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Abstract
Testing Embedded Real-Time Systems Based on

Test Purpose

Embedded real-time systems are those systems which have many components
interacting with each other and with the environment. The behavior of these systems is
time sensitive and governed by time constraints. One of the greatest difficulties of testing
embedded real-time systems is the well-known state explosion problem, which is due to
the clock variables used, the number of components that form the system, and the

communication between these components.

Over the past decade, some researchers have investigated the issue of testing real-time
systems and come up with new methods. Some of these methods successfully generate
test cases with acceptable/good fault coverage. However, most of the proposed methods
suffer from the well-known state space explosion problem and generate a great number of
test cases. Therefore, it is very important to develop new timed testing methods that are
practical enough and cover as much as possible the potential faults in the implementation

being tested.

In this thesis, we introduce a methodology to generate test cases for embedded real-
time systems based on test purposes expressed as Message Sequence Charts (MSCs), and
timed input output automata as specification model. The approach consists of six main
operations: (1) the parsing of the specification and test purposes; (2) the selection of the

transition paths to be considered for test cases generation; (3) the construction of the
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synchronous product of the test purposes and the TIOA specifications; (4) the
construction of a partial product for the system under test; (5) the sampling of TIOAs;
and (6) the generation of test cases. Within these six operations, the sampling operation
can be executed in different levels. Each level gives rise to a new method for test cases
generation for embedded real-time systems. We implemented and studied three of these
methods by comparing them in terms of the number of states generated and the number

of test cases devised.

Keywords: Embedded Real-Time Systems, Test Cases Generation, Test Purposes,
Message Sequence Charts, Timed Input Output Automata. Grid Automata, Synchronous

Product, Partial Product.
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Chapter 1
Introduction

1.1 Overview

Real-time systems are used in many applications in our society, varying from
telephone-switching systems to patient monitoring and plant control systems. The
behavior of real-time systems is time sensitive and governed by time constraints. Real-
time systems are usually embedded systems, and consist of many components running
concurrently and communicating with each other and with the environment. It is well
known to the real-time systems research community that the misbehavior of real-time
systems is generally due to the non-respect of the timing aspect of their behavior and
causes catastrophic consequences on both human lives and the environment. So, it is
mandatory to make sure that the implementation of a real-time system is correct before its
deployment. Testing is one of the formal techniques that can be used to ensure reliable
real-time systems. It consists of generating test cases from the specification of the system,
submitting these test cases to the implementation under test (IUT for short) and observing
its reactions, and analyzing the results in order to conclude a verdict. If the reactions of
the IUT match the expected outputs, the implementation is said to conform to its
specification; otherwise the implementation is said to be faulty and the diagnosis process

should be started in order to locate and fix the fault.

Testing real-time systems is different from testing classical applications because time is
not under the direct control of the user/tester and the timing aspect generates too many

states (i.e., the state explosion problem). Therefore, it is not advisable to apply untimed
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testing techniques to real-time systems. Hence, the development of new techniques for

testing real-time systems is an urgent need.

Over the past decade, some researchers have investigated the issue of testing real-time
systems with different backgrounds and come up with new methods (see for instance [1],
(2], [3], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]). Some of these methods
successfully generate test cases with acceptable/good fault coverage. However, most of
the proposed methods suffer from the well-known state space explosion problem and
generate a great number of test cases. Therefore, it is very important to develop new
timed testing methods that are practical enough and cover as much as possible the

potential faults in the implementation being tested.

In our thesis, we introduce a methodology to generate test cases for embedded real-
time systems based on test purposes expressed as Message Sequence Charts (MSCs) and
the specification given in Timed Input Output Automata (TIOA) model. A test purpose is
a precise representation of the behaviors to be tested. In the case of embedded real-time
systems, a test purpose is a sequence of interactions amongst the components of the
systems and the environment, as well as some time constraints on these interactions. Test
purposes are useful in testing because they help reduce the number of test cases to be
generated and incrementally carry out the testing process by confining the behaviors to be
tested. This is one of the reasons why ISO intensively uses them in its 1S9646 testing
framework [23]. In our work, test purposes are expressed as MSC because MSC is often
used in the industry and provides graphical and textual grammar formats to specify the

behavior to be tested. As for the specification of the system under test, we adopt the



TIOA model because it is general/rich enough to describe a large number of real-time

systems.

1.2 The Objective of the thesis

This research focuses on test suite generation for embedded real-time systems based on
test purposes. Both the specification of the system and the test purposes are given in text
files and we need to create a parser for them. The test purposes are described in Message
Sequence Chart (MSC) and need to be converted into TIOA models for later calculations.
For convenience of the generation of test cases, the test purpose models and the
specification models should be combined into one global model. The TIOA models have
infinite states in the time domain and have to be discretized with enough states coverage.

Finally, we need to generate the test cases with certain fault coverage.

In addition, not all components of the systems are involved in testing. We are only
interested in the components of the IUT and its contexts. We are concerned with their
transition paths that correspond to traces in the test purposes models. Therefore, a
selection procedure is needed to construct a sub-specification model for testing.
Meanwhile, we need to solve problems on path executability, path synchronization, and

path testability during selection procedure.

We need to pay more attention to discretizing in the time domain. It is one of the key
parts to incur states explosion. A sampling algorithm is designed carefully to decrease the

number of states generated.



1.3 Organization

The remainder of this thesis is structured as follows. Chapter 2 will review the
development on conformance testing. We will introduce conformance testing and how it
works. Then, we will give an overview on formal conformance testing, how formal

methods are used to generate a test suite automatically.

In Chapter 3 we will give a brief overview of real-time systems testing first. Then, we
will introduce some basic concepts that are important in our methodology, such as test
purpose and timed input output automaton. To explain those concepts clearly, we will use

the well-known Railroad Crossing System (RCS) [17] as example.

Chapter 4 will present our approach for timed test suite generation. In this chapter, we
will explain the ideas of our methodology and provide algorithms on MSC translation,
transition paths selection, synchronous product construction, partial product construction,

differential sampling, and test cases generation.

In Chapter 5, we will show the classes that are designed for implementing our

methodology.

In Chapter 6, an example of applying our methodology is given and the results are

analyzed.

Chapter 7 will draw conclusions based on the results of this research and offer

recommendations for further work.



Chapter 2

Conformance Testing in software engineering

In this chapter, we concentrate on conformance testing. The whole chapter is divided
into three sections. In the first section, we introduce the definition of conformance
testing, its position in software testing family and why, when, where we use conformance
testing. In the second section, we introduce the architecture of conformance testing under
ISO conformance testing framework. In section three, we review formal conformance

testing.

2.1 What is conformance testing?

Testing is critical in software engineering. It exists almost in every phase of software
engineering life-cycle, from requirements to integration, to make sure that the quality of
software products is good enough. In the requirement phase, testing is used to see
whether the requirement document meets the client’s real needs. In the specification
phase, testing is used to check for contradictions, ambiguities, incompleteness, and
whether it conforms to the requirements from clients. In the design phase, testing is
mainly used to find logic faults, interface faults, and other faults in design structure and
modules. It also checks the conformance to the specification through cross-reference.
People usually differentiate testing before the implementation phase from testing applied
in the implementation phase and integration phase by calling them V&V, verification and
validation. In the implementation phase, test cases are applied to the modules with either
testing against specifications or testing against code structures. In the integration phase,

the modules which have been tested separately in the implementation phase are integrated
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as a whole system and varieties of testing methods are applied for conformance,

performance, robustness, and reliability testing.

Conformance testing is a kind of testing where an implementation is tested with respect
to its specification. “Conformance testing should be used by implementers early-on in the
development process, to improve the quality of their implementations and by industry
associations wishing to administer a testing and certification program. Conformance
testing are meant to provide the users of conforming products some assurance or
confidence that the product behaves as expected, performs functions in a known manner,
or has an interface or format that is known. Conformance testing is NOT a way to judge
if one product is better than another. It is a neutral mechanism to judge a product against

the criteria of a standard or specification” [24].

One of the measurements to evaluate the quality of software products is how much it
meets the requirements from customers. Every customer comes to a developer with sorts
of requirements for functionalities and constraints. In most of the time, these
requirements are vague, unreasonable, contradictory, or simply impossible to achieve.
Under the cooperative work between the developer and the customer, these requirements
are elicited and documented with informal language such as a natural language. The
requirements document is the primal document that records all requirements from the
customer. In software engineering, this procedure is called requirement phase. These
requirements are supposed to be satisfied when the developer hands over the product to
the customer. But the document in requirements phase cannot guide the developing
phases afterwards because it is too informal to describe precisely the functionalities of the

product. In the next phase, the document is completed and detailed by the developer with



a semiformal or formal language. This is the specification phase and the document in this
phase is called the specification of the product. It is a valid contract between the client
and the developer and is also the essential document for later developing procedure. The
developer is deemed to realize the functions and satisfy the constraints defined in the
specification of the product. Conformance testing is the way to verify this conformance

relation between the specification and the product.

In most cases, conformance testing is a kind of black-box testing. It ignores the codes
and structures of the product and generates test cases only based on the specification.
Exhaustive testing is impractical here because it needs countless test cases to reach high
fault coverage. To generate a relatively small set of test cases with enough fault coverage,
there are two common used techniques of black-box testing -equivalence testing with
boundary values analysis and functional testing. In equivalence testing with boundary
values technique, for each range [a,b] in either the input specification or the output
specification, we generate five test cases: x<a,x=a,;a<x<b;x=b;x>b. The key
point in this technique is how to identify boundaries. In functional testing technique, we
identify functions of the product and generate at least one test case for every function. In

practice, these two techniques are often used in one testing job to generate test cases.

In contrast to black-box testing, there is another kind of testing called white-box
testing, which generates test cases based on the knowledge of codes and the structure of
the product. Usually this kind of testing happens in module testing at the implementation
phase. There is also a testing method, called grey-box testing, which is a combination of

black-box testing and white-box testing. In theory, all these testing methods are equally



effective in finding faults. But usually, only black-box testing is a practical testing

method during integration testing.

In addition to conformance testing, there are interoperability testing, performance
testing, robustness testing, and reliability testing. Interoperability testing is to determine
whether two implementations or more will actually inter-operate and if not, why[4]?
Performance testing is to measure the performance characteristics of an implementation.
Robustness testing is to examine the implementation’s behavior in an erroneously
behaving environment, and Reliability testing is to check whether the implementation
continues to work correctly during a certain period of time [25] and under some

circumstances.

2.2 How does conformance testing work?

Conformance testing plays a major role in software development. To make the
conformance testing results repeatable, comparable, and auditable, there is a need to
standardize the testing procedure. IS9646, “OSI Conformance Testing Methodology and
Framework” [23], is one of the typical conformance testing standards. It is designed for
the development of OSI protocols by ISO and IUT (formerly CCITT), but now it is
widely used in software engineering field, especially in the development of
communication protocols. In the standard, the procedure of conformance testing is
divided into three steps: test cases generation, test cases implementation and test

execution, as shown in Figure 2-1.
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2.2.1 Test cases generation

In the test cases generation step, test purposes are firstly derived deliberately based on
the requirements of the specification to answer the question of “What are we testing’.
Then, generic test cases are devised carefully to realize these test purposes. A generic test
case is an operationalization of a test purpose, in which the actions necessary to achieve
the test purpose are described on a high level, without considering the test method or the
environment in which the actual testing will be done [25]. It is structured by a sequential
of ordered events that are interactive between the tester and the implementation under
test. A generic test case can be divided into three parts: the preamble part, the test body,
and the postamle part. The preamble is a sequence of events that leads the IUT to the
state where the behavior corresponding to the test purpose starts. The test body controls
the behavior of the IUT corresponding to the test purpose. The postamble leads to a
sequence of external outputs for a verdict and bring the IUT to a neutral state after the
test body has been executed. All these test cases together compose a complete test suite,
which can be applied to the tested object to get a verdict on whether the IUT satisfies all
requirements of the specification. Based on generic test cases, we derive an abstract test
case for each generic test case under the consideration of particular test architecture and

restrictions implied by the environment.

During the generation of an abstract test suite, test architecture need to be considered.
For different architectures, test cases are different. There are four basic types of test
architectures recommended in 1S9646 standard, namely: Local Single-Layer
Architecture, Distributed Single-Layer Architecture, Coordinated Single-Layer

Architecture, and Remote Single-Layer Architecture (shown in Figure 2-2). These
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architectures are designed for the OSI protocol model testing, but they can be also used in
testing other protocols and distributed systems. The test architectures are composed of a
lower tester, an upper tester, the IUT, the SUT (System Under Test), test coordination
protocols, and PCOs (Points of Control and Observation). A Lower tester behaves as the
lower layer of the IUT and peer-layer of the IUT. It creates services (as lower layer) and
sends PDUs (as peer-layer) to control the behaviors of the IUT through PCOs on lower
boundary and observes the reactions of the IUT through PCOs. A Lower tester is also
responsible for test verdict and test report generation. An Upper tester behaves as the
upper layer of the IUT that asks for services from the IUT through PCO on upper
boundary. PCOs are service access points which can be accessed by testers. They are
points through which testers can control and observe behaviors of the IUT. In the OSI
protocol model, Service Access Points, SAPs, are introduced as points through which
service entities in the same or adjacent layers communicate with each other. The test
coordination protocol is used to keep coordination and management between the upper
tester and the lower tester. In Local Single-Layer Architecture, the upper tester, the lower
tester and the IUT are in a same system. In Distributed Single-Layer Architecture, the
lower tester is distant from the IUT and needs to communicate with the IUT indirectly
through underlying communication services. Coordinated Single-Layer Architecture is
the same as Distributed Single-Layer Architecture except that the lower tester has
coordination with the upper tester through the test coordinating protocol. The difference
between the Remote Single-Layer Architecture and the Distributed Single-Layer
Architecture is that, in the former, there is no upper tester but multiple upper layers which

have been tested instead.
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]
Distributed Single-Layer Architecture Coordination Single-Layer Architecture

Figure 2-2 Four basic types of test architecture

2.2.2 Test cases implementation

In the test cases implementation step, abstract test cases from the last step are translated
into executable cases with real factors for the specific IUT under the specific testing
environment. Because abstract test cases are independent from any implementations,
some factors in the test cases (eg. parameters and data for service calling) cannot be real
value. These factors are different in different implementations. During test cases
implementation step, these abstract factors need to be concretized. Abstract test cases are
derived as the test specification for testing. For each implementation, we do not need to
implement all abstract test cases but select ones which are concerned with the
implementation. The abstract test cases selected need to be translated into the executable

cases that the test device can recognize. Different test devices need different translators.
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2.2.3 Test execution

In the test execution step, testing is executed through applying the concretized test
cases from the implementation step. The reactions of the IUT are observed and a verdict
is given for each test case. A “Pass” verdict indicates that the observed behavior
conforms to the reference specification and the test purpose is covered during the
execution of the test. A “Fail” verdict indicates that the observed behavior contradicts
with the reference specification. An “Inconclusive” verdict indicates that the observed
behavior conforms to the reference specification but the test purpose is not covered
during the execution of the test. If all test cases applied on the IUT lead to the verdict

“Pass”, it means that this IUT conforms to its specification.

2.3 Formal conformance testing

In the last section we overviewed the standard of conformance testing procedure
recommended by ISO and ITU-T (formerly CCITT). In that standard, the specification is
assumed to be described in a natural language. In practice, especially in protocol design,
more specifications are described in a formal description technology (FDT) such as SDL,
LOTOS, Estelle and Z. With the formal specification, we can generate abstract test cases

automatically. This is called formal methods.

In formal conformance testing, the definition of conformance is different from it in
IS9646. In 1S9646, the conformance is defined as satisfying the requirements of the
specification. But in formal methods, the requirements of the specification are not
described explicitly. Instead, the specification behaviors are described in terms of events
which may be observed at PCOs. In this case, we use conformance relation instead of

requirements to filter out the conformance implementations. Implementations are
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supposed to conform to the specification if they hold certain conformance relation with
the specification. The conformance relation is established based on the mathematical
models of the specification and implementations. In FSM model, for example, this
conformance relation can be defined as equivalence relation, quasi-equivalence relation,

and reduction relation.

There may be two development directions in generating test cases from a formal
specification. One is deriving test cases directly from the formal specification. The test
suite devised in this method is used to test the conformance relation between the
specification and its implementations. But this method is hard to implement when the
tested system is complicated and difficult to be understood. The other is transforming the
formal specification into another formal model, called intermediate model, and then
deriving tests from the intermediate model [27]. The test suite devised in this method is
used to test conformance relation between the intermediate model and the
implementations. This method is more practical because: first, comparing to the former
model, the intermediate model is simpler in most cases because it only covers the specific
aspects of the system to be tested. It is easier to devise test cases from simpler models
with the fewer number of test cases. Second, usually the intermediate models are strict
mathematic models on which many research works have been done both in theory and in
implementations. For example, many works have been done on testing finite state
machine [28] [29] [30] [31] [32] and extended finite state machine [33] [34] [35] [36]
[37]. So the results obtained from these models are convincible and also formally

provable. These models are usually Finite State Machines(FSMs), Input/Output Finite
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State Machines (I/O FSMs), Extended Finite State machines (EFSMs), Labeled

Transition Systems (LTSs), Asynchronous Communication Trees (ACTs) and Charts.

Testing coverage is another key point in formal testing area. To measure the quality
and adequacy of a testing method, testing coverage is one of important measurement
norms. The choice of testing coverage depends on the testing paradigm. There are two
paradigms commonly used in testing [26]: one is exhibiting correct behavior concerning
the criteria in question; the other is discovering any implementation faults in relation to
the criteria in question. In the first paradigm, test cases are generated based on the
structure of the specification model or its intermediate model, such as traces and data
flows. Transition Tour [4] is an example of this kind of paradigm with trace equivalence
relation. In this case, we often use structural coverage to measure the quality and
adequacy of the test suite devised. A big problem in this paradigm is that it is hard to
reach enough structural coverage because too many traces need to be covered, especially
in the case of loops. Importing test purposes with reasonable hypotheses and assumptions
can decrease covering traces by defining the traces that the tester is interested in and

skipping others. But this kind of branches coverage will leave a few faults undetected.

In the second paradigm, test cases are generated based on the fault model of the
specification or its intermediate model. Wp method [4] is an example of testing under this
paradigm with trace equivalence. The fault model is the description of the effects of
failures at some higher level of abstraction [4]. It limits the number of implementations
by mutation approach with the regularity assumption. In this case, we use fault coverage
to measure the quality and adequacy of the test suite devised. Obviously some kinds of

faults uncovered by the fault model will be left undetected.
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Above, we have overviewed formal techniques in automatically deriving an abstract
test suite. The translation of an abstract test suite into an executable test suite can also be
automatic with the help of TTCN (Test Tabular Combined Notation) [38]. TTCN is a
formal language which is standardized by ISO for the test system specification. If abstract
test cases are described in TTCN, they will be feasible to be executed automatically by
any tester who supports TTCN inputs. Many works have been done on generating TTCN

test cases from formal models [44] [45].

2.4 Conclusion

In this chapter we overviewed the conformance testing in software engineering. We
explained how it works under the framework of IS9646. Moreover, we introduced the
formal conformance testing based on formal models. These models gave rise to methods
of automatic generation of test cases. In the following chapters we will focus on
automatic generation of test suites for embedded real-time systems based on timed input
output automata model. We will firstly introduce some basic concepts in our models in

the chapter 3. Then, we will discuss our methodology and algorithms in detail in chapter

4.
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Chapter 3
Related backgrounds and Basic Concepts

In the last chapter, we gave readers an overview of conformance testing. As our thesis
is about conformance testing of embedded real-time systems, in this chapter, we firstly
give a brief introduction to research works on testing real-time systems. Then, we provide
some main concepts and definitions, which are related to the formal models of our

approach.

3.1 Testing Real-Time Systems: Backgrounds

The behaviors of real-time systems are time sensitive. Most malfunctions of this kind
of systems happen because of the unsatisfaction of the time constraints in the
specification. It is hard to find out these faults with testing techniques, which do not
include time factors in their formal models. To cope with the timing properties in real-
time systems, many formal languages are created or extended to offer capabilities of
analyzing, designing, implementing and testing real-time systems, such as Timed Input
Output Automata (TIOA), SDL, MSC, Constraint Graph, Extended Temporal Logic, etc.
Research works have been done for test methods based on models described in these

languages [1], [21, [3], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] [40].

There are two types of real-time properties: hard real-time properties and performance
properties [4]. Hard real-time properties state the time constraints (time bounds) to
actions of systems. Performance properties state the statistical nature of systems. In

conformance testing, we only care about hard real-time properties and leave performance
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properties to performance testing. As we mentioned earlier, test cases are composed of
sequences of actions. Considering hard real-time properties and continuous time domain,
it means infinite set of test cases need to be generated. But a test suite needs to be finite
for practical reasons. To solve this contradiction, one way is discretizing time over time
domain. For example, some researchers [3] discretizes time by introducing clock region
concept in the time domain and then, sampling in the time domain. All states in each
clock region are supposed equivalent and can be represented by one state. There are
possibly other ways that can be used to solve this contradiction in testing. For example,
for each test case, testers can be designed to start actions randomly following a certain

statistical model in time.

In integration testing, the IUT is not tested in isolation. It is tested with other
components of the system. For the IUT, these components are its contexts, which interact
directly or indirectly with the IUT. These interactions are carried on through internal
interface and they are unobservable to testers. Testers can only control and observe the
IUT behaviors partially through PCOs. This kind of testing is known as embedded testing

or testing in context [38][41] [42].

Our methodology is based on TIOA models. It follows the theories of testing
embedded real-time systems [11] and testing with test purposes [1]. The basic concepts

we used in our methodology are introduced in the next section.
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3.2 Basic Concepts

3.2.1 Timed Input Output Automaton

A Timed Input Output Automaton (TIOA) [17, 2, 13] A is a tuple ([4, Oa, La, loA, Cy,

T4), where:

e 4 is a finite set of input actions. Each input action is denoted by “?” followed

by a label.

13 '7’

e (4 is a finite set of output actions. Each output action is denoted by

followed by a label.

o [, is a finite set of locations. The term “location” is chosen instead of term
“state” because the latter is used to define the operational semantics (i.e., all the

executions) of TIOA.
) loA € L, is the initial location.

e (4 is a finite set of synchronous clocks set to zero in loA. We assume that time is

dense, which means that all clocks have values are real numbers.

e T, is the set of transitions. Each transition consists of a source location, an input
or an output action, a clock guard that should hold in order to execute the
transition, a set of clocks to be reset when the transition is executed, and a

destination location. We assume that all transitions are instantaneous.

Figure 3-1 is an example of TIOA that describes the behavior of the train component in
RCS. First, the train sends the signal APPROACH to the environment to indicate that it’s

approaching. Then, the train sends the signal ENTRY to the controller to let it know that it

19



is at the entry sensor. Then within [60s, 120s], the train should send INCROSS signal to
the environment to indicate that it is in the crossing region. At this time, the gate should
be closed to make sure that no other train could enter the crossing region. When the train
leaves the crossing region, it sends the signal EXIT to the controller within [0,180s] after
it sends the ENTRY signal. Next, the train sends the signal LEAVE to the environment to
show that it is out of the crossing region. The TIOA specification of the train has five

locations A0 (the initial location), Al, A2, A3 and A4, five transitions and one clock x.

The transition from A2 to A3, denoted by A2 VRO .0<=x<=1D0 , A3 s executed when the
train sends the signal INCROSS and the value of clock x is between 60 and 120

inclusively. When the transition is fired, the clock x is set to 0.

e ! APPROACH i ENTRY

x:=0 m x:=0

e ! LEAVE e 1 INCROSS

x:=0 HHEXIT 60<=x<=120
0<=x<=180
x:=0
A3
x -- clock , e -- means external , i -- means internal , ? -- means input , ! -- means output

Figure 3-1 The specification of Train described by TIOA

3.2.2 Grid Automaton
Let A = (I4, O, La, I°4, Ca, T4) be a TIOA. The Grid Automaton (GA) of A [2, 3, 19,

13] is a finite input output automaton GA = (Iga, Oga, Sca, sOGA, TGa), where:
o Iga=14U {g}, where g is a special time delay (g is a rational number).
° OGA = OA.
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o Sia is a finite set of system states. Each state is a pair (I, v), where le L4 and v

is a clock valuation in which the value of each clock is a multiple of g.

o socA is the initial state that consists of the initial location , IOA , and the clock

valuation that set all clocks’ value to zero.
e T;ais a finite set of Transitions.

Each transition consists of a source state, an action (input, output, or time delay g), and
a destination state. There are two types of transitions in GA: the delay transitions on time
delay g and the explicit transitions on input and output actions. Each state has an
outgoing delay transition on time delay g. However, a state (/, v) has an outgoing explicit
transition on input or output action a if and only if there is a transition [ —21%92 4" in A
and v satisfies the clock guard G. After the execution of a delay transition on g, the value
of each clock is incremented with g time-units. However, after the execution of an
explicit transition the value of each clock in A4 in the corresponding transition in A is set

to zero.

The grid automaton represents a subset of the executions of a TIOA because it only
contains the delay transitions on the same time delay g. However, the executions of TIOA
contain delay transitions on every time delay between O and 1 and all the delays are

obtained by the addition of those delays since we are using dense time model [3].
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3.2.3 Synchronous Product of Two TIOAs

Let S=(I;,05,Lg,13,Cg,Ts) and T =(1,,0,,L;,l2,C;,T,) be two TIOAs. The
synchronous  product of § and T is a  special  composition
SP=(1¢,06,Lsp,l%,Cgp,Tgp ) of S and T such that [1, 14]:

o Ip=IsUlrand Osp= Os U Or.
o LgpCLgXLy.

o Us=(%,0n).

e Csp=CsUCr

e Lspand Tsp are the smallest relations defined by the following two rules:

a. Suppose [y, =(lg,l; )€ Lgp. lg€ Lg,lr € LT,l;- € L, then

ls {2 }Ja,GLAL l:g e Ts , ’ P ’
[20)aG2)2 ;' = lsp =(ls,ly )€ Lgp and [gp Lsp € Tsp

I 2222 50 ¢T.

T T T

b. Suppose lsp =(lg,l; )€ Lgp, Ig € Lg,lp € Ly I € Lg,l € Ly, then

{?!}a,G1A1 '
1, —HIaGIM Ly e T

(2! }a,G222

, = lgp =(l5,ly )€ Lgp and I, —(2HaC14G2MAL 4 e T,

3.2.4 Message Sequence Chart

A Message Sequence Chart (MSC)[16] is a structure M = <P, S, R, A, O, T, Tx, Y>,

where:
e Pis afinite set of processes.

e Sis afinite set of sending message events.
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e Ris afinite set of receiving message events.

e A is a finite set of local events such as local actions, timer start, time-out, and

timer stop.

e (Ois the ordering of S, R and A. We assume a total ordering relation among S, R,
and A, which means we know, by O, which event happens first and which one

happens next.
e Tis a finite set of timers.
e Ty associates each timer related event with its timer.

e Y associates each pair of dependent events with its timing restriction, and

associates each action with its duration.

We also define an instance (process) P;inaMSC T < P,S,R,A,O.T,T .Y >, P.€ P, as

atuple of < S, R, A;, O;, T, Tyx;, Y;,>, where,

; € S, afinite set of message events sent by P;.

e R, C R, afinite set of message events received by P;.

e A C A, afinite set of local events in P;.

e O, C O, the ordering S;, R; and A; on instance P;.

e T, cT,afinite set of timers which are associated with P;.

e Ty, CT,associates each timer related event with its timer.
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e Y, CY, associates each pair of dependent events in S; UR; with its timing

restriction, and associates each action in A; with its duration.

There are two kinds of MSC diagrams: Basic Message Sequence Chart (BMSC) and
High-Level Message Sequence Chart (HMSC). BMSC is used to describe simple
scenarios of messages flow between instances. HMSC is used to describe complicated
structures of BMSCs composition such as coregion, inline expression (alternative,

parallel composition, iteration, exception and optional regions) and MSC reference.

3.2.5 Test Purpose

A Test purpose is a partial behavior of the system under test. It represents a sequence
of interactions among the components of the system and with the environment as well as

the time constraints on these interactions.

In this thesis, test purposes are expressed using MSC 2000 [15]. MSC 2000 provides
the user with constructs to specify the timing behavior of a real-time system not only by
timers but also with time constraints between any pair of events. Moreover, a MSC

specification can be converted into a TIOA under some conditions.

An example of test purposes in MSC 2000 is given in Figure 3-2. In this example, The
user is interested in checking if the implementation of RCS allows the train to send the
signal INCROSS followed by the signal EXIT, have the controller send the signal RAISE
to the gate at the latest 30 time-units after getting the signal EXIT, and have the gate open

(signal UP) within 60 to 120 time-units after the reception of the signal RAISE.
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Test Purpose
T
Train Controller Gate
Train1 4] Controller1 J ‘ Gatet l
INCROSS
EXIT 10.30]
B
i RAISE |60 120]
B
v ___UP
| | ]

Figure 3-2 Test Purpose for Train going out of the cross region

3.2.6 Communicating TIOA Model (CTIOA)

A Communicating Timed Input output Automaton (CTIOA) [11] is formally defined as

atuple CT= (1. O, L, ., Cu, Tow Fer ), where
e [ is afinite set of input actions. Each input begins with “7”.
e (s afinite set of output actions. Each output begins with “!”.
e [ is a finite set of locations.
. loct € L. is the initial location.
e (. 1is a finite set of clocks all initialized to zero in loct.

e T, is afinite set of transitions.

o [F.is a FIFO channel.
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3.2.7 Partial Product of CTIOAs

Let (A}, Ay, As... Ay) be m CTIOAs describing an embedded real-time system. The

product of these CTIOAs is a global TIOA G = (I, Og, Lg, IOG, Cq, T;) [10], where:
e [ is the union of the input sets of A;, A;, Az... Ay
e Og is the union of the output sets of Aj, Ay, As... Ap.

e L is afinite set of global locations. A global location is a tuple (I}, o, ..., L, F1,
F,, ..., F,), where [;, 1 <i<m,is alocation in A;, and F; is the FIFO associated

with A;, forall 1 £i<m.

. lOG = 101, loz, lom, F 1 F 2 een F m ) 18 the initial global location, where lo,- is

the initial location of A; and F =@, forl <ilm.
o (;is the union of the clock sets of Aj, Ay, As... A,

e Tg is a finite set of global transitions. A global transition is a transition between

two global locations caused by a transition in a component of the system.

3.3 Conclusion

In this chapter we gave a brief introduction on testing real-time systems. We provided
the basic concepts on timed input output automaton model, grid automaton, synchronous
product, message sequence chart, test purpose, communicating TIOA model, and partial
product of communication automata. These concepts are very important to our

methodology.

In chapter 4, we will discuss our methodology step by step and introduce our

algorithms on MSC translation, transition paths selection, synchronous product
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construction, partial product construction, differential sampling, and test cases

generation.
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Chapter 4
A New Approach for Testing Embedded RTS

In this chapter we present a new methodology that is developed to generate test cases
for embedded real-time systems with test purposes and the specification. We will explain
the ideas of the methodology and provide algorithms on MSC (Message Sequence
Charts) translation, transition path selection, synchronous product construction, partial
product construction, differential sampling, and test cases generation. Test Purposes are
described by MSC and the specification is described by TIOA (Timed Input Output

Automata).

4.1 Overview of our Approach

Our approach [43] consists of six main operations: (1) the parsing of the specification
and test purposes, (2) the selection of the transitions to be considered for test cases
generation, (3) the construction of the synchronous product of test purposes and TIOA
specifications, (4) the construction of a partial product for the system under test, (5) the

sampling of TIOAs, and (6) the generation of test cases.

The sampling operations can be executed in different levels in an order of these six
operations. Each level of sampling operation gives rise to a new method for test cases
generation for embedded real-time systems. We implemented and studied three of these
methods. The difference between these methods is the position of sampling in the whole
process. These methods are illustrated in Figure 4-1 and we will refer to them as M1, M2,

and M3 respectively.
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In what follows, we present in more detail each of the aforementioned operations and

point out the specificities of methods M1, M2, and M3.

Specification & Specification & Specification &
Test Purpose Test Purpose Test Purpose
Parsing Parsing Parsing

y A\
Selection Selection Selection

/ /

Synchronous Synchronous
Product Product

Partial Product Synchronous
Product
Partial Product Partial Product
/
Test Cases Test Cases Test Cases
Generation Generation Generation
Test Cases Generation Test Cases Generation Test Cases Generation
Method One (M1) Method Two (M2) Method Three (M3)

Figure 4-1 Three Methods of Test Cases Generation

4.2 Translate Basic MSC into TIOA

In our methodology, we suppose that test purposes are offered by the tester. As MSCs
are widely used in engineering practices for modeling distributed interactive systems, we
use them to describe our test purposes. We use Timed Input Output Automata (TIOA)

model to describe the specification since it is a formal language that is widespread in
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computing applications with its depth and mathematic precision of description. Because
our methodology is based on the theory of Timed Input Output Automata, we need to
translate MSC into TIOA. Each instance of MSC (i.e., test purpose) gives rise to a TIOA.

Obviously, such a TIOA is acyclic with no self-loop transitions.

4.2.1 Mapping MSC Into TIOA

To translate MSC into TIOA, we need to establish a mapping between a MSC and a

TIOA.

First, we map each instance in a MSC into a TIOA. From automata theory, we know
that transitions are driven by inputs/outputs. These inputs/outputs are interactions
between an automaton and the outsiders. In our thesis, w