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Abstract

Coherent States Based on the Euclidean Group

Renata Deptula

This work is a contribution to the general theory of frames, using group represen-
tations. Specifically, we use the theory of generalized coherent states for semidi-
rect product groups to construct coherent states for the three dimensional Euclid-
ean group, starting from a a representation of this group, induced from a repre-
sentation of the subgroup H = R*® x SO(2). Families of continuous coherent states
are explicitly constructed for two specific choices of sections from the coset space
I' = E(3)/(T5 x SO3(2)) to the group. We also discuss admissibility conditions for
the existence of continuous frames for the general class of affine sections. Next we
propose a discretization procedure for these continuous frames. Once again we obtain
general admissibility conditions for the existence of frames and in particular, tight

frames. Explicit examples are worked out.
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Introduction

In recent years wavelets have played an important role in research and technology.
They where introduced by Morlet [23] in 1982 as a convenient tool to analyze seismic
data. After a successful application in seismography, Morlet and Grossmann studied
wavelets extensively [24] and developed the mathematical foundation for a wavelet
theory. Later, Daubechies, Grossmann and Meyer [11] using wavelets, generalized
the concept of a basis in a Hilbert space to frames. Subsequently, the theory of
multiresolution analysis was developed by Mallat [21] and Meyer [22] for constructing
frames, which essentially are suitably chosen families of vectors in a Hilbert space
in terms of which arbitrary vectors can be decomposed, respecting some numerical
stability and reconstructability conditions.

The reason of the popularity of wavelets lies, on the one hand, in the great variety
of possible applications (signal analysis, numerical analysis, fractal imaging, telecom-
munications) and on the other, their mathematical simplicity and computational
economy.

The motivation for this work arises from the possible use of the generalized wavelet



transforms constructed here to signal analysis. The standard wavelet transform yields
a time-scale representation of a signal, which is a more practical tool than the repre-
sentation by the Fourier transform. This latter is a transform either only in time, or
only in frequency. Generalized wavelet transforms are group theoretical extensions
of the standard wavelet transform. In this thesis we approach this generalization via
coherent states, noting that wavelets are coherent states associated with the affine
group, that is the group of translations and dilations. The appearance of the transla-
tion and dilation parameters, jointly in the wavelet transform, enables one to analyze
signals even at points of severe discontinuities and in fact, the wavelet transform is
ideally suited to a study of discontinuities. Now, the affine group acts as a group of
transformations on the real line, R. Specifically, the two parameters of the group a, b,
of dilation and translation, respectively, act in the manner z — ax+b. In other words,
the signal itself is a function on R, and the wavelet transform maps this function to
a function of the group parameters (a,b). It then becomes of interest to see how one
could analyze signals defined on other geometries by using other groups. This leads
one to a generalization of wavelets/coherent states to coherent states associated to
groups other than the affine group. The Poincaré group have already been considered
[3], [5], [7], [17], and coherent states associated to this group have been constructed.
A coherent states of the affine Galilei group also have been constructed [8]. In this
thesis we chose the three dimensional Euclidean group. This choice will allow us to

analyze signals on the sphere, S?, by mapping them into functions on S? x R2. In this



manner, the signals are analyzed in terms of modulation and rotation parameters.
Before going into the computational details of this thesis, let us quickly retrace
the historical development of those aspects of the theory of coherent states which
are relevant to this thesis. Coherent states where "born” in the very early days of
quantum mechanics. Schrdédinger [28] studied a special kind of quantum states, which
restored the classical behavior of the position operator of a quantum system, allowing
the smooth transition from classical to quantum mechanics. He did not call them
”coherent states” though. The term has its origin in quantum optics. R. Glauber
used this special kind of states, which he termed ”coherent states” in the description of
coherent light beams emitted by lasers [14] [15]. But our approach to coherent states
is based on group theory and the very useful identity, enjoyed by coherent states.
The foundation to this approach was laid by J. Klauder [18]. He noticed a connection
between the canonical coherent states and the unitary irreducible representation of
the Weyl-Heisenberg group Gy pg. The same connection was noticed by Gilmore [13]
and Perelomov [26]. While Klauder in his approach used the whole group to index
coherent states, Gilmore and Perelomov used as indices elements of the coset space
X = Gwpg/Z, where Z is the center of Gy g (i.e. the set of all elements commuting
with every element of Gwpy). A representation U of the Weyl-Heisenberg group
is said to be "square integrable” if for some element 7 in the Hilbert space of the

representation, the integral

/ | < Ulg)nlé > Pdu(z), g € Gwa,z = g7,
X



is finite for every ¢ € $ = L*(R, dz). This is the starting point for the mathematical
generalization of the theory of coherent states to other groups (G). In the Gilmore-

Perelomov scheme, coherent states are define to be vectors
e = {U(o(z))n|z = gH, € X,g € G},

where U is a unitary irreducible representation of G on some appropriate Hilbert
space, H, is the subgroup of G leaving 7 fixed and ¢ : X — G is a suitably chosen
section on the coset space G/H,. But this method was not capable of handling some
important groups in physics (like, for example, the Galilei, Poincaré and Euclidean
groups). Another generalization was suggested by Ali,et al.[1] and eventually a much
more general theory of coherent states was developed [4] which solves the problem for
a large class of groups, in particular semidirect product groups (such as the Galilei,
Poincaré and Euclidean groups). In this approach coherent states are constructed
using a homogeneous space X = G/H, where H is suitable subgroup of G, not

necessarily coinciding with H,. Then one needs to find a section o : X — G such that

/X | < Ulo@)nlé > Pdv(z) < oo,

for all vectors ¢ in the representation space and for some vector 7 (called an admissible
vector). It is assumed that the coset space G/H admits the invariant measure dv un-
der the natural action of the group. Coherent states are then defined to be the family
of vectors 7, as x runs through the coset space G/H. The coherent state transform

of a vector ¢ (the signal) is then the function f(z) =< U(o(z))n|¢ >, defined now



as function of the coset parameters z. In this thesis we shall use the term wavelet
transform and coherent state transform interchangeably. The rest of this thesis is
organized as follows. In Chapter 1 we describe in more details the construction of
coherent states using the Gilmore-Perelomov method as well as more general method
of Ali, et al. In that chapter we also set up the notation and terminology used in
the thesis, and describe groups which are semidirect products of a real vector space
V with S, a subgroup of the group GL(V) of all nonsingular linear transformations
of V. We construct induced representations for groups of this type, and describe the
method of constructing coherent states using these representations. Chapter 2 is de-
voted to the three dimensional Euclidean group (£/(3)), for which we give the explicit
formulae for the representation induced from the trivial representation of SO3(2). The
main results of this thesis are presented in chapters 3 and 4. In Chapter 3 we con-
struct continuous coherent states associated with the Euclidean group for two various

choices of sections, while in Chapter 4 we obtain discretized versions of these families.



Chapter 1

Preliminaries

»o»n

In this chapter we present an overview of ” coherent states”, ”induced representations”
and ”frames” - notions we will use in this thesis. We also describe the semidirect
product groups, the type of group considered in this work.

In the first section we introduce the canonical coherent states - the first example
of such states was used to study the transition from quantum to classical mechanics
by Schrédinger [28].

In the next section we will concentrate on the group theoretical approach to co-
herent states, which is essential to this work. In section 3 we describe the method of
finding the irreducible representations of the groups using the inducing technique of
Mackey [20].

In section 4 we describe a semidirect-product groups, and using method from the

previous section we find irreducible representations for this type of groups. We also



discuss the construction of coherent states for semidirect product groups. In the last
section of this chapter we discuss the concept of a ”frame” - a very useful ”substitute”

for a basis in the Hilbert space.

1.1 Canonical Coherent States

The first example of coherent states was given by Schrodinger in 1926 [28]. He was
interested in the transition from micro - to macro mechanics, or as we would say
today, from quantum to classical mechanics. For the harmonic oscillator he proposed
a class of normalized quantum states, which recover the classical behavior of the
oscillator.

Let $ denote the Hilbert space of the states of the harmonic oscillator. We define

the creation and annihilation operators as

r ... r,. ..
afzﬁ(x—zp), azﬁ(:c-l—zp), (1.1)

where Z, p are the position and momentum operators respectively, with a commu-
tator [£,p] = ¢I. Such defined, the annihilation and creation operators satisfy the
commutation relation

[a,al] = 1.

In this setting the canonical coherent states |z > are introduced as the ”eigenstates”
of the annihilation operator:

alz >= z|z >,



where z is a complex eigenvalue. Following [19] we can express the states |z > in

terms of the eigenstates (|n >) of the number operator N = afa as
2 >= e~ 2l Z Lz"|77 > (1.2)
The factor e~2"I" is chosen such that the states |z > are normalized, that is
< zlz >=1.
But the states |z > are not orthogonal, since
/ 1 2 1 12 1%
< |z >= exp[—§|z| — EIZ |“ + 2"2]
is a nowhere vanishing, continuous function of z and 2/, they form an overcomplete
(i.e., the set remains complete upon removal of at least one vector) linearly dependent
set. The important property of this states is that they give the resolution of the
identity:
1 2 S 2
— [ d*z|z>< 2] = Z |n ><n|; d°z=d(Rez)d(Imz) = 1.
T
n=>0

and an arbitrary vector |f > in the Hilbert space $ can be expanded as
1 2
If >= = | d°2z|z>< 2|f > .
s
The coefficients of this expansion satisfy the equation
1 2 1 ! /
<z|f >=—= [ dF <z >< Z|f >
T

so that < z|z/ > acts as a reproducing kernel .
The function K : V x V — C is a reproducing kernel if it satisfies the following

properties:



1. K(z,z) >0, Vz (positivity),

2. K(z,y) = K(y,z) (hermiticity),
3. K(z,2) = [, K(z,y)K(y,2)dv(y) (idempotence),

and for any vector f € $x C L*(V, dv), i being the range of the projection operator

defined by the kernel K,

f(z) = / K(z,9)f (5)dv(y).

The quantum states |z > (1.2) are parameterized by points of the classical phase
space, because the expectation values of the position and momentum operators Z, p

agree with the classical values. They also saturate the Heisenberg inequality:
. . 1
<Ax>z<Ap>z - ih’

where (AZ) = [(2]|2%|z) — <z|531z>2]1/2.

1.2 The Standard Construction of Coherent States

In our work we are interested in coherent states associated with group representations.
In this approach we construct coherent states in the following way.

Let G be a locally compact group, dg the left invariant Haar measure on G, and U
a continuous, unitary, irreducible representation of G in some Hilbert space §). The

representation U is called square integrable if there exists a vector n € $ for which:

I(n,¢) = / | < Ulg)mlé > [Pdg < o0, Y € & (13)



The vector 7, normalized by I(n,n) = 1 is called admissible. Its orbit, O = {n, =
U(g)n, g € G} under U, is an overcomplete family of vectors called coherent states
associated with the representation U. For groups without square integrable representa-
tions, this condition is not satisfied, but a generalization was given by Perelomow [27]
in which to weaken the admissibility condition, he considered a coset space X = G/ H,
with an invariant measure v, H, being the subgroup of G' which leaves 7 invariant
up to a phase:

Uh)n = e My, h e H,
Then the admissibility condition (1.3) changes to
I(n, &) = / | < Ulghnle > Pdv(z) < oo, V€ § withz =gH,  (1.4)
X

In this case the representation U is called square integrable mod H,, .

1.2.1 The section o

Since the integration in (1.4) is over a coset space X, it will be useful to represent
g using elements of the coset space. To do this we take arbitrary Borel section
o : X — G in the principal fiber bundle 7 : G — X, and write g = o(z). If condition

(1.4) is satisfied for a given € §) we may define a set of coherent states
O, ={n, =U(o(z))n, z € X},

indexed by points x € X. These coherent states constitute an overcomplete set of
states, with all the nice properties of the canonical coherent states.

10



1. The CS system O, defines a resolution of identity

/ [N >< ns|dv(z) =1
X

or equivalently, the linear map W, : § — L*(X,dv) defined by (W,¢)(z) =

< Nz|¢ >, is an isometry onto a closed subspace $), of L*(X,dv).

2. The projection operator P, = W, Wy on ), is an integral operator with the
kernel K(z',2) =< 71y|n, >, which means $),, = P,$) is a reproducing kernel

Hilbert space.

3. The map W, can be inverted on its range §), ( because it is an isometry), and
its inverse is the adjoint operator: W, = W, on §),. This provides us with an

inversion formula:
W, =/X¢($)nde(x), ¢ €N,

But there are groups which do not possess square integrable representations in
the above sense. A theory of generalized coherent states was developed [1]- [6], which
solves the problem for the semidirect product groups. We describe this generalization

in Section 1.4.

1.3 Induced Representations

In the construction of coherent states we use unitary irreducible representations of
a group. Very effective way of obtaining such representations is inducing technique,

11



where from the representation of a subgroup a representation of a whole group is
induced. In the case of semidirect product groups of the type we are interested in
every irreducible representation is obtained this way, thus it is worthwhile to describe
this procedure, in some detail. In our description we will follow Mackay’s inducing
technique, as stated in [20].

Let G be a locally compact group, H a closed subgroup. Let X denote the coset
space G/H. Let us assume that X carries an invariant measure v. Now consider all

measurable functions f : G — C, such that

flgh) = f(g) Vh € H (1.5)

/X F(@)Fdv(n(g)) < oo (1.6)

where 7 : G — G/H, w(g) = gH is a projection on the coset space X. Because of
the property (1.5), f is actually a function on X and (1.6) is well defined. With the

scalar product defined as

< hilfs >= /X 7@ falg) dv(n(g)), (L.7)

the set of all such functions constitutes a closed Hilbert space, denoted by §3. On this

Hilbert space we define the left representation of G as

(U(g)f)(g") = Flg7'g").

12



1.3.1 Inducing from representation of a subgroup

Now we would like to generalize this construction to include cases were the represen-
tation of the subgroup is given. Suppose H has a unitary representation h — L(h)
on some Hilbert space 8 This time we consider the set of all functions f : G — £,

satisfying

flgh) = L(h)" f(9) Vhe H (1.8)

/X < F(9)lf(g) >x duln(g)) < oo (1.9)

where < | >4 denotes the scalar product in & Again, (1.9) is well defined, since

< f1(gh)| f2(gh) >a=< L(h) " fr(g)|L(h) " f2(g) >a=< f1(9)If2(9) >=

the second equality being the result of the unitarity of L. With the scalar product

defined as

< filfa >= /X < F(@)f2lg) >x dv((9)) (1.10)

the set of all functions satisfying (1.8) and (1.9) constitutes a Hilbert space, which

we call $5°. We can define a representation U” of G on $Hlas

(UH9)f)(g) = flg'9). (1.11)

We call this representation, the representation induced from the representation L of

the subgroup H.

13



1.3.2 Inducing with quasi-invariant measure

We can reformulate this construction for the case in which the coset space X does
not carry an invariant measure, but only a quasi-invariant measure v.
The measure v is said to be quasi-invariant if v is equivalent to v, for all g € G,

where the measure v, is obtained by the natural action of a group element g on v:

VQ(A) =v(gA),

for A € B(X) being a Borel set on the coset space X. The Radon-Nikodym derivative

of v, with respect to v :

Mg z) = Cfi’;j’((f)), (1.12)

is a cocycle for the quasi-invariant measures and satisfies the following properties:

Ag192, %) = A(g1,2)Mg2, 91 @),
(1.13)

Ae,z) = 1.
A section on X is a map o : X — G, satisfying 7(o(z)) = z, for all z € X. Where «

denotes the projection onto the coset space X;
7:G— X, n(g) = gH.

For a fixed Borel section o : X — G, for g € G and z € X we may write the action

of the group section as
go(z) = a(gz)h(g, ), where h(g,z) = o(gz) 'go(z) € H. (1.14)

14



Here h : Gx X — H is again a cocycle, and h/(g,z) = [h(g™?, z)] " satisfies conditions

similar to (1.13):

h’/(gng7 .’I/') = h’,(gla l‘)h’l(gZ: 91—1:8)7
(1.15)

h'(e,z) = e.
for all g;,92 € G and all x € X.
Now suppose that H has a unitary representation h — L(h), for h € H, on some
Hilbert space . We can define the map B : G x X — U(R) (where U(8) denotes the

group of all unitary operators on £) as
B(g,x) = [Mg,2)]"*L(h(9~", z)) " (1.16)

which satisfies the cocycle conditions (1.13) for all ¢g1,90 € G and z € X, with 1
being replaced by the identity operator 1z on U(£) in this case, A being the Radon-
Nikodym derivative given by(1.12), and h a cocycle satisfying conditions (1.15). Now
let us consider the Hilbert space HX = & ® L*(X,dv) of the functions ¢ : X — &,

which are square integrable in the norm

leoll5e =/X|1<P(w)l|%d1/(x)- (1.17)

In this case, as have been shown in [4], the representation g — UZ(g) induced from

the representation L is given by the following formula:

(T (9)¢) (z) = B(g,z)p(g"'z) = [[Mg,2)]/*L(k(g7",2)) ") (g 2), € H*

(1.18)

15



This representation is unitarily equivalent to the representation U* given by (1.11).
To see that let us denote by z the element in the coset space X = G/H, z = gH.

Next we define an unitary map V : $% — $ by

(Vo)(g) = f(g) = L(h)Yp(x), z€ X (1.19)

where the element h € H is determined from the decomposition g = o(z)h, which, for
given section, is unique. Then writing UZ(g) = VU%(g)V~1, and computing (V¢')(g),

for ¢'(¢') = (U*(g)y)(x), where U* is the representation given by (1.18), we get

(VU (9)p) (@) = Mg, 2)f(97'9"), (1.20)

with ¢’ = zh, and A being Radon-Nicodym derivative of v, with respect to v, as given
in (1.12). For invariant measure A(g,z) = 1 and we have induced representation U*

given by (1.11).

1.4 Semidirect Product Groups

In our work we are interested in the semidirect product groups of the type G =V % S,
where V is an n-dimensional real vector space, and V' a subgroup of GL(V') - the group
of all nonsingular linear transformations of V. The multiplication law in a group of

this type is defined as
(v1,81)(v2, 82) = (v1 + 8102, 5182),

where vy,vy € V, 51,89 € S, and sv indicates the natural action of S on the vector
space V, that is (v,s) — sv, where v € V and s € S. We denote by V* the dual of

16



V', where duality is expressed by the usual pairing:

<kvo>keV' veV.

The dual action of S on V*: (k,s) — sk,k € V*, defined as

< sk,v>=<k, s v >

is the coadjoint action.
Let kg € V* be a fixed element. Then by O* we denote the orbit of ky under the

action of S, and

O* = {k € V*|k = sko,s € S}. (1.21)

At any point k of that orbit we may consider the tangent space TpO*, which can be
identified with a subspace of V*, and the cotangent space T O*, the dual space of
T, O*, which can be identified with a subspace of V. If by Sy we denote the stability
subgroup of ko (s € Sp if sko = ko), then S/Sy >~ O*. Let us also denote by N, the

annihilator of the tangent space Ty, O* in V, that is :
No={veV|<pv>=0,VpeT,0}
and by Ny its dual,
Ny ={p eV <pv>=0VveT; O}

Then we can decompose our vector space V as Ny © Ty O, and any element v of
V can be uniquely written as v = n + ¢, with n € Ny and ¢t € T;; O*. Sy leaves No

17



invariant, and Ny x Sy is a subgroup of G. Let I" denote the left coset space

I'= G/Ho, HO = NO b So. (122)

1.4.1 Induced representations of semidirect product groups

To obtain the irreducible representations of G = V x § we will use the inducing
construction introduced in Section 1.3. To start, let us consider the vector in the
dual space of V, kg € V*, and given by (1.21) its orbit O* under the action of S.
Then an one-dimensional representation of V' is defined by the associated unitary

character x of the abelian subgroup V:

x(v) = exp(—i < kg, v >), veV. (1.23)

Let s — L(s) be a unitary irreducible representation of Sy, the stability subgroup
of kg, carried on some Hilbert space 8. By xL we denote the unitary irreducible

representation of V' x Sy carried by K, and given by:

xL(v,s) = exp(—i < ko,v >)L(s). (1.24)

A representation of G will be induced from the representation yL.
The coset space I' = G/(V % Sy) is isomorphic to the orbit O* given by (1.21),
and as in Section 1.3, we need a section from the orbit to the group. We denote that

section by o and define it as
0:0" - G, o(k) = (0,A(k)), (1.25)

18



where A : O* — §'is a global Borel section, such that
A(koy) = e - identity element of S
Ak)kg =k, k€ O*.

Because s € S can be uniquely written as s = A(k)sq, where £ € O* and sy € Sp, the

coset decomposition of the element of the group (v, s) € G is given by
(v,8) = (0, A(k))(A(k) v, s0). (1.26)
The action of G on o(p) € G, p € O, given by (1.14) will be given by
(v,5)(0, A(p)) = (0, A(sp))(A(sp) v, A(sp) 'sA(p))
where,as shown in [4]
(A(sp)™'v, A(sp)"'sA(p)) = h((v,5),p), h: G x O" =V % S,

and

A(sp)~*sA(p) = ho(s,p), ho: Sx O — 8

are cocycles.

We can show that the representation of the element (h(v,s)™!,p) is given by
XL(h(v,5)7,p)) = exp(—i < k,v >)L(ho(s™", p)), (1.27)

and following Chapter 1, Section 1.3 the representation of G induced from xL , on

the Hilbert space $% = & ® L*(O*, dv) is given by
(U (v, 8) f) (k) = exp (—i < k,v >)L(ho(s7, k)1 f(s72k). (1.28)
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1.4.2 Coherent states of the semidirect product

The representation UXE given by (1.28) is usually not square integrable over the
whole group. By taking the group element as op(q,p) = (A(p)g, A(p)), where op :
T, O* x O* — G is called the principal section, we restrict the representation to
the coset space I' given by (1.22). This will allow us to find the conditions under
which UX! will be square integrable over the coset space. Using the irreducible

representation UXY | let us define the set of vectors

Toptap) = U (A(R)g, A(p))7", (1.29)

where (¢,p) € Ty O*xO* and ,i = 1,2,... N < 00, are linearly independent vectors
in 9 = R ® L*(O*,dv) supported on the open set O(kq) containing k.

We also define the positive, bounded operator on .F)L as
N
F=)|n><n] (1.30)
i=1

We assume that F' is invariant under the action of the stability subgroup Sy, i.e. it

satisfies the condition
UXE(0, s0) FUXE(0, s0)* = F, Vso € Sp. (1.31)
Using the explicit form of the representation UXL given by (1.28) we find
(UXE(0, s0)7") (k) = exp(i < k,0 >)L(ho(s5", k) 7'’ (sg " k) = (L(s0)n') (k). (1.32)
Thus assumption (1.31) implies
L(sg)FL(sg)* = F. (1.33)
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For arbitrary elements ¢,y € 5’*, consider the formal integral,

N
I¢ﬂ/’ - Z/T* o . <¢|n;»p(q,p)><n;p(q,p)|1v/)>du(Qap) (134)
i=1 Y T, 0" <0

= [ (G rla PO o0, 8) ) )

ko

where dy(p, ¢) is an invariant measure on T;; O* x O*. The detailed calculation of dy
may be found in Chapter 10, Section 10.2 of [4] and here we just present the highlights
of that construction.

Since the coset space I' is isomorphic to the cotangent bundle T*O*, it comes
equipped with a nondegenerate two-form invariant under the action of G. This two-

form may be expressed locally on an open subset of the orbit:/ C O* as

Q=) dv Adp;, (1.35)

i=]

where {dp;}2, is the dual basis in 7;O* and T, 0% 5 v, = >_", v}dp;, v, € R. The

=1 "p

associated left-invariant measure on T*O* is then, locally
dw = dvuy A dvi A ... Adv]* Adpy Adpa A ... A dpn, (1.36)

For our purposes, we find a Borel isomorphism A such that v, = A(p)g € T;;O*, which
allows us to work with T O* x O* instead of T*O*. Denoting by dq the Lebesgue

measure on T ~ R™, we may write,

dv, = f(p)dg,

with f(p) a positive and nonzero function on U. Our additional assumption is that
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O carries an invariant measure dv, which on U may be written as
dv(p) = m(p)dpy A dpa A ... A dpp,

where m(p) is a measurable function on O*, which is positive and nonzero on U. With
D ) p

all that the invariant measure dw transforms locally on U to

du(g,p) = %dqdl/(p)-

Hence globally on T; O*, we may write

du(q,p) = p(p)dqdv(p),

where p is a measurable function that is positive and nonzero almost everywhere on
o~
Now using the explicit form of the representation UX*| given by (1.28), and mea-

sure du(p, q) obtained as described, our formal integral (1.34) is as follows:

oo = 3 [ (ARG AR) (),
x (' (K| L(ho(A(p) ™", A(p)R))(A(P)E') 4

x kK> gy (k) dv (k) dp(q, p). (1.37)

The factor e!<¥—*:9> produces a § -measure type of integral with respect to q. Then
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the integration over k' results in

Ioy = (@m)" Z / dv(k / dv (p)m(A(p) " K)olp)
><<¢> N L(ho(A(p) ™Y, k)" 'n* (A(p) k) o

x <ni(A( )7 k)| L(ho(A(p) ™, K))9p(k)) ..

_ (e Z / dv / dv(p)m(A(p)~"k)p(p)

X (@) (UXF(0, A(p))n*) (k) o ((UX(0, A(p)) (k) (1.38)

Now we can define a formal operator A4,, on the Hilbert space & ® L*(0*,dv) b

(Asp) (k) = (Aqp (k) p(k), (1.39)

where the integral

Aplk) = (2 Z/du “E)olp)

x |(UX(0, A(p))n') (k)2 a{(UX*(0, A(p))n*) ()| (1.40)

is a measurable function on O*. Then the square integrability condition for UX* is,

that (1.40) is bounded and bounded away from zero. Then A,, becomes a bounded

operator with bounded inverse and we may write

sy =< ¢lAsp ¢ >, (1.41)

and
N . .
Arp =) / o5 (a2 (Mo p(a) | F14(, ) (1.42)
i=1 '.‘[”‘(](9"‘)((9"l
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where the set of vectors
nép(q,p) = U (A(p)g, A(p))n*,i = 1,2,3,....., N, (q,p) € T O x O

constitute a set of coherent states.

1.4.3 A general section

The principal section is not the only one for which coherent states can be constructed.
We would like to derive the conditions for square integrability of representation UX”
(1.28) for more general choice of section.

Any section can be expressed in terms of the principal section op in the following

manner:

o(g,p) = op(q,p)(n(q,p), 50(¢,P)), (1.43)

where n : T, O* X O* — Ny, 8o : T, O* x O* — Sy are Borel functions. We will be

interested in a class of sections for which n and sy are

n(g,p) = O(p)q + E(p)
(1.44)
SO(qap) = 80(p)7
where O, Z, sq depend on p only, and for fixed p,©(p) : V — V is a linear map with
kernel being Ny. This function is also assumed to be differentiable on the open dense

set on which the global Borel section A(p) is differentiable. Z introduces only a phase

factor and we may set it equal to zero, without loss of generality. Taking such n and
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Sp into (1.43) we get

o(g,p) = (Ap)g + A(p)O(p)g + A(P)E(p), A(P)so(p)), (1.45)

which we can also write as

o(g,p) = (A(p)Iv + O(p))g + Alp)E(p), A(p)so(p)), (1.46)

where Iy denotes the identity operator on V. This type of sections described in [4]
are called admissible affine sections if Iy« + ©(p)* ( Iy« is the identity element on
V* and O(p)* adjoint map to G(p)) maps O(ky), open set containing ko, into itself
for each p € O*, and the Jacobian J(p, k) of the map Iy + ©(p)* restricted to O(ko)

does not equal zero anywhere:
det[J(p, k)] # 0, p€ O, k € Olh).
For such sections we can again build the family of coherent states:

Montam = UX (AD)g, AR))7', (1.47)

where again 7 € 5 = AR L*(O*,dv),i=1,2,..., N are smooth functions on O* with
supports contained in O(kq) and satisfying the invariance condition (1.31) under the

action of the subgroup Sp. The representation UXL' (1.28) is then square integrable

mod(Hy, o) and the operator

A, = Z / 7)) (Mg 1 914(a, P)- (1.48)

i1 /T 00
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is a multiplication operator

(As9) (k) = As(K)¢(k) (1.49)

with the multiplying function

Ak = o> [ 100 M), (150

. ﬁ<<U><L(o,A(p))nkan%‘%p(mdu(p).

If there exist two nonzero, positive numbers a and b, a < b for which:

m(A(p)k
(om)" Z > [ IO Rl g e <h s

the operator A, (1.48) defines a frame. For some admissible affine sections the oper-

ator A, might never be a multiple of the identity.

1.5 Frames

The concept of a frame was introduced in the context of non-harmonic Fourier series
by Duffin and Schaeffer in 1952 [12], and later reviewed in Young [32], Daubechies
[10] and Heil and Walnut [16].

The frames are an alternative to the orthonormal bases. They are sets of non
independent vectors, which may be used as the components in the in expansion of
any vector ¢ in given space. The difference with the base is that expansion of ¢ is not
unique (which is the case, when we expand using orthonormal basis), but requirements
of the frame are much less restrictive than the requirements of the basis. Here we use
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a general definition of the frame which will be most suitable for our calculations. Let
$) be a separable Hilbert space, and X a locally compact space with a regular Borel

measure V.

Definition 1.5.1 A set of vectors {n:}X, in § is a frame if for all z € X the vectors
{ni},i=1,2,... N, are linearly independent, and there ezist two numbers A, B > 0

such that for oall ¢ € H one has

N
NS> / | <nilg > Pdu(z) < Bl (1.52)
i=1 v X

The numbers A, B are called frame bounds. The frame is called tight if A = B, and
the frame is ezxact if it fails to be a frame after removal of any single element from
the set. In general, the set of vectors {n’}¥, is not an orthogonal basis. If X is a
discrete space with v being a counting measure, our frame condition becomes

N

Allgl* <> > I <nile> [ < Blel? (1.53)

=1 z€X
and the set {n:}Y, is called discrete frame, more commonly used in the literature.
Otherwise, if X is not discrete, we call our frame continuous. Now, if the set {n:}¥,

is a frame, we can define the resolution operator T by

N
7= [ ot >< i) (1.54)
=1

or in the discrete case

T=>"Y Ini><n (1.55)

i=1 z€X
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The frame condition (1.52) (or (1.53) in the discrete case) is equivalent to stating
that T and 7! are bounded positive operators on §j, and the frame is tight, if T is

a multiple of the identity, T = AI, for some positive A.

1.5.1 The resolution operator

Now let us concentrate on discrete frames with N = 1, that is the set {n,}, where

xz € X, X being a discrete space. Our frame condition (1.53) then reduces to

Allgl? <> 1 <malp > > < Blgl1%, Vo € $. (1.56)

z€X

and the definition of the resolution operator given by (1.55) reduces to

T=Y |ne><na.

zeX

Let us define the frame operator F' as
F:p—-{<ml¢>},  ¢€9.
Then the resolution operator is 7' = F*F and the condition (1.56) may be written as
Al < F*F < BI, (1.57)

where I is the identity operator. This implies, that T is invertible, and T~} is obtained
from the condition

Bl <(F*F)y' <A
We can define {T"'n,} = {7}, which is also a frame, with the frame bounds B~*
and A~! respectively, and the frame operator F' = F(F*F)~. The set {f,} is called
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the dual or reciprocal frame of the frame {n,}.
Now any vector in the Hilbert space ), ¢ € $) can be written as

= Z < 77x‘¢ > ﬁz(k) (158)

z€X

where the above expansion converges strongly in §), which means F*F = I. Thus

duality of the two frames may be expressed by the equation

Yol ><fa| =Y | ><m| = 1. (1.59)

As was mentioned at the beginning of this section a good frame can be used in place
of an orthonormal basis to be used in reconstruction of ¢ from < 7,|¢ > . To proceed
with the reconstruction we need to know 7, = (F*F)~!n,. If A and B (frame bounds)

are close to each other, then by (1.57) F*F is close to 4££1, thus the inverse (F*F)~!

is close to m[ and 7, is close to Ai 57e- Then ¢ can be written as
$=> <nul¢>n:+ Re (1.60)
zeX

where R = I——2_F*F and —

A+B B+AI <R S Iwhlch implies |R|| < Z B+A _ B/A-1

= BJA+1°

If B/A -1 <« 1 we can drop the rest term R¢ from the expansion (1.60), and we

. B/A-
have a reconstruction formula for ¢ accurate up to an error of BJmHQSH.
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Chapter 2

The Euclidean Group

The goal of our study was to construct coherent states for the Euclidean group. We
present the results in the next two chapters. In Chapter 3 we construct continuous
coherent states, and in Chapter 4 the discrete ones. But first we set up the ”stage”. In
this chapter we describe the three-dimensional Euclidean group E(3) as the semidirect
product of a real, three-dimensional vector space with the group of rotations in this
vector space. We will also construct the irreducible representations of F/(3) using the

Mackey’s induction method [20] which we presented in Section 1.4 of Chapter 1.

2.1 Notation and Set Up

The Euclidean group the semidirect product group described in Section 1.4: E(n) =
R™ x SO(n), where R™ is the n-dimensional, real vector space, and SO(n) is the

group of all rigid rotations in R™ about the origin. Elements of SO(n) are n x n
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real orthogonal matrices. In our work we concentrate on n = 3. Every element
of E(3) may be written uniquely in the form ¢ = (b, R), whereb € R3 and R €

SO(3), RRT = RTR = I3. The group multiplication is given by
9192 = (by, B1)(by, R2) = (by + Raby, R1 Ry) (2.1)

where R;b, = b € R3 is the natural action of the matrix R on the vector b € R3. The
identity element of the group is e = (0, I), and the inverse of the element g is given
by g7t = (=R7'b, R7).

Let H = T3 ® SO3(2) be the subgroup of E(3), where SO5(2) is the group of
rotations about the z-axis and T3 the group of translations along z-axis (the index
3 indicates the axis z). The homogenous space I' = F(3)/H is isomorphic to the
coadjoint orbit generated by the vector (0, I%) = (0,0,0;0,0,1) € T*O*, where the
orbit O* is the two dimensional sphere S2. Let us write b € R® as (b*, b3), and the

rotation R € SO(3) in 3-space as Ry, RgRy,, where

cos¢p; —sing; 0

Ry, = | sin ¢ cos¢; 0 - rotation about z-axis,i = 1,2 (2.2)
0 0 1
1 0 0

Ry=10 cosf —sin@ | - rotation about x-axis (2.3)

0 sinf cosf
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as given in [25]. We can thus express the rotation matrix as R = R(p, 0)Ry,, where ¢ =

¢1 — % and
—sinyp —cosfcosy sinfcosyp cos¢; —cosfsing; sinfsin ¢,
R(p,0) = | cos ¢ —cosfsing sinfsing | = | sin¢; cosfcos¢; —sinfcosp,
0 sin 6 cos 0 sin cos

Note also, that we can make the association R(yp,0) = R(7n), where 7 is the unit

vector
sin 6§ cos ¢ sin 6 sin ¢
n=|sinfsiny | = | —sinfcos ¢,
cos cosd

0

Thus we can write i = R(A)k with k= |

1

Now, let us take an element of the Euclidean group and decompose it as follows:
E(3)> (b, B) = ((€",0), R®)) ((©0), Ryy) = b= (¢*,0) + R(A)a,  (24)

where ((Q'L,O),R(ﬁ)) is en element from the coset space I' and ((Q_, a),R¢2) an
element of the subgroup H = T3 ® SO3(2) of E(3). Thus the orthogonal part of b

(first two coordinates) is given by
Q_L — QIL + aﬁ,L = QIL — _b_J_ _ a,ﬁlL

and the third coordinate is



Because every element of E(3) decomposes as stated in (2.4), we can parameterize
I'=E(3)/T3 ® SO(2) by (g,p), where ¢ = (q1,q2,0) has vanishing third coordinate,
as in ((Q'L, 0), R(ﬁ)) and p = (p1, p2, p3), such that p> = 1 ( p is a point on the sphere
of radius 1). Such a (g,p) is an element of the cotangent boundle 7*5?, to which T
is isomorphic.

The action of E(3) on I' is computed by first writing

(by, Ro)(q,0) = (¢",0")  ¢"=by+Rog " =Rop=RoR(p). (2:5)

Note, that p = R(p)k , that is, with each p we can associate a rotation R(6, @) acting
0

on k= | g |. Following this action, we decompose the new group element as before.

1

Thus according to the coset decomposition

(q//’ﬁ//) = (q_l’ R(ﬁ,)) ((07 a,)a R¢'2) - UO(Q,ﬁI) ((0’ Oé,), R¢’2)?

where 0 denotes the basic section, mapping from the coset space to the group oy :

I' - E(3) and is defined as

a0(g,5) = ((91,92,0), R(p)) € E(3), (2.6)

and ((0, <), Ry ) is an element of the subgroup H = T3 ® SO3(2). We can relate any

other section ¢ : I' — E(3) to the section oy by

(g, p) = o0(g,9)((f(g,$),0), R(g, b)),
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where f and R are smooth functions of ¢ and p.

Going back to our decomposition (2.4)and comparing with (2.5) we write

(bo + Rog, Rop) = ((d1, 45,0, R(#)) (0, ), Rgy ). (2.7)
According to the group action the right-hand side of the above equation becomes
((g1,42,0) + R()(0, &), R(¥') Ryy),
and we see, that p = Rop = RoR(p), and the third component of the vector b becomes

b03 + [Rog]g =0 + [Roﬁ];;a/, which implies

_ boz + [Rogls
[Rop]s

Also RoR(p) = R(p') Ry, implies
Ry, = R(Rep) ' RoR(p).

This gives the following transformation rule for the element of the coset space I under

the action of E(3):
(Rop)™. (2:8)
and

p—p = Rop (2.9)

2.2 Induced Representations of the Euclidean Group

To obtain irreducible representations of the Euclidean group we will use the method
described in Chapter 1, Section 1.4. Let us fix k, € (R*)* in the dual space, to be

34



the vector (0,0,1). Then the orbit generated under the action of SO(3) on k&, is the
two dimensional unit sphere, S?, and the stability subgroup Sy = {R|Rk, = ky} will
consist of all rotations about the z-axis, that is SO3(2) (the index 3 indicates the
z-axis). The character x(b) = exp(—i < 7,6 >), where 7 € (R3?)* defines the one-
dimensional representation of R3. Rotations about the z—axis may be represented as
L(Ry) = Ln(0) = ™™, where Ry € SO3(2) is a rotation about the z—axis by the
angle § and n is an arbitrary, fixed integer. Thus the representation from which we

will be inducing representations of the Euclidean group has the form
XLn (b, 6) = e(7i<™b>)ginf (2.10)

Following the construction in Chapter 1, Section 1.4 we now need a section o, from

the orbit to the group, as given by (1.25). Let k be an element of the orbit
O* = {k|k = Rko, R € SO(3)} = 5%,

then o(k) = (0, R(k)), R : S* — SO(3) being a rotation such that R(k)ky = k. We

can decompose the element of the Euclidean group as follows:
(b R) = (0, R(k))(R(k)""'b, Rs) (2.11)

where R; € SO3(2) is an element of the stability subgroup of ky. The action of E(3)

on o(p), p € O* is then

(b9, Ro)(0, R(p)) = (0, R(Rop)(R(Rop)~'b, R(Rop) "' RR(p)), (2.12)
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as given in Chapter 1, Section 1.4, where
(R(Rop)~"b, R(Rop) "' RR(p)) = h((by, Ro), p)
is a cocycle (h : E(3) x O* — R3 x S03(2)), and
R(Rop)™'RR(p) = ho(R, p)

is another cocycle (ho : SO(3) x O* — S03(2)), both satisfying conditions (1.15).

Using the above notation, we calculate
XLn(h(by, Ro) ™", p)) = exp (—i < k, by >)Ln(ho(R5 ™, p)), (2.13)
where, as before L, (R(6)) = ¢, and consequently
Ln(ho(R™,p)) = Ln(R(Rop)) = €,

where 6/ = 0+ 6y, 8y being the angle corresponding to the rotation Ry. Thus following
(1.28) the representation of E(3) induced from the representation x L of the subgroup

H =R3 x S05(2) is given by
(UXE(b, R) f)(k) = exp (=i < k,b>)L(ho(R™", k)) "' f(R™'k), (2.14)

and is carried by the Hilbert space H* = & ® L2(S?,dv), of functions f, which are
square integrable on S? with the rotationally invariant measure dv = %2.

In our calculation we choose the trivial representation of SO3(2), that isn = 0, so

that e = 1. The other choices of n will only introduce a phase factor. Also for 7 we
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choose the vector (0,0, 1), thus x(b) = exp (—ibs). This implies that the representa-
tion we are inducing from is (xL)(b, ) = exp (—ibs3), and the induced representation

assumes the form:

(UMb, R)f) (k) = e *EF(R7). (2.15)
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Chapter 3

Coherent States of E(3)

This chapter is devoted to the construction of coherent states for the three-dimensional
Euclidean group. We start with a detailed calculation of the invariant measure on the
coset space I' = E(3)/H, where H = T3 ® SO3(2), Ts and SO3(2) being the groups
of translations along the z-axis and rotations about the z-axis respectively.

In section 3.2 we give an example of the construction of two families of coherent
states, for two different choices of sections. We will also discuss the conditions under

which coherent states exist for a general choice of an admissible affine section o(q, p).

3.1 Invariant Measure on the Coset Space

The coset space I is equipped with a measure invariant under the group action. In
this section we find that invariant measure du(q,p) following the general method

given in [4], which we described in Section 1.4 of Chapter 1. In our calculation of the
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measure we use the short notation for wedge products da A db A ... A dz, writing them
simply as dadb...dz.

Let Ry = R,, RgR,, be an element of the rotation group SO(3), where R,, is a
rotation about the z-axis by the angle o, and Rg a rotation about z-axis by the angle
B. The matrix representations of these rotations are given by (2.2) and (2.3).

Let us take an element from the coset space (¢,p) € I, where ¢ = (g1, ¢2,0), and
P is such that |p|> = 1, as we introduced in Section 2.1 of Chapter 2. Then the action

of the rotation matrix Ry on g gives us:

cos aja; — cos 3sin ayas
Rog = Ro, RgRoyq = Roy Rpa = R(po)a = | sin a1a1 + cos fcos aas | o (3.1)
sin Bas
where the vector a € R® is the result of the rotation of ¢ about the z-axis, through
the angle ay, and

a= Ragg = (aha‘Q,O)?

(Rq, € SO3(2) is an element of the stability subgroup Sp). In (3.1) we also made an

association of the rotation R., Rg with R(py), where

0 sin (3 sin a;
Po=Ra, Bz | 0| = | —sinfBcosay
1 cos 3

which was discussed in Section 2.1 of Chapter 2.

39



Going back to the transformation rule for ¢ under the group action given in (2.8)

B bos + (Roq)s3

b q Tp)a_— (Rop)™.

The components of ¢ = Ryg are

sin ﬁﬁﬁ) _ bosp}
A~

q; = by + a; cos a; — ag(cos Bsina; + =
Ps P3

sin /8]5I2 ) _ b03ﬁ,2
Af

gy = boz + a; sinay + ag(cos Beosay — =
Ps P3

Taking differentials gives us

sin 3¢,
Z

sin 5P,
Z

dq) = da;y cos oy — dag(cos Bsina; + )+ {terms with dp; }

dgs = da; sin o + dag(cos Bcos ay — )+ {terms with dp; }

sin 3 cos a1 Py sin (3 sin ay )

.2
~ + cos Bsin” ag + —

) daydas
Ps3 D3

= dqydgy = (cos Bcos® ay —
+ { terms with at least one of dp;’s } .

(We are omitting explicit expressions for terms involving dp;’s, because they drop
out when wedge products are taken. Eventually we will be interested in the measure
dq,dg,dp) dps, the wedge product of dq}dg, with dp|dp), and because of the antisym-
metry property of the wedge product the terms in dq;dg) involving dp;’s will vanish
after taking the wedge product with dgpdg,.)

That is the dg part of the measure. We still have the differentials related to p.
Since p' = Rgp is the transformation on the sphere, the invariant measure for that

transformation is

5 di
sin fdfBda; = dp{ Ly
P3
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In view of the invariance

~

dpdp,  dpydp :
P19py _ 4p1aps N dp,dpl, = g_zdﬁldm. (3.2)

ﬁé D3

Now we are ready to calculate dq|dg,dp)dp,. We will use the fact that da;da; =
dq1dgz, which is the result of the simple calculation: @ = R,,q, where R, is given by

(2.2) and ¢ = (q1,92,0). Applying that, we get
dayday = (cos?® ay + sin® ay)dq1dgy = dgydgs.

Using this fact and relation (3.2) for dp)dp}, we calculate the invariant measure to be

o sinf3, . . o\ P
dq; dgydpydpy = (cos B + 7 (sin y iy — cos alp’z))quldqzdpldpz
3 3

A

1 . Yy Y Do 0
= 1—3“(?.{5 cos 3 + Py sin Fsin ag — P sin B cos oy )dgydgedprdp, = ﬁ—dQ1dCI2dp1dp2~
3 3

But po = Rok and § = Rop, so that

This shows, that

dp(g, p) = dgidqedpidps (3.3)

is an invariant measure on .

3.2 Construction of Coherent States

In the construction of the coherent states for the three dimensional Euclidean group
we will follow the general method presented in [4] which we described in Section 1.4

of Chapter 1.
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Let us construct the family of vectors in Hilbert space:

Ngs(k) = UX* (0 (g, ))n(k), (3.4)

where UXL(b, R) is the unitary irreducible representation of F(3) given by (2.15),
carried by the Hilbert space ) = L?(O*,dv). By taking UX*(a(q, p)) we restrict the
representation to the coset space I', from which an element (g, p) is taken.

In Chapter 2 we showed, that for £(3) the orbits O* are isomorphic to the two

dimensional unit sphere: @* ~ S2. We need to choose 1) € § = L2(S2, dv), satisfying

the invariance condition (1.31). For the Euclidean group which we are considering
(UX*(0, Ra)n) (k) = n(R3 k), (35)

where Rz € SOj3(2), is an element of the stability subgroup i.e the rotation about
the z-axis. Defining the operator F' as F' = |n >< 7|, condition (1.31) implies the

following condition on 7:

n(Rs'B)[* = In(k)|*. (3.6)

By choosing 7 as a function of the third variable only, n(k) = n(ks3), we have a vector
satisfying (3.6). We also need an open set containing kg, on which 7 is supported.
For such set O(kg) we need to choose a subset of S? on which the third coordinate

does not vanish. Let us choose the upper hemisphere:

O(ko) = {k € S?|ks > 0}. (3.7)
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Our family of vectors, given by (3.4) also depends on the choice of the section o.

We give examples of the construction of coherent states for two choices of section:

ao(g,p) = ((¢+,0), R(p)), and op(g,5) = (R(p)(g,0), R(p)) called the principal sec-

tion. We also find admissibility condition for general choice of affine section.

3.2.1 The section oy

As a first example let us take for a section o(q, ) = ao(g,$) = ((¢*+,0), R(p)). Then

our family of vectors is

ngs(k) = €5 (R() " k) (3.8)

Theorem 3.2.1 Let E(3) be the Euclidean group, UXF its unitary irreducible rep-
resentation induced from the trivial representation xL = e®* of the subgroup H =
R? x SO4(2). LetT'= F(3)/H denote the quotient space with the invariant measure
du given by (3.8). For the choice of the vector n € $ = L*(S?, dv), which is a smooth
functions on S? with support contained in the open set O(kg), as given above, the

formal operator

A= /F ]ng,ﬁ><77g,ﬁ|dﬂ

is multiple of the identity A = AI, where A = (2)? [ |n(p)|*dp

Proof. Let ®, ¥ be arbitrary functions on $ = L?(S2,dv). We consider the formal

integral:

Iow = /F (@114} (15| ¥) dis (3.9)
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- / /82/ (I)(-]g) eiﬂ(k—ﬁ’) n(R(ﬁ)_l E) n(R(ﬁ)_l E,) \P(EI) dﬂ(g_,ﬁ) dI/(E) dV(E’)
r 52
where dv(k) = %k‘ai’cz, and dp is given by (3.3).

To perform the integration we use the Dirac distribution

1 [~ .
Oz — xp) = o /—oo (@) dy (3.10)
with the property:
/ §(z — 20) f(2)dz = f(z0) (3.11)

To perform the integration with respect dg;,dgs in (3.9), we assume that @,V € D,
where D is the space of infinitely differentiable complex functions on S2. Then by
(3.10) we get two integrations of delta type: 276(k;—kj}) as the result of the integration

with respect to d¢; and 276(ke — k%), from the integration with respect to dgs. Thus

the property (3.11) will make the integration with respect the measure dv(k') = dﬁ;ﬁ’z
3

result in
2 A —17,112 1 A g
2 [ B V®) In(RE) D - dv(k) dpr i (3.12)
Since 7(k) = n(ks) is a function of the third variable only, and because
(R(p)'k), = kisingsind — kycos ¢sind + kycosf =p-k =k p. (3.13)

then

where
(R(E)_1 13)3 = Py sin ¢ sin  — Py cos ¢psin b + ps cos d (3.14)
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We want to perform the integration over dp; dp,. Since

dpydps
b3

dv(p) =

is a rotationally invariant measure, we write dp; dps = p3 dv(p). Change of variables

P — R(k)™!p gives us

R 1 ~ R

Tow = (2n)? [ 98 0(8) | 1(55) P -av(8)pa (). (3.15)

where
Py = (R(E)P)s = B, sin ¢ sin 8 + ff cos ¢y sin 8 + ff cos §
and p) € [-1,1], p, € p3 = p2 Also notice that k is a vector on the
sin @ sin ¢
unit sphere, K = | _ginfcos¢ |, thus k3 = cosf. Now the integral (3.15) becomes
~cost

Iy g = (27)* / (k) W(E)_E,—S—é_dy(k)(pl sin ¢ sin @ — P, cos @ sin 0 + P cos 0) dp; dp;.

(3.16)

The integration with respect dp dp, will reduce the first two terms of ps to zeros and
g 1 %P2 p

we will be left with

Tos = @) [ @) VE) | 1(9) v (8) 7 c050) ()

~2r [ ®0) ¥ |0(6}) I dv(s) d,
where [ | n(p') |* dp,dp, = Ps is a constant, which depends on the choice of 7.
For example, if we make the simplest possible choice, n = 1, we obtain P; = 4. For
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n(ps) = Vs, Ps = %. Thus,
Ipy =< ®|AY >= (27)’P; < @|¥ >

for a smooth functions ®, ¥ € S2. We can extend this result by the continuity of the
scalar product to any ®, ¥ € L?(S?), because D is a dense subspace of L*(S?). This
implies that our operator A = fr |”Ig,ﬁ><”7g,ﬁ| du is the stated multiple of the identity.

3.2.2 The principal section op

Now let us try a different choice of the section. Our next section can be expressed as
a product of basic section with an element of the subgroup (in our case 73 ® SO3(2)).

Let

where oy is defined by (2.6). We calculate that for this choice of the section,

a=—[R(p)"(g,0)]s.
Now the set of vectors g5 is given as

ﬁg,ﬁ(ﬁ) = eiR(:ﬁ)_'E?7 (R(ﬁ)—l E) = eig'R(ﬁ)_lﬁn (R(ﬁ)_l k) (3.17)

For this choice of section we may prove a theorem similar to (3.2.1).

Theorem 3.2.2 Let E(3),UXE T be as in the Theorem 3.2.1. Letn € §) be a smooth
function supported on the upper hemisphere (3.7), satisfying the invariance condition
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(8.6) be given by
(k) = ky'* BY?(ks), (3.18)

where B(ks) is a bounded multiplication operator: (BVU)(k) = BY?(k3)¥(k), and
|BIl = sup|B(k)|,0 < ||B|| < oo. Then for the 7,5 given by (3.17), the formal

operator
A= /F 171.5) (7lq.01d1(g, ),
is bounded with bounded inverse. If n(ks) = \/ks, the operator A is a multiple of the

identity.

Proof. Consider the formal integral Isy =<<I>|A\I!>. Then
Iyy = /F (®llg5) (7lq.p ) dp (3.19)

= /F/S2 /82 @61‘12(15)2@—&') U(R(ﬁ)_l E) U(R(ﬁ)—l E) \IJ(E,) dﬂ(g;ﬁ) dl/(&) dI/(E)
= /F/S2 /82 @eiﬂfz(ﬁ)—l(@—&') W(R(ﬁ)_l E) n(R(p)_l _lii_,) \I’(E) d,u(g,ﬁ) dl/(E) dl/(_]gl),

By setting k = R(p)~'k and performing the integration with respect dq; dg, as in
the proof of the Theorem 3.2.1, we again have two delta functions, 27 6(1%1 — lAs’l)
and 27 6(ky — kj), which make the integration with respect to the measure du (k') =

A dk} dk, .
dv(k') = =L—2 result in
3

. e ~ODIIDNPYNIPPINPES [P
Tpy = 2r /  ARODURGR D < dv(b) dpdpa. (3:20)
S+><S 3
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Now let us take an explicit form of 7, given by (3.18), as a function of only the

third component of the vector

. \/];2—3141/2(];?3) for ]%3 > 0,
n(k) = (3.21)

0 otherwise.

Then the integral (3.20) becomes

. o Ak S
j— / U(R(p)k) ks (ka) dv (k) dp, dp,
§3 x§? ks
=2 [, VAR a)dvlE) s i
xS

As we already calculated in (3.13) [R(p)~'k|s = p - k, thus we can write
Ipy = 27 / O (k)U(k)dv(k)A(D - k)dprdp; = A(k) < BT >, (3.22)
§% x§2

where A(k) = 2r [ A(p - k)dp1dp, is a bounded operator, with lower bound a > 0,
and upper bound b < oo.
To show the case of the tight frame we just substitute n = ks, for k3 > 0,

into (3.20) to obtain

- — a1 A o
Ipg = 27r/ O(R(p)k) V(R(p)k) ks — dv(k) dp; dps
2 x§2 ks
— o [ B U dprda =2 [ < 010> iy dy
$2 x§2

= 47° < |V >, (3.23)

which means A = || r (g, p ><77 p)| du is a multiple of the identity, and set of vectors

{75} constitutes a tight frame. m
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3.2.3 A general section

We presented two examples of sections for which coherent states can be constructed.
Now let us generalize: let o(q,p) = op(q,p)(n(q,p), so(q,p)) be an admissible affine
section we described in Section 1.4 of Chapter 1, where n(q,p) and so(q,p) are the

functions given by (1.44), that is

n(g,p) = O(p)g + E(p)
(3.24)
s0(q,p) = so(p).

Because of the results in [4] we know that the form of © is of biggest interest for us.

Let us start with a most general © :

o) = | dp) e) f) | (3-25)

where a,b,...,1 are real functions of p. From now we will write a,b,...¢ instead of
a(p),b(p), ..., i(p). Our first constraint on © is that for the fixed p, Ker (O(p)) = No.
In our case this means Ker(©(p)) = R. Since our map acts on the vectors from the

upper hemisphere, we have:

0 0
Op) ol =0 =c=f=i=0. (3.26)
1 0
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Hence

Op)=|d e 0f- (3.27)

Oy =0@" = e nl- (3.28)

From Section 10.3, Chapter 10 of [4] we know that the map T™(p) = I(gs)- + O(p)*

has to map the set O(kg) to itself, which gives us the next constraint on ©:
Tk =k, kK €Ok, (3.29)

0 g

which for k = | g | € O(ko) gives ¥ = | j | . Because k' € O(ko) implies k3 =

1 1
V1= (k)2 — (k)2 =+/1—g2—h2=1thusg=h=0, and

14+a d 0
T(p)" = Igsy +O(p)" = b 14+e 0]- (3.30)
0 0 1
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The Jacobian J(p, k) of this map restricted to O(ko) should not be zero anywhere.

Because of (3.29) and T'(p)* given by (3.30) we have:

k‘; = (1+a)k1+dk2,
kb = bky+ (1+ e)ks,

ké = kg.

Restriction of T'(p)* to the upper hemisphere O(kq) means we have only 2 independent

coordinates, and the third coordinate satisfies the condition

k= /1~ (k})? — (kp)%.
Thus the transformation & — &’ will produce
dkidkl, = det|J (p, k)|dk, dk,,

where

and

det|J(p, k)| = (1 +a)(1+e) — bd.

We also have k4 = k3 which gives us condition

VI= R =B = /1 -k~ K

or
(k1)? + (Kh)* = ki + k3.
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This is satisfied if

ki = cos ¢ok; — sin ¢oka,
k; = sin (i)okl ~+ cos ¢0]€2,
where ¢q represents the angle of rotation about z— axis. Then
det|J(p, k)| = (1 + a)(1 + €) — bd = cos® ¢y + sin® ¢y = 1.

After applying all restrictions on the map ©(p) we see that the section

a(q,p) = op(q,p)(n(q,p), 50(q,P))

given by (1.43) will be affine admissible section for the Euclidean group if the function

O(p) from (3.24) has the form

Olp)=1|d e 0} (3.33)

where a = e = cosgp — 1,b= —d =sin¢gg and (1 +a)(1 +¢e) —bd = (1 +a)? +b* =

cos? ¢y + sin? ¢y = 1. Thus the map

cos¢y —singg 0
T(p) =Irs+O(P) = | singy cosgy O (3.34)
0 0 1

is the rotation about the z-axis. Thus our section assumes the following form:

o(q,p) = (R(p)(T(p))q + R(p)Z(p), R(p)so(p)), (3.35)
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with T'(p) as in (3.34).
As in the other choices of sections we define set of vectors Ay, , (k) = UXE(0(q, p))n(k),

where (k) satisfies condition (3.6). Thus for the section given by (3.35) the set

{ﬁa(q,p)} 18

ﬁa(q,p)(k?) — ei(R(p)T(P)q+R(p)5(p))k7} (R(ﬁ)‘l k) — ei(T(P)quE(P))R(P)‘Ikn (salR(p)_l k)
(3.36)

Again we can consider the formal integral
Loy = / (®lrlgp) (g5l ¥) dps (3.37)
r

/ /S 2 /82 (TEIZEIRE ) (1 R(p) )

xn(sy ' R(p)~ k') W(K') du(g, p) dv(k) dv (k')

ST E)aRE) ™ (k—K) GE@RE) kK (1 -1
//82/82 e n(sg R(p)~" k)

xn(sg ' R(p)~L k') U (k") du(g, p) dv(k) dv(K').

We can change variable ¢ — ¢’ by setting ¢ = T'(p)q. Because T'(p) is a rotation

about the z-axis, measure dy is invariant under such change and we have

Tow = / /§2 /82 (T RE T kH) GEORE kK)p (51 ()1 E)

x7n(sy ' R(p)~" k") (k') du(q', p) dv (k) dv(K').

By setting k& = R(p)'k and performing the integration with respect dg} dg, as in

the proof of the Theorem 3.2.1, we again have two delta functions, 276(k; — &})
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and 278 (ky — kb), which make the integration with respect to the measure dv(k') =

dv(k') = %}Cd—kz result in
3

Iy = (27)? /S 2 D@(R(ﬁ)lé)W(R(ﬁ)k) |n(sall%)|2£;dv(l%) dpy dpo. (3.38)

where © = {p? + p3 < 1}.

(Factor e=@RE)™(:=+) — 1 for k = k'.) Because our choice of 7 was such that it is
invariant under the rotation about z-axis (condition (3.6)) and s¢ is such rotation,

we have

Tov = (nf [ S(EGD VRO IR = dv(F) dos i

= @n [ B WRG) M ey () i (339)
Thus we have a multiplication operator A:
Ao (k) = A(R)(K),
and admissibility condition is that
/ In( g 1’“ |2 dp, dps. (3.40)

is a bounded function with a bounded inverse, that is, there should exist a,b such
that

0<a<A(k)<b< oo

Then A = Jolot@p >< 77(qA, p)ldu is a bounded operator with bounded inverse.

Hence the vectors %,(q ) form a frame.
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Our general section reduces to oo(q, p) if we choose T'(p) = R(p)™!, E(p) = 0 and
so = I in (3.35). To obtain principal section op(q,p), we chose T(p) = Igs, and again

=(p) =0 and sg = 1.
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Chapter 4

Discretization of the Coherent

States

The calculations in the previous chapter were for the parameterization of a coset space
I' with the continuous parameters (g, P). But in practice, numerical calculations of
the integral require a restriction of the continuous set to a discrete subset. Because
the continuous set of vectors was overcomplete, we are able to choose a countable
set of points, such that the resolution of the identity still be satisfied. We want the
discrete set of points (gi]j)ln) in I, for which the operator

oo}
T= Z Ingij,ﬁzn><772ijﬂf’l"|

g, Pin

will be bounded with bounded inverse. By analyzing this operator we will explore

conditions under which the set of vectors {n, 5, } forms a discrete frame for the same
9

choices of the sections as in Chapter 3.
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4.1 Discrete Coherent States for E(3)

Let us chose from the elements (¢,p) of the coset space I' = E(3)/(T3 ® SO3(2)) a

discrete set of points (gij, Din) in the following manner:

ioJ
= (g;,q;,0) = 27(~, . 0), 4.1

where Ly, L, are constant distances between any two consecutive g;’s and g¢;’s respec-

tively, and

ﬁln = (phpru \/ 1- p[2 _p%) (42)

thus the p;,,’s are restricted to elements with positive third coordinate.
Let 7, like in the continuous case in Chapter 3, be a function supported on the
upper hemisphere (the set O(kg) given by (3.7)) and satisfy the condition (3.6).

Now we can define a discrete family of vectors as

ngij,ﬁln(k") = ﬁXL(U(Qijaﬁln))n(k)a (4.3)

where UX" is the unitary representation of the Euclidean group given by (1.28), and
for the choices of section explored in Chapter 3 we will study the convergence of the

operator

o0
r= Z lngij’ﬁ["><'r’2ijvﬁln|

gij Pin
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4.1.1 The section o

Let us start with the section JO(Qij’ﬁln) = (Qij’ R(pr,)). For such a section our discrete

family (4.3) assumes the form

. iq, -k A\

g ) = €% 5n(R(51n) " B) (44)

To study the convergence properties of the operator 7', we consider the formal sum

Sey =< ®|TY >, where &, ¥ are arbitrary vectors in HL. Thus, writing 7, 5.
9

explicitly we have

Sy — Z /S 82@(3@1'3”(&*5)n(R(ﬁln)‘lk)n(R(ﬁln)' k) U(K') dv(k) dv(k').

gij »Pin

(4.5)
Using the distributional identity

L Z 2% n(k—k') (k kl)

n=-—0o0

we can perform the summation over ¢ and j which results in two delta functions: §(k;—
k}) and 6(ks — k5). Using this delta function we are able to perform the integration

over k (dv(k) = @}c‘:—kz), which gives us

Sew = Ialx Y. | T8 n(RGw) ™ B)F 9(8) foav(h) (4.6)

pln

LiL,

_ /Szww)du(za)z 7(R(Brn) " E) P

ﬁln

This implies that the operator T' is a multiplication operator, the function by which

we multiply being of the form

T(k)=)_ b BLQ In(R(Bm) " k)I> (4.7)

Pin
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For choice of 7 satisfying the invariance condition (3.6), for example n(k) = k3 we

get

IL
T(k) = Z 1193 2|/ piky + Dok + psks|?, where ps = /1 — p? — p2 (4.8)

Pin
due to relation (R(pin)~'k), = pin - k. An vector k € O(ko) is an element in the
upper hemisphere and k3 € (0,1], thus the function T'(k) is not bounded (when
k3 — 0 the numerator of T'(k) does not approach zero, and T'(k) becomes infinite),
and the operator T is not bounded. Hence the family {ﬁgij,ﬁzn} given by (4.4) does

not constitute a frame.

4.1.2 The principal section op

The second choice of the section is the principal section op (gij ,Din) = (R(ﬁln)gij, R(ﬁzn) .

Then the set of vectors (4.3) is
« iR(Pin)g, .- A\ iq. R(Pin) ! AN —
Ny, = U (09, Pin)) (k) = €% %0 (R(pin) ™ ) = &% P2y (R(py,) ™" k)
(4.9)

and for this choice we have a frame, which is the result of the next theorem.

Theorem 4.1.1 Let E(3) be the Euclidean group, UX* its unitary irreducible rep-
resentation induced from the trivial representation xL = e® of the subgroup H =
R® x S03(2). Let I' = E(3)/H the quotient space with counting measure, be pa-

rameterized by the points (gij, Din) where q; and P, are given by (4.1) and (4.2)
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respectively. Let the vector

\/k_g 7,f k3 € O(k)g),
(k) = (4.10)

0 otherwise.

satisfy the invariance condition (8.6). Then the operator

r= Z 'nzijiﬁln><77gij,ﬁzn| (4.11)

gij Pin

with n, 5, given by (4.9) is a multiple of the identity.
9

Proof. Let us consider the formal sum

o0

S¢‘I’ = <(I)|T\Ij> = Z <‘I)|77gij,ﬁzn><772ij,ﬁm1‘1’>

gij :ﬁln

= /Szg(k—)ein(ﬁln)gij-(&—&’)n(R(ﬁln>—1E)m\y(E) dv (k) du (k).

g‘ij ,ﬁln

Taking 9, = (¢:,44,0) as given by (4.1) and using

1 & i2mpaa
Z Z ez%n(w—z)zé(w_w/)

(where z = R(p1,,) 'k and dv(z) = dv(k)) we can perform the summation over ¢ and

7 and obtain

> /S B(R()e) L Lab(ar — £0)3(z — ) 0(#) 1(2) W(R(w)a') dv () do(z')
The integration with respect to dv(z') = %&, leaves us with

Z/SQ R(pin)x) L1 L |n(2)[* ‘I’(R(ﬁzn)w)%dV(w) (4.12)
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Changing back to the variable k = R(pi,)z, (4.12) becomes

1 1 }
Z/ k) Ly Lo [n(R(pimn) " k)|* (k) _(R(ﬁln)-1@)3d (k)

Din

By taking the explicit form of 7, in (4.10), our formal sum becomes

Sew = 2/ E) L1 Ly U(k)dv(k) = LiL; Y < BT >,

Pin Pin

and because Py, € S?, S? being a compact set, the sum is over the finite number of

elements, thus it gives finite result. Let us say Z 1= N, thus
Pin

< OITY >= L1LoN < @0 >,

thus T' = L1LyNI is a multiple of the identity and elements 7, ;.  constitute the
9,

discrete tight frame. =

4.1.3 A general section
Now let us consider, like in the continuous case, an admissible affine section:

(055, Pn) = (R(01n) (T (01))4i + R(pin) 2 (pin), R(P1n)50(P1n)),

where ¢,;, pin, are the discrete parameters in the coset space I' = E(3)/(T3 ® SO3(2))
as given by (4.1) and (4.2) respectively, and T'(p;,) = I + O(pin) is the discrete
version of (3.34). We can choose a discrete family of vectors in the Hilbert space

HL = L2(52,dv) as
Mg i () = &PV @00 Bpun) ey (56 (91 ) R(prp ) ™ k) (4.13)
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and by studying the formal operator

1= Z Mais pn >< Mg o1n | (4.14)

qij Pin

we determine the conditions under which the set of vectors in (4.13) constitutes a
frame.

Again we consider a sum

Svg = <T|TV >

— Z/ T(k)eiqu'T(pzn)‘lR(pzn)‘l(k—k’)ei<1>(pzn)R(pm)‘1(k—k’) (4.15)
qij,Pin §2x8?

X 1(s0(Pin) " R(p1n) " k)1 (s0(pin) " R(pin) "1 k') U (K') dv (k) dv (k')

> / TR o) T (pon) ) €59 G (i o i) (4.16)
gijpin ¥ S2XS?

x 1(s0(pn) T (p1n) k)1 (80(ptn) T (Pin) k') U (R(p1n)T (pr) &) dv () du (K,

the last equation being the result of the change of variable & = T'(p,) " R(pp,) 'k
which leaves the measure dv(k) invariant. Now we are able to perform the summation
over q;; as well as the integration with respect &' using the same identity as in the

case of the principal section:

% Z et Em(a—a’) =§(z — 2').
Thus
Sto =Y Iala | TG TG 0P T Oy i, 8y
S2 3

Din

(4.17)
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Because we chosen 7 to be invariant under the action of so (that is, n satisfies the

condition (3.6)), we get

|77(T(PAln)i€3) |?

Sty = ZL1L2/82T(R(Pzn)T(Pln)’;) U(R(pin) T (pin) k) dv(K1.18)

- Yk [ T (IEZEZR)(??;;(_M’“);{'@ W(E) do() (4.19)

Thus again ¥ is a multiplication operator:

by the function

_ In(R(pim)"k)|>
T(k)y=>)_ (o) Riom) T8, (4.20)

Pin

In order to yield a frame, this function has to satisfy an admissibility condition
0 <a<7T<b< x for some positive numbers a,b in order for ¥ to constitute
discrete frame.

To recover the previously given sections we chose T'(py,) = R(pin) ™! for og and

T (pim) = I for op. so(pin) = I, ®(p1n) = 0 in both cases.
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Conclusion

Summarizing our results in this thesis, we have constructed continuous coherent states
associated with the three dimensional Euclidean group for two choices of sections:
(1) for ao(g, ) = ((g*,0), R(p)) they are of the form 7,,:(k) = €45n(R(p)™" k)

as given by (3.8)
(2) for the principal section, op(g,p) = (R(ﬁ) (¢,0), R(ﬁ)), they are given by

lgp(k) = e RPlaky, (R(ﬁ)_1 E) (formula (3.17)).

We have also found that the general admissible affine section is of the form

o(q,p) = (R)NT(p))a + R(p)Z(p), R(p)so(p)). (4.21)

where the function T'(p) (3.34) is a rotation about the z-axis.

As for the discrete case, for the choice of 9, = (gi,45,0) = 27r(Li'1, %,0) and

DPin = (P, Pny /1 — p? — p2) as given by (4.1) and (4.2) respectively, the principal
section op leads to the discrete set of vectors constituting the family of coherent states.
The admissibility condition for the general affine section is that the operator ¥ given

by (4.14) be a multiplication operator ¥ (k) = 7 (k)¥(k), where the multiplication
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function is given by

_ In(B(pm) k)|
T(k) B Z (T(pln)—lR(pln)—lk)g ‘ (422)

Pin

This function has to be bounded above and below, i.e., there should exist a,b such
that 0 < a < T(k) < b < co. As we have seen in Chapter 4 such a,b > 0 can be
easily found for right choice of section o and admissible vector 7.

As mentioned in the Introduction of this thesis, the construction obtained here
can be used to analyze signals on the sphere. This has potential applications to the
analysis of geophysical data or medical brain imaging as well as other data which
may be given on the sphere. The signals defined on the sphere have been considered
before. B. Torresani [31] built continuous ”position-frequency” representations of
signals on spheres. His approach was based on rotations and modulations. In this
thesis we obtained similar results using a group-theoretical approach. Our coherent
states are associated with the unitary representations of the Euclidean group. Also a
group-theoretical derivation of the continuous wavelet transform on S? was considered
before [9]. In that work J.-P. Antoine and P. Vandergheynst used translations and
dilations on the sphere. Their coherent states are associated to the representation of
the Lorentz group SO,(3,1). The parameter space X in this case is the product of

SO(3) with R},
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Appendix A

The Dirac Distribution

In many integrations in our work we have used the property

< 5(%0)) f>= /6(I - xo)f(x)dm - / 2% /_oo eiy(z_%)dyf(x)dm = f(iBo), (Al)

so in this appendix we give short summary of the theory of distribution based on work
of L. Schwartz [29], [30]. Let us define the vector space D as the space of complex
functions on R™ which are infinitely differentiable and have bounded supports. Then
a distribution T is a continuous linear functional on the vector space D. This means
that to each ¢ € D, T assigns a complex number T'(¢), also denoted by < T, ¢ >,
with the properties

T(¢1+ ¢2) = T(¢1) + T(¢2),

T(\¢p) = AT(¢), where A is any complex constant,
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If ¢; converges to ¢ as j — oo in the sens of the topology of D,
the complex numbers T'(¢;) converge to the complex number T(¢) as j — oo.
(A.2)
One important example of a distribution we are interested in is the Dirac distribution

6. It is defined as
6:D—-C, <6 f>= f(0) (A.3)
Or O(z) 88

< 6(10): f >= f(CEO) (A4)

In one dimension we can write

§(z — o) — — / eiv(r—z0) gy (A.5)

27 o
where 6(z — z¢) is the symbolic device called a ”Dirac function” (not a ”true” func-
tion), satisfying
6(z — zo) = 0, for = # z,
6(z — zg) = o0, (A.6)
Jpb(z — zo)de = 1.

Then for f € D:

< by, >= / 6(z — 20)f(2)dz = / ! / " e gy f(z)de = f(zo). (AT)

21 ) o
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