

. 1= o= ~

H=—-B-jE-y E (2.12)
" ,

where & is the chirality admittance and y, 1s the non-reciprocity susceptance. For

reciprocal chiral media, y, =0.

14



The other constitutive relations are called Drude-Born-Fedorov (DBF) relations [17].
Generally DBF constitutive relations are used in the analysis of reciprocal chiral media

and can be expressed as

ﬁ:8E+ystE (2.13)

B=pH+ppVxH (2.14)

where y and P are the chirality parameters of the medium in terms of length. € and p
are the permittivity and permeability of the chiral medium. In an isotropic media,
permeability, permittivity and chirality parameter are scalar. DBF constitutive relations

are used in this thesis.

It should be noticed that the permittivity, permeability and chirality parameter are not
equivalent in these different forms of constitutive relations. The relations between the
parameters of different constitutive relations exist and have been given in [17]. In

reciprocal chiral media, the chirality admittance &, of (2.11, 2.12) and chirality

parameter y of (2.13, 2.14) can be written as following relation

y =S (2.15)
(3]

- To develop the Helmholtz wave equation in chiral media, substituting equation (2.14)

into equation (2.1), we obtain
VxE = jo (u + Bpv x i) 2.16)

Using equation (2.13) into equation (2.2)
VXHZ-jO)(8E-I~'YSVXE) : (2.17)
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From equation (2.16) and equation (2.17), E and H can be written as

E:—mig[kzyﬁ—(l~k2yﬁ)Vxﬁ] (2.18)
SO Y RN
H—w“[k BE —(1-k*yB)V xE] (2.19)

Taking the curl of equation (2.19) and placing V x H from equation (2.17), then the

following chiral Helmholtz equation can be obtained for E
(1-K*¥B)Vx VxE-K*(y+B)VxE-K’E =0 (2.20)

Let a left circularly polarized (LCP) plane wave propagates in a chiral medium with

E=(a,-jd,)e 2.21)

where k;, is the LCP wave number for left circularly polarized wave.

Using equation (2.21) in equation (2.20), the LCP wave number k; can be written as

1+(y —B)puen/4 + /2
kL=mJE‘/ b=pJe fi’ugym(z“mw = (2.22)

Similarly for a right circularly polarized (RCP) plane wave, the RCP wave number kg

can be written as

_ J1+(y =Bl use® /4 —(y +B)orfue /2
ke =0 Jpe 17 peypo’ (2.23)
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If y=P and both are scalar, then the chiral medium is reciprocal. Hence left and right

circularly polarized wave numbers k, and k, can be simplified as

k, = —2VHE | (2.24)

1—yco\/ﬁg

ue
kp =—""— 2.25
A YO~/ HE (2.23)
The chirality parameter y can be written in terms of k, and k; as
1 1
Y=—= 11 (2.26)
21ky k.

2.2 Electromagnetic Fields in Chiral Medium

Chiral media support LCP and RCP fields and are represented as QL and QR~,

respectively. These fields propagate with wave numbers k;, and kg respectively. A linear
transformation [3] of the electromagnetic fields inside the chiral media in terms of LCP

and RCP fields are given by following relations
E=Q +a,Qg (2.27)
H=2,Q, +Qg (2.28)

where a, and a; carry the unit of an impedance and an admittance, respectively and are

denoted [3] by
. kR<1 —mezsu)+ yo’ep |
ap, =1 e (2.29)
|k (1 —mezsu)—Bmzsu—
a, =—i| ~L (2.30)
op |
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For left and right circularly polarized waves (y =f), a; and a, can be simplified by

aLz—i\/E and  a, =-i " 2.31)
T €

The internal LCP and RCP fields (QL and QR) independently satisfy the wave equations

and can be expressed in the following forms

v2Q, +kiQ, =0 VxQ, =k, Q, V-Q, =0 (2.32)

V2Q, +k2Q, =0 VxQ, =-k;Qp V-Q, =0 (2.33)

2.3 Wave Equation in Cylindrical Co-ordinate System

The problem of a cylindrical configuration is solved by using the cylindrical co-ordinate

system. The geometry of the cylindrical coordinate system is shown in Fig 2.1.

A\ 4
<

Fig. 2.1: Cylindrical co-ordinate system.
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For a lossless and source free medium, the scalar Helmholtz equation in cylindrical co-

ordinates [29] is

2 2 2
Oy, 10y, 10y, 0y,
op® p op p° o 0z°

+k*y, =0 (2.34)

where v is the solution of the scalar Helmholtz equation.

The solution y, of the wave equation can be written using the separation of variables as

V. (. 9,2) = £(p) g(9) h(z) (2.35)

Substitution equation (2.35) into equation (2.34) yields

2 2
1d(df]+1dg,1dh+kz=0 (2.36)

——— _— +_...
pf dp pdp p’gdp> hdz’

The third term on the left side of equation (2.36) is independent of p and ¢, is a function

of z only, can be written as

2
SER =0 (2.37)
zZ

where k, is a constant. Substituting equation (2.37) into equation (2.36) and multiplying

by p?, simplifies it to

2
E__d_ pgf_ +l£1__%.+(k2 _ki) p2 =0 (2.38)
fdp\ dp) gd¢
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The second term of equation (2.38) is independent of p and z, the other terms are

independent of ¢ . Therefore second term can be written as

~=L4n?=0 (2.39)

where n 1s a constant.

Substituting equation (2.39) into equation (2.38), gives an equation in p only

pdf df +(K* -k2)p*—n’=0 (2.40)
fdpl" dp

If k* —k? =k, the separated equations (2.40),(2.39), and (2.37) can be written as

d( df
pd_p(pag} [k, 0} -n?Jr=0 @.41)
2
d¢§ +n’g=0 (2.42)
&h o,
3 +kih=0 (2.43)

The solutions of equations (2.41), (2.42), and (2.43) can be written in one of the

following forms depending on the region of interest respectively.
f,(0) = AJ, (k,p)+B, Y, (k,p), £,(p) = C,H! (K p)+ D,H2 (K, p) (2.44)
g,(9) =A™ +B,e™, g,(¢)=C,cos(nd)+D,sin(ng) (2.45)
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h,(z) = A,e™™* +B,e™”, h,(z) =C,cos(k,z)+ D,sin(k,z) (2.46)

where T (k pp) is the Bessel function of first kind, Y, (kpp) is the Bessel function of
second kind, HS)(kpp) is the Hankel function of first kind, and Hflz)(kpp> 1s the Hankel

function of second kind. The choosing of the appropriate solutions for f (p),g(¢), and
h(z) depend upon the cylindrical problems. The Bessel and Hankel functions are used to

represent the standing and traveling wave, respectively for equation (2.44). The

exponentials of (2.45) and (2.46) represent traveling wave while sines and cosines

represent standing waves.

2.4 Vector Wave Functions

If v, is the solution of the scalar wave equation
Vi, +k2y, =0 . (2.47)

where k, is the free space wave number, then three independent vector solutions of the

vector wave equation [18] are given by

— —

M, =Vx(i,y,) N,=—(VxM,) L,=vy, (2.48)

M, =—(Vx N, ) (2.49)
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The solutions of the vector wave equation in cylindrical co-coordinate system can be

written using the separation of variables as
yik,p)=e™Z(kp), n=0,x1,+2.. (2.50)

where superscript p could be 1 or 3, and stands for incoming and outgoing waves,

respectively. The term Z. (kop) can be written in terms of superscript 1 and 3 as

ZL (kop)= I, (kop) Zi (kop): Hg)(kop) (2.51)

where J_(k,p) is the Bessel function of the first kind of order n with argument k,p and

HS)(kOp) is the Hankel function of the first kind of order n with argument kp .

In general, the cylindrical vector wave functions N, and M, can be written as
Nilkop)=1,k,Z; (kop)e™ (2:52)
M (kop)= a, EZE (kop)e™ — ﬁ¢ej'n¢ ai {ZE (kop)} (2.53)
p p

The entire analyses of multiple scattering from two chiral circular cylinders and single

chiral cylinder have been carried out by using above mentioned vector wave functions.

2.5 Scattering by Single Chiral Circular Cylinder

2.5.1 Description of the Problem

The scattering of electromagnetic waves by single chiral circular cylinder for both TM

and TE polarizations has been introduced briefly before going to the two chiral circular
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cylinders scattering analysis. The problem of scattering from a single chiral circular
cylinder has been investigated by several methods. Bohren [1] has analyzed the scattering
of electromagnetic waves from infinitely long optically active cylinder using a boundary
value problem approach. Several researchers used an integral equation approach
combined with the Method of Moments (MOM) to solve the scattering problem for a
chiral cylinder of arbitrary cross section. In this section, the incident, scattered, and
transmitted fields inside the cylinder are expanded using the cylindrical vector wave
functions. DBF constitutive relations [17] and the Bohren decomposition formula [3] are
used to express the electromagnetic fields inside the chiral cylinder. The unknown
expansion coefficients can be solved numerically by enforcing the boundary conditions
on the surface of the cylinder. After evaluating the unknown expansion coefficients, far

scattered fields and both co- and cross-polarized echo widths can be computed.

(80 a“o)

Incident plane wave

»
Lgl

\ 4
»

er’ l"l'r"Y

Fig. 2.2: The scattering geometry of a chiral circular cylinder.
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Assume that a plane wave is normally incident upon a chiral circular cylinder as shown in

Fig. 2.2. The radius, relative permittivity, relative permeability, and chirality parameter of

the cylinder are a ¢, ,p,, and v, respectively. The medium of the surrounding cylinder is

free space with permeability p, and permittivity g, .

2.5.2 TM Polarization

For a TM polarized incident plane wave, the incident electric field vector is parallel to the

cylinder axis (z axis). The incident electric and magnetic fields with e time
dependence can be expressed in terms of the cylindrical vectors wave functions as
o inc 1 = o Nl
o 1=
r yinc 1 2
H™ = —— 3i"M, (k,p) (2.55)
JOR, n=—0
where
N, (kop) = i,k oJ, (kop) ™ (2.56)
Min (kop) =1, EJn (kop)ej“"’ - ﬁtpkOJ'n (kop)ejn¢ (2.57)
p

The scattered field of the chiral cylinder embraces both TM* and TE? fields due to the

property of chiral media. The scattered electric and magnetic fields can be expressed as

- 1 + o - . -
Bf=-— 3] [b, 3 (ko) + je, M (ko) (2.58)

o M=o
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e

5o, M (ko) + e, N (kyp)] (2.59)
_]COHO n=—w

where b, and ¢, are the unknown scattering expansion coefficients of the chiral circular
cylinder for TM polarization. The cylindrical vector wave functions N:(k,p) and

M (k,p) can be expressed as
Ni (kop)= ko HY (kop)e™ (2.60)
N (kop) = &, 2 HO(k,p)e™ — 1k, HY (k,p)e™ 2.61
2 \KoP uppn oPJC UKol " \KepJe (2.61)

The chiral medium has two internal fields, LCP and RCP fields, and are represented as

QL and QR , respectively. LCP and RCP fields propagate with wave numbers k;, and kg

respectively. The LCP field (QL) and RCP field (QR) [1] can be expressed as

- 1 = ‘n - -

Qo= Ei'e M (kup)+ Ny ()] e62)
) n=-0

- 1 . - —

Qs == E56 V0 (kep) - N (kep)] 263)
g n=©

where g, and f_ are the unknown expansion coefficients of the internal fields inside the

chiral cylinder for TM polarization.

Electric and magnetic fields inside the chiral cylinder are written by following relations

E°=Q, +2,Q, (2.64)

H® =Q, +2,Q, (2.65)
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The unknown expansion coefficients can be determined by enforcing the boundary
conditions on the surface of the cylinder. The boundary conditions of the electromagnetic
scattering state that the tangential components of the electric and magnetic fields must be

continuous across the boundary.

The boundary conditions on the surface of the cylinder i.e.,p =a, are given by

(B +B*—F° )xit, =0 (2.66)

(™ + fF - 0° )xt, =0 2.67)

P

where @ is the outward unit vector normal to the cylinder.

The boundary conditions yield the following four linear equations after doing some

mathematical calculations.

cu i (cia) g, < [J (k,a)]+ £ a‘;{OR 7, (k)| = 0 (2.68)
b, Hl (k,a) g, 1= o)), L ol a1, o) (2.69)
b,HY (k,a)+ aL—k—j%—[J (ka)et, & J:’“ ~rIOR [1 (icpa)]= T, (koa) 2.70)
¢, iH, (koa) +8, ;j‘”“ 2R 1, (ko)) lf”” 7, (k)] = 0 @.71)

These four linear equations (2.68 to 2.71) can be solved numerically to obtain the

unknown expansion coefficients, b, ,c_ , of the scattered field.
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After evaluating the unkhown scattering coefficients, the far scattered field can be
computed. The scattered electric field (ES) carries both co- and cross-polarized fields.

The asymptotic expansion for the Hankel function [30] for large arguments is applied to

achieve the far scattered field.

The echo width can be obtained by knowing the scattered field in the far zone. The echo
width () or radar cross section (RCS) is defined as “the area intercepting the amount of

power that, when scattered isotropically, produces at the receiver a density that is equal to

the density scattered by the actual target” [30].

The co- and cross-polarized echo widths [30] can be expressed for TM polarization as

- 2
B
o' =lim2np - (2.72)
p—>© - Einc
oM = lim2np—— - (2.73)
p—o ’Emc
where Ezo and Ezms are the co- and cross- polarized scattered electric fields.
The final expression of co- and cross-polarized echo widths can be written as
20 @l
w =—| b, e (2.74)
T | n=-ew
™ 27L ot jnd ?
0-CI'OSS = ? ch € (2.75)
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2.5.3 TE Polarization

For a TE polarized incident plane wave, the incident magnetic field vector is parallel to

the cylinder axis (z axis). The incident electric and magnetic fields can be expressed as

ryinc 1 S
i =L 5N (k,p) (2.76)
WL, n=-w
B = - 5i"M, (kop) (2.77)
o N=®

The scattered electric and magnetic fields can be expressed as

n 1 =0~ I

B =— L § 5 [B, N2 (kop)+ JCE (ko) (2.78)
o BE—R

i =—— 55 [B, (kop)+ iC, K2 (kop) 2.79)
JoU,; n=—e

where B, and C, are the unknown scattering coefficients of the chiral cylinder for TE

polarization.

A similar procedure of TM polarization is followed to express the electromagnetic fields
inside the chiral cylinder. The unknown expansion coefficients can be solved for
numerically by enforcing the boundary conditions on the surface of the cylinder. The co-

and cross-polarized echo widths [30] can be expressed for TE polarization as

o, =lim 2np—s (2.80)

pox
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olf =lim2npl— (2.81)
p—re0 IHmc
where I:If:0 and I:If:rOSS are the co- and cross-polarized scattered magnetic fields.
The final expression of co- and cross- polarized echo widths can be written as
. 2A| = ino 2
w =—]2C,e" (2.82)
T In=-w
+00 . 2
n, =2 $p, om (2.83)
TC T =2~00

2.5.4 Numerical Results

Numerical results are presented for both TM and TE polarized incident waves using the
formulation described in the earlier section. The unknown expansion coefficients are
numerically solved by a proper truncation of the infinite sums into finite sums. In order to
generate numerical results, a truncation number N is used and it depends upon the degree
of accuracy required and the electrical size of the cylinder. For large value of ka, N
should be 2ka+2. When ka =1 or less, N should be 2kat+5 to 2ka+10 for required

accuracy.

Fig. 2.3 shows the bistatic co- and cross-polarized echo widths from a single chiral

circular cylinder for TM polarized incident wave. The result is in excellent agreement

with the results obtained by Rojas [5]. For reference, the result for scattering by a single
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achiral cylinder is also shown. It is seen that bistatic echo width of the chiral cylinder is

relatively lower than the achiral cylinder.

Fig. 2.4 shows the co- and cross-polarized echo widths from a single chiral circular

cylinder for two different chiral parameters k,y =0.10 and k,y = 0.15, respectively. The

result is shown for TM polarization. The results illustrate that echo width of the chiral
cylinder can be controlled by changing the chirality parameter. It is seen that both back

and forward scattering echo widths reduce for higher chirality parameter.

Fig. 2.5 shows the co- and cross-polarized echo widths from a single chiral circular
cylinder for two different radii a=0.084. and a=0.20A, respectively for. TM
polarization. The results illustrate that both echo widths are dependent upon the size of
the cylinder. It is seen that the echo width increases with size for electrically large

cylinder.

Fig. 2.6 shows the co- and cross-polarized backscattering (¢ =180°) echo widths versus
the cylinder radius from a single chiral circular cylinder for TM polarization. Both echo
widths increase very quickly with size for electrically small cylinder (a << X). When
electrical size of the cylinder is on the order of a wavelength, both echo widths are
oscillating with frequency due to phase addition and cancellation of various scattered

field components.
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Fig. 2.7 shows the co- and cross-polarized forward scattering (¢ = 0°) echo widths versus

the cylinder radius from a single chiral circular cylinder for TM polarized incident wave.
Both echo widths increase sharply for electrically small cylinder (a << A) and are
oscillating with frequency when electrical size of the cylinder is on the order of a

wavelength.

Fig. 2.8 shows the bistatic co- and cross-polarized echo widths patterns from single chiral
circular cylinder for TE polarized incident wave. The result is in excellent agreement
with the results obtained by Rojas [5]. For comparison, the numerical result for the echo

width pattern for single achiral cylinder is also given.

Fig. 2.9 shows the co- and cross-polarized echo widths from single chiral circular

cylinder for two different chiral parameters k,y =0.10 and k,y =0.15, respectively for

TE polarization. The results illustrate that backscattering echo widths reduce for large
chirality parameter while forward scattering echo widths decrease for small chirality

parameter.

Fig. 2.10 shows the co- and cross-polarized echo widths from single chiral circular
cylinder for two different radii a = 0.08% and a = 0.20A, respectively for TE polarized
incident wave. The results illustrate that both echo widths are dependent upon the size of
the cylinder. It is seen that the echo width increases with size for electrically large

cylinder.
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Fig. 2.11 shows the co- and cross-polarized backscattering (¢ =180°) echo widths versus
the cylinder radius from a single chiral circular cylinder for TE polarized incident wave.
Both echo widths increase sharply for electrically small cylinder (a << A) and are
oscillating with frequency when electrical size of the cylinder is on the order of a

wavelength.

Fig. 2.12 shows the co- and cross-polarized forward scattering (¢ =0°) echo widths

versus the cylinder radius from a single chiral circular cylinder for TE polarization. Both
echo widths increase sharply for electrically small cylinder (a << A) and are oscillating

with frequency when electrical size of the cylinder is on the order of a wavelength.
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Fig. 2.3: The co- and cross-polarized echo width patterns for single chiral circular

cylinder, TM case.
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Fig. 2.4: The co- and cross-polarized echo width patterns from single chiral

circular cylinder for two different chiral parameters, TM case.
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Fig. 2.6: The co- and cross-polarized backscattering echo widths for a chiral

circular cylinder as a function of cylinder radius, TM case.
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Fig. 2.7: The co- and cross-polarized forward scattering echo widths for a chiral

circular cylinder as a function of cylinder radius, TM case.

37



180

a=0.08x
ky=015 |7 %o N
AF W2 =4 O cross N |
f =300 MHz o
N = 2ka+10 T aChlral (Y = 0) .
.25 | ! | i I 1 ! |
0 20 40 60 80 100 120 140 160

(bﬂ

Fig. 2.8: The co- and cross-polarized echo width patterns from single chiral

circular cylinder, TE case.
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Fig. 2.9: The co- and cross-polarized echo width patterns from single chiral

circular cylinder for two different chiral parameters, TE case.
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Fig. 2.11: The co- and cross-polarized backscattering echo widths for a chiral

circular cylinder as a function of cylinder radius, TE case.

41



20 T i T T 1 1 T

10}
0_
.10_
m
T
e,
ey
b
.30_
w=2 ¢4
— f=300 MHz
40 )
+O¥ | 0 N = %ka+10
Cross -
ky=0.15
50 of |
0 ofs 1l 1i5 é 2f5 é 3'.5 4'1 4f5 5

ka
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Chapter 3

Scattering by Two Chiral Cylinders, TM case

3.1 Description of the Problem

The geometry of the scattering problem consists of two infinitely long parallel chiral
circular cylinders Q and L as shown in Fig. 3.1. The axes of two cylinders are parallel to

the z axis of the cylindrical co-ordinate system. The centre of the r'™ cylinder, r=Q,L, is
located at (d,,y,) with respect to the origin O. The radius, relative permittivity, relative
permeability, and chiral parameter of the r™ cylinder are a,p,,€,,and vy, , respectively.

The centers of two cylinders are separated by d,,or d, where d >a  +a, and the line

connecting the two centers makes an angle , , with respect to the x axis.

Incident TM
Yo (80 , “0) p(p’ ¢) plane wave

Cylinder Q X
T
by
> X
—
Cylinder L

Fig. 3.1: The scattering geometry of two chiral circular cylinders, TM case
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The medium of the surrounding cylinders is free space with permeability p, and
permittivity €,. The excitation is provided by a TM polarized incident plane wave where

the electric field vector is parallel to the z axis. We consider a TM polarized plane wave

incident upon the cylindrical structures at an angle o with respect to the x axis. The time

dependence of the fields is assumed to be ¢ ' and suppressed throughout.

3.2 Expressions for Electromagnetic Fields

3.2.1 Expressions for Incident Fields

The incident electric field can be expressed with respect to the co-ordinate system of the

't cylinder as

Eirnc _ ejkod,cos(\u,+a) +Z.O _IJ{:NL (kopr) (31)
n=-0 0

where k, = o,/lyg, , is the wave number of the region surrounding the cylinders and

N (k,p,) is the cylindrical vector wave function, can be denoted by

NL (kopr) = l“iZkOJn (kopr )ej“(¢r+¢1) (32)

In an isotropic, homogeneous, and linear media with time dependence ™', the magnetic

field can be written as

fi=—(VxB) (3.3)
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Therefore, the corresponding incident magnetic field of the r™ cylinder is given by

i L opaten) $ ) 34
0 ===

where the cylindrical vector wave function M. (k,p,) can be defined by

1\71:1 (kopr ) = ﬁp i—}]n (kopr )ej“(‘t"*“) - ﬁ¢k0J'n (kopl, )ej"(q"m) (3.5)

T

3.2.2 Expressions for Scattered Fields
The scattered field of the chiral cylinder embraces both TM and TE fields since chiral

scatterers generate both co- and cross-polarized scattered fields. The scattered electric

field of the ™ cylinder can be written in terms of vector wave functions as

R N P g ey
Br == 5[0, (kop, )+ jeiME (kp, )] -0

=—00
0 n

where bfand c! are the unknown scattering expansion coefficients of the 1™ cylinder.

The cylindrical vector wave functions N2 (k,p, ) and M2 (k,p,) can be written as
Ni (kopr)= ﬁszHS)(kOpr)ejnd)r (37)

Mi (kOpr) = ﬁp .:)—n_HE\I)(kOpr )ejmb[ - ﬁd)kOHfll)l (kOpr )ejn¢r (3'8)

T

The corresponding scattered magnetic field of the r'™ cylinder can be expressed as

—

i =-

L S Ve (k) + Gl (kop, )] (39
JORy n=-
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3.2.3 Expressions for Internal Fields

Generally two types of internal fields (LCP and RCP) exist in a chiral medium. These

fields propagate with two different wave numbers and each of these satisfies the wave
equation. The internal LCP field (Q’L) and RCP field (Q;) of the r™ cylinder can be

expressed as

Q. = —kl 5 en [V ki, )+ N ki, ) (3.10)
0 n=-o

Qk =—k1 f‘”j"f;[M‘L(k;pr)—-Ni.(k;p,)] (3.11)
o ="

where (g} and f; ), are the unknown expansion coefficients of the internal fields and

(k} and ky ), are the LCP and RCP wave numbers of the ™ cylinder, respectively.

The LCP and RCP wave numbers of the 1™ chiral cylinder can be expressed as

k k
Kj =—r= Ky =—r" 3.12
L R 1+'Y,k ( )

T

where Kk, = ./l 1t,€,€, , the wave number and v, is the chirality parameter of the r™

chiral cylinder.

The Bohren linear transformation is used here to express the electromagnetic fields inside
the chiral cylinders. Electric and magnetic fields inside the ™ chiral cylinder are written

as following relations in terms of left and right circularly polarized fields
E; = Q] +apQ; (3.13)
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e =03 4l O

(3.14)

where al, and a’ have the unit of an impedance and an admittance of the r™ chiral

cylinder and can be denoted by

v« Mol v s | EoE
ap =— /—— a; =-1
808\' uo“r

The expression of the internal electric field (3.13) can be expanded as

400

B = Sl fe )+ N lp Jear = 5 el fie,)- R e, )]

kO A=—00 o N=—
The expression of the internal magnetic field (3.14) can be expanded as

A= L S e (e, )- N (e, ) aiﬁ— 5 g v (gp, )+ N (i, )
= =t

3.3 Evaluation of the Unknown Expansion Coefficients

3.3.1 Transformation of Co-ordinate Systems

(3.15)

(3.16)

(3.17)

The unknown expansion coefficients of scattered and internal fields can be determined by

applying the boundary condition on the surface of each cylinder. For this reason, it is

necessary to transform the scattered field from one cylinder in terms of the local co-

ordinate of another cylinder. The addition theorem for Hankel functions [17] is then used

which permits the field expansions for both cylinders to be referenced to a common co-

ordinate.
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The addition theorem for Hankel functions is valid for allp, =a _<d. When

]pL{<‘ dor cos((l)L - WQL)' or ‘ pQ‘<I dig cos(ch —\pLQ) , then the transformation from the

Q™ co-ordinate to the L™ co-ordinate can be expressed as

HO(k,po o™ = ST, (kopy JHY  (icyd, Jeim ¢ ne (3.18)

Similarly, the transformation from the L™ co-ordinate to the Q™ co-ordinate can be

expressed as

Hfxl)(kopL )ejn¢L = ‘§° I (kOpQ )Hgl)—n (kOdQL )ejm% e—j(mﬁn)WQL (3.19)
where
d,q =/d? +d3 —2d,d, cosly, ~ ) (3.20)
d,cosy, —d, cos
Wig =cos‘1[ Q%W 7% WL} (3.21)
d,

3.3.2 Boundary Conditions

The unknown expansion coefficients can be determined by enforcing boundary
conditions in conjunction with the addition theorem for Hankel functions on the boundary
surface of each cylinder. The boundary conditions of the electromagnetic scattering state
that the tangential components of the electric and magnetic fields must be continuous

across the boundary.
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The boundary conditions on the surface of the L™ cylinder i.e., p, =a,, are given by

(B +Ep +E;,, —ES Jxa, =0 (3.22)
(e + By 485, B Jxa, =0 (3.23)

where 0, is the outward unit vector normal to the cylinder surface. E and H™ are the

incident electric and magnetic fields of the L™ cylinder. E and H® are the scattered
electric and magnetic fields of the L™ cylinder. E¢ and H® are the internal electric and
magnetic fields of the L™ cylinder. EZ)Q—)L and }#ISQQ_)L are the transform of the Q™

cylinder scattered electric and magnetic fields as incident fields for the L™ cylinder.

The boundary conditions on the surface of the Q™ cylinder i.e., Pq = g, are given by

(B + By +E;, o —E5 )xd, =0 (3.24)

—

(B + i3+ 3, — 1 Jx 0, =0 (3.25)

where 1 is the outward unit vector normal to the cylinder surface. Eg‘c and ﬁg‘" are the
incident electric and magnetic fields of the Q™ cylinder. Eg and ﬁg are the scattered
electric and magnetic fields of the ch cylinder. Eg and ﬁg are the internal electric and

magnetic fields of the Q" cylinder. ESLL_)Q and Iﬂ{SLL_)Q are the transform of the L™

cylinder scattered electric and magnetic fields as incident fields for the Q™ cylinder.
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s

In order to solve the boundary condition (3.22), the expression of the EQQ% can be

expanded as follows:

From equation (3.6), the term E; x 0, can be written as

xfi, = Ly j“[ﬁ@bf ko HO(kopq Je™*e + 1, jc? ko HY (kopg Je™ ] (3.26)

=—00
0 n

oS
EQ

Then the addition theorem for Hankel functions is applied to express the

Hg)(kopQ )ejmt’Q and HY (kopQ )ej“q’Q terms and can be written using (3.18) as

HO(opg)e™ = 37, (kopy JH, (kyd, g Jo™t 770 (3:27)
H (k,pq) €™ = 57, (oo JHYL, (kodyg ot €M (3.28)

s

Q0oL can be written as

Then, the final expression for E

3,60 37, (koo JHY, (iyd, o Jei emmvse

Efq, X8, == f i o (3.29)
- N ﬁzjcl?n;—fm (kOPL)HS,)_n (kodLQ )ejm¢1_ e—J(m—n)WLQ
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Similarly the expression of the ELHQ

can be expanded to solve the equation (3.24) as

ﬁd)b'%m:i_; Jm (kOpQ )H51l1)~n (konL )ij% e—j(m—n)WQL

xﬁp — 4—200 jll (3.30)
B R

m-n

Es

LL->Q

Similarly the expression ﬁSQQ_)L can be expanded to solve the equation (3.23) as

"1 Q o0
ub: >J
ko 40 m=~o

o (3.31)
T e 53, (kop S, e dyg Jemt e e

n (kopL )Hfrll)—n (kOdLQ )Gjm‘t”“ e—j(m—n)\uLQ

I

Similarly the expression }ﬂISLL‘_)Q can be expanded to solve the equation (3.25) as

0,07 5 T, (kupg JHUL, (kgdg Jo™e &7

(3.32)
riigjct 5T, (kopo JHY., (icydgy Jei™o e mver

m=-o0

where (bﬁ,cﬁ) and (bff,c?) are the unknown scattering expansion coefficients of the L™

and Q™ cylinders, respectively.
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The boundary condition (3.22) can be written using equations (3.1), (3.6), (3.16), and

(3.29) as

+0
A jkod, cos{yp+a) :n jn{py+a)
el Z] Jn(koaL)e v

=00

- Z “[A bk, H )(k a, Je™ + i jek HU (k a, ) J“‘“]

0 n=-co

b2 ng(koaL)Hfu)_n(k d, ) by o =i(m-n v

gl (3.33)
1,502 37 (koa, JHY, (icyd, ) e g T mvia

m=—c0

~—1;1—n=2~wjng§[u kiJ, (kLaL) T} ki (kLaL) Jn¢L]

SIS o ke, e ki, k) =0

Equating 0, terms from equation (3.33)

) +f [b::Hg)(koaL )]— g:o l:bg f Jn (koaL )Hg,)_n (kodLQ ) g imnlvig :'

- o (3.34)
L 1n=00
L Zgn [Jn(klI:aL)-" RkR ZfL[J (klliaL)]_ eJkod,_cos \uL+a)z J (k aL)eJna
0 e 0 = n=—
Equating @, terms from equation (3.33)
- Z[JCLH“ (koa,))- > [Jc 57 (k2 JHY, (id,g ) e ‘f(m‘“)vw]
(3.35)

L ot [ (ta, )|- a‘l‘( X Sl (ka, )]=0

k e ek
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The boundary condition (3.24) can be written using equations (3.1), (3.6), (3.16), and

(3.30) as

+00
~ jkoncos(\qut) 0 ) jﬂ(‘bq**a)
G,e E ] Jn(koaQ e

n=-—00

-—kl* 5 [, H0(K,a) ™ + 6%k, H (c,a0) €

=—0a0
0 n

u bL Z J ( OpQ)H(l (k dQL)eJm¢Q e‘i(m‘“)WQL

By (3.36)
+a,jeb 5 1, (opo JHY, (kydgy ) e e

m=-w

L gl g )+, (a,) ™

Q iy ' jn it
58§ oo, (kag) e -, k81, (g ) ™= 0
Equating @i, terms from equation (3.36)

9 5 0ot 5[ 5 3, et e

=0 =—0D

oo - (3.37)
- g2 kL 3 7, (kR )+ £2 kkR 5 7, (k8ag )= ~e*oteterd STy (i a e
n=-c o n=-® n=-w

Equating 1, terms from equation (3.36)
-t £ [0/ ao)] -t £ [ 5 5 lkoao L g )7 |

) . " . (3.38)

et 5 a8 5 [ s o
o n=—®
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The boundary condition (3.23) can be written using equations (3.4), (3.9), (3.17), and

(3.31) as

kO e]k ody cos(yy +a) $ ZJ“J (k a ) in(py +a)
Jou, =

i

_ .ko 5 “[‘ b'HY (ka, )e g je, HO(kga, Je ’"‘“]
JOU, n=—

{i b2 ZJm(kopL)Hm n(k qu> by o im-n)viq

L YUY (3.39)
J(D“O o +ﬁ¢j CS ::chgm (kOaL)Hgl) n(k()dLQ )ejm¢L e"j(m_“)‘l’LQ
- LS o ir (kbay Je -,k (ka, )]
0 =200
—ab— k 3 ekl (kia, ) + 0,0, (e, Je™ [= 0
Equating 4, terms from equation (3.39)
L +00 Q +0 4o .
ko B0, )-S50 § T (ka, JHO, (dyg ) e
O, n=—w DO, n=—0m=-o 3.40
& i (3.40)
e 55 (it )- gt K 55, (ita, )=0
kg n=—e k, n=e
Equating 0, terms from equation (3.39)
O EH([) (k ) n O io ZJm(k aL)H (k dLQ) —J . )WLQ
J(J)l.,l,o n=—w0 Oy n=—c0 m=-w
fL kR T (kL ) La tkL J (kL ) Ky htertr®) o j o
— k no
K, ngw RAL )" 8u K, FZ_OO LaL o, n;_og ( aL)
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The boundary condition (3.25) can be written using equations (3.4), (3.9), (3.17), and

(3.32) as

ko
JoR,

G,

kO +o0

j(D Ry n=-o

k0+f

j(DHO n=—o

“;,,Z_J

N

eJkOdQcos(\q/Qﬂx ZJHJ (k a ) J“(q’Q’*“)

n=-w

3 jn ﬁzbngl) (k aQ) jndq + u(chQH(l kOaQ)ejnq;Q]

ﬁszl; +Zw J, (k g )H( (k d ) iméq e‘j(m“ﬂ)\VQL

+u¢JCn o ok, aQ)H(l) (kOdQL)ejm% g mnva

m-n
m=—wo

£k, iBag e~k (ke Jo

- aL Z .] gn [ﬁszJ'n (kSaQ )ejme + ﬁd)kSJn (kSaQ )ej“d’Q ]: O

N=—00

Equating 4 terms from equation (3.42)

c?

(DMO n=-w

S § HOlkgag)- S

io 5 Tl aqJHLL, (kydg, ) o e

m-a
O)I'I’O n=-—00 m=—00

kL Z J (kQaQ) 0

=—00
) n

+f§~1§— 3 T, (kBa,)- g2

0 n=-w

Equating G, terms from equation (3.42)

k,

~ 5 B o0 (g )- 20 T F T (k2o HO, (kydg ) e

(kgag)-g2

JO‘)P‘O n=—0o0

fQ R J
k 11=Z~oo

+0

_](D Mg n=—c0 m=—co

k ejkon cos(\uQﬂx)
0

+00

¥ 1 (keag )= -2 5 1,k

Q
L
kO n==0 JO/, n=--00
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These eight linear equations obtained from the boundary conditions (3.22-3.25) can be
written in the following matrix form to solve the unknown expansion

coefficients (bﬁ ek bd,cd gl fF, g2 and f,?) numerically.

n?

[A] [a] = [1] (3.45)

where the matrix [A] represents the elements of the unknown expansion coefficients,
matrix [a] stands for unknown expansion coefficients which to be find out, and matrix [I]

contains the elements without the unknown expansion coefficients.

3.4 Far Scattered Fields

The total scattered electric field (E*) can be determined after evaluating all unknown

scattering expansion coefficients. The total scattered field can be expressed as

B =B +Ep (3.46)

total —

The expression of (3.46) can be expanded using equation (3.6) as

L [ Rk Rkee)
Em=—k—0n§w1 . s (3.47)
{ M (kopL)+ c,M (kOpQ)}

The total scattered field carries both co- and cross-polarized fields. The co-polarized

scattered field can be written as

Eio = Z j [ LN?] (kOpL)+bS Ni (kopQ)]
0 n=-w
=B, =0, § bl (koo )™ + b2H, (kypg )™ (3.48)
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The cross-polarized scattered field can be written as

Ezross = —ki 2%: J“[C‘I:Mi (kOpL)+Cl?M:31 (kopQ )]

S0
oM

s L= 0,1 3 el O (kop, Jem + 0 HY (ipg o™ | (3.49)

The asymptotic expansion for the Hankel function for large arguments is applied here to

achieve the far scattered fields. In the far field region (k,p >>1 ), the Hankel function can

be approximated [30] by

HO(k,p) = |—Z—jreor (3.50)

n

The distances from cylinders to observation point can also be approximated for the far

field region (k,p>>1)

pr =p—dy cos(y, ~9) (3.51)
P =p—d, cos(\pQ —-¢) (3.52)
¢=¢L =¢Q - (3.53)

Hence the far scattered co-polarized field is given by

— koo e 2 . - - ~jkod - j
E, = -6, Y [—— e [bf; g kot oslvi4) +ble™ oeas(ve ¢)] e (3.54)
n=—o JTCkop
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Similarly the far scattered cross-polarized field is given by

Eiross ko:w~ l_j¢ f ,L ejkup [C‘I: e—jkodL cos(y, —¢) + CSe‘jkon Cos(\I/Q‘¢)] ejn¢ (355)
n=—co JTckOp
3.5 Echo Width

In this thesis, the main intention is to analysis the echo width from two chiral circular
cylinders. The echo width is a far field parameter which is used to characterize the
scattering properties of a target. The echo width can be obtained by knowing the scattered

field in the far zone.

The co- and cross-polarized echo widths [30] can be expressed for the TM polarization as

2

oM = })g{.}an@% (3.56)

o™ = lim 2r I;sz (3.57)
The co-polarized echo width (3.56) can be written as

oM = fo_ n:zi’ d[b‘f g ot coslvi4) 4 Qg kot cos(wQ—¢)]ejn¢ i (3.58)
The cross-polarized echo width (3.57) can be written as

oM = I<4: ‘,ZZQ_O «[cﬁ gt coslb) 4 (Q lkaacoslvg) ]ej“" 2 (3.59)
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3.6 Numerical Results

Numerical results are presented for the TM polarized incident wave using the formulation
described in the earlier section. At first numerical results are validated with existing
published results for special and limiting cases. After that several numerical results are
given to observe the effects on echo width patterns for selected geometries and

parameters. Both co- and cross-polarized far scattered fields are taken into consideration
. g O . . o
for all numerical results. The scattered echo width X 1s obtained for all cases in this part.

The unknown expansion coefficients are numerically solved by a proper truncation of the
infinite sums into finite sums. In order to generate numerical results, a truncation number
N is used and it depends upon the degree of accuracy required, the electrical size of the
‘cylinders, and distance between cylinders.' For a large value of k;a,, N should be 2k.a,+2.

When kqa, =1 or less, N should be 2k.a;+5 to 2ka,+10 for acceptable accuracy.

In order to verify the foregoing formulation, the bistatic echo width pattern is shown in
Fig. 3.2 for the scattering by two identical dielectric circular cylinders. The validity of the
results is confirmed by comparing the far scattered field with results obtained by Sebak

[14] and Elsherbeni and Kishk [12].

In addition to check the validity and accuracy of the foregoing formulation, the results are

compared with single chiral circular cylinder scattering of Fig. 2.3 as shown in Fig. 3.3.
In this special case, the electrical properties (g, =1, u, =1, and y; =0) of one cylinder

set in such way that it looks like a free space for incident wave. The result is also in

excellent agreement with the results obtained by Rojas [5].
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Fig. 3.4 shows the co- and cross- polarized echo widths from two identical chiral circular
cylinders. For comparison, the numerical result for the echo width pattern for two achiral
cylinders is also given. As shown in the figure, backscattering echo width decreases and
forward scattering echo width increases for two chiral cylinders compare to the two

achiral cylinders.

Fig. 3.5 shows the co- and cross-polarized echo widths from two chiral circular cylinders
for two different radii a, =0.08\ and a, =0.20X, respectively. The results illustrate that

both echo widths are dependent upon the size of the cylinders and both echo width

patterns increase with size for electrically large cylinder.

Fig. 3.6 shows the co- and cross-polarized echo widths from two chiral circular cylinders
for two different chiral parameters k,y =0.10 and k,y = 0.20, respectively. It is seen that
backscattering echo widths reduce for large chirality parameter while forward scattering
echo widths decrease for small chirality parameter. This result illustrates that the chirality

parameter gives an extra degree of freedom to control the scattering properties because it

has the capability to enhance or reduce the echo width.

Fig. 3.7 shows the co- and cross-polarized echo widths from two chiral circular cylinders

for two different angles of incidence o=0° and o =-90°, respectively. From the
numerical results, it can be seen that both echo widths also depend upon the incident

angle of the plane wave.
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Fig. 3.8 shows the co- and cross-polarized echo widths from two chiral circular cylinders
for two different separation distances d = 0.80L and d = 1.60A, respectively. The results
illustrate that both echo widths are dependent upon the separation distance between two
cylinders. It is seen that co-polarized echo width for two different separation distances are

equal when the observation angles are 90° and 270° .

Fig. 3.9 shows the co- and cross-polarized echo widths from two chiral circular cylinders
for two different frequencies 300 MHz and 600 MHz, respectively. Both echo width
patterns vary with changing the frequency of operation. The results illustrate that
backscattering echo widths reduce for lower frequency and forward scattering echo

widths reduce for higher frequency.

_Fig. 3.10 shows the co- and cross-polarized backscattering ((i) = 2700) echo widths versus
the separation distance d for two identical chiral circular cylinders with a, = 0.16A,

e, =4, pn=2, y, =0, y,,=7, yo =0, d =4, dy=0, k;y=0.15, and

f =300MHz, and o =-90°. It can be shown from the figure that the oscillation decay

with increasing the separation distance between the cylinders. For comparison, the
numerical result for the backscattering echo width for two achiral cylinders as a function
of separation distance is also given. The magnitude of the co-polarized backscattering
echo widths for two chiral cylinders are significantly reduced compare to the two achiral
cylinders. Another point is noted here that the oscillations decaying rate for two chiral

cylinders is different from two achiral cylinders.
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Fig. 3.11 shows the co- and cross-polarized backscattering (d) = 1800) echo widths versus
the separation distance d for two identical chiral circular cylinders with a, =0.16,
g, =4, =2, y =0, y,=n, Yo =0, d =d, dy,=0, k=015, and
f =300MHz, and o =0°. As shown in the figure, the amplitude of the oscillations for

co- and cross-polarized echo widths decay with increasing the separation distance
between the two cylinders. For reference, the numerical result for the backscattering echo
width for two achiral cylinders as a function of separation distance is also shown. It is
seen that the magnitude of the backscattering echo widths for two chiral cylinders is

reduced compare to the two achiral cylinders.

Fig. 3.12 shows the co- and cross-polarized forward scattering (([) =90°) echo widths
versus the separation distance d for two identical chiral circular cylinders with
a =0.16A, e, =4, pn, =2, y, =0, Yo =T, Yo =0, d =d,d, =0, ky=0.15,and
f= 3OOMHZI,‘and o, =-90°. It can be shown from the figure that the oscillation decay

with increasing the separation distance between the two cylinders. The forward scattering
echo width for two achiral cylinders as a function of separation distance is also given to
compare the results. It is seen that the forward scattering echo width for two chiral

cylinders is relatively lower than the two achiral cylinders.

Fig. 3.13 shows the co- and cross-polarized forward scattering (d):()o) echo widths
versus the separation distance d for two identical chiral circular cylinders with

a, =0.16A, ¢, =4, pn, =2, y, =0, Yo =T Yo =0, d, =d, d, =0, k,y=0.15, and
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f =300MHz, and o =0°. The forward scattering echo width for two achiral cylinders as
a function of separation distance is also given to compare the results. It can be shown
from the results that the amplitude of the oscillations of each is almost constant and
independent of separation distance. The magnitude of the forward scattering echo width

for two chiral cylinders is significantly reduced compare to the two achiral cylinders.

Fig. 3.14 shows the dependence of the co- and cross-polarized backscattering echo widths

as a function of the incident angle for two identical chiral circular cylinders with
a, =0.167, ¢ =4, p =2, d=d =3k, dy,=0, vy, =0, y,,=7, yo =0,
k,y=0.15, and f =300MHz. Also shown is the numerical result for the backscattering
echo width for two achiral cylinders as a function of the angle of incidence. The

magnitude of the backscattering echo width for two chiral cylinders reduces compare to

the two achiral cylinders.

Fig. 3.15 shows the dependence of the co- and cross-polarized forward scattering echo
widths as a function of the incident angle for two identical chiral circular cylinders with

a, =0.16A, ¢ =4, p =2, d=d =31, d,=0, y, =0, Yo =7, Yo =0,

T

kyy=0.15, and f=300MHz. The forward scattering echo width for two achiral

cylinders as a function of angle of incidence is also given to compare the results. The
magnitude of the forward scattering echo width for two chiral cylinders is significantly

reduced compare to the achiral cylinders.
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Fig. 3.2: The echo width pattern for two dielectric circular cylinders, TM case.
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Fig. 3.3: The co- and cross-polarized echo width patterns for single chiral circular

cylinder, TM case.
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Fig. 3.4: The co- and cross-polarized echo width patterns for two chiral circular

cylinders, TM case.
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Fig. 3.5: The co- and cross-polarized echo width patterns from two chiral circular

cylinders for two different radii, TM case.
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Fig. 3.6: The co- and cross-polarized echo width patterns from two chiral circular

cylinders for two different chiral parameters, TM case.
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Fig. 3.11: The co- and cross-polarized backscattering echo widths versus the separation

distance for two identical chiral circular cylinders with o = 0°, TM case.
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Chapter 4

Scattering by Two Chiral Cylinders, TE case

4.1 Description of the Problem

The geometry of the scattering problem is shown in Fig. 4.1. Consider both cylinders are
excited by a transverse electric (TE) wave. In a TE polarized incident plane wave, the
incident magnetic field vector is parallel to the z axis. The physical dimensions and
parameters for both cylinders are considered exactly identical to the scattering problem
for TM case in Chapter 3. We consider TE polarized incident wave incident upon the

cylindrical structures at an angle a with respect to the x axis.

p(p’ (b) Incident TE
Yo (80 s “o) ’ plane wave
a
Cylinder Q Pq P X
\ p YL
Eo:lo)Yo o
Xo do=4d
a

e Yo ¢L

dq \ X
d, a

Y ) &1 P, Y1 . <

¥o Cvi
: 3 ylinder L

Fig. 4.1: The scattering geometry of two chiral circular cylinders, TE case
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4.2 Expressions for Electromagnetic fields

4.2.1 Expressions for Incident Fields
The incident magnetic field can be expressed with respect to the co-ordinate system of

the ™ cylinder as

ﬁiﬂc _ ejkod,cos(\u,+a)____1___ +Zw _]'“N:‘ (kopr) (41)
O ="

In an isotropic, homogeneous, and linear media with time dependence €™, the electric

field can be written as
B =12 (vxii) 4.2)
Therefore, the corresponding incident electric field of the r'™ cylinder can be expressed as

By = oireslve) L 5 M, (op,) 43

g N="°

where N! (k,p.) and M (k,p,) are the cylindrical vector wave functions, can be defined
by

N (kop, ) = k.7, (kop, e ) (4.4)

M. (k,p, )=, f)—an (lcop, Je™ @) — K T (i p, e ) (4.5)

T

4.2.2 Expressions for Scattered Fields
The scattered field of the chiral cylinder embraces both TM and TE fields since chiral

scatterers generate both co- and cross- polarized scattered fields.

79



The scattered electric field of the r™ cylinder can be written in terms of vector wave

functions as

0 l = 3 SVE
B =—— 57BN (ko) + JCM (e, ) (46)

g 0="®

where B’ and C; are the unknown scattering expansion coefficients of the ' cylinder.

The corresponding scattered magnetic field of the ™ cylinder can be expressed as

1
= 55 BN op, )+ JCLRE (ko )] @.7)
_](DHO n=—c0

where N? (kopr) and 1\7[;”1 (kopr) are the cylindrical vector wave functions, can be written

as

N (k,p, ) = 0,k HY (k,p, )™ (4.8)

M (k,p,) =t J L HO(Kp, )™ — b,k HY (ic,p, )™ (4.9)

T

4.2.3 Expressions for Internal Fields

Generally two types of internal fields (LCP and RCP) exist in a chiral medium. These
fields propagate with two different wave numbers. Bohren transformation is used here to

express the LCP and RCP fields inside the chiral circular cylinders.

The internal LCP field (# ’L) and RCP field (—. ;) of the r'™ cylinder can be expressed as

Q= k—n_z_ " Gy [ (kip, )+ N (i, ) (4.10)
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q; = I:“ § e e (e, )- R (icp, )] @.11)

o =

where G' and F' are the unknown expansion coefficients of the internal fields of the ™
cylinder. k; and k; are the LCP and RCP wave numbers of the ' cylinder., respectively,

can be expressed as

Kf =— K =—= 4.12
L R 1+'Yrkr ( )

where k, = 0+/Mol, &€, , the wave number and 7y, is the chirality parameter of the ™

chiral cylinder.

Electric and magnetic fields inside the ™ chiral cylinder are written by following

relations in terms of left and right circularly polarized fields
E; = Q[ +a;Qk (4.13)
Hy = Qi +aQ | (4.14)

where afand al have the unit of an impedance and an admittance of the r™ chiral

cylinder and can be denoted by

al =i /“—O*L al =i |05 4.15)
eosr ”’0”‘!‘

The expression of the internal electric field (4.13) can be expanded as

B == Srafie )+ e e ai = ErEplae)-Ribee ] @16

1
. -
ko n=—co 0 n=—#o
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The expression of the internal magnetic field (4.14) can be expanded as

fii=— SR e,)- Rl Jra - Srafae o ilee)] @i
g M= o "=

4.3 Evaluation of the Unknown Expansion Coefficients

The unknown expansion coefficients can be determined by enforcing the boundary
conditions in conjunction with the addition theorem for Hankel functions [18] on the
surface of each cylinder. The boundary conditions of the electromagnetic scattering state
that the tangential components of the electric and magnetic fields must be continuous

across the boundary.

The boundary conditions on the surface of the Lo cylinderi.e.,p, =a,, are given by

(B + By +E5,, —E5 x4, =0 (4.18)
(e + iy +5, | ~HS Jxd, =0 (4.19)

where @, is the outward unit vector normal to the cylinder surface. EB 0oL is the

transform of the Q™ cylinder scattered electric field as incident field for the L™ cylinder

and I—-’ISQQ_)L is the transform of the Q™ cylinder scattered magnetic field as incident field

for the L™ cylinder

The boundary conditions on the surface of the Q™ cylinder i.c., Pq = aq, are given by
(B + By, +B;, o~ B )xti, =0 (4.20)
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(Frie 4+ B+ F1,,— T Jx 6, =0 (4.21)

where ESLL o1s the transform of the L™ cylinder scattered electric field as incident field

for the Q™ cylinder and HLL o 18 the transform of the L™ cylinder scattered magnetic

field as incident field for the ch cylinder.

In order to solve the boundary conditions (4.18) to (4.21), the expressions of E:

QQ-L?
EiL—)Q’ HSQQ_)L, and HSLL o can be expanded using the addition theorem of Hankel
functions as
ZJ (kOpL) (k d,, ) jméy. o i(mn)vio
Bogm 8 == 2 jn 422)
* ﬁz]C zJm(kopL) m)n(k dLQ) ]nl(bL (m*n)\"l-Q
ﬁ‘t’Bﬁ +§ Jm(kopQ)an_n(k d ) Jméq ~J("‘”“)‘VQL
Bligxi, == 5 7 -
+0,JC, _Z_ J‘m(kopQ)Hg-n(k dQL) imbq o ~ilm-n)vor
k ung ZJ“l(kOPL) m~ n(k d ) Jmé e—j(m—n)\yw
¥ Xt =— 0L m=—c0 .
QoL ™ 7P JOH, n="x (4.24)

+8,C2 57, leypy JHL, (iydyg o o s
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G,By f T, (kopo JHY, (ko Je™e g

= . k o m=-oo
HLL_)Q e = ﬁj(l)fl n=z—:ooJ +o0 i i (+23)
0 + ﬁ¢JCxI: ; J. (kopQ )Hf,ll) ) (konL )eJm¢Q e‘)(m~n)WQL

where (Bﬁ,Cﬁ) and (BnQ,CnQ) are the unknown scattering expansion coefficients of the

L™ and Q™ cylinders, respectively.

The boundary condition (4.18) can be written using equation (4.3), (4.6), (4.16), and

(4.23) as

ﬁzejkodL cos{y +ar) io: P ix J'n (koaL )ejﬂ(¢L +at)

n=—0

___1_ Z J“[" B k H(l)(k a )eJn¢L + uzJCLk H (k a )ejn-i),_]

0 n=—w

ﬁ¢BQ sz(k aL) (k d ) Jm¢L ~Hm-n)y o
g ) (4.26)

8 ST, (kg JHOL, (yd o Jome @ mnv

ms=-o00

n-n

_ E.BZ_QOJHC}L [u kLJ (inaL )ejn¢|_ + ﬁ(pktJn (kII:aL )ejmi»L ]

—k_LnngnFL[u kg, (kIL{aL) b —ﬁ¢k1LJn(k;L<aL)ej“¢L]=O

Equating 4, terms from equation (4.26)

-B! YHU(Kk,a,)-B2 S $1(k,a, )HO Jlgdy ) e mmhvie

n=-—ow n=-0 m=-w

(4.27)
—GLkL Sl et JJo py 2% ek S lkka, )]=0

n=-c0 0
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Equating 1, terms from equation (4.26)

Ch % JHY (ka, )-C2 3§ 50, (koa JHY, (iydyg ) e e

= n=—0 Mm=-o0 (428)
Lo, ] +00 )
R Ly O AT
o N=- o n= n=-w0

The boundary condition (4.20) can be written using equations (4.3), (4.6), (4.16), and

(4.24) as

+c0
A jkod oy - ' B
e coslvqre) Z i*jxT, (koaQ) ginlbere)

1=—00

-— %] [ ¢B§kng)(koaQ)ej”"’° + ﬁzJ'CSkoHS)'(kOaQ)e"“"’Q]
0 n=—o0
ﬁ¢BL +Zw Jm(kopQ)an)n(k dgy ) imbq o=ilmn)var
s » (4.29)
+10,jCk *Z 7 (koPQ)H 1) (k dg ) imbq -i{m-n)yor

—E—n;_wf‘GQ[ k2T, (kCag Je +,k%T, (kg )™ |

k niZ:JnFQ[ kQJ (kQaQ) jndg u¢kQJ (kQaQ Jn%] 0

Equating 4, terms from equation (4.29)

_Bl? 2\% Hg)(kOaQ)_BtI; Jig f Jm(kOaQ)Hgn n(k d ) e n)WQL

n=~0 N=—00 M=-00

(4.30)
6K § g (o o)+ P2 f;(R ¥ 71,(k%,)=0

" k N=-00 0 n=-o0
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Equating 1, terms from equation (4.29)

05 5 k- 55 kg M o)

m-n
=00 =-c0 M=-00

o (4.31)

n kL llz:wj ( ) FnQ 111 R Z J (kgaQ):——jejkonCOS(WQJra)i Jn'(kOaQ)ejm

0 = n=—w

The boundary condition (4.19) can be written using equations (4.1), (4.7), (4.17), and
(4.25) as

u¢ kO ejkod,_ cos(y+a) Ejﬂ]n (koaL )ejn(¢L+a)

(O] 98 n=—w
— = 1CO -'io jn ﬁ BLHI' k a ejll¢L + ﬁ jCLH(l) k a ejmbL
Jour Lz o7L ¢ n-n 0L
o 1=

8,82 £7. (k,py JHL, (i dy g Jeih <72

+00 m=—co
kq

(4.32)

+u4,JCQ ZJ (koa, JHY, (kodLQ )eim“’L g T hise

m==—o0

—k— 5 J“FL[ kLT, (kka, o™ kLT, (kkay Je™ |

vg M=

~at - £ PGt eta, Jo ki, (ca, Jo |0

o M=%
Equating @, terms from equation (4.32)

_Cik ~j(m-n
—L Z H(l)(kO L) (DH 0 z ZJm (k aL)I_Im n(k dLQ) J( )WLQ

(x)po n=-w o 0= m=-ow

(4.33)

L, L L jkody cos(\uL+ot) +o ]
er S, a0y S 8kt )- - ST $ g, o
n=-wo o D= ()] },L 0 n=—w0
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Equating G, terms from equation (4.32)

Bk

_]O)MO n=—o

—— Z H(l)(kO L)

0 Z ZJm(k aL) mn(k d ) —f{m-n)yq

j(l) My n=—c0 m=—x
(4.34)

The boundary condition (4.21) can be written using equations (4.1), (4.7), (4.17), and

(4.26) as

A

u

z

W,

ﬁ_ejkon cos(WQ +oc) +z°:°jnJ' (koaQ ) ejn(tbQ +a)

n=-—0

:ﬁzBSHg)‘ (koaQ )emQ + ﬁ¢jC§Hf})(k0aQ )e’-"("Q ]

H(l (kOdQL) jmbg e —j(m-n)wqr

m-n

,BE > T, (ko)

zn
m=-o0

(4.35)
+ﬁ¢jCIL, f JO(kOaQ)H(l (k d ) mbg o~ Hm-n)yq

m=-o00

1 +0
—_— 'nFQ
.zl

o n="%

o =

o33, (G Je™ ~a kg o™ |

Z JnGQ[ kQJ (kQaQ) jnéq +u kQJ (kQaQ) ]nd)Q]

Equating @, terms from equation (4.35)
¢

CQ

(l)uo n=-wm
kQ +0

+FI-R 3]
- )

=0

o b=

Gk § HO(,

Cko 2 52 —j{m—n)yor
(Dn],loo 11=Z—oo m=z—f,oJm (kOaQ) m— n(k dQL) mn)eo

aq)-
(K%,

a )—G

(4.36)

(kOaQ kjna

+00

27,

n=—o

Q jkodg cos(\uQ +a)
Q kkL Z J (kQaQ) koe

0 n=—w

@,
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Equating {1, terms from equation (4.35)

B & ) B S S g )
Jou, n=-=» JORLG n=-eo m=-
(4.37)
Q e QeQ 4w
~FOE 5 fkhag)-G2 - § 1 a0
o N==o o M=

These eight linear equations obtained from the boundary conditions (4.18-4.21) can be

written in the following matrix form to solve the unknown expansion

coefﬁcients(BL Ct,BQ,CY, GE,Fr, GY, and Ff) numerically.

[A] [a] = [1] (4.38)

where the matrix [A] represents the elements of the unknown expansion coefficients,
matrix [a] stands for unknown expansion coefficients which to be find out, and matrix [I]

contains the elements without the unknown expansion coefficients.

4.4 Far Scattered Fields

The total scattered field can be determined after evaluating all scattering expansion
coefficients from two chiral circular cylinders. The total scattered magnetic field can be
written as

0, =H; +H (4.39)

The expression of (4.39) can be expanded using equation (4.6) as

L [B e )+ B R (e
_ c ‘ ‘ (4.40)
JORg o= j {Cﬁ N, (kopL )+ CiN, (kopQ )}
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The total scattered field has both co- and cross-polarized fields. The co-polarized

scattered field can be written as

= 5 P[CRp, )+ €N oo )
O, n=—
=, =i, — 5 P[CEHO(p, )™ +C2HO(kypq o™ ] (4.41)
T]O =00

where 1, = f“—o , 1s the intrinsic impedance of the region surrounding the cylinders.
80

The cross-polarized scattered field can be written as

— 1 o . —
Himss =7 z J [Bll; Mi(kOpL )+BS M::l (kOpQ )]
jou, v =
=M, =10, J% 5 3 [BEHY (kp, )™ + BIHY (i p o™ | (4.42)
o ==

The asymptotic expansion for the Hankel function for large arguments is applied here to

obtain the far scattered fields. In the far field region (k,p>>1), the Hankel function can

be approximated by
1 2 :—n . jkop '
Hi(kp) = [———jre™ (4.43)

The distances from cylinders to observation point can also be approximated for the far

field region (k,p>>1)
p. =p—d, cos(y, —¢) (4.44)
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po =p—dqcos{y,—¢) (4.45)

0 =0, =g (4.40)

Hence the far scattered co-polarized field is given by

—>© iko +00 . :
ﬁs ko; B ﬁz elko? . 2 Z [CII; e-)kod,_ cos(yp—) + CS e*jkOdQ cos(\yQ—d))] ej"d’ (447)
V]

« N, \Jnkep s

Similarly the far scattered cross-polarized field is given by

— kop—>e0 Jkop 400 ) . )
Hzmss = ﬁ¢ © - 2 z [BE e_JkodL COS(WL_¢') + B:? e"Jkon COS(WQ“¢)] e,lﬂd’ (448)
Mo v Jnkop =

4.5 Echo Width

The echo width can be obtained by knowing the scattered field in the far zone. The co-

and cross-polarized echo widths [30] can be expressed for the TE polarization as

— 2
H,,

o= ’1)1_1)2 Zﬁp;ﬁ_T (4.49)

- o 2
o =lim2np—x (4.50)
P> I—:Iinc
The co-polarized echo width (4.49) can be written as
4 +00 _ - —-j cog( - ) . 2
o= CL g Hkodicos(vi=0) | (~Q oikedocostvgd) | o ind 4.51
T Ele ; ] @51)
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The cross-polarized echo width (4.50) can be written as

2

+0D

4 [ 4 B a1
TE L -jkedy cos{yy—0) Q JkonCOS(WQ 4) ing
2B e T T - B e e

cross
kg

(4.52)

n=-0

4.6 Numerical Results

Numerical results are presented for the TE polarized incident wave using the formulation
described in the earlier section. At first numerical results are validated with existing
published results for special and limiting cases. After that several numerical results are
given to observe the effects on echo width patterns for selected geometries and

parameters. Both co- and cross-polarized far scattered fields are taken into consideration
. .y O . . o
for all numerical results. The scattered echo width x 1s obtained for all cases in this part.

The unknown expansion coefficients are numerically solved by a proper truncation of the
infinite sums into finite sums. In order to generate numerical results, a truncation number
N is used and it depends upon the degree of accuracy required, the electrical size of the
cylinders, and distance between cylinders. For a large value of k;a,;, N should be 2k.a,+2.

When k;a; =1 or less, N should be 2k;a,+5 to 2k;a,+10 for acceptable accuracy.

In order to verify the foregoing formulation, the echo width pattern is shown in Fig. 4.2
for the scattering by two dielectric circular cylinders. The validity of the results is
confirmed by comparing the far scattered field with results obtained by Elsherbeni and

Kishk [12].
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In addition to check the validity and accuracy of the foregoing formulation, the results are

compared with single chiral circular cylinder scattering of Fig. 2.8 as shown in Fig. 4.3.
In this special case, the electrical properties (¢, =1, u, =1, and v, =0) of one cylinder
set in such way that it looks like a free space for incident wave. The results are also in

excellent agreement with the results obtained by Rojas [5].

Fig. 4.4 shows the co- and cross-polarized echo widths from two identical chiral circular
cylinders. For comparison, the numerical result for the echo width pattern for two achiral
cylinders is also given. It is seen from the figure that back and forward scattering echo

widths decrease for two chiral cylinders compare to the two achiral cylinders.

Fig. 4.5 shows the co- and cross-polarized echo widths from two chiral circular cylinders
for two different radii a_ =0.200 and a_=0.30A, respectively. The results illustrate that

both echo widths are dependent upon the size of the cylinders and backscattering echo

width increases with size for electrically large cylinders.

Fig. 4.6 shows the co- and cross-polarized echo widths from two chiral circular cylinders

for two different chiral parameters ky =0.15 and k,y =0.30, respectively. The results

illustrate that backscattering echo widths reduce for large chirality parameter while

forward scattering echo widths decrease for small chirality parameter.

Fig. 4.7 shows the co- and cross-polarized echo widths from two chiral circular cylinders

for two different angles of incidence o =0° and o =-90°, respectively. It can be shown

that echo widths also depend upon the incident angle.
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Fig. 4.8 shows the co- and cross-polarized echo widths from two chiral circular cylinders
for two different separation distances d = 0.80L and d = 1.60A, respectively. The results
illustrate that both echo widths are dependent upon the separation distance between two
cylinders. It is seen that co-polarized echo width for two different separation distances are

same when the observation angles are 90° and 270° .

Fig. 4.9 shows the co- and cross-polarized echo widths from two chiral circular cylinders
for two different frequencies 300 MHz and 600 MHz, respectively. The results illustrate
that both echo width patterns vary with changing the frequency of operation. The results
illustrate that both back and forward scattering echo widths reduce with increasing the

frequency of operation.

Fig. 4.10 shows the co- and cross-polarized backscattering (d) = 2700) echo widths versus
the separation distance d for two identical chiral circular cylinders with a, =0.16,

e, =4, n=2, y =0, y,=7, yo =0, d =d, dy=0, k=015, and

f =300MHz, and o =-90°. It can be shown from the figure that the oscillation decays
with increasing the separation distance between the cylinders. For comparison, the
numerical result fo; the backscattering echo width for two achiral cylinders as a function
of separation distance is also given. The magnitude of the co-polarized backscattering
echo width for two chiral cylinders is significantly reduced compare to the two achiral

cylinders.
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Fig. 4.11 shows the co- and cross-polarized backscattering (d) = 1800) echo widths versus
the separation distance d for two identical chiral circular cylinders with a, =0.16A,

g, =4, pn =2, y =0, yo=7n, Yy =0, d =d, d,=0, ky=0.15, and

f =300MHz, and o =0". It can be shown from the figure that the oscillation decays

slowly with increasing the separation distance between the two cylinders. The back-
scattering echo width for two achiral cylinders as a function of separation distance is also
given to compare the results. It can be shown that the magnitude of the backscattering
echo width for two chiral cylinders is significantly reduced compare to the two achiral

cylinders.

Fig. 4.12 shows the co- and cross-polarized forward scattering (q) =90°) echo widths
versus ’;he separation distance d for two identical chiral circular cylinders with
a, =0.161, ¢ =4,pu =2, ¢y, =0, Wi =T, Yo =0, d, =d, dQ =0, k,y=0.15, and
f =300MHz, and o =-90°. It can be shown from the figure that the oscillation decay

with increasing the separation distance between the two cylinders. The forward scattering
echo width for two achiral cylinders as a function of separation distance is also given to
compare the results. It is seen that the forward scattering echo width for two chiral

cylinders is lower than the two achiral cylinders.

Fig. 4.13 shows the co- and cross-polarized forward scattering (¢=0°) echo widths
versus the separation distance d for two identical chiral circular cylinders with

a, =016\, ¢ =4, =2, y, =0, Ve =7, Yo =0, d; =d, dQ =0, k,y=0.15, and
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f =300MHz, and o=0°. The forward scattering echo width pattern for two achiral

cylinders as a function of separation distance is also shown to compare the results. It can
be shown from the results that the amplitude of the oscillations of each is almost constant
and independent of separation distance. The magnitude of the forward scattering echo

width for two chiral cylinders is significantly reduced compare to the achiral cylinders.

Fig. 4.14 shows the dependence of the co- and cross-polarized backscattering echo widths
as a function of incident angle for two identical chiral circular cylinders witha, = 0.16A ,
e, =4, n, =2, d=d, =34, dQ =0, ¥, =0, y =7, yo =0, k;y=0.15, and
f =300MHz . For reference, the numerical result for the backscattering echo width for

two achiral cylinders as a function of the incident angle is also shown. The magnitude of
the backscattering echo width of two chiral cylinders is significantly reduced compare to

the two achiral cylinders.

Fig. 4.15 shows the dependence of the co- and cross-polarized forward scattering echo

widths as a function of the incident angle for two identical chiral circular cylinders with
a,=0.16r, g =4, p =2, d=d, =31, dQ =0, y,=0, Vg =T, Yo =0,
koy=0.15, and f =300MHz. For comparison, the numerical result for the forward

scattering echo width for two achiral cylinders as a function of the incident angle is also
given. The magnitude of the forward scattering of two chiral cylinders echo width is

significantly reduced compare to the achiral cylinders.
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Chapter 5

Conclusions

The problem of scattering of electromagnetic waves by two parallel chiral circular
cylinders has been analyzed using a boundary value problem approach. The analyzed
results are computed for both transverse magnetic and transverse electric polarized
electromagnetic waves. The scattering of electromagnetic waves by single chiral circular

cylinder is also analyzed and computed for both the TM and TE polarizations.

In Chapter 2, TM and TE scattering of electromagnetic waves by single chiral circular
cylinder are analyzed using a boundary value problem approach. Cylindrical vector wave
functions are used to express the electromagnetic incident, scattered, and internal fields.
- DBF constitutive relations and the Bohren decomposition formulas are used to express
the electromagnetic fields inside the chiral cylinder. The unknown expansion coefficients
of the scattered and internal fields can be solved numerically by enforcing the boundary
conditions on the surface of the cylinder. Several numerical results are given to show the
co- and cross-polarized echo widths effect and compared well with existing published
results. The several effects on echo width are given by varying the different chirality
parameters and cylinder radii of the chiral cylinder. The numerical results are also
generated to show the dependence of the back and forward scattering co- and cross-
polarized echo widths as a function of cylinder radius. Numerical results illustrated that
co- and cross-polarized echo widths are dependent upon the constitutive parameters and

electrical size of the cylinder.
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In Chapter 3 and 4, TM and TE scattering of electromagnetic waves by two parallel chiral
circular cylinders are analyzed and computed using a boundary value problem approach.
The separation of variable technique and proper transformation theorems are used to
formulate the solution. The incident, scattered, and transmitted fields are expanded in
terms of the cylindrical vector wave functions. DBF constitutive relations and the Bohren
decomposition formula are used to express the electromagnetic fields inside the chiral
cylinders. The scattered field from each cylinder is considered to be the incident field for
the other cylinder. The boundary conditions are then imposed in conjunction with the
addition theorem for Hankel functions on the boundary surface of each cylinder. The
result is a system of linear equations for the unknown expansion coefficients which is

numerically solved by a proper truncation of the infinite sums into finite sums.

The total scattered field can be determined after evaluating all unknown scattering
expansion coefficients. The echo width is a far field parameter which is used to
characterize the scattering properties of a target. The echo width from two chiral circular
cylinders can be obtained by knowing the scattered fields in the far zone. The asymptotic
expansion for the Hankel function for large arguments is applied to obtain the far-zone
scattered fields. Both co- and cross-polarized far scattered fields are taken into
consideration for all numerical results. Several numerical results are presented to show
the effects on the echo width with respect to different chirality parameters, frequencies,
radii, separation distances between two cylinders, and incident angles. The effects on the
back and forward scattering co- and cross-polarized echo widths are also given with

respect to the separation distance between two cylinders and angle of incidence. The

111



validity and accuracy of the results are compared with the published results for the

special cases of two dielectric circular cylinders and single chiral circular cylinder.

From all numerical results, it can be observed that both co- and cross-polarized echo
widths are controlled by changing the angle of incidence, the angle of observation, the
frequency of operation, the location of two cylinders, the radius of the cylinders, and the
constitutive parameters of chiral circular cylinders. Furthermore the results illustrate that
the echo width patterns are greatfy influenced by chirality parameter which may enhance
or reduce the echo width. It provides designer an extra degree of freedom to control the

echo width of chiral scatterers.

In conclusion, the analysis of electromagnetic scattering by two chiral circular cylinders
provides some idea about the far scattered field characteristics which can be used as a
reference for modeling of complex structures and controlling of echo width of different

objects in such a type of complex media.
Finally, the analysis of scattering of electromagnetic waves by two parallel chiral circular

cylinders can be further studied for a number of chiral cylinders in reciprocal or

nonreciprocal media.
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