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ABSTRACT

Modeling of a Focused Gaussian Beam into Multi-Layered Tissue with Monte Carlo
Simulation

Islam Saleh Attia El Ghargomi

Monte Carlo method is a statistical method that is built on random sampling of
variables from well-defined probability distributions. It has been employed rigorously to
study the photon transport in biologically turbid media. This thesis employs a well-
established simulation program called “MCML” to study photon transport in biologically
turbid media. In the present work, we use Monte Carlo method for modeling finite
diameter optical beams, which are in general approximated by uniform or Gaussian
intensity distributions.

In order to model focused Gaussian beams with Monte Carlo simulation, the
“MCML” program was modified based on a probability distribution found in the
literature. However, errors were encountered in the calculated physical quantities by
Monte Carlo simulation. This error formed a strong motivation to search for and analyze
its source.

Using simulation, we prove that the probability density function used in the
literature is a source of error in the calculations of the physical quantities evaluated by
Monte Carlo simulation. We propose another probability density function that is shown

to provide a dramatic improvement compared with the other function.
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CHAPTER 1

Introduction

Biophotonics is the branch of science concerned with studying light interaction with
biological matter [1]. Laser has shown applicability in the clinical domain as early as the
1960’s [2]. The monochromatic, non-ionizing light can target and get absorbed by
specific biomolecules, leaving others almost unaffected. The ability to focus laser beams
into different spot sizes, which provides variable probing areas and consequently flexible
delivery of radiation doses, is an important feature of laser. Guiding of laser beams using
optical fibers, has made it possible to deliver optical energy in vivo to various organs in
the human body with minimum invasion. This selectivity, minimally invasive, and
relatively less harmful interaction between laser, and the biological tissues, makes laser
an important clinical tool, both for diagnosis and therapy. The optimal treatment or

diagnostic conditions for a certain tissue can be determined by choosing the appropriate



laser parameters such as intensity, irradiation geometry, operation wavelength, exposure
time and exposure mode (pulsed or continuous) [3].

In terms of therapy, laser induces selective photobiological effects by transforming
optical energy into chemical, thermal or mechanical energy via resonant light absorption
[4]. Photo Dynamic Therapy (PDT), thermo therapy and tissue ablation are examples of
the applications of laser in therapy. For diagnosis purposes, the analysis of reemitted and
scattered light from tissue in terms of wavelength, temporal and spatial distributions,
reveals important information about the optical properties of the biological tissue.
diagnosis with laser involves non-destructive interaction between light and biological
tissue. That is to say, absorption due to the incident optical power on tissue is below the

threshold required to induce thermal and chemical reactions [3].
1.1  Scope of the Thesis

The theoretical models that were proposed to understand light transport in optically turbid
biological tissues use the optical properties of tissue as inputs, in order to calculate the
light distribution within the tissue or light escaping the tissue after interaction as the
model output. One of the most famous modeling methods for light transport in optically
turbid biological tissues is based on the radiative transfer equation [5,6]. The analytical
solution of the radiative transfer equation is very complex and approximations are usually
involved in the solution. Monte Carlo technique, first proposed by Metropolis and Ulam
[7], simulates the radiative transfer equation by tracing a large number of statistical
photons or energy packets each of which represents a fraction of the incident light energy

[8-11]. The Monte Carlo method records photons histories as they are scattered and



absorbed. It is an attractive tool for modeling light transport in tissue because it can be
easily implemented and can model complex tissue structures.

In this thesis, we present a Monte Carlo Model for a focused Gaussian beam into multi-
layered biological tissue. We propose an accurate Monte Carlo sampling rule of the
Gaussian beam profile and compare it with another sampling rule previously used in the
literature. The Monte Carlo model for focusing a Gaussian beam is verified by means of
comparison with simulation results in published reports. After verification of the model,
we present the simulation results of two case studies, which involve focusing of a

Gaussian beam into biologically turbid medium.
1.2 Organization of the Thesis

Chapter two reviews the fundamentals of tissue optics that are directly related to the
research topic of the thesis. It also provides a short description of Monte Carlo simulation
method for modeling light transport in multi-layered tissue. The main characteristics of
Gaussian beams, which are modeled with Monte Carlo, are discussed at the end of this
chapter.

Chapter three of this thesis concentrates on the details of the Monte Carlo model of a
focused Gaussian beam into multi-layered tissue. A source of error in the sampling of a
Gaussian beam profile, found in the literature, is highlighted and discussed. The
derivation of the Monte Carlo sampling rule of both the uniform and Gaussian beam
profiles is presented. The sampling rule of a beam profile refers to the random selection
of the photon launching position within the beam radius that yields the required intensity

profile in Monte Carlo simulation. The sampling rules of different beam profiles are



represented and discussed in sections (3.1) and (3.2). The method used to realize a
focused optical beam in the Monte Carlo simulation model is discussed in Section (3.3).
The verification of the focused Gaussian beam model is presented in chapter four. This
chapter is dedicated to verify the Monte Carlo simulation model by means of comparing
the obtained results with those of published reports.

Chapter five introduces the application of the proposed model in two case studies. The
first case involves focusing of a Gaussian beam into a homogeneous turbid medium and
in the second case, into a human skin model consisting of two layers.

Finally, the main conclusions of the study, and the proposed future directions of research

are presented in chapter six.



CHAPTER 2

Review of Literature

2.0 Biophotonics — A New Frontier

Biophotonics, or light interaction with biological matter, is an area of intensive scientific
research. A multitude of applications of photonics in biology have emerged such as
bioimaging, optical biosensors, light activated therapy, tissue engineering, laser tweezers,
laser scissors and many other applications [1]. The understanding of the way laser/ e
interacts with biological tissues is the key to utilize laser both in diagnosis and therapy of
diseases. The optically turbid biological tissue is characterized by its optical properties.
These optical properties include the index of refraction, absorption coefficient, scattering
coefficient, and scattering anisotropy [12]. The tissue optical properties are sensitive
indicators of the biophysical status of biological tissue. The theoretical models that were
proposed to understand light transport in optically turbid medium use the optical

properties of tissue as inputs, in order to calculate the light distribution within the tissue

or light escaping the tissue after interaction as the model output. The radiative transfer



equation [5] is one of the most famous modeling methods for light transport in optically
turbid biological tissues [6]. This theory requires scatterers to be far enough away from
each other to scatter independently from each other [13]. The analytical solution of the
radiative transfer equation is very complex and approximations are usually involved in
the solution. Therefore, other approaches rather than the analytical one are usually
required in order to provide a solution for this equation. Monte Carlo technique simulates
the radiative transfer equation by tracing a large number of statistical photons or energy
packets each of which represents a fraction of the incident light energy [8-11]. It is a
well-established tool that has proved to produce computation results that are closely
corresponding to measured values [14].

In the next section a short description of the general aspects of light transport in tissue is
presented. Then, the Monte Carlo method and its implementation to simulate photon
propagation in multi-layered tissue are presented. The last part of this chapter discusses
the main characteristics of a Gaussian beam, which are modeled with Monte Carlo
simulation.

2.1 Tissue Optical Properties

Biological tissues are optically characterized by four important properties: the refractive
index n (dimensionless), the absorption coefficient p, in cm™, the scattering coefficient
in cm™, and the anisotropy factor g (dimensionless). In the following sections, a brief
discussion of each one of these properties is presented.

2.1.1 The Refractive Index n

It is well known that the refractive index is defined as the ratio between the speed of light

in vacuum to its speed in the medium. Therefore, the refractive index can be seen as the



resistance the light encounters during its propagation in the medium compared by its
propagation in the free space. If light is incident on the interface between two media with
different refractive indices, fraction of the incident light will suffer from specular
reflection and fraction of the incident light will be transmitted into the second medium as
a refracted beam according to Snell’s law. Figure (2-1) shows the reflected and
transmitted light at ambient-tissue boundary due to mismatched refractive indices

between the two media [12].

specular
reflection

ambient N,

transmitted
light

Figure (2-1) Reflected and transmitted light at ambient-tissue boundary due to
mismatched refractive indices between the two media.

tissue n,

According to Snell’s law of refraction:

n; sin8; = n, sin 6, (2-1)
Where 0, is the angle of incidence with respect to the normal of the surface boundary,
and 0, is the angle of transmittance measure from the same reference. The refractive
indices of the first and second media are n; and n, respectively.

The specular reflection is governed by the Fresnel’s formulas, and depends strongly on
the angle of incidence, the polarization status of the incident light beam and the nature of

the reflecting surface [12]. The reflectance R is given by Fresnel’s formulas as[10-12,15]:

20 in2(0 —
ol tan2(491 0) . s%n2(491 6,) (2-2)
2| tan’(6, +6,) sin’(6,+6,)



Equation (2-2) represents an average of the reflectances for the two orthogonal
polarization directions. From equation (2-1) it can be seen that, if the angle of incidence
on the tissue surface is equal to zero (i.e. normal incidence), then the angle of refraction

will be also zero. In this case, equation (2-2) reduces to:

ny —hn 2

2.1.2 The Absorption Coefficient p,

The absorption of photons by biological tissue is a very important event in biophotonics.
It provides both therapeutic as well as diagnostic information regarding the biological
tissue under study. In terms of therapy, absorption means energy transfer to the tissue and
in terms of diagnostics, absorption provides information about the chemical composition
of the tissue in spectroscopic applications. Absorption also acts as a contrast mechanism
in imaging applications. The probability of absorption per unit path length of a traveling
photon defines the absorption coefficient i, in cm™ [16]. Figure (2-2) shows the primary
absorption spectra of some biological tissues and the absorption coefficients at some

typical wavelengths.
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Figure (2-2) Primary absorption spectra of biological tissues and absorption
coefficients at some typical laser wavelengths [16].



From figure (2-2) it can be seen that, the absorption increases in the ultraviolet region of
the optical spectrum due to protein, Deoxyribonucleic Acid (DNA), and other molecules.
In the infrared region, the absorption increases with increasing wavelengths mainly due
to water absorption. The red to the near-infrared region is characterized by minimal
absorption [16].

2.1.3 The Scattering Coefficient p,

The scattering coefficient is defined as the probability of photon scattering per unit path
length pgin cm™. The summation of the scattering and absorption coefficients defines the
total attenuation coefficient p,, which accounts for the probability of all light-tissue
interactions per unit path length of a propagating photon. Photons propagating in
optically turbid biological tissue with wavelengths close to the size of the tissue ultra
structure will suffer strongly ﬂom scattering due to interaction with tissue ultra structure.
The tissue ultra structure extends from membranes, to membrane aggregates, to collagen
fibers, to nuclei, to cells [16]. Scattering can be referred to the small local variations in
the mean real refractive index of the medium [17]. The scattering regime is highly
dependent on the wavelength of the photon compared to the size of thé scatterer. If the
incident photon wavelength is in the order of size of the scattering structure, the
scattering process is described by the Mie theory. If the scattering structure is very small
in size compared to the incident photon wavelength, then the scattering process is best
described by the Rayleigh scattering regime [12,16]. In the Rayleigh limit, the
wavelength dependence on the scattering varies as A* ,while for larger particle sizes it
changes as A%, where A is the wavelength of the photon[15]. This means that red light is

less scattered than blue light since the blue light has a shorter wavelength. It should be



noted that the term scattering used in this thesis refers only to elastic scattering where the
incident and scattered photons have the same energy.

2.1.4 Scattering Anisotropy g

The anisotropy or asymmetry factor, also named the g-factor, is defined as the average
cosine of the deflection angle 0 at a single scattering event [18]. The angle 0 is measured
with respect to the original forward trajectory of the singly scattered photon. The
graphical representation of the scattering deflection angle 6 and the azimuth angle y due

to a single scattering event is shown in figure (2-3).

incident photon

Figure (2-3) Graphical representation of the deflection and azimuth angles after a
photon suffers from a single scattering event.

If the scattering tissue has no major regions that can be regarded as organized structure,
(i.e. the scattering medium is considered isotropic), then the azimuth angle y will be
uniformly distributed between 0 and 2xn. The deflection angle 6 falls within the range 0
and 7. The anisotropy factor g is actually a measure of the amount of forward direction
retained after a single scattering event. The angular dependence of scattering which is
called the scattering function p(@), is described by the probability of a photon scattering
into a unit solid angle oriented at an angle 0 relative to the original photon trajectory [18].
In other words, the scattering function describes the intensity of light scattered from an

object as a function of the angle between the incident direction and the scattered direction

10



[19]. In tissue optics, the Henyey-Greenstein phase function [20] has proven to be useful
in approximating the angular dependence of single scattering events in biological tissues

[19-21]. The Henyey-Greenstein phase function is given by:

1 1-g°
6)=— 2-4
PO = g —2g00s0)" @4

such that, [ p(©)27sin(6)dO =1 ,and [p(6)cos(9)2xsin(6)d =g
0 0
It is common to write the Henyey-Greenstein as a function of P(cos6) :

1-g2)

1
P(cos@)=—
2 (1+g2 —2gcos€)3/2

(2-5)

1

1
such that jP(COS 0)d(cosf) =1 and IP(cos 0) cos(ﬁ)d(cog NH=g .
_1 -1

The scattering anisotropy g = <cos8>,( meaning, the expected value of cos0) , and has a
value between -1 and 1.

A g-factor close to zero means that the scattering is isotropic, while a value close to unity
indicates a sharply scattering peak in the forward direction. Most biological tissues have,

in general, a forward directed scattering [19,21,22].

2.2 Monte Carlo Simulation Method for Modeling Light Transport in
Multi-Layered Tissue

Monte Carlo methods are used for solving widely varying types of physical problems.
Surprisingly, there is no well-established definition for this method. A good definition is
presented by Lux and Koblinger [23] as: “In all applications of the Monte Carlo method,
a stochastic model is constructed in which the expected value of a certain random
variable (or a combination of random variables) is equivalent to the value of a physical

quantity to be determined. This expected value of the random variable is estimated by the

11



average of multiple independent samples representing the random variable introduced
above. For the construction of the series of independent samples, random numbers
following the distribution of the variable to be estimated are used”. Kahn published the
first comprehensive review about Monte Carlo methods in 1954 [24]. Monte Carlo
method has been employed rigorously to study the photon transport in turbid medium.
The MCML [25,26] Monte Carlo simulation program of steady state light transport in
multi-layered tissues is a well-established simulation tool in this domain. It deals with the
transport of an infinitely narrow photon beam perpendicularly incident on a multi-layered
tissue. The MCML computer simulation program was modified to fit the needs of the
research topic in this thesis, specifically to model optical beams of finite diameters with
different intensity profiles (uniform or Gaussian) when focused into multi-layered tissue.
The Monte Carlo simulation program models an incident photon beam on infinitely wide
multi-layered tissue. Each tissue layer is characterized by its thickness, refractive index,
absorption coefficient, scattering coefficient, and anisotropy factor. Also the top and
bottom ambient refractive indices are needed to complete the simulation model input
information. The aim of the simulation is to predict the radiant energy transport in the
turbid tissue. The simulation does not treat the photon as wave phenomena, but rather as
energy packets. Therefore all phase and polarization features are ignored in the Monte
Carlo simulation. Since Monte Carlo methods are statistical in nature, they require a large
number of photons to be traced in each simulation run and therefore it is a time
consuming method in general. The number of photons to be used in the simulation run
depends on the required accuracy, spatial resolution needed and the quantity that is being

measured. The outputs of the simulation are four physical quantities of interest: photon
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absorption, fluence, reflectance and transmittance. In order to score these important
physical quantities in the three-dimensional space, a special grid system in space is
constructed for this purpose. Three simultaneous coordinate systems are used in the
Monte Carlo simulation. A Cartesian coordinate system traces the photon movement. To
score internal photon absorption, a cylindrical coordinate system is setup for this purpose
since the problem has cylindrical symmetry. The diffuse reflectance and transmittance
emerging out of the tissue are also recorded in the cylindrical coordinate system as a
function of the radial distance and the angle between the photon exiting direction and the
normal to the surface. It should be noted that both the Cartesian coordinate system and
the cylindrical coordinate system share the same z-axis and the point of origin. A third
spherical coordinate system is used to sample the propagation direction change of the
photon packet. The reader is strongly advised to read references [10,11,25,26] in order to
understand the principles of Monte Carlo simulations for photon transport in tissue, as it
is not possible to discuss all details in this thesis. However, some of the Monte Carlo
principles that are directly related to the research point in this thesis will be discussed in
more detail. Figure (2-4) below shows the flow chart for Monte Carlo simulation of
photon propagation in multi-layered tissue [25,26]. It should be mentioned that the
MCML computer program is associated with another program called “CONV” [27] for
solving responses due to a collimated finite diameter photon beam perpendicularly
incident on multi-layered tissue. The CONV program employs an extended trapezoidal
rule for integration, to convolve the responses to an infinitely narrow photon beam
computed by the MCML program. Unfortunately, The CONV program can not calculate

the responses due to beams of finite diameters other than normally incident beams.
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Figure (2- 4) Flow chart for Monte Carlo simulation of photon propagation in
multi-layered tissue [25,26].

2.2.1 Sampling of Random Variables in Monte Carlo Simulation

Monte Carlo method is a statistical method that is built on random sampling of variables
from well-defined probability distributions. Due to the importance of this procedure, a
review is presented here according to references [10,23,25,26,28]. Consider a random
variable y which represents a random variable of interest in the Monte Carlo simulation

such as the random step size between two successive interaction sites, or the random
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deflection angle after a single scattering event, etc. The normalized probability density

function that defines the distribution of y over the interval (a,b) is p(y) such that:

b

[Pz =1 (2-6)
It is desirable to be able to choose a value for y repeatedly and randomly based on a
pseudo-random number generator to simulate the propagation process of the photon. The

computer provides a random variable, £, which is uniformly distributed over the interval

(0, 1). The cumulative distribution function of this uniformly distributed random variable

is then given by:
0 if £<0
F (&) =1¢ if 0<&<1 (2-7)
1 if&>1

In order to sample a non-uniformly distributed function p(y), we assume there exists a
non decreasing function y = f{&), which maps £ € (0, 1) to y € (a, b). The variable y and
variable & then have a one-to-one mapping. According to the definition of cumulative

distribution functions, and equation (2-7), it can be shown that:

Fx) =Fd$) (2-8)

Expanding the left hand side of equation (2-8) using the definition of cumulative
distribution function, and substituting equation (2-7) into the right hand side of equation

(2-8), we get:
X
[Py =¢ for & & (0,1) (2-9)

Equation (2-9) is then solved to get the value of y,. This solution for y, is equivalent to
transforming the random variable ¢& into y, through the function y= £ (¢). Equation (2-9) is

the basic equation in sampling propagation variables in Monte Carlo simulation. Each
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time a new random value of any propagation variable needs to be generated; this equation
is used during the Monte Carlo simulation process. Figure (2-5) shows the graphical
representation of sampling a random variable y based on a uniformly distributed

computer generated random variable ¢.

Figure (2- 5) Sampling a random variable y based on a uniformly distributed
random variable & [26].

It should be noted that, since for each &, a y, is chosen such that the cumulative
distribution functions for & and J, have the same value. Therefore, the hatched areas
shown in figure (2-5) are equal.

2.3 Gaussian Beams

The discussion in this section focuses mainly on the fundamental characteristics of
Gaussian beams, which are discussed in more details in references [29,30]. This review

concentrates on the characteristics that are relevant to the topic of this thesis.
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2.3.1 General Characteristics of a Gaussian Beam

Within the paraxial wave approximation [29], beams originating from laser sources can
be represented by Gaussian beams [30]. Let’s assume that we have a Gaussian laser beam
traveling along the positive z-axis, the optical intensity of a Gaussian beam is a function
of both the axial and radial distances z and  respectively, and is given by:

W ’ 2r?
_ 0 _ 2-10
I(r,z) Io[ (z)} exp{ z(z)} ( )

where I, is Gaussian beam optical intensity at the beam center in watt/cm?, W, is waist
radius of the Gaussian beam in cm, » is the radial distance in the transverse plane
measured from the beam center in cm, and W(z) is the width or radius in cm of the
Gaussian beam at an axial distance z. The beam width W(z) of the Gaussian beam is
defined as the radius at which the intensity drops to 1/e* of its peak value at the beam
center. The width of the Gaussian beam as a function of the axial distance z is given:
1
W(Z)=Wo[1+(zi)2}2 @-11)

where z, is the Rayleigh range of the Gaussian beam in cm. The relation between the

waist radius W, and the Rayleight range of a Gaussian beam is given by:

W, =Ly (2-12)
T

o

The same equation can be written as:

2 =0 (2-13)
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where A is the wavelength of the used light source. The waist radius W, is the minimum
value of beam radius W(z) in the plane z =0 as seen from equation (2-11).The total optical

power contained in the beam is given by:

P:%Io(rch) (2-14)

From equation (2-14), it can be seen that the beam power is independent of the axial
distance z. Since the beam radius has a minimum at the plane z =0, then it is expected that
the beam achieves its best focus at this specific plane. The depth of focus of a Gaussian

beam is then defined as the axial distance within which the beam radius lies within a

factor of v/2 of its minimum value as shown in figure (2-6).

la

# 220 Lan 3

Figure (2-6) Depth of focus of a Gaussian beam [30]

Another important characteristic of the Gaussian beam is that the wave front at the axial
distance z = 0 is a planar wave front. Generally the wave fronts near the center of the
beam within the Rayleigh range can be approximated by planar wave fronts [30]. The
value of this feature will be clear soon as we discuss the focusing of Gaussian beams
using thin lenses.

2.3.2 Focusing of a Gaussian Beam using a Thin Lens

It can be proved that a Gaussian beam transmitted through a thin lens remains Gaussian

as well [30]. If a thin focusing lens is placed at the waist of a Gaussian beam traveling in
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the positive z-direction, then the transmitted beam is focused at a distance z from the

lens and to a new waist radius W, given by:

W =—V—V"—1 (2-16)
1+(E2)22
[ +(f) ]
P @17
[1+(-Z—)2]

where z, is the Rayleigh range of a Gaussian beam in c¢cm, and f* is the focal length. The
focusing of a Gaussian beam by a thin lens placed at the beam waist is shown in figure

(2-7) below.

2%(‘ f ~}

Figure (2-7) Focusing a Gaussian beam using a thin lens placed at the beam waist
[30].

If the depth of focus of the incident beam 2z,, is much longer than the focal length f of the

lens as seen in figure (2-7), then:

w, =L (2-18)
Z()
Using equation (2-13), the following relations are easily obtained:
W, = i f
w, (2-19)

. (2-20)
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Therefore, a Gaussian beam transmitted through a thin lens placed at its waist will be
focused at the lens’ focal plane as would be expected for a collimated beam incident on
the same lens. It is important to notice that these relations are valid only when the
Gaussian beam is focused at its beam waist. In the model presented in the next chapter,
these assumptions were made. The focusing lens is placed at the beam’s waist and the
Rayleigh range of the beam is much larger than the focal length of the used lens.

2.4 Summary

In this chapter, a review of the fundamentals of tissue optics that are directly related to
the thesis topics is presented. Also a short description of Monte Carlo method for
simulating light transport in multi-layered tissue is given. Finally the main characteristics

of Gaussian beams are discussed at the end of this chapter.
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CHAPTER 3

Monte Carlo Modeling of a Focused Gaussian Beam
Into Multi-Layered Tissue

3.0 Problem Statement and Research Objectives

This chapter presents the Monte Carlo Model for analyzing light propagation in multi-
layered tissue due to a focused Gaussian beam. The main goal of the study of laser—tissue
interaction is to understand and to simulate light transport in optically turbid biological
tissues by use of various theoretical models. As mentioned before, the Monte Carlo
technique simulates the radiative transfer equation by tracing a large number of statistical
photons or energy packets each of which represents a fraction of the incident light
energy. Each layer is characterized by the five parameters: layer thickness d, refractive
index n, the absorption coefficient ,, the scattering coefficient s and anisotropy factor g.
In order to build a Monte Carlo model for a focused Gaussian beam propagating in
optically turbid biological tissue, the search for a well-established modeling tool was

essential. The MCML [25], program that is written in standard C language, represented
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an excellent start point in the quest for a modeling tool. The program is being used
widely in modeling light transport in tissue. It has been proved to produce results that
match with the measured physical quantities [14]. This simulation tool, including source
code, is available for free download from the authors’ academic institutions’ web sites.
The MCML computer program calculates the response due to an infinitely narrow photon
beam perpendicularly incident on a multi-layered tissue. Unfortunately, it neither models
finite diameter optical beams, nor the focusing process. The MCML source code was
modified in order to allow modeling of a Gaussian beam (or uniform intensity beam) with
a known beam radius to be focused into the multi-layered tissue under study. The
modifications that we implemented in the program can be summarized in two main
points: First, we had to make the program sample a probability density function that best
describes a Gaussian (or uniform) intensity profile. Second, we had to program the
launching method of photons according to the selected criterion of focusing, taking into
account the spatial properties of the focusing method used. The explanation of the Monte
Carlo method of sampling beam profiles, both uniform and Gaussian, is discussed in
sections 3.1 and 3.2. The method of realizing the focusing process in the model is
presented in section 3.3. We must mention that during the modeling of the focused
Gaussian beam, we first used a probability density function that is found in the literature
[31,32]. This probability density function, which is said to represent a Gaussian beam
profile in Monte Carlo simulation of light transport in tissue, caused unacceptable errors
in the calculated physical quantities that were as big as 50% in some cases. This was a
big motive for us to make a derivation of the sampling rule that best characterizes the

Gaussian beam profile and compare it with the one found in the literature to explain the
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source of this error. This derivation is shown in section 3.2 as mentioned before. We must
highlight that references [31,32] neither introduced a derivation of the probability density
function they used, nor they referred to the source of this probability function. We will
prove in section 3.2 that our proposed probability density function, which is derived in
detail, accurately resembles a Gaussian beam profile better than the onc proposed by
[31,32]. In the next chapter that we verify and compare the behavior of the two

probability functions by running the Monte Carlo simulation model.

3.1 Monte Carlo Sampling of a Uniform Intensity Beam Profile

A uniform intensity profile of an optical beam of finite size is an idealized description of
light emerging from laser sources. Normally, laser sources can be approximated by
Gaussian beams within the paraxial regime as mentioned in the previous chapter. To
simulate the launching of a collimated photon beam of uniform intensity profile, the
launching position of the photon packets must be randomly selected so that a uniform
spatial distribution of photon launching is achieved [16]. Now, consider the uniform
intensity optical beam of radius b cm. The beam is incident normally on the tissue
towards the positive z-axis of the Cartesian coordinates. The normalized intensity in cm™
of the beam is given by:

1) =# (3-1)

The probability density function describing the beam profile as a function of » is then

given by:
b

p(r)= % = % such that, [p(r)dr=1 (3-2)
0
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where the term (é) describes the radial dependence of the beam intensity. The second

term (2zr) describes the circular rings of integration over the cross section of the beam.

Applying the Monte Carlo method of sampling the probability distribution function of
random variables of interest using a computer generated random variable which is
uniformly distributed between 0 and 1 inclusive [10,25,26] and described in section

(2.2.1), the cumulative distribution function of the random variable r at » = r; is given by:
Y 2 2
F(r)= Ip(r)dr=b—2=§z (3-3)
0
which leads to the sampling rule of selecting the radial launching position r, based on the
randomly generated variable ¢; where & € (0,1):
n=byg (3-4)
In order to determine completely the photon launch position, the determination of the

radial angle @ in the x-y plane is also necessary. The radial angle @ is measured with

respect to the x-axis in the x-y plane as shown in figure (3-1) below.

Y
Top View

X

Figure (3-1) Selection of photon launching position in Monte Carlo simulation.
The radial position r;and the radial angle @ specify the exact position of the
photon to be launched. The x-y plane is the plane of the tissue surface.
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The radial angle @, which is determined by generating a second random number
uniformly distributed between 0 and 1 inclusive, is determined by randomly selecting an

angle between 0 and 2w inclusive, therefore:
O=27( (3-5)

where e (0,1)

The Cartesian coordinates of the photon launching position can be easily determined

accordingly:
x=r,cos® (3-6)
y=nsin® (3-7)

Equations (3-4) to (3-7) define the sampling rule of a uniform intensity beam profile in
Monte Carlo simulation.

It is required now to verify that equation (3-4), which describes the random radial
launching position of Monte Carlo photons, will yield a uniform intensity beam profile. A
short MATLAB program [16] was used to verify equation (3-4). The steps to generate the
intensity profile resulting from equation (3-4) are as follows: One million randomly
generated numbers {&; in equation (3-4)} are used to construct a normalized histogram of
the random variable ;. The histogram then represents the probability density function
describing the radial launching position of a photon within a uniform intensity beam
profile p(r). The computer generated intensity profile of the beam is obtained by dividing
p(r) by 2zr according to equations (3-1) and (3-2). Figure (3-2) shows the resulting
intensity profile as generated by the computer when plotted against the analytical
expression of a uniform intensity profile given by equation (3-1). It can be noticed that

the computer generated intensity profile based on equation (3-4) is matching the
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analytical expression given by equation (3-1). It is clear from figure (3-2) that the
sampling rule described by equations (3-4) to (3-7), represents a uniform intensity beam
profile as expected.

Beam Radius =0.1 [cm]

T
6ol - : ) o ¢ Computer Generated
Analytical Expressi l»

Normalized Intensity fcm™?)

0

[} 0.01 002 003 004 005 006 007 008 009 0.1
Radial Distance [cm]

Figure (3-2) Normalized uniform intensity beam profile of 0.1 cm radius

3.2  Monte Carlo Sampling of a Gaussian Beam Profile

In this section we present the detailed derivation of the Monte Carlo sampling rule. We
believe that this rule describes accurately a Gaussian beam profile in comparison with the
one proposed in references [31,32] without proof. The derivation of the sampling rule
starts from the well-known intensity profile of a Gaussian beam because Monte Carlo
method for analyzing light transport in tissue is based on tracing multitude photons
representing energy packets [8-11]. As it is known, the Gaussian beam power is
principally concentrated within a small cylinder surrounding the beam axis. The intensity
distribution in any transverse plane is a circularly symmetric Gaussian function centered
about the beam axis [30]. Equation (2-10) in the previous chapter describes the optical

intensity of a Gaussian beam as a function of the axial and radial distances. Now consider
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the axial plane where z = 0. At this plane the width of the beam is minimum and is called

the beam waist W,,. At this plane the optical intensity is given by:

_ 2r?
I(r)y=1, exp{— —

o

(3-8)

Using equation (2-14) and considering the total beam power P =1 watt, then substitute 7,

in equation (3-8):

2 —2r2
I(nN= ex 3-9
() e p[ W } (3-9)

The probability density function describing the Gaussian beam profile as a function of »

is then given by:
pr)= 2 exp 27 2nr T (r)ydr=1
= . 14 = -
Wo2 Woz , such that ! p (3-10)

where, the first term of equation (3-10) describes the radial dependence of the beam
intensity, while the second term (27r) describes the circular rings of integration over the

cross section of the beam. Equation (3-10) is rewritten as:

Ar

p(r)= g

2
0

exp{i} , Such that [ p(r)dr =1 (3-11)
/4 0
Applying the Monte Carlo method of sampling the probability distribution function of

random variables of interest described in section (2.2.1), the cumulative distribution

function of the random variable r at r = r, is given by:

T 21
F(n)= Jp(r)dl:[l—eXp( e )]=§1 (3-12)

o

which leads to the sampling rule of selecting the radial launching position ; based on the

randomly generated variable &, where & € (0,1):
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n= %\/—ln(l—é) (3-13)

Since ¢; is a random number uniformly distributed between 0 and 1 inclusive, then (1-&;)
will also be a random number uniformly distributed between 0 and 1 inclusive. As a
result, the term /n(1-¢;) in equation (3-13) is equivalent to the term /n(¢;). Then, equation

(3-13) can be written as:

n =%\/—1n(fz) (3-14)

The sampling rule given by equation (3-14) will be denoted as “sampling rule I””. In order
to completely determine the photon launch position, the detérmination of the radial angle
@ in the x-y plane is also necessary. The radial @ is measured with respect to the x-axis
in the x-y plane as shown in figure (3-1). The radial angle @, which is determined by
generating a second random number ¢ uniformly distributed between 0 and 1 inclusive, is
determined by randomly selecting an angle between 0 and 2z inclusive, therefore, @ is
sampled according to equation (3-5). Similar to the case of the uniform intensity beam
discussed in section (3-1), the Cartesian coordinates of the photon lauhching position can
be easily determined according to equation (3-6). Equations (3-5) to (3-7) and equation
(3-14), all define the sampling rule of a Gaussian beam profile in Monte Carlo
simulation.

It is required to verify that equation (3-14) yields probability density function described
by equation (3-11), and the Gaussian intensity profile described by equation (3-9). A
short MATLAB program [16] was used to build the probability density function based on
one million randomly generated numbers in equation (3-14). The obtained results are

shown in figures (3-3) and (3-4). The 1/e* beam radius was taken to be 0.1 cm as this
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radius is relevant to the cases studied by simulation in chapter four. Figure (3-4) shows
the intensity profile of the beam as generated by sampling rule L. Figure (3-4) represents

a Gaussian intensity profile with 1/e* beam radius of 0.1 cm as expected.

Beam Radius = 0.1 [cm]
14 T T T T

T T
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Probability Density Function of Photon Launching Position
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Figure (3-3) Probability density function of photon radial launching position of a
Gaussian beam profile with 1/e” radius of 0.1 cm according to sampling rule L.
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Figure (3-4) Normalized intensity profile of a Gaussian beam with 1/e* radius of
0.1 cm, according to sampling rule I
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In the literature however, some references [31,32] used another probability density
function rather than the one mentioned in equation (3-11) to describe a Gaussian beam
profile as a function of radial distance in Monte Carlo simulation of light transport in

tissue. References [31,32] used the probability density function given by:

p(r)=iexp - such that °fp(r)dr=1 (3-15)
sz sz > 0

where W), was defined as the “Gaussian beam width” in references [31,32] which is also
called the beam radius. Following the same steps for sampling the probability density.
Following the Monte Carlo method of sampling the probability density function of
random variables that is mentioned in section (2.2.1) leads to the sampling rule for

selecting the photon launching at radial position », based on the randomly generated

variable ¢;, where & € (0,1):

1 =Wy -1n(&) (3-16)

The sampling rule given by equation (3-16) will be denoted as sampling rule II for the
purpose of comparison with equation (3-14). It is clear that the definition of W} in the
literature as the “Gaussian beam width” is inaccurate. W} is the normalized beam waist by
a factor of v2. The implementation of the sampling rule suggested by equation (3-16)
when taking W), as the beam radius leads to a considerable error in the calculation of all
the physical quantities scored in Monte Carlo simulation. This conclusion can not be
considered trivial because, as we will see in the next chapter, the application of sampling
rule IT without correction of W, parameter will lead to an error in the calculated physical
quantities by Monte Carlo simulation that approaches 50% in some cases. Comparing

equations (3-14) and (3-16), the relation between the W, and the parameter W, can be
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Wo

written as "p = K Therefore we expect the error resulting from sampling rule II to be

dependent on the actual waist radius W,. In other words, if the beam waist W, is very
small, the resulting error due to the use of W}, in the simulation instead of W, is expected
to be very small and vice versa. A plot of the probability density function given by
equation (3-15) and the generated probability density function by equation (3-16) is
shown in figure (3-5).
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9 T T T T

T T
& Computer Generated
— Analyticel Expression

Probability Density Function of Photon Launching Position

0 i i i i o
0 0.05 0.1 018 0.2 0.25 03 035 0.4
Radial Distance [cm]

Figure (3-5) Probability density function of photon radial launching position of a
Gaussian beam profile with 1/e” radius of 0.1 cm according to sampling rule II.

The computer generated probability density function was constructed according to
equation (3-16) using the normalized histogram of the random variable 7. One million
randomly generated numbers (¢;) were used for this purpose. A graphical comparison
between figures (3-3) and (3-5) reveals differences in the width and the height of the two
probability density functions. Although the plot of the normalized intensity as suggested

by equation (3-16) shows a Gaussian profile as seen in figure (3-6), there is a noticeable
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difference between the width and the height of the two intensities in figures (3-4) and (3-

6).
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Figure (3-6) Normalized intensity profile according to sampling rule II.
It can be noticed by comparing figures (3-4) and (3-6) that, the intensity value drops to
1/¢? of its maximum at the beam radius of 0.1 cm, as seen in figure (3-4). The intensity
profile depicted in figure (3-6) does not show a similar characterizing feature. However,
at 0.1 cm the beam intensity approximately drops to 1/e of its maximum value as if figure
(3-6) represents the Electric field of the Gaussian beam and not the intensity. As
mentioned before, Monte Carlo method can simulate energy distribution profile within a
turbid medium but it does not model electric fields within the medium. This is an
indication that sampling rule II, suggested by equation (3-16), is inaccurate in
representing a Gaussian beam profile in Monte Carlo simulation. In the coming chapter,
verification of the accuracy of sampling rules I&II is further investigated by means of

Monte Carlo Simulation.
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3.3 Monte Carlo Photon Launching Algorithm in the Focused
Gaussian Beam Model

So far, only collimated optical beams, which are normally incident on multi-layered
tissue, have been discussed. However, in many applications of laser in biophotonics it is
necessary to produce a smaller spot size by means of focusing lenses. As mentioned in
the previous chapter in section (2.3.2), it is assumed that in modeling a focused Gaussian
beam, the depth of focus of the incident beam is much longer than the focal length f of
the focusing lens. Therefore, the transmitted beam is focused at the lens’ focal plane as
would be expected for parallel rays incident on the lens. The geometric-focus method was
adapted to model focusing of the beam with Monte Carlo simulation. In this method, the
initial position of the photon to be launched is determined stochastically according to the
intensity profile of the incident beam (uniform or Gaussian). Once the initial position of
the photon has been chosen according to the desired probability distribution function, the
photon is directed towards the geometric focus of the beam [6,31-35]. The initial
coordinates of the photon and its launching directional cosines govern the behavior of the
laser beam propagating through the medium in the absence of scattering. Therefore, one
can study the effect of scattering medium on a propagating laser beam by determining the
distortion resulting from the scattering properties of this medium.

As mentioned before, the MCML program can only calculate the impulse response of an
infinitely narrow photon beam incident perpendicularly on multi-layered tissue. The
CONY program processes the output of the MCML program to calculate the response
due to an incident finite diameter collimated photon beam. The CONV program basically
uses numerical integration methods to convolve the impulse response of the incident

infinitely narrow beam calculated by the MCML program. Therefore, It was necessary to
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modify the MCML source code to allow for the modeling of a finite diameter optical
beam, with the desired intensity profile, to be modeled under different focusing
conditions.

The Monte Carlo modeling method was applied previously to model focusing of light
beams into optically turbid tissue for several purposes. For example, the study of the
performance of imaging techniques used in diagnosis such as Optical Coherence
Tomography [31,32,34,36,37], confocal microscopy [35,38,39], and two photon
excitation microscopy [40,41]. Absorbed optical power in Photodynamic therapy [33]
and the optical distribution within turbid media in general [6,33] were also studied.
Figure (3-7) shows the geometry of the focusing optical beams into a homogeneous

turbid medium according to the geometric-focus method.
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Figure (3-7) Schematic of the focusing model geometry
For tracing the photons that are launched into the medium, a Cartesian coordinate system
was used. The center of the coordinate system was taken to be the center of the incident
beam. The x-y plane is the surface of the turbid medium and the z-axis is pointing
towards the inside of the medium. Equation (3-14) determines the radial launching

position of photons within a Gaussian beam profile of 1/¢* radius of W, , and equation (3-
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5) is used to sample the radial angle @. The Cartesian coordinates of the incident photons
are determined according to equations (3-6) and (3-7):
If Z;is the depth of the focal point of the used lens in the turbid medium, then the

directional cosines of the launched photons in the medium are given by:

U, =—— (3-17)
1/r,2+Z?
-y
y =Y (3-18)
g 1/rlz+Z;

u =t (3-19)

1/;’,2 +Z;

In order to obtain an acceptable statistical variance for the recorded light absorption,
reflection and transmission, a large number of photons had to be traced in the tissue. In
this study, two million photons were traced [6]. In this model, the refractive index of the
ambient medium is matched with the refractive index of the turbid medium. This
assumption will help in avoiding the implementation of Snell’s law at the boundary
between the ambient and tissue, which leads to focusing distortion. In the next chapter,
the Monte Carlo simulation results of the above-described model are presented.

3.4 Summary

In this chapter, a Monte Carlo Model for a focused Gaussian beam was presented. This
model will be applied to multi-layered tissue structures in the coming chapters. The
Monte Carlo sampling rules of both uniform intensity and Gaussian beams were derived
in detail. A proposed sampling rule of a Gaussian beam profile was compared
analytically with another sampling rule used in the literature [31,32]. The focusing
method of photons using the geometric-focus method and how to realize the focusing

method in Monte Carlo simulation was also covered.
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CHAPTER 4

Verification of the Monte Carlo Model by Simulation

4.0 Introduction

This chapter presents the simulation results of the Monte Carlo model for a focused
optical beam into multi-layered tissue in general. It is concerned with verification of the
model by means of comparing its results with published reports. The comparison between
the output of our Monte Carlo simulation model with the output of the MCML and
CONV programs [25,27] was done for the case of collimated incident Gaussian beam.
The case of a multi-layered tissue in references [26,27] was taken to be the basis for the
comparison. The newly proposed equation for sampling the Gaussian beam profile
(sampling rule I) is compared with the one mentioned in references [31,32] (sampling
rule I). The inaccuracy of the sampling rule II, given by equation (3-16), which was
discussed analytically in the previous chapter, is proved by simulation in this chapter. For
verifying the focusing method adapted in our model, a comparison between a published

model for focusing uniform intensity light into a homogeneous turbid medium [6] with
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our model was done. For the sake of comparison, our model was set to simulate a
uniform intensity laser beams under different focusing conditions according to reference
[6].

4.1 Simulation Results of Multi-Layered Tissue

The verification of our model will start by comparing the impulse responses of a multi-
layered tissue as calculated by the MCML program and our program. By setting the
radius of the incident beam in our model to an extremely small value, the condition of an
infinitely narrow photon beam can be realized. The second stage of the verification
process involves the comparison between the responses of the multi-layered tissue due to
a collimated, finite diameter beam normally incident on the tissue. In this stage an
incident collimated Gaussian beam of total energy 1 Joule, and 1/e? beam radius of 0.1
cm is used. These values specifying the Gaussian beam were used in references [26,27].
The optical properties of the three layers are summarized in a table form for simplicity of
comparison. In this study, the grid separation in both the z and r directions is 0.01 cm and
the number of grid elements in the z direction is 40 and in the r direction is 50.

Table (4-1) Optical Properties of the three-layer tissue. Top and bottom ambient media refractive
indices were taken as unity [26,27

Layer Refractive Absorption Scattering Anisotropy Thickness
index (n) coefficient. | Coefficient. factor g cm
1, om’ s cm’
1 1.37 1 100 0.9 0.1
2 1.37 1 10 0 0.1
3 1.37 2 10 0.7 0.2

In this simulation, the refractive index of the ambient medium right above and right
below the three layers is taken to be 1. References [26,27] used one million photons for

this study and therefore the same number of photons was used in our model as well.
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Since the CONV program uses an extended trapezoidal rule to perform the numerical
integration, the convolution error used in the CONV program was set to 0.001. Since the
numerical integration carried by the CONV is computed iteratively, the iteration is
controlled by the amount of the error between the new estimated value and the old
estimated value. If the error value in the CONV program was chosen to be larger than
necessary, the precision of the calculation will deteriorate and the resulting convolved
values may suffer from discontinuities. Smaller values of integration error will lead to
high precision results but consumes more time to be done. Typically the allowed range of
the integration error in the CONV program lies within the limits of 0.001 to 0.1. The
simulation output provides calculations of three physical quantities of interest: the
radially resolved diffuse reflectance in J/cm? the radially resolved total transmittance in
J/em®, and the fluence in J/cm? at different depths from the surface of the examined
tissue. We need to mention that; both MCML and CONV programs produce simulation
results as ASCII output arrays. The results then are plotted using any suitable commercial
plotting software.

4.1.1 Impulse Responses of the Three-Layer Tissue Model

The first step in the model verification process is to insure that the developed simulation
program produces the same impulse response to an infinitely narrow, normally incident
photon beam as the original MCML simulation program. In our model, an arbitrarily
small beam radius was selected (1E-08 cm) to simulate an infinitely narrow photon beam.

Following are the obtained results from the simulation runs.
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Figure (4-1) Radially resolved diffuse reflectance due to an infinitely narrow,
normally incident photon beam.

Figure (4-1) shows the comparison between the radially resolved diffuse reflectance as
calculated by the two simulation programs. As the legend above the graph indicates,
“MCML” stands for the simulation results as calculated by the original MCML code
released by Wang et al. [25]. The MCML code simulates only infinitely narrow photon
beams, normally incident on the multi-layered tissue. The new model of a finite diameter
focused optical beam into multi-layered tissue was fed by an arbitrarily small incident
beam radius (1E-08 cm) to simulate the infinitely narrow beam radius. An infinite depth
of focal point in the tissue (1E+08 cm), which is equivalent to “no focusing” or
collimated incident photon beam, was also input to the model (refer to figure (3-7) for
model geometry). A total number of one million photons were used in this simulation.
The obtained results of the new model come to an excellent agreement with the results of
the original MCML program as it can be seen in figure (4-1). Figure (4-2) shows the
radially resolved total transmittance in cm™ due to an infinitely narrow, normally incident
photon beam. This result shows an excellent match with the calculated impulse response

of the original MCML program.
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Figure (4-2): Radially resolved total transmittance due to an infinitely narrow,
normally incident photon beam.

Figures (4-3), (4-4) show the fluence in cm™. The fluence rate is a very important
quantity in the field of laser dosimetry. The formal definition of radiant energy fluence
rate (Watt cm ?) is: “at a given point in space, the radiant energy flux incident on a small
sphere, divided by the cross sectional area of that sphere” (ISO 31/6, 1980). If the total
optical absorption coefficient at a given wavelength is i, in cm™', the fluence rate is the
absorbed power divided by p,. It should be clear that the fluence (J cm™) is the time
integral of the fluence rate [42]. The MCML program records photon deposition in cm™
due to absorption in each grid element of a spatial array, and finally calculates fluence, in
cm™ by dividing deposition by the local absorption coefficient, p, in cm™. The calculated
fluence from the two programs comes to a perfect match as shown in figures (4-3) and (4-
4). We need to mention that the spatial grid system in the radial direction r was limited to

0.5 c¢m in the original study [26,27]. This is the reason behind limiting the radial grid

system to the same value in our study.
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Figure (4-3) Radially resolved total fluence at a depth of 0.005 cm due to an
infinitely narrow, normally incident photon beam.
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Figure (4-4) Radially resolved fluence at a depth of 0.205 cm due to an infinitely
narrow, normally incident photon beam.

4.1.2 Responses of the Three-Layer Tissue due to a Normally Incident Finite Size
Collimated Gaussian Beam

In this section the obtained results from the simulation runs of a collimated Gaussian

photon beam incident on the three-layered tissue under study are presented. The intensity

profile at a transverse plane to the direction of propagation theoretically extends to

infinity. However, at the defined 1/¢” Gaussian beam radius, the intensity drops to about
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0.135 of its peak value at the beam center and hence, about 86% of the beam power is
contained within this radius [30]. This is the philosophy behind using the term “finite
size” when describing the Gaussian beam. It should be noted that the launching of the
Monte Carlo photons obeys the Monte Carlo sampling rule described by equation (3-14),
and discussed in the previous chapter, and is not limited to radial positions that are within
the 1/e* beam radius. The term “collimated”, which refers to beams with planar wave
fronts, can be used to describe a Gaussian beam at the transverse plane containing the
beam waist. In our model, it is assumed that the Gaussian photon beam hits the surface of
the tissue with a beam radius equal to the waist radius. The optical properties of the
layers are cited in table (4-1), and the incident beam parameters are 0.1 cm beam radius
and total energy of 1 Joule. The results of our model are compared with the results
calculated by the MCML program and further processed by the associated CONV
program. The simulation results of a finite size collimated Gaussian beam based on the
Monte Carlo sampling rule suggested by references [31,32] are also presented in this
section and compared with the other results. The calculated physical quantities by Monte
Carlo simulation according to equation (3-14), proposed in this thesis, will be denoted as
“Sampling rule I”. On the other hand, those quantities, which are calculated according to
equation (3-16), and proposed in [31,32], will be denoted as “Sampling rule II”",

4.1.2.1 Radially Resolved Diffuse Reflectance of the Three-Layer Tissue

The results in this section are presented for two different Gaussian beam radii of 0.1 and
0.2 cm respectively. The second beam radius of 0.2 cm is arbitrarily selected to represent
the case of increasing the beam radius in comparison with the published responses at the

radius of 0.1 cm. The change in the incident beam radius will help in discovering the
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relation between changing the beam size and sampling rules I&II. Changing the incident
beam radius will also help in verifying the newly developed simulation program and test
its validity at different input beam radii. Figure (4-5) shows the radially resolved diffuse
reflectance due to a normally incident, collimated Gaussian photon beam with total
energy of 1 Joule and beam radius of 0.1 cm. The legend “ MCML-CONV” refers to the
calculated response by the MCML program that was further processed by the CONV
program to yield the final response due to a finite size Gaussian beam that is normally
incident of the tissue.

Figure (4-5) shows excellent match between the results obtained by using the proposed
sampling rule I and the results cited in references [25-27]. We notice that CONV program
underestimates the value of the diffuse reflectance near the end of the radial grid elements
as shown. Due to the spatially limited grid system, the integration evaluated by the
CONYV program may suffer from clipping of its upper integration limit [26]. This causes
the CONV program to underestimate the true value of the integration as the last grid
clement is approached. This can explain the drop of the value of the diffuse reflectance of
the CONV program as we approach the maximum of the grid system at » = 0.5 cm in this

simulation run.
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Figure (4-5) Radially resolved diffuse reflectance due to a normally incident
collimated Gaussian photon beam of radius= 0.1 cm, and Gaussian sampling rule I
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Figure (4-6) Radially resolved diffuse reflectance due to a normally incident
collimated Gaussian photon beam of radius=0.1 cm, and Gaussian Sampling rule
II

Figure (4-6) shows the diffuse reflectance due to a normally incident collimated Gaussian
photon beam and Gaussian sampling rule II, compared with the output of the MCML and
CONYV programs. The difference between the two results is noticeable especially within
the radial distance that is approximately equal to the beam radius (0.1 cm). The deviation
in the obtained results starts with a maximum at the beam center (radial distance = 0),
when using sampling rule II compared with the reference output of the CONV program,

and then decreases gradually until the two results match at a radial distance
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approximately equal to the beam radius. After the intersection between the two curves,
the difference in the results starts to increase again but in the opposite direction. In other
words, from the beam center to the beam radius, the sampling rule II underestimates the
true value of the measured quantity (diffuse reflectance). After a radial distance equal to
the beam radius, sampling rule II overestimates the value of the measured quantity. It is
important to notice that the calculated diffuse reflectance at the beam center is
approximately 3.9 cm™ as calculated by the CONV program while diffuse reflectance at
the same point is evaluated to be 2.6 cm™ by the simulation program if it adapts the
Gaussian sampling rule II. This represents an error of approximately 33%. For
applications where the measurement of the diffuse reflectance is required, the above-
mentioned Gaussian sampling rule II represents a source of considerable error. Figure (4-
7) shows the comparison between radially resolved diffuse reflectances due to a normally
incident collimated Gaussian photon beam of radius 0.1 cm, based on sampling rules
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Figure (4-7) Comparison between radially resolved diffuse reflectances due to a
normally incident collimated Gaussian photon beam of radius =0.1 ¢m, according
to the Gaussian sampling rules I&II
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The simulation results of diffuse reflectance due to a normally incident collimated
Gaussian photon beam of radius 0.2 cm are presented next. Figure (4-8) shows the
excellent match in results between the suggested sampling rule I, and the reference results

obtained from the CONV Program.
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Figure (4-8) Radially resolved diffuse reflectance due to a normally incident
collimated Gaussian photon beam of radius= 0.2 cm, and Gaussian sampling rule
I

Figure (4-9) shows the error in calculating the diffuse reflectance using the Gaussian
sampling rule II suggested in references [31,32]. The error in calculating the diffuse
reflectance near the beam center approaches 36%, which is unacceptable error. The same
behavior of the intersecting curves around a radial distance approximately equal to the
beam radius (0.2 cm) is noticed. Overestimation of the true value of the diffuse
reflectance at radial distances greater than the beam radius is noticed. Underestimation of
the true value of reflectance is recorded at radial distances less than the beam radius. This
behavior of the error has become clearer as the beam radius was increased from 0.1 ¢m to

0.2 cm.
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Figure (4-9) Comparison between radially resolved diffuse reflectances due to a
normally incident collimated Gaussian photon beam of radius =0.2 c¢m, according
to Gaussian sampling rules I&II.

4.1.2.2 Radially Resolved Total Transmittance of the Three-Layer Tissue

The radially resolved total transmittance simulation results are shown in this section in
figures (4-10) to (4-13). The case of an incident beam with radius 0.1 c¢cm is shown in
figures (4-10) and (4-11). It is noticed from figure (4-11) that the error in the calculation
of the total transmittance according to the Gaussian sampling rule II is not large due to
the fact that the intensity of the transmitted portion of light is very weak (The maximum
transmittance in the figure is in the order of 0.5 cm™). This behavior may be explained in
light of the fact that the suggested Gaussian sampling rule I is directly dependent on the
intensity profile of the Gaussian beam while sampling rule II can not be considered as an
accurate representation of the Gaussian intensity profile as explained in section (3.2).
However, at low intensities sampling rules I&II converge in their behavior. Therefore,
the physical quantities with low intensities recorded in the grid system deviate less from

the standard response if sampling rule II is used. Figures (4-13) and (4-14) show the

47



simulated radially resolved total transmittance due to a normally incident collimated

Gaussian photon beam of radius= 0.2 cm, and Gaussian sampling rules I&II.
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Figure (4-10) Radially resolved total transmittance due a normally incident
collimated Gaussian photon beam of radius=0.1 cm, and Gaussian sampling rule
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Figure (4-11) Comparison between radially resolved total transmittance due to a
normally incident collimated Gaussian photon beam of radius =0.1 c¢m, according
to Gaussian sampling rules 1&1II
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Figure (4-12) Radially resolved total transmittance due to a normally incident
collimated Gaussian photon beam of radius=0.2 cm, and Gaussian sampling rule I
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Figure (4-13) Radially resolved total transmittance due to a normally incident
collimated Gaussian photon beam of radius= 0.2 cm, and Gaussian sampling rule II

4.1.2.3.Radially Resolved Fluence of the Three-Layer Tissue at Depths of 0.005 and
0.205 cm

The radially resolved fluence calculated at these two specific depth planes were chosen
by Wang and Jacques [26,27] to verify the CONV program. This is the reason for the

choice of these specific values of depth to calculate the fluence. Figure (4-14) shows an
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excellent match between the calculated fluence by our model (based on sampling rule I)

and the results obtained by references [25-27]. Figure (4-15) shows a considerable error

in the calculation of fluence between the model based on sampling rule II and references

[25-27].
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Figure (4-14) Radially resolved fluence at a depth of 0.005 cm due to a normally
incident collimated Gaussian photon beam of radius =0.1 cm, and Gaussian
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The error in the calculation of the fluence near the center of the beam as calculated from

figure (4-15) is approximately 48%. This means that, the simulation of the fluence based

on sampling rule II and suggested in references [31,32], can cause an underestimation of

the actual fluence by almost 50% near the center of the beam. The comparison between

the Gaussian sampling rules I&II in figure (4-16) shows a considerable difference

between the two results.

50



o Sampling rute li ]
+ MCML- CONV ]

Fluence [chmz]

eam responses’
Total energy= 1J
1/¢? radius=0.1 ¢m
depth=0.005 cm - P
o4 e e P
2] 0.1 0.2 03 04 05

Radial Distance [cm]

Figure (4-15) Radially resolved fluence at a depth of 0.005 cm due to a normally
incident collimated Gaussian photon beam of radius =0.1 cm, and Gaussian
sampling rule 1T
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Figure (4-16) Comparison between radially resolved fluences at a depth of 0.005
cm due to a normally incident collimated Gaussian photon beam of radius =0.1
cm, and Gaussian sampling rules I&II

The fluence results at a larger depth in the tissue under study were also simulated. The
second depth of interest was taken at 0.205 cm below the surface of the three-layer tissue
described in table (4-1). As mentioned before, this specific value of the depth in tissue

was chosen by reference [26] and therefore is chosen here for making comparison with
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the same reference. Figure (4-17) shows the result of calculating the fluence at a depth of

0.205 cm in the tissue based on sampling rule I. The agreement between our model and

references [25-27] is clear from the figure below. The deviation between the two results

at radial distances close to the last grid element is due to the spatial limitation of the grid

system as it was explained for figure (4-5).
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Figure (4-17) Radially resolved fluence at a depth of 0.205 cm due to a normally
incident collimated Gaussian photon beam of radius =0.1 ¢m, and Gaussian
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Figure (4-18) shows the radially resolved fluence at a depth of 0.205 cm due to a

normally incident collimated Gaussian photon beam of radius =0.1 cm, and Gaussian

sampling rule II. It is clearly noticed from this figure that the error in evaluating the

actual fluence near the beam center is about 17%. Comparing this error to the error at the

same radial position, but at a depth of 0.005 cm from the tissue surface according to

figure (4-15) is about 48%.
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Figure (4-18) Radially resolved fluence at a depth of 0.205 cm due to a normally
incident collimated Gaussian photon beam of radius =0.1 ¢cm, and Gaussian
sampling rule IT

It 1s noticed that, as the scored physical quantity has a higher intensity, the error

associated with the Gaussian sampling rule II described by equation (3-16) increases and

vise versa.
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Figure (4-19) Comparison between radially resolved fluences at a depth of 0.205
cm due to a normally incident collimated Gaussian photon beam of radius =0.1
cm, and Gaussian sampling rules I1&II
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The effect of increasing the beam radius from the case of 0.1 cm to an arbitrarily selected

larger beam radius of 0.2 cm on the calculated fluences at the same different depths from

tissue surface is shown in figures (4-20) to (4-23).
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Figure (4-20) Radially resolved fluence at a depth of 0.005 cm due to a normally
incident collimated Gaussian photon beam of radius =0.2 ¢m, and Gaussian
sampling rule I
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Figure (4-21) Comparison between radially resolved fluences at a depth of 0.005
cm due to a normally incident collimated Gaussian photon beam of radius =0.2
cm, and Gaussian sampling rules 1&II
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Based on sampling rule I, the calculated fluence by our model matched the results of
references [25-27] at the new beam radius. The increase in the incident beam size did not
cause a noticeable error of the calculated fluence at the two depths of 0.005 and 0.205 ¢cm
as shown in figures (4-20) and (4-22). The deviation of the obtained results from those
of references [25-27] as the last grid element in the grid system is approached, is due to
the spatial limitation of the grid system, which causes the CONV program to
underestimate the true value of integration representing the physical quantity calculated
[26,27]. When sampling rule II is applied to our model, the calculated results of the
fluence at the two different depths of interest, deviate considerably from the results
presented by references [25-27] as seen in figures (4-21) and (4-23). The error in the
estimation of the fluence near the beam center is approximately 46% as it can be seen

from figure (4-21).
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Figure (4-22) Radially resolved fluence at a depth of 0.205 c¢m due to a normally
incident collimated Gaussian photon beam of radius =0.2 ¢cm, and Gaussian
sampling rule I
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Figure (4-23) Comparison between radially resolved fluences at a depth of 0.205
cm due to a normally incident collimated Gaussian photon beam of radius =0.2
cm, and Gaussian sampling rules I1&II

4.2 Simulation Results of the Absorption Distribution of a Focused
Uniform Intensity Optical Beam into a Homogeneous Turbid
Medium.

In this section the results of the Monte Carlo simulation model of a focused optical beam
into a homogeneous turbid medium are presented. The importance of these simulation
results for our Monte Carlo model can be summarized in two points. First, it provides
double verification to our Monte Carlo simulation program developed to simulate the
focusing of optical beams into multi-layered tissue. Comparing the results obtained by
our Monte Carlo simulation program with the published results obtained by Wang and
Liang [6], using another Monte Carlo simulation program, the verification of the focusing
method can be achieved as the verification of the sampling method was already done in
the previous section. Second, the cases of focusing an optical Gaussian beam into a
homogeneous turbid medium and into a human skin model are explored. The study

carried out by Wang and Liang considered only the case of a uniform intensity optical
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beam focused into a homogeneous turbid medium. In many applications of Laser therapy,
the knowledge of the absorption distribution within the tissue under study is of top
importance. The delivery of the Laser beam is usually done by means of a focusing lens
in order to increase the absorption peak within the medium.

Wang and Liang [6] studied the distribution of an optical beam focused into a turbid
medium by Monte Carlo simulation technique. In that study, a model of an infinite
homogeneous medium was considered among other models. For the model under
investigation, the optical properties of the medium where taken as follows: refractive
index of the medium n,,= 1.4, absorption coefficient p,= 0.1 cm’™, scattering coefficient
=100 cm™ and the anisotropy factor g = 0.9. The ambient surrounding the sample
medium has a matched index of refraction to that of the turbid medium (ambient
refractive index n,=1.4). The matched indices between the turbid medium and the
ambient will help in excluding the effect of aberration in which different rays converge to
different points instead of one point in the imaging plane. This is to say, mismatched
indices will impose Snell’s law at the boundary at the ambient tissue interface, which will
cause focusing distortion. It is required to study the absorption distribution of light
affected only by the scattering properties of the medium, excluding any other factors.
Therefore, the simplification of matching the ambient-tissue interface is relevant to the
case study. The sizes of the grid elements for the Monte Carlo simulations in the x, y, and
z directions were 0.05, 0.05, and 0.025 cm, respectively. Table (2-4) summarizes the

optical properties of the homogeneous turbid medium under study.
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Table (4-2) Optical properties of the infinite homogeneous turbid medium under study. Top and
bottom ambient media refractive indices were taken as n,= 1.4

Layer Refractive | Absorption Scattering | Anisotropy Thickness
index (n) coefficient. | Coefficient. factor g cm
pocm’ s cm’’
1 1.4 0.1 100 0.9 ©

In the following sections the simulation results of absorption distribution of a uniform
intensity focused beam into a homogeneous turbid medium are presented and compared
with the published results by Wang and Liang [6]. It needs to be mentioned here that, the
tracing of Monte Carlo photons in the study carried out in reference [6] was based on the
delta scattering technique [23], while our photon tracing method is based on the variance
reduction technique which is the standard Monte Carlo method for photon tracing
[25,26]. The geometry of Monte Carlo model for focusing optical beams into
homogeneous turbid medium is shown in figure (3-7), but is repeated here for
convenience as figure (4-24). The approach of geometric-focus method for focusing
photons is adapted in this model. As mentioned before, the geometric-focus method
involves the selection of the initial position of the photon to be launched stochastically

according to the beam intensity profile. The selected photon packet is then directed to the

geometric focus of the beam.

Light beam
Ambient
medium
n&
Lens

I

ba N\

' I

et

Turbid medium n,,

Figure (4-24) Schematic of the focusing model geometry
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Figure (4-24) shows the geometry of the model of a focused optical beam into a
homogeneous turbid medium. Z¢ in this figure is the depth of the focal point in the turbid
medium. Z; will be changed during the simulation in order to study the effect of focusing
on the absorption distribution inside the turbid medium. An incident optical beam of
radius 0.5 cm is focused into the medium. Figure (4-25) shows the simulation results of
the absorption distribution of a uniform intensity focused beam into a homogeneous
turbid medium under different focusing conditions. The depth of the focal point Z¢ was
set to 0.05 cm, 0.1 cm, 0.2 cm and oo. (0 is equivalent to a collimated beam). In order to
study this model by Monte Carlo simulation two million photons in each simulation run
were used to ensure an acceptable reduced variance in the calculated results. This number
of photons is within the number of photons range that is recommended in [6]. From
figure (4-25) below we can see that the focusing process greatly affects the absorption

distribution of the optical beam in the homogeneous turbid medium.

Rbsorption density [1/cm 3] of a focused uniform intensity beam of 0.5 cm radius Absorption density [t/cm *] of a f d unifi intensity beam of 0.5 cm radius
& 0.05 cm depth of focal point (matched indices - 2M ) & 0.1 cm depth of focal poil
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(a) (b)
Figure (4-25) Absorption distribution of a uniform intensity focused optical beam
in a homogeneous turbid medium under different focusing conditions. (a) Depth
of focal point Z;= 0.05 cm. (b) Depth of focal point Z;= 0.1 cm.
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(c) (d)
Figure (4-25) Absorption distribution of a uniform intensity focused optical beam
in a homogeneous turbid medium under different focusing conditions (c) Depth
of focal point Z¢= 0.2 cm. (d) Depth of the focal point Z¢=co ¢cm. In all cases the
radius of the incident optical beam before focusing is 0.5 cm and two million
photons are launched in each simulation run.

As the depth of the focal point is very small and close to the medium surface, a peak in
the absorption density as well as a confinement in the absorption profile are noticed. As
the depth of the focal point increases towards infinity (collimated beam), the peak
absorption density decreases and the absorption profile loses its confinement. Therefore,
the effect of focusing loses its main features regarding the increase in the peak absorption
and the confinement of the absorption profile at large depths from the tissue surface. The
factor that is used in determining the depth of the focal point after which the focusing
process would be inefficient is the transport mean free path [6]. The transport mean free
path is defined as [p,+H1(1-g)]". In our case, the transport mean free path is equal to
0.099 cm. The effect of focusing, after the depth of focal point is larger than 0.1 cm,
starts to be inefficient. It is worth mentioning that because of the optical properties of the
medium under study, there will be neither transmittance nor specular reflectance to
calculate. Figure (4-26) shows the absorption distribution of a uniform intensity focused

optical beam in a homogeneous turbid medium under different focusing conditions

60



obtained by Wang and Liang [6]. Comparing these results with the results in figure (4-

25), good agreement is noticed.
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Figure (4-26) Absorption distribution of a uniform intensity focused optical beam

in a homogeneous turbid medium under different focusing conditions published

in reference [6]. (a) Depth of focal point Z;=0.05 cm. (b) Depth of focal point Z;

= 0.1 cm. (c) Depth of focal point Z¢= 0.2 cm. (d) Depth of the focal point Z=00

cm. In all cases the radius of the incident optical beam before focusing is 0.5 cm

and two million photons are launched in each simulation run.[6]
The differences in calculated results maybe due to the’ different statistical approaches
adapted for tracing of Monte Carlo photons. As mentioned before, our simulation model

adapts a variance reduction technique, which is a standard Monte Carlo simulation

method for tracing photon movement within the medium. The program written by Wang
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and Liang in [6] used a delta-scattering technique to model a different problem in the
same study. It needs to be mentioned that reference [6] represents the best available
benchmark for testing our program although the programming algorithm differs.

For the sake of making the comparison easy for the reader, the simulation results are

rearranged in Figure (4-27). Cases represehting the same focusing conditions are shown

next to each other.
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Figure (4-27) Comparison between the simulation results of the absorption
distribution of a uniform intensity focused beam in a homogeneous turbid
medium under different focusing conditions according to [6] and our model. (a-1)
Depth of focal point Z¢=0.05 cm,[6]. (a-2) Depth of focal point Z;=0.05 cm, our
model. (b-1) Depth of focal point Z;= 0.1 cm, [6]. (b-2) Depth of focal point Z;=
0.1 cm, our model.
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Figure (4-27) Comparison between the simulation results of the absorption
distribution of a uniform intensity focused beam in a homogeneous turbid
medium under different focusing conditions according to [6] and our model. (a-1)
Depth of focal point Z¢=0.05 cm,[6]. (a-2) Depth of focal point Z¢=0.05 cm, our
model. (b-1) Depth of focal point Z¢= 0.1 cm, [6]. (b-2) Depth of focal point Z;=
0.1 cm, our model. (c-1) Depth of focal point Z; = 0.2 cm, [6]. (c-2) Depth of
focal point Z;= 0.2 cm, our model. (d-1) Depth of the focal point Z¢=c0 cm, [6].
(d-2) Depth of the focal point Z;=0w cm, our model. In all cases the radius of the
incident optical beam before focusing is 0.5 cm (1/e” radius for a Gaussian beam)
and two million photons are launched in each simulation run.

In general, it can be seen that the two programs produce very close results of the
absorption distribution within the homogeneous turbid medium. In the following chapter

the absorption distribution of a focused optical Gaussian beam in the same homogeneous
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turbid medium is presented. Then the results of focusing a Gaussian beam into a human

skin tissue model are introduced next.
4.3 Summary

In this chapter we verified our model for focusing optical beams into biologically turbid
media by means of simulation results comparisons with work produced based on well-
established references. Both the accuracy of the sampling rule profiling the optical
intensity of a beam and the focusing algorithm adapted were tested by comparison with

the best available references in the literature.
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CHAPTER 5

Simulation Results of a Focused Gaussian Beam into
Multi-Layered Tissue — Case Studies

5.0 Introduction

This chapter introduces two case studies of focusing a Gaussian laser beam into multi-
layered tissue. The first case study deals with a single-layer homogenous turbid medium
that has exactly the same optical properties of the homogeneous turbid medium discussed
in the previous chapter and summarized by table (4-2). The second case study involves a

double-layer human skin model studied at two different wavelengths.

5.1 Simulation Results of the Absorption Distribution of a Focused
Gaussian Beam into a Homogeneous Turbid Medium

Figure (5-1) below represents the two-dimensional plots of the absorption distribution of
a focused Gaussian beam into the homogeneous turbid medium under different focusing
conditions. Of course, the depth of the focal point in the turbid medium was taken exactly

at the same distances as in the previous section for making the comparison meaningful.
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Therefore, the depth of the focal point Zy was chosen to be 0.05, 0.1, 0.2 and « cm
respectively, where oo is equivalent to a collimated photon beam. The 1/¢* radius of the

incident photon beam is 0.5 cm. In all simulation runs, two million photons were

launched in order to obtain results with acceptable reduced variance.
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Figure (5-1) Simulation results of the absorption distribution of a focused optical
Gaussian beam in a homogeneous turbid medium under different focusing
conditions. (a) Depth of focal point Z=0.05 cm. (b) Depth of focal point Z¢= 0.1
cm. (¢) Depth of focal point Z,= 0.2 cm. (d) Depth of the focal point Z;=co cm. In
all cases the 1/’ radius of the incident optical beam before focusing is 0.5 cm
and two million photons are launched in each simulation run.
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For convenience, the simulation results for the cases of focused Gaussian beam and
focused uniform intensity beam, are rearranged such that the reader can easily compare
the absorption density profile for the two beams under the same focusing conditions. The
comparison is made clear in figure (5-2) for depths of the focal point of 0.05, 0.1, 0.2 and
o cm, respectively.

Bbsorption density [1/cm *] of a focused uniform intensity beam of 0.5 cm radius  Absorption density [1/cm 3] of a focused Gausslan beam of 0.5 cm radius
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Figure (5-2) Comparison between the simulation results of the absorption
distribution of a uniform intensity focused beam and a focused Gaussian beam in
a homogeneous turbid medium under different focusing conditions. (a-1) Depth
of focal point Z¢=0.05 cm, uniform intensity incident photon beam. (a-2) Depth
of focal point Z¢=0.05 cm, Gaussian incident photon beam (b-1) Depth of focal

point Z¢ = 0.1 cm, uniform intensity incident photon beam. (b-2) Depth of focal
point Z¢= 0.1 cm, Gaussian incident photon beam.
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Figure (5-2) Comparison between the simulation results of the absorption
distribution of a uniform intensity focused beam and a focused Gaussian beam in
a homogeneous turbid medium under different focusing conditions. (c-1) Depth
of focal point Z; = 0.2 cm, uniform intensity incident photon beam. (c-2) Depth
of focal point Z¢ = 0.2 cm, Gaussian incident photon beam. (d-1) Depth of the
focal point Z¢=co cm, uniform intensity incident photon beam. (d-2) Depth of the
focal point Zs=00 cm, Gaussian incident photon beam. In all cases the radius of
the incident optical beam before focusing is 0.5 cm (1/e° radius for a Gaussian
beam) and two million photons are launched in each simulation run.

Figure (5-2) reveals some important results concerning modeling laser beams as Gaussian
beams when compared with modeling them as uniform intensity beams. It can be seen
clearly from the above comparisons that the focused Gaussian beams produce higher
absorption density peaks than the corresponding uniform intensity beams. For example,

the comparison between figures {5-2 (a-1)} and {5-2 (a-2)} shows that the increase in the
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predicted peak absorption density due to the Gaussian beam model is about 42% higher
than the corresponding peak absorption density due to the uniform intensity beam model.
This result is very important for in some applications such as laser ablation, laser
dosimetry and photo-therapy, where absorptic;n density in tissue should be calculated
precisely. The comparisons in figure (5-2) also reveals that the spatial distribution of the
absorption density profile within the homogeneous turbid medium is more confined in the
case of the Gaussian beam model. This feature makes the Gaussian beam model more
desirable in terms of photo-therapy applications, where targeting specific area within the

biological tissue is important.

5.2 Absorption Distribution of a Focused Gaussian Beam into a
Human Skin Tissue Model

In this section a case study of modeling the light absorption density in a human skin
model is considered. The Human skin will be modeled as two layers (epidermis and
dermis). The first layer (epidermis) has a thickness of 60 um. The second layer (dermis)
is modeled as an infinite homogeneous turbid medium. The optical properties of the
human skin were obtained at two different wavelengths of 532 and 1300 nm respectively.
The optical properties of the human skin at a wavelength of 532 nm are summarized in
table (5-1) as obtained from reference [6]. Table (5-2) summarizes the optical propertics
of a human skin model at 1300 nm as obtained from reference [32]. It should be noted
that the reported optical properties of human skin might vary considerably at comparable
wavelengths due to the different tissue origin, preparation, measurement techniques and
other factors as well. As a general trend that can be observed for skin tissue samples is

the large increase in total attenuation of light due to absorption and scattering in the
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ultraviolet region and a decrease in the total attenuation as the wavelength of light

increases until a minimum attenuation is noticed between 700-1000 nm [43].

Table (5-1) Optical properties of the human skin tissue model at a wavelength 532 nm. Top and

bottom ambient media refractive indices were taken n,= 1.4 [6].

Layer Refractive Absorption Scattering Anisotropy Thickness
index (n) coefficient. | Coefficient. factor g cm
cm’ cm’
1 1.4 19 480 0.787 0.006
2 1.4 2.2 210 0.787 0

The wavelength of 532 nm lies in the visible spectral region of light, while the 1300 nm
wavelength lies within the near-infrared spectral region of light. This selection of the two
wavelengths will give a good chance to study the change in absorption distribution within
the human skin model due to the change in the incident wavelength. As seen in figure (5-
3), focusing increases the measured peak absorption density as expected. The value of the
anisotropy factor (g=0.787) at the 532 nm is more isotropic when compared with the
anisotropy factor (g=0.9) at the wavelength of 1300 nm. In general, most of the tissues
are highly forward scattering in the near-infrared region [21,22,43,44].
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Figure (5-3) Simulation results of the absorption distribution of a focused optical
Gaussian beam into a human skin tissue model at a wavelength of 532 nm, under
different focusing conditions. (a) Depth of focal point Z;=0.05 cm. (b) Depth of
focal point Z¢=0.1 cm
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Figure (5-3) Simulation results of the absorption distribution of a focused optical
Gaussian beam into a human skin tissue model at a wavelength of 532 nm, under
different focusing conditions (c) Depth of focal point Z¢ = 0.2 cm. (d) Depth of
the focal point Z¢=o0 cm. In all cases the 1/e radius of the incident optical beam

before focusing is 0.5 cm and two million photons are launched in each
simulation run.

Figure (5-4) shows the simulation results of the absorption distribution of a focused
Gaussian beam in a human skin tissue model at a wavelength of 1300 nm. For
convenience, the results of the simulation runs for the two wavelengths under study were
rearranged in order to make the comparison easier for the reader in figure (5-5).

Table (5-2) summarizes the optical properties of the human skin tissue model at a
wavelength 1300 nm [32]. The surrounding ambient material on top and on the bottom of
the sample under investigation has matched refractive indices with the sample. As it was
explained before, this selection is to avoid imposihg a Snell’s law conditions on the
beams entering the tissue. The implementation of such conditions will impose a distortion
in the focusing that will be hard to separate from the scattering distortion.

Table (5-2) Optical Properties of the human skin tissue model at a wavelength 1300 nm. Top and
bottom ambient media refractive indices were taken n,= 1.37 [32]

Layer Refractive Absorption Scattering Anisotropy Thickness
index (n) coefficient. | Coefficient. factor g cm
cm’ cm’
1 1.37 10 140 0.9 0.006
2 1.37 1 140 0.9 0
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Comparison between the optical properties of skin model at the two wavelengths in tables
(5-1) and (5-2) shows a reduction in the scattering and absorption coefficients at 1300

nm, which makes this wavelength preferable for imaging applications. Around this
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absorption distribution of a focused

Gaussian beam into a human skin tissue model at a wavelength of 1300 nm,
under different focusing conditions. (a) Depth of focal point Z; =0.05 cm. (b)
Depth of focal point Zs= 0.1 cm. (c) Depth of focal point Z;= 0.2 cm. (d) Depth
of the focal point Z¢=w cm. In all cases the 1/¢* radius of the incident optical
beam before focusing is 0.5 cm and two million photons are launched in each

simulation run.

wavelength, the effect of scattering is reduced compared to wavelengths in the visible

region, and the absorption (mainly due to water) is low compared to even longer

wavelengths




Absorption density [1/cm %] of a focused Gaussian beam of 0.5 cm radius Apsorption density [1/cm %] of afocused Gaussian beam of 0.5 cm radius
& 0.05 cm depth of focal point {matched Indices- 2M photon) & 0.05 cm depth of focal point (matched indices- 2M photon)

Depth [em]
o o
- o
-} o

14
-
o

1.0 05 a0 05 1.0 4.0 0.5 0.0 0.5
Horizontal Axis [cm] Horizontal Axis [cm]

(a-1) (a-2)

1.0

Absorption denslity [1/cm 3] of afocused Gaussian beam of 0.5 cm radlus Absorption density [t/cm 3} of afocused Gaussian beam of 0.5 cm radius
& 0.1 cm depth of focal point (matched indices- 2M photon) & 0.1 cm depth of focal point {matched indi 2M phots

0.05

Depth [cm]

1.0 0.5 0.0 0.5 1.0 4.0 -0.5 0.0 0.5 1.0
Horizontal Axis [cm] Horizontal Axis [cm]
(b-1) (b-2)

Figure (5-5) Comparison between simulation results of the absorption
distribution of a focused Gaussian beam into a human skin tissue model at
wavelengths of 532 & 1300 nm, under different focusing conditions. (a-1) Depth
of focal point Z;=0.05 cm, A=532 nm. (a-2) Depth of focal point Z;=0.05 cm,
2=1300 nm. (b-1) Depth of focal point Z¢ = 0.1 cm, A=532 nm. (b-2) Depth of
focal point Z¢= 0.1 cm, A=1300 nm
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Figure (5-5) Comparison between simulation results of the absorption
distribution of a focused Gaussian beam into a human skin tissue model at
wavelengths of 532 & 1300 nm, under different focusing conditions. (c-1) Depth
of focal point Z; = 0.2 cm, A=532 nm. (c-2) Depth of focal point Z; = 0.2 cm,
A=1300 nm. (d-1) Depth of the focal point Z¢=co0 cm, A= 532 nm. (d-2) Depth of
the focal point Zs=c0 cm, A= 1300 nm. In all cases the 1/e? radius of the incident
optical beam before focusing is 0.5 cm and two million photons are launched in
each simulation run.

The comparison between the absorption density in the human skin at 532 & 1300 nm
under different focusing conditions that is shown in figure (5-5) confirms some
characteristics of human skin previously predicted. For example, a quick comparison
between the right (1300 nm wavelength) and left (532 nm wavelength) columns shows
the deeper penetration of the longer wavelength in tissue than the shorter wavelength.
The absorption profile in general for the 1300 nm wavelength is more directive in the
forward direction than the case of 532 nm wavelength. This can be explained if the
values of the anisotropy factor (g) in tables (5-1) and (5-2) were examined. The
anisotropy factor (g) becomes highly forward scattering (g=0.9) in the 1300 nm region
while it is more isotropic at the 532 nm region. In terms of the absorption peak, we notice
that using a 532 nm light source can cause the absorption density to be about 29% higher

than corresponding absorption density at 1300 nm under the same focusing conditions in
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both cases (depth of the focal point is 0.05 cm). This is the case shown in figure {5-5 (a-
1) and (a-2)}. For the case of a collimated incident beam as seen in figure {5-5 (d-1) and
(d-2)}, an increase of 134% in the peak absorption density at 532 nm over the absorption
density due to the same beam at 1300 nm. This result is very interesting. It shows the

effect of changing the used wavelength on the optical properties of the biological tissue.
53 Summary

This chapter presented all the simulation results obtained in this thesis. These results were
divided into two parts. The results in part I served mainly as a verification method for the
developed Monte Carlo simulation program for modeling focused optical beams in multi-
layered tissues. The simulation results of the proposed Gaussian beam sampling rule
(referred to as sampling rule 1) are presented and compared with the sampling rule
proposed in some references (referred to as sampling rule II). The second part of this
chapter, part II, presented two case studies as a direct implementation of the proposed
model. The first case study simulated the absorption density distribution in a
homogeneous turbid medium due to focusing an optical Gaussian beam into this medium.
The second case study in this thesis dealt with the absorption density distribution in a
multi-layered human skin tissue model. Results from the two case studies were

compared and discussed accordingly.
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CHAPTER 6

Conclusion and Outlook

In this thesis we have modeled a focused Gaussian beam with Monte Carlo simulation.
The famous “MCML” [25,26] program was modified based on a probability distribution
found in the literature. However, errors were encountered in the calculated physical
quantities by Monte Carlo simulation. Using simulation, we proved that the probability
density function used in the literature is a source of error in the calculations of the
physical quantities evaluated by Monte Carlo simulation. We proposed another
probability density function that is shown to provide a dramatic improvement compared
with the other function. The proposed model of a focused Gaussian beam was applied in
two case studies. The first case involved focusing a Gaussian beam into a homogeneous
turbid medium and the second case, into a human skin model consisting of two layers.

The main conclusions of this research can be summarized in several points as follows:
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The Monte Carlo simulations aim at predicting energy transport in tissue, and
although being capable of keeping track of phase and polarization information, it
ignores such features during simulation.

The accurate sampling of a Gaussian beam profile in Monte Carlo method is the
key to correctly calculate the scored physical quantities (Absorption, Reflectance
and Transmittance) in Monte Carlo modeling of a Gaussian beam incident on
multi-layered tissue.

In the literature, a proposed Gaussian sampling rule described by equation (3-16)
and referred to in the thesis as “sampling rule 11, was proved to deviate from the
calculated physical quantities as calculated by the well established MCML and
CONYV programs.

We proved that the sampling rule described by equation (3-14) and referred to as
“sampling rule I” in this thesis, describes the Gaussian beam profile in Monte
Carlo simulation more accurately as checked against the MCML and CONV
programs.

The error associated with the use of sampling rule II, was found to be related to
the intensity of the scored physical quantity. This error increased with the
increasing recorded physical quantity and vice versa. This effect can be referred
to the dependence of sampling rule II on a normalized probability density function
that has different statistical characteristics than the one that is derived from the

correct Gaussian intensity profile (sampling rule I) as discussed in section 3.2.
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Because the radial parameter W, of sampling rule II is actually a normalized beam
waist W, by a factor of 2, the error resulting from the use of sampling rule II will
be very small in case of Gaussian beams with very small waist and vice versa.

The focusing process greatly affects the absorption distribution of an optical beam
in a homogeneous turbid medium when the depth of the focal point is less than or
comparable with the transport mean free path.

Focusing of Gaussian beams into a homogeneous turbid medium results in an
increased peak absorption density comparable with the case of a focused uniform
intensity photon beam under the same focusing conditions.

The spatial absorption distribution resulting from focusing a Gaussian beam into a
homogeneous turbid medium is more confined than the spatial absorption
distribution resulting from focusing a uniform intensity photon beam into the
same medium. In terms of photo-therapy applications, this is a desirable

characteristic in targeting specific area within the biological tissue.

The future directions of the research work done in this thesis can be summarized as

follows:

Based on the proposed Monte Carlo Gaussian sampling rule in this thesis,
improvement of the focusing model can be realized by adapting other focusing
methods rather than the geometric-focus. A spot focus method or a hyperboloid
method recently suggested by a research group [31] can be used to model the
focusing of optical beams in general. Comparisons among different approaches

can suggest the most accurate method to use.
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This study constitutes a building block for modeling Optical Coherence
Tomography systems [45], which usually involve focusing of optical beams into
tissue. These imaging systems are based on detecting single scattered photons
from biological tissue layers as diffuse reflectance. Modeling the heterodyne
detection and applying a suitable detection criterion for detecting single scattered
photons, along with modeling of focused optical beams, can model the Optical
Coherence Tomography system by Monte Carlo simulation. Based on the
proposed Monte Carlo Gaussian sampling rule in this thesis (sampling rule I), the
Optical Coherence Tomography system can be compared with an existing model
[31] that adapted the Gaussian sampling rule II. It should be clear that the imaging
applications in general usually process back reflected or back scattered light of
tissue layers. In this thesis we introduced a model for focusing optical beams into
multi-layered tissue that was verified mainly by comparison of other physical
quantity, namely absorption. This approach was adapted due to the difficulty in
finding reference data for making comparisons. This is mainly due to the
statistical nature of the Monte Carlo method, which makes comparison with
references and experimental data the main method for verification of Monte Carlo

models.
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