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Abstract

Frobenius structures, integrable systems and Hurwitz spaces

Vasilisa Shramchenko, Ph.D.

Concordia University, 2004

This thesis consists of two main parts. In the first part a new family of integrable systems
related to Hurwitz spaces of elliptic coverings with simple branch points is constructed. The
integrable systems are closely related to Takasaki’s version of the Schlesinger system on an
elliptic surface. A trigonometric degeneration of the integrable systems is presented. The
trigonometric version of an auxiliary system of differential equations for the images of branch
points of the covering under a uniformization map with respect to branch points is derived.
This system is applied to solving the Boyer-Finley equation (self-dual Einstein equation
with a rotating Killing vector). Thereby, a class of implicit solutions to the Boyer-Finley
equation is found in terms of objects related to the Hurwitz spaces.

The second part presents two classes of new semisimple Frobenius structures on Hurwitz

spaces (spaces of ramified coverings of CP!). The original construction of Hurwitz Frobenius

ili



manifolds by Dubrovin is described in terms of the normalized meromorphic bidifferential
W of the second kind on a Riemann surface. In Dubrovin’s construction, the branch points
{A\m} of the covering play the role of canonical coordinates on the Hurwitz Frobenius ma-
nifolds. We find new Frobenius structures on Hurwitz spaces with coordinates {Am; Am} in
terms of the Schiffer and Bergman kernels (bidifferentials) on a Riemann surface. We call
these structures the “real doubles” of the Hurwitz Frobenius manifolds of Dubrovin.

To construct another class of new Frobenius structures on Hurwitz spaces, we introduce
a g(g + 1)/2-parametric deformation of the bidifferential W, where g is the genus of the
corresponding Riemann surface. Analogously to the bidifferential W, its deformation de-
fines Frobenius structures on Hurwitz spaces; these structures give a g(g + 1)/2-parametric
deformation of Dubrovin’s Hurwitz Frobenius manifolds. Similarly, we introduce the de-
formations of the Schiffer and Bergman kernels which define Frobenius structures on the
Hurwitz spaces with coordinates {Am; Am} . Thereby we obtain deformations of the real
doubles of the Hurwitz Frobenius manifolds of Dubrovin. Each new Frobenius structure
gives a new solution to the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) system. For the
simplest Hurwitz space in genus one, the corresponding solutions are found explicitly, to-

gether with the corresponding G-function.
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Introduction

Frobenius manifold theory and the theory of integrable systems are wide areas related to
each other and to many other branches of mathematics.

The theory of integrable systems deals with nonlinear differential equations arising in
physics. During the last 40 years, a number of effective methods were developed for solving
partial differential equations that are represented as a compatibility condition of some au-
xiliary linear system (the U-V pair) of matrix differential equations. Such U-V pairs were
found for many well-known differential equations, such as Korteweg-de Vries, nonlinear
Shrodinger, sin-Gordon, Ernst, Boussinesq equations and so on.

In the early 90’s the fundamental role of the Korteweg-de Vries equation (KdV) in
matrix models of two-dimensional gravity and in the topology of moduli spaces of algebraic
curves was established [76, 46]. Further development of two-dimensional topological field
theory led to the appearance of the geometric and analytic theory of Frobenius manifolds.
Frobenius manifolds were introduced by Dubrovin as a geometrical, coordinate free setting
for the so-called WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations of associativity.
The theory of Frobenius manifolds turns out to be related to rather distant branches of

mathematics, such as Gromov - Witten invariants of algebraic varieties, singularity theory,



isomonodromy deformations, and the theory of reflection groups and their extensions.

Deformations of Riemann surfaces appear in different aspects of the theory of integrable
systems: in the theory of systems of hydrodynamic type [14, 50], theory of algebro-geometric
solutions of equations with variable spectral parameter [47], and in the theory of Frobenius
manifolds [15].

In particular, in 1978, Maison [55] and Belinskii, Zakharov {3] discovered the integrability
of the Ernst equation (stationary axially symmetric Einstein equation); the U-V pair they
found depends on a variable spectral parameter v which is a function of a hidden constant
spectral parameter A and two variables z and y . The function y(A;z,y) coincides with a
uniformization map of a genus zero Riemann surface represented as a two-fold covering of
the A-sphere with two branch points at A=z and A=y .

In 1987, Burtzev, Mikhailov and Zakharov [9] studied possible deformations of a generic
U-V pair and derived a system of differential equations which the variable spectral para-
meter should satisfy in order for the U-V pair to define a compatible linear system. These
equations for the variable spectral parameter were recently solved in [42] in terms of spaces
of rational functions of one variable. The coordinates on these spaces are given by the
critical values {An,} of the functions. A rational function defines a genus zero covering of
CP! with branch points given by its critical values {\,} . Thus, the deformations of U-V
pairs were associated with the simplest Hurwitz spaces — spaces of rational functions of a
given degree. In the case of the space of rational functions of degree two these deformations
lead to the Ernst equation.

The deformed linear system associated with the space of rational functions of given



degree has the following form with respect to the coordinates {A.,} {42]:

dv
= = U7, 0.0.1
o = U (0.0.1)

where the matrix Uy, (P, {\.}) (P is a point on the covering) has only one simple pole at the
ramification point P,, corresponding® to the branch point ), and does not have any other
singularities. The compatibility condition of the linear system (0.0.1) gives new integrable
nonlinear PDEs for each degree of the rational function.

Analogously to the link [49] between the Ernst equation and the Schlesinger system,
each PDE of this new class has a subset of solutions corresponding to isomonodromic
deformations of ordinary differential equation with meromorphic matrix coefficients on the

Riemann sphere:

ToAme, A0 - > et 002)
where A; are matrices independent of v and such that 32, 4; =0.

A solution ®(7) to the equation (0.0.2) can be normalized by ®(yp) = I at some fixed
point g ; it has regular singularities at the points v = z; and is generically non-single valued
on the y-sphere. The isomonodromic deformations of the system (0.0.2) are induced by vari-
ations of the positions of the regular singular points {z;} which preserve the monodromies

of the function ® around {z;} . The isomonodromy assumption implies, in the generic case,

the following equations for the function & with respect to positions of singularities:

d® _( A A )q,, (0.0.3)

dzn  \Yo—2n 7—2n

LA point on the covering common for different sheets is called a ramification point, and its projection on

the base of the covering is called a branch point.



and the Schlesinger system on the matrices A; (j # k):

04;  [A;,Ax]  [A), A4 04; [Ar, 451 [Ak, 4]
Oz, Zi—2k  Yo— 2k 0z Z ‘ (0.0.4)

- S\z—2 %=

Consider now a rational map v(P) of degree N with simple critical points and critical
values {\,}2¥ % . Then, the function ®(v(P)) , where @ is a solution to differential equation
(0.0.2) on the Riemann sphere, satisfies the linear system (0.0.1) with respect to the variables
{Am} ; the meromorphic functions U,, (and therefore, solutions to the associated nonlinear
integrable PDE) can be expressed in terms of the solutions A; to the Schlesinger system
(0.0.4) [42].

The system (0.0.4) appeared in the classical work of Schlesinger [67]. In the early 80’s
a major contribution to the theory of isomonodromic deformations of system (0.0.4) was
made in the works [38, 39] where, in particular, the tau-function of the Schlesinger system
was introduced.

The natural question of generalizing the theory of isomonodromic deformations on the
sphere to higher genus Riemann surfaces was addressed, for example, in [37, 61, 62]. The
most naive generalization of the Schlesinger system (0.0.4) to higher genus meets a funda-
mental difficulty: a function with just a single pole which could appear in (0.0.3) does not
exist on a surface of higher genus. Therefore, the framework of isomonodromic deformations
has to be modified. In [62], for example, the isomonodromic deformations of the equation
dy® = A(7)® on a torus with meromorphic connection A(y) having poles of order higher
than one were considered. Another alternative is to allow A(y) to be non-single valued.

An analog of the isomonodromic deformations on a torus with a non-single valued matrix

A(7y) was proposed in [70]. We use a similar idea of introducing non-single valued analogs of



matrices Uy, on a torus to find an elliptic counterpart of the rational linear system (0.0.1).

Namely, we consider the following linear system for a matrix function ¥ on the torus:

1
d ¥ (P)
D

=t (P P) ~ ) o ) (P, (0.0.5)

where 7 is the classical elliptic r-matrix, J,,, are matrices depending only on the variables
{An} ; v(P) is the uniformization map of the elliptic covering to the fundamental paral-
lelogram. The compatibility condition of the linear system (0.0.5) gives a family of new
integrable systems on the space of elliptic coverings with simple branch points. The role of
the variable spectral parameter is played by the uniformization map v(P) of the torus. We
find differential equations which describe the dependence of the uniformization map on the
branch points of the elliptic covering. In particular, we obtain the following system on the
images {7} of the ramification points under the uniformization map as functions of the

branch points {A,,} of the covering:

8 . o - 2N
T =—amlp(in = ) + P Z= = D arle(m =) o) (0.06)
m M k=1, kstm

where m # n; and p(7) is the logarithmic derivative of the odd Jacobi theta function:

p(7) = dylog i (7y) . The coeflicients {a.»} obey the following equations:

Oa o 2N
® = —2an0mp (Yo — Ym) ; — = E 2k mp (Y — Ym) - (0.0.7)
O O\
k=1, k£m

The system (0.0.6)-(0.0.7) is an elliptic analog of the following systems on the critical points

{¥m} of the rational maps with respect to its critical values {A,,} a part of which appeared



in the works by Kupershmidt, Manin [53] and Gibbons, Tsarev [29]:

2N =2
O A Orm
= , =1+
OAdm  Ym — Tn 8)\ e 1Zk ;ém
Jan 5 AnOlm Oom _ 2%:2 2akam
8/\m (7n - 7m)2 ’ a)‘m k=1, k#m (719 - 7’m)

for m # n.

Similarly to the case of the Riemann sphere, we establish a correspondence between
the proposed linear system on the torus (0.0.5) and Takasaki’s version of isomonodromy
deformation equations on elliptic surface [70].

The construction of a new class of integrable systems associated with Hurwitz spaces in
genus one, together with the link to the elliptic Schlesinger system, is the first main result
of this thesis.

Let us now turn to a description of the second main result. Elliptic functions on a
genus one covering transform into trigonometric ones when two simple branch points of the
covering tend to each other so that the torus degenerates to an infinite cylinder. A part of
the corresponding trigonometric degeneration of the system (0.0.6)-(0.0.7) of equations for
the images -y, of ramification points under the uniformization map v(P) with respect to

simple branch points A, of the covering has the form (for m # n):

a n n-m
= —Tay, (cotw(fym —Tn) + cotw*yn) ; % S - ;E;Y .t (0.0.8)
m n " I/m

0%Ym
O

We apply the system (0.0.8) to a construction of solutions to the Boyer-Finley equation

(Chapter 3). The Boyer-Finley equation [7]

Umy = (eU)tt (009)



is a 3-dimensional integrable system which has been much studied by many authors, see
[10, 74] and references therein. It arises as a reduction of the self-dual Einstein equations
(the equations governing any metric with self-dual Weyl! tensor and vanishing Ricci tensor)
for Euclidean space-times with rotational symmetry. The Boyer-Finley equation can also
be obtained as the dispersionless limit of the Toda lattice equation. In the works [51, 52]
this relation to the Toda lattice equation was used to construct a class of solutions to the
Boyer-Finley equation by averaging an appropriate two-point Baker-Akhiezer function.

The idea of construction of solutions to the Boyer-Finley equation proposed in our
paper [24] is to reduce the Boyer-Finley equation to two systems: an integrable system of
hydrodynamic type and to the trigonometric system (0.0.8). The system of hydrodynamic
type is solved by the generalized hodograph method (the theory of integrable systems of
hydrodynamic type is systematically presented in the review [73]). Combining solutions to
the system (0.0.8) in terms of spaces of trigonometric functions with generalized hodograph
method we obtain a wide class of implicit solutions to the Boyer-Finley equation (0.0.9).

Let us now turn to a description of the last, and, probably, the most important, results of
this thesis — the construction of new classes of Frobenius manifolds associated with Hurwitz
spaces.

The structure of a Frobenius manifold [15] can be defined in terms of one quasihomo-

geneous function of n variables which satisfies the WDVV equation
FF['F;=F;F'F,, i,j=1,...,n. (0.0.10)

Here F; is the matrix of third derivatives (F})mn = 03

igmen F' 5 and the matrix F) is assumed

to be constant and nondegenerate. The matrix F; determines the Darboux-Egoroff metric



on the Frobenius manifold. Conversely, for a Frobenius manifold there exists a quasihomo-
geneous function, called the prepotential, which satisfies equations (0.0.10).

The Frobenius structures play an important role in algebraic geometry and two-dimensi-
onal topological field theory. From the point of view of physics, some solutions to the WDVV
system describe the moduli space of topological conformal field theories. In mathematics,
solutions to the WDVV system (0.0.10) possessing appropriate analytic properties define
generating functions for the Gromov-Witten invariants of some compact algebraic varieties
[76]. Frobenius structures also appear in the study of the mirror symmetry of Calabi-Yau
manifolds [77], singularity theory [57, 65], Coxeter and generalized Jacobi groups [4].

Locally, any Frobenius manifold, under some genericity assumptions, can be described
by a Frobenius manifold structure on a Hurwitz space ([15], App.I). Originally, Frobenius
structures on Hurwitz spaces were found by Dubrovin [15], see also [57, 64]. The prepotential
of Dubrovin’s Hurwitz Frobenius manifold, i.e. solution to the WDVV system, for the
simplest three-dimensional Hurwitz space in genus one (consisting of meromorphic functions

of degree 2 on a torus), for example, has the form:

1 1
F= _Ztltg + 5t"{tg -

e

32t§7 (2mits) . (0.0.11)

Here () = 4d,logn(p) , where n(u) is the Dedekind eta-function given by n(u)
= gV [, (1 — ¢™) for ¢ = €*™ . The function (0.0.11) is quasihomogeneous with coeffi-
n=1

cients of quasihomogeneity given by 1, 1/2, 0 : the relation
F(K)tl, Kl/ztz, K0t3) = K,2F(t1, t2, t3)

holds for any « # 0.



As we have mentioned above, a straightforward generalization of the linear system (0.0.1)
from the sphere to higher genus Riemann surfaces runs into difficulties due to the absence
of a function with a single first order pole on a surface of positive genus. For a surface of
genus one it was still possible to find a linear system (0.0.5) and explicitly develop a scheme
leading to integrable systems analogously to the genus zero case. On a surface of genus
greater than one an analogous procedure becomes complicated since the transformations of
the matrices Uy, also depend on the variables {A,} of the system. However, for the scalar
systems (0.0.1) there exists [42] a natural analog on higher genus surfaces. For a scalar
system in arbitrary genus the functions U, are proportional to integrals of the canonical
meromorphic bidifferential W (P, Q) (see Chapter 1, (1.2.19)) evaluated with respect to one
of the arguments at the ramification point B,.

Solutions to the integrable systems which appear in the scalar case define the Darboux-
Egoroff metrics (see Section 1.6.1 for definition) on Hurwitz spaces with coordinates given
by the branch points {\,} of the corresponding coverings. These Darboux-Egorofl metrics
can be explicitely constructed in terms of the canonical meromorphic bidifferential W as

follows:

2
¢ h(Q)W(Q,Pm)) (@A)’ 0.012)

l

d52=i<

m=1

Here [ is an arbitrary smooth contour on the Riemann surface £ not passing through

ramification points Py, ; h(Q) is an arbitrary independent of {A,,} function defined in a
neighbourhood of the contour {.

The Darboux-Egoroff metrics play an important role in the theory of Frobenius mani-

folds.



It turns out (Chapter 4) that the Darboux-Egoroff metrics of the Hurwitz Frobenius
structures of Dubrovin are contained in the family of metrics (0.0.12). Thereby, the whole
construction of Hurwitz Frobenius manifolds in [15] can be described in terms of the canoni-
cal meromorphic bidifferential W. The local coordinates {\,} on the Hurwitz space give the
canonical coordinates on the Frobenius manifolds. The Frobenius structures of Dubrovin,
as well as the bidifferential W, do not depend on the complex conjugates {An} .

In this thesis (Section 4.5) we find new Frobenius structures on Hurwitz spaces with
coordinates {Am; A} . These structures are built in terms of the Schiffer and Bergman
kernels [23].

The Schiffer kernel Q(P,Q) is the bidifferential with a singularity of the form
(z(P) — 2(Q))2dz(P)dz(Q) along the diagonal P = Q such that p.v.ff . Q(P,Q) w(P)
vanishes for any holomorphic differential w on the surface £. The Bergman kernel B(P, Q)
is a regular bidifferential on £ holomorphic with respect to its first argument and anti-
holomorphic with respect to the second one which (up to a factor of —2mi) is a kernel of
an integral operator acting in the space L$"*” (L) of (1,0)-forms as an orthogonal projector
onto the subspace H™?(L) of holomorphic (1,0)-forms. In particular, the following holds
for any holomorphic differential w on the surface £ : f[. B(P,Q) w(Q) = —2miw(P) . Both
kernels, Q(P, Q) and B(P, Q) , are independent of the choice of canonical basis of cycles on
L. For a surface of genus zero, the Schiffer kernel coincides with the bidifferential W; the
Bergman kernel in genus zero vanishes. The two kernels depend on the coordinates {\,}
on the Hurwitz space as well as on their complex conjugates {\n} .

In our framework, the Schiffer and Bergman kernels play a role similar to the role of the

bidifferential W in the construction of Dubrovin’s Hurwitz Frobenius manifolds.

10



We call the new Frobenius structures the “real doubles” of Dubrovin’s Hurwitz Frobenius
manifolds, since they depend on {\,} and {\,} and, therefore, have a dimension twice as
large as the dimension of the Hurwitz Frobenius structures of Dubrovin.

For example, for the simplest Hurwitz space in genus one (which in Dubrovin’s con-
struction leads to the prepotential (0.0.11)), we obtain the following new quasihomogeneous

solution to the WDVV system depending on six variables:

1 1 1 1 1
F = ——t1t2 — 482 + =33 — —t1t4(2 — —
g2 — ghits + gtits — ghita(2 — 57)

+ t3 1 (Zt%t4(t6 — %) + thltgtﬁ + §tz21t6(t6 - 2_7”) + _t%t?’)

1 1 _ i3 _ |
S (B Lo L1
+322< 4m’67(t6>+3 omi 3 6

1 4 iy 27T’it3 —1 -1 . -1
—th (- t51 + 51 (2mitg — 1)1 ) |
+325< (27rit6—1)27<1—2mt6>+3 1t (2mite — 1)

The coefficients of quasihomogeneity of this solution are given by 1,1/2,0,1,1/2,0; and the

(0.0.13)

following relation holds for any x # 0 :
F(Iﬂ]tl, H1/2t27 t3, K:t4) H1/2t5) tﬁ) = K2F(t1a t2: t37 t4a t5a tﬁ) .

The function (0.0.13) is the prepotential of the Frobenius manifold which gives the “real
double” of the Frobenius manifold corresponding to the prepotential (0.0.11).

In [26] Getzler derived a system of linear differential equations for a generating function
of the genus one Gromov-Witten invariants of smooth projective varieties. This system is
defined on any semisimple Frobenius manifold. In [17] Getzler’s system was proven to have a
unique quasihomogeneous solution, the G-function, given by the formula G = log(r;/J/%4)
where 7; is the isomonodromic tau-function of the Frobenius manifold (see (1.8.21)) and J

is the Jacobian of the transformation from canonical coordinates {\,} on the Frobenius
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manifolds to the flat coordinates {t;} . In [44] an expression for the isomonodromic tau-
function and, therefore, for the G-function of Dubrovin’s Hurwitz Frobenius manifods was
obtained in terms of classical objects on a Riemann surface. For the structures of real

doubles, the G-function is given up to an additive constant by the following formula:

L
1 1
G = -3 log { |7w|® det(ImB)} — o log {H ® 1.0y (P,-)Q(O'I)(Pi)} , (0.0.14)

=1

where 7, is the Bergman tau-function computed in [44], (see Section 1.3.4 of this thesis);
B is the matrix of b-periods of the Riemann surface and ®(P) = &, o,(P) + P,1y(P) is the
primary differential which corresponds to the Frobenius manifold. (The primary differentials
® decompose into a sum of their holomorphic ®(, ¢y and antiholomorphic ®,,, parts.)

For the Frobenius manifold corresponding to the prepotential (0.0.13), the solution

(0.0.14) to Getzler’s system as a function of flat coordinates is given by

1
t3 2mits 1 2mits 2
G=-1 — _— tots)8 | —m8 ———
8 {77 (tﬁ) 1 (1 - 27rit6) (tats) (tﬁ(zm'tﬁ = 1)) } ’
where 7 is again the Dedekind function.
The last main result of this thesis (Chapter 5) is a construction of g(g+1)/2-parametric

deformations of Hurwitz Frobenius manifolds in genus g > 1 . We introduce the following

deformation Wy of the canonical meromorphic bidifferential W :

g
Wqo(P,Q) :=W(P,Q) - 2mi Y (B+ q)i'wr(P)wi(Q) (0.0.15)

k=1
where g is the genus of Riemann surface; wi(Q) , k¥ =1,...,g, are the holomorphic norma-

lized differentials; B is the matrix of b-periods; and q is a symmetric matrix of parameters
which is constant with respect to A and {};} . The matrix q must be chosen such that the
sum (B + q) is nondegenerate. The bidifferential Wq tends to W when, for example, all

diagonal entries of the matrix q tend to infinity whereas the off-diagonal ones remain finite.
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The properties of the bidifferential W (in particular, variational formulas) are similar
to those of W therefore, similarly to the construction of Hurwitz Frobenius manifolds
in terms of W, we can find new Frobenius structures by making use of the bidifferential
Wq. These structures are defined on the Hurwitz space outside the divisor given by the
equation det(B + q) = 0 . The new structures depend on g(g + 1)/2 parameters (entries of
the symmetric matrix q) which enter the definition of Wy (0.0.15); they coincide with the
structures of Dubrovin in the limit when Wq coincide with W. Therefore, we call them the
deformations of Dubrovin’s Hurwitz Frobenius manifolds.

For the simplest Hurwitz space in genus one, the deformed Frobenius structures turn
out to be related to the Schlesinger system on the Riemann sphere. Namely, consider a
Schlesinger system (0.0.4) with four singular points and matrix dimension equal to two.
Three singular points can, by a Mdbius transformation, be mapped to the points 0,1 and
00; the remaining one is denoted by z. If the integrals of motion trA? of the Schlesinger

system are fixed to equal 1/8 , the functions
2 1 2 1 2 1
Ql = —(g + tI‘AQAg), QQ = —(g + tI‘A]_Ag), Q3 = —(g + tI‘AlAg),

where A; are solutions to the Schlesinger system, give a solution to the following system:

dQl 1 dQQ 1 dﬂg 1
22— 2050 = = 0.0.16
dx . 2 dz T — IQIQ3 ’ dr  z(z— 1)QlQ2 ( )
under the constraint
QB+ + Q2 =-1/4. (0.0.17)

The four-point Schlesinger system with integrals of motion fixed to be 1/8 (and therefore,
the system (0.0.16)-(0.0.17)) is equivalent to the Painlevé-VI equation with coefficients
(1/8,-1/8,1/8,3/8) (see, for example [15, 35])
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Any solution to the system (0.0.16) defines rotation coefficients of a Darboux-Egoroff
metric which corresponds to a Frobenius structure on a space with coordinates wuq, ug, us
such that ¢ = (u; — ug)/(u1 — uz) (see [15]).

The general solution to system (0.0.16)-(0.0.17) depending on two parameters was found
by Hitchin [34]. In [2] a nice explicit form of this solution was given in terms of modular
functions. In the settings of [2], the variable x defines a position of the movable branch
point of the elliptic curve v? = A(A — 1)(A — z) . The solutions [34, 2] define Darboux-
Egoroff metrics on the Hurwitz space of genus one coverings with three finite branch points
A1, A2, Az for which the variable z is given by = = (A1 — A3)/(A1 — A2) .

In [2] a special limit was also found for the two-parametric family which gives a one-
parameter family of solutions to the system (0.0.16)-(0.0.17):

1 1 1 1
O =——55{2d,logls + —— Qg = ——= | 2d,log b2 + ——
1 ﬂ_egeg ( w108 4+/.L+CI) ) 2 7{_0%02 ( p 108 2+N+q) ’

1 1
Qg=——n (2 g + —
S T o202 ( dulog 3+,u+q>

(0.0.18)
The Darboux-Egoroff metrics on the simplest (three-coordinate) Hurwitz space in genus
one defined by the one-parameter family of solutions (0.0.18) coincide with the Darboux-
Egoroff metrics corresponding to our deformations of Dubrovin’s Frobenius structures on
the Hurwitz space. Therefore, our general construction of deformed Hurwitz Frobenius
manifolds gives a natural generalization of the solution (0.0.18) to the system (0.0.16)-
(0.0.17) to an arbitrary Hurwitz space.

In genus one, the prepotential of the deformed Frobenius manifold corresponding to the
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prepotential (0.0.11) has the form:

TR TN T 52 (1 oty /q)?  \1 = 2rits/a) | q(1 - 27its/q) )
where, as before, v is the logarithmic derivative of the Dedekind eta-function. The corres-

ponding G-function is (up to a constant) given by:

6 = —tog {n () () zmitafa - )7

1 — 2mwits/q
where 7 is the Dedekind eta-function.
Analogously to the deformation of the bidifferential W (P, Q) , we also introduce the

following deformations Qq(P, Q) and Bq(P, Q) of the Schiffer and Bergman kernels

Qq(P,Q) 1= P,Q) —2mi 0, _, (B + Q) ue(P)u(Q) ,

By(P,Q) := B(P,Q) —2mi 37 |, (B® + q) 1 vi(P)ui(@Q) -

Here v, k = 1,...,g are holomorphic differentials given by the b-periods of the Schiffer
kernel: vg(P) = fbk Q(P,Q)/(2m3) . The differential vy is normalized by the condition that
all its a- and b-periods are purely imaginary except the ag-period: Re{ fa,» vk} = 6;%x/2 and
Re{ fbj vg} =0for j,k =1,...,g . The matrix B is the symmetric matrix of their b-periods:
(B gn = fbk vy ; and q is a constant matrix such that q = q7 , @ = —q, and the matrix
(B + q) is invertible. The bidifferentials Qq and Bg depend on g(g + 1)/2 real parameters.

The definition of the deformed kernels 0q and Bq is motivated by the idea of finding
bidifferentials which satisfy variational formulas analogous to the formulas for Schiffer and
Bergman kernels and have other similar properties. In terms of Qq(P, Q) and Bq(P, Q) we
construct the “real doubles” of the deformed Hurwitz Frobenius manifolds; they are defined

on the Hurwitz space outside the subspace given by the equation det(B? 4+ q) =0 .
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This thesis is prepared in the manuscript-based format; it is laid out as follows. In
Chapter 1 we present the background material which is used in the rest of the thesis.
Chapter 2 contains the paper “Integrable systems related to elliptic branched coverings”.
Chapter 3 presents a joint work with E. Ferapontov and D. Korotkin “Boyer-Finley equation
and systems of hydrodynamic type”. Chapter 4 contains the paper “Real doubles” of
Hurwitz Frobenius manifolds”. Chapter 5 contains the paper “Deformations of Frobenius

structures on Hurwitz spaces”. The Summary and Conclusion are given at the end.
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Contributions of authors

Chapter 3 presents the paper “Boyer-Finley equation and systems of hydrodynamic type”
written jointly with E. Ferapontov and D. Korotkin. The idea for this paper appeared
during the conference “Nonlinear Evolution Equations and Dynamical Systems” in Cédiz,
Spain. E. Ferapontov recognized an auxiliary system derived by the author of the thesis
(a system giving the dependence of the images of ramification points of a trigonometric
covering under a uniformization map on the branch points of the covering) as a system
arising in the context of reduction of the Boyer-Finley equation to a pair of systems of
hydrodynamic type. Further technical work was done by the present author under the

supervision of D. Korotkin.
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Chapter 1

Background material
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1.1 Riemann surfaces

Here we collect some classical facts from the theory of Riemann surfaces, for more details

see [15, 22, 23, 31, 59

1.1.1 Definitions. Differentials. Jacobi torus.

A Riemann surface is a complex orientable manifold of complex dimension 1. We consider
compact Riemann surfaces. It is a classical result that any compact orientable 1-dimensional
complex manifold is diffeomorphic to a sphere with handles. The number of handles is called
the genus of Riemann surface; it is denoted by ¢ . The basis of the first homology group
on a sphere with ¢ handles consists of 2g cycles. For two oriented contours intersecting
each other at one point the intersection index equals either +1 or —1 depending on the
mutual orientation of the contours. If two contours intersect each other in more than one
point, the index is equal to the sum of intersection indices of each single intersection. The
canonical basis of cycles is the set of 2g cycles {a;bx}]_; with intersection indices given
by ajoar =0, bjoby = 0 and aj o by = § , where J;; is the Kronecker symbol. Two
arbitrary canonical bases of cycles are related by a transformation defined by an integer

symplectic matrix. Namely, let {ar;bc}i_, be a canonical basis of cycles on a Riemann

0 -1
surface. Consider the 2g x 2g matrix J = , where 0 and I are, respectively, the
I o0

zero and identity g X g matrices. Let an integer 2g X 2g matrix

P Q
M= (1.1.1)

S
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be symplectic, i.e. such that MJMT = J . Then the basis of cycles {ay; Bk}izl given by
aj =y 91 (Puar+ Qubi) , I;j =>7_,(Rjiai + Sjiby) is also canonical.

Suppose that all cycles of a canonical basis pass through one point. If we cut the surface
L along these cycles, we obtain a connected domain L called the fundamental polygon of the
Riemann surface. For example, for a torus (Riemann surface of genus one) the fundamental
domain is a parallelogram. The sides of the fundamental polygon coincide with the positions

of a- and b-cycles; each cycle corresponds to two sides of the polygon.

Differentials on Riemann surface. Any l-form w in a local parameter on a manifold
can be written as w = p(z, 2)dz + q(z,Z)dz . A 1-form is called holomorphic if in a neigh-
bourhood of any point it has the form w = f(z)dz for some function f ; a 1-form is called
antiholomorphic if it has the form w = f(Z)dz . For a closed 1-form the integral over a path
between two points does not depend on the choice of the path within given homology class
and therefore is well-defined. The integrals of a closed 1-form w over the basis cycles of a
Riemann surface are called the a- and b-periods of the 1-form and denoted by Ay := fak w
and By := fbk w . For two closed 1-forms w and & on the surface £ the Riemann bilinear

relations hold:

Jfena= /az‘:’/;:“’ - S (B 4B, (1.12)

k=1

Ay, and By, are, respectively, the a- and b-periods of @ . The first equality follows from the
Stokes theorem and the second one is proved by the integration over the boundary of the
fundamental polygon.

If one chooses @ = @ , then the Riemann bilinear relations (1.1.2) imply [/, LWAD =

2¢Im { i AkBk} , and therefore a holomorphic differential for which all a-periods van-
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ish is identically zero. On a Riemann surface of genus g there exist exactly g linearly
independent holomorphic 1-forms (Abelian differentials of the first kind). One can always
choose a basis of g differentials wy,...,w; normalized by faj wi = Ok . Integrating these
differentials over b-cycles, we get the matrix B with entries By; = fbj wg , which is called
the matriz of b-periods of the Riemann surface. The matrix B is symmetric, and its imagi-
nary part is positive definite. For the canonical basis of cycles {ax; I;k} related to the basis
{ag;bx} by a symplectic matrix (1.1.1) the transformed matrix B of b-periods is given by
B=(R+SB)(QB+P)".

Any meromorphic 1-form can be normalized to have zero a-periods by adding a linear
combination of the differentials w; . An Abelian differential of the second kind is a differential
WéN)(P) for some integer NV which has zero a-periods and is holomorphic everywhere outside
P = (@, where it has a pole of order N 4+ 1. An Abelian differential of the third kind is a
differential Wgrg(P) normalized to have zero a-periods and holomorphic outside the points
R and S, where it has simple poles with residues +1 and —1 , respectively.

The divisor () of a differential 2 is the formal sum of the points Dy, where the differen-
tial has poles or zeros: (Q) = > d, D, , the numbers d, being the orders of corresponding
zeros and poles, taken with the minus sign in the case of poles. The sum Y d, is called the

degree of the divisor.

Jacobi torus. Consider an equivalence relation in C9 : z; ~ 2z iff there exist n,m € Z9
such that z; — 20 = n 4+ Bm . The Jacobi torus J, or Jacobian, of a Riemann surface £ is a
factor J(L):=C9/ ~ . The Abel map A: L — J(L) is defined by Ax(P) := f;; wk , where

P, is some fixed starting point for the Abel map.
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The Abel map of the divisor () = Y_d, D, is assumed to be A(Q) := Y d, A(D,) .
Two divisors (€) and (€2) are called equivalent if the degree of their difference is zero,
deg((€4) - (€2)) = 0, and the Abel maps coincide on J(L) : A(Q — Qg) = 0 . Divisors
of all meromorphic (1,0)-forms are equivalent. This divisor class is called canonical and

denoted by C . The degree of the canonical divisor is degC =29 — 2.

1.1.2 Meromorphic functions on Riemann surface and coverings of CP!

Any meromorphic function on a Riemann surface has equal number of poles and zeros
counting their multiplicities. A function with poles at Q1,...,Q» and zeros at the points
Ry, ..., R, (if some zeros or poles are multiple, not all Q; and not all R; are distinct) exists
on a Riemann surface £ if and only if the Abel maps of these two sets of points give the
same point on the Jacobian J(L) , ie. 377 (A(R;) — A(Qj)) = 0 (mod J(L)) .

Consider a meromorphic function A(P) : £ — CP! of degree N . The points P; where
derivative of the function vanishes are called the critical points. The corresponding critical
values are denoted by A; := A(P;) . The function A(P) represents the Riemann surface as
an N-fold ramified covering over CP! . The points {P;} are called the ramification points,
their projections on the base of the covering are given by {A;} , which are called the branch
points. The covering is a collection of N copies of CP! , which are glued together along
branch cuts to form a connected manifold. The order of vanishing of the derivative X' at
the point P; is called the ramification index; this number equals the number of sheets of
the covering glued together at the corresponding branch point minus 1 . Denote by oo® ,
i =0,...,m the points of the surface where the function A(P) has poles. The order n; + 1

of the pole at oo® gives the number of sheets glued together at the corresponding point of
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the covering. The numbers ny, ...,n, € N (the ramification indices over infinity) are such
that Y 7" o(n; +1) =N .

We shall only consider the coverings defined by the functions A(P) which have simple
critical points P; . Then, the local parameter on £ near a ramification point P; € £ (which
is not a pole of A) can be chosen to be z;(P) = \/A(P) — A; and in a neighbourhood oo
the local parameter z; is such that z; ™ 1(P) = A(P) .

The Riemann-Hurwitz formula connects the genus g of the surface £ , degree N of the
function A , the number L of simple finite branch points and the ramification indices {n;}

over infinity:

2g—2=-2N+L+> n;. (1.1.3)
i=0

1.2 Classical objects related to a compact Riemann surface

This section contains only a few scattered facts from the theory of Riemann surfaces; the
systematic treatment of this topic is contained in numerous existing literature, see, for

example, [15, 22, 23, 25, 59].

1.2.1 Theta-functions

For a Riemann surface £ with the matrix of b-periods B the Jacobi theta-functions with

characteristics p, g € C9 are defined for z € C9 by

0[p, ql(2|B) := > exp{mi(B(m +p),m +p) + 2mi(p + m,q + 2)} . (1.2.1)
meZ9

The theta-functions have the following (quasi) periodicity properties:

0lp,q)(z+e;) =" i6[p,q)(2) ,  Olp, q](z+Bej) =PI CHWYp,g](2) ,  (1.2.2)
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where {e;}7_, is the standard orthogonal basis in RY .

From the definition it is easy to see that the theta-functions satisfy the heat equation:

6lp,d|(/B) _, 00lp,q|(-[B)

= 1.2.3
92:07; OB, (123)

Theta-functions with and without characteristics are related as follows:
B[, q)(2) = emi@PPIF2TP(+g (4 4+ Bp + q) . (1.2.4)

Consider the theta-function 8(A(P) — d|B) where A(P) is the Abel map. If this function
does not vanish identically on £, then it has g zeros (counting multiplicities). The sketch
of the proof is as follows. The number of zeros of the function F(P) = 0(A(P) — d|B)
is given by the integral §,7dlog F(P)/(2ni) . Since the boundary 8L of the fundamen-
tal polygon of the surface consists of the a- and b- cycles, this integral can be evaluated
using the transformation rules (1.2.2) for the theta-functions; the result gives g . Denote
the g zeros of the function F' by D,,...,Dy . Then, by the residue theorem, we have
$a7 Ai(P)dlog F(P) = 2miy 5 _; Aj(Dyg) . The integral computed as the sum of integrals
over the basis cycles gives Y 7_; A;j(Di) = (KP4 —d); where KP4 is the vector of Riemann

constants:

By; +1
KP4 = _Hz_ + kz?é]}i A(P)wy(P) , (1.2.5)

P, being the starting point for the Abel map. The vector K4 satisfies the relation:
2 KP4 = — A(C) (mod J(L)) (1.2.6)

where C is any divisor from canonical class.
For half-integer characteristics (o, 3] , when o, € %Z , the theta-functions are either

even or odd: fla, B)(—z) = (—1)%*P)9[a, §](z) . A half-integer characteristic [o, (] is called
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odd if 4{a, B) is odd; it is called even otherwise. For genus g there exist (49 + 29)/2 even
and (49 — 29)/2 odd characteristics.
For ¢ = 1 there exist three even theta-functions: 6(z) := 0[1/2,0](z) , 03(z) =

0[0,0](z) , 04(z) :=0[0,1/2](z) and one odd theta-function: 0;(z) := —0[1/2,1/2](z) .

Dedekind n-function. The Dedekind eta-function is a function defined on the complex

upper half plane. For any complex number p with positive imaginary part, we set g = e?™# .

Then, the eta-function is defined by

n(w) =g -7 (12.7)
n=1

The 5-function is holomorphic on the upper half plane.

The n-function satisfies the functional equations

n(p+1) =), n(-1/p) = —ipn(p),  1(w) =n(-q) .

The Dedekind eta-function is related to the Jacobi theta-function 6; by:

n(u) = (6100, )/ . (1.2.8)

Weierstrass p-function. The p-function is defined on the torus T =C/{2w, 2w’} (i.e.
p(z + 2w) = p(z + 2w') = p(z)) by the series:

p(z)=—zlg+ > [ ! ~ = : (1.2.9)

(z 4 2mw + 2m'w' )2 (2mw + 2m/w’)?

m,m/'€Z

which is uniformly convergent for any z .
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The p-function is even, p(—z) = p(z) , and has a single pole of order two in T' =
C/{2w, 2w’} with the principal part p(2) &~ 1/2% + O(2?) . In terms of theta-functions it can

be written as follows:

o* 2 1 6y
o) = ~gr 1080 (55) + Ty -

From this formula we find the values of integrals of p-function over the periods of the torus

T :

42w " x4 2w’ - 1ot

186 vit) w 6

dz = —-% dz = — -L 1.2.10
/m p(z)dz 6w ¢ ’ /g,- p(2)dz w + 6w? ) ( )

where z is any complex number. The following relation on the function g can be proven by

examining the singularities of both sides at 2 =0 :

(¢'(2))" = 4(p(2) — p(w)) (p(2) — p(w)) (p(2) — p(w +w')) . (1.2.11)

The definition of the Weierstrass p-function implies p(w) + p(w') + p(w+ w') =0.

Multivalued differential C(P) . Let us choose the fundamental domain £ such that the
equality holds in the relation (1.2.6), i.e. A(C) = —2K¥ ; here the Abel map is taken along
the path which does not intersect the boundary of L . Introduce the following object on the

Riemann surface £

1 d I9(KF)

C(P) = _o\R )
deti<apg<g “‘U{(ga_l)(P)H w1 0za, ... 02,

war (P)...wey(P) . (1.2.12)

The differential C(P) is a holomorphic multivalued g(1 — g)/2-differential on L ; it is
single valued with respect to tracing along a-cycles and gains simple exponential factors

under tracing along b-cycles.
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1.2.2 Hyperelliptic curves. Thomae formulas

A surface £ of genus g is called hyperelliptic if there exists a meromorphic function A on
the surface with exactly two poles. Then, the function A(P) can be used to represent the
surface as a two-fold covering of the Riemann sphere CP! . The covering (£, \) , according
to the Riemann-Hurwitz formula (1.1.3), has 2g + 2 simple branch points {)\j}gi’f . This

covering can be considered as an algebraic curve defined by the equation

2g+2

v=TlE-2). (1.2.13)

Jj=1

The holomorphic (non-normalized) differentials on this curve are given by
w; = —d(, ji=1,...,9. (1.2.14)

Let us choose the branch cuts on £ to connect the points Ag,y1 and Agny2 . Choose
the basis cycles a,, to encircle the points Agp41 and Az, 42 and the cycles b, to encircle the
points Az and Agn+1 .- Let us choose the starting point P, for the Abel map A (see Section
1.1) to coincide with P; . Then, the Abel map between two ramification points is equal to
a linear combination with half-integer coefficients of the columns of the matrix B and the

vectors {e;}7_, (the standard orthonormal basis in R). For example,

Py 1 Py 1 1
Py b1 Py by al

Relations (1.2.15) can be proven as follows. The cycle b; can be deformed to a homotopi-
cally equivalent one whose two parts 41 and 7y, (the path ~; from P, to Py and 2 from
Py to P;) have the same projection on the base CP! (the two parts lie on different sheets
of the covering). The holomorphic normalized differentials {w;} are given by linear com-

binations of the non-normalized differentials (1.2.14), therefore the values of a differential
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wy at two points which lie above each other on the covering differ by a sign (values of v,

the denominator in (1.2.14), at these two points correspond to the different branches of the

square 100t /(¢ — A1) ... (¢ — Agg42) ). Thus, the integrals fw w; and f’rz wj are equal and
their sum gives the bi-period of w; . The analogous reasoning holds for the a-periods.

This gives a way to construct half-integer characteristics for the theta-functions (1.2.1).
Let us consider the partition of the set of branch points {)\j}gzl consisting of two sets of
g+ 1points: T := {Aij,..., A, } and S := {X;,..., A ., } . Denote by A(T) the sum of
values of Abel maps of the points from the set 7', i.e. A(T) := Zig A(P;,) . Then the
characteristic [p”,¢”] is defined by the equality: A(T) + K*t = Bp” + ¢7 , where the j-th
component of the vector of Riemann constants, for the case of this covering and P, = P; ,

has the form:

j 9 B..
P1 . _ ) L
KJI—§+ZT’ j—].,,g
i=1
The Thomae formulas [71] allow to express the theta-constants of the hyperelliptic curve
as follows:
6*[p",q"1(0/B) = £(det A)* TT (s — o) JT v = M), (1.2.16)
k€T 5,keS
where A is the matrix of a-periods of the non-normalized holomorphic differentials (1.2.14):
Ay = fak()\l“l/u)d/\ for k,l = 1,...,9 . Taking two different partitions of the set of

branch points, we can obtain a relation in which the matrix A is absent; this relation allows

to express a ratio of theta-constants only in terms of the branch points.
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1.2.3 Prime form

The prime form E is the following (——%, ——%)—differential on LxL :

E(P,Q) = 0la, BI(A(P) — AQ)) , (12.17)

ha(P)ha(Q)

where h2(P) := 9105002, 8](0)w;(P) , and [, f] is an odd characteristics. This de-
finition does not depend on the choice of an odd characteristics [, 3] . The holomorphic
differential A2 has g — 1 zeros of order two; therefore the square root h, is a holomor-
phic spinor, i.e. an object of the form g(z)vdz in a local coordinate z . The differential
h2 (P) is single valued on the surface; however, its square root may change sign when the
argument P goes along topologically nontrivial closed loops on the Riemann surface.These
signs along basis cycles are given by the numbers e2™*® and e~278i : therefore the prime
form satisfies the relation E(P%,Q) = E(P,Q) , where E(P%, Q) stands for the ana-
lytic continuation of the prime form along the cycle a; with respect to the first argument.
Then, under the analytic continuation along the b-cycles, the prime form changes as follows:
E(P%,Q) = exp{—miB;; — 2mi(A;(P) — A;(Q))}E(P,Q) . The prime form is antisymmet-
ric, i.e. E(P,Q) = —E(Q,P) . With respect to the argument P , the prime form has on
the surface £ only one zero at P = ) and does not have poles. It has the following local

behaviour near the diagonal P ~ @ :

_ aP)-m(@) (| lgm P
BB,Q) =, Jas s (1 35(P) (¢(P)~2(@) + 0 (=(P)~2(@)F) ) -

(1.2.18)

The quantity 6S(P) is a holomorphic projective connection (it is called the Bergman pro-

jective connection): it transforms as follows with respect to the change of local coordinate
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z— f(z) :
65(z) = 6S(f(2))(f'(2))* + {f(z),z},

where

=5 -3 (LY

is the Schwarzian derivative. The prime form can be used for constructing meromorphic
functions and differentials with given poles on the surface: for example, the function with
simple poles at the points {Q,;} and zeros at { P} is given by f(P) =[[, E(P, B)/E(P, Qi) ,
where the points { P} are related to {Q,} according to the Abel theorem, i.e. by A(> , P) =
A3, Qi) (mod(J(L))) . The Abelian differential of the third kind Wgg can be expressed in

terms of the prime form as follows: Wrg(P) = dplog{E(P,R)/E(P,S)} .

1.2.4 Kernels on Riemann surface

The kernel W (P, Q) defined by

W(P,Q) = dpdg log E(P, Q) (1.2.19)

is the symmetric differential on £ x £ with the second order pole with biresidue 1 at the

diagonal P = @Q and the properties:

% W(P,Q)=0; W(P,Q) = 2miwg(P) ; k=1,...,9. (1.2.20)
ag by

W{(P,Q) is called the canonical meromorphic bidifferential [22].

The Schiffer kernel Q(P, Q) is the symmetric differential on £ x £ defined by:

g
QUP,Q)=W(P,Q) - > (ImB)j'we(P)wi(Q) (1.2.21)

k,i=1
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(ImB is positive definite). For a surface of genus zero, the Schiffer kernel coincides with the
kernel W . It can be equivalently defined [23] as the unique bidifferential with a singularity

of the form (z(P) — z(Q))~%dz(P)dz(Q) along P = @ and such that the equality

p.v./ Q(P,Q)w(P) =0 (1.2.22)
L

holds for any holomorphic differential w .

The Bergman kernel B(P, Q) is defined by:

g
B(P,Q) =7 Y (ImB)'we(P)wi(Q) ; (1.2.23)
kl=1

it vanishes for a surface of genus zero. Alternatively, the Bergman kernel can be defined as
a regular bidifferential on £ holomorphic with respect to its first argument and antiholo-
morphic with respect to the second one which (up to the factor of 2xi) is a kernel of an
integral operator which acts in the space Lél’o)(/.',) of (1,0)-forms as an orthogonal projector
onto the subspace H(L) of holomorphic (1,0)-forms. In particular, the following holds

for any holomorphic differential w on the surface £ :

7 [ BRQu@ =w(P). (1.2:24)
C

From the definitions (1.2.22) and (1.2.24) one can see that the Schiffer and Bergman kernels
do not depend on the choice of a canonical basis of cycles {ax, bx }{_, on the Riemann surface.
For the Bergman kernel, this independence can also be seen directly from (1.2.23) using the
relation (ImB),,; = £ [f wi(P)wi(P) , which is equivalent to the Riemann bilinear relations
(1.1.2) if one chooses w := wy and @ := & .

The periods of the Schiffer and Bergman kernels are related to each other by:

¢ Q) -- f B(P,Q), 7{ A(P,Q) = - yf B(P,Q) (1.2.25)

273
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where the integrals are taken with respect to the first arguments.

1.2.5 Variation of complex structure

Consider the space of Riemann surfaces of genus ¢ modulo the conformal equivalence. The
real dimension of the moduli space of a Riemann surface is 6g — 6 .

For a function f(z,Zz) holomorphic in some domain, the Cauchy-Riemann equation
O0:f = 0 holds in the domain. Let us denote by £, the Riemann surface £ with the
following new complex structure: a function f on £, is called holomorphic in any local

coordinate (z, z) if it satisfies the equation
O:f —u(z,2)0,f =0, (1.2.26)

where u(z,Zz) is a form called the Beltrami differential. In order for this equation to be
well-defined (invariant with respect to a coordinate change), u must be a —1-differential
with respect to z and +1-differential with respect to Z . Two Beltrami differentials y; and

po correspond to the same variation of complex structure if

//E(Ml—,uz)W:O

holds for any holomorphic quadratic differential w on the surface.
Consider a smooth infinitesimal deformation £# of the complex structure on the surface

L . The local coordinate z changes holomorphically with respect to the parameter ¢ :
2 =z+eq(2,Z)+o(e) . (1.2.27)

Then, the Beltrami differential p is given by u(z, Z) = 83q(z, z) . All the defined objects on

the surface vary according to this deformation. In particular, the variation of the bidiffer-
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ential W(P, Q) (1.2.19) is described by the following Rauch formulas ([23],p.57):

5, W (P,Q) = —% / /E WRW(P,RW(R,Q), B&WPFPQ) =0.  (1228)

where 6, = Oe|c—o and 5” := Oz|e=0 . Integration of these formulas over b-periods of the
surface gives the Rauch formulas for holomorphic normalized differentials wy and the matrix

B :

sun(P) = =1 [[uQu@W(P.Q),  dw@=0. (229

5.8 == [ [ WQuiQux@), Bij =0, (1.2.30)

The variational formulas ([23], p.56) for the Schiffer and Bergman kernels can be obtained

using (1.2.28) - (1.2.30).

1.3 Hurwitz spaces

1.3.1 Definition and variational formulas

Two coverings (see Section 1.1.2) are called equivalent if they can be obtained from one
another by permutation of sheets. The Hurwitz space is the space of genus g coverings
with fixed number of sheets and fixed number and type of ramification points modulo the
equivalence relation. The branch points {A;} give the set of local coordinates on the Hurwitz
space.

Let us consider the Hurwitz spaces of the following type. Assume that the function A :
L — CP! which defines the covering (£, A) has m + 1 poles at the points 0o®, ..., co™ € L
of orders ng+1,...,nm+1 (i.e. the covering has m+1 points which project to { = oo on the

base with the ramification order n; at the i-th point). The remaining ramification points
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{Pj}i_; , which have finite projections {A;}7_; on the base of the covering, are assumed
to be simple (the ramification index equals one) and distinct. The Hurwitz space of such
coverings is denoted by Mg.n,. ... n., , Where g is the genus of the Riemann surface £ and the
numbers 7y, . . ., Ny, correspond to the ramification type over the point at infinity (in the
case when all numbers n; equal zero, we shall denote the Hurwitz space by Hg.n).
Keeping the numbers g , N , n; and L fixed and moving the positions {);} of branch
points, one changes the local parameters z; = \/)\——/\] near simple ramification points

of the covering. Therefore this variation changes the complex structure on the Riemann

surface £ (see Section 1.2.5). The Taylor series (1.2.27) turns into /A — A\j —e = /A — X;—
£(2¢/A =)~ + o(e) . Hence, the Beltrami differential which describes the infinitesimal
variation of the complex structure under variation of position of the branch point ); is given
by

wP) = =30 (5 ) = =536, (13.1)

where §(z) is the two-dimensional delta-function. Since the infinitesimal change of the
branch point ); is given by € , we have §,; = 0y, (see [43] for a detailed discussion of this
relation and rigorous proof). Substutution of the Beltrami differential p; (1.3.1) into the

Rauch variational formula (1.2.28) gives

dW (P. s
WER) _ Ly pyw,p), %QJ

i, 5 =0, (1.3.2)

where W(P, P;) := (W(P,Q)/dz;(Q)) |g=p; - Formula (1.3.2) can be alternatively proven
as follows. The behaviour of W (P, Q) considered as a differential with respect to P at

P ~ P; is given by
W(PQ) =, {(W(F;Q)+ Wa(P;,Q)x;(P) + Oa}(P)} da(P)dz(Q)
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where z;(P) = /A(P)— A; and dz;(P) = d\/(24/A(P) — ; Wi(P,Q) denotes the
derivative with respect to the first argument. Differentiating this equality with respect to

branch points, we see that the derivative dy, W (P, Q) , considered as a differential with

respect to P , has the only singularity at the point Py of the form:

dx

W(PQ) - (W(P’“’Q) +<9<1>) day(P)dz(Q).

2z3(P)
The a-periods of dy, W(P, Q) vanish since they vanish for W(P, Q) . Thus, the derivative
dx W (P,Q) is proportional to W (P, P;) with a proportionality coeffiecient depending only
on @ . Taking into account the value of the biresidue of dy, W(P, Q) at Py and the symmetry
of the bidifferential W , we get (1.3.2).
The formulas (1.3.2) integrated over b-cycles of the surface (see (1.2.20) for the b-periods
of W) give the variational formulas for holomorphic differentials and the matrix B of b-

periods:

dwk(P) _ 1 d By

=7Tiwk(Pj)wl(Pj) . (1.3.3)

Using (1.3.2) and (1.3.3), one finds the variational formulas for the Schiffer and Bergman

kernels:
T =saeren). SR -laensQE),
~ (1.3.4)
dB(P,Q) 1 ~ dB(P Q) 1 T

The notation here is analogous to that in (1.3.2), i.e. Q(P,P;) stands for

(UP,Q)/dz(@Q))|,_,, and B(P,P) := (B(P,Q)/dz;(@)

=4

) ‘Q:Pj '
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1.3.2 Spaces of rational functions

A meromorphic function of degree N on a Riemann sphere is a rational function R(y) =
Py(7)/Qn() , where Py and @y are polynomials of degree N or less, such that either
Py or Qy has the degree equal to N . Thus, the Hurwitz space in genus zero is the space
of rational functions of fixed degree and fixed orders of poles (the latter gives the type of

ramification over the point at infinity). The general form of a rational function,

ayyY +an YV + -+ ag

R(y) = (Y —bn)(Y—by_).. . (Y=b1)

(1.3.5)

is determined by 2N + 1 parameters. However, the number of critical points (assuming
that all of them are simple) equals 2N — 2 , and therefore the corresponding Hurwitz
space has 2N — 2 coordinates. This happens because the Mdbius transformations v —
(ay+b)/(cy+d) , ad —bc = 1 (which has three parameters) leaves the critical values of
the rational function unchanged. When two zeros of the denominator in (1.3.5) coincide,
the point at infinity becomes a branch point and there is 2V — 3 finite branch points (local
coordinates on the Hurwitz space) and 2N parameters left in (1.3.5). If a rational function

has a pole at infinity, it can be written in the following form:

N-1

R(Y) =By +36 .
() =By + +,§;v—bk

Qg

Rational functions of degree two. Consider, for example, the function

a
y=2>

R(y)=~+

The covering Lg defined by the equation A = R(y) has two sheets and two branch points

A1, A2 . The equation A = R(v) can be written as v2 —y(b+ X) + a + Ab = 0, and the
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inverse function v(A) such that R(v(7y)) = A has the form

v(A)

_ 2 ()\1+)\2
Yy 2

W \/(A—Al)(x—xz)), (1.3.6)
where A1 and A\ are some functions of the parameters a and b . This function gives a map
from the two-fold covering Lz onto the y-sphere CP! : points lying on the different sheets
of the covering and having equal projections on the A-sphere correspond to the different
branches of the square root in (1.3.6). Thus, one of the sheets is mapped inside the unit

disc in the «-sphere and the other one is mapped outside the unit disc. The inverse map

v: Lr — CP! is called the uniformization map of the covering Lg .

1.3.3 Spaces of elliptic functions of degree two

A genus one Riemann surface (a torus) can be biholomorphically mapped to a quotient
of the complex plane: T := C/{2w, 2w’} where w and w' are two complex numbers. The
parallelogram built on the sides 2w and 2w’ in the complex ¢-plane is the fundamental
domain of the torus. The pairwise identified sides play the role of two basis contours a and b,
respectively. The unique normalized holomorphic differential w is given by w(s) = d¢/(2w) .
Then, the b-period of the torus is y := f02wl ds/(2w) = w'/w.

The simplest genus one covering has two sheets and four simple branch points. It

corresponds to the hyperelliptic curve

2= (€= M)(¢ = A2)(¢ = Aa)(C = M) (1.3.7)

where A; , j = 1,...,4 are the branch points. The normalized holomorphic differential w

is given by

w= df V %]_1 . (1.3.8)



If the basis cycles a and b are chosen as before (see (1.2.15)), i.e. the cycle a encircles
the points P3 and P, and the cycle b encircles the points P, and P3 , then the Abel map

A(P) = [, }1; w has the following values at the ramification points:

AP) =0, A(Pz)z—;-, A(Py) =

[\l [y~

o AR) =Y (1.3.9)

DO =

Let us now consider the covering (1.3.7), put A; := oo to be the starting point of the
Abel map, and denote A4 by A; . This two-fold covering with four branch points, one of
them being at infinity, can be defined by the equation { = A(s) with the following function

A from the torus T' = C/{2w, 2w’} to CP! :

A(s) = p(s) +c, (1.3.10)

where ¢ is a constant with respect to ¢ , and g is the Weierstrass p-function (1.2.9). The
pair (T, ) has three parameters: w , w' , and ¢ . Therefore there are three coordinates
on the Hurwitz space of such coverings — the branch points A; , A2 , A3 . Relation (1.2.11)
implies that the branch points of the covering are given by A\; = p(w)+c; Ay = p(w') +c;
A3 = p(w+w') 4 ¢ ; they are related by Ay + Ag + A3 = 3¢ . Let us denote the corresponding
ramification points on the torus T' by P; , P>, P; (values of the ¢-coordinate at these points
are given respectively by ¢; = w, ¢ = w’ and ¢3 = w+ w’). The fourth ramification point
projects to ( = co and in ¢-plane has the coordinate ¢ = 0 ; let us denote this ramification
point by oo? € T'.

From the equation ¢ = A(s) we have d{ = p'(<)ds . And therefore the normalized

holomorphic differential w(s) = ds/(2w) has the form (see (1.2.11)):

_ L &
4w /(=)= A)(C = A)
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Its values at the ramification points (with respect to the standard local parameters) are

given by
w(Py) = = w(Pp) = :
Y o h)On ) Tyl ey
w = L w OOO = i )
(Fs) 2wy/(Aa — M) (s — Ao (o) 2w

Comparing relations (1.3.11) - (1.3.12) to (1.3.8), we see that the corresponding hyper-

elliptic curve is defined by the equation
VP =4(¢ - M)(¢ - M) (¢ — As) - (1.3.13)
The Thomae formulas (1.2.16) in this case have a simple form:
205 = (2w)2(A3 — A1), 70; = (2w) e —A3), 705 = (2w)2(Ma — A1), (1.3.14)

where 6; := 6;(0) , © = 2, 3,4 are the standard theta-constants. From (1.3.14) we see that
03 + 01 =05 .

As before, see (1.3.9), we have

P, P 1 P 1
I
_ - = =4 . 1.3.15
ﬁﬁ“ ’ Lw” 2’ Lw” 2"3 (1.3.15)

Using these relations and the Thomae formulas, one can find, for example, the expressions

o=

for the meromorphic differential W evaluated at the ramification points P; with respect to
the standard local parameters z; = /A — A; . Namely, the bidifferential W , by definition

(1.2.19), (1.2.17), is given by W (P, Q) = dpdglog 61 (A(P) — A(Q)) , or, equivalently,

0(J5 w) (ewé’ w>)2
WP Q)= —-w(P)w - . 3.
(P,Q) = —w(P)w(Q) it \aita) (1.3.16)
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To evaluate expression (1.3.16) at the ramification points, one needs to us'e (1.3.15) and the

following relations on theta-functions, which follow from the definition (1.2.1):

01(z £ %) =*62(2), 61(z £ %) = :l:i04(z)e‘”i”/4:”iz ,

Oz + 5 5) = y()e /AT

Using also the Thomae formulas (1.3.14), we find:

1 9// 'L 0//
W(Py, P) = -3 W(P, P;) = 2
( 1, 2) 71_203021‘2()\1 _ )\2) 93 ) ( 1, 3) 7T20§92(A3 — )\1) 02 ’
i 0!

W (P, Ps) =

7260262(Ng — N3) 01
1.3.4 Bergman tau-function

This section presents a summary of main results of the paper [44].

The expansion of the bidifferential W (1.2.19) near the diagonal P ~ @ has the form:

_ ( 1
o~p \ (z(P) - 2(Q))

W(P,Q) - S@(P) + o(l)) dz(P)dx(Q) ,

where the quantity 65 is the Bergman projective connection (see the expansion (1.2.18) of
the prime form at P ~ Q).

Denote by S; the value of S at the ramification point P; taken with respect to the local

parameter ;(P) = /A=A :
Si = S(-'Ei)la:i=0 . (1.3.17)

Since the singular part of the bidifferential W in a neighbourhood of the point P; does not

depend on coordinates {);} , the Rauch variational formulas (1.3.2) imply

331 . 1 2
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The symmetry of this expression provides compatibility for the following system of differ-

ential equations which defines the Bergman tau-function T :

=58, i=1..,L. (1.3.18)

The following theorem, proven in [44}, gives an explicit formula for the Bergman tau-function

in terms of holomorphic objects associated with the Riemann surface L .

Theorem 1.1 The Bergman tau-function is given by the following expression independent

of the points P and Q ([44]):

L+m+1
rw =0 [[ [B(Dx,Dn)*"/ (1.3.19)
kn=1k<n
where Q is given by
a=1 L+m+1 (1-g)d
Q=[P 7 cp) [[ E®ED) = ;
k=1

C(P) is the multivalued differential defined by (1.2.12), E(P,Q) is the prime form (1.2.17);
E(Dy, P) stands for E(Q, P) \/WIC#D;C i D and di are points and coefficients of the
divisor (dX) := Z,ﬁi{nﬂ dy Dy, of differential dX(P) , i.e. Dj=P;,d;=1forj=1,...,L
and Dpqiv1 =00t , dpyiv1 = —(n;4+1), i =0,...,m . As before, differentials are evaluated
at the points of divisor (dX) with respect to the standard local parameters: z; = /A —X;

forj=1,...,L and zpq14i = A"V fori=0,...,m.

In the case of a genus one surface, the Bergman tau-function is given by [44]:

mw=1() [] (D)) %",
D€ (dA)

di are the coefficients of the divisor (dA) : (dA) = Y. di Dy , and n(u) is the Dedekind

eta-function (1.2.7)-(1.2.8). For the space of coverings (1.3.10), the tau-function has the
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form:

w
N———
|
Sk
—
€
—~~
%
e

Tw =17 (1) (H w(FP;)

i=1
1.4 Integrable systems

1.4.1 U-V pairs

One of the broadly used definitions of integrable systems is that these are the nonlinear
differential systems which can be represented as a compatibility condition of two linear

differential equations:
&, =U%, ¢, =Vo, (1.4.1)

where U,V and ® are matrix functions of independent variables (x,y) and a spectral para-
meter v € C . The pair of matrices U and V such that the compatibility condition of the
system (1.4.1) is equivalent to the nonlinear system is called the U-V pair of the nonlinear
system.

The compatibility condition for the system (1.4.1) has the form: Uy, — V, + [U,V] =0.
It is also called the zero curvature condition as it expresses the vanishing of the curvature
of the connection corresponding to the 1-form Udz + Vdy .

The well-known integrable systems such as Korteweg - de Vries, sin-Gordon, Boussinesq

equations have U-V pairs with a constant, i.e. independent of z and y , spectral parameter.

Example 1. For the Korteveg - de Vries equation

Ut = Upge + OUU, , (14.2)
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the U-V pair is given by

0 u+try —Ug Uze + 2u? — 2yu — 42
-1 0 —2u+4y Uz
where 7 is a constant with respect to  and t . The equation (1.4.2) is equivalent to the

compatibility condition U; — V, + [U,V] =0.

Example 2. The Ernst equation
(= 9)GeG™ )y + (2 —9)GyG 1) =0, (1.4.3)

where G € SU(1,1)/U(1) , is equivalent to the stationary axially symmetric vacuum Ein-
stein equation. The integrability of the Ernst equation was discovered {3, 55] in 1978. The
U-V pair for the equation (1.4.3) has a spectral parameter v which depends on z and
y . Namely, the Ernst equation is the compatibility condition of the system (1.4.1) with

matrices U and V of the form:

. (1.4.4)

where the spectral parameter «y is “variable”, i.e. it is a function of z , y and a “hidden”

(“constant”) spectral parameter A :

10vay) = —— (L A+ VE= a0 -3) (1.4.5)

In this way, the Ernst equation can be viewed as a “deformation” of the principal chiral
model equations. For this model, the matrices U and V' have the form (1.4.4) where 7 is a

constant (independent of (z,y)) spectral parameter.
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The function y(A,z,y) (1.4.5) is nothing but the uniformization map of the genus zero
two-fold covering of the A-sphere CP! with two branch points at A = z and A = y (see

Section 1.3.2).

1.4.2 Deformation scheme of Burtzev-Zakharov-Mikhailov

The possibility to construct a class of “deformed” integrable systems, or integrable systems
with variable spectral parameter, different from the Ernst equation was first noticed by
Burtzev, Mikhailov and Zakharov [9]. They proposed to consider U-V pairs of the form
(1.4.1) where z and y are independent variables; matrices U and V depend on (z,y) and
a variable spectral parameter v (which in turn depends on (z,y) and the hidden spectral

parameter \). Namely,

U(z,y,7) = uo(2,y) +Z~y( “)n(mvi)(m,y) ,

(1.4.6)

Vi) =wie)+ 3o R
n=1 ’ A

As a part of compatibility conditions of the linear system (1.4.1), after an appropriate
fractional-linear transformation in the <-plane, the following system of equations for

~v(z,y, A) must be satisfied:

N
Oy Zz bm_ _q. Z (1.4.7)
Oy me1 ]~ Tm e A 'Ym

where b, and ¢, are certain functions of (z,y) . The compatibility condition of the system

(1.4.7) gives the following system for v,(z,y) and A.(z,y) :

N: ~ N
8’)’77, 2 bm 67” Z 1: Cm
—_ + — = 0 y — -+— - = 0 3 148
ay n; Tn = Ym 311) m=1 Tn ™ Im ( )
N N
aCn 2 bm 8bn - Cm
Ien _ 5. . — = = 2n Y =0. 1.4.9
6y nmz_l ('Vn - '7m)2 Oz —1 ('Yn - m)2 ( )



A solution to this system in terms of spaces of rational functions was recently found in [42].

1.4.3 Classical elliptic r-matrix

The classical r-matrices (see [21]) were introduced to conveniently describe the Hamiltonian
aspects of integrable systems. Namely, it turns out that, in terms of an appropriately defined
so-called transition matrix T(y) , the fundamental Poisson brackets of many integrable

systems can be rewritten in a simple form:
1 2 12 1 2
{to) fw}=[Fo-ntmtw],
where (7) is a K% x K? matrix acting in the tensor product CX¥ @ C¥ | independent of the
1 2
physical fields; T:=T ® I ; T:=1Q®T . As a corollary of the Jacobi identity, the matrix

7(7y) (called the classical 7-matrix) satisfies the so-called classical Yang-Baxter equation:

[F A=), 7 N+ 7 W+ V), 7 W] =0. (1.4.10)

The time dynamics (depending on the model, time variable may coincide with either z , y ,
their sum or difference) is generated by a Hamiltonian which can be found from invariant
polynomials of the matrix T' (for example, a Hamiltonian can be equal to the residue of
trT2(v) at v = o0).

There exist 3 classes of solutions to the classical Yang-Baxter equation: rational, trigono-
metric and elliptic. In the sequel we make use of the elliptic -matrices. The rational and
trigonometric r-matrices can be considered as an appropriate degenerations of the elliptic
ones.

Consider the following combinations of theta-functions (1.2.1) for (A4, B) # (0,0) :

B 9[AB] ('7) 9{00] (0) )

"~ 0145)(0)000)(7) (4t

wap(7Y)
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where we denote
01as)(7) = Opamy (v 1) = O [2-5.3-2] (vs 1) -

All the w45’s have a simple pole with unit residue at v = 0 and the following twist properties:

wAB('Y + 1) = waAB('Y) ’ wAB('7 + ,UJ) = waAB(’)’) ’ (1-4-12)
2mi/K

where e = ¢

The Pauli matrices 01, 09, o3 given by
01 0 1 1 0

g1 = ; gy = s g3 = (1.4.13)
10 -t 0 0 -1

form a basis of sl(2,C) . The following matrices 0,5 for A,B=0,...,K—1,(A,B) # (0,0)
give the higher rank analogs of the Pauli matrices. They form a basis of si(K,C) and are

defined by
Oap = HAF® (1.4.14)
where F' is the diagonal matrix
F = diag{l,¢,é?,..., 571}, e = ek (1.4.15)

and H is the following permutation [K x K| matrix:

010 . 0
0 01 0
H=| | (1.4.16)
0 00 1
10 0
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The matrices F and H satisfy the relations: eFH = HF |, and FX = HX = I . Together

with 0,5 , we consider the dual basis c4? :

at? = O A5 »

such that

tr (0450°7) = 6505 .

In the case of 2 x 2 matrices, K = 2, the matrices 0,5 and ¢*? become:

010 =01, 011 =103, 001 = 03 ;
1 1 1
10 11 01
o = =0y ot =—03 o’ =—-03.
277 2“7 2

The classical elliptic r-matrix is given by:
12 Kl 12
T = Y. was(y) T 07 (1.4.17)

A,B=0

(4,8)#(0,0)

it satisfies the classical Yang-Baxter equation (1.4.10). The properties of matrices F' and H
and the periodicity (1.4.12) of w,p imply the following periodicity properties for the elliptic

r-matrix (1.4.17):

12 1 12 1
T (y+1) =F7' *(n) F,

1 1
¥y+p) =HTOM)H. (1.4.18)

1.5 Isomonodromic deformations

Here we collect some basic facts from the theory of isomonodromic deformations, see [6, 39]

for details and references.
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1.5.1 Schlesinger system on the Riemann sphere

Consider the following linear differential equation for a matrix-valued function ¥(z) €

SL(K,C) :

M .
%zA(z)\I!, A(z)zz A; : (1.5.1)

z— 2z
j=1 1

where the residues A; € sl(K,C) are independent of z € CP! . The requirement of regularity
of the function ¥ at z = oo gives Z;W:l A; = 0. Let the solution to (1.5.1) satisfy the initial
condition ¥(z) = I at some point 29 € CP! . The matrix ¥ defined in this way has regular
singularities at the points {zj};il and is generically non-single valued in CP! | i.e. it is
defined on the universal covering of CP*\ {21, ..., 23} . Under analytic continuation around

2 = z; it gains the right multipliers M; which are called the monodromy matrices:
U(z) = V(z2)M; .
The asymptotical expansion of the function ¥ near the singularities z; has the form:
U(2) =G (I +0(z—2))(z—2)5C; (1.5.2)

with constant matrices G;, C; € SL(K,C) , and a traceless diagonal matrix T; . In terms

of these matrices, the residues A; and the monodromy matrices are given by

A =GT;G;, M;=C;le™h;.

The isomonodromic deformation of the system (1.5.1) is a deformation which changes posi-
tions of singularities {z;} while keeping the monodromy matrices {M;} unchanged. If none

of the eigenvalues of the matrix A; differ by an integer number, then the isomonodromy
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condition allows to differentiate the expansion (1.5.2) to get the following dependence of ¥

on {z;} :

d\I/:< A A4 >\1/ (1.5.3)

d_Zj 20 — %5 Z = Zj
The compatibility of equations (1.5.1) and (1.5.3) is given by the Schlesinger system for the

functions A;({zx}) :

0A; [A;A A; A ,
612[1 ] dd
2k 2j — 2k 20 — 2k

04; _ - <[Ak,Aj] [Ak,Aj]) _

B

(1.5.4)

2k — 24 Zk — 20
It is easy to check that the quantities trAjz. are integrals of motion for the Schlesinger system.

The tau-function 7,,, of the Schlesinger system was introduced in [39]. It is defined by

0 1 N2 trA;A; OTim
—1 = = tr (T, 01 = 7. J
sz O8 Tum 2zr:ezsj r ( # ) ; Zj— 2 k 02]'

=0.

If the number of singularities M equals 4 , one can fix by a Mobius transformation three
singular points 27, 29, 24 to be 0, 1, oo , respectively; the remaining pole z := 23 is the

variable in the Schlesinger system. The system (1.5.1) on the function ¥ in this case has

the form:
dv _A A As — A
d)\——A(Z)\I/, A(z)—7+2—1+2—.’17, A= A= A1+ A2+ A3

Let the normalization point be at infinity: 29 := oo, ¥(oo) = I . Then the Schlesinger

system (1.5.4) has the form:

dA; _ [43, 4] dA; _ [As, Ay dAs _  [A3, A1 _ [A4s, A9 (15.5)
dz r dx z—-1"7 dz T z-—-1 "~ e
Let us denote by t? = trA]2-/2 the eigenvalues of the matrices 4; , j =1,...,4, where we

put Ay = A; + Ay + As .
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If the matrix dimension equals 2 , the four-point Schlesinger system (1.5.5) may be
equivalently rewritten in terms of a function of one variable, the position y(z) of the zero
of the off-diagonal term Ajs of A(2) . The equation for y(x) coincides with the Painlevé-VI

equation:

d? 1/1 1 d
Byl L dy)? N dy
dz?2 2 \y - y dz 1 y—2z /) dz

y@—n<— D) () g% a1 a1
T ( Tt +5w—xﬂ>

=17
with constants a = (2t4 — 1)2/2, B=—212, y=2t3, § = (1 —4t3)/2 (see for example

[35]).

If the integrals of motion trA? are fixed to equal 1/8 , the functions

1
0% = —(% + trApAs), Q% = —(% +trA;14s), Q% = —(g + trdi4y)
give a solution to the following system:
sy 1 ng 1 dSls 1
= 200 010 = 20 1.5.6
de z 2% dr —1 R dr  w(z—1) 7 ( )

with the integral of motion Q% + Q% + 02 = —1/4 . In this case, the coefficients of the

Painlevé-VI equation are given by (o, 3,7v,d) = (1/8,-1/8,1/8,3/8) .

1.5.2 Schlesinger system on the torus

Here, following [70], we describe one possible generalization of the Schlesinger system to the
case of an elliptic surface.

Consider the elliptic (genus one) surface T' with periods 1 and p ,i.e. T = C/{1;u} . The
isomonodromic condition of the form (1.5.1) cannot be written on a genus one surface since a

function with a single pole does not exist there. This means that an independent variation
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of simple poles of ¥¥~! which preserves the monodromies around the singularities and
basis cycles of the torus is impossible. Therefore, the notion of isomonodromic deformation
has to be modified. For example, one may consider the case where not all the poles are
varied independently or assume ([62]) that some of the poles are of order higher than one.
Another possibility is to allow the matrix A = ¥¥~! to be non-single valued, i.e. to
have “twists” under analytical continuation along the basis cycles a and b of the torus:
A(z+1) = QA(2)Q™', A(z+ u) = RA(z)R™!, the matrices @ and R being independent
of z . The following isomonodromic deformation on the torus with @ = F~! and R = H
(the matrices F' and H are defined by (1.4.15), (1.4.16)) was proposed in [70]. For the case
of 2 x 2 matrix ¥ , the twists are given by the Pauli matrices (1.4.13): Q =03 and R =0, .
This choice of the twists results in studying isomonodromic deformations of the system
2

d¥ 1 M 12
T =AM, A= Z tr (7 (v —2) 4 ); (15.7)

where + is a coordinate on the torus T' = C/{1,u} ; 7(7) is the elliptic r-matrix (1.4.17);
z;€T,j=1,...,M; M is some integer. The matrix A(v) has only simple poles at the

points {z;} with residues A; . The residues are parameterized as follows:

K-1
Aj= ) AP0,
A,B=0
(4,8)#(0,0)
where matrices 0,5 are given by (1.4.14); A## € C . The matrix A(v) has the following

periodicity properties:
Ay +1) =F'AMF, A(y+p)=HAmH™,

the matrices F' and H are defined by (1.4.15), (1.4.16). As in the case of the Riemann

sphere the function ¥ has regular singularities at the points v = z; and the asymptotical
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expansion is assumed to have the same form:
U(7) = (Gj + O(y — 7)) (v — )3 Gy, (1.5.8)

where matrices G; ,C; ,T; do not depend on v; C; ,G; € SL(K,C) and T; are diagonal
traceless matrices such that any two entries of T; do not differ by an integer number. The
system (1.5.7) and the periodicity properties of the matrix A imply that the matrix ¥

transforms with respect to periods 1 and p of the torus T as follows:
U(y+1) =F UMM,  U(y+p)=HY()M,,

and that, being analytically continued along a contour [; surrounding the point z; , the

function ¥ gains a right multiplier:
U(y4) = C(y)Mj.

The matrices M, , M, and M; satisfy one relation: MaMbMa_le_lMMMM_l oMy =1T.
The matrices M, , M} together with M; are called the monodromy matrices. The mon-
odromy condition is now the assumption of independence of all monodromy matrices of the
positions of singularities {z;} and the b-period p of the elliptic Riemann surface. Like on
the Riemann sphere, this condition together with expansion (1.5.8) imply that the function
8z].\I/\II“1 has the only simple pole at v = 2; with the residue —A; . In addition, it has the

following twist properties:

ov
sz

0%
62j

ov

o1 - F-
(y+1)=F o7

_ ov _ _ _
(F; v 1('r+u):H5‘I’ YymH.
7

A holomorphic single valued function does not exist on a torus; therefore two functions

coincide if they have the same singularities and twists with respect to the basis cycles.
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Hence,

11 2 2
U, 0= —tr (17'2(7—z,~) Ai) . (1.5.9)

The derivative ¥, ¥~! with respect to the module p is holomorphic at v = 2; (but not at
I 7

v = z; + p) and has the following twist properties:

ov ov
.Y () = F o= ()F
6\5 ag o (15:10)
— 0! =H(—Vy) - =T | E.
B (v+m) <6u -3 (9))
Consider the following combinations of elliptic theta-functions:
Wap (’)’) QEAB] (7) efAB] (0)
Z = : - , A, B) # (0,0) . 1.5.11
) =" (G0 " haw) . WB#00) (L5.11)

The functions Z,5 have no singularities and satisfy the following periodicity properties:

Zas(Y+ 1) =€*Z,5,  Zus(y+p) =€ (Zas(7) —was(y)) (1.5.12)

The heat equation (1.2.3) for the theta-functions implies the following relation between Z,5

and wyp

Ouwar(v; 1) = Oy Zas(1; 1) - (1.5.13)

The properties (1.5.12), (1.5.13) give the expression for the y-derivative of ¥ :

L K-1
TO =" Y AN Zn(y - 2)04s - (1.5.14)
j=1 A,B=0
(4,8)#(0,0)

The compatibility condition of (1.5.7), (1.5.9) and (1.5.14) gives the Schlesinger system
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on the elliptic surface:

1

T (A (Fa-m) 4] ird,
1
aa_‘: = i [ﬁi,tzr ( T (2 — 25) jj )] ) (1.5.15)
j=Lji
1
= LA (42 2t b))
uiﬁ&m

The tau-function of this system is defined as the generating function of the following Hamil-

tonians:
1 L K-1
Hi = 4—7” t’f'A2(’)/)d’)’ = Z A?BAiABwAB(Zi - Z]) ’
1 LI B0.0)
) 1 L K-1
H, = —5— trA?(y)dy = 3 Z A$P AiapZap(zi — 2) -
a i,j=1 A,B=0
(4,8)#(0,0)
0Iog TSch Hz ’ 810g TSch _ HH )
3Zi 3#

1.6 Systems of hydrodynamic type

1.6.1 Darboux-Egoroff metrics

The Christoffel symbols I‘;k for the Levi-Civita connection V of the metric

ds? = Y,; gisdAid); are given by

i 1 a (99  Ogm  Ogjk
ﬂ_5217<mk+ay"an ‘ (16.1)

1

Here g" are the entries of the matrix g~ !, i.e. the following holds: Dk g““gkj =0 -

The Riemann curvature tensor R of the Levi-Civita connection V maps three vector
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fields X , Y and Z to the vector field R(X,Y)Z , where
R(X,Y)=VxVy —VyVyx — V[X,y] ; (1.6.2)

V x is the covariant derivative with respect to the vector field X .

A metric is called flat if its Riemann curvature tensor vanishes.

A diagonal metric ds? = Y7, gii(d\;)? is called potential if there exists a function U({\x})
such that g;; = 8§iU . A diagonal flat potential metric is called a Darbouz-Egoroff metric.
In this thesis, we use the term “metric” for a bilinear quadratic form which is not necessary
real and positive definite.

For a diagonal metric ds? = 3. gi;(d)\;)? , the rotation coefficients (;; are defined for
i#j by

_ Vi

Bs; VT

(1.6.3)

A diagonal metric is potential if and only if its rotation coefficients are symmetric with
respect to indices: §;; = B . A sufficient condition for flatness of a diagonal metric is
provided (due to Darboux and Egoroff) by the following system of equations for rotation

coefficients G;; :

O\ Bij = BilBrj, 4,4,k are distinct, (1.6.4)

D 068 =0 for all Gy . (1.6.5)
k

For a flat metric there exists a set of flat coordinates in which coefficients of the metric
are constant. In flat coordinates the Christoffel symbols (1.6.1) vanish. Hence, the covariant

derivative V,4 coincides with the usual partial derivative 8,4 . Therefore, flat coordinates
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can be found from the equation V4Vyt = 0 (x and y are arbitrary vector fields on the

manifold). In coordinates {)\;} this equation has the form:
3)\i3)\jt = ZI‘{F].B,\,Ct . (1.6.6)
k

The Christoffel symbols for a diagonal metric ds? = Y7, gi;(d\;)? are given by :

éci _ _15,\,09% , FL _ l@,\igii i — 13,\,»911

Jkk 2 gy W9 gy

I‘fj =0, 1,5,k are distinct .

1.6.2 Systems of hydrodynamic type

Here we give a brief introduction into the theory of systems of hydrodynamic type. A

rigorous and detailed description of this subject can be found, for example, in the review

(73].
A system of differential equations for functions w;(z,t), i =1,...,n of the form
Opui = > Vij(w)dpui,  i=1,...,n, (1.6.7)
j=1

is called a system of hydrodynamic type. The coeflicients V;; are called the characteristic
speeds. A system (1.6.7) is called hamiltonian [16, 73] if there exist a function A(u) which
does not depend on derivatives of u and on a flat nondegenerate metric (g;;) in the space
with coordinates {u;} such that

Vo) =3 g ViVsh (1.68)

k=1

Here V is the Levi-Civita connection of the metric (g;;) . As easily follows from the flatness
of the metric and (1.6.8), a system (1.6.7) with characteristic speeds (V;;) is hamiltonian

if and only if there exists a nondegenerate flat metric (g;j(u)) such that the following two
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conditions hold:

> guVie = gikVi; (1.6.9)
k=1 k=1
ViVik = V;Vie . (1.6.10)

We shall consider the diagonal systems of hydrodynamic type:
Owu; = Vi(u)0zu; , i=1,...,n. (1.6.11)

Some of the systems (1.6.7) can be diagonalized by an appropriate change of variables
u; . Conditions (1.6.9) imply that for the system (1.6.11) the metric (g;;) is diagonal:
0 = ¢i;V; — 9i;Vi = 9:;(V; — V;) . For a diagonal metric, the Christoffel symbols I‘fj of the

Levi-Civita connection V vanish if the indices i, j, k are distinct, and (1.6.10) becomes:
OVe=TE(Vi-WVa), i#k; 4,k=1,...,n. (1.6.12)

Relation (1.6.12) guarantees that the diagonal system (1.6.11) with the matrix (V;) is hamil-
tonian and corresponds to the diagonal flat metric (g;;(u)) . The compatibility of (1.6.12)
follows from the vanishing of the Riemann curvature tensor (1.6.2).

For a fixed metric ¢ (and, therefore, the Christoffel symbols), the system (1.6.12) has
infinitely many solutions {Vj} . The set of solutions is parameterized by n functions of one
variable. Any solution {Wj}?_; (which might in particular coincide with {V;}}_;) gives a

diagonal hamiltonian system of hydrodynamic type compatible with (1.6.11):

Oyui = Wi(u)0pu; i=1,...,n.
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Generalized hodograph method For any solution {W;}7_, of the system (1.6.12)

consider the following system of n equations for n functions u; (u = (u1,...,uUn)):
Wi(u) = Vi(w)t+z k=1,...,n, (1.6.13)

where z and ¢ are parameters. Differentiating (1.6.13) with respect to  and t and using
(1.6.11) and (1.6.12), it is easy to see that equations (1.6.13) define implicitly a solution
{ui(z,t)} to the system of hydrodynamic type (1.6.11). The converse is also true, namely,

the following theorem holds.

Theorem 1.2 A smooth solution {u;(z,t)} to the system (1.6.13) satisfies the diagonal
hamiltonian system (1.6.11). Conversely, any solution {u;(z,t)} to the system (1.6.11)
(locally in a neighbourhood of the point (xg,to) such that dzui(zo,to) # 0 for any i) can be

obtained as a solution to the system (1.6.13) for some {Wy} which satisfy (1.6.12).

1.7 Integrable systems associated with the space of rational

functions

This section presents a brief review of the work [42].

1.7.1 Differential equations for critical points of rational maps

Consider a rational map R(7y) of degree N of the form:

N-1
r
RY) =7+ > —"—. (1.7.1)
m=1 T HEm
The critical points 7; ,...,7Yan—2 of the function R, which are such that R'(y;) =0, can
be considered as functions of the critical values Aq,..., Aan—2 , defined by A; := R(v;) .
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The equation

A=R(y), ~y€CP!, \eCP!

defines a covering £ of the A-sphere CP! . The projection from the covering to the base is
denoted by 7 . The inverse v(P) to the rational map R(y) is defined such that R(v(P)) =
7(P) . The function v(P) depends on the variables Ai, ..., Agy_2 as parameters. It has only

one pole at the point at infinity of some (number one) sheet of the covering L ; therefore,
v(P)=XA+0(1) as P — oco®. (1.7.2)

As is shown in [42] the function v(P), considered locally as function of A and depending on

branch points Ap, ..., Asn_o as parameters, satisfies the following equations:
2N -2
ov O, ov Qy,
=~ =1 , - . 1.7.3
oA +1; V—"Yn o, V—Yn ( )

where a,, are some functions of the branch points. The compatibility condition of equations
(1.7.3) imply the following equations for the critical points ,, of the rational function (1.7.1)

and residues o, from (1.7.3) considered as functions of critical values A, :

2N-2

m On 0Ym On
= , M#n; —— =1+ g , 1.74
8A" Tn — Tm 76 6)\m n=1,n#m Tm — Tn ( )
oo, 20,0t Oam, -2 200 Qm
= , m#£n; —_— == —_— 1.7.5
8)\71 (’)’n — 7m)2 # a/\m Z ('Yn - ’7’m.)2 ( )

n=1,n#m

forallm,n=1,...,2N — 2.
Rational functions of the form (1.7.1) were introduced by Kupershmidt and Manin [53]
in connection with Benney systems. The fact that the critical points of these functions

satisfy equations (1.7.4), (1.7.5) follows from the paper by Gibbons and Tsarev [29].
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It is easy to establish a relationship between solutions to the system (1.7.3), (1.7.4),
(1.7.5) and solutions to the system (1.4.7), (1.4.8), (1.4.9) which appears from the deforma-

tion scheme of Burtzev, Zakharov, Mikhailov.

2N—-2
m=1

Namely, suppose that function v(A, {Am ) satisfies equations (1.7.3) with respect to
variables Ap, . Assume that 2N — 2 = N1+ Np and split the set of variables {A1, ..., AN, +n5,}
into two subsets: {A1,...,An,} and {;\1,...,5\1\;2} where A, = ANy4n, n=1,...,Ny . The

set {ym} of values of function v(P) at these points is splited in the same way:

{'71’-”7721\7-—2} = {’71,"'a’YNl}U{;yla"'v;;lNz}a

where ¥, = YNy4n, n=1,...,N2.
Now assume that the “untilded” variables Ay, ..., Ay, are arbitrary functions of a vari-
able z and the “tilded” variables Xy, ..., ;\N2 are arbitrary functions of a variable y . Then

using (1.7.3) we get the derivative of v(P) with respect to x :

v w0 KO am (1.7.6)
orx m=18)\m oz — O0r v —Ym
therefore,
N
Ov L cm
I (1.7.7)

where ¢, = am‘%‘g‘ ; this coincides with the second equation in (1.4.7). The first equation

in (1.4.7) is obtained in the same way after the identification

OAN, +m
bm = AN +m g;+ .

Equations (1.4.8) and (1.4.9) for y,, b, and ¢, as functions of (z,y) arise as compatibility

conditions of equations for v; and vy .
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Therefore, spaces of rational maps of given degree provide solutions of the system (1.4.7),
(1.4.8), (1.4.9) if we split the set of the branch points {A,,} into two subsets and assume
that one subset contains the branch points which are arbitrary functions of z only and
another subset contains the branch points which are arbitrary functions of y only.

Thus, the system (1.7.9) provides a realizations of the deformation scheme of [9].

1.7.2 Spaces of rational maps and non-autonomous integrable systems

A hierarchy of integrable systems can be constructed starting from an arbitrary branch
N-fold covering L of genus zero as follows. Fix some point Py € £ such that its projection
Ao on CP! is independent of all {\,} ; then g = v(P) depends on {\;,} according to the
equation

R(vo(A1,- -5 Aan—2)) = Ao -

Consider the following system of first order differential equations for a matrix-valued func-

tion U(P,{A\n}) :

a¥V v —m
D = 2P _%Jm\y , (1.7.8)

where Jp, are matrix-valued functions of {\,,} . The compatibility conditions of the linear
system (1.7.8) (derived with the help of equations (1.7.3), (1.7.4) and (1.7.5)) imply that
the functions J,,, can be expressed in terms of a single function G := ¥(F,) such that
Jm = (0x,,G)G™! . The function G satisfies the following system of nonlinear partial

differential equations:

(Y0 = 1m)GrnG ), = ((0 = 1m)Gr,G7Y), (1.7.9)

A simple calculation using equations (1.7.9) and system (1.7.4), (1.7.5), shows that if
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G({Mn}) is a solution of nonlinear system (1.7.9), then the following system of equations is

consistent:

dlogT (70— m)? _1\2
= 1.7.1
. o tr (G)‘mG ) (1.7.10)

where 7(A1, ..., Ay) is called the tau-function of integrable system (1.7.9).

The Ernst equation. For N = 2, the hierarchy (1.7.9) reduces to a single equation. If

the fixed point Py on the covering £ is chosen to coincide with co(? [i.e. the point of £ where

A = o0 and in a neighbourhood of which /(A — A1)(A — A2) = =A+ (A1 + A2)/2 + o(1)],
then

AL+ Ao A2 — A

AL — A
N=vP)="5", N-m="y and -7y =222

4

If we put A; := x , Ag := ¥y, then equation (1.7.9) coincides with the Ernst equation (1.4.3).

1.7.3 Systems of rank 1 and Darboux-Egoroff metrics

If the function G in (1.7.9) is scalar, the system (1.7.9) can be written [42] as a system of

scalar second order differential equations in terms of the function f({\,}) =logG :

o f TYm —Y Of Y —"Y Of
. 2 _ m _ n —
(Ym = 1) 55 55~ on =0 Dm0 O

0, m#n. (L.7.11)

In particular, any solution to the matrix system (1.7.9) gives a solution to the scalar system
(1.7.11) of the form f =logdetG .

The linear system (1.7.8) turns in rank 1 into the scalar system

oY(P) _ 0" "m of
Mm  V(P) = Ym Oy’

(1.7.12)

where (P, {A\n}) = log¥ . As well as in the matrix case, the function v is generically

non-single valued on £ .
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The linear scalar system (1.7.12) admits the following generalization to the Hurwitz

spaces Hy y :
P
dp(P) _ Jo, W (P, Pu) of
= =X ,
dAm, fQS W (P, P,,) 0Am
where W(P,(Q) is the meromorphic bidifferential defined by (1.2.19); the evaluation

(1.7.13)

W(P, P,,) of this bidifferential at ramification points P,, of the covering is done with re-
spect to the standard local parameter near P, as in (1.3.2); the points Qo , Py € L are
such that their projections on the A-plane are independent of {Az} . At the point Py we put
F{Am}) = (o) -

Let us denote vy, := fé;‘)’ W (P, P,,) . Then the compatibility conditions of the system

(1.7.13) are given by the following equations:

o f 1
MmO W (P, Fr) {

Un OF ”ma—f} =0. (1.7.14)

Um O | Un O
The system (1.7.14) thus gives a generalization of the scalar system (1.7.11) to the
Hurwitz space in arbitrary genus.
The tau-function of the system (1.7.14) is defined, in agreement with the definition
(1.7.10) of the tau-function of linear systems on Hurwitz spaces in genus zero, by the
following compatible system of equations:

Ologr & Ologr
MNm v2, MNm

0. (1.7.15)

Solutions to the system (1.7.14) are given in terms of the prime form F(P,Q) (1.2.17)

by the following theorem.

Theorem 1.3 Let [ be an arbitrary smooth closed contour on L such that its projection
on the A-plane is independent of {\n} and P, €l for any m . Consider on | an arbitrary

function h(Q) independent of {Am} .
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Then the function

E(PR, Q)
f= j{ Q)dg log ————= E(Q0. Q) (1.7.16)

satisfies the system (1.7.14). Corresponding solution to the linear system (1.7.13) is given by

EPQ)

00,Q) (17.17)

#(P) = Fr(Qdolos zr5m o

In analogy with the variational formulas (1.3.2) - (1.3.4), the Cauchy kernel
dolog{E(P,Q)/E(Qo,Q)}] depends on A, as follows (assuming that all points P,Q,Qo

are Ap-independent):

9 PR\ _1 P
N {dQl (QO’Q)} W(Q, P )QOW(P,Pm). (1.7.18)

Using (1.7.18), we find derivatives of the function f in the form:

) fo
% _ % 714 h(P)W (P, P,y . W(P,P,,) .

Then for the tau-function (1.7.15), we have

81” _< %h YW (P, P, ))2 . (1.7.19)

Each solution f of the rank 1 system (1.7.14) defines a Darboux-Egoroff metric ds? =

> Gmm(dA)? as follows:

OlogT
Gmm = ONm

(1.7.20)

Using the Rauch variational formulas (1.3.2) for the bidifferential W (P, Q) , one finds from
(1.7.19) the rotation coefficients (defined by (1.6.3)) for the metric (1.7.20). They are given

by the bidifferential W evaluated at the ramification points P, of the covering with respect

to the standard local parameters &, (P) = \/A(P) — A, near Py,

Brmn = %W(Pm,Pn) : (1.7.21)
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The rotation coefficients (1.7.21) satisfy the system (1.6.4)-(1.6.5) providing the flatness for
the metric. Relations (1.6.4) hold due to the variational formulas (1.3.2) for W . To proof
relations (1.6.5) for rotation coefficients (1.7.21) one uses the invariance of the bidifferential
W (P, Q) with respect to biholomorphic maps. Namely, let us consider the branched covering
L? which is obtained by an e-shift of all the ramification points P, in the A-plane, i.e. the
projections of branch points PS, of £ on A-plane are equal to Af, = A, + ¢ . Denote by
W¢ the bidifferential W defined on the surface £° . Let us denote the projections of points
P and @ on the A-plane by Ay and Ay , respectively. Define the point P¢ to be the point
lying on the same sheet as P and having projection Ap + € on the A-plane. In the same way
the point Q° belongs to the same sheet as @ and projects to Ag + € on the A-plane. Since
L can be holomorphically mapped to £ by the transformation A — A + € on all sheets, we
have

We (P, Q%) = W(P,Q). (1.7.22)

Assuming that P belongs to a neighbourhood of the branch point P,, and @ belongs to a
neighbourhood of the branch point P, , we can write down the respective local parameters
as Tm(P) = vAp — Am and z,(Q) = \/Aq — A, . These parameters are obviously invariant
with respect to simultaneous e-shifts of all {\,,} and A, i.e. z8,(P°) = z,,,(P) and z5(Q°) =
zn(Q) . Therefore, assuming that P = P, and Q = P, and differentiating (1.7.22) with

respect to € at € = 0, we get (1.6.5): >, O, Bnm = 0 for rotation coefficients Gnm (1.7.21)
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1.8 Frobenius manifolds

This section contains a summary of the theory [15] of Frobenius manifolds associated with
Hurwitz spaces. The details of Frobenius manifolds theory can be found also in [18, 33, 57]

1.8.1 WDVYV system and Frobenius manifolds. Definitions

The Witten — Dijkgraaf — E.Verlinde — H.Verlinde (WDVV) system is the following nonlinear

system of partial differential equations:
FEF'F; = FFTF;,  i,5=1,...,n, (1.8.1)
where F; is the matrix

O’F
(B = grgvam

and F is a function of n variables t!,...,t" . The system (1.8.1) is highly under-defined; to
turn it into a system of ordinary differential equations, the following two conditions arising

in applications are usually added:

¢ Quasihomogeneity (up to a quadratic polynomial): for any nonzero £ and some num-

bers vy, ...,Up, Vg

F(s"t, ... k"t") = k’FF(t!, ..., t") + quadratic terms , (1.8.2)

e Normalization: Fj is a constant nondegenerate matrix.

The condition of quasihomogeneity can be rewritten in terms of the Euler vector field

E=) vat0s (1.8.3)
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LiegF' = E(F) = ZuataataF = vpF + quadratic terms . (1.8.4)

«Q

Definition 1.1 A commutative associative vector algebra over C with a unity e is called
a Frobenius algebra if it is supplied with o C-bilinear symmetric nondegenerate inner
product (-,-) which has the property (x-y,z) = (x,y - z) for arbitrary vectors x,y,z from

the algebra.

Definition 1.2 M is a Frobenius manifold of the charge v if a structure of a Frobenius
algebra is specified on any tangent plane TyM smoothly depending on the pointt € M such

that
F1 the inner product (-,-) is a flat metric on M (not necessarily positive definite).

F2 the unit vector field e is covariantly constant with respect to the Levi-Civita connection

V for the metric (-,-) , i.e. Vxe =0 holds for any vector field x on M .

F3 the tensor (Vyc)(X,y,2) is symmetric in four vector fields x,y,z,w € T;M |, where

c is the following symmetric 3-tensor: ¢(x,y,z) = (x-y,2) .

F4 There exists on M a vector field E (the Euler vector field) such that the following

holds for any vector fieldsx, y on M :

Vi(VyE) =0, (1.8.5)
[E,x -yl - [E,x]-y-x-[Ey]=x-y, (1.8.6)
LieE<x,Y> = E(X7Y> - <[E7x]7Y> - (X, [E7Y]) = (2 - V)(X,y) . (187)
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The charge v of a Frobenius manifold is equal to vz + 3 , where v is the quasihomogeneity

coefficient from (1.8.4).

Theorem 1.4 Any solution to the WDVV equations defined for t € M determines in M

a structure of a Frobenius manifold and vice versa.

Proof. Given a Frobenius manifold, denote by {t*} the flat coordinates of the metric (,)
and by 1 the constant matrix 1,3 = (8, 8;s) . Due to the covariant constancy of the unit
vector field e , we can by a linear change of coordinates put € = 3,1 . In these coordinates,
F3 implies the existence of a function F' such that its third derivatives coincide with the

3-tensor ¢ :
BF
oteotbotY

Capy 1= €(Oe,048,01v) =
In coordinates {t*} , the vector algebra has the structure constants cZﬂ defined by O« -0y =
cz Baﬂ . The structure constants can be found in terms of derivatives of the function F' from
c‘i 575y = Capy - The associativity conditions for the vector algebra coincide with the WDVV
equations for the function F'.

The existence of the vector fleld F provides the quasihomogeneity for the function F .

Indeed, requirements (1.8.6), (1.8.7) for the Euler vector field imply
Liegc(z,y, 2) := E(c(z,y,2)) — <([E, z],y,2) - c(z, [E, Y], 2) — c(z,y,[E, 2])
= (3 -v)c(z,y,2). (1.8.8)

The Lie derivative Lier commutes with the covariant derivative V as can easily be checked
in flat coordinates, when the Euler vector field (due to VVE = 0 (1.8.5)) has the form

(1.8.3). Therefore (1.8.8) implies LiegF' = (3 — v)F + quadratic terms .
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The converse statement can be proven analogously. For any solution F' to the WDVV

system, let us put c,g, 1= 8fatﬁt7

F and 1,8 = (0, 0;8) = c1ap = F1 . The metric 7,4 is
flat since it has constant coefficients in the coordinates {¢t*} . Define the vector algebra by
Oto + Ops = cgﬁaﬂ where ciﬂm,, = Copy - This definition implies e = ;1 and the validity
of requirement (O« - Oy8,0) = (Ote, Oy - Opy) . The WDVV system for the function F
provides the associativity for the defined vector algebra. Since covariant derivatives in the
flat coordinates {t*} coincide with partial derivatives, the covariant derivatives of the tensor
¢ are symmetric: OysCagy = 8;1‘1 wivesF - The property F4 is easy to check for the defined
metric and vector multiplication. ¢

The function F , defined up to addition of a quadratic polynomial in ¢!,...,t" , is called

the prepotential of the Frobenius manifold.

Definition 1.3 A Frobenius manifold is called semisimple if at any point the Frobenius

algebra in the tangent space does not have nilpotents.

1.8.2 Dubrovin’s Frobenius structures on Hurwitz spaces

The most well-studied examples of Frobenius manifolds are the semisimple Frobenius ma-
nifolds associated with Hurwitz spaces [15]. The semisimplicity of Hurwitz Frobenius mani-
folds is equivalent to the assumption of simplicity of the branch points of the corresponding
coverings of CP! .

Consider the Hurwitz space M = Mgy, ... n,, 2nd construct the following covering M=

——

Mg.n,,...n., of this space. A point of M is a triple {£, A, {ax, biYi_,}, where {ag,bp}]_; is

m

a canonical basis of cycles on £ . The branch points Aq,...,A, of the covering (£, A) play

the role of local coordinates on M viewed as a complex manifold.
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The canonical vector algebra is defined in the tangent space T M by
0)\1' '8)\]. = 51‘]'8)\,; . (1.8.9)

The unit vector field is given by

L
e=) 0y (1.8.10)
i=1

For this multiplication law, any diagonal metric {,) (bilinear quadratic form) obviously has
the property (z - y,z) = (z,y - 2) required in the definition of a Frobenius algebra. The
diagonal metrics which give Frobenius structures on Hurwitz spaces are constructed using
the primary differentials listed below. The Euler vector field has the following form in

canonical coordinates:

L
E=Y Xy, - (1.8.11)
i=1

For the Euler field (1.8.11), the vector multiplication defined by (1.8.9) satisfies requirement

(1.8.6) from F4.

Primary differentials. Consider the following five types of differentials on the Riemann
surface L.

Type 1. Differentials ¢yia(P), ¢ =0,...,m,a=1,...,n; . The differential ¢y« is the
normalized Abelian differential ( fak ¢sie = 0) of the second kind with a pole of order o+ 1
at 00 1 Pyia(P) ~ 27 H(P)dz(P) at P ~ oo® .

Type 2. Differentials ¢,:(P) , ¢ = 1,...,m . The differential ¢,: is the normalized

Abelian differential of the second kind with a pole of order n; +2 at the point oo® . In other

words, it has the principal part of the form ¢,:(P) ~ —dA(P) at P ~ oo® .

70



Type 3. Differentials ¢,:(P) , ¢ = 1,...,m . The differential ¢, is the normalized
Abelian differential of the third kind W, 0 , i.e. it has simple poles at oo® and oo with
residues +1 and —1 , respectively.

Type 4. Differentials ¢.«(P) , k = 1,...,g9 . The differential ¢, is the normalized
( faz ¢« = 0) multivalued differential without poles having the following transformations
along the b-cycles: @,&(P%) — ¢ (P) = —2mid\ . Here ¢,x(P%) stands for the analytic
continuation of the differential along the cycle b; on the Riemann surface.

Type 5. Holomorphic normalized differentials ¢ (P) = wp(P), k=1,...,9.

A primary differential ¢ can be either a differential of one of the above types 1.-5. or

one of the following linear combinations:

m g m g
¢ = Zpi¢vi + Zak¢rk ) ¢ = Zpi¢wi + Zak¢sk )
=1 k=1 i=1 k=1

with any constants {p;} and {o\} .

Flat metrics. For a primary differential ¢ consider the following metric on the Hurwitz

space:

L 2 L
2 _ ¢°(P) =1
ds? = ; (Pr;a% D) ) =2 ; P)(d)\)? (1.8.12)
The condition dsg(x -y,z) = dsdz,(x,y -z) holds for the metrics (1.8.12) and, therefore, the
vector algebra (1.8.9) with the bilinear product (,) := dsﬁ is Frobenius.

The next theorem states that the metrics (1.8.12) define a structure of a Frobenius

manifold on the Hurwitz space.
Theorem 1.5 ([15]) The metrics (1.8.12) are flat. The rotation coefficients of the metrics
(1.8.12) do not depend on the choice of a primary differential ¢ defining the metric.
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Any metrics from the family (1.8.12) satisfies F2 and the requirement (1.8.7) from F4.

A set of flat coordinates (see Section 1.6.1) of each metric from the family (1.8.12) is given

by the following theorem.

Theorem 1.6 ([15]) Let Py € L be a point which is mapped to zero by the function A :
A(Po) = 0, and let all basis contours {ax, by} on the surface start at this point. Then the

following functions give a set of flat coordinates for the metric dsi (1.8.12):

1. ti;":zére?)\(Q)ﬁiﬁr—lqﬁ(Q) i=0,....m;a=1,...,n;.
2. vt = re§A(Q)¢(Q) i=1...,m.
3. w':=v.p. OOQS(Q) i=1,...,m.
4. rk::—j{ AQ)$(Q) k=1,....9.
1
k. _— —
5 s%:= 57 bk¢(Q)) k=1,...,9.

Here the principal value near infinity is defined by omitting the divergent part of the integral
as a function of the local parameter z; (such that A = z; mi=ly

The nonvanishing entries of the metric in these coordinates are given by:

1
dsg(ati;a,atj;ﬁ) = mdij50+ﬁ,ni+1 )

dsi(@vi,(’)wj) = 6ij s

dsg(ark,asz) = _6kl .

The unit vector field e is given by e = —08;1 , where the coordinate t' is defined to
coincide with the type of the primary differential ¢ defining the metric. Le. the coordinate

t! is such that ¢ = ¢ .
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For each primary differential ¢ consider the multivalued on £ differential ¥4 :

Uy(P) = (v.p. / } ¢> dA(P) (1.8.13)

000
where the principal value near oo? is defined by omitting the divergent part of the integral
as a function of the local parameter zy . This differential generates the primary differentials,
namely, the derivatives of the multivalued differential ¥4 with respect to the flat coordinates
for the corresponding metric ds?, are independent of the choice of the primary differential

¢ and are given by:

0¥,

e P

Prepotential of Frobenius structure A prepotential of the Frobenius manifold is a
function F' of flat coordinates for the corresponding metric such that its third-order deriv-

atives give the symmetric 3-tensor ¢ :

O3F(t)

BaBn O (Bya,0y5,0yc) = ds3(Opa - 8;5,0,0) -

This function, according to Theorem 1.4, satisfies the WDVV system. The existence of
the function F' proves F2, the symmetry of d;,0¢(8,4,0,8,0,c) with respect to the coordi-
nates t4,t%,t° tP .

Let w(® and w® be two differentials on the surface £ holomorphic outside of the points

0o?, ..., 00™ with the following behaviour at co® :
@ 1 (@)
a & o .
w@ = Z( )cn’i zidz; + — 1d (grn’i /\"log)\) . Pr~oot (1.8.14)
n=—nl*
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where n(® € Z and ¢ ¢

ni » Tni e some coefficients; z; = z;(P) is a local parameter near
oo' . Denote also for k=1,...,9 :
f{ w® = AL (1.8.15)
ag

dpl(ca)()\(p)):: w @ (P%) — W@ (P) Zp (1.8.16)

$>0
dg I A(P)i= @ (P) —o@(P), P N=3 dx . (1817)

s>0

Here, as before, w(P%*) and w(P) denote the analytic continuation of w(P) along the
corresponding cycle on the Riemann surface.

Note that if the differential w(® is one of the primary differentials, then the coefficients
Cniy Tnyy Pskr 9sk and Ay from (1.8.14)-(1.8.17) do not depend on coordinates. For w@)
coinciding with the multivalued differential ¥4 , the coefficients defined by (1.8.14)-(1.8.17)
(those which are nonconstant) are given by the flat coordinates for the corresponding metric:

Cong—2,i = vt Coq—li = the fora=1,...,n;; c_1; = wh; qup = 2mirk; and Ay = s* .

Definition 1.4 For two differentials w'® and w® on the surface £ which do not have

singularities other than described by (1.8.14)-(1.8.17), the pairing F[, ] is defined by:

m @ oot oo
Flw@ | @) = Z (Z 7—11211 (ﬁ) n (_al) v.p. /P wB _ v.p./P er(s‘i)/\nw(ﬁ))
0 0

i=0 \n>0 n>0
]. g fo) « «
o (—f ¢ (N\)w®) +f P (Nw®) + AL )7{ w<ﬂ>) :
(et ai by by
(1.8.18)

where Py is a point on the surface such that A(P) =0 .

In terms of the pairing (1.8.18) one can conveniently express the prepotential of the Frobe-
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nius structure defined by the metric dsz as follows:
1
Fy= 5.7-"[\1&;, , Wl (1.8.19)

the third derivatives of the prepotential Fyy with respect to flat coordinates are given by the

residue formulas:

L L
83F¢(t) = c(By4,08,0,0) = _Z r Pradys Pro = _% Z P4 (Pi)e8 (Pr)bre () ]
i=1 i=1

0;40,80;c lgis PdA ¢(Pi)

Second derivatives of F are given by the pairing of the corresponding primary differentials:
8tA3tBF¢ = ]:[¢tA ) ¢tB] :

The prepotential (1.8.19) is a quasihomogenous function of flat coordinates {t4} of the
metric dsg , i.e. (1.8.2) holds for some coefficients {v,} . The coeflicients of quasihomo-
geneity {v4} are coefficients of the Euler vector field written in the flat coordinates (see
(1.8.2) - (1.8.4)); they can be computed by finding the action of the Euler vector field
E= Z{;l A0y, on a flat coordinate t# , i.e. E(t*) = v,t* . The coefficients vz = 3 — v are

listed below:

2a 2c
f - OH I :1_ = 2
it ¢ = e v n; + 1 vr m+1+
if ¢=¢)vi, ¢=¢)Tk, v=-1 vp =4
if ¢=dui, &=, v=1 vp=2.

Let us denote by ]\/Zg?nl,,,,,nm the structure of a Frobenius manifold defined by the metric

dsg on the Hurwitz space ﬁg;nh...,nm .
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1.8.3 G-function on Hurwitz Frobenius manifolds

The G-function is a solution to the Getzler system of linear differential equations which was
derived in [26] (see also [17]). The system is defined on an arbitrary semisimple Frobenius
manifold M (semisimple means that the Frobenius vector algebra T M has no nilpotents
for any t € M).

The Getzler system has unique [17], up to an additive constant, solution G which satisfies

the quasihomogeneity condition

E(G) =

m»—t

- 2 wn
i (n-g) <5
with a constant in the left hand side: v is the charge, n is the dimension of the Frobenius
manifold; {v,} are the quasihomogeneity coefficients (1.8.2). In [17] the following formula

(which proves the conjecture of Givental [30]) was derived for this quasihomogeneous solu-

tion:

G = (1.8.20)

log —%~
08 Ji/ea’

where J is the Jacobian of transformation from canonical to the flat coordinates, J =

det (g—t)%) ; and 7y is the isomonodromic tau-function of the Frobenius manifold defined by

1
aong - Z Ba(hi-A), i=1,...n (1.8.21)
J#m 1

(B;; are the rotation coefficients (1.6.3)). The Jacobian J of a Hurwitz Frobenius structure

M? (the dimension n of the Frobenius manifold equals L) is given by ([17], p. 36):

1 L
- oL/2 H ¢(P
i=1

76



The function G (1.8.20) for Dubrovin’s Frobenius structure M, f”i on Hurwitz space in genus

one was computed in [17]:
G =—log {77(27rit3)(t2)%} + const ,

where () is the Dedekind eta-function (1.2.8) given by n(u) = (8,(0))/3 ; {t1, ta, t3}
are the flat coordinates on the Frobenius manifold. In [44] the G-function was computed
for Frobenius structures on Hurwitz spaces in arbitrary genus. In terms of the function 7,
(1.3.18) the G-function (1.8.20) for the Frobenius structure ]\/J\gnl,,,,,n is given by [44]:

m

L
1 1
G= —3 log Ty — Y logiI;[l(ﬁ(Pi) + const ; (1.8.22)

the expression for the Bergman tau-function 7y is given in Theorem 1.1 (Section 1.3.4).
The isomonodromic tau-function 7; (1.8.21) for a Frobenius structure M? is related to

the Bergman tau-function 7 by the formula ([45]):

[

7= (Tw)” (1.8.23)

1.8.4 Genus one case and the Chazy equation

Consider the torus T' = C/{2w, 2w’} with b-period 4 = w'/w and the Hurwitz space of

coverings (T, A) (1.3.10) defined by the equation
(=XM9), M) =p()+c, (1.8.24)

where c is a constant with respect to ¢ , and ¢ is a coordinate on CP! , the base of the
covering.
Consider the Frobenius structure ]\//.7{1’31 . The primary differential ¢, is the normalized

holomorphic differential w = d¢/(2w) in the coordinate ¢ given by (1.3.11). In a neighbour-
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hood of the point 0o? (at 0o® we have { = oo and ¢ = 0) the local coordinate is zg = 1/¢

and ¢, has the form:

bs(P) = -% (1 + %zg(P) + o(zg(P))> dzo(P) . (1.8.25)

The metric dsg = %Zle $2(P;)(dX;)? in canonical coordinates {);} has the form (see
(1.3.12) for ¢(P;)):

1 { (dX1)? (dXg)? N (dX3)? }
(A1 =2A2)(M1=23) (A2 =A)(A2—A3)  (As—A)(As—Ag) )

2
ds;, =
The flat coordinates of this metric are given by

tims == $AQUQ);  tai= 17 = ~2168 64(Q)/20(@)

~omi %(}55

For the coordinate t%! from (1.8.25) we have t%! = 1/w , r is the b-period of the torus

(b =w/w'): r = p/(2xi) . The coordinate s can be computed using (1.2.10):

42w dq 1 o"
§=- () + )=~ —¢
/Z 12w? 6]

2w

The metric dsis in flat coordinates, according to the Theorem 1.6, is given by dsis =
1/2(dt2)? — 2dt,dts .
The multivalued differential ¥4 (P) = ( f 01:;0 w) dA\(P) at the point P = oo® has the

singularity of the form:

%)= 5 (g <) 4 = (5 + 5 ) o).

For the prepotential (1.8.19) Fy, = (1/2)F[¥y,, ¥y,] we have

1 (3 1
Fy, = 3 (5 + 5 (—27rit3]{)\\ll¢s + 7{)\‘1’@ +t1j[‘1’¢s>> :
a b b
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To write this expression in terms of the flat coordinates we use the relations

A2 1 T+ 2w 9

j{/\‘l’m == 5¢ = (p(s) +¢)°ds ,
)\2 1 -+ 2w’ )

Ay, =— P —¢s = —— ) +c)ds,
$avo =0 - [T w0+

]f Ty, = - y{ Ay = =5 / ™ (ol) + s

where z is any complex number and the integrals fjwl p(s) and ffw p(s) are given by
(1.2.10). For the integrals of p?(s) it suffices to have the following relation. Consider an
auxiliary function f(z) = [* p*(c)ds , z € C . This function has zero residue at the point
z = 0. Therefore the integral fl f(2) is zero, where [ is the boundary of the parallelogram
with vertices z, = + 2w, = + 2w + 2w, z + 2w’ which contains the point z = 0 inside.
Computing this integral alternatively, using the relations f(z + 2w) = f(z) + ffw ©*(s) and
no__ 2w’ 9 z+2uw 9 g rzt2w 9
flz+2uw') = f(2) + [7 9%(s) , we get w [T p(s) = ' [[7°" p*(c) -

Finally, we obtain the following expression for the prepotential:

g

3 t3 y(2mit3) , (1.8.26)

1 1
Fy, = _Ztltg + §t%tg, -

where 7 is the following function of the period p = 2#its of the torus:

. _ 1 67(0;p)
(k) = 4dy logn(p) = 5— 80 )

(1.8.27)

(n(p) is the Dedekind eta-function (1.2.7)). The prepotential is a quasihomogeneous func-
tion: for any k # 0 we have Fy,(kt1, '/%ty, k0t3) = k2Fy_(t1,t2,3) . The Euler vector field
E = Z?zl A:0y, in flat coordinates has the form: E =t,0;, + %tgﬁh .

The function v (1.8.27) satisfies the Chazy equation:

f"=6ff"—9f2 (1.8.28)
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Actually, as can be verified by a direct calculation, any function of the form (1.8.26) with
v being any solution to the Chazy equation satisfies the WDVV system [15]. The general

solution to (1.8.28) has the form:

B ap+b 1 2
fw) = <cy+d> (cu+d)?2 cu+d

a b
where € SL(2,C) and v is given by (1.8.27). Therefore, for any a,b,c,d € C such

c d
that ad — bc = 1, the function

1 1 x) ap+b 1 2c
Fy, = ——t1t3 + —t3t3 — — ¢4 -
% gttt — gt (7 cu+d) (cu+d)? cp+d

is a solution to the WDVV system (1.8.1)-(1.8.2).
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The main result of the following work is a construction of new integrable systems related
to the Hurwitz space in genus one. These systems can be considered as “deformations” of
some integrable systems with spectral parameter living on an elliptic surface.

In 1989 Burtzev, Zakharov and Mikhailov [9] proposed a way to “deform” an abstract
U-V pair,

o, =Ud, &,=V3,

(see Section 1.4.2). In the traditional framework of inverse scattering method, the matrices
U and V are functions of x and y and a constant spectral parameter v . With respect to
v, U and V are either rational, trigonometric or elliptic functions. The “deformation”
means that ~ is allowed to depend on z and y and a “hidden” spectral parameter A . The
most well-known and probably most important example of such deformation is the Ernst
equation. In 1978, by Maison and Belinskii — Zakharov, the Ernst equation was found to
be a compatibility condition of a linear system with a non-constant spectral parameter = .
The expression for v in this case coincides with the uniformization map of the genus zero
two-fold covering of CP? ; therefore the Ernst equation is naturally related to the Hurwitz
space Hp,» (space of rational functions of degree 2). The integrability of the Ernst equation
becomes a partial case of the general deformation scheme proposed in [9]. In this work, the

authors considered a generic U-V pair and derived a system of equations which must be
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satisfied by the spectral parameter v in order for the matrices U and V to satisfy the zero
curvature condition. However, for a long time an effective procedure of solving the system
for the spectral parameter v was not known. Only recently, in [42], this system was solved
for the case of rational matrices U(y) and V() in terms of spaces of rational functions; a
solution v was given by the uniformization map of a genus zero surface. In this way a new
hierarchy of nonlinear integrable systems related to the Hurwitz spaces Ho y was obtained.
In the case N = 2, the hierarchy reduces to the Ernst equation.

In the framework of [42], the matrices U and V depend on z and y through the coor-
dinates {Ap,} (critical values of a rational function) on the Hurwitz space Hon (space of
rational functions of degree N). The corresponding linear system with respect to {An,} has

the form:

=Un(P)®(P), m=1,...,2N -2,

where P is a point on the covering. Here the rational matrix Un,(P,{);}) has the only
singularity, which is a simple pole at the ramification point P = P, of the covering (in
addition to a simple pole at infinity). Such a function exists on a genus zero surface.
However, for an analog of this linear system on a surface of genus greater or equal to one,
any function Up,(P) with single first-order pole must be non-single valued, i.e. it must
gain some multiplicative and (or) additive “twists” under analytical continuation along
topologically non-trivial cycles of the surface. These transformations for genus greater than
one also depend on branch points of the covering, which makes the corresponding integrable
system transcendently nonlinear.

In genus one, however, one can find the functions U,,(P) with one simple pole such that

under analytical continuation along the basic cycles they are conjugated by matrices which
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remain constant under the deformation of the Riemann surface (these matrices define the
so-called rigid vector bundles over an elliptic curve [1]). The independence of the matrices
of transformations of the coordinates {A;} on the Hurwitz space allows us to develop a
scheme of deformation of integrable systems on an elliptic surface analogous to the genus
zero case [42]. The result is a new family of deformed integrable systems. These new
integrable systems turn out to be closely related to Takasaki’s version of the isomonodromy

deformation equations on an elliptic surface.

83



Chapter 2

Integrable systems related to
elliptic branched coverings
V. Shramchenko

J. Phys. A: Math. Gen. 36,

10585-10605 (2003)
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Abstract. The new integrable systems associated with the space of elliptic branched
coverings are constructed. The relationship of these systems with elliptic Schlesinger’s
system [70] is described. For the standard two-fold elliptic coverings the integrable system

is written explicitly. The trigonometric degeneration of our construction is presented.

2.1 Introduction

The most well-studied integrable systems like Korteweg-de Vries, non-linear Schrédinger,

sin-Gordon [60] appear as compatibility conditions of the auxiliary linear system
¢, =U®, &,=V0, (2.1.1)

where U , V and ¥ are matrix functions of (z,y) and a constant (i.e. independent of =
and y) spectral parameter v € C . Matrices U and V for these systems are meromorphic
functions of v with (z,y)-independent positions of poles.

In 1978 Belinskii and Zakharov [3] and Maison [55] discovered integrability of the Ernst
equation

((z - y)GzG—l)y +((z - y)GyG—l)z =0, (2.1.2)

where G € SU(1,1)/U(1) , which does not fit into this framework. Namely, the Ernst
equation is a compatibility condition of the system (2.1.1) with matrices U and V of the

form:

, (2.1.3)

where the spectral parameter - is the function of z , y and a “hidden” (“constant”) spectral
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parameter A :

YOz, y) =y_ix(‘”;y A+ VO 9) (2.1.4)

Therefore the Ernst equation can be viewed as a “deformation” of the principal chiral model
(PCM) equations. For this model the matrices U and V have the same form (2.1.3) but
is a constant (independent of (z,y)) spectral parameter.

The same equation (2.1.2) for G € SU(2)/U(1) plays the role of the Gauss-Weingarten
system for the so-called Bianchi surfaces in R? (surfaces of negative Gaussian curvature of
special form [5, 48]).

The general deformation scheme of linear systems of the type (2.1.1) was proposed in
1989 by Burtsev, Mikhailov and Zakharov [9]. Assuming that the spectral parameter v in
(2.1.1) depends on x and y , they derived a system of differential equations on v which
provide a part of compatibility condition of the linear system (2.1.1). Solutions of the
system for v was found in the recent work [42]; in this work 7 is given by the inverse map to
the uniformization map of a rational (genus zero) N-fold branched covering of the Riemann
sphere when the branch points of the covering are chosen to be independent variables. In
other words, a deformation of the linear system (2.1.1) was associated with the space of
rational functions of degree N with simple critical points. In the case of two-fold rational
covering, if the matrix dimension equals 2 , this scheme leads to the Ernst equation.

In [42] it was also shown how to generalize this approach to the Hurwitz spaces of
genus g > 2 (spaces of meromorphic functions on the Riemann surface of genus g) for
matrix systems. However, for the genus grater or equal to two it is difficult to present any

explicit equations. The linear system associated with a genus g branched covering £ has
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the following form [42]:

dv

where the matrix U, (P, {A\m}) , P € L has only one simple pole at the ramification point
P, of the covering £ and does not have any other singularities. Such a function exists on
a genus zero surface, but for the higher genus it must be non-single valued. This means
that for genus greater than one the matrices Uy, get some multiplicative and (or) additive
transformations under tracing along topologically non-trivial cycles of the surface. These
transformations depend on branch points of the covering, which makes the corresponding
integrable system transcendently nonlinear.

In genus one, however, it is possible to develop in detail a scheme analogous to the genus
zero case and this is the purpose of the present paper.

Consider the Hurwitz space Hy n , the space of N-fold genus one coverings of the Rie-
mann sphere with simple ramification points (coverings consisting of N copies of CP! with
2N ramification points). Projections of the ramification points on the base of the covering
are called the branch points; we assume them to be distinct and denote by A1,..., AN .
Consider the Abel map v : £ — C from the genus one covering £ onto its fundamental
domain in the complex y-plane. We denote by 4, ..., vy the images of the ramification

points under this map. They satisfy the following equations as functions of the branch

points:
OYn
31 = —an[p(Vn—vm) +p(Mm)],  m#n,
3’)’ 2N
e = D mlp(m =) + o)l
m n=1,n#m
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where p denotes the logarithmic derivative of the Jacobi theta function 6; ; a,, are some

coeflicients subject to the differential equations:

oo,
E3W = -2 anampl(’)’n - ’Ym) )
do. 2N
m /
m = Z 2anpamp (’Yn - ’Ym) .

n=1,n#m
On a covering of genus one the linear system (2.1.5) can be written in terms of the elliptic
r-matrix, whose transformations under tracing along non-trivial contours of the covering
are given by similarity transformations independent of the branch points. Namely, in this

paper we consider the linear system (2.1.5) where matrices U,, look as follows:
2 12 2
Um (P) =tr ( ¥ W(P) = Ym) Jom ) (2.1.6)

with some matrices J,({A\t}) , P € £ . Here we consider all matrices as operators in the
1 2

tensor product of two copies of CK :A= AQI , A= I® A ; the elliptic r-matrix ¥ is a linear

operator in CX @ CK . The main result of this paper is the integrability of the following

system:

0 Jm 1 2
N,

- [Jlm,th ( v (Ym — Yn) J2n )] . (2.1.7)

It appears as compatibility condition of the linear system (2.1.5), (2.1.6). The systems
(2.1.7) are a genus one analogs of the integrable systems constructed in [42]; they give
elliptic generalizations of the Ernst equation (2.1.2).

We define the 7-function for the integrable system (2.1.7) as follows:

Ologr 1 9
= et (2.1.8)
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This system is compatible as a corollary of (2.1.7). For the genus zero two-fold coverings
this definition gives rise to one of the metric coefficients on the corresponding space-time
[42].

The non-linear integrable system (2.1.7), together with the associated linear system
(2.1.5), (2.1.8), turns out to be closely related with the elliptic Schlesinger system proposed
by Takasaki [70]. Namely, from each solution of the elliptic Schlesinger system we can
obtain a solution of the system (2.1.7). For these solutions there is a simple link between

7-function (2.1.8) and 7-function of the elliptic Schlesinger system:

t~

T({An}) = H (Z4009) ™ mser (15 |0 (2.1.9)

where {z1,..., 2} is a set of points in the y-plane which forms a part of monodromy data
for the elliptic Schlesinger system; Q1,...,Q are points on the covering whose images
under the Abel map v are given by z1,...,2; and whose projection on the A-sphere do not
depend on the branch points {\,} ; matrices Ay, ..., Ay, solve the Schlesinger system; the
variables trAJQ- are integrals of the elliptic Schlesinger system.

The paper is organized as follows. In section 2.2 we discuss the genus zero case and
present a slight generalization of the scheme proposed in [42]. In section 2.3 we derive
auxiliary differential equations describing the dependence of the Abel map v of the genus
one covering on the branch points. Further, we introduce the linear system (2.1.5), (2.1.6)
and derive the integrable system (2.1.7) as its compatibility condition. Then we define
the tau-function of the integrable system. Finally, we write explicitly the system (2.1.7)
in the case of the simplest elliptic covering. Section 2.4 is devoted to a description of the

link of the integrable systems constructed in section 2.3 with the elliptic Schlesinger system
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proposed by Takasaki [70]. In section 2.5 we describe the trigonometric degeneration of the

constructed integrable systems (2.1.7).

2.2 Integrable systems related to space of rational functions.

The goal of this section is to describe integrable systems related to the space of rational
functions. We present a different version of the construction proposed in [42]. Consider the
space of rational functions of degree N with 2N — 2 critical points which have the following

form:

_anyN +an YVt ta

R
(7) AN by YN A by

(2.2.1)

The genus zero algebraic curve

A= R(7)

can be realized as an N-fold branched covering £ of the A-sphere CP! ; a point P of the
covering is a pair ()A,7) . We denote by 7 the projection operator from the covering onto
the underlying A-sphere: 7(P) = A Functions (2.2.1) have 2N — 2 critical points counting
multiplicities; according to the Riemann-Hurwitz formula, the genus of the corresponding
covering L is zero. We assume the ramification points of the covering to be simple and
finite; denote them by Pi,..., Pyy_s . Their projections 7(Pp,) = Ap, on the A-sphere (the
branch points) are critical values of the rational function R(7y) : A = R(¥Ym) , where {ym}
are critical points of the function R , i.e. solutions of the equation R/(y) = 0 . We assume
all branch points A1,..., Aony_2 to be distinct.

To each element ! of the fundamental group m (C\ {A1,...,A2n—_2}) one can assign an

element o; of the symmetric group Sy , which describes how the sheets of the covering

90



permute when A goes along the contour ! . In this way we can assign to the covering £
a representation of m (C\ {A1,...,Aen—2}) in Sy . For the fixed number of sheets, type

of branch points and the assigned representation, the covering is determined by positions

2N-2

me1 gives a set of local coordinates on the Hurwitz space.

of the branch points, i.e. {\n,
Observe that this set has 2V — 2 elements whereas the corresponding rational function

(2.2.1) is defined by 2N + 1 parameters. This is because any Mébius transformation in the

~-sphere (determined by three parameters),

Ha7+b,
cy+d

ad—bc=1, (2.2.2)
leaves positions of the branch points {\,} invariant.

For our purposes we fix the coeflicient a, in the nominator of the rational function to

be a constant, say ay = 1 ; then the rational function (2.2.1) becomes:

:7N+0N—17N—1+"‘+a0 )

R ; 2.2.3
S N =T (2.2.3)
and at infinity the following asymptotics takes place:
I} 1
)\:1+:y-+0(:7—)’ as y~ 00, (2.2.4)

where we denoted 8 =an_, — by_; .

We shall consider the critical points {7, } of the rational function (2.2.3) as functions of
its critical values {A,} . First, note that on the covering £ there defined a one-to-one function
v : L — CP! such that R(v(P)) = n(P) ; in particular, the images of ramification points
are the critical points of the rational function: v(Py,) = 7, . The function v(P) takes every
value only once, thus v(P) is holomorphic everywhere except the point which is mapped

to infinity; then we can write the expansion of v(P) with respect to the local parameter
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VA = A in a neighbourhood of the ramification point P, (for any m =1,...,2N — 2) as

follows:

Let us differentiate these expansions with respect to A, and rewrite the result in terms of
v, using the relation v X — X, = (¥ —¥n)/vn + O((v — 1»)?) which follows from (2.2.5). We
see that the function Ov/9\, is a meromorphic function of v which has a first order pole at

the point 7, and is regular at all other critical points, i.e.

ov o,

B v ) (226)

where o, = (v,/2)? , and f(v) is a function regular everywhere except the point at infinity.
We find the behavior of this function at infinity differentiating the asymptotics (2.2.4)
(which holds for v = v(P) since locally, in a neighbourhood of the preimage of infinity
P ~ v~1(00) , the function y()\) = v(P) gives the inverse to R(y) , 7 ~ oo ) with respect

to Ay,

0=

Brn B 1
> —V,\nﬁ+0(;) , a8 Vn~oo. (2.2.7)

This implies the following equations describing the dependence of the function v on the

critical values of the corresponding rational function (2.2.3):

o oy B, _
3—)\71_%1_V+—B-V+cn, n=1,...,2N -2, (2.2.8)

with some functions ¢, = cp({Ax}) -
The compatibility condition of the system (2.2.8) gives the following system of differen-
tial equations for the critical points {7} of the rational function (2.2.3):

6'7m _ (07 + ,6)\11
6 )\'n, Yn — Ym ﬁ

Ym+Cn, NFEMmM. (2.2.9)
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Remark 2.1 We get the same equations if instead of the rational function (2.2.3) consider

the one of the form:

N-1

R(y)=By+0+ ,
(7) =By ;v—bk

2

(2.2.10)

which can be obtained from (2.2.3) by a Mébius transformation.

Consider now the following system of linear differential equations for a matrix-valued

function ¥(P,{\n}) (m=1,...,2N = 2):

Y py_ o =0m
d)\m V(P)_'Ym

G, G1y(P), (2.2.11)
where v, = v(P) , the projection m(P) = A9 € CP! of the point Py is independent of
all {A\n}; G({Am}) is a matrix-valued function. The compatibility condition for (2.2.11)

is given by the following system of non-autonomous (since all v,, and - are non-trivial

algebraic functions of {A,,}) coupled PDE’s:

(’Yo _ﬂ'YmGAmG-—l))\n _ (Lﬁ’y"GAnG—l))\ _ (2.2.12)

m

The described construction of the integrable systems gives a realization of the scheme of
Burtsev, Mikhailov, Zakharov [9] who derived the compatibility conditions for the deformed
linear system of the type (2.1.1). They obtained differential equations on the variable
spectral parameter of the linear system which form a part of the compatibility condition.
It was shown in [42] that the function v(P) is a solution of these differential equations.

In the case of the two-fold coverings (N = 2) corresponding to the rational function of
the form (2.2.10) with 8 =1, ¢ = 0 (the normalization considered in [42]) system (2.2.12)

coincides with the Ernst equation (1.4.3) after the identification \; = =, A2 = y (see [42]).

93



There exists a well-known relationship between these rational two-fold coverings and
the surface theory: the Gauss-Weingarten equation for a surface in R® with the Gaussian

curvature K = —[p(z,y)] =2 can be written in the following form [48]:
(GG 1)y + (pG,G 1) =0, (2.2.13)

for G € SU(2)/U(1) , which for the case of the Bianchi surfaces (p(z,y) = = — y) formally
coincides with equation (1.4.3).

Here the natural question arises: are there other coverings for which the system (2.2.12)
takes the form of the Gauss-Weingarten equation for some surfaces? (Then it would be a

new integrable case in surface theory.) This occurs if the system (2.2.12) has the property

Y0 — Ym = —(Y0 — ¥») for some pair of indeces m ,n ; that is
Yﬁ% =7, (2.2.14)

where yg = v(Pp) is the image of the point Py € £ whose projection Ag on the A-sphere does
not depend on {Ax} . Existence of such systems is an open question. Since the covering is
locally defined by 2N — 2 independent variables {A,,} , two additional parameters of the
rational function (2.2.3) could be used to impose some relations on {7,,} . As it was already
noted the freedom to choose these parameters corresponds to two Mdbius transformations
in the y-sphere: v — a7y and v — v+ b . But the condition (2.2.14) is invariant with respect
to both of these transformations, which means that for the given degree N of a rational
function we do not have any freedom to impose condition (2.2.14) for any pair of m and n .
However, there is still a possibility that (2.2.14) holds for some rational coverings as in the

caseof N =2.
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2.3 Integrable systems related to elliptic branched coverings

In this section we construct an elliptic analog of the integrable system (2.2.12).

2.3.1 Differential equations for images of ramification points of elliptic

coverings in fundamental domain

The Hurwitz space Hy n is the space of meromorphic functions of degree N on Riemann
surfaces of genus one. Consider a meromorphic double-periodic function R of v € C with
periods 1 and ¢ and N simple poles within the fundamental domain T'= C/{1, 4} . As a

function on T', R(y) has degree N . The equation
A=R(v) (23.1)

defines an N-fold branched covering (we again call it £) of the Riemann sphere. A point P of
the covering is a pair: P = (A7) . According to the Riemann-Hurwitz formula, this covering
has 2N ramification points counting multiplicities; we assume them to be simple and finite
and denote by Py,..., Py . Projections {m(Pp)} of the ramification points onto the A-
sphere (the base of the covering) are called the branch points. They are given by critical
values Aq, ..., Aoy of the meromorphic function R(7) : Ay, = R(9m) , where 91, ...,%2n are
critical points of R(7) , solutions of the equation R/(y) = 0 . We assume the branch points
to be distinct: A, # A, for m # n . Our choice of the local parameters on £ is standard:
in a neighborhood of a ramification point P, we take z(P) = VA —A\., P€EL, P~ P, ;
in a neighborhood of a point at infinity on any sheet we take x = 1/\ ; at any other
point variable X itself is used as a local coordinate. To the covering £ it is assigned a

representation of the fundamental group m (C\ {A1,..., Aon}) in the following way. To
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each element [ of the fundamental group one can assign an element o; of the symmetric
group Sy , which describes how the sheets permute when A goes along the contour [ on
the base of the covering. We fix this representation of 71 (C\ {A1,...,Aon}) . Then for
the fixed number of sheets and type of ramification points (we fix them to be simple) the
covering is determined by positions of the branch points; thus we consider {)\m}fn]\;l as a
set of local coordinates on the space of elliptic coverings.

Introduce on £ some canonical basis of cycles (a,b) . Denote by v(P) , P € L the

holomorphic Abelian differential with normalized a-period:

f;v =1; (2.3.2)

for our covering it has the form:
v(P)= ——=dy. (2.3.3)

The integral over b-cycle gives the module p of the elliptic Riemann surface £ :

w= fév . (2.3.4)

The function v(P) which maps £ onto the fundamental domain 7' = C/{1, u} is given by

the Abel map

P
v(P) = / v, (2.3.5)

00(0)
where we choose the initial point of integration to coincide with the point at infinity on
some (the “zero”th) sheet of the covering £ . We denote the images of the ramification
points under this map by 7, . They differ from the critical points {9} of the function R

by a shift (corresponding to the choice of initial point of integration in (2.3.5)) modulo the
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period lattice {ku +1; !,k € N} :
Ym=Fm—¢c, m=1,...,2N | (2.3.6)

where c is the second coordinate of the point 00(® € £ : 00l® = (00,¢) .

The Jacobi theta functions are given by

0lp, q)(v; ) = Y, exp{mip(m +p)* + 27i (m +p)(y + q)} - (2:3.7)
meZ

We denote by p(7) the logarithmic derivative of theta-function 61 (y) = —60[1/2,1/2](y) :

o) = %mg 61(7) ; (2.3.8)

it has the following periodicity properties:

p(y+1)=p(7), p(y+ 1) = p(7) — 2mi . (2.3.9)

The derivative p/() coincides with the Weierstrass P-function up to a rescaling of the
argument and an additive constant.
The following theorem describes the dependence of the map v(P) (2.3.5) on A and the

branch points {\n} ; it provides an elliptic version of equations (2.2.8).

Theorem 2.1 The function v(A,{\n}) defined by (2.3.5) satisfies the following system of

differential equations:

ov 2N
o = > axlp(v =) + plw)] (2.3.10)

k=1

ov
S = —om|p(Vv —Ym) + p(Ym)], m=1,...,2N, (2.3.11)
where we denoted
1, 17 v(P) 2

m= = = | ———— : 2.3.12
Am =35m =3 [d\/_/\ o p=PJ (2:3.12)

and {yn} are the images of the ramification points under the map v : vym = v(Pp,) -
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Remark 2.2 The form (2.3.3) of the holomorphic normalized differential implies that a,,

= [R"(4m)] " -

Proof of theorem 2.1. From (2.3.5) we see that the function v(P) is holomorphic in a

neighborhood of the ramification point P, and behaves as follows:

V(P) = Ym + UmVA = An + OA=Ap) as P — Pn, (2.3.13)

where /A — Ay, is the local coordinate in a neighborhood of P, , and v,, is defined by

(2.3.12). Therefore, in this neighborhood

ov Urn

mP) = o= tow, (2.3.14)
ov Um
m(P) = _m +O(1), (2.3.15)
(';9—/\1\/"(13) = 0(), n#m. (2.3.16)

We rewrite these expansions in terms of the coordinate v taking into account definition
(2.3.12) of a,y, and the correspondence between local parameters v —,, and v/A — A, given

by (2.3.13):

ov Qm ov _ Olm,
B\ P)= B +0(1), a—)\n(P) = 6mny — +O(1), (2.3.17)

as P— P, .

The function v(P) transforms as follows under the tracing along basic cycles on £ :
v(P)=v(P)+1, v(P’)=v(P)+u, (2.3.18)

where v(P?), v(P?) denote the analytic continuation of v(P) along a- and b-cycles, respec-

tively. Therefore the derivative v, is periodic with respect to tracing along the basic cycles.
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Then the function vy has periods 1 and pu in the y-plane. Its local behavior at the points
Ym , m=1,... 2N is given by (2.3.17). Hence, we conclude that Zﬁi’l ar = 0 as sum of

residues, and the derivative v) can be expressed as follows in terms of function p :

2N

8V(z/) = Z app(v — k) + const . (2.3.19)
k=1

EN
To determine the constant in (2.3.19) consider a neighborhood of P = 0o(®) . The Abel map

(2.3.5) is zero at this point, #(00(®)) = 0, and we can write its behavior there as follows:

y(\) = % + 0(%) as A — 0o, (2.3.20)

(Note that o # 0 since we assume 00 not to be a ramification point.) Therefore, for the
A-derivative we have in a neighbourhood of P = co® :

ov «a 1

Rewriting as before this expansion in terms of the coordinate v ((2.3.20) implies A ~ a/v )
we see that vx(v = 0) = 0 :

ov V2 3
5(1/)— —E-FO(V) , as v(P)—0.

Therefore, (2.3.19) turns into (2.3.10).
Consider now vy, . In the y-plane it has only one simple pole at v = 4, as it follows
from (2.3.17). The periodicity properties (2.3.18) of the Abel map imply that

ov ov ov
m(l/'{'l)— -a)\—m(l/) and 8—/\7;(1/—}_#

_ ov ou

The function —amp(v — ym) + const satisfies the periodicity condition (2.3.21) since, due

to the Rauch variational formulas [63], we have:

0
B _ Tiv2

= 2Ty, . 3.
B o = 2T (2.3.22)
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To find the constant term we again put v =0, i.e. P = 00® . Then from the asymptotics
(2.3.20) we see that vy (v = 0) = 0, which leads to (2.3.11).

<

Remark 2.3 Equations (2.3.11) can also be deduced from the Rauch variational formulae

for the differential v [63].

Compatibility conditions of the system (2.3.10), (2.3.11) imply the system of differential
equations describing the dependence of {y,,} on the branch points {A,,} (the indeces run

through the set {1,...,2N}):

OVn

s = ~omlen = m) ()], mAn, (2.3.23)

Vm —

e = > awlo(ym — ) + p(%)] - (2.3.24)
m k=1, k#m

The equations for residues oy, which also follow from the compatibility of (2.3.10) and

(2.3.11) look as follows:

Oay,

e —2000mp (Y —VYm), M#N, (2.3.25)

Oa 2N

a@ = Z 2 agamp’ (Ve — Ym) - (2.3.26)
m k=1, k#m

In fact, equations (2.3.25) and (2.3.26) are nothing but the Rauch variational formulas [63]

for the holomorphic differential v .
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2.3.2 Integrable systems

Denote the matrix dimension of our system by K . The classical elliptic r-matrix is the
following linear operator in the tensor product of two copies of CX :
K-1
1

T ()= Z wap(7Y) 0 a5 g8 ; (2.3.27)

A,B=0

(4,B)#(0,0)

where w4 are given by the combinations of Jacobi’s theta functions (2.3.7) ((4, B) # (0,0)):

_ G[AB] (v 9{00] (0) )

wap(y) = 2200 2.3.28
40 = G 000 (2.3.28)

where we denote
Olas)(Y) = Oum (i) = 0[£-1.4-2] (v; 1) -

All the w4 have a simple pole with unit residue at y = 0 and the following twist properties

wap(Y+1) = €*wap(7) , wap(y + p) = Cwas(), (2.3.29)

where € = e2™/K _ The matrices 0,45 are the higher rank analogs of the Pauli matrices; they

form a basis of sl(K,C) and are defined as follows (for (4, B) # (0,0)):

Oan = HAF? (2.3.30)

where F' is the diagonal matrix

F =diag{l,e,€%,..., 571}
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and H is the permutation matrix

010 . 0

0 01 0
H=

0 00 1

10 0

These matrices satisfy the relations eFH = HF ,and FK = HK =1 .

Together with 0,5 we introduce the dual basis 48 :

G_AB
0% = 0 aa, (2.3.31)
such that
tr (0 ,.50°7) = 6962 . (2.3.32)

From (2.3.29) and properties of matrices F' and H we derive the following periodicity

properties of the elliptic 7-matrix (2.3.27):

1 1
r(y+1) =F1 T F,
1 1
Fy+p) =HT(Y)H™. (2.3.33)

In the sequel we shall also need the functions

wag(7) HEAB] (7) OfAB] (0)
Z.5(7) = , - , A, B) # (0,0), 2.3.34
45(7) 2mi (O[AB] () O[AB] (0)) ( ) # 0.0 ( )
which have no singularities and transform as follows:
ZAB(’Y + 1) = EAZAB ] ZAB(fY ‘+‘ /.L) = €B (ZAB("Y) - wAB(’)’)) . (2335)
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Using the fact that theta functions satisfy the heat equation,

0, al(v;m) 06, q)(v, 1)
—6/72—— = 47{@T ) (2336)

we get the the following relation between Z,5 and w p :

Ouwan(v; ) = OyZan(v; ) - (2.3.37)

Now we are in a position to write down an “elliptic” counterpart of the linear system

(2.2.11):
d¥ (P) 2 2\ 1
12
. =tr ( 7 (W(P) — Ym) Jm) v (P), (2.3.38)

where

K-1

Jm = Z J:LBUAB
A,B=0
(4,8)#(0,0)

with scalars J4B . Here m = 1,...,2N , ¥ = ¥(P,{\,}) is a matrix-valued function; as

before, v(P) is the Abel map (2.3.5) from the covering £ onto its fundamental domain

T =C/{1,u} ; ¥m = v(Pp) . The compatibility condition of this system
( & ( B 0(P) = 7m) Jon ))A - ( fr ( B w(P) = ) Jo ))A
+[ tr ( @ (W(P) — vm) J2m ),t2r ( ¥ (W(P) — vn) Jzn )] =0 (2.3.39)

gives the system of differential equations for matrices J,, as functions of the branch points

Am :

- [ Jlm,th ( # (Ym — Tn) J2n )] , m#mn, (2.3.40)
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where 7’ stands for the derivative of the r-matrix with respect to its argument. To prove
that the compatibility condition reduces to (2.3.40) we, first, compute the derivatives in

(2.3.39) using the chain rule:

Tan (V) = PV tr, + 7 (VM0 -

The derivative of the period p is given by (2.3.22); for differentiation of v and {~,, } one uses
the equations (2.3.11) and (2.3.23) respectively. Then we note that the vector bundle x over
the Riemann surface £ , whose monodromy matrices along the cycles a and b are given by
F~! and H respectively, is stable [36]. Checking the periodicity properties of the left hand
side of (2.3.39) we see that it is a section of the adjoint bundle ady . Due to the stability
of x the bundle ady does not have holomorphic sections (see for example [72]). Therefore,
for condition (2.3.39) to hold it suffices that the left hand side has no singularities; this is
equivalent to the system (2.3.40).

Equations (2.3.40) form the non-autonomous non-linear integrable system associated
with the space of elliptic coverings which gives an elliptic analog of the integrable system

(2.2.12).

2.3.3 Tau-function

Let us introduce an object which we shall call the tau-function of the system (2.3.40):

Ologr 1 9
W 2amtr(Jm)' (2.3.41)

To prove consistency of the definition we compute the derivatives of the right hand side,

Bi—n(ﬁtr(‘]%)) , using (2.3.40). Then we get:

0 log T 12,1 219,
m = —trtr(JmJnr (’)’m—’)’n)) )
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this expression is symmetric in m and n , due to the following properties of r-matrix:

T ==7(-1), ad F()=7"(=).

This proves compatibility of the equations (2.3.41).
An alternative definition of the tau-function (2.3.41) can be given in terms of the one

form dP¥~! = ¥, U4y :

dlogr 1 tr(d¥—1)?
8/\m = EreS|Pm{T} . (2342)

To prove the equivalence of the two definitions, first note that we can write:

12
dA = =odv . (2.3.43)
Therefore using (2.3.10) for Ov/OX we get
tr(dPyT) o (2,01 dv = (iv:a (p(v = v&) + n( )))tr(\I/ T H2dy
aN D)) v = 2 k\P Ye) T P\Vk v .

(2.3.44)

Further, we write the “full” derivative of ¥ with respect to A,, as follows:

dr 0¥ Oy 9T
D 0. T on. v (2.3.45)

then using the form of the linear system (2.3.38) and formula (2.3.11) for the derivative of

v, we rewrite (2.3.45) in the form:

1

tr ( 7 (v~ Ym) T ) = BT‘TI; vl- am(p(v —Tm) + p(vm))

1
0w

1
— yp! 2.3.46
81/ \I/ b ( )

from which one can find tr(¥,¥~1)? and see that (2.3.42) is equivalent to (2.3.41).
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2.3.4 Integrable system in the case of two-fold elliptic coverings

The simplest elliptic covering £ has two sheets and four ramification points. It corresponds

to the hyperelliptic curve given by the following equation:
W' = (A= A1) (A= A) (A= A3)(A = ) ;

Am , m = 1,...,4 are branch points. On the covering we choose the basic cycle a to
encircle ramification points P; , P , and b-cycle to encircle points P, and P53 . For this

Riemann surface the normalized holomorphic differential v is given by

v 2 [ 7{ d—A] o (2.3.47)

w w

As before, y is the b-period of the surface £ : p = fbv(P) . Consider the map ¥ from the

covering L onto its fundamental domain T'= C/{1, u} :

5P = [ v(p);

P

this map differs from the map v(P) (2.3.5) by a function of branch points:
v(P) = (P) + M({Am}) ,

where h({\}) = f::%o) v(P) . For our choice of basic cycles the images 7., of ramification

points under the map U are given by:

- - - - 1
Y =0(P)=0; ’72=V(P2)=§;
- - 1L p - - Iz
== P = — —_ = P = —
Y3 = U(P3) 2+27 Ya = U(Py) 5
Since Ym — Yn = Ym — In (Where v, = v(Pr) , m = 1,...,4 are as before the images

of ramification points under the map v (2.3.5)), we can use these values of {,} to write
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explicitly the system (2.3.40) for the simplest covering. To do this we also calculate the
coefficients {a.,}2,_; defined by (2.3.12). The form (2.3.47) of the normalized holomorphic

differential v implies:

v? 2
Q) = 2= »
2 (A1 =2A)(A1 = A3) (A1 — Ag) A2

where A = §, % . From the Thomae formulas [23] we see that

47263

2 _
A= e

and therefore we have the following expressions for the coeflicients a,, :

o A3 — A e A — Mg _
LT 2m208 (00 — M) (A1 — Ag) 2T T o010 - M) (A — Ag)
)\1 et )\4 )\3 - )\2
a3 Q4 =

T 20203 (%a — A) (s — M) "m0 0 — A2) Ot — Ng)
Now we can write down the integrable system (2.3.40) explicitly for K = 2 (K is the matrix

dimension of the system). In this case we use the standard Pauli basis {01 , 09, 03} related

to the matrices o 45 as follows:

010 =01, o1 =103, 001 = 03 ;
(2.3.48)
1 3 1
ol = 3915 ol = %Ug , o0l = 593
The corresponding notation for components of J,,, is:
JL=J0 g =4J, g3 =J2. (2.3.49)
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We shall write the equations for (J1),, (/i = Jio1+J202+J303). The remaining equations

for (Jm)a, in the case of two-fold elliptic covering have a similar form.

0J; A=A 1 16 13 1292
OAg  2m2(A2 — A1) (A2 — Ag) It 63 6, +2miJy 0 s
oJf ML= A 2 1 6y . 13 1192
= — == —2miJ7 Jy0
OAy 2% (Ag — A1)(A2 — Ag) Ji 63 6, T142Y%
0FF _ M= Mg 10 N=de 0%
Oy 2m2(Xg — A1) (Ag = Ag) 1 036, " 2001 — Ao)(\1 — A3) 3 82

+2mi (JEJ303 — J1J363) .

Here 6, = 6[3,0](0) ; 63 = 6[0,0](0) ; 65 = 6]0,1](0) and 6 = 65(0) are the standard

theta-constants.

2.4 Relationship to the Schlesinger system

The elliptic Schlesinger system [70] describes isomonodromic deformations of solutions
U(v,{z}) of the following matrix linear differential equation:

dv
— = A(y)¥ 241
& — A, (24.1)
where 7y is a coordinate on the torus T' = C/{1, u} ; A(v) is a meromorphic s!( K, C)-valued

matrix:

A=Yt (P~ 4);

j=1

r(7y) is the elliptic r-matrix (2.3.27); z; € T, j = 1,...,L ; L is some integer. At the
points {z;} the matrix A(vy) has simple poles with residues A; . The residues are, in turn,

parameterized as follows:

K-1
Aj= > AfPous, (2.4.2)
A,B=0

(4,B)#(0,0)
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where matrices 045 are given by (2.3.30); A4? € C . The matrix A(7) has the following

periodicity properties:
A(y+1)=F'A(WF, Alv+p)=HA(mMH™.
It is assumed that ¥ has asymptotical expansion near z; , j =1,..., L, of the form:
U(y) = (G + Oy — ) (v ~ ) C; (2.4.3)

where matrices G; ,C; ,T; do not depend on 7v; C; ,G; € SL(K,C) and T} are diagonal
traceless matrices such that any two entries of T; do not differ by an integer number. The

function ¥ transforms as follows with respect to periods 1 and p of the torus T' :
U(y+1) = FIOU(7)M,,
U(y+u) = HI()M,,

and being analytically continued along a contour /; surrounding the point z; the function

¥ gains a right multiplier:
T(y) = (M,

where M, , M, , M; are called the monodromy matrices. The assumption of independence
of all monodromy matrices of the positions of singularities {2;} and the b-period p of the
elliptic Riemann surface is called the isomonodromy condition. This condition together

with expansion (2.4.3) gives the following dependence of ¥ on y and {zj}le :

1 1 2 2
T, = —tr ( ¥ (v — 2i) As ) , (2.4.4)
L K-1
VO =" > AMPZu(y - 2)0us (2.4.5)
]=1 A,B=0
(4,B)#(0,0)
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the functions Z,5 were defined by (2.3.34). The compatibility condition of (2.4.4), (2.4.5)

and (2.4.1) gives the Schlesinger system on the elliptic surface:

%4} = [Ai,tzr(lﬁ(zi—zy)jj)], i#7,
1
ok - F [hE(Famad)]
0 x‘L’ Lornoe 2 &S Y Cas
A S b)) e
j=1 A,B=0
(4,B)#(0,0)

The tau-function of this system is defined as the generating function of the following

Hamiltonians:
1 L K-1
H;, = y trA%(y)dy = Z z AFP A apwan(zi — 25) (2.4.7)
% j=1,j#i A,B=0
(4,8)#(0,0)
] | L. K-l
H,= —5- trA%(y)dy = 3 Z Z AFPAinpZap(2z ~ 25) . (24.8)
Y7 500
ol ol
%: —%:Hw (2.4.9)

The following theorem shows how (analogously to the rational case [42]) solutions of the

elliptic Schlesinger system (2.4.6) induce solutions of system (2.3.38) and (2.3.40).

Theorem 2.2 Let L be a genus 1 covering of the A-sphere with simple ramification points
Py, ..., Pon , which have different A-projections Ay, ..., Aoy . Consider a set of L points
{@Q1,...,QL} on L such that their projections n(Q;) are independent of {A,,} . Let v be the
Abel map (2.3.5) onto the fundamental domain of the covering, v : L — T . Consider the
Schlesinger system (2.4.6) with z; = v(Q;) and its solution {A;({z}) JL=1 . Let ¥(v,{z})
be the corresponding solution of system (2.4.1). We can consider ¥ as a function on the
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covering L via the Abel map:

U(P) = Y(v(P),{v(Q:)}) (2.4.10)
Then

1. the function Y (P) satisfies the linear system (2.8.38) with Jp, defined by

L
1 2 /12 2
Jm= —Gm > tr ( T (Ym — 2;) A; ) , (2.4.11)
j=1
and, hence, Jp,’s solve the system (2.3.40);

2. the tau-function T (2.3.41) of the system (2.3.40) is related to the tau-function Tgep

(2.4.9) of the elliptic Schlesinger system according to:

- ﬁ (%(Qj))trAf/ZTsch({Zk}|zk=u(Qk)) . (2.4.12)
=1

Remark 2.4 Formula (2.4.12) coincides with the one relating the tau-function of the rational
system (2.2.11) and the tau-function of the Schlesinger system on the Riemann sphere, see

[42].

Proof. Since the solution ¥ of (2.4.1) is defined on the space of branch coverings as in
(2.4.10), we can differentiate it with respect to A, according to the chain rule:

av oV ov. ZB\IJ 0z (9\1' ou
dAm OV Op, < 02 OAm Bu 0Am

(Recall that y is the b-period of the elliptic Riemann surface.) We differentiate z; = v(Q;)
according to the formula (2.3.11) for derivatives of v and use also formulas (2.3.22), (2.4.1),

(2.4.4), (2.4.5). Using the relation

was(y = %) (P(25 = Ym) = (Y = W) ) + 2MiZan(y — 2,)
= —Was(Ym — 2))Was(Y — Ym) ,
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which can be proved by checking periodicity properties of both sidesas y — v+1 ,7 = v+u

and behavior at the pole v = v, , we obtain:

v 2 712 L3 /o3
m = —Q, tr ( T (V—'Ym)zltr ( T (’Ym‘— Zj) Aj )) U . (2_4_13)
j=

We single out the v-dependent term and denote the rest by Jp,

3

2 L 23 3
Jmi= —amz tr ( T (Ym — 25) Aj ) .
i=1
This leads to the system (2.3.38) and proves the first part of the theorem. For the second

part, equality (2.4.12), we shall prove the following relation between the two tau-functions:

dlogr 0 log Tsch ‘GI”A2 0 log o
Am 2

sy (2.4.14)

This leads to (2.4.12) if one observes that

BtrA?
N,

which follows from the Schlesinger system (2.4.6). To show (2.4.14) let us first note two

auxiliary relations. The first one is:

wap(zi — %) (p(zj =) = p(z — ’Y))

= wWap(y — 2j)w-a—p(y — 2i) — 271 Z45(2; — 2z;) (2.4.15)

for any pair of non equal indeces i , j . This relation can be verified examining singularities
and periodicity properties and then noting that at the point v = %(zZ + z;) both sides are

equal due to the equality

2wa5(27)p(7) = wis(7) + 2miZ45(27),
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which, in turn, can be proved by the same method. One can apply the similar considerations

to verify the second identity which we shall use:

Wap(V)W-sa-p(7) = 21iZ,4p(0) - Pl(’Y) . (2.4.16)

To show (2.4.14) we differentiate the tau-function of the elliptic Schlesinger system 7s.,

with respect to A,

0 log TSch Z 0log Tsch 8zz Olog1scn, Ou
0z; A o Ohm

Then we rewrite all the terms explicitly using (2.4.9), (2.4.7), (2.4.8), (2.3.11), (2.3.22) and

simplify the obtained expression applying the auxiliary identity (2.4.15). Noting also that

Z_a-s(=7) = Zus(7), (24.17)

one arrives at the following expression:

L K-1
Olog s, o
8%\ = amK( Z Z EABA?BAi A" Bwap(Ym — 2j)W—a—5(Ym — 2i)
m ij=1 A,B=0
<y (A B)#(O,O)

+ sz Z ABA;‘BA;A—BZAB(O)). (2.4.18)
i=1 A,B=0
(4,8)£(0,0)

The derivative in the second term of the right hand side of (2.4.14) can be obtained using

(2.3.11) as follows:

dlog 3%
= (ora) /55 = (1)
hence

0 log W
aAm

|u =z; = _amp( 'Ym) . (2419)
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A certain simplification using the second auxiliary identity (2.4.16) leads to the following

expression for the right hand side of (2.4.14):

L v
Olog T trA2 0lo
g TSch +Z i gajluzzi

OAm 2 Olnm

i=1

L K-1
:Ot7m( Z ZKEABA;‘BA;A—BQUAB(’Ym - Zj)’w_A_B("ym — zl)> , (2420)
i,j=1 A,B=0

(4,8)#(0,0)

which is nothing but tr(J2)/2a., , where J,, are given by (2.4.11). Thus the right hand
side of (2.4.14) is equal to (logT)y,, where the tau-function 7 is defined by (2.3.41).

<

2.5 Trigonometric degeneration of the elliptic coverings and

corresponding integrable systems.

Here we describe the trigonometric version of system (2.3.40), obtained by a degeneration
of the covering £ . Further, as an illustration, we consider the two-fold covering when all
coefficients of the obtained system can be computed explicitely.

Set the matrix dimension K of the system to be 2 . An elliptic N-fold covering has,
according to the Riemann-Hurwitz formula, 2N branch points (recall that we assume them
to be simple and distinct). If we let one branch cut to degenerate (i.e. we let two ramification
points connected by a branch cut to tend to each other), the elliptic covering turns into
a rational one with 2V — 2 ramification points and a double point remaining from the
degenerated branch cut.

Assume that the points Py_1 and P,y are connected by a branch cut [Poy_1, Pan] -

2N-2

Moreover, choose the basic a-cycle on L to surround this branch cut. Consider {An,};;2;

as
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independent variables and Asjy_1 and Aoy as fixed parameters. Take the limit Aoy_1, Aoy —

2N -2
m=1 -

Ag with Ag independent of {A,, Then the branch cut [Pyn_1, Pon] degenerates and
the elliptic curve £ turns into the rational curve £y with two marked points @)1 and Q2
(a double point) which lie on different sheets of £y and have the same projection on the
A-plane:
(1) =7(Q2) = Aq -

The basic a-cycle on £ turns into a contour on Ly surrounding one of the points Q; or
Q2 . Suppose that it surrounds @ in the positive direction. Denote by ((P), P € Ly the
one-to-one map from the genus zero covering £y with ramification points Py,..., Pyy_o to

the Riemann sphere; for simplicity we fix this map by requirement ¢ : 00(® — oo such that

in a neighborhood of co(®
¢CA)=A+0(1). (2.5.1)
Denote the images of points 1 and @9 on the Riemann sphere by k1 and kg respectively:
k1 =C(Q1); ke =((Q2)- (2.5.2)

The holomorphic differential v(P) degenerates to the meromorphic on Ly differential vg
with the simple poles at @1 and @y and residues 1/27i and —1/27i respectively. This

differential can be written in terms of the coordinate ¢ as follows:

vo(¢) l(cl S )dg. (2.5.3)

T 2mi\( — 1 ¢ — Ko
The b-period p of the Riemann surface £ in the limit Poy_; — P,y has the following
behavior:
1
b= log | Aan—1 — Aen| + O(1), ' (2.5.4)
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i.e. yu — +ioco in this limit, and the fundamental domain 7" = C/{1, u} of the covering L
turns into a cylinder. The map v (2.3.5) now maps the degenerated covering Ly onto the

cylinder in «y-sphere:

Y R T A A 1 1 -k
V(P)_L(O)VO_%/OO(C_KII—C-K‘2>d<—%10g'€—_—m2. (255)

From the definition (2.3.7) of the Jacobi theta-functions, we deduce the behavior of loga-

rithmic derivative p(y) of 1 = 6}, 3] as p — +ioo :

p(y) = meotmy, (2.5.6)
and therefore,
/ 7r2
P~ . (25.7)
sin® 7y

Similarly, the r-matrix becomes in this limit (for the matrix dimension K = 2):

12 12 1 © 1 2 1 @ 1 2 1 1 2
r —T =3 5 = t 2.5.8
() =7o(7) 2sinmy OO oy 7202 T T ey 983, (2.5.8)

where we use the Pauli basis {0;}3_; (2.3.48); 7o is the so-called trigonometric r-matrix.
Differential equations (2.3.23)—(2.3.26) for {y,}27? (images of non-degenerated ramifica-

tion points P, ..., Pay—2 under the map v (2.5.5)) take the form (for m # n):

On
8: = —7al, [cot T(Yn — Ym) + Ot TYm) (2.5.9)
5 2N-2
gz—m = Z al [cot T(Ym — Yn) + COt TYn] ,
m n=1,n#m

800 0,0

e . S (2.5.10)
OAm sin® 7 (Yn — Ym)
g, _ N ot
6)\m n=1,n#m sin” 71'(’)’7;, - ’Ym) ,
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where by o9, we denoted the analog of the coefficient a;,, in the degenerated case:

1 1 VQ(P) 2
0 =22 = 2|—2oi =1,....2N—-2. 2.5.11
Ym = 5Ym Q[d\/)\—)\m p:pm] T e (25.11)

Remark 2.5 Differential equations (2.5.9) can be obtained directly from the form (2.5.5) of

the map v using the fact that the map ( satisfies equations (2.2.9) with =1, ¢, =0.

Remark 2.6 The system (2.5.9), (2.5.10) after a simple change of variables coincides with
equations for characteristic speeds of the system of hydrodynamic type to which the Boyer-
Finley equation (self-dual Einstein equation with one Killing vector) Uy, = (eY)4 reduces

[24].

The linear system for the matrix ¥ is written now via the trigonometric r-matrix rg :

1
: ;I,Afnp) =i ( Fo (/(P) = 1m) Jm ) ¥ (P), (2.5.12)

m =1,...,2N — 2. Then, the trigonometric version of system (2.3.40) for J,, = Jio1 +
J2,09 + J3o3 (for notation see (2.3.49)) gives the compatibility condition of the above

linear system:

oJL adn? 7L a%, 72 cos T (Vm — Vn) gL
O sin?T(Ym—Tn) " S T (Ym — )
2mi
e (J2J3 m =) = ST
¥ Srl ] (RS Tlm =10 = R
BJ,,?,I _ 012,71'2 J 4 a?nﬂ'2 COSW(’Vm - ’Yn) J2 (2 5 13)
o, sin? T(Ym —Yn) sin? T(Ym — Yn) " .
2mi 371 11 93 )
+ sin 7T(’7m - 'Yn) <JmJn JmJn €08 7T(’Ym ’)’n) ’
aJ3, opm? 3 amm? 3
O sin®7w(ym — V) " st w(ym —n)

2mi 1 g2 2 71
Sin 7 (Ym — Yn) (JmJ” JmJ”> ’

the indeces m and n are different and range in the set {1,...,2N — 2} .

117



All the involved coefficients can be explicitly computed if we start with the two-fold
elliptic covering. After the degeneration we get a rational covering £y with two ramification
points P; and P, (with the A-projections A; and A) and the marked points with the
projection Ag independent of A\; and Ay . The one-to-one map ¢ from this covering to the

Riemann sphere which satisfies condition (2.5.1) has the following form:

((P)=3(r+

AI;AQ + \/()\—)\1)()\—)\2)), (2.5.14)

where A = 7(P) , the projection of the point P on the base of the covering. Knowing the ex-
pression for the map ¢ allows us to find the images 1 , 72 of the non-degenerate ramification

points P; , P, under the map v(P) since it can be explicitly integrated (see(2.5.5)):

1 —
o = — Jog S

2.5.1
21 " (o — Ko (2:5.15)

where (m = ((Pp) , m = 1,2 are the images on the Riemann sphere of ramification points.

One can find them from the form (2.5.14) of the map ¢ :

3A1 + Ao
4 b

A1+3XA

G =¢\) = G2 =((A2) = R

for the (-images k19 of points Q1 and Q2 (2.5.2) we have:

_]. AL+ A2
K = 5(,\Q +272 \/(,\Q ~ Ao - AQ)) .

Now one can easily see from (2.5.15) that

e27ri'71 — \/)‘1 — /\Q — \/)‘2 — )\Q — _627ri72
VAr=2g+ v =g ’

(2.5.16)

and, therefore, y;1 — v = £1/2 . The same conclusion can be made if one observes that

71 — Y2 is equal to one half of the integral over a-period of the differential v (see definition
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(2.3.5) of the map v). The sign of the difference v; —+y2 is determined by a choice of direction
of the a-cycle.

It remains to calculate one more ingredient of system (2.3.40) for J,,, , namely, the coeffi-
cients a?,g (2.5.11).  Denoting by wvo(z) a locally defined function such that wvo

= vg(z)dz (z being a local parameter on the covering), from the relation

1 1 1
w(@)ds = 5 (e~ e )%
we deduce that
iC—()\m) = 27 vom, (6m = 1) (Gm = K2) , m=1,2.
K1 — Ko

From the explicit form (2.5.14) of the map ((P) one can compute the coefficients

(d¢/dz)(Am) of expansion of ¢(P) in neighbourhoods of ramification points P; , P . Then

we obtain the expressions for o, = 102 (m=1,2) :

7 CD VD VY YD Y YDV P PR

In the limit Ag — oo , summarizing all the above calculations, we get from (2.5.13) the

system of equations for J; = Jioy + J2og + Jio3 :

8J} 1 1 .

8J? 1 1

D - TN AJ1+2m‘]3J2’

BJB 1 .

o = a1 - ),

119



and the similar system for J; :

0J.} 1 1 .
8_A21 = §—A2_A1J21+2m J3JE,
0J3 1 1 :
—8—)\—2; = 5mj22—27fl Jg]ll,
0J3 1 1 :

Acknowledgments. I thank D.Korotkin for advising me in the course of the work and
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In the previous work the variable spectral parameter in the U-V pair of the integrable
system on the torus was given by the Abel map v(P) on the genus one surface (which in
genus one gives a uniformization map of the Riemann surface). The map v was considered
as a function of the coordinates {Ax} on the corresponding Hurwitz space. In particular, the
system of differential equations describing the dependence of the images {~,, } of ramification
points of the associated covering under the map v(P) on {\;} was derived. Under a certain
procedure of degeneration of the genus one covering, the system for {,,} transforms into a
trigonometric version. This trigonometric degeneration of the system for {v,,} can be used

to find a wide class of solutions to the Boyer-Finley equation

U:cy = (eU)tt 3

which is equivalent to the self-dual Einstein equation with a Killing vector. Namely, assume
the function U to depend on the variables {A¢} , which, in turn, are functions of z, y and

t. The functions {A\n(z,y,t)} are assumed to satisfy a system of hydrodynamic type:

O M

M O

The compatibility conditions of this system together with the Boyer-Finley equation for
the function U({Ak(z,y,t)}) imply a set of equations which allow us to parameterize the
characteristic speeds {Vi,} and {W,,} by a family of functions which satisfy the trigono-
metric system of equations derived in Chapter 2. Thereby we obtain a class of solutions to
the Boyer-Finley equation in terms of objects associated with the spaces of trigonometric

functions of arbitrary degree.
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Chapter 3

Boyer-Finley equation and systems
of hydrodynamic type

E. Ferapontov, D. Korotkin,

V. Shramchenko

Classical and Quantum Gravity 19,

L205-L210 (2002)
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Abstract. We reduce Boyer-Finley equation to a family of compatible systems of
hydrodynamic type, with characteristic speeds expressed in terms of spaces of rational
functions. The systems of hydrodynamic type are then solved by the generalized hodograph

method, providing solutions of the Boyer-Finley equation including functional parameters.

In this paper we construct solutions of the dispersionless non-linear PDE — the Boyer-

Finley equation (self-dual Einstein equation with a Killing vector),
Usy = (€V)ar, (3.0.1)

via reduction to a family of compatible systems of hydrodynamic type.

This equation was actively studied during last twenty years by many authors; we just
mention works {7, 10, 74, 66, 58, 19, 8, 51, 52, 56, 32]. So far the most general scheme of
the construction of its solutions was developed in [51, 52]. In these works solutions of the
Boyer-Finley equation were derived by averaging an appropriate two-point Baker-Akhiezer
function in genus zero which corresponds to the two-dimensional Toda lattice equations,
the underlying Riemann surface deforming according to the Whitham equations. Some
particular solutions of the Boyer-Finley equation were constructed in [10, 74, 19, 58]; their
relationship to the solutions of [51, 52] remains unclear.

The goal of the present paper is to give an alternative scheme of solving the Boyer-Finley
equation. Namely, we consider reductions of this equation to multi-component systems of
hydrodynamic type in the spirit of [28, 29|, see also [54, 56, 32]; the equations for char-
acteristic speeds of these systems are solved in terms of rational branched coverings. The

systems of hydrodynamic type are then solved by the generalized hodograph method [73].
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Now we describe a way to find solutions of the Boyer-Finley equation. First we ignore
the condition of reality of the function U and construct complex-valued solutions of equation
(3.0.1); then we formulate restrictions on the parameters which guarantee the reality of U.

Let us assume U to be a function of L variables Ay,..., AL, where A (z,y,t) (“Riemann

invariants” ) satisfy a pair of systems of hydrodynamic type

A direct substitution of the function U(Ay, ..., Ar) into the Boyer-Finley equation implies

the algebraic relation among the functions U , V,,, and W,,,,
VieWin = €Y, (3.0.3)
along with the following differential equations:
OmOnU (Vis Wi, 4+ Vi W) = 20,0m(eY),  m #mn, (3.0.4)

OnVn  OmW,
Vv o w.ow. ™ #n, (3.0.5)

where 9, = 8/0A .
Relations (3.0.3) allow one to parameterize the functions V;, and W,, by a new set of

variables o ({\}) as follows:

Vin = exp {2z'g0m + —(2{} , W = exp {—Zinpm + %} . (3.0.6)

In terms of these variables, equations (3.0.4) and (3.0.5) take the form

0 U0 U
2sin®(¢m — ¢n)

Bl = —  Opm = icot(gon — o) | (3.0.7)

where m # n .
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A class of solutions of this system is related to the space of rational functions in the

following way. Consider a rational function

Rw)=p+ . #—a’“— , weCP. (3.0.8)

In application to Benney’s hierarchy, functions of this form were first introduced in [53].

The equation
A= R(p) (3.0.9)

defines an N —sheeted covering £ of the A—sphere. A point P € L is a pair of complex
numbers, P = (A, u). We consider the generic case when the function R(u) has 2N — 2

non-coinciding finite critical points, i.e., the equation

R(p)=0
has 2N — 2 distinct roots 1, ..., pan-2. The corresponding critical values,
An = R(ptn), n=1,...,2N -2, (3.0.10)

are projections onto the A—sphere of the branch points of the covering £ (we denote branch
points by P, = (An, in); all of them are simple as a corollary of non-coincidence of p,
for different n). An additional condition we impose on the function R(u) is that all A,
are different. Now, observe that the number of parameters of the rational function (3.0.8)
is equal to the number of branch points; therefore, we can take Aj,...,Aay—2 as local
coordinates on the space of rational functions. It was shown in [42] that the critical points

{m} of the rational function R(u) depend on {),} in the following way:

Ottm _ _Bn . OB _ 200 mn. (3.0.11)

On P = fhm On (tn — ttm)?’
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These equations appeared also in [28, 29] in the theory of hydrodynamic reductions of
Benney’s moment equations. The inverse function u(P) = R™!(P) is defined on the covering

L . As a function of {A,}, it satisfies the system of differential equations [42):

Op Bn
L , 0.12
8)\71 Un — [ (3 0 )

Let us now choose two points 3 and @2 on the covering £ such that their projections
A(Q1) and A(Q2) onto the A—sphere do not depend on {A,}. Then, consider the following

function:

_ 1 e MB) — (@)
1(P) =51 8 (P 5(Q2)’ (3.0.13)

which maps £ onto a cylinder. We shall be interested in the images {7,,} of branch points
under this map as functions of {A,}. In the sequel we denote u(Q1) by ;1 and u(Q2) by

kg . According to (3.0.12), they satisfy the equations

8”]’ ;Bn .
- - =1,2. 0.14
6)\’"’ /J/n _ K/J ) .7 ? 2 (3 O )
From the expression (3.0.13) for y(F,,) we have
1 Hm — K1
Ym = 5 log ———— . (3.0.15)

2my L, — K2

Differentiation of this relation with respect to A, using (3.0.11), (3.0.13) and (3.0.14) gives

MNm 1 DB [ 1 1 ]
OAn 27 o — Pan [ fm ~ K1 m — K2 ( )

If we now express pn, and p, in terms of v, , ¥ from (3.0.15) and set

2
o — ﬁn[ L1 ] (3.0.17)

T 4r? Pm — K1 bm — K2
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we get the following system of differential equation for the functions v, ({An}) :

Orm

= —7ay, (cotw(’ym —Yn) + cot7r’yn) , m#n.
O,

Similarly, the functions «,, satisfy the following equations:

Oa QO
—= = 272 n , m#mn.
0Am sin? (s — Ym) 7

(3.0.18)

(3.0.19)

It turns out that a simple transformation allows one to construct solutions of system

(3.0.7) from the set of functions 7, and a,, . Namely, the system of equations (3.0.18),

(3.0.19) coincides with system (3.0.7) if rewritten in terms of the new variables U and ¢,

such that
%U; = ——47r2am
and
Son = ﬂ-('yn + ¢) )
where
oY
m = TR COtT Yy, .

The existence of functions U and % is provided by the compatibility conditions,

o _ 90
EI WAy Whet
and
15) 19]
W (mCotmYm) = £y (ancotmym) ,

which follow from (3.0.19) and (3.0.18).
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Ultimately, formulas (3.0.6) determine {V;,} and {W,,} as functions of {\z}. In order
to obtain a solution of the Boyer-Finley equation (3.0.1) we need U as an explicit function
of z, y and t, that is, we need to solve the system of hydrodynamic type (3.0.2). The tool
which is usually used for this purpose is the generalized hodograph method [73]. Instead of

solving (3.0.2), we find a smooth solution A(z,y,t) = (A1,...,Ar) of the following system
Om(A) =t + Vi (A)z + Wi (A)y, (3.0.25)

where the functions {¢n,} satisfy the linear system

am<Pn . amVn - amWn
Pm — Pn B Vm“Vn - Wm_Wn ’

m#mn. (3.0.26)

To see that an implicit solution (3.0.25) for {A\n(z,y,t)} indeed satisfies (3.0.2), one needs
to differentiate (3.0.25) with respect to z ,y and ¢ [73].
To be able to use this method we need to construct functions ¢, , i.e. we need to solve

for ¢, the system

. m#n. (3.0.27)

Observe that for m #n

OV 2o,
= — ; 3.0.28
Vin — Vo sin? 7(Ym — Tn) ( )

this is a simple corollary of definitions of V,,, and W,, and equations (3.0.20), (3.0.7).
Then the following functions satisfy equations (3.0.27):

2 H(A)dy

Pm =T
" 2”(7_')’m)

) 3.0.29
1 sin ( )

where [ is an arbitrary closed contour on the branched covering £ such that its projection

on the A-plane does not depend on the branch points {\,} and such that P, ¢ [ for all m ;
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H()) is an arbitrary function on ! independent of {\,}. The proof of this fact is a simple
calculation using equations (3.0.18), (3.0.12) and the link (3.0.13) between 7 and p.

Note that in this framework we can fix positions of branch points {Ar41,...,Aan—_2}
and consider the dependence of all functions on the remaining set of variables {A1,..., AL},
where L < 2N - 2.

The following theorem summarizes our construction of solutions of the Boyer-Finley

equation.

Theorem 3.1 Let functions am({Mn}) and ym{({An}), m,n=1,...,L, L < 2N —2, be
associated with an N-sheeted branched covering as described above. Define the potentials

U({M}) and Y({An}) to be solutions of the following system of equations:

oU 9
'm—m—-[lﬂ' A, m—l,...,L, (3030)
aaTw = TOmCOtTYm, m=1,...,L. (3.0.31)

Let the (z,y,t)—dependence of branch points A,, n=1,...,L, be governed by the following

system of L equations,

sz{,:M:HmeerWm, m=1,....L, (3.0.32)
1 Sin® (Y — ym)

where

Vi = e2@ilm+0)+U/2 -y o= 2milym ) +U/2 (3.0.33)

[ is an arbitrary {\,}-independent contour on L such that all P, ¢ I; H(\) is an arbitrary
summable {\,}-independent function on l.

Then the function U({\n(z,y,t)}) satisfies the Boyer-Finley equation (3.0.1).
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Remark 3.1 If an N-sheeted rational branched covering £ with two marked points Q; , @2
is fixed, the solution of the Boyer-Finley equation constructed according to this theorem is
defined by

(a) a functional parameter H(\) and

(b) a number L < 2N — 2, which has a meaning of the number of components A,
satisfying systems of hydrodynamic type (3.0.2) with characteristic speeds (3.0.33).

The application of theorem 3.1 in practice requires calculation of quadratures (3.0.30)
and (3.0.31); besides that, one needs to resolve implicit relations (3.0.32) to find the depen-

dence of A\, on (z,y,1).

So far we were dealing with complex solutions of the Boyer-Finley equation (3.0.1); it
is easy to formulate conditions on the parameters of our solutions which provide the reality
of the function U.

Let us assume the function R() to satisfy the “reality condition”

R®) = R(v). (3.0.34)

Then the branch covering £ is invariant with respect to the antiholomorphic involution 7 ,

which acts on the points (A, u) of the covering £ as follows:

T (A p) = (A Q). (3.0.35)

Assume also that both points @)1, @2 are invariant with respect to 7, i.e., K12 € R. Let
also the contour / be invariant with respect to the involution and the function H(P) satisfy
the relation H(P) = —H(PT). Then one can choose the constants of integration in (3.0.30)
and (3.0.31) such that the solution U(z,y,t) of the Boyer-Finley equation given by theorem

3.1 is real.
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Indeed, the invariance of the covering £ with respect to 7 means that all A, are either
real or form conjugate pairs; the same holds for the set {um,}. The expression (3.0.13) for

the map -y implies

Y(PT) =—y(P), (3.0.36)

therefore, all 7, = v(P,,) are either imaginary, ¥, = —7ym, or form anti-conjugate pairs.
Applying complex conjugation to both sides of equation (3.0.18), we find that ., are either
real (a,, € R if A, € R) or form conjugate pairs, oy, = @n, if Am = An . This readily
implies that one can choose the integration constant in the definition (3.0.30) of potential
U in such a way that U is a real function of {\n,}.

For completeness, we should also check that the reality condition does not contradict
the solvability of system (3.0.32). Assume, for simplicity, that all A, are real, i.e., all 7y,
are imaginary and all o, are real. Then the potential function ¢ solving system (3.0.31)
can be chosen to be imaginary, and both V;, and W, (3.0.33) are real. Together with
H(PT) = —H(P) and (3.0.36), it implies that both sides of equations (3.0.32) are real.
Therefore, system (3.0.32) gives L real equations for L real variables {),,}, and generically
has solutions.

Similar consideration applies when some A.,’s form conjugate pairs; in this case the

corresponding equations (3.0.32) will be conjugate to each other, and the number of real

equations will again coincide with the number of real variables.

Acknowledgments We thank Tamara Grava and Yavuz Nutku for useful discussions.
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The scalar version of integrable systems found in Chapter 2 can be generalized [42] to Hur-
witz spaces in arbitrary genus (see Section 1.7.3). Any solution to the scalar system in
arbitrary genus corresponds to a Darboux-Egoroff metric on the Hurwitz space. The rota-
tion coeflicients of those Darboux-Egoroff metrics are given by the canonical meromorphic
bidifferential W evaluated at the ramification points {Pp,} of the covering with respect to
the standard local parameters.

On the other hand, the rotation coefficients of flat metrics of Frobenius structures on
Hurwitz spaces found by Dubrovin [15] are also given by the bidifferential W evaluated at
the ramification points of the corresponding covering.

In the next paper it is shown that the flat metrics of Hurwitz Frobenius manifolds of [15]
belong to the family of metrics defined by solutions to the scalar systems from [42], and that
the construction of Frobenius manifolds on Hurwitz spaces [15] can be naturally described
in terms of the meromorphic bidifferential W . According to the Rauch variational formulas,
the bidifferential W and therefore the structures of a Frobenius manifold of Dubrovin are
holomorphic on the Hurwitz space.

In this paper, we construct families of Darboux-Egoroff metrics on Hurwitz spaces in
terms of the Schiffer and Bergman kernels on Riemann surfaces. These metrics are metrics
on a Hurwitz space considered as a real manifold. It turns out that the constructed family
of Darboux-Egoroff metrics also contains metrics which correspond to Frobenius manifolds.
The dimension of these manifolds is double with respect to the dimension of Dubrovin’s

structures. We call them the “real doubles” of Hurwitz Frobenius manifolds of Dubrovin.
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Chapter 4

“Real doubles” of Hurwitz
Frobenius manifolds

V. Shramchenko
math-ph /0402015,

to appear in Commun. Math. Phys.
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Abstract. New Frobenius structures on Hurwitz spaces are found. A Hurwitz space is
considered as a real manifold; therefore the number of coordinates is twice as large as the
number of coordinates on Hurwitz Frobenius manifolds of Dubrovin. Simple branch points
of a ramified covering and their complex conjugates play the role of canonical coordinates
on the constructed Frobenius manifolds. Corresponding solutions to WDVV equations and

G-functions are obtained.

4.1 Introduction

Frobenius manifolds were introduced by B. Dubrovin [13] as a geometric interpretation of
the Witten - Dijkgraaf - E.Verlinde - H.Verlinde (WDVV) equations from two-dimensional
topological field theory [12, 75].

The theory of Frobenius manifolds is related to various branches of mathematics: the
theory of singularities — some ingredients of a Frobenius manifold had long existed on the
base space of the universal unfolding of a hypersurface singularity. Besides singularity
theory, Frobenius manifold structures have been found on cohomology spaces of smooth
projective varieties (the theory of Gromov-Witten invariants); on extended moduli spaces
of Calabi-Yau manifolds; on orbit spaces of Coxeter groups, extended affine Weil groups
and Jacobi groups; and on Hurwitz spaces (see the references in [15, 57]).

The aim of the present work is to construct a new class of semisimple (vector algebra on
any tangent space has no nilpotents) Frobenius manifolds associated with Hurwitz spaces.
The dimension of Dubrovin’s Frobenius manifolds on Hurwitz spaces is equal to the complex

dimension of the Hurwitz space. In this paper we build Frobenius structures of a double
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dimension on the real Hurwitz space. We consider the Hurwitz space as a real manifold, i.e.
we complement the set of its usual local coordinates by the set of their complex conjugates.
We call new Frobenius manifolds the “real doubles” of Hurwitz Frobenius manifolds of
Dubrovin (in some cases the prepotential of a “real double” is real-valued, however this is
not always the case).

We start with a construction of a family of Darboux-Egoroff (flat potential diagonal)
metrics on a real Hurwitz space in genus greater than zero. The Hurwitz space we con-
sider is the space of coverings (£,)) of CP! | where £ is a Riemann surface of genus
g > 1, XA is a meromorphic function on £ with simple finite critical points Pi,..., P,
and possibly with critical points at infinity. The real Hurwitz space has local coordinates
{5 A A, . ,XL} , where A; = A(P;) . The Darboux-Egoroff metrics on this space are
written in terms of the Schiffer (P, Q) and Bergman B(P, Q) kernels on a Riemann surface

of genus g > 1. These kernels are defined by [23]:

QP,Q) =W(P,Q) —m Y (ImB);;'wi(P)w;(Q) ,

1,7=1

g
B(P,Q) =7 Y (ImB);'wi(P)w;(Q),
i,j=1

where W(P,Q) = dpdglog E(P,Q) is the canonical bidifferential of the second kind on
L ; E(P,Q) is the prime form; {w;}]_, are holomorphic differentials on £ normalized with
respect to a given canonical basis of cycles by fai w; = 6;; ; and B is the symmetric matrix
of their b-periods: Bjj = §, w; .

The kernels can equivalently be characterized as follows [23]. The Schiffer kernel is the
bidifferential with a singularity of the form (z(P) —z(Q))~2dz(P)dz(Q) along the diagonal

P = @Q such that pv.[f .Q(P,Q) w(P) = 0 holds for any holomorphic differential w on
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the surface. The Bergman kernel is a regular bidifferential on £ holomorphic with respect
to its first argument and antiholomorphic with respect to the second one. It is (up to a
factor of 2mi) a kernel of an integral operator acting in the space L$" (L) of (1,0)-forms
as an orthogonal projector onto the subspace H™?(L) of holomorphic (1,0)-forms. In
particular, for any holomorphic differential w on the surface £ the following relation holds:
[J; B(P,Q) w(Q) = 2miw(P) . Both kernels, Q(P,Q) and B(P,Q) , are independent of the
choice of a canonical basis of cycles {ak, bx} .

We consider the following family of metrics on the real Hurwitz space:

L

=Y (4 h(Q)Q(Q,Pj)>2 @\ + Eij (¢ h(Q)B(Q,Pj)>2 @y, (L)

=1

Here [ is an arbitrary contour on the surface not passing through ramification points and
such that its projection on the base of the covering does not depend on coordinates {A;; A;};
h is an arbitrary function defined in a neighbourhood of the contour. The rotation coef-
ficients f;; of the metrics (4.1.1) are given by the Schiffer and Bergman kernels evaluated
at the ramification points of the covering with respect to the local parameters given by

)\(P) - )\z .

ij =
As a consequence of Rauch variational formulas for the Schiffer and Bergman kernels, we
have relations 0y, B;; = BixBk; for the rotation coefficients for distinct indices 1, j, k from the
set {m;m}%_; . These relations provide main conditions for the flatness of metrics (4.1.1).
Some of the metrics (4.1.1) correspond to Frobenius structures on the Hurwitz space.
We describe these structures and find their prepotentials and flat coordinates of the corres-

ponding flat metric. A prepotential as a function of flat coordinates satisfies the WDVV

136



system.

Since for the surface of genus zero the Bergman kernel vanishes and the Schiffer kernel
coincides with W (P, Q) , the metrics (4.1.1) and therefore the construction of Frobenius
manifolds suggested here is only new for a Hurwitz space in genus > 1 . For the Riemann
sphere, our construction coincides with that of Dubrovin. For the simplest Hurwitz space
in genus one, which has the real dimension 6, we compute explicitly prepotentials of three

new Frobenius manifolds. One of these prepotentials has the form:

1 1 1 1 1 1 1 t2 1 t3¢2
F = —Zt1t3 — —t1t2 + —t1t4(23 — —) — t3tg — —t3(tz3 — — )2 — 25
gtz — ghits + gtita(2s 27m') ptits — 3talts 27ri)t6 16 tg
t 1 ¢ t tatat?
— -2 2) 4 B4 (4.1.2)
32t6 12871 t6 te 4t6
ot 1 éw 1 — 2mits (ts — 55 )tat?
32t6 128mq t% 27Tit6 4t6 ’

where y(u) = 40, logn(p) for n being the Dedekind n-function. The function F' is quasiho-

mogeneous, i.e. it satisfies
F(kt1, 612y, t3, Kta, 6/ %t5, t6) = K2F(t1, 2, 3, ta, t5, t6)

for any nonzero constant x . The matrix F; formed by third derivatives Fi,t,t; is constant
and invertible; it gives the flat metric (written in flat coordinates) from the family of metrics

(4.1.1) which corresponds to the Frobenius structure (4.1.2). The functions

OF
oy = ;(Ffl)knm
define an associative commutative algebra in the tangent space to the underlying Hurwitz
space: O, - O = cfj@tk . (This is equivalent [15] to the WDVV system for the function F'.)
Associated with any semisimple Frobenius manifold is the G-function, the solution to
Getzler’s system of linear differential equations derived in [26] within the study of recursion
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relations for the genus one Gromov-Witten invariants of smooth projective varieties. This
system may be written for any semisimple Frobenius manifold. In [17] it was proven that,
for an arbitrary semisimple Frobenius manifold, the Getzler system has a unique quasiho-

mogeneous solution given by

G =log (4.1.3)

71
Jr/a
Here J is the Jacobian of the transformation between canonical and flat coordinates on
the Frobenius manifold; 7; is the isomonodromic tau-function associated to the Frobenius
manifold. For the Frobenius structures described here the ingredients of the formula (4.1.3)
can be computed using results of papers [44, 45]. For example, the isomonodromic tau-

function 7y of the new Frobenius manifolds is related to the isomonodromic tau-function 7

of Dubrovin’s Hurwitz Frobenius manifolds by the formula:

7 = |02 (det Im]B)_% ,

where B is the matrix of b-periods of the underlying Riemann surface. The function 7,2

coincides with an appropriately regularized ratio of the determinant of Laplacian on the
Riemann surface and the surface volume in the singular metric [d\|? | see [11, 44, 69)].
For the Frobenius manifold corresponding to the prepotential (4.1.2), the G-function is

expressed in terms of the Dedekind eta-function as follows:

t3 1—27rit3 R
G=-1 - —— ) (tots)8 ¢, * t .
% {77 (tﬁ) 7 ( 2mits ) (tats)® b } +cons

We hope that in the future the construction of a “real double” can be extended to
arbitrary Frobenius manifolds. Presumably this extension can be done on the level of the

Riemann-Hilbert problem associated with a Frobenius manifold. The most intriguing case
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would then be the Frobenius manifolds related to quantum cohomologies; we hope that
their “real doubles” might find an interesting geometrical application.

We notice that a class of solutions to the WDVYV system related to real Hurwitz spaces
was previously constructed in the work [20]. However, the full structure of a Frobenius
manifold was not discussed in [20], and an explicit relationship of prepotentials of [20] and
solutions to WDVV equations constructed in this work remains unclear.

The paper is organized as follows. In the next section we give definitions of the WDVV
system and Frobenius manifold and discuss the one-to-one correspondence between them.
In Section 4.3 we describe the Hurwitz space we shall build Frobenius structures on, the
W -bidifferential and the Schiffer and Bergman kernels on a Riemann surface and introduce
flat metrics on Hurwitz spaces in terms of the kernels. In Section 4.4 we reformulate the
structures of Frobenius manifolds on Hurwitz spaces introduced by Dubrovin in terms of the
W-bidifferential. Section 4.5 contains the main result of the paper, the Frobenius structures
on Hurwitz spaces considered as real manifolds. Section 4.6 is devoted to calculation of the
G-function for the new Frobenius structures. In Section 4.7 we consider the simplest Hurwitz
space in genus one and present explicit expressions for prepotentials and G-functions of the

corresponding Frobenius manifolds.

4.2 Frobenius manifolds and WDVYV equations
The Witten - Dijkgraaf - E.Verlinde - H.Verlinde (WDVV) system looks as follows:

FF'F,=FF'F, 4j=1,...,n,
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where F; is the n X n matrix

03F
(Fm = Srgizmm
and F is a scalar function of n variables t!,...,t” . In the theory of Frobenius manifolds

one imposes the following two conditions on the function F' :

¢ Quasihomogeneity (up to a quadratic polynomial): for any nonzero x and some num-

bers v1,...,Vn, Uk
F(kt,.. . 6"t") = kFF(t!, ... t") + quadratic terms, (4.2.1)

o Normalization: Fj is a constant nondegenerate matrix.

The condition of quasihomogeneity can be rewritten in terms of the Euler vector field
E:=) vat*0s (4.2.2)
as follows:
LiegF = E(F) = ZuataataF = vpF + quadratic terms . (4.2.3)

Definition 4.1 An algebra A over C is called a (commutative) Frobenius algebra if:
o it is a commutative associative C-algebra with a unity e .

o it is supplied with a C-bilinear symmetric nondegenerate inner product (-,-) having the

property (x -y, z) = (x,y - z) for arbitrary vectors z,y,z from A .

Definition 4.2 M is a Frobenius manifold of the charge v if a structure of a Frobenius
algebra smoothly depending on the point t € M is specified on any tangent plane TyM such

that
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F1 the inner product (-,-) is a flat metric on M (not necessarily positive definite).

F2 the unit vector field e is covariantly constant with respect to the Levi- Civita connection
V for the metric (-,-) , i.e. Vxe =0 for any vector field x on M .

F3 the tensor (Vwc)(x,y,2) is symmetric in four vector fields x,y,z,w € TyM , where c
is the following symmetric 3-tensor: c(x,y,z) = (x-y,2) .

F4 there exists on M a vector field E (the Euler field) such that the following conditions

hold for any vector fieldsx,y on M

V(VyE) =0, (4.2.4)
E,x-y]-[E,x]-y—x-[E)y]=x"y, (4.2.5)
Lies(x,y) := E(x,y) — ([E,x],y) — (X, [E,y]) = (2 - v)(x,Y) . (4.2.6)

The charge v of a Frobenius manifold is equal to vz + 3 , where v, is the quasihomogeneity

coefficient from (4.2.3).

Theorem 4.1 ([15]) Any solution F(t) of the WDVV equations with v1 # 0 defined for

t € M determines on M a structure of a Frobenius manifold and vice versa.

Proof (see [15]). Given a Frobenius manifold, denote by {¢t*} the flat coordinates of the
metric (-,-) and by 7 the constant matrix 7,3 = (04, 0;8) . Due to the covariant constancy
of the unit vector field e , we can by a linear change of coordinates put € = 9u . In this
coordinates, the condition F3 of Definition 4.2 implies the existence of a function F' whose

third derivatives give the 3-tensor c:

O3F

oty = 0,00, 000) = e pupoie

141



The WDVYV equations for the function F' provide the associativity condition for the Frobe-
nius algebra defined by relations O - Ois = czﬁﬁtq , where the structure constants clﬁ are
found from c‘;ﬁng.y = Copy - The existence of the vector field E implies the quasihomogeneity

of the function F' . Indeed, requirements (4.2.5), (4.2.6) on the Euler vector field imply
LieEC(l', Y, Z) =k (C(.’L’,y, Z)) - C([E, .’L‘], Y, Z) - C(.’L‘, [E, y]) Z) - C(.’II, Y, [E7 ZD
=B -v)c(z,y,2) . (4.2.7)
The Lie derivative Lie; commutes with the covariant derivative V as can easily be checked in
flat coordinates when the Euler vector field (due to (4.2.4)) has the form (4.2.2). Therefore,
(4.2.7) implies LiegF' = (3 — v)F' 4+ quadratic terms .
The converse statement can be proven analogously. ¢

The function F' , defined up to an addition of an arbitrary quadratic polynomial in

t',...,t", is called the prepotential of the Frobenius manifold.

Definition 4.3 A Frobenius manifold M is called semisimple if the Frobenius algebra in

the tangent space at each point of M does not have nilpotents.

In this paper we only consider semisimple Frobenius structures.

4.3 Kernels on Riemann surfaces and Darboux-Egoroff

metrics

4.3.1 Hurwitz spaces

Hurwitz space is the moduli space of pairs (£, A) where £ is a compact Riemann surface of

genus g and X : £ — CP! is a meromorphic function on £ of degree N . The pair (£, \)
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represents the surface as an N-fold ramified covering £y of CP! defined by the equation
¢=AP), Pel

(¢ is a coordinate on CP'). In this way the surface £ can be viewed as a collection of N
copies of CP! which are glued together along branch cuts. Critical points P; of the function
A(P) correspond to ramification points of the covering. The projections A; of ramification
points on the base of the covering (CP! with coordinate ¢) are the images of critical points
P; of the function A(P) (A; are called the branch points): X(P;) = 0; A; = A(Fj) .

We assume that all finite branch points {A; |\; < oo} are simple ( i.e. there are exactly
two sheets glued together at the corresponding point) and denote their number by L . We
also assume that the function A has m +1 poles at the points of £ denoted by ol ..., 0™
the pole at oo’ has the order n; + 1 . In terms of sheets of the covering, there are m + 1
points which project to { = oo on the base; the numbers {n; + 1} give the number of sheets
glued at each of these points (ng,...,nm € N are such that > ;" (n; + 1) = N , they are
called the ramification indices).

The local parameter near a simple ramification point P; € £ (which is not a pole of A)
is z;(P) = v/A(P) — ); ; and in a neighbourhood P ~ oo’ the local parameter z; is given
by 2(P) = (A(P)) ™M/

The Riemann-Hurwitz formula connects the genus g of the surface, degree N of the
function A , the number L of simple finite branch points, and the ramification indices n;

over infinity:

2g-2=-2N+L+)» n;. (4.3.1)
=0

Two coverings are said to be equivalent if one can be obtained from the other by a
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permutation of sheets. The set of equivalence classes of described coverings will be denoted
by M = Mgyn,,...n, - We shall work with a covering M= J/\/I\g;,mmnm of this space. A point
of the space M is a triple {£, ), {ax, bi}y_1}, where {ak, b }_ is a canonical basis of cycles
on L. The branch points Aj,..., A, play the role of local coordinates on M , viewed as a

complex manifold.

4.3.2 Bidifferential W , Bergman and Schiffer kernels

First, we summarize properties of three well-known symmetric bidifferentials on Riemann
surfaces. Being suitably evaluated at the ramification points {P;} , these kernels will play
the role of rotation coefficients of flat metrics on Hurwitz spaces.

The meromorphic bidifferential W (P, Q) defined by
W(P,Q) = dpdqlog E(P, Q) (43.2)

is the symmetric differential on £ x £ with the second order pole at the diagonal P = Q

with biresidue 1 and the properties:

j'{ W(P,Q)=0; iW(P,Q)zzniwk(P); k=1,...,9. (4.3.3)

Here {ay,bx};_; is the canonical basis of cycles on £; {wg(P)}_; is the corresponding
set of holomorphic differentials normalized by faz wk = 0 ; and F(P,Q) is the prime form
on the surface £ . The dependence of the bidifferential W on branch points of the Riemann

surface is given by the Rauch variational formulas [42, 63]:

OW(PQ) 1. |
S = gV (P EW@E)., (4.3.4)

where W (P, P;) denotes the evaluation of the bidifferential W (P, Q) at Q = P; with respect
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to the standard local parameter z;(Q) = 1/A(Q) — A; near the ramification point P; :

w(rQ)

W(P, P;) = dz;(Q ) lo= F;

(4.3.5)

The bidifferential W (P, Q) depends holomorphically on the branch points {A;} in contrast
to the following two bidifferentials [23].

The Schiffer kernel Q(P,Q) is the symmetric differential on £ x £ defined by:

QP,Q):=W(P,Q) - > (ImB)'wi(P)wi(Q) , (4.3.6)

k=1

where B is the symmetric matrix of b-periods of holomorphic normalized differentials {wy} :
B = fbk wy , which depends holomorphically on the branch points {A;} . This kernel has
the same singularity structure as the bidifferential W , it depends on {\;} due to the terms
added to W , since ImB = (B — B)/(2¢) and B is a function of {)\;}. For a surface of genus
zero the Schiffer kernel coincides with W .

The Bergman kernel B(P, Q) is defined by:

g
B(P,Q) =7 Y _ (ImB)g'wi(P)wi(Q) - (4.3.7)

k=1
It vanishes for a surface of genus zero.
An important property of the Schiffer and Bergman kernels is independence of the choice
of a canonical basis of cycles {ak, bx}]_, on the Riemann surface. This can be seen, for
example, from the following definitions (see Fay [23]) equivalent to (4.3.6) and (4.3.7).

The Schiffer kernel is the unique symmetric bidifferential with a singularity of the form

(z(P) — 2(Q))"2dz(P)dz(Q) along P = Q and such that
p.v./ Q(P,Q)w(P) =0 (4.3.8)
L
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holds for any holomorphic differential w .

The Bergman kernel is (up to the multiplier 27i) a kernel of an integral operator which
acts in the space Ly"®(L) of (1,0)-forms as an orthogonal projector onto the subspace
HEO(L) of holomorphic (1, 0)-forms. In particular, the following holds for any holomorphic

differential w on the surface £ :

27m_// (P, Qw(Q) = w(P) . (4.3.9)

For the Bergman kernel the independence of the choice of a canonical basis of cycles can
also be seen directly from (4.3.7) using (ImB),, = 2ff£wk(P )wi(P) .

The periods of Schiffer and Bergman kernels are related to each other as follows:

faro--4 BPQ, {arQ--§BPQ 431

ag ag by by
where the integrals are taken with respect to the first argument. Their derivatives with

respect to branch points and their complex conjugates are given by:

Tl -erner), Y- inrr)n@p).

(4.3.11)
OB(P,Q) 1 - 0B(P,Q) _ 1 5O P
= = 5P, F)B(P;, Q) , o = 5B(P, F)NQ, Fy) -

The notation here is analogous to that in (4.3.5), i.e. P, P;) stands for
(Q(P,Q)/dz;(Q)) |o=p, and B(P, P)) := (B(P Q)/dz;(Q )) lg=p, - To prove (4.3.11) one
uses the variational formulas (4.3.4) for W(P,Q) , and the following Rauch variational

foumulas for holomorphic normalized differentials {wy} and for the matrix of b-periods [63]:

duw(P) 1 . 0By

= miwg(Pj)wi(Fj) , (4.3.12)

where we write wy(F;) for (wi(P)/dz;(P))|p=p,; . Derivatives of wy and B with respect to
{);} vanish.
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4.3.3 Darboux-Egoroff metrics

Now we are in a position to introduce two families of Darboux-Egoroff (flat potential diago-
nal) metrics on Hurwitz spaces written in terms of the described bidifferentials. Following
the terminology of Dubrovin, we call a bilinear quadratic form a metric even if it is not
positive definite.

A diagonal metric ds? = ), gi;(d\;)? is called potential if there exists a function U such
that 0),U = g;; for all i . A potential diagonal metric is flat (Riemann curvature tensor

vanishes) if its rotation coefficients §;; defined for i # j by

O, /9ii
By 1= 2V T (4.3.13)
V3ij

satisfy the system of equations:
OB = BikBrj , 4,7,k are distinct, (4.3.14)

Z@,\kﬂij =0 for all ,Bi]' . (4.3.15)
k

Darboux-Egoroff metrics in terms of the bidifferential W

The following family of diagonal metrics (bilinear quadratic forms) on the Hurwitz space
first appeared in [42] where it was realized that the corresponding rotation coefficients are

given by the bidifferential W (see (4.3.17)) and that the metrics are flat:

ds? — Ei: ( 71{ HQYW(Q, Pj)> S @) (4.3.16)

Here [ is an arbitrary smooth contour on the Riemann surface £ such that P; ¢ [ for any
7 , and its image A(l) in CP! is independent of the branch points {A;}; h(Q) is an arbitrary

~ independent of {);} function defined in a neighbourhood of the contour [ .
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Using variational formulas (4.3.4), we find that rotation coefficients of the metric (4.3.16)
are given by the bidifferential W (P, Q) evaluated at the ramification points of the surface

L with respect to the standard local parameters z; = m near P; :
1
Bij =Wk By), 4j=1...,L, i#j. (4.3.17)

Here W(P;, P;) , similarly to (4.3.5), stands for (W(P,Q)/(dz:(P)dz;(Q))) |p=p,q=P; -
Note that rotation coefficients §;; (4.3.17) are symmetric with respect to indices, therefore
the metrics (4.3.16) are potential. The next proposition shows that they are Darboux-

Egoroff metrics.

Proposition 4.1 [42] Rotation coefficients (4.3.17) satisfy equations (4.3.14), (4.3.15) and

therefore metrics (4.3.16) are flat.

Proof. Variational formulas (4.3.4) with P = P;, Q = P , for different %, 7, k imply re-
lations (4.3.14) for rotation coefficients (4.3.17). Equations (4.3.15) hold for the coefficients
due to the invariance of W(P,Q) with respect to biholomorphic maps of the Riemann
surface. Namely, consider the covering £ obtained from £ by a simultaneous d-shift
A — X+ 6 on all sheets. The surface £ is mapped by this transformation to £° so that the
point P € L goes to P® € £ which belongs to the same sheet of the covering as P and is
such that A(P®) = A(P) + § . Denote by W? the bidifferential W on the surface £ . Since
the transformation A — A+ § is biholomorphic, we have W (P? Q%) = W(P,Q) . The same
relation is true for W(P, Q)/(dz;(P)dz;(Q)) when points P and @ are in neighbourhoods

of ramification points P; and P; , respectively:

WiPLQY) W(PQ)
dzf(P)dz(Q%)  di(P)dz;(Q) (4.3.18)
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Note that z;(P) = /A(P) — A; does not change under a simultaneous shift of all branch
points and A . After the substitution P = P, , @ = P; in (4.3.18) the differentiation
with respect to § at § = 0 gives the sum of derivatives with respect to branch points:
S i—1 O\ W (P, P;) = 0. Thus, the rotation coefficients (4.3.17) satisfy also (4.3.15). There-

fore the metrics (4.3.16) are flat. ¢

Darboux-Egoroff metrics in terms of Schiffer and Bergman kernels

Now let us consider the Hurwitz space M as a real manifold, i.e. a manifold with a set of
local coordinates formed by the branch points and their complex conjugates. As an analogue

of the family of metrics (4.3.16) on the space of coverings M = M, with the local

0y

coordinates {A1,...,AL; A1, ..., Az} we consider the following two families of metrics:
2 L N2
ast -3 (fr@a@m)) @+ X (fr@p@p) @iy s
j=1 j=1
and

L 2
s2 — Re , HOYB(O P: AV 3.
ds? =R ;(fh@m@,w f{h@)B@,P])) (@) (43.20)

Here, as before, ! is an arbitrary contour on the surface not passing through {P;} and
such that its image A(l) in (-plane is independent of branch points {A;} ; h is an arbitrary
function independent of {\;} defined in some neighbourhood of the contour.

From variational formulas (4.3.11) for the Schiffer and Bergman kernels we see that
these metrics are potential and their rotation coefficients are given by the kernels evaluated

at ramification points of £ :

B5=3UP.B),  B5=iBB.P), f5=T5. (43.21)
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Here i,5 = 1,...,L and the index j corresponds to differentiation with respect to j\j .

Similarly to the notation in (4.3.17), we understand Q(B;, P;) and B(P;, P;) as follows:

___B(PQ
dz;(P)dz;(Q) P=P, @=P;’

. YPQ) 5
(P, Py) = G2:(P)dz;(Q) | p=p,, =P, ’ B(P;, P;) :

Remark 4.1 Note that rotation coefficients of the metrics (4.3.19), (4.3.20) are defined on
the space Mg.p,,....n. , N contrast to rotation coefficients (4.3.17). The coefficients (4.3.17)
are given by the bidifferential W | which depends on the choice of a canonical basis of cycles
{ai,b;} , and therefore are defined on the covering M\g;no,...,nm (see Section 4.3.1). However,
the metrics of the type (4.3.19), (4.3.20) which will be used in Section 4.5 still depend on

the choice of cycles {a;,b;} through the choice of contours [ .

Proposition 4.2 Rotation coefficients (4.3.21) satisfy equations (4.3.14), (4.3.15) and

therefore metrics (4.3.19), (4.3.20) are flat.

The proof is analogous to that of Proposition 4.1. Here § should be taken real, § ¢ R .
Note that in equations (4.3.14), (4.3.15) ¢, 7, k run through the set of all possible indices

which in this case is {1,...,L;1,...,L} , where we put Az := Ay .

4.4 Dubrovin’s Frobenius structures on Hurwitz spaces

We start with a description of Dubrovin’s construction [15] of Frobenius manifolds on the
space M= J\/Zg;no,_",nm using the bidifferential W(P, Q) . The branch points Aq,..., A are

the local coordinates on M .

To introduce a structure of a Frobenius algebra on the tangent space Tt]/W\ for some
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point t € M we take coordinates A1, ..., AL to be canonical for multiplication, i.e we define
Oy, -8)\j = 040, - (44.1)

Then, the unit vector field is given by

L
e=>Y 0y . (4.4.2)
i=1

For this multiplication law, the diagonal metrics (4.3.16) obviously have the property
(x-y,z) = (x,y - 2) required in the definition of a Frobenius algebra. Therefore together
with the multiplication (4.4.1) the metrics (4.3.16) define a family of Frobenius algebras on
T.M .

Among the family of metrics (4.3.16) (and Frobenius algebras) we are going to isolate
those corresponding to Frobenius manifolds.

The Euler vector field has the following form in canonical coordinates [15]:
L
E=) Xy, . (4.4.3)
i=1

4.4.1 Primary differentials

As is easy to see, with the Euler field (4.4.3), the multiplication (4.4.1) satisfies requirement

(4.2.5) from F4. Condition (4.2.6) then reduces to
E ({05, 0x,)) = —v{0x;; 0x,) - (4.4.4)

The following proposition describes the metrics from family (4.3.16) which satisfy this con-

dition.

Proposition 4.3 Let the contour! in (4.3.16) be either a closed contour on L or a contour

connecting points oot and 0o’ for some i and j . In the latter case we reqularize the integral
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by omitting its divergent part as a function of the corresponding local parameter near oo’ .
Choose a function h(Q) in (4.3.16) to be h(Q) = C X\*(Q) (where C is a constant). Then

the Euler vector field (4.4.3) acts on metrics (4.3.16) according to (4.4.4) withv =1—2n..

Proof. Let us again use the invariance of the bidifferential W under biholomorphic map-
pings of the Riemann surface £ . Consider the mapping £, — L£x when the transformation
A = (1 + €)A is performed on every sheet of the covering £, . A point P of the surface is
then mapped to the point P¢ of the same sheet such that A(P€) = (14 ¢)A(P) . If W€ is the
bidifferential W on L , then W¢(P¢, Q¢) = W(P, Q) . For the local parameter z; = vA — \;
in a neighbourhood of a ramification point P; , we have dzf = /I + € dz; . A contour !
of the specified type is invariant as a path of integration in (4.3.16) with respect to this

transformation. Therefore we have

n € We(Qe’Pe) : _ n—1 n W(Q’P) 2
(}l{)\ (Q )W> =(1+¢)? <7I§A (Q)W) . (4.4.5)

Putting P = P; , we differentiate (4.4.5) with respect to € at € = 0 . This yields the action of
the vector field E on the metric coefficient in the left-hand side and proves the proposition.

<o

Proposition 4.4 Rotation coefficients (4.3.17) given by the bidifferential W satisfy

E (Bi) = —Bi; .

Proof. This is a corollary of Proposition 4.3 and can be proven by a straightforward
calculation using (4.4.4) and the definition of rotation coefficients (4.3.13). Alternatively, it

can be proven directly by the method used in the proof of Proposition 4.3. ¢
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So far we have restricted the family of flat metrics to those of the form (4.3.16) with

h = C A" and the contour ! being either closed or connecting points oo® , oo’ :

ds? = Ei: (c Z{ /\"(Q)W(Q,Pj)>2 (d\)? . (4.4.6)

An additional restriction comes from F2, the requirement of covariant constancy of the unit

vector field (4.4.2) with respect to the Levi-Civita connection.

Lemma 4.1 If a diagonal metric ds® = Y, gii(d\;)? is potential (i.e. 8),g;; = Ox,gii holds)
and its coefficients gi; are annihilated by the unit vector field (4.4.2) (e(gi:) = 0), then the
vector field e is covariantly constant with respect to the Levi-Civita connection of the metric

ds?.
The proof is a simple calculation using the following expression for the Christoffel symbols
via coeflicients of a diagonal metric. For distinct ¢, j, k we have:

k_ _10ngii i — 19gi I — 1059
" 2 gk 2 gy Y2 g

Ik =0. (4.4.7)

Thus, we need to find the metrics of the form (4.4.6) such that the unit vector field e

annihilates their coefficients. These metrics can be written as

L

2
ds? = 2; ( res f&g) (dN)? = %Z¢2(Pi)(d)\i)2 , (4.4.8)

1=

where ¢ is a differential of one of the five types listed below in Theorem 4.2. These dif-
ferentials are called primary and all have the form ¢(P) = C §, \"*(Q)W(Q, P) with some
specific choice of a contour I and function CA™ . In other words, we shall consider five types
of combinations of a contour and a function CA™ . Let us write these combinations in the

form of operations of integration over the contour with the weight function. The operations,
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applied to a 1-form f , have the following form:

1. Lual£(Q)] :éfg?x(@)#f(@) i=0,...msa=1,. . n.
2. Lilf(Q) = 1es MQF(Q) i=1...,m.
3. Lulf(Q) = v.p. / ~ 1@ i=1,...,m.
4. 1. [F(O)] j{)\ k=1,....9.
5 1ulf(@) = 7 § 1@ =19,

Here the principal value near infinity is defined by omitting the divergent part of the integral

as a function of the local parameter z; (such that A =z, ""—1) .

Theorem 4.2 Let us choose a point Py € L which is mapped to zero by the function A | i.e
A(Po) =0, and let all basis contours {ax, by} start at this point. Then, the defined operations
1.-5. applied to the bidifferential W give a set of L differentials, called primary, with the
following singularities (characteristic properties). By z; we denote the local parameter near

oo’ such that z; =l — X | ny; being the ramification index at co® .

1. ¢pia(P)i=Lia[W(P,Q)] ~ 2z *YP)dzi(P), P~oo'; i=0,.,m;a=1.,n;.

)

2. ¢i(P) =1 W(P,Q)] ~—d\P), P~oot; i=1,...,m.
3. i (P) =L [W(PQ) : res i = 1 Tes i = —1; i=1,...,m.
4. ¢u(P) :=1x[W(P,Q)]: ¢u(P%) — du(P) = 2midA\(P) ; k=1,...,9.
5. ¢x(P) =1 [W(P,Q)]:  holomorphic differential k=1,...,9.

Here ¢« (P%) — ¢« (P) denotes the transformation of the differential under analytic con-

tinuation along the cycle by, on the Riemann surface.
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All above differentials have zero a-periods except ¢4 which satisfy: fak b = Okt -

Proof. Let us prove that

Prise (P) o 27 Y(P)d(P) . (4.4.9)

It is easy to see that the differential ¢, (P) has a singularity only at P = oo . Let us

consider the expansion of the bidifferential W at Q ~ oot :

W(BQ) =~ W(Bo) + Wa(P,oc)(@) + SWh(Pos)Z@ 4. (4410
Since W(P,Q) ~ ((2:(P) — z:(Q))™? + O(1)) dzi(P)dz:(Q) when P ~ Q ~ oo* then we

have for the (@ — 1)-th coefficient of the expansion (4.4.10)

1 (a=1) i
Lweb(p oty ~ LD
al 1? (P, o) Prooi 22T1(P)

which proves (4.4.9). The case a@ = n; + 1 proves ¢,:(P) o —dA(P) .

For the differentials ¢,: the theorem can be proven analogously.

The differential ¢,«(P) is not defined at the points of the contour ay , however it has
certain limits as P approaches the contour from different sides; thus ¢, (P) is defined and
single valued on the fundamental polygon L of the surface. (The fundamental polygon L
is obtained by cutting the surface along all basis cycles ax and by provided they all start
at one point.) Let us denote dgi(P) := ¢« (P%) — ¢« (P) (as we shall see below, dgt is
indeed an exact differential) and consider the differential ¢,«(P) f 15:, wg  (wg is one of the
normalized holomorphic differentials such that faj wk = 0j). This differential has no poles

inside £ . Therefore its integral over the boundary of L equals zero. On the other hand,

since the boundary 8L consists of cycles {a;} and {b;} the integral can be rewritten via
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periods of the differentials as follows:

0= ?‘gﬁ ¢ (P) /ijk = ]{k Pk — zj:]i breBjk + ;]i qlwn (4.4.11)

(Bjx = fbj wk). Due to the choice of the point Py where all basis cycles start, we can change
the order of integration in expressions fbk fak MQ)W(P,Q) as can be checked by a local

(near the point Fp) calculation of the integral. Therefore we have

?{ ¢x(P)=0 forall j  and ¢ (P) = —27ri7{ MQ)wr(Q) .
a; by ag

Then, the relation (4.4.11) takes the form

0= —2mi f{ MQ)wi(Q) + Z f; | a(Q)wi(Q) ,

and we conclude that ¢/(Q) = 2miA(Q)dx -
For differentials ¢« the statement of the theorem follows from properties (4.3.3) of the
bidifferential W . For all primary differentials (except ¢, ) a-periods are zero since they are

zero for W . ¢

4.4.2 Flat coordinates

For a flat metric there exists a set of coordinates in which coefficients of the metric are
constant. These coordinates are called the flat coordinates of the metric. In flat coordinates
the Christoffel symbols vanish and the covariant derivative V,a is the usual partial derivative
0O;a . Therefore flat coordinates can be found from the equation ViVyt = 0 (x and y are
arbitrary vector fields on the manifold). In canonical coordinates this equation has the

form:
050t = ZPZ&,\kt , (4.4.12)
k
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where the Christoffel symbols are given by (4.4.7). For different i,j,k , the Christoffel

symbols of the metrics dsi (4.4.8) have the form:

o= —bugpy TemT 2 Te Tu=fugmy. To=o.

3y 3#i

Theorem 4.3 ([15]) The following functions give a set of flat coordinates of the metric

ds? (4.4.8):

tho= — (nl + 1)Iti;1+ni—a[¢] 1=0,....m;a=1,...,n

vt =—1,[d] i=1,...,m
w' =—1:[¢] i=1,...,m
r* = To[g) k=1,...9
8" =T[g] k=1,....9

Nonzero entries of the constant matriz of the metric in these coordinates are:

1
dsqzb(atiimatj;ﬁ) - n—ﬁ(sijéa+,3,ni+1 ,

(2

ds3 (i, Os) = 35,
dsi(@,k,(')sz) = —0k -
For notational convenience we denote an arbitrary flat coordinate by t* , and a primary
differential by ¢;a , i.e.
thefthe; vt wt; ek sFli=0,... m;a=1,...,ns;k=1,...,9}.

Proposition 4.5 In flat coordinates {t*} of the metric dsg , the Fuler vector field (4.4.3)

has the form (4.2.2) with coefficients {v4} depending on the choice of a primary differential
o
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L J Zf ¢ = ¢tio;0¢ th/en

o a Q - a )
E= ]. tlaata 131 1 v i
ZZ(+n,O+1 n,+1> t JFZ:(nloHv ”+(+n-+1)w “’)

1=0 a=1 to
g
& Lk o k
1
+Zl<n% O + (1+ io+1)s 3sk) )
o if ¢ =Py, OT ¢ = Pk, then
m n; g
E=)" 2(2 - tmatm + Z V8 + 2w 0) + (rkark + 2s’“83k> :
i=0 a=1 i=1 k=1
o if d =i, 0T P = P, then
m n;
18“)1, + Z Ska k -
=0 a=1 i=1 k=1

Proposition 4.6 (see [15]) The unit vector field e (4.4.2) in the flat coordinates of the

metric dsqz,t 4g has the form: e = —0,4, .

Thus, the coordinate t4° is naturally marked. Let us denote it by ¢! so that e = —3,1 .
In flat coordinates the Christoffel symbols of the Levi-Civita connection vanish. There-

fore the proposition implies that the unit vector field is covariantly constant (F2).

4.4.3 Prepotentials of Frobenius structures

Definition 4.4 A prepotential of a Frobenius manifold is a function F of flat coordinates
of the corresponding metric such that its third derivatives are given by the symmetric 3-

tensor ¢ from the definition of a Frobenius manifold (F3):

O3F(t)

BaBad — S0 01, B10) = dsg(Bia - Oy, Oy0) - (4.4.13)
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By presenting this function (defined up to a quadratic polynomial in flat coordinates) for
each metric dsﬁ we shall prove the symmetry in four indices (4, B,c, D) of the tensor
(Va,5€)(0,4,0;8,0,c) and therefore complete the construction of the Frobenius manifold.
We shall denote the Frobenius manifold corresponding to the metric dsﬁ by M =
Mno,..n

and its prepotential by Fy .

m

Remark 4.2 Proposition 4.6 implies that the third order derivatives (4.4.13) are constant if

one of the derivatives is taken with respect to the coordinate t!

OF

W = —-dsitl (atA,atB) .

Before writing a formula for the prepotential we shall define a pairing of differentials.

Let w) and w? be two differentials on the surface £ holomorphic outside of the points

000, ..., co™ with the following behaviour at oot :
@ 1 (e)
(a) —_ @) n ., o n ~ i
w\ = _z:(a) Cni % 0% + - 1d <,§>0 TpiA" log A) , P~oot, (4.4.14)

where n{® € Z and cf:i) , rf:i.) are some coeficients; z; = z;(P) is a local parameter near

oo' . Denote also for k = 1,...,g :
7{ w® = A (4.4.15)
ag
W (P%) = w@(P)=dp(A(P)), (V)= pN*, (4.4.16)
§>0
W (P) = @ (P)=dgP(A(P)), ¢ (N=D_aPx . (44.17)
>0

Here, as before, w(P%) and w(P%) denote the analytic continuation of w(P) along the

corresponding cycle on the Riemann surface.
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Note that if w(® is one of the primary differentials (defined in Theorem 4.2), then the

coeflicients ¢, ;, Tni, Psk, gsk and Ay do not depend on coordinates.

Definition 4.5 For two differentials whose singularity structures are given by (4.4.14) -

(4.4.17) define a pairing F[, | as follows:

m (o) oot oot
Flo® , w®) =3 (Zc_;ﬁ;'zl_ @) 4 / w® _vp. / 3 )\nw(ﬂ))
Po PO

i=0 \n>0 n>0

1 & a o
2_2( ]{ New®) + 7{ PO + A® w(ﬂ)) ,
k= ap bk bk

where Py is a marked point on the surface such that A(Py) = 0.

For any primary differential ¢ we consider a (multivalued on £) function 8 :

P
(P) = v.p. / 9. (4.4.18)

One can see that singularities of the differential 8dX can be described by formulas similar
to (4.4.14) - (4.4.17). The corresponding coefficients cn 3, Tn i, Psk, sk and Ag for w = 0dA

depend on coordinates {Ax} in contrast to those for primary differentials.

Theorem 4.4 ([15]) The following function gives a prepotential of the Frobenius manifold

—

M?® .
Fy = %f[@d)\ , OdA], (4.4.19)

where p is the multivalued function (4.4.18). The third derivatives of Fy are given by

PFyt) . rads Pro
Badindo c(0sa,0;8,0;c) = ; TS e .
_ 1 i B4 (P) 5 (P) o (P)
2 #(F) '

160



Theorem 4.5 ([15]) The second derivatives of the prepotential Fy are given by the pairing

of the corresponding primary differentials:
atAatBF¢ - .7:[¢t.4 3 ¢tB] .

For the described Frobenius manifold M$¢ , the prepotential (4.4.19) is a quasihomoge-
nous function of flat coordinates {¢4} of the metric dsg , i.e. the following holds for some

numbers {v,} and vy and any nonzero constant £ :
Ey(k™th, .. k") = 6"F Fy(t, ... ,t") + quadratic terms .

This follows from the existence of the Euler vector field satisfying (4.2.4) - (4.2.6) (see the
proof of Theorem 4.1).

The coefficients of quasihomogeneity {v 4} are coeflicients of the Euler vector field written
in flat coordinates (see (4.2.1) - (4.2.3)); they are given by Proposition 4.5. The coefficient

Vvr = 3 — v can be computed for each Frobenius structure M® using Proposition 4.3:

. 2a0 2¢

lf ¢:¢ti;o¢, then Vzl—nl—l_l VF:nz_+_1+2
if ¢ =¢, or ¢ =¢,x, then v=-1 vp =4

if p=¢, i or ¢ =¢u , then v=1 Ve =2.

Remark 4.3 A linear combination of primary differentials corresponding to the same charge

v also gives a Frobenius structure. Namely, the above construction works for

m g m g9
¢ = Z F‘:i¢'ui + Z 0k¢rk and ¢ = Z ’ii¢wi + Z G'k:¢s’C y
i=1 k=1 i=1 k=1

with any constants {«;} and {o%} . The unit vector field in these cases, respectively, is given

by
m g m g
e=— (Z K;Op + Zak0,k> and e=— <Z KiOi + Zakask) .
i=1 k=1 i=1 k=1
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After a linear change of variables, the unit field can be written as e = —0,: for a new variable
¢!, since the coordinates {v'} and {r*} ({w'} and {s*}) have equal quasihomogeneity

coefficients.

4.5 “Real doubles” of Dubrovin’s Frobenius structures on

Hurwitz spaces

—

In this section we consider the moduli space M= Mg.n,,...n. s areal manifold. The set of
local coordinates is given by the set of branch points of the covering £, and their complex
conjugates: {A1,..., Az ; Ar,...,A.} . On the space M with coordinates {\i; Ai} we shall
build a Frobenius structure in a way analogous to the one described in Section 4.4. The
construction will be based on a family of flat metrics on M ({\s; Xi}) of the type (4.3.19),
(4.3.20) with rotation coefficients given by the Schiffer and Bergman kernels. Since in genus
zero the Schiffer kernel coincides with the bidifferential W and the Bergman kernel vanishes,
we only get essentially new metrics (and therefore new Frobenius structures) for Hurwitz
spaces in genus greater than zero.

We start with a description of a Frobenius algebra in the tangent space. The coordinates

{M,-..,AL; AL,..., AL} are taken to be canonical for multiplication:
Oy, ~8,\j =040y, , (4.5.1)
where indices %, j range now in the set of all indices, i.e. 4,5 € {1,...,L;1,...,L}, and we

put X; := ); . The unit vector field of the algebra is given by

L
e=) (0x+05,) (4.5.2)
i=1
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The role of an inner product of the Frobenius algebra is played by one of the metrics (4.3.19),

(4.3.20). The new vector field E , analogously, is

L
E =) (Abx + Xids,) - (4.5.3)
i=1

K2

4.5.1 Primary differentials

Together with the multiplication (4.5.1), the Euler field (4.5.3) satisfies relation (4.2.5) of

F4. Its action (4.2.6) on a diagonal metric takes the form:
E((@,\k,a,\k)) =—l/<3)\k,8)\k> , ke {1,...,L;i,...,I_/} . (4.5.4)

Among the metrics (4.3.19), (4.3.20) we choose, similarly to Proposition 4.3, those for which

this condition holds.

Proposition 4.7 Let the contour | in (4.3.19), (4.3.20) be either closed or connecting
points oo' and oo’ for some i, j . In the latter case we reqularize the integral by omitting
its divergent part as a function of the local parameter z; (or as a function of Z;) near co® .
Then the metrics (4.3.19), (4.3.20) with h(Q) = CA™*(Q) (where C is a constant) satisfy

(4.5.4) with v =1 — 2n and the Euler field (4.5.3).

Proof. The proof is the same as for Proposition 4.3: we use the fact that Bergman and
Schiffer kernels are invariant under biholomorphic mappings of the Riemann surface. The

biholomorphic map to be taken in this case is A — (1 + €)A, where € is real. ©

Proposition 4.8 Rotation coefficients (4.3.21) given by the Schiffer and Bergman kernels
satisfy E (Bi;) = =B , 4,5 € {L,...,L;1,...,L} , where the Euler field E is given by

(4.5.3).
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Proof. This statement is a corollary of Proposition 4.7; it can also be proven directly
by using the invariance of the kernels under the mapping of Riemann surfaces £y — Ly ,
A= (1+er,foreeR.o

Among the metrics ds? = 37, (gii(d\i)? + g5(dAi)?) of the form (4.3.19), (4.3.20) with
h = CA™ and a contour [ of the type required in Proposition 4.7 only those ones correspond
to Frobenius manifolds whose coefficients satisfy e(g;;) = e(g;;) = 0 ( e is the unit vector
field (4.5.2)). This follows from F2 and Lemma 4.1, which is obviously valid for the unit
vector field (4.5.2) and diagonal potential metrics (4.3.19), (4.3.20). Therefore we need to
find the combinations of a contour ! and a function A = CA™ such that formulas (4.3.19),
(4.3.20) give metrics whose coefficients are annihilated by the vector field e . We list those
combinations in the form of operations I[f(Q)] = § CA"f(Q) applied to a differential f
of the form f = f 0 + fo1) - We say that a differential is of the (1,0)-type if in a local
coordinate z it can be represented as f;,0 = fi(2)dz , and is of the (0, 1)-type if in a local
coordinate it has a form f, 1) = f2(Z)dz . We shall also call f; o) and f ) the holomorphic
and antiholomorphic parts of a differential f , respectively. We denote by rés the coeflicient

in front of dZ/Z in the Laurent expansion of a differential. As before, z; is the local parameter

in a neighbourhood of oo such that z; ™ 1(Q) = A(Q) , Q ~ oot .

i

Fori=0,...,m; a=1,... n; we define:
L Lalf@) = 2 1es 5 °(@fu0(@) 2 Tlf(Q))i= - 16 (@) (@)
3. (@) = 105 X@)uo(@) 4 130£@) = 18 XQ)fon(@)
Fori=1,...,m we define:

oot

5.1ulf@)=vp. [ foo(@  6.1:05@1=vo. [ fan(@.
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As before, the principal value near infinity is defined by omitting the divergent part of an
integral as a function of the corresponding local parameter.

For k=1,...,g we define:

7. La[f(Q)] := — ]( MQ) fi,0(Q) — 7{ Q) fo(Q)

2]

8. 1./(Q) = f MQ) fon (@) + j[ AQ)fon (@)

bk bk

9. Isk [f(Q)] = ‘2%‘% f(1,0)(Q)

10. L:[f(Q)] := —2%”% f(l,O)(Q) .

Applying these operations to the sum of Schiffer and Bergman kernels, we shall obtain
a set of primary differentials ® , each of which gives a Darboux-Egoroff metric and a
corresponding Frobenius structure. These differentials, listed below, decompose into a sum
of holomorphic and antiholomorphic parts. The a-periods vanish for all primary differentials
except for the differentials labeled by the index s* ; the b-periods do not vanish only for
the differentials having the index t* . This normalization and a given type of singularity

characterize a primary differential completely due to the following lemma.

Lemma 4.2 If a single valued differential on a Riemann surface of the form w = w ) +
W1y has zero a- and b-periods and its parts w5 and we, are everywhere analytic with

respect to local parameters z and Z , respectively, then the differential w is zero.

Proof. Since the holomorphic and antiholomorphic parts of the differential must be
regular and single valued on the surface, we can write w in the form: w = >°7_, ogwi +
Y -n—1 Bxwr , where {w;} are holomorphic normalized differentials. The vanishing of a-

periods gives ay =—0; and vanishing of b-periods implies that all o should be zero. o
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We list primary differentials together with their characteristic properties. A proof that
the differentials have the given properties is essentially contained in the proof of Theorem
4.2.

Let us fix a point Py on £ such that A(Py) =0, and let all the basic cycles {ag, bx}]_;
on the surface start at this point. This enables us to change the order of integration in
expressions of the type fbk fak A(P)Q(P, Q) (this can be checked by a local calculation of
the integral near the point Pj) and compute a- and b-periods of the following primary

differentials.

Fori=0,...,m; a=1,...,n; :

1. ®a(P) = Lo [AP,Q) + B(P,Q)] ~ (2771 + O(1))dz + O(1)dz;, P~ oo .

2

2. @tfz(P) = @ti;a (P) .
Fori=1,...,m :

3. 3,:(P) = L [2P,Q) + B(P,Q)] ~—d\+O(1) (dz +dZ) , P~oot.

4. 3 ;(P)=3,(P).

vt

24

. ®,:(P) =L, [QAP,Q) + B(P,Q)] ; res®,: =1; res @, = —1.

oot

[=]

. B (P) =9, (P).
Fork=1,...,9 :

7. ®,:(P) =L« 2Re {UP,Q) + B(P,Q)}] ; ®x(P*%) — &,.(P) = 2mid — 2mid} .

T

8. ®k(P) =L [2Re {QUP, Q)+ B(P,Q)}] ; ®u(P™) — @k (P) = 2mid\ — 2midA .

u
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9. ®.(P) =L« [UAP,Q) + B(P, Q)] ; no singularities.

10. &, (P) =14 [UP,Q) + B(P,Q)] ; no singularities.

Here, as before, A\ = A(P) and z; = z;(P) is the local parameter at P ~ oo such that
A=z Mt

Note that due to properties (4.3.10) of the Schiffer and Bergman kernels and the choice
of the point Py (see the proof of Theorem 4.2), only the primary differentials of the last two

types have nonzero a- and b-periods. Let us denote an arbitrary differential from the list

by ®@¢4 ; then the following holds:

\% (DsA = 6§A,s°‘ , % ®§A = 6§A,t"‘
[ bo

(6 is the Kronecker symbol). The number of primary differentials is 2L by virtue of the
Riemann-Hurwitz formula (4.3.1).
Each of the primary differentials ® defines a metric of the type (4.3.19), (4.3.20) by the

formula:

ds? = 5 Z‘I’u 0 +5 Z@(O (P (dN) (4.5.5)

where ®(, 4y and @, ,, are, respectively, the holomorphic and antiholomorphic parts of the
differential ® . The evaluation of differentials at a ramification point P; is done with respect
to the standard local parameter z; = VA= X; , i.e. ®4,0)(B) = (®1,0)(P)/dzi(P)) |p=p; -
As is easy to see, metrics of the type (4.3.20) correspond to differentials ® = &+ and
b=,

Proposition 4.9 Primary differentials satisfy the following relations:

e(®u () =0, e (201 (F)) =0, (4.5.6)
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for any ramification point P; .

The proposition implies that the unit vector field e (4.5.2) annihilates coefficients of the
metric ds? (4.5.5).

Proof. Consider the covering £ obtained from Ly by a d-shift of the points of every
sheet, choosing 6 € R ; this shift maps the point P of the surface to the point P? which
belongs to the same sheet and for which A(P%) = A(P) + § . Denote by 9 and B? the
corresponding kernels on £ . They are invariant with respect to biholomorphic mappings
of the Riemann surface, i.e. Q%(P%, Q%) = Q(P,Q), and B%(P?, Q% = B(P,Q) . The local
parameters near ramification points also do not change: z;(P) = z3(P) = /A(P) — X; .

Therefore for differentials @, , ® &, , and @, , the statement of proposition follows

wz’

immediately from this invariance. For them we have, for example,

q)f;i(l,o)(Pf) = q)wi(l,o)(Pj) ) @6 (P;s) = q)wi(o,l)(Pj) .

wt(0,1)

Differentiation of these equalities with respect to § at 6 = 0 gives the action of the unit
vector field e (4.5.2) on the differential in the left and zero in the right side.

Consider now the differential &(P) = — %, NQYUP,Q) - 4, MQ)B(P,Q) , which is
related to the differential ®,« as follows: ®,«(P) = 2Re{®(P)} . On the shifted covering
LY we have

#(r0) = - § AQIV(P,Q) - § 3Q)B(PR @

ay ay

- f (AQ) + 9P, Q) f (A(Q) + 8)B(P, Q). (45.7)

ag ak
Differentiating both sides of this equality with respect to d at § = 0 and using the property

(4.3.10) of the Schiffer and Bergman kernels, we prove formulas (4.5.6) for the differentials
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®,«; the proof for &, is analogous.
To prove (4.5.6) for the remaining differentials consider the local parameter z; near
infinity oo® ; under the é-shift it transforms as follows:

«

— (@) £ 0.

4 (PY) = (MP) +8)%¥ = 27*(P) +

~0

Therefore @i« (P;) on the covering L$ is given by

¥ () = 5 1es (7°(P) +

J a oot ¢

S (P S OF) ) (PP + BIRE))

Differentiating both sides with respect to § at § =0, we get

res (z(P))"*+"+1Q(P, Py) ,

n; + 1 oot

€ (q)ti;a(l,o) (P])) =

€ (q)ti?“(o,n (PJ)) =

A(P))~*t™+1B(P, P} .
ot (alP) B(P, P))

The right sides are zero for non-negative powers of z; ,i.e. fora =1,...,n;+1 . This proves
the statement of the proposition for differentials ®,i;« and ®,: ( @ = n; + 1 corresponds up

to a constant to the case of differential ®,: ). ¢

Remark 4.4 This calculation also shows that differentials ®, for ¢ = 0,...,m ; a =
1,...,n; and &, for i« = 1,...,m give the full set of primary differentials of the type
$ CA*(Q(P,Q) + B(P,Q)) for I being a small contour encircling one of the infinities.

Note that we cannot consider ®,0(P) as an independent differential due to the relation
S0 ®yi(P) = —(m + 1)dA(P) , where dA(P) = d( is a differential on CP! , the base of
the covering.

Thus, we have constructed 2L differentials (see the Riemann-Hurwitz formula (4.3.1));

each of them gives by formula (4.5.5) a Darboux-Egoroff metric which satisfies F2 (Ve = 0),

and on which the Euler field acts according to (4.2.6) from F4.

169



Our next goal is to find a set of flat coordinates for each of the metrics (4.5.5).

4.5.2 Flat coordinates

Let us write the Christoffel symbols of the metric ds? (4.5.5) in terms of the corresponding
primary differential ® . We shall use the following lemma which can be proven by a simple
calculation using the definition of primary differentials and variational formulas (4.3.11) for

the Schiffer and Bergman kernels.

Lemma 4.3 The derivatives of primary differentials with respect to canonical coordinates

are given by

B—(ﬁa{? = %‘P&A(l,m (Pe) (P, Pe) + B(P, Pr)) (4.5.8)
0P _
_éj\l(cﬂ = %(I)!;'A(o,n (Pr) (B(Pa Py)+ Q(P, Pk)) . (4.5.9)

Then non-vanishing Christoffel symbols of the metric ds2 can be expressed as follows in

terms of the primary differential ® and rotation coefficients 3;; (4.3.21):

‘ D10y (Pr) ; j Doy (Pre)
IV, = B, -0 =Tt ; Y. = TN\t K/ 1‘\] : - _ I’ :
s = P P10 (F) k ik Pik B, (B;) Du0(P) Kk ; 7
D,0)(Pr) j ; D0,y (Pr) j
I == =T Il o=pp 00 =Tl 4.5.10
i P 0,1 (Fj) K & = 05 0 (B) P01 (Pj) Kk ( )

Note that the index of summation [ runs through the set {1,...,L;1,...,L}.
Flat coordinates can be found from the system of differential equation (4.4.12). Due to

formulas (4.5.10), this system can be rewritten as follows:

Or;Ont =T7 0zt +THont, j#ke{l,... . L1... L} (4.5.11)

e(t) = const . (4.5.12)
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Substituting expressions (4.5.10) for Christoffel symbols into system (4.5.11) and using

Lemma 4.3, one proves the next theorem by a straightforward computation.

Theorem 4.6 The following functions (and their linear combinations) satisfy the system

(4.5.11):

t1 —_—% hl()\(P))@(l,o)(P) and to :% hz(j\(P))q)(oyl)(P) , (4.5.13)

Iz
where 11 , ly are two arbitrary contours on the surface L which do not pass through rami-
fication points and are such that their images A(l1) and \(l2) in {-plane do not depend on
{M; Ak} ; arbitrary functions hy , hy are defined in some neighbourhoods of l; and ly, respec-
tively, and are also independent of the coordinates {\i; Ay} . The integration is reqularized

by omitting the divergent part where needed.

Among solutions (4.5.13) we need to isolate those which satisfy equation (4.5.12), the
second part of the system identifying flat coordinates. The operations Ia applied to the
differential ®(P) give functions of the form (4.5.13), and it turns out that flat coordinates

can be obtained in this way. Namely, the following theorem holds.

Theorem 4.7 Let Py be a marked point on L such that A(Py) = 0 . Let all the basic cycles
{ak, b }7_; start at the point Py . Then the following functions give a set of flat coordinates

of the metric ds? (4.5.5).

Fori=0,....m;a=1,...,n; :
;. T + 1 —n;—1
tl’a = _(n’l: + 1)Iti;1+ni—a [@] = o—n;— Ic;gls Z? " ¢(1,0) 3
— n; +1

he . — —(ni + I)I,i;1+ni—a [@] = pee— 1£§ sz"—ni—lé(m) .

(2
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Fori=1,...,m :

. OOi i il
vl = —L[®] = —v.p. / D10 5 v'i= —Li[®] = —v.p. / Qo ;
ool 0o?
w' = —L:[®] = — res A®; ) ; wh = —Li[®] = — 185 A®(q, -
oot oot
Fork=1,...,9 :
'r‘k:ZIk[‘I’]=L%q’10)' UkIZ—Itk[Q]:Lf D10 ;
§ 271 Jy, ho 2t Jo,
s = L« [®] = _% ()‘cb(l,o) + /—\‘I)(o,l)) ) th = L[] = _é ()‘(I)(l‘o) + 5\(1)(0,1)) )
Qaj k

As before, we use the notation résf := resf .

Let us denote the flat coordinates by €4 , i.e. we assume

€A€ {tz;a,tz;a : ’UZ, vz, wz, W : 'I‘k , ’U,k, Sk, tk}

for i=0,....m,a=1,...,n;; k=1,...,g (except v°, 0 and w®, w® , which do not

exist).

Proof. Theorem 4.6 implies that these functions satisfy equations (4.5.11). The remai-
ning equations (4.5.12), e(é*) = const , can be proven by the same reasoning as in the proof
of Proposition 4.9. ¢

Note that the action of the unit vector field e (4.5.2) on a coordinate £ is nonzero if
and only if the type of the coordinate coincides with the type of the primary differential
which defines the metric. Le. for the metric ds? with & = ®ea, the coordinate {40 is
naturally marked and we shall denote it by £! . One can prove that, for any choice of &,
the corresponding coordinate £! is such that relations e(¢!) = —1 and e(¢#) = 0 hold for

&4 #£ ¢ . Therefore we have e = ~0g1 (see also Proposition 4.10 below).
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Remark 4.5 By virtue of the Riemann-Hurwitz formula (see Section 4.3.1), the number of
functions listed in the theorem equals 2L , i.e. coincides with the number of canonical

coordinates {\i; A;}.

The next theorem gives an expression of the metric ds? in coordinates {¢4} and by
that shows again that functions {£4 ({)\k; 5\;3})} are independent and play the role of flat

coordinates for the metric.

Theorem 4.8 In coordinates {£4} from Theorem 4.7 the metric ds2 (4.5.5) is given by a

constant matriz whose nonzero entries are the following:

1

dsg (ati;a,atj;ﬁ) = dsg (Bti;—a,atj—;g) = Tv—Héijaa+ﬁ’ni+1 ,
ds? (8yi,0,:) = ds3 (8,7,0,5) = 8i;

ng (aria asj) = _6ij s

dsg (Bui, Btj) = (51']' .

We shall prove this theorem later, after introducing a pairing of differentials (4.5.24).
To further investigate properties of the flat coordinates let us choose one of the primary

differentials ® and build a multivalued differential on the surface £ as follows:

P P
¥(P) = (vp- / <I><1,0)) d\ + (V.p. / %,1,) X . (4.5.14)
oof 000

This differential will play a role similar to the role of the differential ddA in the construction
of Dubrovin (see formula (4.4.19) for prepotential). Note that ¥(P) decomposes into a sum

of holomorphic and antiholomorphic differentials: ¥ = ¥, ) + V(o ) .
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Theorem 4.9 The derivatives of the multivalued differential ¥ (4.5.14) with respect to flat
coordinates {4} are given by the corresponding primary differentials:

ov
aé_—A = @g/{ .

Proof. Consider an expansion of the differential ¥ in a neighbourhood of one of the
infinities co® on the surface. We omit the singular part which does not depend on coordi-

nates. As before, z; is a local coordinate in a neighbourhood of the i-th infinity, n; is the

corresponding ramification index. For ¢ # 0 we have

n;
U(P) s singular part + <vi(n,- +1)z ™M 4 Zti;az{“_l +wit + (’)(1)) dz;
a=1

+ <J<m SRR DU A ou)) dzi . (45.15)

a=1

We see that the expansion coefficients of the singular part are exactly the flat coordinates
of the metric ds?{, . The coordinates t%®, o = 1,...,ny appear similarly in expansion at
the infinity 0o® . The remaining coordinates ¢é# correspond to other characteristics of the

multivalued differential ¥ . Namely, we have

7{ U= sk, }{ U=tk (4.5.16)
ag by

U(P%) — U(P) = 2miurd\ — 2mivfd) + Gap AN+ 0n o , (2mid\ — 2mid)),  (4.5.17)

U(P%) - U(P) = 2mird) — 2mir*d) + 65 5 X + b4 5, (2midA — 2mid)) ,  (4.5.18)

where U(P%) , U( P%) stand for the analytic continuation of ¥(P) along the corresponding
cycles of the Riemann surface.
This parameterization of the differential ¥ by the flat coordinates, together with Lemma

4.2, proves the theorem. ¢
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As a corollary we get the following lemnma.

Lemma 4.4 The derivatives of canonical coordinates {); ; \;} with respect to flat coordi-
nates {£4} of the metric ds? are as follows

N _ Beano(P) B Beaon(P)
oA Duo(P) ogA Do (P)

where ®(P) is the primary differential which defines the metric dsg .

Proof. Theorem 4.9 implies the following relations:

P P
Oea {(/ . <I>(1,o)) d)\} =Peap g O¢a {(/ . <I>(011)) d)\} =Bpag, . (45.19)

(The divergent terms which we omit by taking the principal value of the integrals in a
neighbourhood of oo° do not depend on {£4} .) We shall use the so-called thermodynamical

identity
8a(fdg)g=const = _8a(gdf)f=const (4-5-20)

for f being a function of another function g and some parameters {p,}, i.e. f =
f(g;p1,--.,Dn), where g can be expressed locally as a function of f ,i.e. g =g(f;p1,...,0n) ;
O denotes the derivative with respect to one of the parameters p = {p,} . Relation (4.5.20)
can be proven by differentiation of the identity f(g(f;p);p) = f with respect to a parameter
Da , Which gives O,9df/dg + Oof = 0 . We use the thermodynamical identity (4.5.20) for

functions f(P) = fol:o 10 and g(P) = A(P) to get

P
6€A {/ o @(1,0)} d)\ = —agA {)‘(P)}é(l,o) (P) 5
and similarly,

O { / 1: Q(O,l)} 03 = —Bga {A(P)} B0, (P) .

o0

175



Evaluating these relations at the critical points P = P; , using that N'(P;) = 0 and equalities

(4.5.19), we prove the lemma. ©

Proposition 4.10 The unit vector field (4.5.2) is a tangent vector field in the direction of
one of the flat coordinates. Namely, in flat coordinates of the metric ds2 (4.5.5) correspon-
ding to the primary differential & = Pea, , the unit vector of the Frobenius algebra is given

by e = —0¢a, -

Let us denote the marked coordinate by £ so that e = =01 .
Proof. 'This can be verified by a simple calculation using the chain rule a1 =

L

1 (g%fa)\i + gé\—}(');\i) and expressions for \;/0¢! provided by Lemma 4.4. o

4.5.3 Prepotentials of new Frobenius structures

A prepotential of the Frobenius structure which corresponds to a primary differential ® is
a function Fy({¢4}) of flat coordinates of the metric ds2 such that its third derivatives are

given by the tensor ¢ from F3:

PR _
OEADEBIEC

(O¢a,0¢n,0¢c) = ds2 (Oga - Ogn, Ogc) - (4.5.21)
We shall construct a prepotential Fy, for each primary differential ® . This will prove that
F3 (symmetry of the tensor (Vea€)(9¢s,0c,0¢p)) holds in our construction. In order to
write an expression for prepotential we define a new pairing of multivalued differentials as
follows.
Let w(®(P), a =1,2... be a differential on £ which can be decomposed into a sum
() (o) (@) (@)

of holomorphic (w;; ) and antiholomorphic (w;,) parts, wl®) = Wy o) T Weo,1) » Which are

analytic outside infinities and have the following behaviour at P ~ oo’ (we write A for
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AM(P) , and z; = z(P) for a local parameter z; ™™ = X at P ~ oo ):

o 1 N
w(1 0)(P) Z 510? zi'dz; + —— 1d TfL’i))\" log |,
n:—n(o‘) n>0
(4.5.22)
w(o 1) Z C'EL z) z;dz; + <Z ’I'(a A" log 5\) ,
n—-— n(a)

where "(1 ), () ¢ Z ; and cflal) , 7'5:‘1.) , Slaz) , rf_:i) are some coefficients. Denote also for

A,(ca) ::j{ W@ , B,(ca) ::}{ W) ,
ag bk

A (A(P)) = Wi (P*) —w(P),  pP (W) =3 plPA

s>0

dpP(A(P)) = wiohy (P™) —wlh(P), PN =" pX

s>0

dgP(A(P)) == Wi (P*) —wSh(P), 4PN =>"¢PA

s>0

A (A(P)) = wigh (P*) —weh(P), P =3 "¢Px
s>0

k=1,...,g9 :

(4.5.23)

Note that all primary differentials and the differential ¥(P) have singularity structures
which are described by (4.5.22) - (4.5.23). For w(® being one of the primary differentials,

the coefficients cn;, Tni, Cai, Tai» Ak, Bk, Dsk, sk, Psk, Gsk do not depend on

coordinates on the Hurwitz space.

177



Definition 4.6 For two differentials w(® |, w® having singularities of the type (4.5.22),
(4.5.23), we define the pairing F|, | as follows:

m @
Flw® | w®)) = E E ;; 21’ (ﬂ) + c(a) VD / w((lﬂ())) = V.p. / (a )‘n“’((ﬁ
Py

i=0 \n>0 n>0

(2)
Cn2i (8) | () () (@)3n, (8)
-I-nz 1 m+c_1ﬂ.v.p./Po Wy — V-P- LO ng(:)'r AW
1 < .
%E( j{ (Neoiryy + }{ Rl + f PP (N
=1 273 bk
- § AP + 40 § o -5 § W) . sz
K ak

As before, Py is the marked point on L such that A\(Py) = 0, and the cycles {ak, by} all pass

through Py .

From this definition one can see that if the first differential in the pairing is one of the
primary differentials ®,4 then this pairing gives the corresponding operation I.4 applied to

the second differential:
Fl@ea,w] = Iealw] . (4.5.25)

Theorem 4.10 The pairing (4.5.24) is commutative for all primary differentials except for

differentials ®4 and 4, k=1,...,g9 which commute up to a constant:
1
FlPgr, Pp] = FlPk, o] — i (4.5.26)

Proof. Due to the relation (4.5.25) we should compare the action of superpositions
of operations Icalcs and Igslca on the sum of Schiffer and Bergman kernels. This sum

is only singular when the points P and @ coincide. Therefore among the operations

I, L, Ix, L, Ik, Ix those ones commute, being applied to Q(P,Q) + B(P,Q) ,
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which are given by integrals over non-intersecting contours on the surface. In the set of
contours used in the definition of the operations I,4 , the only contours that intersect each
other are the basis cycles a; and by . A simple local calculation in a neighbourhood of the
intersection point Py shows that the order of integration can be changed in the integral
fak fbk Q(P, Q) due to the assumption A(Py) = 0 . Therefore the only non-commuting
operations, among the mentioned above, are I« and I,z . The difference in (4.5.26) can
be computed using formulas (4.3.3) for integrals of the bidifferential W (P, Q) over a- and
b-cycles.

By a similar reasoning one can see that operations of the type Lia , Lia , Ii and I ;
fori=0,...,m, a=1,...,n;, commute with the previous ones. They commute with each
other due to the symmetry properties of the kernels. ¢

Now we are in a position to prove Theorem 4.8, which gives the metric dsg in flat
coordinates.

Proof of Theorem 4.8. For computation of the metric on vectors 9¢4 we shall use the

relation
dsg(aéA,agB) =e (f[@{A,q)EB]) y (4527)

which we prove first.

Using Lemma 4.4, we express the vectors 0g4 via canonical tangent vectors:

L
Beary o(P) Beaon(P)
o Z“Z lagitt g 4 280 3-.) _ 4.5.28
¢4 i=1( Q1,0(F;) A Doy(P) ( :

Therefore for the metric (4.5.5) we obtain:

L
ds?(0ga, 0e5) = = D (Beapo)(P)®enr0y(Po) + Beaory (P)®en o1y (B)) - (4.5.29)

i=1

mll—l
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For computation of the right-hand side of (4.5.27) we note that, in the pairing of two primary

differentials, only contribution of the second one depends on coordinates, therefore we have

The action of the vector field e on primary differentials is provided by Lemma 4.3. From
(4.5.25) we know that the pairing in the right side of (4.5.30) is just the operation I.a

applied to €(®¢s) . Therefore in the right-hand side of (4.5.27) we have

L
% Z (<I>§B v0y(P)lea [P, P) + B(P, P)] + &5, (P)ea [B(P, P)+ (P, Pi)])

L

1

_Z ¢£A(1o)(P (1)53(10)(})1')+(I)§A(0,1)(Pi)q)53(o,1)(Pi)) . (4'5'31)
=1

[S]

Together with (4.5.29), this proves (4.5.27).
Now let us compute ds?b (8,,.1‘, (95,4) . According to (4.5.27) we need to compute the action

of the unit field e on the following quantity

f[@,n},@&/{] = Iri[<I>§A] = - f;' A(P)@&A(l‘o)(P) —f S‘(P)(I)ng(O,l)(P) .

a;
Let’s again consider the biholomorphic map of the covering £5 — £, performed by a

simultaneous d-shift (& € R) of the points on all sheets (see proof of Proposition 4.9). Since
BLa(P) = Bea(P) (4.5.32)

we get

e (PR Bea)) = Z5lo-o (= § AP) + 9B (P) = f (P) +0)8en ()

ai

—f (pgA(P) = "'6&4,31’ .
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Therefore ds? (OpiyOga) = —b¢a i . Analogously we prove that ds? (Byi, Oga) = gayi . To
compute the remaining coefficients of the metric consider the operator De = % +e . It

annihilates any primary differential:
De (Bea(P)) =0 (4.5.33)

as can be proven by differentiation d/dd|s—g of the equality (4.5.32). Therefore, applying
the operator D to the expansion of the multivalued differential ¥.a near the point oot | we

obtain the following relation for the corresponding (see (4.5.22)) coefficients ¢;; :

q’{A _ l + 1 q>EA
€ (Cz,i ) Tt Ll

Therefore we have

1 ¢.4 1
dsg (8ti;a,85A) =e (Iti;a [@&4]) =€ (&Cas—l,i) = magA,ti;l+ni—a )

2 Eea Pea )
and dsg (aui,ag.q) =e (cni’i) = c¢_j; = 0¢ayi - Thus, we computed the entries of the
matrix listed in the theorem and proved that they are the only nonzero ones. ¢

Formulas (4.5.28) and (4.5.29) yield the following expression for the tensor ¢ = ds3 (8¢ -

O¢n,0¢c) (compare with expression (4.4.20) for the tensor ¢ of Dubrovin’s construction):

L
1 Beary o0 (Pi)Ben iy o (Pi)®ecy o (Pi)
c(O¢ga,0¢n,0¢c) = -3 E:( £4a,0\ % qi(l(:;o()Pi) ot

=1
+(I)gA(o,l)(Pi)q)EB(Oyl)(Pi)q)‘fc(o*l)(Pi)) . (4.5.34)
@(0,1)(Pi)

The next theorem gives a prepotential of the Frobenius manifold, a function of flat

coordinates {4} , which, according to Theorem 4.1, solves the WDVV system.
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Theorem 4.11 For each primary differential ® consider the differential V(P) (4.5.14),
multivalued on the surface L . For the Frobenius structure defined on the manifold
M\g;no,...,nm({Ai;j\i}) by the metric ds2 (4.5.5), multiplication law (4.5.1), and Euler field

(4.5.3), the prepotential Fy is given by the pairing (4.5.24) of the differential U with itself:
1
F, = 5.7—'[\11 , U] . (4.5.35)
The second order derivatives of the prepotential are given by
1 1
3§A8€BF¢ = ]:[‘136,4 ; q)EB} - R(s{A,sk(sﬁB,tk + RéﬁA,t’“(s{B,sk ) (4536)
where § is the Kronecker symbol.

Proof. To prove that the function Fj is a prepotential we need to check that its third
order derivatives coincide with the tensor ¢ (4.5.34). We shall first prove that the se-
cond derivatives have the form (4.5.36) and then differentiate them with respect to a flat
coordinate £° .

The first differentiation of Fy with respect to a flat coordinate gives:
1 1

The first term in the right side of (4.5.37) equals 3I4[¥] (see (4.5.25)). Consider the
second term. From expansions (4.5.15) of the multivalued differential ¥ and its integrals
and transformations (4.5.16)-(4.5.18) over basis cycles we know that the coefficients for ¥

which enter formula (4.5.24) for the pairing are nothing but the flat coordinates of ds? .

Therefore, writing explicitly the singular part in expansions (4.5.15) and using also (4.5.16)
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- (4.5.18), we have for the second term in (4.5.37):

FIU, &eal =) <vi(1 = 8i0) L [@a] + Y 150 [Da) + WL [Pea

i=0 a=1

Lo[®ca] Li[®c4 1
6@4, ‘ ( [ £ ] _ [ E ]> +6@v¢wi1wi[)\¢£'4(1»0)] - §6¢'1¢'Ui1vi[A¢£A(1vo)]

ng+ 1 n,+1

n; : 1
_Z a(n + ) 6‘1) @t,aIti;a[)\QfA(l,O)])

—1 n,+1+a
+ Z (’Uz(]. - zO o [@gA] + Ztl aItE @EA] +szw; [@5.4]
=0

I,U(‘) [@£A] _ I’UZ [®§A]
ng+1 n;+ 1

- 1 _
) + 64)’(1)‘.;;1“); [)\QfA(O,l)] - 564,143.1}2 I’Ui [)\@6,4(0‘1)]

e a(n; +1)
- Z n;+ 1+ a(sq’ 24i; aIt’ “P‘(I)ﬁ“‘ 0, 1)]>

+Z< rk @{A] +u Iuk [(I)gA] + s*1 k[(I)é'A] +t Itk [‘I’{A] + 5q>q, KAk [)\@gA(l 0)—{—)\@)5,4(0 1)]

+§54,,q,uk Le[A®eag o + ABeag ] + %6¢,¢sk jﬁk ADea o + %5@% jék Z\<1>£A(0,1)) .
(4.5.38)
Here the Kronecker symbol, for example, 5‘1"‘%1‘ is equal to one if the primary differential ®
(which defines the metric ds2 and the differential ¥) is @ .

Suppose the primary differential &4 is of the types 1, 3, 5,1.e. suppose Erefthe vt wi} .
Then ®:4(P) = La[Q(P,Q) + B(P,Q)] . In this case the operation Ia commutes with
all the others (see Theorem 4.10). Therefore we can rewrite (4.5.38) as an action of
Iza on some differential which depends on A(Q) only (and does not depend on A(Q)):
FlU, ®pa] = I¢a [¥1,0(Q)] . Analogously, we find that for primary differentials of the types
2, 4, 6 , when &4 € {ti?_"‘, vg, wz} , the right-hand side in (4.5.38) is equal to the ac-
tion of Ica on a differential depending only on A(Q) , i.e. F[¥, ®a] = Lea [P0, (Q)] -

Examining the properties of the differential @(1,0)(Q) + ‘il(oyl)(Q) such as singularities, be-

183



haviour under analytic continuation along cycles {a,bix} and integrals over these cycles,
we obtain with the help of Lemma 4.2: ¥(Q) = ¥,4(Q) + $;1)(Q) , and therefore
U0(Q) = ¥ao(Q) , Yon(Q) = Fwen(Q) . Hence, for primary differentials of the types

1 — 6 we have
F[P, ‘I’gA] = I€A (9] . (4.5.39)
Similarly, for differentials ®,x and ®,x , we get

7W@M:—fA@WmM”—fX@Wmﬂ”,

a Qg

FIT, By = — Amﬂmﬂwﬁfxmﬁm@m

b b

which proves that (4.5.39) also holds for ¢4 € {r, uk} .
Formula (4.5.39) changes for the primary differentials ®, and @, : the additional

terms appear due to non-commutativity of the corresponding operations (Theorem 4.10):

tk sk
Fl¥, D] = L [¥] - 77 FIU, Q4] = L [P] + 57

Coming back to the differentiation (4.5.37) of the function F, , we have

k Sk

t
6£AF¢ = ]‘—[QgA, \I/] - 6§A,skm + 6§A,th . (4540)

Note that the contribution of the primary differential ®;4 into the pairing F[®.4, V] does
not depend on coordinates. Therefore, by virtue of Theorem 4.9, the differentiation of
(4.5.40) with respect to £7 gives the expression (4.5.36) for second derivatives of the function
F, .
To find third derivatives of F; we differentiate (4.5.36) with respect to a flat coordinate
&
O¢cOcpOcaFy = F|®pa , Ogc®en] = IalOic Pen] . (4.5.41)
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Then we express the vector J;c via canonical tangent vectors {0y} as in (4.5.28) and
use formulas from Lemma 4.3 for derivatives of primary differentials. Analogously to the
computation (4.5.31) we find that derivatives (4.5.41) are given by the right-hand side of
(4.5.34), i.e. equal to the 3-tensor ¢(Ogc,0¢5,04) . ©

Thus, by proving that the function Fy given by (4.5.35) is a prepotential (see Definition
4.4) we completed the construction of Frobenius manifold corresponding to the primary

differential ® on the space J/\Zg;no,‘..,nm . Let us denote this manifold by M® = M?

g;ng,...sNm °

4.5.4 Quasihomogeneity

Now we shall show that the prepotential Fy, (4.5.35) is a quasihomogeneous function of flat

coordinates (see (4.2.1)). According to Theorem 4.1, the prepotential satisfies
E(F,) = vpFy + quadratic terms . (4.5.42)
In the next proposition we prove that the vector field £ has the form (4.2.2), i.e.
E=) v, (4.5.43)
A
and compute the coefficients {v,} .

Proposition 4.11 In flat coordinates {£*} of the metric ds2 , the Euler vector field (4.5.3)
has the form (4.5.43) ( and therefore is covariantly linear) with coefficients {v,} depending

on the choice of a primary differential ® as follows:

185



[ ] Zf o = @tzo ;@ OT D = (b the'n/

tioix

m ng
. - (6] (07
E= (tz""‘ai;a tuaam) 1 -
3 (60 + ) (14 g )

=0 a=1

(V'O +0v'0;:) + (1 +

m
a i in a i i -
+;(nz +1 vt + nio+1)(w (7 +w uﬂ))

g
(8% k k
E: ) 1
+k1Q%+1(a¢+uu@+(+

1 ) (Skask + t’“@tk )>

ni,

¢ ifd=3,,,0=0;

'U‘io ?

D=4, or ® =D, then

m n

o) + Z (v Oyi +v 81;? + 2(w'8,: + wzaw;)t)

=0 a=1

g
3 (200 )
k=1

¢« ifd=3,,,0=03_

wio ’

b=, or D= D, then

B = f; le 1- tl (t"Opia + ti;_aati;_a) + il( 28«1z +w'd )+ ;(Ska &+ t’“&tk) .

Proof. Let us compute the action of the Euler vector field on a flat coordinate £# .
Consider again the biholomorphic map £y — £x defined by the transformation P + P*¢ on
L such that A(P¢) = A(P)(1+¢€), € € R, performed on every sheet of the covering L) .

Since the kernels §2 and B are invariant under this map, the primary differentials transform

as follows:
for & = Bpo or &=y : T°(P%) = (1 + €)=+ 3(P)
for =9, 2=0;, =% or D=3, : (P)=(1+¢)P(P)
for =@, =P :;, P=Pu or & =Py : ®¢(P°) = o(P),

where ®€ is the corresponding differential on the covering L5 .
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Let us choose, for example, the primary differential ®;:.;« . Flat coordinates of the metric
ds?  are functions of {);} and {);} only. If we consider corresponding functions on L
t‘Lo;&
and differentiate them with respect to € at € = 0, we get the action of the vector field E

(4.5.3) on the flat coordinates:

o d n + 1 AT
E(tz,a) — a|€=oa__h Ic'g? (/\(Pe)) ni+1 @:io;a(l,o)(Pf)
g
d nitloe, o o X g
= = le= 1 n;+1 nip+1 tz’a =(1- tl’a'
del6 0( +6) ( ni+1+nia+1)

Therefore the vector field E depends on the coordinate t"* as E = (1- 25+ ) V520,40 +
.... Similarly we compute the dependence on the other flat coordinates. ¢

The action (4.5.42) of the Euler field (4.5.43) on the prepotential F} is equivalent to the
condition of quasihomogeneity for Fy , i.e. Fy(k*1€1, ... k¥2LE2L) = gVFF<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>