A PROTOTYPE WORKFLOW ENGINE PARTIALLY
SUPPORTING YAWL
(YET ANOTHER WORKFLOW LANGUAGE)

YI CHEN

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

NOVEMBER 2004

© YI CHEN, 2004

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04442-X
Our file Notre référence
ISBN: 0-494-04442-X
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

A Prototype Workflow Engine Partially Supporting YAWL

(Yet Another Workflow Language)

Workflow has become popular and interesting by removing control flow
dependence from business software systems, just as DBMS (DataBase Management
Systems) has become a separate domain by removing data dependence from business
software systems. YAWL (Yet Another Workflow Language) is a completely new
language with its own semantics and it is specially designed for workflow specifications
that provide direct support for the workflow patterns identified.

When this thesis was first conceived, no implementation based on YAWL was
available. This inspired the development of this thesis.

In this thesis, as a starting point, an XML workflow schema employing seven
workflow patterns of YAWL was designed for users to define the workflow specification.
Based on this, a prototype workflow engine supporting these seven patterns of YAWL
was designed and implemented to parse and interpret the workflow in the control flow
specification (the execution order) of YAWL, which is described in the XML workflow
document conforming to an XML workflow schema. At runtime, the engine handles the

execution order of the workflow.

1ii

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. Gregory Butler,
for giving me an opportunity to work on this challenging topic and for providing
continuous guidance, advice, and support throughout the course of this research work.

Thanks to all my friends, who have helped me grow in these years, reminding me
of what is really important in my life. |

Specially, I want to say thanks to Michael for his great help in difficult times.

Last but not least, I would also like to thank my family, Mom, Dad and Sister.
Thank you for listening to me when I needed it. Without their love, support and constant
encouragement this work would not have been possible. Although you are far away, you

are always in my mind.

iv

Contents

List of Figures viii
List of Tables X
List of Acronyms xi
Chapter 1 Introduction. ceseseasesnnesantesassesanas 1
1.1 The PrODBIEIMS. ..ccciitiiiiiiiiiiit ettt ettt e e e e e e e et reeeee e e s esseannee 1
L.2 MY WOIK oottt ettt sttt s s st sssessssss e sesaseseseneesesassssenaees 2
1.3 CONIIDULIONS ..ttt ettt et e et e eeate et e e e st reeesatneeesaneeenaneeenataeens 2
1.4 Organization Of the TReSiScoouviiiiiiiii e 3
Chapter 2 Background 4
2.1 DEfINIEION 1.evieiieieiee ettt et e e et e e e ettt e e e e et e e s et b e et e eeeeaaaannree 4
22 WHhY WEMS? ...ttt ettt ettt et e et e st eeebeenneesareeens 7
2.3 PUIT INELS ... evtiiieeie i e e eceeeeettee e e se sttt te e e ee sttt e e eeeeeaaastssbereaaaasaaeseasssaassssssaaeeeeesansines 8
2.3.1 Classical Petri NEt......cccvverriiiiiiiiiiiiiiiieeeeeeeriiiiee st eese s ceieearateaee s esennennns 9
2.3.2 High Level Petri Netccoviiiiiiiiiiiiiiiiiic ittt es e e 9

2.4 Workflow Languages and YAWL. ...t 10
2.4.1 WOrkflow Patternscoooiieiiiiiiiiiiiiiiit ettt e e e sieaeaeeaes 10
2.4.2 Background on Workflow Management Systemscccceeeiieeieeiiciiannnnnn. 18
2.4.3 Limitation of Existing Workflow Languages..........cccccccevriiiiiiiiiiiininenieenennna, 20
2.4.4 Definition of YAWL ...ttt ee s seevaraae s e e e enennnas 23
2.4.5 A Workflow Sample Represented by YAWL’s Workflow Patterns................ 25

2.4.6 Advantages Of YA WL ..ot csree e st esce e sreeesaes 26

2.5 Choice of Technologies (DOM, SAX and JAXB) ...cccccveiirviiieiiiiiiiicacineeeenneeeeen 28
2.5 SAX ettt ettt sttt et et s ee et e e 28
2.52DO0M ..ciiiiiiiiiiiiiiiieeeeeeene R PR R 29
253 JAXB ..ottt sttt en ettt n e earee 29
2.5.4 Why Did We Choose JAXB?coiiiiiiiiriieiititeeeere ettt seee e 30

Chapter 3 The Prototype Workflow Engine 31

3.1 Overview of the DEeSignooviiiiiiiiiiiii e 31

3.2 CoNCEPE DESIZMN ..ottt 32

3.3 Detai] DESIZI.cciniiiiiiiiiiiiie ettt et e e ettt e st e e e neeaa s 35
3.3.1 The Design of the XML Workflow Schemaccccociiiniiniinnncinne. 35
3.3.2 The Design of the Prototype Workflow Engineccccccoiiioiiinniiiinnnnaee. 48

3.4 Test of the Prototype Workflow Enginecc.ccccoovviiiiiiiiiiiiniiiiiieeeee 63
3.4.1 What do We Test?....coooiiiiiiiiiiie et s e e 63
3.4.2 How do We Simulate Application Functions?cc.ccocceveviiinieniveniieannnne 64
3.4.3 How do We Simulate the Selection Course for the OrSplitTask?................... 65
3.4.4 How do We Simulate the Selection Course for XorSplitTask?............cccceene 65
3.4.5 Test of the Sequence Patterncccccovviiniiiiiiiniiiinii e sce e 66

3.4.6 Test of Group of the Parallel Split Pattern and the Synchronization Pattern...67
3.4.7 Test of Group of the Multiple Choice Pattern and the Synchronizing Merge

PatlEIT oottt et aaaaaaa s 68

3.4.9 Test of Group of the Multiple Choice Pattern and the Simple Merge Pattern .71

Vi

3.4.10 Test of the Workflow Sample Consisting of All Seven Workflow Patterns..73

3.4.11 Test for Workflow Sample with Human Interactionc..ccocoiiinnnnnn. 76

B35 Related WOTK....coeeieiiiiiiiiieee et 84
Chapter 4 Conclusion | 92
Bibliography 4

Vil

List of Figures

Figure 2-1 General Workflow Product Architecture [29]cccooiiviiiiiiiiiniinn, 5
Figure 2-2 A Process Sample Using Petri Nets [1] ..., 9
Figure 2-3 Symbols 'Used I Y AWL [2] oottt s 23
Figure 2-4 Human Resource Recruitment Process Sample............ccocoeeviiiinniiiiniicnnnne 25
Figure 2-5 Publishing of a Magazine Process Consisting of a Multi-Instance Pattern.....27
Figure 2-6 Order Process Consisting of an Advanced Synchronization Pattern 27

Figure 2-7 Reimbursing Business Trip Expenses Process Consisting of Cancellation

o1 1<) o 1 DO SO PO S SRRSO PP PPPURUPUPUPTTURRRt 28
Figure 3-1 Architecture for the Prototype Workflow Engine...........ccccccoooiciiiiininnainns 32
Figure 3-2 Control Flow Specification in the XML Workflow Schema.......................... 38
Figure 3-3 A Process Sample Modeled in the Recursive Hierarchy Structure................. 39
Figure 3-4 Sequence Patlernoviiiiiiiiiiiieiiriieeiet e e e e eeeere e e e e 41
Figure 3-5 Group of the Parallel Split Pattern and the Synchronization Pattern 42

Figure 3-6 Group of the Multiple Choice Pattern and the Synchronizing Merge Pattern.43

Figure 3-7 Exclusive ChoiCe Pattern..........cocouviiiiiiiiiiiiniiinniiiiiiceirceciee e 44
Figure 3-8 Group of the Multiple Choice Pattern and the Simple Merge Pattern 44
Figure 3-9 Workflow Relevant Data.........ccccccoviiiieiiiiiiiiiiiiiieiec e 46

Figure 3-10 Interface Information for the Atomic Task and the Application Function....46

Figure 3-11 UML Architecture Diagram for the Workflow Engine.............ccccevvevicinnnnnn. 48
Figure 3-12 Composite Design Pattern in the Workflow Engine..............ccccooeiiininan. 51
Figure 3-13 Visitor Design Pattern in the Workflow Engine........c..cccccoviiiniinnnnnnnn. 52
Figure 3-14 Class Diagram for the ThreadGroupManager Subsystem.............ccccccueene.e. 54

viii

Figure 3-15 Sequence Diagram for the Group of the Parallel Split Pattern and the

SyNChronization Pattern........coooiiiiiiiiiiiiiiiiii e e e e eeirree e e enreeee s 61
Figure 3-16 Java Synchronization Technology in Our Implementationccccee. 62
Figure 3-17 Log File of the Test for the Sequence Pattern............cccccoeviviiinninniinnen. 67

Figure 3-18 Log File of the Test for the Group of the Parallel Split Pattern and the
Synchronization Pattern........ccooooiiiiiiiiiiiiii e e et er e s ereeee s 68
Figure 3-19 Log File of the Test for the Group of the Multiple Choice Pattern and the
Synchronizing Merge Patterncccccoviiiiiiiiiiiiiiiiiriciniciecccnee e 70
Figure 3-20 Log File of the Test for the Exclusive Choice Patterncccccveeeeeeenne. 71

Figure 3-21 Log File of the Test for the Group of the Multiple Choice Pattern and the

Simple Merge Patternl....occ.viiiiiiiiiiiiiiiiiiiiieie ettt sttt seneeeeianeas 72
Figure 3-22 Log File of the Test for Combination of Workflow Patterns 75
Figure 3-23 Log Information for Task “send resume”.........cccocoveereiiiernniiinirniienoneenne 79
Figure 3-24 Log Information for Task “distribute resume”cc.ccccevevirivinciinieennnenne 80
Figure 3-25 Log Information for the Three Parallel Tasks..........cccoccvirniiinnnniiiinnennnnen. 81
Figure 3-26 Log Information for Task “collect evaluation TEPOTES” woeeeiirereeeeeeieeeeeeens 82
Figure 3-27 Log Information for Task “decide”..........ccccevriiiiniiiiiiiiieiirecceerineee e 83
Figure 3-28 Log Information for Task “notify”........cccccceiniiiniiniiiiee e, 83
Figure 3-29 YAWL Architecture [3]..... ..o crerree e 85

ix

List of Tables

Table 2-1 Evaluation Form for Seven Workflow Products [2]

List of Acronyms

API Application Programming Interface

BPR [Business Process Re-engineering

CEO Chief Executive Officer

DBMS |Database Management System

DOM [Document Object Model

EPS Event-controlled Chains

HR Human Resource

[T Information Technology

JAXB [Java APIs for XML Binding

SAX [Simple API for XML

'WEFMC [Workflow Management Coalition

WEMS |Workflow Management System

WSDL |Web Services Description Language

XML [Extensible Markup Language

XSLT |[Extensible Stylesheet Language Transformations

YAWL |Yet Another Workflow Language

X1

Chapter 1 Introduction

1.1 The Problems

Workflow is “the computerized facilitation or automation of a business process, in
whole or part” [29]. In recent years, Workflow Management Systems (WEFMS) has
become popular and interesting by removing control flow dependence from business
software systems, just as DBMS (Data Base Management Systems) has become a
separate domain by removing data dependence from business software systems.

The main concerns of workflow are the assessment, analysis, modeling, definition
and subsequent operational implementation of the core business process of an
organization (or other business entity). The workflow engine provides a runtime
execution environment for a workflow instance. However, in the workflow domain, the
languages supported by various workflow products differ significantly, and there is no
universal standard to follow as a formal basis for the workflow specification, and
furthermore, contemporary workflow systems and theoretical models such as Petri nets
have problems supporting essential workflow patterns. YAWL workflow research group
[2] of Queensland University of Technology identified twenty workflow patterns [30]
and developed a new workflow language YAWL by taking Petri nets as a starting point
and introducing mechanisms that provided direct support for the workflow patterns
identified. The primary advantages of YAWL are that it supports all of the workflow
patterns and has a formal semantics [2] as well as a graphical representation.

When this thesis was first conceived, no implementation of YAWL was available.
This situation inspired us to develop a prototype workflow engine partially supporting

YAWL.

1.2 My Work

The scope of this thesis is as follows: An XML workflow schema employing
seven patterns of YAWL is designed for users to define the workflow specifications.
These seven workflow patterns of YAWL are five basic control flow patterns: the
Sequence pattern, the Parallel Split pattern, the Synchronization pattern, the Exclusive
Choice pattern, the Simple Merge pattern, as well as two advanced patterns: the Multiple
Choice pattern and the Synchronizing Merge pattern. Based on this, a prototype
workflow engine supporting these seven patterns of YAWL has been designed and
implemented to parse and interpret the workflow specifications in the control flow
perspective (the execution order) of YAWL. The workflow specification has been
described in the XML workflow document conforming to the XML workflow schema. At
runtime, the engine handles the execution order of the workflow. That is why this thesis
is titled: “A prototype workflow engine partially supporting YAWL.” In future, the
system can be expanded by incorporating other patterns and data perspectives of YAWL
into the system.

1.3 Contributions

In this thesis, an XML workflow schema employing the seven workflow patterns
of YAWL has been designed as a recursive hierarchy structure. In this way the workflow
specifications can be described in an XML workflow document conforming to the XML
workflow schema. A prototype workflow engine incorporating the seven workflow
patterns of YAWL has been designed and implemented with Java and JAXB to parse and

interpret the workflow instances or sample in the control flow perspective (the execution

order) of YAWL, where each workflow instance or samples is described in an XML
document conforming to the XML workflow schema.
1.4 Organization of the Thesis

After a brief introduction of this thesis in Chapter 1, workflow, workflow
language and YAWL are introduced in Chapter 2, which also covers the related
technologies of Java, XML and JAXB. Chapter 3 describes the design of the XML
workflow schema in a recursive hierarchy structure to define the workflow specification.
And it focuses on the design, implementation, as well as the test cases of the prototype
workflow engine. Chapter 4 concludes the thesis.

As the YAWL group developed a workflow management system supporting
YAWL while this thesis was approaching its final version (The latest version was
released in July, 2004.), a comparison between the two systems has been made in Chapter

3.

Chapter 2 Background

2.1 Definition

“Workflow is concerned with the automation of procedures where documents,
information or tasks are passed between participants according to a defined set of rules to
achieve, or contribute to, an overall business goal. Workflow is defined by the Workflow
Management Coalition (WFMC) as: the computerized facilitation or automation of a
business process, in whole or part” [29]. Workflow is concerned with the assessment,
analysis, modeling, definition Aan.d subsequent operational implementation of the core
business processes of an organization (or other business entity), and all of the above
activities often associate with Business Process Re-engineering (BPR). Workflow
technology often offers an appropriate solution for all BPR activities as it highlights the
business procedure logic. Despite that, not all BPR activities result in workflow
implementations. Conversely, not all workflow implementations necessarily form part of
a BPR exercise, for example, implementations to automate an existing business
procedure.

“Workflow Management System (WFMS) is a system that completely defines,
manages and executes ‘workflows’ through the execution of software whose order of
execution is driven by a computer representation of the workflow logic” [29]. The main
function of a WEMS is to provide procedural automation of a business process, by
managing of the sequence of work activities and the invoking of appropriate human or IT
resources associated with the various activity steps.

A business process is a process coordinating sets of activities inherently

dependent on the company’s organizational structure in order to achieve business

objectives (for example, an ordering process for an online shopping company). An
Activity or Task is a logical work item or step within a process (for example, a “register”
activity in a trip booking process). A Work Item can be an atomic task, a composite task
that the user utilizes at a specific point in time during the workflow process. An instance
describes the course of execution of a process or an activity. Control flow is the order of
execution of activities and processes.

‘May reference

Generates
Referenice

Process Definition

Interpreted
Organization by
Role Model

Reference

Relevant

upervisor
Gup) Interact via Data

. Software component

| Userlaterface |

L___l System control data

| External data/product

Figure 2-1 General Workflow Product Architecture [29]

Figure 2-1 shows the general workflow product architecture [29] derived from
WEMC. The following gives a brief introduction to this general workflow product
architecture.

The Process Definition Tool is either the component or software needed for users
to specify the workflow specification. The process definition consists of a set of tasks as
well as the specification of their relationships. It also specifies the execution sequence of
the process and other related information for each individual task. For example, the start
condition, the end condition and the rules for navigating the various activities within the
process.

An Application is a software component that interacts with the workflow engine,
dealing with certain parts of jobs that are required to support the correspondent task in the
process.

Workflow Relevant Data may be manipulated by workflow applications and by
the workflow engine. They may affect the choice of the next activity to be chosen (for
example, decision data).

Workflow Control Data are the data that are managed by the Workflow Engine.
These data are the state information of every process instance or every activity instance.
The external applications can not access them. For example, the state information can be
starting and terminal status of each task in the process.

“A Workflow Engine is a software service or engine that provides the run time
execution environment for a process instance. Its functions include interpretation of the

process definition, creation of process instances and management of their execution,

navigation between activities and the creation of appropriate work items for their
processing, supervisory and management functions, etc.” [29].

A Worklist is a list of activities associated with a given workflow participant.
Through the interface information stored in this list, users can view their assigned
activities and invoke the execution of the corresponding task applications.

A Worklist Handle;r is a software component that coordinates the interaction
between the user and the workflow list. Through the Worklist handler, the user can start
his assigned task, and the notification of the completion of the task can be passed
between the user and the engine.

A Process Role abstracts participants to a collection of workflow activities (for
example, an accountant who does accounting jobs). “Organization model is a model,
which represents organizational entities and their relationships. It may also incorporate a
variety of attributes associated with the entities, such as skills or role” [29]. The
performance of a workflow instance may be administrated and monitored by a supervisor
in the organization.

2.2 Why WFMS?

Three basic benefits can be derived from the use of WFMS. The first benefit is
derived from its flexibility in changing the model of the underlying business processes,
since it separates the control flow specification from the specification of the logic of the
application functions, which comprise the algorithmic aspects of the application. Based
on this separation, the modification of the model of processes will not influence the
associated application implementation. The second benefit is derived from the integration

capacity of the different activity implementations, and also, the cross-enterprise business

processes. The third benefit is derived from the improvement in efficiency. By using
WEMS, the automation of many business processes results in the elimination of many
unnecessary steps.

2.3 Petri Nets

Since the time Petri nets were introduced by C.A.Petri [1] in the sixties, their
importance has grown. They have been widely used as a mathematical tool in a variety of
ways such as the modeling and analysis of business processes, protocols etc.

A Petri net is a graphical and mathematical modeling tool. It consists of places
(circles in Figure 2-2), transitions (squares in Figure 2-2), and arcs (arrows in Figure 2-2)
that connect them. Input arcs connect places with transitions, while output arcs start at a
transition and end at a place. Places correspond to conditions and each may contain
tokens. Tokens represent objects (humans, goods, machines), information, conditions or
states of objeéts. Transitions represent events, transformations or transportations. The
states of a process are modelled by tokens in places, while the state transitions leading
from one state to another are modelled by transitions. Transitions are only allowed to fire
if they are enabled, which means that all the preconditions for the activity must be
fulfilled (there are enough tokens available in the input places). When the transition fires,
it removes tokens from its input places and adds some or all of them to its output places.
The number of tokens removed or added depends on the cardinality of each arc. The

interactive firing of transitions in subsequent markings is called the token game.

Customer representative ready to start

free
Customers waiting \

s sh —+O
*

waiting busy end

Figure 2-2 A Process Sample Using Petri Nets [1]

The widespread usage of Petri nets can be attributed to their formal semantics [1]
and the simple set of graphical notations to represent the workflow.

We can distinguish two main types of Petri net, the classical Petri net and the
high-level Petri net.
2.3.1 Classical Petri Net

The classical Petri net is the original basic version that has been in circulation for
more than four decades. Classical Petri nets are simply composed of places (denoted by
circles) and transitions (denoted by squares) connected through directed arcs. Figure 2-2
shows an example focusing on a simple business scenario for a call center customer
service using the classical Petri nets. After a customer connects with the line, he will be
in the waiting status. If the customer representative is free, he will provide a service for
the client. He then remains in the busy state until the conversation is over. The customer
disconnects his line and the service is over. At this moment, the customer representative
becomes free, and he is available to talk with another client.
2.3.2 High Level Petri Net

The high level Petri net [1] extends the classical version of Petri nets. With an
endowment of extra capabilities, it is able to accommodate more complex and advanced

modeling requirements. In the classical Petri net, a token often represents an object

having all kinds of attributes. By extending the classical Petri net it through the color
features, the high level Petri net enlarges the representation capabilities of Petri nets. This
extension specifies that each token has a value (color) which refers to specific features of
the object modelled by the token. For example, if the designer adds a color to the token
for the customer representative as outlined in Figure 2-2, the color can be defined to
represent the customer representative’s name and his identity number.

The extension with hierarchy is done through a hierarchy construct called a
subnet, which is well-suited to structure sizable processes. The hierarchy extension helps
reduce the size and complexity of the Petri net needed for precise modeling of business
processes. This allows simplified representations of complex and detailed process
descriptions at the high levels of the hierarchy and detailed stored information at the
lower levels of the structure, making it easier to express the functionalities. For example,
the place with a colored background can represent a mapping from one task to a
composite task, which contains tasks on a lower level of the hierarchy. Thus, Petri nets
become more flexible, easy-to-use and handy when dealing with large and complicated
business processes.

2.4 Workflow Languages and YAWL

First, this section provides an overview of the workflow patterns consolidated by
the YAWL group. Then we will look into some of the popular workflow products and
analyze them by using the patterns suggested by the YAWL group.

2.4.1 Workflow Patterns
Here we introduce the twenty workflow patterns introduced by the YAWL group

[2]. Based on the analysis of many workflow projects, the YAWL group discovered that

10

many workflow requirements recur frequently in existing workflow languages. However,
they were not implemented in the current versions of workflow products. This study
inspired the YAWL group to look for a more structured approach to identify the
specification of control flow in workflow languages. Since 1999, they have categorized a
complete set of patterns [2], which shares common business requirements from specific
workflow languages. These patterns are classified into six categories: basic control flow
patterns, advanced branching and synchronization patterns, structural patterns, patterns
involving multiple instances, state based patterns and cancellation patterns [2].

Basic control flow patterns: These patterns include the most common or basic
flows that are employed for modeling in most workflow languages. They include:
1. seq (Sequence) is defined as an ordered series of activities, in which only after the
completion of an activity, the other activity can start. The WFMC (Workflow
Management Coalition) [29] defines this behavior as, “Sequential Routing.” The order of
the Sequence is determined by the direction of the sequence flow arrowheads. One can
think of this as the passage of a conceptual “token” along a sequence flow from the
source object to the target object.
2. par-spl (Parallel Split) is “a point in the workflow process, during which a single
thread of control can split into multiple threads, thus activities can be processed
simultaneously or in any order” [30]. A single path through the process is split into two
or more paths, so that two or more activities are performed concurrently.
3. synch (Synchronization) is “a point in the workflow process where multiple parallel
tasks converge into one single thread of control, thus synchronizing multiple threads. It is

an assumption of this pattern that each incoming branch of a synchronizer is executed

11

only once” [30]. A combination of paths that were generated by a Parallel Split pattern,
results in a Synchronization pattern. The “synchronization” of the parallel paths means
that the entire set of activities within the flows must be completed before the process can
continue.
4. ex-ch (Exclusive Choice) is a procedure in the workflow process where only one of
several alternative paths is executed due to the prior decision. It is defined as being a
location in a process where the flow is “split” into two or more exclusive alternative
paths where only one of those alternative paths may be chosen for the process to
continue.
5. simple-m (Simple Merge) is a mechanism in the workflow process where multiple
parallel tasks converge without synchronization. It is similar to the Synchronization
pattern, except that it does not wait for all the activities to be completed. As soon as the
fastest task among the incoming branches is complete, the process is ready for the next
step, and it will ignore and cancel the execution of activities from other branches.
Advanced branching and synchronization patterns: These patterns expand the
basic patterns, thus accounting for more complex splitting and joining methods. This
category is composed of:
6. m-choice (Multiple Choice) is a location in the workflow process where a part or all
of the paths can be selected according to the runtime environment. It differs from the
Exclusive Choice pattern in that the Multiple Choice pattern allows one, some or all of
the alternative paths to be chosen at performance-time. For example, supplierl and

supplier2 are both in the supplier list. After executing the select_supplier activity, either

12

the activity contact_supplierl or the activity contact_supplier2 is executed. However, it is
also possible that both suppliers are chosen to be executed.

7. sync-m (Synchronizing Merge) may have a synchronization point if there are several
running threads of incoming branches. After all the threads are complete, the next activity
can be triggered. There will be no synchronization point, if only one thread of the
incoming branches has been started. A branch that has already been activated cannot be
executed again while the merge is still waiting for other branches to finish being
executed. For example, extending the sample in Multiple Choice Patterns, after either or-
both contact_supplierl and contact_supplier2 have been processed (depending on
whether these activities are executed at all), the submit_order will be executed (only
once).

8. multi-m (Multiple Merge) is a point in the workflow process where the activity
following the merge point can be triggered every time each of the running threads of
incoming branches have been completed. Multiple instantiations of the activity are likely
to occur. Thus, if there are multiple paths converging on an activity without any token
control, it is possible that the activity will be instantiated once, when a token arrives, for
each of the paths that are merged. Furthermore, the tokens will all continue independently
throughout the remainder of the process (if any). Thus, the main difference between the
Multiple Merge pattern and the Synchronization or Simple Merge patterns is that, for the
latter two patterns, the target activity will be instantiated only once. For example, in a
booking system the activity book_hotel and the activity rent_car are executed

concurrently and both of them are followed by the activity pay.

13

9. disc (Discriminator) is a point where it waits for one or several of the incoming
branches to be completed before activating the subsequent activity. If the discriminator
needs some of the incoming braches to be completed, it will only wait for the completion
of these expected branches. As soon as these branches are completed, it will trigger the
subsequent activity, and the execution of other branches will be cancelled. For example,
in order to reduce the waiting time in customer service, a waiting request is sent to all the
agents, and the first available will be responsible for the customer, thus canceling all the
other agents in this case.

Structural patterns: These patterns are identified to allow for the block
structure, which describes the entry and exit points clearly. The following two patterns in
this group cover such behavior as looping and the independence of separate process
paths.

10. arb-c¢ (Arbitrary Cycles) can be regarded as an unstructured loop, where activities
can be executed repeatedly. The looping segment of the process rhay allow more than one
entry or exit point. This pattern is important to get an idea of valid, but complex, looping
situations in a single diagram. For example, in a telecommunication company, the
designer creates a new chip whose parameters are tested by the testing engineer. If the
result matches the industrial requirements, this design can be introduced into the market.
Otherwise, the testing engineer will issue a feedback report to the designer and the testing
process is executed repeatedly until the tester obtains satisfactory results.

11. impl-t (Implicit Termination) occurs when “a given process is terminated if there is
nothing to do. In other words, there are no active activities in the workflow and no other

activity can be made active (and at the same time the workflow is not in deadlock)” {30].

14

Patterns involving multiple instances: These are patterns wherein sometimes
activities within the context of the process need to be enacted several times during the
course of a single proce;s execution. For instance, multiple witness statements need to be
handled during the process of an insurance claim. The following four patterns describe
how multiple instances or copies of activities are created.

12. mi-no-s (Multiple Instances Without Synchronization) involves initialization of the
multiple instances of an activity without any synchronization point. During the execution
of a thread, it can create many independent instances of an activity and the execution of
other threads will not depend on these instances either.

13. mi-dt (Multiple Instances With a Priori Design Time Knowledge) is a point in the
workflow process where multiple instances of an activity can be created, and the number
of these instances should be decided at the design time. The model designer knows how
many times the activity should be performed, and this number is defined in the process
model. After all the copies of the activity have been completed, other activities need to be
started. For example, during the show time of TV programs, the sponsors’ commercials
are displayed regularly.

14. mr-rt (Multiple Instances With a Priori Runtime Knowledge) is different from the
Multiple Instances With a Priori Design Time Knowledge pattern because the number of
these instances can not be known at design time nor can it be set before runtime. It can be
known according to the features of the environments, and it is known at some stage
during runtime. After all the threads have been executed, the next activity will be started.
For example, when doing online shopping, the customer may order many goods. During

the processing, the activity check_availability should be executed for every individual

15

purchase. Only after the availability of each item has been checked, can the shipping
activity be triggered.
15. mi-no (Multiple Instances Without a Priori Runtime Knowledge) demonstrates that
“multiple instances of an activity are enabled many times. The number of instances of a
given activity for a given case is not known during design time, nor is it known at any
stage during runtime, before the instances of that activity have to be created. Once all
instances are completed some other activities needs to be started” [30]. The exact number
of copies of an activity is actually determined during the performance of these copies,
making it different from the previous two patterns. Within a loop, the given instance must
be coupled with another instance, which determines if another copy of the given instance
is required. If another instance is deemed necessary, then the process continues and the
next instance is started, when all the copies of the given instance have been completed.
For example, in order to collect the matured grapes in a 200-acre farm to make wine, the
winegrower needs to employ some temporary workers. However, it is difficult to figure
out the quantity of grapes that can be collected per day, consequently the exact number of
days in the harvest Season is unknown in advance. After each day, the winegrower can
determine whether another work day of the collection instance is needed by calculating
the size of the rest of the field. The harvest process is completed after all the grapes in the
field have been collected.

State-based patterns: Typical workflow systems do not concentrate on states,
rather they concentrate more on flow-type variables such as activities and events. These
inherent characteristics limit the expressive power of the workflow language. Hence,

state based patterns were deemed necessary. The following three patterns in this group

16

define how the behavior of a business process may sometimes be affected by factors
outside the direct control of the process engine.

16. def-c (Deferred Choice) is a situation in the workflow process where only one path
out of all the possible paths is selected. The selection depends on the environment feature
-at runtime. This pattern is similar to the Exclusive Choice pattern except that the basis for
determining the path that will be taken is different. The Exclusive Choice pattern is based
on the evaluation of process data, while the Deferred Choice pattern is based on an event
that occurs during the process, When the event is triggered, all the other alternative paths
are ignored. For example, all the registered people can be qualified competitors in the
auction process. In each round of the bidding, a competitor who submits a price quickly
will have priority. Those competitors who react slower will be ignored. In this case, the
path of choosing a buyer is based on the bidding event.

17. int-par (Interleaved Parallel Routing) describes that the set of activities can be
executed in an arbitrary order. However, each time, only one activity can be executed.
The execution order of the activity from different sets is known at runtime. Irrespective
of the order, all the activities in the pattern must be performed sequentially, due to the
sharing or updating of the same resources. For example, the MBA program in business
schools requires prospective students to take two tests, TOEFL and GMAT, which can be
taken in any order but not at the same time.

18. milest (Milestone) are points within a process where it is important to know whether
a specific event has occurred or a condition has been met. An activity is only enabled if a

non-expired milestone has been reached. The process model must be able to identify and

17

react to the milestone. For example, any qualified student can register himself as the
candidate for the position in the new student union until the deadline for registration.
Cancellation patterns: These patterns illustrate how the completion of one

activity may cause the cancellation of an activity or group of activities. Somewhere
during the course of the workflow process, it is necessary to cancel one or more
activities. Cancellation of the whole case might even ensue. To respond to these needs the
category of cancellation patterns is defined, which includes:
19. can-a (Cancel Activity), can cancel the corresponding execution task. This pattern
describes how, given two competing activities, when one of the activities ends, this
activity signals that the other activity should stop processing. Thus, a mechanism for
signaling the cancellation and a mechanism for interrupting activities based on this signal
are both required. For example, if the customer cancels his booking of the flight before
the deadline, the system will not wait for the payment anymore.
20. can-c¢ (Cancel Case) can remove the whole process instance. This pattern is an
extension of the Cancel Activity pattern. For example, if the conference holder cancels
the scheduled meeting, the preparation process for the meeting will be disabled.
2.4.2 Background on Workflow Management Systems

The above identified workflow patterns provide a structured approach to
construct the control flow perspective in workflow specifications. In order to collect
workflow patterns corresponding to the control flow dependency in existing workflow
languages, the YAWL group evaluated 15 workflow systems: COSA (Ley GmbH [23]),
Visual Workflow (Filenet [10]), Forté Conductor (SUN [11]), Lotus Domino Workflow

(IBM/Lotus [20]), Meteor (UGA/LSDIS [22]), Mobile (UEN [12]), MQSeries/ Workflow

18

(IBM [15]), Staffware (Staffware PLC [25]), Verve Workflow (Versata [28]), I-Flow
(Fujitsu [12]), InConcert (TIBCO [27]), Changengine (HP [14]), SAP R/3Workflow
(SAP [21]), and Eastman (Eastman [24]). These commercial systems use various
workflow languages. The ensuing paragraphs give a brief introduction of workflow
systems that the YAWL group evaluated [4].

1. FlowMark, one of the first workflow products distinct from document management
and imaging services, was renamed MQSeries/Workflow. The workflow model mainly
consists of activities linked by transitions. The workflow engine of MQSeries/Workflow
has unique execution semantics, thus allowing every activity that has more than one
incoming transition to act as a synchronizing OR-JOIN (synchronized merge). This is
because, it propagates a False Token for every transition with a condition evaluating to
False.

2. Verve, an embeddable workflow engine, is very powerful and supports multiple
instances and dynamic modifications of running instances along with extra routing
constructs, such as a synchronizer and discriminator. The Verve workflow model also
consists of activities connected by transitions, each having an associated transition
condition.

3. I-Flow is web-centric and built over a Java or CORBA based engine specifically for
independent software vendors and system integrators. Decomposition as well as
asynchronous sub-process invocation is supported though it does not allow multiple
instances. The workflow model in I-Flow consists of activities and a set of routing
constructs connected by transitions. Routing constructs include Conditional Node XOR-

SPLIT (exclusive choice), OR-NODE (Merge), AND-NODE (synchroniser). AND-

19

SPLIT can be modeled implicitly by providing an activity with more than one outgoing
transition.
4. Workflows are modeled as Event-controlled Process Chains (EPS) by the SAP R/3
Workflow. The control flow persp¢ctive of EPS consists of a set of functions (tasks),
events and connectors (AND, XOR, OR).
5. Changengine, a workflow offered by HP Inc., is designed for high performance. The
dynamic modeling of arbitrary loops is also supported. Workflow models in Changengine
consist of a set of work nodes and routers linked by arcs. The work node can have only
one incoming and one outgoing arc.
6. Sun Microsystem’s Forté Conductor is a workflow engine, based anxpen’mental
work. The workflow model that it uses comprises a set of tasks connected with
transitions, with each transition associated with a transition condition. Each activity has a
trigger, if it has more than one incoming transition. The triggers determine the semantics
of that activity and are flexible enough for easy specification of OR-JOIN, AND-JOIN
and any type of N-out-of-M join.
7. Visual WorkFlow, one of the market leaders in the workflow industry, is part of
FileNet's Panagon suite that also includes document management and imaging servers.
The highly structural workflow modeling language of Visual WorkFlow consists of tasks
and routing elements such as Branch (XOR-SPLIT), While (structured loop), Static Split
(AND-SPLIT), Rendezvous (AND-JOIN), and Release.
2.4.3 Limitation of Existing Workflow Languages

YAWL group [2] analyzed the fnajority of the workflow products discussed in the

above section. Table 2-1 gives an evaluation result of some of the workflow products

20

whose workflow languages use workflow patterns. A (+) sign indicates that the product
supports the corresponding pattern, while a (-) sign in an appropriate row of the table

indicates that the product does not support the corresponding pattern.

pattern product
MQSeries | Forté Verve Vis WF |Changeng| I-Flow SAP/R3
1(seq) H+ + + [+ + + +
2 (par-spl) |+ + + + + -+ +
3 (synch) + + + + [+ -+ [+
4 (ex~ch) + + n + + + +
5 (simple-m) |+ + + + + + +
6 (m—choice) [+ + + + + + +
7 (sync-m) B - - — - - -~
8 (multi-m) |- + + - - - -
9 (disc) - + + - + - +
10 (arb—c) - + + +/- + + -
11(impl-t) [+ - - - - - -
12 (mi-no-s) |- + + + - + -
13(mi-dt) |+ + + + n + N
14(mi-rt) | B - - - - /-
15(mi-no) |~ - - - - - -
16(def-c) |- - - - - - -
17 (int-par) |- - - - - - -
18 (milest) |- - - - - - -
19(can-a) |- - - - - - +
20(can-¢) |- - + - + - +

Table 2-1 Evaluation Form for Seven Workflow Products [2]
As we can see in Table 2-1, MQSeries supports a straightforward Pattern 7 (sync-
~m). However, other workflow products do not support this pattern because they can not
identify either the synchronization point or the merge point in the flow. For Pattern 8
(multi-m), I-flow and Changengine can not construct or initialize more than one active
instance of an activity. Visual WF and SAP/R3 even can not connect a merge construct

with a parallel split construct. Only Verve and Forté are able to realize this pattern

21

directly. A similar situation occurs through the implementation of Pattern 9 (disc). Only
Verve and Forté provide a specific solution for this pattern. Most of the workflow
engines support Pattern 10 (arb-c). However, MQSeries, Visual WorkFlow and SAP R/3
cannot support it directly, because they need to convert the arbitrary cycles into special
cycles or loops construct. The semantics of Pattern 11 (impl-t) can only be implemented
in MQSeries. Other workflow engines require the whole process to end when any end
node is reached, and any current activities that happen to be running at that time will be
ignored. In the case of Pattern 12 (mi-no-s), only MQSeries, Changeng and SAP R/3
cannot construct multiple instances in a composite task that will be executed in parallel
and independent of other threads. Pattern 13 (mi-dt) is supported by all workflow
products in Table 2-1. Pattern 14 (mi-rt) can only be supported by SAP R/3’s strategy
“Table-driven Dynamic Parallel Processing,” which is similar to the bundle concept. It
offers a bundle construct that is responsible for instantiating a given number of instances
of an activity. As soon as these insténces in a bundle are all completed, the next activity
can be triggered. Unfortunately, none of the workflow products in the above evaluation
table are able to construct direct constructs for Pattern 15 (mi-no) and all of the three
State-based patterns, such as Pattern 16 (def-c), Pattern 17 (int-par) and Pattern 18
(milest). The cancellation of the activity function is implemented in fnany of the
workflow management systems. However, only SAP R/3 provides a solution to model
Pattern 19 v'(can-a) in a direct and graphical manner. Others just offer APIs for the
withdrawal function by removing the corresponding entry from the database. In the case
of Pattern 20 (can-c), MQSeries, Visual Workflow and I Flow still use APIs to cancel

cases such as the problem mentioned in Pattern 19.

22

According to these evaluation results as surveyed by the YAWL group, it is
concluded that the workflow patterns have not been fully supported in the existing
workflow products and a more structured approach to the issue of the specification of
control flow dependencies needs to be established.

2.4.4 Definition of YAWL

Based on the analysis of existing workflow products, the YAWL group identified
twenty workflow patterns and developed a new workflow language called YAWL, which
directly supports all of the workflow patterns. Moreover, it has a formal semantics [2]

and provides a graphical representation. The modeling elements of YAWL are displayed

in Figure 2-3.

O Condition Atomic tack
@ Input condition [—_—I Composite task

Multiple instances of

N an atomic task
@ Output condition Multiple instances of

a composite task

AND-join task

AND-split task

s

oy B DT

XOR-split task XOR-join task

@ OR-split task q OR-join task
00O H Tz
L tokens

Figure 2-3 Symbols Used in YAWL [2]

A workflow specification in YAWL is a collection of process definitions
organized in a hierarchy. In other words, the workflow in YAWL has a tree structure.

Tasks can be of two types: either atomic tasks or composite tasks. Each composite task

23

refers to a process definition at a lower level in the hierarchy. Atomic tasks form the
leaves of the tree-like structure. The top level workflow forms the root of the tree-like
structure [2]. Each process definition is constructed by tasks and Conditions with an Input
condition (a start place) and an Quiput condition (an end place). Since sequential tasks
can connect with each other directly in YAWL, the Conditions in-between can be
implicit. AND-split task, AND-join task, XOR-split task, OR-split task, OR-join task and
XOR-join task correspond to Pattern 2 (par-spl), Pattern 3 (synch), Pattern 4 (ex-ch),
Pattern 6 (m-choice), Pattern 7 (sync-m) and Pattern 9 (disc), respectively, in Section
24.1.

Moreover, each task (either composite or atomic) can have multiple instances as
indicated in Figure 2-3. By extending Petri nets, YAWL defines the configuration of
multiple instances with four parameters as [lower bound, upper bound, threshold and
static or dynamic]. It is possible to specify a lower bound and an upper bound for the
number of instances created after initiating the task. Moreover, it is possible to indicate
that the task terminates the moment a certain threshold of instances has been completed.
The moment this threshold has been reached, all running instances are terminated and the
task is completed. If no threshold is specified, the task is completed, once all the
instances have been completed. Finally, there is a fourth parameter indicating whether the
number of instances is fixed, after creating the initial instances. The value of the
parameter is “static”, if, after creation, no instances can be added, and “dynamic” if it is
possible to add additional instances while there are still instances being processed.

Finally, the specification of YAWL introduces a notation to remove tokens from

places, irrespective of the number of tokens. Figure 2-3 shows this configuration denoted

24

by dashed rounded rectangles and lines. The enabling of the task does not depend on the
tokens within the dashed area. However, the moment the task is executed, all of the
tokens in this area are removed. Clearly, this extension is useful in regards of the
cancellation patterns [3].
2.4.5 A Workflow Sample Represented by YAWL’s Workflow Patterns

Based on the above definition of YAWL, we will discuss a simple workflow sample

modeled through YAWL’s workflow patterns.

check (IT Manager’
distribute ¢ ger) collect archive

resume evaluation reports decide
send resume check (IT Director) /:j

/ eC anager
At

(Sequence Pattern)
(Exclusive Chaice Pattern)
(Parallel Spiit Pattern) (Synchronization Paltern)

Figure 2-4 Human Resource Recruitment Process Sample

Figure 2-4 presents a scenario of a general human resource (HR) recruitment
process for the IT department. The modeling of this process, as represented by YAWL,
combines the Sequence pattern, the Parallel Split pattern, the Synchronization pattern and
the Exclusive Choice pattern. At the beginning, the receptionist sends the resume to the
HR manager. Sequentially, the HR manager simultaneously sends three copies of the
resume to the IT manager, the IT director and himself, who are fully responsible for this
particular recruitment. Consequently, three checking interviewee tasks will be triggered
in parallel (Parallel Split pattern). These three leaders start to check the resume
individually and make their evaluation reports. Then the HR manager collects all of these
evaluation reports (Synchronization pattern). Based on these reports, he will decide

whether to hire the interviewee or not (Exclusive Choice pattern). If the interviewee is

25

accepted, the HR manager will notify the interviewee. Otherwise, the manager will ask
the receptionist to archive the recruitment information.
2.4.6 Advantages of YAWL

High-level Petri nets are also used to model and analyze business processes;
however, serious limitations in high-level Petri nets have been discovered when it comes
to: v(l) patterns involving multiple instances, (2) advanced branching and synchronization
patterns, and (3) cancellation patterns. High-level Petri nets are able to express such
routing patterns. However, the modeling effort is considerable, and although the patterns -
are needed frequently, the burden of keeping track of things is left to the workflow
designer [2]. The syntax of YAWL gives a better expression to the solution of these
problems. The following sample workflow scenarios in YAWL depict how this language
meets the corresponding requirements in three different business cases.

Case 1: As an example of how YAWL treats patterns involving multiple
instances, Figure 2-5 shows the general process for publishing a magazine. At the
beginning, the journalists provide reports from various sources without limitation. The
interviews are depicted as multiple instances in this modeling diagram, in which the
upper bound and threshold are all defined as “infinite”. The keyword “dynamic” means
that the creation of new interview instances is allowed before the deadline. When the
deadline for the acceptance of reports comes, the editors can begin to check all the reports
for approval. After they have finished their duties of selection and modification, the

layout needs to be done. Then the final version of paper will be sent to the press.

26

[L, inf, inf, dynamic]

Oy,

Report

e T

Select Layout

Press

-®)

Figure 2-5 Publishing of a Magazine Process Consisting of a Multi-Instance Pattern

Case 2: As an example of how YAWL deals with advanced branching and

synchronization patterns, Figure 2-6 shows the general order process for the purchasing

department to order the necessary goods. When goods need to be ordered, the purchasing

department will send mail to all the suppliers. However, it may not send orders to all of

them every time. Alternatively, the purchasing department can ask the suppliers about the

price list. Therefore, the send-order task is an Or Split Task. The order action should be

executed only after the department receives all replies from the chosen suppliers. Here we

define the order task as an Or Join Task instead of using the And Join Task to model it.

The difference between the Or Join task and the And Join task is that the Or Join Task in

the Synchronizing Merge pattern can decide which parts of the incoming branches are

required to wait, instead of the whole set.

send order

On

X

check
(price list 1)

thet
tice list

thec
rice list

order

Figure 2-6 Order Process Consisting of an Advanced Synchronization Pattern

Case 3: As an example of how YAWL treats Cancellation patterns, Figure 2-7

shows the general process used to reimburse business trip expenses. The accountant

sends the application form to the manager, director and CEO. He will then wait for their

27

signatures to confirm the application. Finally, the accountant will reimburse the expenses
once he obtains the first commitment from any one of these three leaders. In the diagram,
we use an And Split Task to represent the send requirement task, and we use the

execution of the reimburse task as a trigger to cancel the other two commitment tasks.

4 sign (Manager) \‘

send

tequiremment sign (Di.re ctot) reitmburse
sign (CEQ)
\ J/

Figure 2-7 Reimbursing Business Trip Expenses Process Consisting of Cancellation
Pattern
2.5 Choice of Technologies (DOM, SAX and JAXB)

Interaction with general XML driven software systems requires an XML
processor, which transfers from the XML document to the application. We were faced
with the following three choices for the XML processor: DOM, SAX and JAXB. After
briefly previewing each, we discuss why we chose JAXB.

2.5.1 SAX

SAX or “Simple API for XML” analyzes an XML stream as it passes by. A SAX
processor, while parsing, will produce events like Start document, Start element
(samples), Characters (white space), etc. The SAX parser then transmits events to an
event-handler, whose data are then dealt with by the application. Isolation of such
individual events by the SAX API enables the deveioper to take any relevant action on

them [7]. The major limitation of SAX is that it is not possible to navigate backwards in

28

the document. After firing an event, the parser forgets about it. The application must
explicitly buffer those events it is interested in.
2.5.2DOM

The Document Object Model (DOM) is the foundation of XML. XML
documents have a hierarchy of informational units called nodes. DOM is a way of
describing these nodes and the relationships between them. By using the DOM API,
applications can read and manipulate XML data. The DOM API defines the objects that
are present in an XML document and the methods and properties that are used to. access.
and manipulate them. To do this, the whole document has to be loaded first and the.
related hierarchy has to be built [6]. Its interfaces contain the different types of
information that can be found in an XML document, such as the elements and text. It also
includes the methods and properties necessary to work with these objects.

2.5.3 JAXB

“The Java APIs for XML Binding, JAXB, establishes a correspondence between
the XML schemas and the Java classes and then utilizes the resulting mapping to convert
XML documents to the different Java objects” [26].

The concept of data binding is initially used by JAXB to establish the
correspondence between the XML templates and the API templates on either side. The
JAXB compiler loads an XML schema, and it generates Java classes and interfaces based
on the structure of that schema [26]. After the above process, Java applications can use
JAXB API to read the XML document, which is written according to the constraints in
the source schema. The JAXB API will convert elements in the XML document to Java

objects. After it has validated the source XML documents, it will generate a content tree

29

of Java objects instantiated from the generated JAXB classes. This content tree represents
the structure and content of the source XML documents. By using the JAXB API, Java
applications can actually change, modify or even create new data objects and then store
them as XML documents by means of the interface generated by the JAXB compiler
[17].

2.5.4 Why Did We Choose JAXB?

By using JAXB, Java applications can access and modify XML documents easily
without having to deal with the complexities of SAX or DOM. Even if developers don't
know much about the XML syntax, they can still use the JAXB to compile an XML
schema and employ classes generated by JAXB. In this project, the system can be
implemented by using SAX, DOM or JAXB. However, JAXB is much more efficient
than either SAX or DOM. It can work together with any XML technology that creates or
uses SAX events. Specifically, it can communicate with XSLT, DOM, DOM]J, and the
XML-aware database, and numerous other existing libraries [26]. That is why we chose

JAXB to implement our system.

30

Chapter 3 The Prototype Workflow Engine

When YAWL was initially designed, there was no implementation available. This
inspired us to start developing a prototype workflow engine partially supporting YAWL.
In this chapter, we introduce the design of the XML workflow schema, as well as the
design, the implementation and the test of the prototype workflow engine. In the last part,
we introduce the related work in the YAWL group’s project.

3.1 Overview of the Design

Firétly, an XML workflow schema has been designed as a recursive hierarchy
structure, which employs YAWL’s seven patterns: Sequence pattern, Parallel Split
pattern, Synchronization pattern, Simple Merge pattern, Exclusive Choice pattern,
Multiple Choice pattern and Synchronizing Merge pattern. Based on the XML workflow
schema, users can define the workflow specification in an XML workflow document
conforming to the XML workflow schema. This XML document is used as the input file
of our system.

Secondly, a workflow engine supporting these seven workflow patterns has been
designed and implemented to parse and interpret the XML workflow document. Its
functions include: parsing the input file (the XML workflow document conforming to the
XML workflow schema), interpreting the workflow specification in the XML document
and managing the execution order of tasks. For the tasks without human interaction,
when the engine enables the task, it directly invokes the corresponding application
function of the task. For the tasks that require human interaction, a worklist handler

provides a user interface for the task participant to view and operate the assigned task.

31

The operations include starting the execution of the application function corresponding to
the assigned task and notifying the engine about the completion of the execution.

Finally, the log information of each task will be recorded as a demonstration of
the execution of the workflow sample.

This prototype focuses on the control flow perspective (the execution order) of
workflow. It runs on Windows XP platforms, and it is implemented with Eclipse version
2.1.3 and Java Runtime Environment (JRE) in version 1.4.0.

3.2 Concept Design

Our design of this system in Figure 3-1 is based on the general workflow product

architecture in Figure 2-1.

Process Definition Tooll o

l XML Workflow Document l
Interpreted
by

AFEL WRAY

interact

Uset Interface | |

- Software component

External data/product

Figure 3-1 Architecture for the Prototype Workflow Engine

32

The main components in Figure 2-1 include a process definition tool (it is used
for the process designer to define the workflow), a worklist handler (it is used to manage
the human interaction of the workflow), and the core of the system, which is the
workflow engine (its functions include interpretation of the process definition, creation of
the process instances and management of their execution, including start / stop / suspend /
resume, etc., supervisory and management functions, etc.). Based on the workflow
specification, the engine will directly invoke the application corresponding to the
scheduled task without human participants, and it passes the task to the worklist handler
when the task requires human interaction. In the architecture of the industrial length of
workflow product, the relevant data are stored in the specific database (these data include
workflow relevant data, workflow control data and a role model, etc.). At runtime, the
system can access this information in the databases.

The design of our system is based on the general workflow product architecture.
We use XML Spy 5.0 (an XML editing tool) as the process definition tool to define the
workflow specification. The workflow engine in our design supports seven patterns of
YAWL, it can parse and interpret the workflow specification in the control flow
perspective (the execution order) of YAWL, and it manages the execution order of an
instance of workflow at runtime (the resuming and suspending the workflow instance is
beyond the scope of our system). The monitor and administration function is not
implemented in our system. For tasks without a human participant, the engine will also
invoke the execution of application functions. For tasks that require human interaction,
our engine will ask the worklist handler to provide a user interface for users to view and

operate the assigned task. Our prototype focuses on the control perspective of workflow,

33

and no database is used in our system. The workflow specification contains the
specification of workflow relevant data and workflow control data.

In our test cases, each time the engine enables a task, a new thread instance will
be constructed to execute the task’s corresponding application function. In order to show
that the execution order conforms to the workflow specification in YAWL, each
application function should print its starting time and end time. As the task of each
application function is domain specific, and this thesis focuses on the control flow
perspective of a workflow, we use one print log function to stand for all the different
application functions, and this print log function is a Java function. However, users in
specific domains can program their application libraries when they develop their
workflow management systems based on this prototype, and they can specify which
application function should be invoked for each atomic task.

With the interface information specified in the atomic tasks in the XML workflow
document, the engine can invoke the corresponding application functions. This interface
information can be regarded as the interface between the workflow engine and the
application functions.

The design of this workflow engine is based on the workflow engine in the
general workflow product architecture. However, this thesis focuses on the control flow
perspective of workflows. In future, our prototype can be expanded by incorporating data
perspectives into the system. The administration and monitor functions of the workflow
engine in the general workflow product architecture are not within the scope of this

prototype. Future research will be needed to address these problems.

34

3.3 Detail Design

In this section, we introduce the detail design of our system. Our design includes
the design of the XML workflow schema and the design of the prototype workflow
engine.
3.3.1 The Design of the XML Workflow Schema

When YAWL was first designed, no implementation was available. This inspired
us to propose an XML workflow schema, which employs YAWL’s seven workflow
patterns to support the control flow specification (the execution order) in workflows. This
schema defines the XML workflow document’s structure, in which we employ the
following patterns: Sequence pattern, Parallel Split pattern, Synchronization pattern,
Simple Merge pattern, Exclusive Choice pattern, Multiple Choice pattern and
Synchronizing Merge pattern. Moreover, we group the Parallel Split pattern and the
Synchfonization pattern together, group the Multiple Choice pattern and the
Synchronizing Merge pattern together and finally group the Multiple Choice pattern and
the Simple Merge p»attern together (see Section 3.3.1.1). A prototype workflow engine
has been designed to implement the semantics of these patterns. This section gives an
overview of the XML workflow schema as well as its recursive hierarchy structure, and it
describes how YAWL’s seven workflow patterns are employed and how the grouping
approach is designed.
3.3.1.1 Overview of the Control Flow Specification in the XML Workflow Schema

The XML workflow schema defines workflow patterns by specifying their
elements, their attributes and their structure (the sequence, relationship and occurrence of

the elements). It also defines composite tasks, each of which consists of a single

35

workflow pattern or a combination of several workflow patterns. It finally defines
workflow in a recursive hierarchy with workflow patterns and composite tasks as
building blocks.

Since business processes can be recursively broken down into finer levels of
detail, the XML workflow schema is designed to be constructed with workflow patterns
recursively in a hierarchy structure. The following paragraph defines the building blocks
of this hierarchy structure.

Each workflow pattern realizes one specific complex function, which can not be
recognized by an individual task. Each workflow pattern consists of a group of related
tasks cooperating together to fulfill its complex function by specifying the execution
order and the relationship of tasks within its scope. A task can be either an atomic task or
a composite task. In the XML workflow schema, the composite task is defined as: the
input condition (a starting point), a single workflow pattern or combination of several
workflow patterns and the output condition (a terminal point). The following paragraph
describes how this hierarchy is constructed recursively.

Using a top-down approach, the process at the top level can be regarded as a
composite task, and it includes one workflow pattern consisting of tasks making up the
second level of the hierarchy, with the atomic tasks as the leaf nodes, and the composite
tasks as parent nodes. For all composite tasks at the second level, each composite task
also includes one workflow pattern consisting of tasks making up the third level of the
hierarchy with the atomic tasks as leaf nodes and composite tasks as parent nodes. We

continue the above step for each composite task at newly generated levels of the

36

hierarchy until there are no more composite tasks at a certain level. In this way, the XML
workflow schema hierarchy is constructed recursively.

According to the definition of YAWL, a combination of paths that are generated
by a Parallel Split pattern, results in a Synchronization pattern. “Synchronization pattern
is a point in the workflow process where multiple parallel activities converge into one
single thread of control, thus synchronizing multiple threads” [30]. Therefore, we group
the Parallel Split pattern and the Synchronization pattern together. In the XML schema,
we briefly call this group “parsyn”.

According to the definition of YAWL, the Multiple Choice pattern is a point
where one, some, or all of the alternative activities are chosen at runtime. “The
Synchronizing Merge pattern is a point in the workflow process where multiple paths
reconverge into one single thread. If more than one path is taken, synchronization of the
active threads needs to take place. If only one path is taken, no synchronization occurs”
[30]. Therefore, we also group the Multiple Choice pattern and the Synchronizing Merge
pattern together. In the XML schema, we briefly call this group “mulsyn”.

In YAWL, the Multiple Choice pattern is a point where one, some or all of the
alternative activities are chosen at runtime time, then those selected activities are
executed in parallel. The Simple Merge pattern is a point where multiple activated
branches reconverge without synchronization. Therefore, we group the Multiple Choice
pattern and the Simple Merge pattern together. In the XML schema, we briefly call this

group “mulsim”.

37

[comieresk

outputCondition

Figure 3-2 Control Flow Specification in the XML Workflow Schema
Figure 3-2 gives an overview of the recursive hierarchy structure of the XML
workflow schema. The “FileType” represents the composite task. Each composite task
consists of an input condition, a single workflow pattern, or a combination of workflow
patterns, and an output condition. Each workflow pattern consists of a group of related
tasks cooperating together to fulfill its complex function. A task can be an atomic task or
a composite task. If the components of the patterns consist of composite tasks, the
compbsite tasks can be extended recursively.
To explain the recursive hierarchy structure, we again present the human

resources recruitment process in the following diagram.

38

(group of Parailel Split pattern and Synchrorization pattern)

T T T T theck (IT Manager) — collett
distribute evaluation
resume _

.-__.....‘;.---___,

(Sequence pattern) (Exciusive Cholce pattern)

Figure 3-3 A Process Sample Modeled in the Recursive Hierarchy Structure

Figure 3-3 shows the workflow for this process modeled as a three level

hierarchy. The top level is the process consisting of the Sequence pattern. The Sequence

pattern consists of:

Task 1 involves sending a resume from the receptionist to the human resource

manager;
Task 2 involves evaluating the interviewee by the human resources manager, the
IT manager and the IT director;

Task 3 involves the processing of the recruitment result;

At the second level, Task 1 is an atomic task, and Task 2 and Task 3 are composite

tasks.

The composite task, Task 2, again consists of the group of the Parallel Split

pattern and the Synchronization pattern. Tasks that make up this pattern are at the third

level.

Task 2.1 (the and split task) involves distribution of the resume from the human
resource manager to the IT manager, the IT director and the human resources

manager;

39

e Task 2.2 (the atomic task) involves checking the interviewee by the IT manager;

e Task 2.3 (the atomic task) involves checking the interviewee by the IT director;

e Task 2.4 (the atomic task) involves checking the interviewee by the human
resources manager;

e Task 2.5 (the and join task) involves collecting the evaluation reports from the IT
manager, the IT director and the human resources manager;

The composite task, Task 3, again consists of the Exclusive Choice pattern. Tasks
that make up this pattern are indicated at the third level.

e Task 3.1 (the xor split task) involves a decision by the HR manager;

e Task 3.2 (the atomic task) involves archiving if the interviewee is denied;

o Task 3.3 (the atomic task) involves sending a letter to notify the interviewee if he
or she has been accepted.

In the above example, Task 2 is a composite task consisting of the group of the
Parallel Split pattern and the Synchronization pattern. Task 3 is a compoéite task
consisting of the Exclusive Choice pattern. Task 2 and Task 3 are connected by a
Sequence pattern. Because there are no more composite tasks at the third level, the
recursive analysis method can cease at this level. In this way, the control flow perspective
of this process is specified by patterns in the recursive hierarchy structure.
3.3.1.2 Sequence Pattern

As described in the following schema diagram, the Sequence pattern consists of
atomic tasks or composite tasks (the “FileType” represents the composite task in Figure
3-4). The number of tasks should be more than or equal to one. If the task is a composite

task, it will consist of either a single pattern or a combination of workflow patterns. As

40

shown in Figure 3-4, the Sequence pattern is within the recursive hierarchy structure (See

the description of the recursive hierarchy structure for the XML schema in Section

3.3.1.1).

{choice)
~

compasiteTask [

Figure 3-4 Sequence Pattern
3.3.1.3 Group of the Parallel Split Pattern and the Synchronization Pattern
The following diagram in Figure 3-5 specifies the group involving the Parallel

Split pattern and the Synchronization pattern.

41

-I andSplitTask i

[— [—

Posttemype

1
l
|
I
i
|
l
|
|

andJoinTask

Figure 3-5 Group of the Parallel Split Pattern and the Synchronization Pattern

According to the specification in YAWL, a combination of paths that are
generated by a Parallel Split pattern, results in a Synchronization pattern. The YAWL’s
Synchronization pattern is “a point in the workflow process where multiple parallel
activities converge into one single thread of control, thus synchronizing multiple threads”
[30]. Hence, we group the Parallel Split pattern and the Synchronization pattern together.
This group is called “ParSynType” in the XML workflow schema. In the above diagram,
the andSplitTask, the parallel tasks (either atomic tasks or composite tasks) in the
postltem and the andJoinTask are executed sequentially at runtime. The andSplitTask
represents the first triggered activity. After its execution, all the remaining parallel tasks
will be triggered. Thus, the atomicTask or the compositeTask in the incoming branches

(postltem) can be processed in any order, or they can be processed simultaneously. There

42

is a synchronization point, where the andJoinTask waits until all the tasks in the postltem

have finished their executions.

3.3.1.4 Group of the Multiple Choice Pattern and the Synchronizing Merge Pattern
The following diagram in Figure 3-6 specifies the group of the Multiple Choice

pattern and the Synchronizing Merge pattern.

orSplitTask [

MulSynType :§

Figure 3-6 Group of the Multiple Choice Pattern and the Synchronizing Merge Pattern
According to the definition of YAWL, the Multiple Choice pattern is a point
where one, some, or all of the alternative activities are chosen at runtime. “Synchronizing
Merge pattern is a point in the workflow process where multiple paths converge into one
single thread. If more than one path is taken, synchronization of the active threads needs
to take place. If only one path is taken, the alternative branches should reconverge
without synchronization” [30]. Therefore, we group the Multiple Choice pattern and the
Synchronizing Merge pattern together. This group is called the “MulSynType” in the
XML workflow schema. The schema specifies that there are at least two incoming
branches (postltem). Based on the result of the execution of the orSplitTask, only a subset
of the parallel child tasks in the incoming branches will be selected for execution. The
orJoinTask represents the point where it will not start until all the selected tasks have

been executed.

43

3.3.1.5 Exclusive Choice Pattern

The Exclusive Choice pattern is called the “ExclusiveType” in the XML
workflow schema. It consists of xorSplitTask and other alternative tasks. The number of
those alternative tasks must be more than one. The schema specifies that the xorSplitTask
must be executed first to select only one task out of many. The selected task needs to be

processed afterwards at runtime.

xorSplitTagk

compositeTask

Figure 3-7 Exclusive Choice Pattern
3.3.1.6 Group of . the Multiple Choice Pattern and the Simple Merge Pattern
The following diagram in Figure 3-8 specifies the group of the Multiple Choice

pattern and the Simple Merge pattern.

[orionTosk B

Figure 3-8 Group of the Multiple Choice Pattern and the Simple Merge Pattern

In YAWL, the Multiple Choice pattern is a point where one, some or all of the
alternative activities are chosen at runtime. Simple Merge is a point where multiple
activated tasks in parallel reconverge without synchronization. Therefore, we group the

Multiple Choice pattern and the Simple Merge pattern together. In the XML schema, this

44

group is called the “MulSimType”. At first, the orSplitTask is responsible for choosing
several execution paths from many alternatives. Based on the result of the execution of
the orSplitTask, a subset of the parallel tasks will be selected for execution. However, the
xorJoinTask will not wait for all the enabled tasks to finish their jobs. When the enabled
task that is completed first, other parallel tasks will be ignored. The task that is completed
first can trigger the xorJoinTask to work, and the execution of the other tasks is canceled.
3.3.1.7 Interface Information in the XML Workflow Schema

Figure 3-9 shows an overview of the XML workflow schema for a general
workflow process. We use the root element “process” to represent a workflow containing
the control flow specification and the specification of workflow relevant data. In former
sections, we have already outlined how we employ YAWL’s seven workflow patterns in
the recursive hierarchy structure for the modeling of the control flow specification in
workflow. In this section, we introduce the specification of workflow relevant data in
Figure 3-9.

relevantData: This is an optional element for modeling the workflow relevant
data. It is only specified if workflow relevant data is accessed or processed by different
tasks in the process, and it includes a variable element list.

variable: This element is used to specify each workflow relevant data. The
initialValue element is used to define the initial value of the variable. The name element

specifies the variable’s name. The value element retains the variable’s value at runtime.

45

R

Fiefyps

. {Re! g%ani;ta’qai’ypef o

variable [}

1 relevantData]
WMMW/ e

Figure 3-9 Workflow Relevant Data

3.3.1.8 Interface Information for the Atomic Task and the Application Function

i P
N H
1 s

(}utpuiﬁamzﬁatafmze

fmmmmmnneem———— E
i [
.

(attribute\'s: name,status)

e =
tad person .
* ST A

Figure 3-10 Interface Information for the Atomic Task and the Application Function

In Figure 3-10, each atomic task contains two attributes: the name and the status.

The name attribute represents the name of the task. The status attribute represents the
control state information of the task, which is the workflow control data. The state
information can be “enabled” (this means that the task can be selected by the engine for
future execution), “disabled” (this means that the engine disables the execution of the
task), “start” (this means that the task is started for execution) and “end” (this means that

the task is over).

46

In our design, we specify that a task can be either an automatic task without
human interaction or a task associated with a human participant. For the automatic task,
we specify that the participant element of the automatic task contains only the name of
the task’s corresponding application function (automation). (The automation element
defines the name of the application function, which will be invoked when the task is
enabled at runtime.) For the task associated with a human participant, the participant
element contains the name of the application function (automation) and a human
participant (person). Here the person element is specified by the human participant’s role
(for example, a manager or a staff member). The engine can recognize the type of each
atomic task by checking the participant. If it is an automatic task, the engine can directly
invoke the corresponding application function to execute. If it is a task that needs human
interaction, the engine will pass the task to the worklist handler, which will add the
interface information of this task into the corresponding user’s worklist. In our
implementation, the worklist handler will show a user interface with the interface
information in the worklist. Through the user interface, the user can invoke the execution
of the corresponding application function and notify the engine of the completion of the
application function (see the description of WorklistHandler and Worklist in Section
3.3.2.4).

The information in the atomic task can be regarded as the interface information
between the engine and the task’s corresponding application function. During the
execution of the corresponding application function, it may need input parameters and
output parameters. These data are all defined in the specification of the atomic task as

shown in Figure 3-10.

47

inputCaseData: This is an optional element. If the application function needs
input parameters for its execution, each input parameter can be specified with its names
in this element. According to this specification, the application function can get its input
parameters from the variable list defined in Figure 3-9.

outputCaseData: It is an optional element for the atomic task to specify the output
parameters returned by the corresponding application function.
3.3.2 The Design of the Prototype Workflow Engine

In this section, we introduce our design of the prototype workflow engine.
3.3.2.1 Architecture Diagram of the Prototype Workflow Engine

The workflow engine in this thesis can be divided into five subsystems:

Generator, Parser, ParseTree, Visitor and ThreadGroupManager as shown in Figure 3-11.

]

Generator

Je—— MML workflow scherre

generste

YL | v I

ail ™ - -
workflow .y Parser generatel ParseTree
document »*

vist access
Visitor qenerate [[readCraupManiager
3

Figure 3-11 UML Architecture Diagram for the Workflow Engine
The Generator subsystem is used to create a correspondence between the XML
workflow schema and Java classes. It reads an XML workflow schema, and it generates

Java classes and interfaces based on the structure of that schema [26]. The Parser

48

subsystem reads the XML workflow document conforming to the XML workflow
schema. The Parser subsystem will convert elements in the XML document to Java
objects. After it has validated the XML workflow documents, it will generate a content
tree of Java objects instantiated from the generated JAXB classes. This content tree
represents the structure and content of the XML documents. In our design, the Parser
subsystem can only load the XML workflow document conforming to the XML
workflow schema, and then convert it to Java objects that are instances of the classes that
were created by the Generator. We use JAXB technology to implement the Generator
subsystem and the Parser subsystem. The JAXB schema complier compiles the XML
workflow schema and generates corresponding Java classes. Then the JAXB API acts as
a parser to transform the XML workflow document into the corresponding Java objects in
a tree structure.

The ParseTree subsystem has a composite tree structure based on the Composite
design patterﬁ [13]. As mentioned above, it is generated into an inheritance tree structure
by the JAXB APL A further illustration of this package will be presented in Section
3.3.2.2.

The Visitor subsystem is implemented to access the object nodes in the
ParseTree. During its visiting, the visitor constructs corresponding threads that are
managed by the ThreadGroupManager subsystem. This design is based on the Visitor
design pattern [13]. We will explain the details of this pattern in Section 3.3.2.3.

The ThreadGroupManager subsystem is responsible for the management of the
execution order of tasks in each workflow scenario. It consists of controller threads and

broker threads. After parsing and interpreting the XML workflow document, controller

49

threads are then constructed. Since those controllers implement the specification of
workflow patterns, they are responsible for managing the execution order of other
threads. Each atomic task defined in the workflow specification is related to its own
broker thread. Based on the interface information specified in the atomic task in the
workflow specification, the broker can take care of the execution of the enabled task’s
corresponding application function. Details of our design of this subsystem will be
illustrated in Sections 3.3.2.4.

3.3.2.2 ParseTree Subsystem

At runtime, the Parser (JAXB API) automatically converts the XML workflow
document conforming to the XML workflow schema into Java objects, and it generates a
Java object tree, which represents the structure and content of the XML workflow
document. This Java object tree makes up the ParseTree subsystem. Since the XML
document is written according to the constraints in the XML workflow schema and the
XML workflow schema has already been specified in a recursive hierarchy structure,
which is an implementation of the Composite design pattern [13], here we use the
Composite design pattern to describe the structure of the ParseTree subsystem.

According to the definition of the Composite design pattern, “the Composite
design pattern allows various individual tasks to be composed into composite tasks. In
this way, the primitive element can be alternatively composed and so on recursively”
[13]. By using the Composite design pattern, individual tasks and composite tasks can be
handled uniformly, therefore, people do not need to care whether they are dealing with
individual or composite tasks. Moreover, newly defined process and leaf subclasses can

be manipulated conveniently through the existing structure and codes.

50

AndSplitTaskType: AtomicTaskType

REa Andle l ype | [| i I

:Wo£@QWRgleymt
. Datalype

XorSplitTaskType | |

COSplitTaskTvpe

_ ExclusiveType

Figure 3-12 Composite Design Pattern in the Workflow Engine
In the ParseTree subsystem, the WorkflowType abstract class is defined as a
component to provide the interface for all the classes, as shown in the composition in
Figure 3-12. Individual tasks, the input condition and the output condition are declared as
primitive classes, which have no children and have no implementation behavior. We add
a composite class called CompositeWorkflow as a container. The Sequence pattern, the
Exclusive Choice pattern, and the other three groups of workflow patterns as well as the
composite task are defined to inherit the CompositeWorkflow class, which have child
components and which specify the related behavior among their children. Through the
declaration of this structure with the composite design pattern, we can get an explicit
hierarchy tree structure. This pattern also makes it easier for us to add other workflow
patterns in the future.
After the JAXB parser has parsed the XML workflow document, a parse tree is

constructed as a composite structure in the memory. Each node provides interfaces to

51

access its elements. In order to avoid race conditions, all concurrent accesses are
synchronized.
3.3.2.3 Visitor Subsystem

We use the Visitor design pattern [13] to construct this subsystem as shown in

Figure 3-13.

¢

. Visitar

SisitAtomicTaskType()

- SeisitSequence Type()
SvisitPaSynType()
SvisitMulSynType()

- PatternVisitor

isitorAtormicTask Type()
%itSequiameType(’)

Figure 3-13 Visitor Design Pattern in the Workflow Engine
For the sake of the operation performed on the composite structured tree, the
nodes representing composite tasks, patterns, conditions and individual tasks should be
treated differently. With Visitor design pattern, we declare PatternVisitor as a concrete
visitor class to inherit the abstract Visitor class. PatternVisitor is responsible for visiting
all the nodes of the generated ParseTree, and handles the operation on the node elements.

In Figure 3-13, we define a Visitor abstract class to provide the interface for all concrete

52

visitors and also define operations for each concrete element in our composite tree. This
abstract class can decide which concrete elements are going to be visited later. The
concrete visitor, which is defined as PatternVisitor in this thesis, overrides and
- implements all the operations in Visitor class for the corresponding concrete element
classes in the ParseTree. Each concrete class in the parse tree structure implements an
accept operation where the related method in fhe PatternVisitor is executed. When the
PatternVisitor visits the ParseTree, the visitor constructs the corresponding threads
making up the ThreadGroupManager subsystem. We will explain the generation course
of these threads in the next section.
3.3.2.4 ThreadGroupManager Subsystem
The ThreadGroupManager subsystem in Figure 3-14 is made up of controller
threads and broker threads. The controller is only responsible for managing the execution
order of the workflow. Every time the controller decides it is the time for one or some
tasks to be executed, it will ask its task broker or their task brokers to enable the

execution.

53

, WorkflowThread
EexpectedPriority : int
%asmg;nedPnuﬂty int oo
&parent | WorkflowThread
w WofkﬂowType
@chﬂd. - Workd

w'rhxead
Q‘1’1.:1‘ ‘
QsetNextProcessO
SstartT ask)
ScompleteTask)

| &

»"‘frcjzi‘c;er . J MulSynController

~ PaSynController

 Bsetl extProcesso : %'setN ext : tNextPrecess(]

SequenceController |

DsetlextProcess) .

Wotklist

%p erson

&task]] - AtomicTaskType

tafyCompletmnO @addT ask()
w‘shcmdnterface() CremoveTask)

SretrieveTask)

Figure 3-14 Class Diagram for the ThreadGroupManager Subsystem

When the pattern nodes and atomic task nodes in the ParseTree are accessed, the
visit method will construct corresponding threads. For example, when the Sequence
pattern node is visited, a controller thread called “SequenceController” is constructed.
When the AtomicTask type node is visited, a broker thread whose name is the same as
the name of the atomic task is constructed. Each broker is related to an atomic task in the
workflow specification. The semantics of the Sequence pattern, the Exclusive Choice
pattern and the other three grouped workflow patterns such as the group of the Parallel

Split pattern and the Synchronization pattern, the group of the Multiple Choice pattern

54

and the Synchronizing Merge pattern and the group of the Multiple Choice pattern and
the Simple Merge pattern are implemented by their corresponding controller threads. The
controllers are defined as parent nodes in a recursive hierarchy thread structure. Their
child threads can be either a broker or a controller. If this child relates to an atomic task
in the workflow specification, it is a broker thread. If it is related to a composite task in
the workflow specification, the child thread is a controller, which can also coordinate the
execution of its child threads within the composite task. In the following paragraph, we
will introduce the details of the ThreadGroupManager subsystem.

1. Broker thread: The broker thread in Figure 3-14 acts as intermediary between our
workflow engine and the tasks executed at runtime. In the engine, the controller is only
responsible for managing the execution order of the workflow. Every time the controller
decides it is the time for one or some tasks to be executed, it will ask its task broker or
their task brokers to enable the execution. The startTask() operation in the broker is
responsible for enabling the execution of the corresponding task based on the interface
information of the atomic task in the workflow specification. Once the execution is over,
the broker will ask its controller to deal with other tasks waiting for execution. The
completTask() in the broker thread is responsible for this interaction.

In the workflow specification, the task can be modeled as either automatic tasks
without human interaction or tasks associated with human participants. If the task is
specified as an automatic task without human interaction, the broker will invoke the
corresponding application function directly for the execution of the task. In our test cases,
each time the engine enables a task, a new thread instance will be constructed to execute

the task’s corresponding application function. In order to show that the execution order

55

conforms to the workflow specification in YAWL, each application function should print
its starting time and end time. If the task is modeled as a task associated with a human
participant, the broker will pass the task interface information to the WorklistHandler,
which provides a user interface for the task participant to invoke the execution of the
corresponding application function that requires human interaction.

2. WorklistHandler: The WorklistHandler class in Figure 3-14 provides a user interface
for the user to view and operate his assigned task. Through this interface, the task
participant can .invoke the execution of the corresponding application function that
requires human interaction, and the user can notify the engine of the completion of the
task once the application function is over. The assignTask() method is called by the
broker, when the task is enabled. This method is responsible for adding the interface
information of the assigned task into the Worklist and showing a user interface with the
information in the worklist. Through this interface, the participant can view and start the
execution of the application function corresponding to the assigned task. The
notifyCompletion() method is called when the participant notifies the completion of the
task through the user interface. This method will ask Worklist to remove the
corresponding task information and notify the completion to the task broker, which is
responsible for the enabling of the task.

3. Worklist: Each task participant (person) has a Worklist. At runtime, the
WorklistHandler passes the interface information of the assigned task to the
corresponding Worklist. The addTask() method is called by the WorklistHandler to add
interface information of the assigned task into the Worklist. (The list task/] in the

Worklist is used to store the interface information of each assigned task.) The

56

removeTask() method is called by the WorklistHandler to remove the corresponding task
information from the Worklist when the participant notifies the completion of the
application function. The retrieveTask() method is called by the user interface fof the task
participant to view all his assigned tasks in the Worklist.

4. Controller threads: In Figure 3-14, the SequenceController, ParSynController
MulSynController, MulSimController, and ExclusiveController are defined respectively
as controller threads to implement the specification of the Sequence pattern, the group of
the Parallel Split pattern and the Synchronization pattern, the group of the Multiple
Choice pattern and the Synchronizing Merge pattern, the group of the Multiple Choice
pattern and the Simple Merge pattern, as well as the Exclusive Choice pattern. For
instance, the MulSynController class is responsible for the management of all its child
threads. The controller threads schedule the processing by defining a logical priority
policy for each child thread. According to the semantics of different workflow patterns,
the logical priority of each child thread is assigned to the child thread, and it is kept in its
child’s assignedPriority attributes. The controller selects one child thread or some child
threads to be executed by analyzing the assignedPriority at runtime. If the assigned
execution order of the child threads matches the execution order expected by the
controller at runtime, the corresponding child threads can be triggered. The expected
execution order is kept in the expectedPriority attribute and is managed by controllers. In
order to coordinate the execution of their child threads, the controllers update the value of
the expectedPriority attribute. Each time the child thread notifies its completion, then the
controller schedules next child thread by finding child threads whose assignedPriority

equals the expectedPriority, and so on, until all its child thread have been dealt with.

57

In the case of a Sequence pattern, the execution order of each child thread ranges
from 1 to n (the total number of child threads under the control of the SequenceController
thread). Generally, if the value of the assignedPriority of the child thread is equal to the
expectedPriority of the controller, this thread can be executed. After the child thread has
been executed, the controller adds expectedeiority by 1. Then it will schedule the other
child threads whose assignedPriority is equal to the expectedPriority to run. In this way,
the controller keeps scheduling its child threads until there are no more child threads
whose assignedPriority equals the expectedPriority value, which means that all the child
threads have been executed. For example, when the SequenceController thread’s
expectedPriority becomes one, only the child thread whose assignedPriority is equal to
one, can qualify to be triggered. When the corresponding child finishes its execution, it
will call its parent to add expectedPriority by 1. Then the controller sets its
expectedPriority to 2 and starts the corresponding child thread whose assignedPriority is
equal to two. (If this child thread is not a broker but a controller, which is related to a
composite task in the workflow specification, its execution is completed once all its
children have been executed. Then it will notify its parent controller to add the
expectedPriority by 1 and schedule other child threads’ whose assignedPriority is equal
to the expectedPriority to run. In this way, the controller coordinates its children’s
execution recursively.)

In order to handle the group of the Parallel Split pattern and the Synchronization
pattern, only three levels of priority are specified. The child thread corresponding to the
andSplitTask in the workflow specification will be invoked first by the ParSynController,

because the value of assignedPriority in the andSplitTask thread is 1, and it is equal to

58

the expectedPriority of the controller (the initial value of the expectedPriority is equal to
1). After its execution, the controller adds the expectedPriority by 1. All the parallel child
threads will be triggered, because they have the same assignedPriority value of 2 which
is equal to the value of controller’s expectedPriority. When all the parallel threads have
completed their execution, the controller adds the expectedPriority by 1. The child thread
corresponding to the andJoinTask is started, because its assignedPriority is 3 which is
equal to the value of the controller’s expectedPriority. Thus, multiple parallel threads
having the same priority can run concurrently. Based on this strategy, when child threads
finish their tasks, they will call their controller to add the expectedPriority by 1 and then
start the next thread, whose assignedPriority is equal to the expectedPriority.

Moreover, for the implementation of the group of the Multiple Choice pattern
and the Synchronizing Merge pattern, the OrSplitTask broker thread is first invoked. The
orSplitTask is responsible for making multiple choices of the next parallel child threads
(its assignPriority is 1). After its execution, these selected parallel threads can begin to
work (their assignPriority are 2). After all those parallel threads complete, the last step is
the OrJoinTask broker thread (its assignPriority is 3). '

For the implementation of the group of the Multiple Choice pattern and the
Simple Merge pattern, the first step is to start the OrSplitTask Broker (its assignPriority
is 1), after whose execution, the selected parallel threads are triggered (their
assignPriority is 2). The last step is the XorJoinTask Broker (its assignPriority is 3),
which is triggered by the completion of the fastest parallel thread. According to the

specification of the Simple Merge pattern, the controller will kill other parallel threads.

59

For the implementation of the Exclusive Choice pattern, after execution of the
XorSplitTask Broker (its assignPriority is 1), only one child thread is selected, which is
then executed (its assignPriority is 2).

Based on this logical priority policy, each controller has its own strategy to
handle the execution order of its child threads. The above strategies are defined in the
synchronized method setNextProcess() in different controller WorkflowThread classes.
This method can invoke the execution of the child threads whose assignedPriority value
is equal to the value of the expectedPriority. According to the concept of polymorphism
in Java, “when a request is made through a super class reference to use a method, Java
chooses the correct overridden method polymorphically in the appropriate subclass
associated with the object” [9]. In Figure 3-14, each child thread declares a parent
- attribute, which type is declared as the abstract super class “WorkflowThread”. At
runtime, each child thread’s parent is referred to a corresponding controller. The
setNextProcess() is defined as an abstract method in the abstract super class. Each
controller thread class overrides this method to implement its own strategy. During the
execution, when each child thread has finished its task, it sends a request to its parent to
use the setNextProcess() method and Java chooses the overridden method in the
corresponding controller in accordance with the property of polymort)hism. |
5. A sequence diagram for the group of the Parallel Split pattern and the Synchronization
pattern: The UML sequence diagram in Figure 3-15 shows how the ParSynController
implements the group of the Parallel Split pattern and the Synchronization pattern to

manage the execution order of its child threads at runtime.

60

@ Spli Task I‘pl:Bm‘kér] I 12 2 Broker ‘ l ’1:_3,:'&61«']
Erdker

|2 I I
PrAR—

sttt Tasl()
setNextProcessQ)

l start Task()

start Task()

I
I
I
|
I
! aatTesioy I_I
I
|

I

|

I

I

I

I

J setHetProcess() l

I
')
sturt Tash() U
|
|
I

setNextProcess()

setMextProcess()

I
I
I
I
J
I
setfeProcess(I
I
!
I
|
I
|

—_—

Figure 3-15 Sequence Diagram for the Group of the Parallel Split Pattern and the
Synchronization Pattern

In Figure 3-15, the ParSynController ‘p’ coordinates the execution of all its child
threads: such as the Broker thread (‘andSplitTask’) whose assignedPriority value is 1,
three parallel Broker threads (‘pl’, ‘p2’, ‘p3’) whose assignedPriority value is 2, and the
Broker thread (‘andJoinTask’) whose assignedPriority value is 3. The initial value éf the
expectedPriority is 1. After the run() method of the controller ‘p’ is invoked, it will call
the setNextProcess() method to select the first step for the execution. The controller will
start the ‘andSplitTask’, because its assignedPriority value is equal to the value of the
expectedPriority. After ‘andSplitTask’ has entered the end state, it has to notify the
controller to set the next process, in which the value of expectedPriority is increased by 1
and then the controller schedules the next task or tasks whose assignedPriority value is
equal to the expectedPriority value. Thus, the controller can recognize that it is the time
for all the parallel child threads to start and consequently, ‘p1’, ‘p2’ and ‘p3’ are invoked.

After their completion, these threads also have to call the controller’s setNextProcess()

61

method, in which the value of the expectedPriority is increased by 1 and then the
controller starts the next task or tasks whose assignedPriority value is equal to the
expectedPriority value. The controller invokes the last thread ‘andJoinTask’, because its
assignedPriority value is 3, which is equal to the value of the expectedPriority. The
setNextProcess() will be called again once the ‘andJoinTask’ has been completed. Thus
the controller can make sure that all those child threads under its coordination finish,
because there are no more threads whose assignedPriority is equal to the
expectedPriority value.

6. Java synchronization technology is used in our implementation: we use a controller
(parent) thread to schedule its child threads. These children should call back their
controller (parent) to check and modify the execution order information once their
execution status is over. As we have indicated above, in the former paragraphs, those
order information (for example, expectedPriority) is used for the controller to analyze
and decide the execution order of its child threads at runtime. In order to avoid two or
more concurrent threads accessing the same data in the controller at the same time, we
use the Java synchronization technology in the implementation of the
ThreadGroupManage subsystem. When child threads acquire a resource in their

controller, their data accessing is synchronized (see Figure 3-16).

Figure 3-16 Java Synchronization Technology in Our Implementation

controller
(parent)

| lock I

62

In Java, the keyword synchronized [9] is used to identify a block of code or a
method as a critical section. (A critical section is a segment of code in which shared
variables are modified.) When a child thread begins executing a synchronized method on
the data element in the controller, the synchronization makes it impossible for other
threads to invoke the data object, until the object is unlocked. The lock is released only
when the method has been executed or if the thread executing the method invokes the
wait method in Java. In this way, the execution order information in the controller is
avoided to be in an inconsistent state. There will never be a situation where two child
threads attempt to acquire a resource directly at the same time.

3.4 Test of the Prototype Workflow Engine

We have employed the Sequence pattern, the Parallel Split pattern, the
Synchronization pattern, the Exclusive Choice pattern, the Simple Merge pattern, the
Multiple Choice pattern and the Synchronizing Merge pattern in the XML workflow
schema. Based on the specification of this XML schema, the user can define the
workflow specification in the XML workflow document, which is the input file of our
system. The purpose of our testing is to test that our workflow engine can parse the
workflow specification in the XML workflow document, interpret the control flow
specification, and manage the execution order of the workflow correctly.

3.4.1 What do We Test?

First of all, we test five workflow samples, only including each of the Sequence
pattern, the Exclusive Choice pattern, the group of the Parallel Split pattern and the
Synchronization pattern, the group of the Multiple Choice pattern and the Simple Merge

pattern, as well as the group of the Multiple Choice pattern and the Synchronizing Merge

63

pattern, respectively, to demonstrate the support of our engine. Furthermore, we use an
XML workflow document containing the combination of all seven workflow patterns as
the input file of our system. This testing is to test that our engine can deal with the
workflows consisting of these seven workflow patterns in the recursive hierarchy
structure. The last testing case is to test whether the engine can deal with a workflow that
needs human interaction. When the engine enables a task that requires human interaction,
the worklist handler will add the interface information of the task into the corresponding
user’s work list. Then the handler will provide a user interface with the information in the -
worklist. Through the user interface, the user can view his assigned tasks and operate the
execution of the corresponding application functions. The operations include starting the
execution of the corresponding application function for the task and notifying its
completion to the engine once the application function is over.

3.4.2 How do We Simulate Application Functions?

In our testing, we use the XML workflow document conforming to the XML
workflow schema as the input file of our system (XML SPY 5.0 is used as the XML
editing tool to specify the XML workflow documents). Each time the engine enables an
atomic task, a new thread instance will be constructed to execute the task’s corresponding
application function.

In order to show that the execution order conforms to the workflow specification
in YAWL, the application function should print its starting time and end time. As the task
of each application function is domain specific, and this thesis focuses on the control
flow perspective of workflow, we use one print log function to stand for all of the

different application functions. Therefore, in the XML workflow document of every test

64

case, the name of the corresponding application functions are specified as “print log”,
which is the names of the print log function. However, users in a specific domain can
program their application libraries, when they develop the actual workflow management
system based on this prototype, and they can specify the name of the corresponding
application functions in the “automation” element of each atomic task.

3.4.3 How do We Simulate the Selection Course for the OrSplitTask?

According to YAWL'’s specification, the orSplitTask has to select parts or the
whole of the parallel tasks for the next execution. Since the selection course for the
orSplitTask is domain specific, we implement a random function called “or split random
function” to simulate this selection course in our tests. The name of this selection
function is specified as “or split random function” in the “automation” element of the
orSplitTask. When the engine interprets the orSplitTask, a new thread instance will be
constructed to execute this selection function. If the orSplitTask is modeled as an
automatic task and its selection function is the “or split random function”, this function
will randomly select parts or whole of the parallel tasks for the next execution. However,
the developers can implement their domain specific selection functions to replace this
random function, while developing a workflow management system based on this
prototype. If the orSplitTask is a task that requires human interaction, this function will
provide a user interface for the user to select the parallel tasks for future execution. In this
case, the user can make the decision.

3.4.4 How do We Simulate the Selection Course for XorSplitTask?
According to YAWL’s specification, the xorSplitTask has to select only one of

the alternative tasks for the next execution. By using a similar approach, we implement

65

another random function called “xor split random function” to simulate this selection
course. In our test, if the xorSplitTask is modeled as an automatic task, the random
function “xor split random function” will randomly select only one of the alternative
tasks for the next execution. If the xorSplitTask is a task associated with a human
participant, this function will also provide a user interface for the user to make a
selection. In this case, the user makes the decision.

The selection result of these two random functions will be demonstrated in the log
file, and they will print their starting time and end time. We format the time information
as hour: minute: second: millisecond.

3.4.5 Test of the Sequence Pattern

Objectives: In this case, we test the Sequence pattern. The control flow in the
workflow specification is specified only through the Sequence pattern. The engine should
parse and interpret the workflow specification in the XML workflow document correctly.
According to the specification of the Sequence pattern, those tasks modeled within the
Sequence pattern should be executed in a sequential order. The log file is used as an
output of this test case to demonstrate the execution order of each task.

Testing Sample: We specify the workflow specification consisting of a single
Sequence pattern in an XML workflow document as the input file of our system. The
process is called “SequenceSample”. Three atomic tasks called “Task A”, “Task B” and
“Task C” are linked as a Sequence pattern in the workflow specification. These tasks are
all automatic tasks without human interaction. Their corresponding application functions

are all modeled as “print log”. The input file of this test case is in Appendix A.

66

Results: The following log file in Figure 3-17 demonstrates the execution order of
each task in this testing. The log information shows that “Task B” is enabled after the
completion of “Task A”, and “Task C” follows “Task B” (sequence pattern). This result
shows that the engine interprets the Sequence pattern and manages the execution order

correctly.

Process (SequenceSample) starts to process at 15:26:44:301

Sequence pattern starts to process

Sequernce pattern is processing
AtomicTask (Task A) starts to process at 15:26:44:312
AtomicTask (Task A) is over at 15:26:44:429
AtomicTask (Task B) starts to process at 15:26:44:595
AtomicTask (Task B) is over at 15:26:44:716
AtomicTask (Task C) starts to process at 15:26:44:772
AtomicTask (Task C) is over at 15:26:44:923

Sequence pattern is over

Process (SequenceSample) is over at 15:26:45:26

Figure 3-17 Log File of the Test for the Sequence Pattern

3.4.6 Test of Group of the Parallel Split Pattern and the Synchronization Pattern

Objectives: In this case, we test the group of the Parallel Split pattern and the
Synchronization pattern. The input file of this test is an XML workflow document, whose
control flow is specified only through the group of these two patterns. During our test, the
engine should parse and interpret the specification in the XML document correctly.
According to the specification of the group of the Parallel Split pattern and the
Synchronization pattern, each of the parallel] tasks defined in the workflow specification
should be executed in parallel and their execution should be synchronized at runtime. The
log file is used as an output of this test case to demonstrate the execution order of each
task.

Testing Sample: The XML workflow document in Appendix B is used as an input
file for this testing. In this XML document, the control flow perspective is specified only
with the group of the Parallel Split pattern and the Synchronization pattern. The process

is called “ParSynSample”. “Task A” is defined as andSplitTask. “Task B”, “Task C’ and

67

“Task D” are defined as parallel tasks in the workflow specification. “Task E” is defined

as andJoinTask. These tasks are all automatic tasks, which do not require human

interaction. Their corresponding application functions are all modeled as “print log”.
Results: The log information in Figure 3-18 demonstrates the execution order of

the automatic tasks in this testing.

Process (ParSynSample) starts to process at 16:5:52:443
Group of Parallel Split pattern and Synchronization pattern starts to process
Group of Parallel Split pattern and Synchronization pattern is processing
And split Task (Task A) starts to process at 16:5:52:443

And split Task: (Task A) is over at 16:5:53:886

AtomicTask (Task B) starts to process at 16:5:53:907

AtomicTask (Task C) starts to process at 16:5:53:907

AtomicTask (Task D) starts to process at 16:5:53:907

AtomicTask (Task D) is over at 16:5:55:102

AtomicTask (Task C) is over at 16:5:55:336

AtomicTask (Task B) is over at 16:5:56:225

And join Task (Task E) starts to process at 16:5:56:301

And join Task: (Task E) is over at 16:5:57:277
Group of Parallel Split pattern and Synchronization pattern is over
Process {ParSynSample) is over at 16:5:57:280

Figure 3-18 Log File of the Test for the Group of the Parallel Split Pattern and the
Synchronization Pattern

In the log file, we can see that after the execution of “Task A”, all the parallel
tasks are begun and they are executed simultaneously at runtime (Parallel Split pattern).
“Task B”, “Task C” and “Task D” are all synchronized during the execution of this
workflow. The andJoinTask “Task E” is triggered after all the parallel tasks have been
executed (Synchronization pattern). The testing log information demonstrates that the
engine interprets the group of the Parallel Split pattern and the Synchronization pattern
correctly and manages the execution order correctly.
3.4.7 Test of Group of the Multiple Choice Pattern and the Synchronizing Merge
Pattern

Objectives: In this case, we test the group of the Multiple Choice pattern and the

Synchronizing Merge pattern. The input file of this experiment is an XML workflow

68

document, whose control flow is specified only by the group of these two patterns. Our
engine should parse and interpret the specification in the input file correctly. According
to the specification of the group of the Multiple Choice pattern and the Synchronizing
Merge pattern, after the orSplitTask has selected parts or the whole of the parallel tasks
for future execution, only those selected tasks can be enabled. The engine can trigger the
orJoinTask only when all of these selected parallel tasks have completed their execution.

Testing Sample and methods: The XML workflow document in Appendix C is
used as an input file for this testing. The control flow perspective in this XML document
is specified as the group of the Multiple Choice pattern and the Synchronizing Merge
pattern. The process is called “MulSynSample”. “Task A” is defined as an orSplitTask”.
“Task B”, “Task C” and “Task D” are defined as parallel tasks. “Task E” is defined as an
orJoinTask. All these tasks are automatic tasks without human participants. In this test
case, the corresponding selection function for the orSplitTask “Task A” is specified as
“or split random function” in the “automation” element. The corresponding application
functions for other tasks are all modeled as “print log”. In our demonstration, all of these
application functions will print their starting time and end time. The selection result of
the “or split fandom function” will also be demonstrated in the log file.

Results: The following log information in Figure 3-19 demonstrates the execution
order of this test case. In the log file, we can see that during the execution of the
orSplitTask, “Task A” selects “Task B” and “Task D” for their future execution. When
“Task A” is over, these two parallel tasks are started by the engine (Multiple Choice
pattern). Once these two tasks have been completed, the orJoinTask, “Task E”, is

triggered by the engine (Synchronizing Merge pattern). This process is completed after

69

“Task E” is over. From this log information, we can see that the engine synchronizes all
the selected parallel tasks at runtime. These testing results indicate that the engine

interprets the group of the Multiple Choice pattern and the Synchronizing Merge pattern

and manages the execution order correctly.

Process (MulSynSample) starts to process at 21:46:5:87
Group of Multiple Choice and Synchronizing Merge pattern starts to process
Group of Multiple Choice and Synchronizing Merge pattern is processing

Or split Task {Task A) starts to process at 21:46:5:87
ParallelTask (Task B)is selected
ParallelTask (Task C)is not selected
ParallelTask (Task D)is selected

'~ Or split Task (Task A) is over at 21:46:6:268

AtomicTask (Task B) starts to process at 21:46:6:278

AtomicTask (Task D) starts to process at 21:46:6:278

AtomicTask (Task B) is over at 21:46:7:309

AtomicTask (Task D) is over at 21:46:7:429

Or join Task (Task E) starts to process at 21:46:7:515

Or join Task: (Task E) is over at 21:46:8:331
Group of Multiple Choice and Synchronizing Merge pattern is over
Process {(MulSynSample) is over at 21:46:8:370

Figure 3-19 Log File of the Test for the Group of the Multiple Choice Pattern and the
Synchronizing Merge Pattern
3.4.8 Test of the Exclusive Choice Pattern

Objectives: In this case, we test the Exclusive Choice pattern. The input file of
this test is an XML workflow document, whose control flow is specified only through the
Exclusive Choice pattern. The engine should parse and interpret the specification of this
input XML document correctly. According to the épecification of the Exclusive Choice
pattern, the xorSplitTask chooses only one of those alternative tasks in the workflow
specification for the future execution. Then the selected task can be triggered.

Testing Sample: The XML workflow document in Appendix D is used as the
input file for this testing. The process defined in this sample only consists of the
Exclusive Choice pattern. The process is called ExclusiveSample. “Task A” is defined as
an xorSplitTask. “Task B”, “Task C” and “Task D” are defined as the alternative tasks,

out of which only one will be chosen by the xorSplitTask at runtime. All these tasks are

70

automatic tasks without human interaction. In this test case, the corresponding selection
function for the xorSplitTask “Task A” is specified as “xor split random function” in the
“automation” element. The corresponding application functions for other tasks are all
modeled as “print log”. In our demonstration, all these application functions will print
their starting time and end time. The selection result for the “xor split random function”
will also be demonstrated in the log file.

Results: The following log file in Figure 3-20 demonstrates that the “Task A”
thread only selects “Task D” for the future execution at runtime. Consequently, only
“Task D” is invoked by the engine (Exclusive Choice pattern). After the completion of
“Task D7, this process is executed. This test result indicates that the workflow engine

interprets the Exclusive Choice pattern and manages the execution order correctly.

Process (ExclusiveSample) starts to process at 22:24:46:805
Exclusive Choice pattern starts to process
Exclusive Choice pattern is processing
Xor split Task (Task A) starts to process at 22:24:46:855
ExclusivedTask (Task B)is not selected
ExclusivedTask (Task C)is not selected
ExclusivedTask (Task D)is selected
Xor split Task: (Task A) is over at 22:24:48:176
AtomicTask (Task D) starts to process at 22:24:48:586
AtomicTask (Task D) is over at 22:24:50:12
Exclusive Choice pattern is over
Process (ExclusiveSample) is over at 22:24:50:12

Figure 3-20 Log File of the Test for the Exclusive Choice Pattern

3.4.9 Test of Group of the Multiple Choice Pattern and the Simple Merge Pattern

Objectives: In this testing case, we test the group of the Multiple Choice pattern
and the Simple Merge pattern. The input file of this testing is an XML workflow
document, whose control flow is specified only through the group of these two patterns.
The engine should parse and interpret the specification in the input file correctly.
According to the specification of the group of the Multiple Choice pattern and the Simple
Merge pattern, after the orSplitTask selects parts or whole of the parallel tasks for future

execution, the corresponding tasks are triggered. However, the engine will not

71

synchronize all of these parallel tasks. It only waits for the first one to be accomplished.
This completion will make the engine trigger the xorJoinTask, while the execution of the
other started parallel tasks is ignored by killing the corresponding threads.

Testing Sample: The XML workflow document in Appendix E is used as an input
file for this testing. The process defined in this sample only consists of the group of the
Multiple Choice pattern and the Simple Merge pattern. The process is called
“MulSimSample”. “Task A” is defined as orSplitTask. “Task B”, “Task C” and “Task D”
are defined as alternative tasks. “Task E” is defined as the xorJoinTask. All these tasks
are automatic tasks without human interaction. In this test case, the corresponding
selection function for the orSplitTask “Task A” is specified as the “or split random
function” in the “automation” element. The corresponding application functions for the
other tasks are all modeled as “print log”. In the demonstration, all these functions will
print their starting time and end time. The selection result of the “or split random
function” will also be demonstrated in the log file.

Results: The following log file in Figure 3-21 demonstrates that “Task A” selects

“Task C” and “Task D” for future execution.

Process (MulSimSample) starts to process at 23:41:11:768
Gorup of Multiple Choice and Simple Merge pattern starts to process
Gorup of Multiple Choice and Simple Merge pattern is processing
Or split Task (Task A) starts to process at 23:41:11:768
ParallelTask (Task B)is not selected
ParallelTask ({(Task C)is selected
ParallelTask (Task D)is selected
Or split Task (Task A) is over at 23:41:12:309
AtomicTask (Task C) starts to process at 23:41:12:359
AtomicTask (Task D) starts to process at 23:41:12:359
AtomicTask (Task D) is over at 23:41:13:101
Xor join Task (Task E) starts to process at 23:41:13:170
Xor join Task: (Task E) is over at 23:41:14:542
Gorup of Multiple Choice and Simple Merge pattern is over
Process (MulSimSample) is over at 23:41:14:582

Figure 3-21 Log File of the Test for the Group of the Multiple Choice Pattern and the

Simple Merge Pattern

72

When “Task A” is over, “Task C” and “Task D” are started by the engine in
parallel (Multiple Choice pattern). The log file shows that as soon as “Task D” finishes,
“Task E” is triggered (Simple Merge pattern). The engine ignores the execution of “Task
C” because “Task C” is slower than “Task D”. The process is completed when “Task E”
is over. This log information demonstrates that the engine interprets the group of the
Multiple Choice pattern and the Simple Merge pattern and manages the execution order
correctly.

3.4.10 Test of the Workflow Sample Consisting of All Seven Workflow Patterns

Objectives: In this test case, we test the combinations of all the seven workflow
patterns in the recursive hierarchy structure. The input file of this testing is an XML
workflow document, whose control flow is specified by the combinations of all the seven
workflow patterns in the recursive hierarchy structure. The engine should parse the XML
workflow document, interpret the specification in the input file, and manage the
execution order correctly.

Testing Sample: The XML workflow document in Appendix F is used as the
input file for this testing. The process defined in this sample consists of Sequence
(Parallel Split and Synchronization (Multiple Choice and Synchronizing Merge
(Exclusive Choice (Multiple Choice and Simple Merge)))) patterns in the recursive
hierarchy structure. Here we use parentheses to represent the different levels of the
hierarchy relationships among the patterns in the XML workflow document, the utter
most parenthesis stands for the top level, and the inner most parenthesis stands for the

Iowest level.

73

The process is called “seq(psyn(msyn(ex(msim))))”. On the top level, the process
consists of “seql”, “seq2(psyn)” and “seq3” in the Sequence pattern. On the second level,
the composite task “seq2(psyn)” consists of “seq2(psyn_andSplit)” as defined by
andSplitTask, “seq2(psynl)”, “seq2(psyn2)" and “seq2(psyn3(msyn))” as defined by
parallel tasks as well as “seq2(psyn_andJoin)” as defined by andJoinTask. They are
within the group of the Parallel Split pattern and the Synchronization pattern. On the third
level, the composite task “seq2(psyn3(msyn))’; consists of “seq2(psyn3(msyn_orSplit))”
as defined by orSplitTask, “seq2(psyn3(msyn3(ex)))”’, “seq2(psyn3(msynl))”,
“seq2(psyn3(msyn2))” as defined by parallel tasks and “seq2(psyn3(msyn_orJoin))” as
defined by orJoinTask. They are all within the group of the Multiple Choice pattern and
the Synchronizing Merge pattern. On the fourth level, the composite task
“seq2(psyn3(msyn3(ex)))” consists of “seq2(psyn3(msyn3(ex_xorSplit)))” as defined by
xorSplitTask, “seq2(psyn3(msyn3(ex1)))” and “seq2(psyn3(msyn3(ex2(msim))))” as
defined by alternative tasks. They are within the Exclusive Choice pattern. On the fifth
level, the composite task “seq2(psyn3(msyn3(ex2(msim))))” consists of
“seq2(psyn3(msyn3(ex2(msim_orSplit)))” as defined by orSplitTask,
“seq2(psyn3(msyn3(ex2(msim1)))” and “seq2(psyn3(msyn3(ex2(msim2)))” as defined
by parallel tasks, “seq2(psyn3(msyn3(ex2(msim_xorJoin)))” as defined by xorJoinTask.
They are within the group of the Multiple Choice pattern and the Simple Merge pattern.

All of these tasks are automatic tasks without human interaction. In this test case,
the corresponding selection functions for the orSplitTasks “seq2(psyn3(msyn_orSplit))”
and “seq2(psyn3(msyn3(ex2(msim_orSplit)))” are specified as “or split random function”

in their “automation” elements. The corresponding selection function for the

74

xorSplitTask “seq2(psyn3(msyn3(ex_xorSplit)))” is specified as “xor split random
function”. The corresponding application functions for other tasks are all modeled as
“print log”. In our demonstration, all of these functions will print their starting time and
end time. The selection results of these random functions will also be demonstrated in the
log file.

Results: The following log file in Figure 3-22 demonstrates that all of the tasks

have been executed in the correct order at different levels.

Process seq(psyn(msyn(ex(msim))))starts to process at 0:49:44:348
Sequence pattern starts to process
Sequence pattern is processing
AtomicTask (seql) starts to process at 0:49:44:351
AtomicTask (seql) is over at 0:49:44:367
Task (seq2(psyn)) starts to process at 0:49:44:391
Group of Parallel Split pattem and Synchronization pattern starts to process
Group of Parallel Split pattern and Synchronization pattern is processing
And split Task (seq2(psyn_andSplit)) starts to process at 0:49:44:441
And split Task: (seq2(psyn_andSplit)) is over at 0:49:45:152
AtomicTask (seq2(psynl)) starts to process at 0:49:45:182
AtomicTask (seq2(psyn2)) starts to process at 0:49:45:182
AtomicTask (seq2(psynl)) is over at 0:49:45:282
AtomicTask (seq2(psyn2)) is over at 0:49:45:293
Task (seq2(psyn3(msyn))) starts to process at 00:49:45:503
Group of Multiple Choice pattern and Synchronizing Merge pattern starts to process
Or split Task (seq2(psyn3(msyn_orSplit))) starts to process at 0:49:45:543
ParallelTask (seq2(psyn3(msyn1))) is selected
Parallel Task (seq2(psyn3(msyn?))) is selected
ParalielTask (seq2(psyn3(msyn3(ex)))) is selected
Or split Task: (seq2(psyn3(msyn_orSplit))) is over at 0:49:45:559
Task (seq2(psyn3(msyn3(ex)))) starts to process at 0:49:46:254
AtomicTask (seq2(psyn3(msynl))) starts to process at 0:49:46:264
AtomicTask (seq2(psyn3(msynl))) is over at 0:49:46:302
Exclusive Choice pattem starts to process
Xor split Task (seq2(psyn3(msyn3(ex_xorSplit)})) starts to process at0:49:46:474
ExclusivedTask (seq2(psyn3(msyn3(ex1)))) is not selected
ExclusivedTask (seq2(psyn3(msyn3(ex2(msim)}))) is selected
Exclusive Choice pattern is processing
AtomicTask (seq2(psyn3(msyn2))) starts to process at 0:49:46:504
AtomicTask (seq2(psyn3(msyn2))) is over at 0:49:46:656
Xor split Task: (seq2(psyn3(msyn3(ex_xorSplit)}))) is over at 0:49:47:155
Task (seg%/([psyn3(msyn3(ex2(msim))))) starts to process at 0:49:47:165
Group of Multiple Choice pattern and Simple Merge pattern starts to process
Group of Multiple Choice pattern and Simple Merge pattern is processing
Or split Task (seq2(psyn3(msyn3(ex2(msim_orSplit)))) starts to process at 0:49:47:173
ParalleiTask (seq2(psyn3(msyn3(ex2(rasim1))}))) is selected
ParallelTask (seq2(psyn3(msyn3(ex2(msim?2))})) is selected
Or split Task ?se(aZ(psynB(msyn3(ex2(msim_orSp1it)))) is over at 0:49:47:187
AtomicTask (seq2(psyn3(msyn3(ex2(msiml)})) starts to process at 0:49:47:202
AtomicTask (seq2(psyn3(msyn3(ex2(msim?2)))) starts to process at 0:49:47:222
AtomicTask (seq2(i)syn3(msyn3(ex2(msim1)))) is over at 0:49:47:402
Xor join Task (seq2(psyn3(msyn3(ex2(msim_xorJoin)))) starts to process at 0:49:47:470
Xor join Task (se¢112(psyn3(rnsyn3(ex2(msim_xorJoin)))) is over at 0:49:47:476
Group of Multiple Choice pattern and Simple Merge pattern is over
Task (seq2(psyn3(msyn3(ex2(msim)}))) is over at 0:49:47:495
Exclusive Choice pattern ts over
Task (seq2(psyn3(msyn3(ex)))) is over at 0:49:48:517
Or join Task (seq2(psyn3(msyn_orJoin))) starts to process at 0:49:48:948
Or join Task: (seq2(psyn3(msyn_orJoin))) is over at 0:49:49:468
Group of Multiple Choice pattern and Synchronizing Merge pattem is over
Task (seq2(psyn3(msyn))) is over at 0:49:49:789
And join Task (seq2(psyn_andJoin)) starts to process at 0:49:49:919
And join Task: (seq2(psyn_andJoin)) is over at 0:49:50:320
Group of Parallel Split pattern and Synchronization patter is over
Task (seq2(psyn)) is over at 0:49:50:550
AtomicTask (seq3) starts to process at 0:49:50:550
AtomicTask (seq3) is over at 0:49:50:550
Sequence pattern is over
Process Seq(Psyn(msyn(ex(msim)))) is over at 0:49:50:610

Figure 3-22 Log File of the Test for Combination of Workflow Patterns

75

On the top level, “seql”, “seq2(psyn)” and “seq3” are executed sequentially based
on the specification of the Sequence pattern. On the second level in the composite task of
“seq2(psyn)”, the execution order of ‘“seq2(psyn_andSplit)’, “seq2(psynl)”,
“seq2(psyn2)", “seq2(psyn3(msyn))” and “seq2(psyn_andJoin)” follows the specification
in the group of the Parallel Split pattern and the Synchronization pattern. On the third
level in the composite task of ‘“seq2(psyn3(msyn))”, “seq2(psyn3(msyn_orSplit))”
enables the execution of “seq2(psyn3(msyn3(ex)))”, “seq2(psyn3(msynl))”, and
“seq2(psyn3(msyn2))”. All these enabled tasks are synchronized by
“seq2(psyn3(msyn_orJoin))” based on the specification of the group of the Multiple
Choice pattern and the Synchronizing Merge pattern. On the fourth level in the composite
task of “seq2(psyn3(msyn3(ex)))”, “seq2(psyn3(msyn3(ex_xorSplit)))” only selects
“seq2(psyn3(msyn3(ex2(msim))))” at runtime (Exclusive Choice pattern). On the fifth
level in the composite task of “seq2(psyn3(msyn3(ex2(msim))))”,
“seq2(psyn3(msyn3(ex2(msim_orSplit)))” selects “seq2(psyn3(msyn3(ex2(msiml)))”
and “seq2(psyn3(msyn3(ex2(msim?2)))” for future execution (Multiple Choice pattern).
At runtime, “seq2(psyn3(msyn3(ex2(msiml)))” is completed first, then it triggers
“seq2(psyn3(msyn3(ex2(msim_xorJoin)))” (Simple Merge pattern). The execution result
in the log file demonstrates that the engine interprets the combination of all the seven
workflow patterns in the recursive hierarchy structure and manages the execution order
correctly.

3.4.11 Test for Workflow Sample with Human Interaction
Objectives: The purpose of this ‘test is to demonstrate that our engine can deal

correctly with the workflow involving human interaction. The input file of this testing is

76

an XML workflow document, in which we specify tasks requiring human participants.

The engine should parse and interpret correctly the workflow specification in the XML

workflow document and manage the execution order of each task correctly. At runtime,

when the engine enables a task that requires human interaction, it will ask the

WorklistHandler to add the interface information of this assigned task to the user’s

worklist. Then the handler will provide a user interface with the information in the

worklist. Through the user interface, the user can view and operate his assigned task. The

operations include starting the execution of the application function corresponding to the .
assigned task and notifying completion to the engine once the application function is

over.

Sample and methods: The XML workflow document in Appendix G is used as
the input file for this testing case. We use the former human resource recruitment
example in Section 3.3.1.1 as the input sample for this test case. The process is called
“HRrecruitmentSample”. The Sequence pattern is on the top level. It consists of an
atomic “send resume” with the participant “Secretary” as well as two composite tasks,
“ParSynTask” and “ExclusiveTask”. The “ParSynTask” consists of the group of the
Parallel Split pattern and the Synchronization pattern. “distribute resume” is defined as
andSplitTask with the participant “HR Manager”. “check (IT Manager)”, “check (IT
Director)” and “check (HR Manager)” are defined as parallel tasks, with participants “IT
Manager”, “IT Director” and “HR Manager”, respectively. “collect evaluation reports” is
defined as andJoinTask with the participant “HR manager”. The composite task
“ExclusiveTask” consists of an xorSplitTask, “decide” with the participant “HR

Manager” and two alternative tasks, “archive” as well as “notify”, with “Secretary” and

77

“Interviewee” as their participants, respectively. The corresponding selection function for
the xorSplitTask “decide” is specified as the “xor split random function”. (As indicated in
Section 3.4.4, if the xorSplitTask is a task that needs human interaction, the “xor split
random function” will provide a user interface for the user to make a selection.) The
corresponding application functions for other tasks are all modeled as “print log”.

Results and demonstration: In the demonstration, the log information of the user’s
assigned task including the task assignment time as well as the starting time and the end
time of the application function corresponding to the task is demonstrated in a table in the
user intérface. These corresponding functions are modeled as “print log”. In the following
parts, we display the screenshots of each participant’s user interface at runtime. For
example, the top window in Figure 3-23 (see next page) shows the time at which the task
is assigned to the user. When the user starts the corresponding application function, the
starting time is added into the interface of the middle window in Figure 3-23. The end
time of the application function is demonstrated in the bottom window. The “START”
button in the interface is for the user to invoke the execution of the application function
corresponding to the assigned task. The “COMPLETE” button is for the user to notify the
engine of the completion of the task when the application function is over. In this test,
when the user sees the end time information of the application function demonstrated in
the user interface, he can activate the “COMPLETE” button to notify the completion of

the task to the system. The demonstration of the HR recruitment sample is as follows:

78

Figure 3-23 Log Information for Task “send resume”

At runtime, when the engine interprets the task “send reseume” in the workflow
specification and enables this task, it will assign this task to the WorklistHandler. The
handler will add the interface information of this task to the secretary’s worklist, and then

provide a user interface with the information in the worklist. The secretary can view this

79

assigned task through the user interface (see the top window in Figure 3-23). Then the
user starts the execution of the corresponding application (see the middle window in
Figure 3-23). The end time of the application function corresponding to this task is
demonstrated in the bottom window in Figure 3-23.

Task “distribute resume” is assigned to the “HR Manager” as shown in Window 1
in Figure 3-24. Then the user starts the corresponding application function. When the
application function for this task is over, the user notifies the completion of this task (see

Window 3 in Figure 3-24).

HR Manager

Figure 3-24 Log Information for Task “distribute resume”

Parallel tasks: “check (IT Manager)”, “check (IT Director)” and “check (HR
Manager)” are assigned to “IT Manager”, “IT Director” and “HR Manager” after the
execution of “distribute resume” task. These three participants begin their tasks,
respectively, and execute their tasks in parallel (see Figure 3-25). The following three

screenshots in Figure 3-25 are the user interfaces for “IT Director”, “IT Manager” and

80

“HR Manager”. They demonstrate the log information when their tasks have been

completed.

. IT Dir{éétowr” :

HR Manager

Figure 3-25 Log Information for the Three Parallel Tasks
According to the end time information of each of the parallel tasks in Figure 3-25
and the log information in Figure 3-26, it is clear that task “collect evaluation reports” has
been enabled and assigned to “HR Manager” once the parallel tasks “check (IT
Manager)”, “check (IT Director)” and “check (HR Manager)” have been completed. This

result demonstrates that these three parallel tasks have been synchronized by the engine.

81

HR Manager

icollect evaluation 1. 122:19:69:456
‘HR Manager

HR Manager
ollect evaluation r.. 122:19:59:456 22:20:37:260 122:21

Windowl
Window 2

Window 3

Figure 3-26 Log Information for Task “collect evaluation reports”

According to the workflow specification for this test sample, Task “decide” is for
the “HR Manager” to select either task “archive” or task “notify” for future execution.
Window 1 in Figure 3-27 shows that “decide” has been assigned to the “HR manager”.
Window 2 in Figure 3-27 shows that the user has started this assigned task. Since the
selection function corresponding to the xor split task “decide” has been specified as the
“xor split random function” in the workflow specification, this selection function is
invoked when the user clicks the “START” button. The user interface provided by this
selection function is shown in Window 3 in Figure 3-27. In this interface, two alternative
tasks: “archive” and “notify” are shown so that the user can make a selection. The user
can select a task for future execution by clicking the corresponding task name in fhe user

interface. In this test case, the user selects the task “notify” for future execution.

82

HR Manager

decide ______ 122:21:39:419

Window3

Window 4

Window 3

Figure 3-28 Log Information for Task “notify”

83

The above screenshots in Figure 3-28 demonstrate the assignment and the
execution of the task “notify”.

The result of this test demonstrates that the engine has interpreted the workflow
specification correctly, and it has handled the execution order of each task based on the
control flow specification in the XML workflow document. Through the user interface
provided by the WorklistHandler, users can start the execution of the corresponding
application function and users can notify its completion to the engine once the application
function is over.

3.5 Related Work

In Section 2.4.1, we have introduced that the YAWL group categorized a
collection of workflow patterns. So far, YAWL has identified 20 workflow patterns.
YAWL was originally released in June, 2002. It provides direct support for these
identified workflow patterns, which are associated with a graphical representation. There
was no implementation available when YAWL was initially designed. (This inspired us
to start developing a prototype partially supporting YAWL in May, 2003. For the sake of
simplicity, we implemented a prototype workflow engine supporting only seven
workflow patterns of YAWL.) Just as my thesis approaches completion, the YAWL
group has been implementing a prototype supporting YAWL, and the latest version of the

YAWL system was released in July, 2004.

84

WEDL endpoi

S YAWL YAWL =
database designer manager

3

YAWL YAWL
repository engine
o J oo data
e o
g S
YAW YAWL custom
YA ifw' webservice interop YAWL
sServices

broker broker service

3

wes wet other
sErviE serics enginﬁ

Ef

Figure 3-29 YAWL Architecture [3]

In the following paragraphs, we are going to introduce the design and the
implementation of the YAWL system abstracted in Figure 3-29, and then we offer a brief
comparison with our own system.

The YAWL group’s proposed system architecture consists of YAWL designer,
YAWL manager, YAWL repository, YAWL engine and YAWL services.

YAWL designer corresponds with the Process Definition Tool in the general
workflow product architecture shown in Figure 2-1. It provides a graphic user interface
by which the process designer can model the control flow specification of workflows.
Moreover, it can validate the designer’s specification and export it to the YAWL engine.
In our prototype, the XML workflow document conforming to the XML workflow

schema is used as the input file of the system. The XML editor tool, XML Spy5.0, is used

85

to specify the workflow specification in the XML document conforming to the XML
workflow schema.

The YAWL engine is designed to verify the workflow specification, register tasks
with specified services and keep the workflow specification in the YAWL repository. (The
YAWL repository is in charge of the storage of all workflow specifications.) After the
engine has assigned all these operations, it will instantiate the workflow specification,
create a workflow instance and handle its execution. The current version of the YAWL
engine implements the control flow specification of the workflow and it realizes all of the
twenty workflow patterns in YAWL. The implementation of the prototype presented in
this thesis is based on the specification of the workflow patterns of YAWL. Our system
mainly focuses on the implementation of the control flow perspective of workflow.
Currently, we employ seven workflow patterns. The design of our engine is based on the
workflow engine in the general workflow product architecture in Figure 2-1. Its functions
include: parsing the XML workflow document conforming to the XML workflow
schema, interpreting the workflow specification in the XML workflow document, and
managing the execution order of the workflow instance. Furthermore, in order to deal
with the user interactions in the workflow, we model the tasks as either automatic tasks or
tasks associated with human participants in the workﬂow specification. If the engine
recognizes that the task is an automatic task, it invokes the corresponding application
function directly. Otherwise, it will pass the task to a WorklistHandler to deal with the
human interaction. However, the YAWL system deals with the user interaction in a
different way, as the YAWL engine only deals with control flow but not explicitly with

users. It does not discriminate between manual tasks and automatic tasks, instead it uses

86

services to take control of communication with the environment of YAWL systems.
(These services will be introduced in the later parts of this section.) Another difference
between our system and YAWL’s is that the YAWL engine supports all work patterns
while our engine only interprets seven workflow patterns.

The YAWL manager is a manual tool used to manage the execution of workflow
instances. It provides functions to delete a workflow instance or a specified workflow
specification. It can also provide state and relevant data information for the execution of
workflow processes.

YAWL designer and YAWL manager interact with the YAWL engine through
interface A, which captures the interactions between the YAWL designer and the YAWL
manager on the one hand, and the YAWL engine on the other. Interface A is specified in
WSDL (Web Services Description Language). The functions of the YAWL designer and
the YAWL manager include the import and export of workflow specifications as well as
administration and monitoring functions. However, the YAWL manager has not yet been
implemented in the latest system to be released. In our prototype, the JAXB API in the
workflow engine parses the workflow specification in the XML workflow document
(introduced in section 3.3.2.1) directly. However, the manual administration function for
monitoring the execution of the process instance has not been implemented in our
prototype.

YAWL services construct the environment of a YAWL system. Inspired by the web
service paradigm, end-users, applications, and organizations are all abstract services in
YAWL. The YAWL services consist of the YAWL worklist handler, the YAWL web

services broker, the YAWL interoperability broker, and the custom YAWL services which

87

make up the web service environment of the YAWL system. The YAWL engine interacts
with YAWL services through interface B, which captures the interaction between the
YAWL services and the YAWL engine. Interface B is also specified in WSDL. It identifies
the corresponding services for each task and the operations within each service, and it
contains XML message formats for input messages that contain the operations' input
parameters and output messages that contain the operations' results. Since the workflow
specification in this thesis focuses on the control flow perspective and the prototype is
constructed in a single computer environment, the operational perspective of workflows
is beyond the scope of this thesis.

The YAWL worklist handler communicates with the work list service [3], which is
responsible for assigning the task to the corresponding user. This worklist handler is a
service separated from the engine. If a given task is expected to register with a worklist
handler, interface B is used to identify the corresponding worklist service for the task,
and it also specifies the participant (role), who is asked to execute the task. However, in
the latest released version of the YAWL system, the implemented YAWL worklist handler
has not been separated from the engine. Since our prototype is constructed in a single
computer environment, the worklist handler is a component of the workflow engine.
During the execution, the engine will ask the worklist handler to add interface
information of the enabled task to the user’s worklist. When the task has been completed,
this information will be removed from the worklist. The worklist handler shows an
interface with the information in the worklist. Through this interface, the user can view

his assigned tasks and operate the execution of the corresponding application functions.

88

The YAWL web service broker is responsible for connecting the engine to invoke
external web services. If a task should be registered with the web service broker, interface
B contains the information specifying the corresponding web service for the task, the
operations within this service, the input messages that contain the operations' input
parameters, and the output messages that contain the operations' results. The web service
broker will use this information in interface B to interact with the corresponding web
service. However, this service is still undergoing development in the YAWL project. In
our prototype, the workflow engine runs in a single computer environment, while the web
service has not been implemented yet.

The YAWL interoperability broker provides a service to enable remote workflow
engines to communicate and work together. In the proposed YAWL system, different
engines can be interconnected with each other through this broker. If a task is registered
with the YAWL interoperability broker, interface B contains the identifier of the remote
workflow engine to which the instance of this task will be delegated, the corresponding
remote process to be instantiated by the remote engine and the input data and output data
of the process. Since interface B speéifies the location of the remote engine, the
interoperability broker will use this information to invoke the remote YAWL engine in
order to create a designated process instance. The broker can also receive the output data
of the process instance and map it back to the local engine when the remote process
instance is completed. However, the YAWL group has not implemented this service as
yet. In our prototype, the interoperation with the remote workflow engine has not yet

been considered.

89

The environment of YAWL system varies; for example, a mobile communication
may be required to connect the engine with the environment. Thus, the YAWL group
proposed the YAWL custom service to link the engine with entities in the different
environment. However, this service has not been implemented in the YAWL system as
yet.

In order to demonstrate the control flow features of the current YAWL system,
the implemented prototype provides a Web browser interface for users to interact with
the system. During the demonstration, the process definition designer first uses YAWL
designer to model the workflow specification through a HTML front-end graphical
interface. Then the definition is exported to the YAWL engine to invoke a process
instance. During the interpretation of the workflow specification, the YAWL engine
coordinates the execution order of the tasks in the workflow instance.

Initially, YAWL focuses exclusively on the control flow specification of the
workflows, and there is no data perspective specified in YAWL [2]. Recently, the data

perspective has been added in the latest version of the YAWL prototype. However,
YAWL’s existing definition still only supports the control flow perspective of the
workflows [2], while other perspectives such as data, resources etc. have not been defined
in it as yet. The current implementation of the YAWL system does not provide all of the
components and functionality in the YAWL architecture, as outlined in Figure 3-29.
However, the YAWL engine is fully developed. The functions of the YAWL worklist
handler have been implemented but the handler is still embedded in the engine as a

component of the system. The current release of the YAWL designer can only support the

90

control flow perspective. Other components and services in the YAWL architecture are

still under development.

91

Chapter 4 Conclusion

In this thesis, we design and implement a prototype workflow engine supporting
seven workflow patterns of YAWL, which are the five basic control flow patterns: the
Sequence pattern, the Parallel Split pattern, the Synchronization pattern, the Exclusive
Choice pattern and the Simple Merge pattern, as well as two other advanced patterns: the
Multiple Choice pattern and the Synchronizing Merge pattern. As the starting point for
our work, an XML workflow schema was designed for users to define the workflow
specification. Based on this, the XML workflow document conforming to this XML
schema is used as the input file of our system. At runtime, the engine parses the input file,
interprets the workflow specification in the control flow perspective of YAWL and
handles the execution order of the workflow.

Briefly, the main contribution of this thesis is that an XML workflow schema
employing the seven workflow patterns of YAWL has been designed as a recursive
hierarchy structure, and a prototype workflow engine incorporating the seven workflow
patterns of YAWL, is designed and implemented with Java and JAXB to parse and
interpret the workflow specification in the control flow perspective of YAWL.

As an academic project, our system has certain limitations. Our prototype
workflow engine supports only YAWL’s seven workflow patterns. However, there are
totally 20 workflow patterns, as identified by the YAWL group. Other patterns should be
added in the future. In this prototype, users have to use XML Spy 5.0 to define the
workflow specification in the XML workflow document as the input file for the system.
A graphical user interface must be designed and implemented to facilitate users to define

the workflow specification. We also consider that the exception handling is an important

92

issue that needs to be implemented in every workflow product. However, since this thesis
focuses on the workflow in the control flow specification of YAWL, the implementation

of the exception handling will be the focus of future research.

93

Bibliography

[1] W.M.P. van der Aalst, The Application of Petri Nets to Workflow Management,
Journal of Circuits, Systems and Computers, vol. 8(1), 21-66, pp.2-15, 1998.

[2] W.M.P. van der Aalst and A.H.M. ter Hofstede, YAWL: Yet Another Workflow
Language, QUT Technical report, FIT-TR-2002-06, Queensland University of
Technology, Brisbane, pp.3-13, 2002.

[3] W.MLP. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede, Design and
implementation of the YAWL system, QUT Technical Report, FIT-TR-2003-07,
Queensland University of Technology, Brisbane, pp.3-11, 2003.

[4] W.ML.P. van der Aalst, Advanced Workflow Patterns, 7th International Conference on
Cooperative Information Systems (CooplS 2000), volume 1901 of Lecture Notes in
Computer Science, pages 18-29. Springer-Verlag, Berlin, 2000.

[5] G. Alonso, D. Agrawal A. El Abbadi, and C. Mohan, Functionality and Limitations of
Current Workflow Management Systems, IEEE Expert, 12(5), pp.1-5, September-
October 1997.

[6] N. Chase, Understanding DOM, IBM developerWorks Chase and Chase Inc., July
2003.

[7]1 N. Chase, Understanding SAX, IBM developerWorks Chase and Chase Inc., July
2003.

[8] P. Chrzastowski-Wachtel, Top-down Petri Net Based Approach to Dynamic
‘Workflow Modeling (Work in Progress). University of New South Wales, Sydney,

2002.

94

[9] H.M.Deitel, P.J. Deitel, Java: How to program, Third Edition, Prentice Hall, p.411,
pp-748-pp.753, 1999.

[10] FileNet Corporation. Visual WorkFlo Design Guide. Costa Mesa, CA, USA, 1997.

[11] Forté Software, Inc. Fort€¢ Conductor Process Development Guide. Oakland, CA,
USA, 1998.

[12] Fujitsu Software Corporation. i-Flow Developers Guide. San Jose, CA, USA, 1999.

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Pattern, First Edition Addison-
Wesley, pp.163-166, pp.331-336, 1995.

[14] Hewlett-Packard Company. HP Changengine Process Design Guide. Palo Alto,
CA,USA, 2000.

[15] IBM. IBM MQSeries Workflow - Getting Started With Buildtime. IBM Deutschland
Entwicklung GmbH, Boeblingen, Germany, 1999.

[16] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts,
Architecture, and Implementation. International Thomson Computer Press, London,
UK, pp-12-20, 1996.

[17] K. Kawaguchi, The JAXB API, IBM developerWorks Chase and Chase Inc.,
January 2003.

[18] D. Lea, Concurrent Programming in Java, Second Edition, Addison-Wesley, p.40,
p.75, March 2002.

[19] IBM. F. Leymann and D. Roller, Workflow-based applications, IBM Systems
Journal, Volume 36, pp.1-3, November 1997.

[20] S.P. Nielsen, C. Easthope, P. Gosselink, K. Gutsze, and J. Roele. Using Lotus

Domino Work-flow 2.0, Redbook SG24-5963-00. IBM, Poughkeepsie, USA, 2000.

95

[21] SAP. WF SAP Business Workflow. SAP AG, Walldorf, Germany, 1997.

[22] A. Sheth, K. Kochut, and J. Miller, Large Scale Distributed Information Systems
(LSDIS) laboratory, METEOR project page, December 2001.

[23] Software-Ley GmbH, COSA 3.0 User Manual, Pullheim, Germany, 1999.

[24] Eastman Software, RouteBuilder Tool User’s Guide, Eastman Software Inc.,
Billerica, MA, USA, 1998.

[25] Staffware plc, Staffware 2000 / GWD User Manual, Berkshire, United Kingdom,
2000.

[26] D. Steinberg and D. S. Thinking, Data binding with JAXB, IBM developerWorks
Chase and Chase Inc., May 2003.

[27] Tibco Software Inc., TIB/InConcert Process Designer User’s Guide, Palo Alto, CA,
USA, 2000.

[28] Verve Inc., Verve Component Workflow Engine Concepts, San Francisco, CA,
USA, 2000.

[29] Workflow Management Coalition, Workflow Management Coalition Terminology
& Glossary, Document Number WFMC-TC-1011 Document Status - Issue 3.0,
pp.8-13, pp.18-21, pp.39-41, February 1999.

[30] Workflow Patterns Home Page, updated on December 11, 2003.

[31] The Yawl Group homepage http://www.citi.qut.edu.av/yawl/index.jsp

96

Appendix A
An XML Workflow Document for the Sequence Pattern

<process id="1" name="SequenceSample">
<inputCondition/>
<sequence>
<atomicTask id="1-1" name="Task A" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<atomicTask id="1-2" name="Task B" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<atomicTask id="1-3" name="Task C" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
</sequence>
<outputCondition/>
</process>

97

Appendix B

An XML Workflow Document for Group of the

Synchronization Pattern

<process id="1" name="ParSynSample">
<inputGondition/>
<parsyn>
<andSplitTask id="1-1" name="Task A" status="null">
<participant>
<automation>print log</automation>
</participant>
</andSplitTask>
<postitem>
<atomicTask id="1-2" name="Task B" status="null">
<participant>
<automation/>
</participant>
</atomicTask>
<condition/>
</postitem>
<postltem>
<atomicTask id="1-3" name="Task C" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postltem>
<postltem>
<atomicTask id="1-4" name="Task D" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postltem>
<andJoinTask id="1-5" name="Task E" status="nuli">
<participant>
<automation>print log</automation>
</participant>
</andJoinTask>
</parsyn>
<outputCondition/>
</process>

98

Parallel Split Pattern and

the

Appendix C

An XML Workflow Document for Group of the Multiple Choice Pattern and the

Synchronizing Merge Pattern

<process id="1" name="MulSynSample">
<inputCondition/>
<mulsyn>
<orSplitTask id="1-1" name="Task A" status="null">
<panicipant>
<automation>or split random function</automation>
</participant>
</orSplitTask>
<postitem>
<atomicTask id="1-2" name="Task B" status="null">
<patrticipant>
<automation>print log</automation>
</patrticipant>
</atomicTask>
<condition/>
</postitem>
<postitem>
<atomicTask id="1-3" name="Task C" status="null">
<patticipant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postltem>
<postltem>
<atomicTask id="1-4" name="Task D" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postitem>
<orJoinTask id="1-5" name="Task E" status="null">
<participant>
<automation>print log</automation>
</participant>
</ordoinTask>
</mulsyn>
<outputCondition/>
</process>

99

Appendix D

An XML Workflow Document for the Exclusive Choice pattern

<process id="1" name="ExclusiveSample">
<inputCondition/>
<exclusive>
<xorSplitTask id="1-1" name="Task A" status="null">
<participant>
<automation>xor split random function</automation>
</participant>
</xorSplitTask>
<condition/>
<atomicTask id="1-2" name="Task B" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
<atomicTask id="1-3" name="Task C" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
<atomicTask id="1-4" name="Task D" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
</exclusive>
<outputCondition/>
</process>

100

Appendix E

An XML Workflow Document for Group of the Multiple Choice Pattern and the Simple

Merge Pattern

<process id="1" name="MulSimSample">
<inputCondition/>
<mulsim>
<orSplitTask id="1-1" name="Task A" status="null">
<participant>
<automation>or split random function</automation>
</participant>
</orSplitTask>
<postitem>
<atomicTask id="1-2" name="Task B" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postitem>
<postitem>
<atomicTask id="1-3" name="Task C" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postltem>
<postltem> :
<atomicTask id="1-4" name="Task D" status="null">
<participant> :
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postltem>
<xorJoinTask id="1-5" name="Task E" status="null">
<participant>
<automation>print log</automation>
</participant>
<f/xordoinTask>
</mulsim>
<outputCondition/>
</process>

101

Appendix F

An XML Workflow Document for Combinations of Seven Workflow Patterns in the

Recursive Hierarchy Structure

<process id="1" name="seq{psyn(msyn(ex(msim))))" status="null">
<inputCondition/>
<sequence> .
<atomicTask id="2" name="seq1" status="null">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<compositeTask id="3" name="seq2(psyn)" status="null">
<inputCondition/>
<parsyn>)] '
<andSplitTask id="3" name="seq2(psyn_andSplit)" status="null">
<participant> . .
<automation>print log</automation>
</§ar_t|c1pant>
</andSplitTask>
<postitem>
<atomicTask id="4" name="seq2(psyn1)" status="null">
<participant>_] .
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postitem>
<postitem> .
<atomicTask id="5" name="seq2(psyn2)" status="null">
<participant> . .
<gutomation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postlitem>
<postltem> .
<compositeTask id="6" name="seq2(psyn3(msyn))" status="null">
<inputCondition/>
<mulsyn>) .
<orSplitTask id="7" name="seq2(psyn3(msyn_orSplit))" status="null">
<participant>)
<automation>or split random function</automation>
</participant>
</orSplitTask>
<postlitem> .
<atomicTask id="8" name="seq2(psyn3(msyn1))" status="null">
<participant> .
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postitem>
<postltem>
<atomicTask id="9" name="seq2(psyn3(msyn2))" status="nul{">
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postlitem>
<postltem>
<compositeTask id="10" name="seq2(psyn3(msyn3(ex)))" status="null">
<inputCondition/>
<exclusive>
<xorSplitTask id="11" name="seq2(psyn3(msyn3(ex_xorSplit}))"
status="null"> .
<participant> . .
<automation>xor split random function</automation>
</participant>
</xorSplitTask>
<condition/>

102

<atomicTask id="12" name="seq2(psyn3(msyn3(ex1)))"
status="null"> .
<patticipant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>]
<compositeTask id="13" name="seq2(psyn3(msyn3(ex2(msim))))"
status="null">
<inputCondition/>
<mulsim>
. <orSplitTask id="14"
name="seq2{psyn3(msyn3(ex2(msim_orSplit))})" status="null">
<participant>_
<automation>or split random function</automation>
</participant>
</orSplitTask>
<postitem>
. <atomicTask id="15"
name="seq2(psyn3(msyn3(ex2(msim1)))}" status="null"> .
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postltem>
<postitem>
] <atomicTask id="16"
name="seq2(psyn3(msyn3(ex2(msim2))))" status="null"> o
<participant>
<automation>print log</automation>
</participant>
</atomicTask>
<condition/>
</postltem>
<xorJoinTask id="17"
name="seq2(psyn3(msyn3(ex2(msim_xorJoin))))" status="null">
<participant>
<automation>print log</automation>
</participant>
</xorJoinTask>
</mulsim>
<outputCondition/>
</compositeTask>
</exclusive>
<outputCondition/>
</compositeTask>
<condition/>
</postitem>
<orJoinTask id="18" name="seq2(psyn3(msyn_orJoin))" status="null">
<participant>
<automation>print log</automation>
</participant>
</orJoinTask>
</mulsyn>
<outputCondition/>
</compositeTask>
<condition/>
</postitem>
<andJoinTask id="19" name="seq2(psyn_andJoin)" status="null">
<patticipant>
<automation>print log</automation>
</participant>
</andJoinTask>
</parsyn>
<outputCondition/>
</compositeTask>
<atomicTask id="20" name="seq3" status="null">
<participant> .
<automation>print log</automation>
</participant>
</atomicTask>
</sequence>
<outputCondition/>
</process>

103

Appendix G

An XML workflow document for the HR recruitment process sample

<process id="0" name="HRrecuitmentSample">
<inputCondition/>
<sequence>
<atomicTask id="1" name="send resume" status="null">
<participant>_)
<automation>print log</automation>
<person>Secretary</person>
</participant>
</atomicTask>
<compositeTask id="2" name="ParSynTask">
<inputCondition/>
<parsyn>) .
<andSplitTask id="3" name="distribute resume”>
<participant>
<automation>print log</automation>
<person>HR Manager </person>
</participant>
</andSpliitTask>
<postltem> .
<atomicTask id="4" name="check (IT Manager)">
<patticipant> .]
<automation>print log</automation>
<person>IT Manager</person>
</partticipant>
</atomicTask>
<condition/>
</postitem>
<postitem> i
<atomicTask id="5" name="check (IT Director)">
<participant>_ .)
<automation>print log</automation>
<person>|T Director</person>
</participant>
</atomicTask>
<condition/>
</postltem>
<postitem>
<atomicTask id="6" name="check (HR Manager)">
<participant>.)]
<automation>print log</automation>
<person>HR Manger</person>
</patticipant>
</atomicTask>
<condition/>
</postitem> .
<anddJoinTask id="7" name="collect evaluation reports">
<participant>
<automation>print log</automation>
<person>HR Manager</person>
</participant>
</andJoinTask>
</parsyn>
<outputCondition/>
</compositeTask>)
<compositeTask id="8" name="ExclusiveTask" status="null">
<inputCondition/>
<exclusive>
<xorSplitTask id="9" name="decide" status="null">
<participant>
<automation>xor split random function</automation>
<person>HR Manager</person>
</participant>
</xorSplitTask>
<condition/>
<atomicTask id="10" name="archive" status="null">
<participant>_)
<automation>print log</automation>
<person>Secretary</person>
</participant>
</atomicTask>
<condition/>
<atomicTask id="11" name="notify" status="null">
<participant>

104

<automation>print log</automation>
<person>Interviewee</person>
</participant>
</atomicTask>
</exclusive>
<outputCondition/>
</compositeTask>
</sequence>
<outputCondition/>
</process>

105

