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ABSTRACT
Automatic Measurement of Video Quality using Fuzzy Logic

Zhen Cai

Compression of digital video systems introduces artifacts (i.e., typical types of
degradations), such as Blocking, Blurring, and Ringing. In this thesis, a new temporal
artifact-‘Flashing Blocks’ is introduced. This new temporal artifact with other spatial
artifacts is integrated into an equation to simulate the goodness of subjective ratings. In
the past, linear mapping was used for this mapping. However, in this thesis, a non-linear
mapping using Fuzzy Logic is proposed to create the mapping.

In this thesis, the performance of these automatic metrics is evaluated by measuring
the Mean Square Error between the measures predicted by humans and that predicted
automatically. The simulation results indicate that the performance of the automatic
metric using Fuzzy Logic is significantly better than those automatic metrics using linear

mapping for MPEG-2 test video sequences.

Keywords: digital video system, automatic metric, Human Visual System (HVS),

Block Flashing, Fuzzy Logic.
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Chapter 1

Introduction

1.1 Video Compression and Quality Measurement

Recent years have seen the introduction and widespread acceptance of several varieties
of digital video systems. These include digital television broadcasts from satellites (DBS-
TV), the US Advanced Television System (ATV), digital movies on a compact disk
(DVD), and digital video cassette recorders(DV) and teleconference. In the near future it
can be expected to see widespread terrestrial broadcast and cable distribution of digital
televisions.

All digital video systems produce an enormous amount of data. In fact, the amount of
data generated may be so great that it results in impractical storage, processing, and
communication requirements. For example, assuming one byte per pixel, a 360%288 pixel
monochrome still image occupies 262,144 bytes of storage. Color images may require as
much as three times the storage amount required by monochrome images. If the frame
rate is 30 pictures/second[1], then the raw data is 60 Mbit/s. This massive storage and
bandwidth requirements are a serious concern for many applications involving digital
video. Video compression alleviates this problem by reducing the number of bits.
Standard lossy digital video compression techniques such as block coding techniques
(JPEG[2], MPEG([3], H.261[4]...etc), result in different types of impairments in the
reconstructed videos. Among the common types of artifacts that such compression

techniques produce are:



e Blocking: A distortion of the image characterized by the appearance of an
underlying block encoding structure [5].

e Blurring: A global distortion over the entire image, characterized by reduced
sharpness of edges and spatial details [5].

e Spatial Edge Noise (Ringing): A form of busyness characterized by spatially
varying distortion in close proximity to the edge of objects [5].

e Block Flashing: A temporal artifact where changes are made across a block
from frame to frame, making the block very visible. See Chapter 4.

Detection and measurement techniques of these types of artifacts will be discussed in
Chapter 2. Because the human eye is the final arbiter of video quality, subjective
assessment methods which utilize human observers to view and rate the video quality are
the best methods for assessing coding quality as perceived by the human observers [6].
But they have the disadvantage of being costly and time consuming. Automatic measures
which are repeatable and do not depend on the viewing conditions or the mood of the
viewer, need to be developed. Such measures are necessarily needed for comparing
videos produced by different compression algorithms. The currently used automatic
measures such as the Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR)
do not compute the perceptual error as detected by the human eye. Section 1.2 will
discuss the weaknesses of such measures. The subject of this thesis is to attempt to

develop a reliable automatic measure that has high correlation with the subjective ratings.



1.2 Weakness of MSE
Today, Mean Square Error (MSE) is widely used as an automatic quality measure, but it

is equally widely criticized [6]. MSE is given by:
1 L& ~ 2
MSE =——3" N [itm, n) - i (m,n)] (1.1)
M\[ m=1 n=1

while Peak Signal to Noise Ratio (PSNR) is given by

2
PSNR =10x log| 22> (1.2)
MSE

where M and N are the number of rows and columns of an image respectively and 255
represents the number of bits for quantized images (8 bits), i(m,n) and i (m,n) are

original image pixels and reconstructed image pixels located at (m,n), respectively. In [7]
[8], experiments were made to test the correlation between the MSE and the perceived
measure of the video quality. It showed that MSE is not a good measure. The fact that the
properties of the Human Visual System are not considered in calculating Mean Square
Error [9] may result in MSE being badly correlated with subjective quality measures.
MSE suffers from several significant weaknesses such as [10]:
1. An arbitrary increase in the MSE does not always lead to a decrease in video
quality.
2. Equal values of MSE for the two degraded videos do not imply similar visual
quality.

3. MSE does not locate the types of artifacts in degraded videos.



These weaknesses of MSE are not surprising; it is a fact that the human observers do not
sum the error over the entire video but deal with it in much more complicated way [3, 6,
7, 8].

1.3 Problem Statement

As mentioned earlier, the only reliable measures of perceived video quality are
subjective assessment methods. These methods are expensive and time consuming.
Current automatic video quality assessment methods such as MSE are easy to compute
but do not measure well the perceptual distortions of videos. The development of an
automatic technique that combines the best of subjective and automatic measures, by
being easy to compute and sensitive to the properties of the HVS, is needed. This thesis
will restrict itself to considering only degradations that result from MPEG-2 video
compression.

1.4 Figures of Merit

The automatic quality metrics developed in this thesis should predict the video quality
like a human being. And how close the outputs of the automatic metric is to the
evaluation of human beings need to be determined.

The performance of an automatic quality metric can be evaluated by the correlation with
the subjective ratings. To test the correlation between the output of the automatic metrics

and subjective metrics, the Mean Square Error (MSE) is used in this thesis.

1.5 Thesis summary
There are different types of artifacts that are associated with different compression
techniques. In here, only three common types of artifacts, (blocking and blurring, spatial

edge noise) are concerned. One approach to automatically evaluate the quality of



compressed videos is to first measure these individual artifacts and then to combine them
to form an overall quality measurement. The measurements of individual artifacts are
called Quality Primitives (QP’s). The combination of all of the QP’s is called Quality
Score (QS). The QS gives the overall estimated quality of the video sequence. This is the
approach that will be taken in this thesis.

There has been previous work in developing QP’s which is outlined in Chapter 2. One
innovation that is presented in this thesis is to consider the context of an artifact, i.e. for
examples is it in a high frequency area of the image where the artifact may be masked.
The context is taken into account by creating separate QP’s for the same artifact, for
example, one for “flat” areas, one for “sharp edge” areas. See Chapter 2.

Previous authors [28] [33] have used linear regression to combine the QP’s to form the
QS. In this thesis a non-linear mapping of the QP’s to get a QS using Fuzzy logic [35] is
proposed. See Chapter 3.

Finally in Chapter 4, a new QP to measure the ‘Flashing Blocks’ artifact is introduced.



Chapter 2
The Background of the Quality Measurement Metric

2.1 Introduction

This chapter reviews methods for measuring video quality. The methods for measuring
video quality can be divided into two kinds, namely, subjective metrics and automatic
metrics. In the section 2.2, the subjective metric 1s introduced. Because the human beings
are end user of the video sequences, the subjective metric is the most satisfying metric.
But, it is time consuming and money consuming. In this section, automatic methods are
mainly introduced.

Automatic methods for measuring video quality (i.e. those that do not require
human intervention) can be broken into two classes: those that attempt to model the
Human Visual System (HVS Based Methods) and those that attempt to measure expected
artifacts and then map them to what human observers score on certain test sets (Artifact
Based Methods). Generally speaking the advantage of the HVS Based Methods is that
they can deal with a variety of degradations, perhaps, even those not contemplated by the
original designer of the method. On the other hand they tend to be complex and suffer
from not being able to perfectly model the HVS. The weakness of Artifact Based
Methods is that they depend on the designer knowing a priori what artifacts to expect. If
however, there is an important application that results in well understood degradations
then the relative simplicity of Artifact Based Methods may make them appropriate. Video
compression is such an application, and in this thesis only degradations from MPEG -2
video compressions are considered.

In Section 2.3, Winkler’s metric [30] an HVS Based metric is presented.



Artifact Based Methods require two distinct operations: first the calculation of the QP’s
and second the combination of the QP’s to form a QS. In Section 2.4, the popular
methods for forming QP’s (i.e measuring artifacts are presented). Section 2.5 reviews

fuzzy logic which will be used in Chapter 3 to combine QP’s to form a QS.

2.2 Subjective Measurement of Video Quality

As the end users of videos are human beings, the most reliable video quality measure is
subjective rating by human observers[7]. Generally in the subjective rating experiments,
videos and their perceptual errors are checked and rated by humans and then the
observers’ Mean Opinion Score (MOS) is statistically calculated. See[7] for details.

In such experiments, both expert and non-expert observers may be used; non-experts
represent the average viewer while experts give better assessments of video quality since
they are familiar with videos and their distortions. There are a certain viewing conditions
that should be set before evaluation takes place [23]. Among them, viewing distance,
viewing angle, monitor size, peak luminance of screen, room lighting, and number of
assessors should be considered. These are different evaluation techniques:

1. The absolute evaluation: The observers view a video and assess its quality by
assigning it to the category in a given rating scale. See Table 2.1 for examples of
categories.

2. The comparative evaluation: A set of videos is ranked from best to worst by
observers.

3. Bubble sort evaluation: The observer compares two videos A and B from a group of

videos and determines their order. Assuming that the order is AB, the observer takes



a third video and compares it with B to establish the order ABC or ACB. If the order
is ACB, then another comparison is made to determine the new order. The procedure
continues until all the videos have been used, allowing the best videos to bubble to
the top if no ties are accepted [3, 13].
The most commonly used technique is the first one. It uses the rating scale that has been
accepted by [26] and appeared in the relevant literature [3, 4, 5, 7]. Table 2.1 lists
the rating scale. The mean rating (Mean Opinion Score) of a group of observers who

take part in the evaluation is usually computed by {7]:

where s,=the score corresponding to the k™ rating, ni=the number of observers with that
rating, and n=the number of grades in the scale. It is important to note that the results of
subjective rating are affected by a number of factors including

1. type of videos

2. level of expertise of the observers, and

3. experimental conditions

Note Impairments Quality
5 Imperceptible Excellent
4 Perceptible, but not annoying Good
3 Slightly annoying Fair
2 Annoying Poor
1 Very Annoying Bad

Table 2.1 Rating Scale for Subjective Evaluation [26]




Table 2.1 is an example of Subjective Ratings. But it is very simple, and 1t 1s difficult to
use this as the standard to evaluate the goodness of the automatic metrics. In this thesis, a
different subjective ratings table is used. There are 12 original video sequences
compressed by the MPEG-2 [6] using seven different quantization constants. These
reconstructed video sequences have been rated in subjective tests. They are shown in
Table 2.2. In this table, O means the quality of the video sequences is very good and 100
means the quality of the video sequence is very bad. This data is used in this thesis

because it is available.

Q-factor 12 16 24 32 36 40 48
Autumn Leaves 2.2 12 17.8 39.7 51.3 543 57.2
Bette Pas Bette 1.3 8.7 18.6 222 413 49.2 46.6
Birches 4.5 6.5 7.5 8.3 8.4 213 22.6
Ferris Wheel 4.6 7 9.3 21.5 355 37.3 41.6
Flower Garden 8.5 8 10.7 22.7 241 30.7 35
Football 1.5 10.2 9.4 373 36.8 56.3 46.6
Horseback Riding | 3.2 10.6 19.4 28.8 50 523 55.5
Mobile&Calendar | O 0.5 11.7 92 29.8 29.5 33.6
Sailaboat 53 9.3 6.5 10.8 14.6 26.1 25.8
Susie 7.2 15.1 11.1 31.8 53 68 70.4
Table Tennis 1.5 7.2 10.2 19.6 31.1 38.7 36.9
Tempette 0.6 2.5 12.1 11.1 233 23.7 29.8

Table 2.2 MPEG-2 Encoded at 7.5 Mbps and pure I-frame with constant Q-factor




2.3 HVS Based Method of Automatically Measuring Video Quality — Watson’s
Method
In this section, an automatic metric that incorporates a simplified model of the human

visual system is introduced [30]. The block diagram of this metric is shown in the Figure

2.1
Onginal
Color DCT Lacal Contrast
Transform
Cotnpressed
Time Filter
o)
Pooiing u._l,_/ SCSF

Figure 2.1 Overview of the Objective Quality Metric [30]
o The input to the metric is a pair of color video sequences. The first of the two
sequences is the reference and the second is the test sequence.
o The color transform in the process 1s the conversion of both video sequences to the
YUYV color space.
e An 8x8 block DCT is applied to each Y frame.
e To establish a better HVS model, DCT coefficients are converted to local contrast

coefficients whose ranges are from 1 to -1. The following formula is used :
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LC(4,))=DCT(,j)xH/DC. Here DC means the DC coefficient of the DCT

0.65
coefficients. H= (%) . 256 is the mean DCT values for 8 bit images. 0.65 is a

psychological parameter.
¢ Both sequences are then filtered temporally.

The DCT coefficients, now expressed in local contrast form, are converted to Just-
Noticeable-Differences (JNDS) by rounding the coefficients of the spatial contrast
sensitivity function matrix. At first, the coefficients of each block divide the
corresponding coefficients of the following block. Second, rounding the coefficients in
the nearest integer. The spatial contrast sensitivity function matrix has the following

forms:

§ 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

e The pooling is done by using a weighted pooling. First the two sequences are
subtracted to form a difference image (diff). Then the following calculations are
made:

M1=1000xmean{mean; j(abs(diff(1,j,t)))
This calculation is done in the two steps. The first step is done in the spatial

direction and the average value of each video clip is computed when t is a constant.
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The second step is done in the temporal direction and the average value of the first
step is computed.

M2=1000xmaximumy(maximum, j(abs(diff(i,j,t)))

The calculation is the same as the calculation of the M1. The first step is done in the
spatial direction and the maximum value of each video clip is computed. The
second step is done in the temporal direction and the maximum value of the output
of the first step is computed

VQM=(M1+0.005xM2)

This work was done by Waston [30]. Readers can refer to [30] for the details. Because
the human visual system is very complex, it is hard to describe it in the mathematical
form. To increase the correlation between the output of this metric and subjective ratings,
more complex human visual system model may be needed. It is a very difficult to
describe HVS 1in detail. As an alternative to HVS Based Methods, Artifact Based
Methods may be used. The work in this thesis is in Artifact Based Methods which are

reviewed in the next two sections.

2.4 Quality Primitives (QP’s)

In this section, the first part of the artifact-based automatic video quality measurement is
introduced. Measurement of artifacts are first made on small Spatial-Temporal (ST)
regions, that are 8x8x1 (the 1 being in the temporal direction), the numbers that measure
the artifacts on each ST region will be referred to in this thesis as Quality Features (QFs).
In Watson (33), one QF represents the magnitude of the gain or loss spatial activity due

to the spatial artifacts of the blocking or ringing and the other represents the angle of the
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gain or the loss spatial activity due to the blurring[33]. Here f1 is used to represent the
QF of the magnitude of the spatial activities and f2 is used to represent the QF of the
angle of the spatial activities. These QFs are in turn refined into Quality Measures (QMs)
which distinguish between the gain or loss of the spatial activity in question (see
Equation 2.5). The QMs, like the QFs are calculated for each ST region. To provide
information about the entire sequence, all of the QMs in the sequence are pooled to form
Quality Primitives (QPs).
2.4.1 Wolf’s method

In this section, Wolf’s method [28] to compute the QP’s is introduced. It is outlined in
the following figure:

Compressed video Original video

Qu ality#Features Qu altiylFe atures

Compute Quality Measures

(test video) {reference video)

o e e e s s .
i i
| Extract luminance components, Extract luminance components, 1
! apply Sobel filters. apply Sobel filters. !
1 1
: A sequenc.&#f gradient images A sequence#c'f gradient images |

1
} Produce S-T regions, Produce 5-T regions, :
i extract Quality Features and extract Quality Features and i
i apply percephibility threshold apply perceptibility threshold i
1 I
i i
i i
i [
! !
1 1

Apply spatial and temporal
collapsing function

l

Four Quality Pimitives

Figure 2.2 Wolf’s method to compute the Quality Primitives[33]
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From Figure 2.2, the input and output video sequences are first processed with
horizontal and vertical edge enhancement filters that increase edges while reducing noise.
It has been shown that [11-18] the Sobel filters shown in Figure 2.3 work very well for

this step. These two Sobel filters are applied to the original and degraded video sequences

separately
-
-1 0 1 -1 -2 -1
Vertical
Vertical
B 0 2 0 0 0
Lowpass Bandpass
-1 0 1 1 2 |
L
< 7
Horizontal Bandpass Horizontal Lowpass

Figure 2.3 Sobel edge enhancement filters

The horizontal and vertical edge enhanced input and output video streams are each
divided into localized Spatial-Temporal (S-T) regions. For MPEG-2 video systems, S-T
regions size of 8 horizontals pixels x 8 vertical lines x 1 are used. [10]. The filters shown
in Figure 2.3 increase spatial gradients in the horizontal (H) direction while the transpose
of these filters increase spatial gradients in the vertical (V) direction. For a given spatial
pixel located at row i, column j, and time t, the H and V filter responses will be noted as
H(1,j,t) and V(i,j,t), respectively. These responses can be changed into the form of polar

coordinates (R, & ) using the following algorithms

RG,j, ) =~/H(, j,t) +V (i, jt}  ,and

.. . -1 V(i:jat)
9(1,],1)—tan [MH(z‘,j,t)} (2.2)
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The first QF, fi, is computed simply as the standard deviation (stdev) over the S-T region
of the R(i,j,t) samples, and the minimum value of f; is P, namely

£, (i,j,t) =maximum {stdev{R(ij,)], P}, ijt € {S—T region}

and P is the perceptibility threshold and is empirically set. This feature measurés the
magnitude of the spatial activity within a given S-T region.

V RG 5 pixel's edge

2 1

(b)

Figure 2.4 Classification of HV HV . For each pixel the horizontal gradient component
(H) and vertical gradient component(V) are plotted. Gradients that fall into the shaded
region of (a) form part of the HV image. Those that fall into the shaded region of (b)

form part of HV [33].

The second QF, f3, is sensitive to changes in the angular distribution, or orientation, of

spatial activity. The HV image is made up of the R(i,j,t) pixels that are in horizontal or
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vertical edges. The image HV is made up of the R(i,j,t) that are in the diagonal edges.

Gradient magnitudes R(i,j,t) less than ry,, are zeroed in both images. Pixels in HV and

HYV can be represented mathematically as

V(i) {R(i, gty i RGjD=2ry, and m% ~ A0 <8i, j,t)<m % +A0(m =0,1,2,3)

0  otherwise

and

7o) [ROD  RGJD 20 and m%+ A0 <6, j,t) < (m+ 1)%+ A6(m=0,1,2,3)
0  otherwise

(1,j,t) € (S-T region) 2.3)

QF f; for one S-T region is then given by the ratio of the mean of HV to the mean of

HV , the minimum value of £, is P, namely

£,=max imum{mean[HV(i, Wl Iy (2.4)

max imum{mean[ﬁV(i, j, t)], P}

f, is perceptive to changes in the angular distribution of spatial activity with a given S-T
region.

The following provides a general description of how Quality Measures are calculated
from the original and degraded video sequences. For this discussion, the Quality Features
of the original sequences are noted as fi o(i,),t) and £ ,(i,j,t). The corresponding Quality
Features of the degraded sequences are noted as the f;_4(i,j,t) and 5 4(i,j,t). And1i,jandt
are indices that note the spatial and temporal positions, respectively, of S-T region within
the original and degraded video streams. Four Quality Measures needed to be computed
due to the gain and loss of the spatial activity (e.g. loss of spatial activity due to blurring

and gain of spatial activity due to noise or blocking). They are noted as the f1_gain(i,j,t)
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and fl loss(i,j,t) and f2 gain(i,j,t) and f2 loss(i,j,t). For a given S-T region, they are

computed using:

ﬁ_d(i,j,r)—ﬁ_o(i,j,t)}}

f1 _loss(i, j,t) = nps log —
° Ji ol jit)

e e . _ f:lﬁd(i’jat)
f2_gain(i, j,t) = pp{logm{m}}

fz_d(i’jst)_fz_o(i’j:t):ﬂ (25)

f2_loss(i, j,t) = npqlog —
° £ Wi, /1)

where pp is the positive part operator (i.e., negative values are replaced with zero), and
np is the negative part operator(i.e., positive values are replaced with zero).

Quality Primitives are then computed using pooling. For spatial pooling, for each
temporal index t the average of the largest 5% of the quality measures in eqn.2.5 over the
spatial index 1,j. Four numbers are then obtained for each frame, namely: f1 _gain(t) and
f1_loss(t) and f2_gain(t) and f2_loss(t). The temporal pooling function is computed as the
mean of the spatial Quality Primitives over the temporal sequences. The result of the
temporal pooling is the QP’s of the video sequences. They are fl_gain and f1_loss and
f2_gain and {2 loss.

Here no account was taken of the context in which an artifact occurs. The next section
describes a method to classify S-T regions according to their spatial activity, New

Quality Primitives that are obtained by pooling only QM’S that are in the same
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classification may result in Quality Scores with increased correlation to human subjective

SCOrEs.

2.4.2 Bistawhi’s method

Studies of the HVS indicate that not only the strength of an artifact is important, but also
its surrounding. The same degradation may be visible in one context but not in another
[25]. In this section, work by Bishtawi is explained that attempts to increase the
correlation between the QP and the subjective ratings, by putting Quality Primitives
(QP’s) into context [34].
To this end, 8x8x1 blocks of a video clip are classified into three categories: Flat Blocks,
Texture Blocks, and Sharp Edge Blocks based on the gradient image. The gradient image
is constructed by using the Sobel filter operators shown in Figure 2.3. Following Table

2.3, each block is classified into one of the three categories. See [34] for details.

Figure 2.6 and Figure 2.7 and Figure 2.8 are the results of these classifications.
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Figure 2.6 Flat Blocks (unblacked blocks)
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Figure 2.7 Texture Blocks (unblacked blocks)

Figure 2.8 Sharp edge blocks (unblacked blocks)
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Block Class

Conditions of Acceptance

Flat Blocks

The sobel magnitude of each pixel in a

block is less than the threshold

Sharp Edge

Blocks

a) A block fall with one of the two
situations
1) It has one edge area and two non-edge
areas
2) It has one edge area and one non-
edge area
and

b) The sharp edge inside the block has a

| contour length larger than the threshold.

Texture Area

All the blocks that do not belong to the Flat
blocks or the sharp edge blocks.

Table 2.3 Blocks Classes and Their Classification Conditions [34]

The Quality Primitives that describe the artifacts of videos can be obtained by
combining Wolf’s method and Bishtawi’s method. In this combination there are the
formulas for the 4 QP’s given by Wolf are used. In one scheme Sharp Edge and Texture

blocks are not distinguished and so there are only two classifications. This method would

yield (4x2) 8 QP’s. It is shown in the Table 2.4
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Quality Primitive Class Quality Primitive
fbf; gain
Quality Primitives of Flat
Blocks fbf; loss
fbf, gain
fbf, loss
nfbf, gain
Quality Primitives of Non-
flat Blocks nfbf; loss
nfbf, gain
nfbf, loss

Table 2.4 Eight Quality Primitives

When all three classifications are used there are (4x3) 12 QP’s

Quality Primitive Class Quality Primitive
fbf, gain
fbf, loss

Quality Primitives of Flat Blocks fbf, gain
fbf, loss
tbf; gain
tbfl loss

Quality Primitives of Texture tbf; gain
Blocks tbf, loss

sebf) gain

sebf; loss

Quality Primitives of Sharp Edge sebf, gain

Blocks sebf, loss

Table 2.5 Twelve Quality Primitives

Bishtawi did not have access to subjectively rated video. Thus he was not able to

go further.

In Chapter 3, 84 video sequences described in section 2.2 are used to design the

artifact-based objective metric that simulates the subjective ratings. The QP’s obtained
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from these video sequences are used as the input to a nonlinear mapping that simulates
subjective ratings. The strategy for generating a non-linear mapping is to use fuzzy logic.

Some basics of fuzzy logic are given in the following section.

2.5 Introduction to Fuzzy Logic

The next step in the objective artifact-based metric is how to put the QP’s of video
sequences into an equation that simulates the subjective ratings. In previous
publications[32,33], a linear mapping is used. Because of the complexity of the HVS a
non-linear mapping may be better suited to creating a QS from the QP’s.
Fuzzy Logic will be used to generate such a non-linear mapping because of its function
approximation ability.

To illustrate this point, consider a nonlinear function used to describe the subjective
rating:

ga—>p
where @ cR" and f < R. This function is represented by a finite number of input-
output associations (x,y). With the goal of constructing a fuzzy system
g:X->Y

is defined where ¢ is an approximation of g, X c and ¥ < £ are some domain and

range of interest. By choosing a parameter vector P (which includes membership function

centers, widths, etc). So that
g (x)=2 (xP)te(x)

forall x= [x, Xy geey X, ][‘ where the approximation error e(x) is as small as possible.
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A dynamic Takagi-Sgeno (T-S or T-S-K) fuzzy scheme [36] is described by a set of
fuzzy “IF-THEN” rules, with fuzzy sets in the antecedents (the “if” conditions) and local
linear functions in the c onsequents (the “then” action). Every i-th rule ofa T-S fuzzy
scheme has the following form:

i" Rule

IFx;isR i ,...,%iSRjj,..., Xn 1SR i

Then gi(x)=aj;xi+...a;X+. . . ainXn+bi
where i=1,...,r with r the number of rules; the x;(j=1,...,n) are the input variables. The R;
are the linguistic values to describe the input variables. Examples of linguistic variables
are “big” or “small”. In fuzzy logic, these linguistic values describe fuzzy sets. They are
mathematically represented by membership functions (mf;). Here mfji(x;) returns a
number which describes the degree to which x; belongs to Rj;.

The ajj and b; are linear coefficients of the output of rule 1. g; is the output of rule

The final output of the fuzzy scheme is inferred as follows:

_ > B(x)g.(x)
l 2.6
ST =0

where B,(x) can be defined (and in this thesis is defined) as the product of the

membership functions in rule i, i.e. B; (x) =mf;;(x;)mfi(x2)...mfy(Xn).

According to [36], the parameters can be tuned by using a hybrid learning procedure-
Adaptive-Network-Based Fuzzy Inference System. The parameters of the Takagi-Sugeno
can be divided into two kinds: antecedent parameters (nonlinear parameters) and

consequent parameters (linear parameters). In [36], the tuning method for the antecedent
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parameters is gradient decent. The tuning method for the consequent parameters 1s least
squares.
For example, consider a nonlinear function

sin(3x)

g(x)= .
exp(H)
2

Here, four linguistic values are used to describe the input variable (x). They are “very

Q.7)

big” and “big” and “small” and “very small”. The fuzzy scheme has the following forms:
If x is very small, then gi(x) =a,x + b,
If x is small, then g,(x)=a,x +b,
If x is big, then g3(x) =a,x + b,
If x is very big, then g4(x)=a,x +b,

The membership functions are described as the following tables:

‘Linguist Values’ Membership Function
‘very small’ (x—m,)
mf}(x)=exp(-———)
l
‘small’ (x—m,)
mfy(x)=exp(——2%— i )
-207
(bi 2 _ 2
’ mfy0=exp(F =) )
‘very big’ x—m.)?
mf 4(x)= exp((——_—-—ﬁ—zl*)
4

Table 2.6 the Membership Functions of the Fuzzy System
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B, (x) is the product of the membership functions in the rule i and can be expressed as
the following forms:

B,(x)=mf,(x)

B, (x ) =mf, (x )

By(x)=mf(x)

B,(x)=mf,(x)

Note that here since there is only a single input variable the argument of B; is scaler and

there is only one membership function per rule.

According to (2.6), the mathematical form of the fuzzy system is:

i Bi(x)gi(x)
g(x)= =t (2.8)

2 BiGx)

The parameters of the fuzzy system can be divided into two kinds: nonlinear parameters

antecedent parameters (m; o, ...) 1=1:4 and linear consequent parameters (a;, b ) 1=1:4.

To determine the linear parameters least squares is used. Here training data is given in
the form of ( xk ,g(xx)) where xi is an element of R” and k=1..K. Here K is the number
of points in the training set. Note that in the illustrative example here n=1 and xy is a

scalar.

Define

which is the denominator of Equation 2.8.

Also define
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I B, (E‘l );Cl Bl((xl)) B, ((xl ))xl Bz((xl)) B, ((xl );Cl B3((x1)) B, ((xl ))Xl B4((x1)) |
Six, Stx, Stx Slx, Stx Stx, Slx Six,
B, (xbxz B, (xz ) B, (le)xz B, (xz ) B, (le)xz B, (xz ) B, (le)xz B, (xz )

S(xz) S(xz) S(xz) S(xz) S(xz) S(xz) S(xz) S(xz)

B, (xK )xK B, (xK ) B, (xK )xK B, (xK ) B, (xK ) By (xK ) B, (xK )xk B, (xK )
L S(xK) S(xK) S(xK) S(xK) S(xK) S(xK) S(x[() S(xk) ]

Note that A is Kx8 in this example.

Furthermore define

LP=

which contains the linear parameters of the model. Then

G =AxLP (2.9)
where G is a Kx1 vector. Each element of G is the é(xk) (see Equation 2.8) for each of

the data points.

Define:

g(x)

g(xz)

G=

g().CK)
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where k=1...K. Each element of G contains the value of the function to be estimated for

each data point.
N 2
Using the least square method, LP can be obtained so that IG - G’ 1S minimized.

For the tuning of the nonlinear parameters (m; , o, ) i=1:4, the gradient method is used.
Consider the mean square error between the output of the fuzzy system and the nonlinear
function

E, :(g(xk)“g(xk))z (2.10)

where k=1. K and define a vector containing all the nonlinear parameters:

ny
O,

NP=| ~

The formula is as follows:

NP(K)=NP(K —1)~{V ,E, (2.11)

where NP(k) and NP(k-1) represent the nonlinear parameters. The gradient descent does
K steps, one for each data point in the training set. Note that NP(0) is some initial
condition the first time gradient descent is run, and is NP(K) of the last gradient descent
in gradient descents run after the first one.

In this illustrative example
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i OE, ] —Z(Q(xk)— g(xk ))ag(xk)_

om, om,
OF, | | 2&(x)-g(x))0g(x,)
0o, oo,
OF | | 2&(x)-g(x))oa(x,)
om, om

o, | | 2(8(x,)-2(x )o2(x,)

O, | _|éo, do,
VNP{-F(NP),}— oE, |7 | 206(x)-g(x o) | 1P

om, om,
OF, | | 2(8(x)-g(x,)08(x,)
0o, oo,
OF, 2(§ (xk )-g (xk ))Gg (xk )
om, om,
OF, | | 2(8(x)-glx))og(x,)
oo, oo,

Note that / 1s a learning rate which can be expressed as

m

£= ————— (2.13)
2t
"\ ONP.
m is the step size. The value of m can be changed to vary the speed of convergence
The tuning procedure can be divided into the following steps:
1. Arbitrarily choose the initial value of the premise (non linear) parameters (m1 ,o*l).
2. Use the least squares (2.9) method to tune the consequent (linear) parameters (a;,
bi);
3. Use the gradient method (2.11) for K points in the training set to tune the premise
parameters;
4. Repeat steps 2 and step 3, until the difference of the mean square error (2.10) in

two iterations is small enough. Here Ei(n) is mean square error of kth point in the
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nth iterations. Ey(n-1) is mean square error of kth point in the (n-1)th iterations. It

is obtained that{Ek(n)—Ek(n—l)‘ <g. £ 1s a small number and is set 1 in this

example.

For this illustrative example, « € Ris a scalar and f R . And the domain of interest,
Xea 1is from 0to 10. The range of interest Y € S is the corresponding range of the
function sin(3x)/exp(x/2). The number (K) of the training data (x,y) is 100. In this
example the xx are chosen as being evenly spaced between 0 and 10. The g(xi) are
generated from the function without noise. After choosing the following initial values and

finishing the 10000 iterations (i.e. repeating steps 2 and 3 10000 times):

m;=1 0,=0.5
mp= o,=1.0
m3=5 o, =15
m4=6 c,=2.0

a;=2 b =3

=15 b, =2.5
a;=-2 b,=33
ag=-4 b, =-3

Table 2.8 the initial values of the Linear Parameters of the Fuzzy Scheme
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The result is as follows:

For the nonlinear parameters:

m=1.005 o, =0.3082
my=3.412 o, =0.4594
my=4.271 o, =0.6261
m,=9.002 o, =3.689

Table 2.9 Nonlinear Parameters of the Fuzzy Scheme

For the linear Parameters:

a;=1.724 b, =1.864
a,=1.197 b, =3.642
2;=-0.3015 b, =1.64
2,~0.01205 b, =-0.09853

Table 2.10 Linear Parameters of the Fuzzy Scheme

The result can be expressed as the following figures:
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« Flgur629 the Appr0x1mat1on Ab111ty of the Fuzzy Logic |
In Chapter 3, fuzzy logic is used to approximate the nonlinear mapping that simulates

the subjective ratings of human beings. It is the main contribution of this thesis.

2.6 Conclusions:

In this chapter, some video quality measurement techniques are presented. First, the
non-automatic measurement techniques are presented. These techniques are done by
humans. Although they are the most reliable quality measures, they are costly, time
consuming, and depend on the test conditions. Second, objective measures are presented.

These objective metrics can be divided into two kinds. One kind is based the human
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visual system (HVS), the other is based on artifacts of the video sequences. Because the
HVS is very complex, it is difficult to design a satisfying objective metric that is based on
the HVS. In the remainder of this thesis, the artifact-based objective metric is used to
simulate the subjective ratings. The first step of this metric is to obtain the Quality
Primitives of the video sequences. The Quality Primitives obtained are used as the input
to a nonlinear mapping that simulates the subjective ratings. In the remainder of this

thesis fuzzy logic is used as the framework for the non-linear mapping.
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Chapter 3

[
Fuzzy Metrics with Spatial Quality Primitives

3.1 Introduction

Since the human eye weighs video impairments in a complex way[34], a nonlinear
mapping of QP’s may result in a QS which more closely matches the MOS’s of human
observers than a linear mapping. Because of strong function approximation ability of the
fuzzy system mentioned in Section 2.5, the Takagi-Sugeno (T-S) fuzzy system [36] is
used to approximate as the framework for the nonlinear mapping. As was mentioned in’
Chapter 2, the QP’s combining Wolf’s method [28] and Bishtawi’s method [33], are used
as the input to the fuzzy system.

In the Section 3.2, four Quality Primitives selected from Table 2.4 (fbf, gain, fbf; loss,
nfbf; loss, nfbf, loss) as the input to the fuzzy system. In Section 3.3, 8§ QP’s (Table
2.4) is used as the input to the fuzzy system. In Section 3.4, 12 QP’s (Table 2.5) is used
as the input to the fuzzy system. To reduce the complexity of the fuzzy algorithm, fuzzy
c-means [36] is used to select the rules of the fuzzy algorithm. Each of Sections 3.2, 3.3
and 3.4 can be divided into three parts. In the first part the fuzzy algorithm used to
simulate the subjective evaluations is used in detail so that readers can implement it. In
the second part, the method to tune the parameters of the fuzzy model-Least Square and
Gradient Descent is given. In the last part, an example to compute the fuzzy algorithm
using the tuned parameters is given. In the Section 3.5, the simulation result is given.

And in the last section, the conclusion is given.
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3.2. Fuzzy Model Using 4 QP’_s:

In this section, 4 QP’s selected from Table.2.4 (fbf; gain, fbf; loss, nfbf; loss,
nfbf, loss) are used as the input to the nonlinear mapping that simulate the subjective
ratings. It is also possible to choose 4 QP’s from the Table 2.5. But it is too complex.
Another method is discussed in the Section 3.4 when inputs are composed 12 QP’s. They
are represented as x=[x; X, X3 X4]. Two linguistic values (big and small) are used to
describe every QP’s. If all the possibilities combining linguistic values are enumerated,
there will be 2*=16 rules. It is very complex. To reduce the number of the rules, a
technique-Fuzzy Clustering is used to select the rules. Fuzzy Clustering is the partitioning
of data into subsets of groups based on the similarities between the data and can be

implemented by using an algorithm called Fuzzy C-Means [35]. Fuzzy C-Means is an
iterative algorithm used to find cluster centers ¢’ (vectors of dimension 4x1) to satisfy

the following inequalities.

c,{—c,{_1|< g, 3.1

Let choose ¢, =0.001 and the update formula for Fuzzy C Means is:

M .
c_j z i=1 xx‘ (,u‘a)') (3.2)

n 3
> (“‘v }
bt =)
.12
d lxi —Cp
where u;; = Z >
e |x, —c,

Here, M is the number of input-output data pairs in the training data set. And n=1,..., N

represent the number o f the iterations. ¢! represents the initial v alues o f the i terations.
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From the section 2.2, 8 video sequences compressed at 7 different quantization levels are

used as the training set. They are Autumn Leaves, Sailboat, Flower Garden,

Mobile&Calendar, Table Tennis, Bette Pas Bette, Susie, Ferris Wheel. M is equal to

8x7=56. R is the number of the rules needed to calculate, in here R=2. x; fori=1,...,M
i

is the input vector of the input-output training data pairs, ¢’ = [c{ ¢ o ]T for

j=1,...,R are the cluster centers. The method is as follows:

1. Give the initial values ( ¢! )
2. Using the (3.2) to compute the ¢!

3. If ‘c;f ~c) | < &,, the number of the rules is decided, otherwise, it is needed to repeat

n-1

¢/ —c’ ‘< g is set up. In here, the initial

n-1

step 1 and step 2, until this inequality

cluster centers are c.=[0.1 02 03 05] ¢=[03 05 08 0.7] and the

number of the iteration is 1000, and the (3.1) is satisfied. So R=2.

In [36], the author gives a detail description of the fuzzy c-means and the readers can
refer to it.
3.2.1 Proposed Fuzzy Metric.

After using fuzzy c-means, the proposed fuzzy algorithm is as follows:
If x, is big and x; is small and x3 1s small and x4 is small, then

joiny(x)

If x; is small and x; is big and x; is big and x4 is big, then

joiny(x)
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There are other possibilities combining linguistic values (for example x; is small and x; is
small and x3 is big and x4 is small) . But by using fuzzy c-means, it is found that the
above rules are good enough to describe the fuzzy metric. This fuzzy metric can be
divided into two parts-premise part (if section) and consequent

part (then section) and can be describe in mathematically as follow forms:

Join(x)= Y1 B (x)join,(x) = iNormal,. (x)join,(x) (3.3)

¥i Bi(x) i=1

The following figure can be used to express (3.3)

Normal(x)

Premuse

¥] /
Part
)
%3
X4
Consequert
Part

Figure 3.1 Figure of the Fuzzy Algorithm (3.3)

where join; (x) is the output of the consequent part and Normal; (x) is the normalized
output of the premise part. The Sum of the product of the output of the premise part and

the consequent part (joini(x)*Normali(x)) is the output of the fuzzy system i.e. Join(x).
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3.2.1.1 The Premise Part of the Fuzzy Metric

For the premise part, the following membership functions are used:

Quality Primitives Linguistic Values Membership Function
X1 ‘big’ ~(x ""l;)z
mf;(xl): e o)
X1 ‘small’ ~(x=my, )?
mfy (xx ) =¢ o)
X2 ‘big, ~(xy=my )
mf, (xz ) =e ow)
X2 ‘small’ ey -my )
mf, (xz) =e on)
X3 ‘big’ —(x3-my,)?
i) =e )
X3 ‘small’ —(x3~ms, )
) =e 0
X4 ‘big, ~(xy=my
mf; (x4 ) =e 20w
X4 ‘small’ ~(xrg-my Y’

mf (x4) =e o)

Table 3.1 the Definition of the Membership Functions

The premise part of the fuzzy system can be expressed as follows:
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Figure 3.2 Premise Part of the Fuzzy System
The input of this figure is the QP’s measuring the spatial artifacts of the video sequences.

The output of this figure is the normalized product of the membership functions, for

example, Normall(x)zzil({z—. To illustrate this figure more clearly, let consider the

;Bi(x)

table where the input Bi(x) can be thought as the product of the memberships whose label

are dots.
MF (x;) | MFy(x)) | MFs3(x2) | MFy(x2) | MFs(x35) | MFe(x3) MF7(X4) MFg(xs)
By(x) ) @ ® o
B,(x) ® o ® o

Table 3.2 Premise Part of the Fuzzy Algorithm
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3.2.1.2 The Consequent Part of the Fuzzy Metric
The consequence parts of the fuzzy system can be expressed as the following matrix

forms:

join, (x) a, a, a, a, b -
|: 1 }:{ 1 12 i3 14 lil x3 (34)

Jomz(x) Ay @y Gy 4y b

The equation (3.4) can be expressed in the Matrix forms:
JOIN=Lxxl (3.9)
where JOIN is the 2x1 vector in equation (3.4), L is the 2x5 matrix in equation (3.4), x1

is 5x1 vector containing the QP’s and one in equation (3.4).

3.2.2 Tuning Method

As mentioned in Section 2.5, the parameters of the Takagi-Sugeno fuzzy scheme can be
divided into two kinds-premise parameters (NP) (nonlinear parameters for example
o,,m, ) and consequent parameters (LP) (linear parameters for example a;i, by). The
tuning method for the premise parameters is gradient descent. The tuning method for the
consequent parameters is least squares. Here training data is given in the form of ( X ,si)
where xi 1s a vector whose elements (xy1, Xk2, X3, Xka) are the QP’s for the corresponding

video sequences and s is the corresponding subjective ratings for this video and k=1..K.
Here K is the number of points in the training set and K=56

At first, from the equation (3.3), for every xy, there exists a Join(xx). Putting all the x

and Join(xy) k=1..K together, the matrix equation can be obtained:
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AXLP=8§ (3.6)
Because there are 10 linear parameters in the fuzzy scheme (3.3) and the number of
points in the training set 1s K (K=56), the size of A is a matrix of Kx10. And A has the

following forms:

I lil (xl )xn le (xl )xlz B;l (xl )x13 o 2Bz (xl) |
Z:,Bi(xl) ZlBi(xl) ;Bi(xl) ;Bi(xl)
El(xz )x21 El(xz )xzz lil(xz )x23 o _Bz (xz)

ZE@J Z&&Q ga@g EELS

Bl(xl;)xKl Bl(xI;)sz Bl(xl;)xK2 - Bz(‘xx)

iz;:Bi(xK) gBi(xK) gBi(xK) o ZB:‘(-’CK)

LP is an unknown vector whose elements are linear parameters
o]

ap

a3

i

by
LP=

where Sis a 56x1 vector. Each element of $ is the Join(x, ) (see Equation 3.3) for each

of the data points.

Define:
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Each element of S contains the subjective ratings for each video sequence. Using the least
A2
square method, LP can be obtained so that iS - Sl is minimized.

Let assume the mean square error between the fuzzy output and subjective rating is
E, =(s, - Join(x, ))’ (3.7)

where k=1..K and define a vector containing all the nonlinear parameters:

NP={ ~

Ty |

where NP 1s a 16x1 vector. NP; represents the nonlinear parameters. i=1,..,16.

The formula is as follows:
NP(k)= NP(k —1)- ¢V ,,E, (3.8)
where NP(k) and NP(k-1) represent the nonlinear parameters. The gradient descent does
K steps, one for each sequence in the training set. Note that NP(0) is some initial
condition when the first time of gradient descent is run, and is NP(K) of the last gradient
descent in gradient descents run after the first one.

In this section
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8E, |1 [2(Join(x,)~s, )dJoin(x, )

8mn 51’1’1”
OE, 2(Join(x, )-s, JoJoin(x, )
00, ooy,
OE, 2(Join(x, )-s, )oJoin(x, )
om om
Vi = OB | _ aE:(2 =| 2(Join(x, )— sli YoJoin(x, ) (3.9
a(NP), 20, 5o,

GEk 2(Join(x, ) —.sk JoJoin(x, )
00, | 0o,

Note that £ is a learning rate which can be expressed as
(= (3.10)
OF,
Z’(GNB]

m is the step size. The value of m can be changed to vary the speed of convergence

The tuning procedure can be divided into the following steps:
1. Arbitrary Choice of the initial value of the premise parameters.
2. Use the Least Square method (3.6) to tune the consequent parameters;
3. Use the gradient method (3.8) for K video sequences in the training set to tune the
premise parameters;
4. Repeat steps 2 and step 3, until the difference of the mean square error (3.7) in two
iterations is small enough. Here Eyx(n) is mean square error of kth video sequences

in the nth iterations. Ex(n-1) is mean square error of kth video sequences in the (n-

1)th iterations. It is obtained thatlEk(n)— E (n- 1)‘ <g. ¢ 1s a small number and is

set 1 in this example.
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Below are the parameters of the fuzzy system.

Membership Function | The Mean Value The Variance Value
MF(x1) m,, =0.03272 0,, =0.03858
MF,(x1) m,, =—0.1834 o,, =0.04143
MF;(x2) m,, =—0.1834 0, =0.04143
MFa(x2) m,, =-0.04484 o, =0.2418
MFs(x3) m,, =-0.4799 o, =0.1333
MFe(x3) m,, =—0.4267 05, =0.2202
MF7(x4) m,, =—0.7806 o, =0.2202
MFg(x4) m,, =-0.5129 o, =0.09383

Table 3.3 Nonlinear Parameters of the Fuzzy Algorithm (3.3)

The consequent matrix in (3.5)

[742 2256
7.418 36.33

-56.71 8.361
-10.38 66.43

94.63

- 2.887:|

3.3.3 Example of Implementing the Fuzzy Metric

In this section, to illustrate the implication of this algorithm (3.9) clearly, let assume the

following input:

x1=0.019, x,=-0.090, x5=-0.281, x4 =-0.625
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The membership function has the following values:

MF(x1) 0.9387
MF,(x1) 5.3989x107°
MF3(x3) 0.0788
MF(x,) 0.987
MFs(x3) 0.3285
MFg() 0.7115
MF(x2) 0.7501
MFs(xa) 0.4898

Table 3.4 the value of The Membership Functions

The premise parts of the fuzzy algorithm have the following values:

Bi(x)

0.0182

Bz(X)

1.848x107;

Table 3.5 the value of the Premise Parts of the Fuzzy Algorithm

From Table 3.5, it is found that the value of B;(x) is bigger that the value of By(x). It

shows that it is more appropriate to describe the QP’s (X, X2, X3, X4) using the first rule

(x1 1s big and x; is small and x3 is small and x4 1s small).

The consequent parts of the fuzzy algorithm have the following values

Join;(x)

7.2023

Joiny(x)

52.8903

Table 3.6 the values of the consequent part of the fuzzy algorithm
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Finally, the output of the fuzzy algorithm (3.3) is:
Join(x)=Join,(x)xB;(x)/(B1(x)+B2(x))+Joiny(x) xB,(x)/(B1(x)+B,(x))=7.2485
Below are the figures of Membership Functions for x;, X2, X3, X4, and the input points

represent the value o f the QP’s used in this example. T he v alue o f these m embership

functions represent the degree to describe the values of the QP’s using the linguistic

values-‘big’ or ‘small’.
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From Figure 3.3 and Figure 3.6, it is found that the maximum value of the membership
functions ‘1’ and the minimum value of the membership function is ‘0’. Here, ‘1’ means
it is the most accurate to describe the values of the QP’s using linguistic values. ‘0’

means it is the least accurate to describe the values of the QP’s using linguistic values.

3.3 Fuzzy Model Using Fuzzy Clustering Method (8 QP’s)

In this section, 8 QP’s (Table 2.4) (flat and non-flat) combining Wolf and Bistahwi’s
method are used as the input to the fuzzy system. This fuzzy system will be used to
simulate the subjective goodness. QP’s are represented as X1, Xz, X3, X4, Xs, X6, X7, Xg, Define
a vector X=[X; Xy X3 X4 X5 X¢ X7 Xg] that contains all the QP’s. Every QP’s is described
using two linguistic variable-‘small’ and ‘large’. And as did in the Section 3.2, Fuzzy

Clustering [36] is used to select the rules.
3.3.1 Proposed Fuzzy Metric
After using Fuzzy C-Means, the proposed fuzzy algorithm is as follows:

If the x; is small and x;, is small and x3 is small and x4 is small and x5 is small and x¢

is small and x5 is small and xg 1s small, Then
Join(x)

If the x, is big and x, is big and x3 is big and x4 is big and x5 is big and x5 is big and

X3 1s big, Then
Joiny(x)

This fuzzy metric can be divided into two parts-premise part (if section) and

consequent part (then section) and can be described in mathematically as follow forms:
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Join(x)= Zf:‘gfxigj(il;'(x) = iNormal , (x)join,(x) (3.11)

i=1

i=1" 4

Below figure is used to express (3.11)

Normal l(x)

#
Premise  Part

i

Join(x)

2 )

Consequent Part

joinX%)

Figure 3.7 Figure of the Fuzzy Metric (3.11)

where joini(x) (i=1,2) is the output of the consequent part and Normal;(x) (i=1,2) is the
normalized output of the premise part. The Sum of the product of the output of the

premise part and the consequent part (joini(x)xNormali(x)) is the output of the fuzzy

system-Join(x).
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3.3.1.1 The Premise Part of the Fuzzy Metric

For the premise part, the following membership functions are used.

Quality Primitives Linguistic Values Membership Function
X1 ‘big, ~x-my, )
mf‘(xl):e 2(‘711)
X1 ‘small’ ~(x-mp, )?
mf, (xl) = o)
X2 ‘big’ ~(xg-my )
mf, (Xz) =¢ )
X2 ‘Small’ (x7 ”722)
mf, (xv ) Hen¥
X3 ‘small’ (v -ms, )’
i) =e o)
X3 ‘big, (3 -m3,)?
mf (xz) =¢ 7o)
X4 ‘small’ ~xg-my )
mf; (x4) =e 2n)
X4 ‘big, ~(xy ‘”’42)
mfy(x,)=e 2
X5 ‘big’ —(\ —-ms l)
mf; (x ) ‘7>l )
X5 ‘small’

49




Quality Primitives Linguistic Values Membership Function
X ‘small’ (g ~mg; )’
mfn(xs) =e Mou)
X6 ‘big, —(xg—mg, )’
mfiy(xg)=e ")
X7 ‘small’ ~(xy —mp, )
mfi:«s(x7 ) =e 2
X7 ‘big’ ~(x7=mp, )
mf14(x7 ) =e¢ )
X3 ‘small’ ~(xg-mg, )’
mfi(s)=e
X8 ‘big’ ~(xg—mg, )?
M6 (xs) =e =)

Table 3.7 the Definition of the Membership Functions

The premise parts (if section) of the fuzzy system can be expressed as the following

figure:
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Figure 3.8 Premise Part of the Fuzzy System

The input of this figure is the QP’s measuring the quality of the video sequences. The

output of this figure is the normalized product of membership functions, for example,

Normall(x)=—iB‘—(x—)——, where Bi(x) can be thought as the product of the memberships

> 8

whose labels are dot in the following tables.

Mf.(x,) Mfz(Xz) Mf;(X}) Mf.;(X_;) Mfs(Xj) Mf(,(X(,) Mf7(K7) fo(xs)

B[(X)

Ba(x)
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Mfs(xe) | Mfio(xio)l M) Mfia(xiz)f Mfis(xis)] Mfia(xi4) Mfis(xis) | Mfis(xis)

B{(X)

Biy(x)

Table 3.8 Premise Part of the Fuzzy Metric

3.3.1.2 The Consequent Part of the Fuzzy Metric

The consequence parts (then section) of the fuzzy system can be expressed as the

following matrix forms:

\:joinl(x)j\_{a” a, a,; a, a; a, a,; ag blTx (.12)

Jomz(x) a, a, a, A, A, A ay ay b,

The equation (3.13) can be expressed in the Matrix forms:

JOIN=Lxxl (3.13)

where JOIN is the 2x1 vector in equation (3.12), L is the 2x9 matrix in equation (3.12),
xlis 9x1 in equation (3.12).

3.3.2 The Tuning Method

The parameters of the fuzzy metric can be divided into two parts (premise parameters and

consequent parameters) and for the premise parameters, the tuning method is gradient
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decent and for the c onsequent p arameters, the tuning m ethod i s linear regression. T he

tuning method is similar to that described in Section 3.2.2. The result is as follows:

Fro the nonlinear parameters:

Membership Function | The Mean Value The Variance Value
MF(x1) myy = 0.1866 0,, =02723
MFa(x1) my, =~0.04961 oy, =0.1111
MF3(x2) my =—0.1548 0,, =0.09201
MF4(x2) myy =-0.3151 0 ,, =0.2167
MFs(x3) my; =0.7041 oy =0.642
MFe(x3) myp =1.126 0, =0.612
MF7(x4) my; =-0.08068 o4, =0.1303
MFg(x4) myy =-0.2101 o, =0262
MFq(xs) ms, =0.1088 o5, =0.1933
MFio(xs) msy = —0.01677 o5, =-0.1208
MFi1(X6) mg, =—0.4082 og =0.2624
MF2(x6) mg =-0.5152 og, =0.07182
MF3(x7) s, =1.069 o,y =0.6216
MF4(x7) Mo, =1.356 o5, =0.6193
MF 5(xs) mg,; =0.7608 o = 0.2639
MF6(x3) mg, =-0.4941 g, =0.219

Table 3.9 Nonlinear Parameters of the Fuzzy Algorithm (3.11)
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The consequent matrix in (3.13) is as follows:

124.1 111.7 34.72 2851 1275 -81.79 -65.61 -10 14.01
5409 1550 226 351.8 1497 -823.1 -258.8 294 108.1

3.3.3 Example of Implementing the Fuzzy Metric

In this section, an example is given to compute the fuzzy algorithm (3.11) in detail. Let
assume the QP’s is x;=0.019, x,=-0.207,x3=0.365,x4=-0.09,x5=0.034,x¢=-
0.281,x7=0.498,x5=-0.625

The membership functions have the following values:

MF(x;) 0.8274
MF,(xy) 0.8264
MFs(x2) 0.8514
MF,(x,) 0.8830
MF(xs) 0.8659
MF(x3) 0.4616
MF(x4) 0.9974
MF3(x4) 0.9003
MF(x5) 0.942

MF(xs) 0.9155
MF11(x) 0.8891
MF 5(xs) 0.0108
MF5(x7) 0.6558
MF4(x7) 0.383

MF5(xs) 0.876

MF¢(x3) 0.8363

Table 3.10 the value of the Membership Functions
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The premise part of the fuzzy algorithm has the following values:

Bi(x) 0.2928

B(x) 0.001

Table 3.11 the value of the Premise Part of the Fuzzy Algorithm

The consequent parts of the fuzzy algorithm have the following values

join(x) 4.2471

joiny(x) -17.72

Table 3.12 the values of the Consequent Part of the Fuzzy Algorithm

Finally, the output of the fuzzy algorithm (3.15) has the following values:

Join(x)=join (x) xB1(x)/(B1(x)+B2(x))+joinz(x) xB(x)/(B(x)+B2(x))=4.1845

Below are the figures of the membership functions in this fuzzy algorithm, and the input
points represent the values of the QP’s used in this example. The value of these
membership functions represent the degree to describe the values of the QP’s using the

linguistic values-‘big’ or ‘small’.
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From Figure 3.9 and Figure 3.16, it is also found that the maximum value of the
membership functions ‘1’ and the minimum value of the membership function is ‘0’.
Here, ‘1° means it is the most accurate to describe the values of the QP’s using linguistic
values. ‘0’ means it is the least accurate to describe the values of the QP’s using linguistic

values.
3.4 Fuzzy Model Using 12 QP’s

For the twelve QP’s (table 2.5) which are represented as x; (i=1..12), it is difficult to
tune the parameters of the fuzzy metric used to simulate the subjective ratings. To solve
this problem, a hybrid algorithm combining the linear mapping and fuzzy logic 1s used in

this section.
3.4.1 Proposed Fuzzy Metric

The hybrid algorithm has the following forms:

% ‘m\

x5 .

) Linear
@ Prendse  Part
TN
5 @
52 N
Y g N

'R = Mapping

Jum{"’\ﬁl
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LY ‘-’/ . Consequent  Paxs

Figure 3.17 Figure of the Hybrid Algorithm
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At first, the linear mapping method is used to get the input of the fuzzy system. The
parameters of linear mapping are obtained by using the linear regression [28] [34]. Then
the fuzzy method is used for the nonlinear mapping to get the final result. This method
will give a simpler algorithm comparing with other algorithm (3.3, 3.11).

Step 1:

Let assume the output of the linear mapping is M, then it can be obtained:
12

M=) REGx,
i=1

REG; i=1..12 is linear parameters produced by linear regression.
Step 2:

If M is very small

Then join, (M)

If M is small

Then joiny(M)

IfMis big

Then joinz(M)

If M is very big

Then joins(M)

The second part (fuzzy algorithm) can be expressed in mathematically as follows:

ME (M)join, (M)

Join(M)= Zi:‘z4 ME (M)

=" Normal(M)join,(M)  (3.14)
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3.4.1.1 The Premise Part of the Fuzzy Algorithm
Because there is only one parameter (M) as the input to the fuzzy algorithm (3.14), the

premise part of this fuzzy algorithm is simple. The following membership functions are

used:

Linguistic Variables Membership Function

‘very small’ ~(M-my, )*
mf, (M) =¢ Mo

‘small’ -(M-m;, )’
mf,(M)=¢ o)

‘big’ ~M-m;)°
mf,(M)=e o)

‘very big’ -(M-m,, )’
mf,(M)=¢ Ao )

Table 3.13 the Membership Function of the Fuzzy Algorithm

The following figure is used to express the premise part of the fuzzy algorithm
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MEI(0M) N Narmall(M)
MEC) .

MF( )
M,
MF3( )
MEM) Normal, (M)
ME({ ) l\;j ®

Figure 3.18 the Premise Part of the Fuzzy Algorithm (3.14)
The input of this figure is the Middle parameter (M) (The output of the linear mapping).

The output of this figure is the normalized membership function in each rule, for example
MF, (M)

Normal;(M)=—;
> ME(M)

3.4.1.2 The Consequent Part of the Fuzzy Algorithm

The consequence parts (then section) of the fuzzy system can be expressed as the

following matrix forms:

Joinl(M) a, a,

Join,(M)| |a, a, M
. = (3.15)
Join, (M ) ay, asy, |1
Join, (M) a, Qg
The equation (3.15) can be expressed in the Matrix forms:
JOIN=Lxxl (3.16)
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where JOIN is the 4x1 vector in equation (3.15), L is the 4x2 matrix in equation (3.15),
xl is 2x1 in (3.15).

3.4.2 The Tuning Method of the Hybrid Algorithm.

The Tuning Method of the Hybrid Algorithm can be divided into two steps. The first
step is linear regression in order to get the linear parameters. The second step is the
method used to tune the parameters of the fuzzy algorithm (3.14). The tuning method of
the fuzzy algorithm is similar to that proposed in the Section 3.2.

The tuning result is as follows:

For the linear mapping parameters:

REG; 91.2728
REG; 3.9207
REG3 -16.3810
REG4 35.0267
REG; 292.74
REGs -60.12
REGy 12.8
REGg 3222
REGy 89.36
REGjy -7.02
REGy; -37.10
REG; -20.23

Table 3.14 the linear mapping parameters of the hybrid algorithm

For the nonlinear parameters of the fuzzy algorithm (3.13)
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Membership Function

The Mean Value

The Variance Value

MF, (M) iy, =1.969 o, =9.887
MF,(M) myy =10.62 01y =973
MF;(M) my; = 47.04 05 =1.724
MF4(M) mys = 73.79 014 =3.056

Table 3.15 Nonlinear Parameters of the Fuzzy Algorithm

The consequent matrix in (3.15) is as follows:

1842 —40.58
2686 121
13313 -3045

5.141 -50.12

Although the input to the hybrid algorithm is complex (12 spatial QP’s), the tuning
process is easy comparing other algorithms. Because the human visual system weights
the video artifact in a nonlinear way, nonlinear mapping (fuzzy algorithm) should be used
to simulate the subjective ratings. But the tuning of the parameters in the fuzzy algorithm
becomes more complex with the increase of the number of the input variables. In this
algorithm, the fuzzy method is used to finish the nonlinear mapping that simulates the
subjective ratings and the linear mapping is used to reduce the number of the input

variable for the nonlinear mapping. This algorithm can be thought of the main

contribution of this thesis.

63




3.5 Simulation Result

In this section, simulation results for the fuzzy algorithms are given. In the Section 3.2,
4 QP’s are used as the input to the fuzzy algorithm. It is called four quality primitives
fuzzy algorithms(4QPFA). In the Section 3.3, 8 QP’s are used as the input to the fuzzy
algorithm. It is called eight quality primitives fuzzy algorithms(8QPFA). In the Section
3.4, 12 QP’s are used as the input to the fuzzy algorithm. It is called twelve quality
primitives fuzzy algorithms(12QPFA). The evaluation standard is the mean square error
between the results predicted by the algorithms in question and the subjective rating of
human beings. As mentioned in chapter 2, the experimental video sequences contain 12
video sequences. Each video sequences is compressed using 7 different Q factors. The
training set includes Autumn Leaves, Sailboat, Flower Garden, Mobile&Calendar, Table
Tennis, Bette Pas Bette, Susie, Ferris Wheel and the non training set includes Birches,
Football, Horseback Riding, Tempete. They are all scored subjectively by humans under
the supervision of the Communications Research Centre in Ottawa, Canada. The detail
data of the subjective ratings can refer to Table 2.2. The simulation result of linear
mapping algorithm used in many previous papers [28][34] is also compared with the
simulation result of the fuzzy algorithms (4QPFA, 8QPFA, 12QPFA) to show the

goodness of the fuzzy algorithms.

The raw simulation result of the four quality primitives fuzzy algorithm (4QPFA) is
given in the Table 3.16 and Table 3.17 for the training set and the non training set. Linear

mapping algorithm (LMA) [28, 34] using the same QP’s 1s also computed to show the
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goodness of the fuzzy algorithm. Table 3.18 is the summary of the simulation result of
the 4QPTA and LMA. It is found that the MSE between 4QPFA and the subjective
ratings is smaller than that between the LMA and the subjective rating It shows that the

4QPFA is better than the LMA [28] [34].
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Training Video Q factor Subjective 4QPFA LMA
Clips Rating 4QP’s) “Qp)

12 22 7.6791 5.3576
16 12 11.8241 10.9302
24 17.8 21.4656 23.0592
32 39.7 35.603 33.9674
Autumn Leaves 36 513 483765 39,4926
40 54.3 50.5032 44,3686
48 57.2 53.4056 51.8037

12 53 4.2175 -0.4311

16 9.3 6.8656 3.5723
24 6.5 13.3491 12.7366

Sailboat 32 10.8 20.0859 22.0971
36 14.6 24,9671 27.7183
40 26.1 31.978 32.9485
48 258 36.458 41.3257

12 8.5 1.6648 -3.6564

16 8 3.8034 -0.3008

24 10.7 8.88 7.3469
Flower Garden 32 22.7 14.586 15.4465
36 24.1 18.3881 20.2397
40 30.7 21.0629 23.7546
48 35.1 27.002 30.7212

12 0 27842 -2.0618

16 0.5 5.141 2.024
24 11.7 11.8234 13.1789
Mobile& 32 9.2 21.179 26.2755
Calendar 36 29.8 23.2242 31.8001
40 29.5 23.8911 37.3095
48 33.6 29.5698 46.4717

12 15 8.7104 6.9682

16 7.2 13.0985 13.0673
24 10.2 20.3948 22.8967
Table Tennis 32 19.6 26.8533 31.1595
36 31.1 31.6599 34.7063
40 38.7 402918 38.4116
48 36.9 43.1254 43.9466

12 1.3 2.7858 0.9563

16 8.7 6.9042 6.7837

24 18.6 13.449 16.9233

Bette Pas Bette 32 222 32.3348 26.1562
36 41.3 39.6267 31.7945
40 49.2 44.0153 38.3166
43 46.6 48.5494 47.6569

12 4.6 -2.1749 -5.8125

16 7 -0.2314 -2.3864

24 93 6.8867 7.6889
Ferris Wheet 32 21.5 15.6325 19.2595
36 355 28.9433 28.2558
40 37.3 33,8895 33.6403
48 41.6 38.7737 43.8719

12 72 7.5102 5.5006
16 15.1 11.4027 10.8457
24 11.1 19.8095 22.3056
Susie 32 31.8 20.9424 34.7172
36 53 48.99 42.9894
40 63 63.843 497104

48 70.4 72.7711 61.8353

Table 3.16 the Simulation Result calculated from the training set of the 4QPFA (4QP)
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Non-Training Q factor Subjective 4QPFA LMA
Video Clips Rating 4QP’s) “QpP)
12 45 22111 -3.8092
16 6.5 40334 -0.8586

24 7.5 8.6147 6.0992
Birches 32 8.3 12.246 11.6058
36 8.4 14.0875 14.2179
40 21.3 15.5627 16.3429
48 22.6 17.6997 19.4658

12 1.5 3.3229 2.8107
16 10.2 8.8695 10.0688
24 9.4 22.214 23.8703
Football 32 37.3 44.8374 35.2264
36 36.8 475331 40.6923
40 56.3 49.2241 45.4566
48 46.6 54.8299 55.2207

12 32 4.8684 1.5254

16 10.6 8.3327 6.4894
24 19.4 17.0874 17.8354
Horseback 32 28.8 24.9144 27.9326
Riding 36 50 29.668 32.5825
40 52.3 42.9802 37.0933

48 55.5 49.9054 43.002

12 0.6 3.9609 -0.8237

16 2.5 6.8905 3.6704

24 12.1 13.1181 12.77
Termpete 32 11.1 18.9767 21.0866
36 23.3 22.1932 25.2584

40 23.7 26.3583 29.712
48 29.8 32.994 37.6546

Table 3.17 the Simulation Result calculated from the non training set of the 4QPFA

(4QP)

The Mean Square Error between
the 4QPFA (4QP’s) and the

subjective rating

The Mean Square Error between
the LMA (4 QP’s) and the

subjective rating

Training Set 33.1433 62.35
Non Training Set 44,5922 55.20
Total 36.9596 59.97

Table 3.18 Simulation Result of 4QPFA (4 QP’s)

Figure 3.20 is the figure of the scatter plot of the output of 4QPFA versus the subjective

rating values and Figure 3.19 is the scatter plot of the output of LMA and subjective

rating values.
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Linear Output Yalue

Subjective Ratings

Figure 3.19 Scatter Plot of LM A versus Subjective Ratings (4QP’s)

Fuzzy Output value

Subjective Value

Figure 3.20 Scatter Plot of the 4QPFA versus Subjective Ratings (4 QP’s)

It is found that the scatter points in Figure 3.20 are located closer to the plot diagonals

than the scatter points in Figure 3.19. 1t also shows that the 4QPFA is better than the

LMA [28,34].
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The raw simulation result of the eight quality primitives fuzzy algorithm(8QPFA) is
given in the Table 3.19 and Table 3.20 for the training set and the non training set. Linear
mapping algorithm (LMA) [28, 34] using the same QP’s is also computed to show the
goodness of the fuzzy algorithm. Table 3.21 is the summary of the simulation result. It is
found that the MSE between 8QPFA and the subjective ratings is smaller than that
between the LMA and the subjective rating. It shows that the 8QPFA is better than the

LMA [28, 34].
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Training Video Q factor Subjective 8QPFA LMA
Clips Rating (8QP) (8QP)
12 22 4.1845 43736
16 12 9.0987 11.5744
24 17.8 20.2331 24.482
Autumn Leaves 32 39.7 38.1773 35.5958
36 51.3 49.8696 41.8894
40 54.3 56.8701 48.2408
48 57.2 57.4045 58.9729
12 53 5.3884 -2.206
16 9.3 6.7871 2.7207
24 6.5 7.3777 11.5224
Sailboat 32 10.8 13.0693 19.3997
36 14.6 18.1541 24.324
40 26.1 23.0626 29.6095
48 25.8 28.0018 38.2547
12 8.5 3.339 -5.4109
16 3 6.5972 -0.7929
24 10.7 10.9969 7.35
Flower Garden 32 22.7 17.9779 15.0359
36 24.1 24.1261 19.1655
40 30.7 30.0574 22.9071
48 35.1 352774 30.1231
12 0 3.3499 -2.8568
16 0.5 5.0817 1.9635
24 11.7 7.7008 12.3313
Mobile& 32 92 17.0621 23.6066
Calendar 36 298 23.3861 29.0787
40 29.5 29.187 34.6952
43 33.6 35.0575 44,3675
12 1.5 6.0566 6.9827
16 7.2 5.6256 14.8113
24 10.2 8.9075 23.7991
Table Tennis 32 19.6 23.8671 30.6664
36 31.1 29.588 33.8259
40 38.7 35.1114 37.238
48 36.9 38.8647 43.7267
12 1.3 1.0272 -0.0015
16 8.7 38314 6.6413
24 18.6 14.9848 17.4895
Bette Pas Bette 32 22.2 27.2824 26.0907
36 413 37.4188 31.5818
40 49.2 46.8579 37.9953
48 46.6 50.5478 48.5115
12 46 33716 -4.6019
16 7 6.5832 0.5693
24 9.3 14.4215 12.0286
Ferris Wheel 32 21.5 23.7938 22.8263
36 35.5 29.6917 30.8429
40 37.3 34.6614 37.1135
48 41.6 41.856 48.8837
12 72 11.6023 6.7404
16 15.1 12.6634 13.1043
24 11.1 13.4727 23.1897
Susie 32 31.8 29.8991 33.5437
36 53 53.1015 40.5564
40 68 69.3366 47.2837
48 70.4 69.4786 59.3911

Table 3.19 the Simulation Result calculated from the training set with the 8QPFA (8QP)
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Non-Training Q factor Subjective 4QPFA LMA
Video Clips Rating (8QP’s) (8QP)
12 45 0.8321 48141

16 6.5 2.8528 -0.8808

24 75 6.9313 8.1023
Birches 32 8.3 11.6952 15.0802
36 8.4 15.3504 18.2395

40 213 17.7176 20.834
48 22.6 20.0292 24.5762

12 15 4.8938 -3.7922

16 102 5.5873 4.0378
24 9.4 11.2253 20.1083
Football 32 37.3 35.4351 32.6444
36 36.8 42.4986 38.4074
40 56.3 50.6203 43.5657
48 46.6 472122 53.8365

12 32 73183 0.7109

16 10.6 6.5934 7.144

24 19.4 12.8653 213871

Horseback 32 28.8 36.6583 32.928
Riding 36 50 44.9739 38.0482
40 52.3 54.1415 42.8424

48 555 53.3365 48872

12 0.6 42075 -1.7478

16 25 5.9332 3.6403
24 12.1 9.7928 13.9053
Tempete 32 11.1 17.3235 22.4199
36 233 22.2933 26.5452

40 237 26.6652 30.7391

48 298 29.3363 38.093

Table 3.20 the Simulation Result calculated from the non training set with the 8QPFA

(8QP)

The Mean Square Error between
the 8QPFA (8QP’s) and the

subjective rating

The Mean Square Error between
the LMA (8QP’s) and the

subjective rating

Training Set 9.6753 57.75
Non Training Set 16.4522 46.08
Total 11.9353 53.86

Table 3.21 Simulation Result of 8QPFA (8 QP’s)

Figure 3.22 1s the figure of the scatter plot of output of 8QPFA versus the subjective

rating values and Figure 3.21 is the scatter plot of the output of LMA and subjective

rating values.
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Figure 3.21 Scatter Plot of LMA versus Subjective Ratings(8 QP’s)
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Figure 3.22 Scatter Plot of the 8QPFA( 8 QP’s) versus Subjective Ratings

It is found that the scatter points in Figure 3.22 are located closer to the plot diagonals
than the scatter points in Figure 3.21. It also shows that the EQPFA is better than the

LMA [28] [34].
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The raw simulation result of the twelve quality primitives fuzzy algorithm(12QPFA)
using the hybrid method is given in the Table 3.22 and Table 3.23 for the training set and
the non training set. Linear mapping algorithm (LMA) [28,34] using the same QP’s is
also computed to show the goodness of the fuzzy algorithm. Table 3.24 is the summary
of the simulation result. It is found that the MSE between 12QPFA and the subjective
ratings is smaller than that between the LMA and the subjective rating. It shows that the

12QPFA is better than the LMA [28, 34].
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Training Video Q factor Subjective 12QPFA LMA
Clips Rating (12QP) 120P)
12 2.2 7.8255 11.5040
16 12 12.1811 16.7227
24 17.8 28.4783 29.6898
Autumn Leaves 32 39.7 38.9244 41.8809
36 51.3 43,9097 46.9826
40 54.3 52.7322 51.5138
48 57.2 57.2384 58.9800
12 5.3 3.1216 -1.6627

16 9.3 5.5869 2.7038
24 6.5 7.5879 11.0468
Sailboat 32 10.8 13.6683 18.7515
36 14.6 18.2809 22.4247
40 26.1 23.709 26.0695
48 258 35.4031 32.8722
12 8.5 4.844] -0.2408

16 8 6.0679 3.8463
24 10.7 8.9127 11.5291
Flower Garden 32 22.7 14.8936 18.5281
36 24.1 18.0945 21.5186
40 30.7 21.4338 24.0976
48 35.1 28.5154 29.0795

12 0 -1.1058 -5.0653
16 0.5 3.3357 -1.5595

24 11.7 6.7503 93824
Mobile& 32 92 15.6 20.4805
Calendar 36 298 23.1835 26.5958
40 29.5 32.5367 32.1289
48 33.6 37.5343 41.8217

12 1.5 6.1356 48147
16 7.2 8.7932 11.4815
24 10.2 16.9088 19.7422
Table Tennis 32 19.6 23.9749 25.3623
36 31.1 26.1832 27.4751
40 38.7 28.2813 28.7975
48 36.9 38.715 35.3493

12 1.3 5.7832 2.7647

16 8.7 6.9388 8.2044
24 18.6 15.3291 18.6505
Bette Pas Bette 32 22.2 26.8777 27.7223
36 41.3 34.9993 32.4139
40 492 44.9149 37.4120
48 46.6 44,615 45.6393
12 4.6 2.8922 -2.2595

16 7 5.5649 2.0927
24 93 8.5299 11.9968
Ferris Wheel 32 21.5 21.365 23.9401
36 355 34.6361 32.0651
40 37.3 44,3256 36.7534
48 41.6 45.1905 453153

12 7.2 5.7871 5.0305
16 15.1 7.3558 11.1501
24 1.1 18.7924 23.2648
Susie 32 31.8 42.6367 37.0182
36 53 456124 47.0864
40 68 68.0258 54.5937
48 70.4 70.4115 71.2715

Table 3.22 the Simulation Result calculated from the training set with the 12QPFA (12
QP)
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Non-Training Q factor Subjective 12QPFA LMA
Video Clips Rating (12QP’s) (12QP)
12 45 4.6609 0.6085
16 6.5 5.9707 4.820
24 7.5 7.8898 12.2379
Birches 32 8.3 12.4894 19.3377
36 8.4 15.0284 22.4184
40 213 19.4503 26.2325
48 22.6 26.0362 31.8766
12 1.5 5.6935 3.6096
16 10.2 8.3652 12.2203
24 9.4 28.5663 28.9717
Football 32 37.3 37.8468 42.2153
36 36.8 472301 47.6044
40 56.3 57.323 52.7453
48 46.6 46.5654 62.3571
12 32 5.8289 44153
16 10.6 7.1998 10.5637
24 19.4 16.0357 21.3566
Horseback 32 28.8 27.612 30.3969
Riding 36 50 31.8481 33.6525
40 52.3 36.5532 36.6113
48 55.5 46.2412 41.7020
12 0.6 3.9773 -1.2340
16 2.5 5.9089 37167
24 12.1 9.0026 13.2991
Tempete 32 11.1 16.513 21.5229
36 233 21.309 25.0077
40 23.7 26.2993 28.3137
48 298 38.8357 34.7498

Table 3.23 the Simulation Result calculated from the non-training set with the 12QPFA

(12QP)

The Mean Square Error between
the 12QPFA (12QP) and the

subjective rating

The Mean Square Error between
the LMA (12QP) and the

subjective rating

Training Set 25.44 38.48
No Training Set 50.87 65.59
Total 33.92 47.52

Table 3.24 Simulation Results of 12QPFA (12 QP’s)

Figure 3.24 is the figure of the scatter plot of the output of TQPFA versus the subjective

rating values and Figure 3.23 is the scatter plot of the output of LMA and subjective

rating values.
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Figure 3.23 Scatter Plot of the LMA versus Subjective Ratings (12 QP’s)
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Figure 3.24 Scatter Plot of the 12QPFA versus Subjective Ratings (12 QP’s)

It is found that the scatter points in Figure 3.24 are located closer to the plot diagonals

than the scatter points in Figure 3.23. It also shows that the 12QPFA is better than the

LMA [28, 34].
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3.6 Conclusion

In this chapter, the Takagi-Sugeno Fuzzy Scheme is used to approximate the complex
nonlinear function that simulates the subjective ratings. From the Section 3.5, it is found
that the fuzzy algorithms (4QPFA and 8QPFA and 12QPFA) are more accurate in the
prediction of the subjective ratings than linear mapping method(LMA)[28][34]. But from
the Section 3.2, it is found that the tuning method for the parameters of the fuzzy
algorithms is very complex and time consuming. Especially, the initial parameters of the
fuzzy algorithms must be chosen arbitrarily. It is main the drawback of the fuzzy

algorithms. So further research should be done to provide the solution to this problem.
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Chapter 4

Flashing Block Artifact

4.1 Introduction

Spatial QP’s which represent spatial artifacts of video sequences have been extensively
researched [28, 31, 32] but QP’s which represent temporal artifacts have seldom been
mentioned. In this chapter, a temporal QP which represents the temporal artifacts
(flashing block) of the video sequences is described. An automatic measure of the
Flashing Block artifacts is introduced, i.e. a Flashing Block QP is introduced. This new
QP is then integrated into a fuzzy logic based QS similar to the one in the previous
chapter.

This chapter is organized as follows. In Section 4.2 the Block Flashing artifact is
described. In Section 4.3, ‘Flashing Blocks’ Detection Method(FBDM) is proposed. The
method is made up of three parts-the temporal method and the spatial frequency method
and the o ver d ark and o ver bright m ethod w hich are then combined. In Section 4.4 a
method to calculate a QP which measures the Block Flashing artifact is described. As in
Chapter 3, in Section 4.5, the T-S fuzzy scheme [36] is then used to create a QS which
this time includes the new Block Flashing QP. Section 4.6 gives simulation results.

Conclusions are found in Section 4.7.
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4.2 The Definition of the ‘Flashing Blocks’ Artifact

It is well known that lossy compression methods introduce video artifacts. In artifact
based quality measurement papers, most ({28, 31, 32]) write about spatial artifacts such
as Blocking and Ringing. In this section, a temporal artifact of video sequences —
‘Flashing Blocks’ will be described. It is found that some blocks in the frames of still
videos visibly flash when the compression ratio is high. This temporal artifact is called
‘Flashing Blocks’. To illustrate this, one ‘Flashing Blocks’ and one ‘non Flashing
Blocks’ in the flat domain and one ‘non Flashing Blocks’ in the non-flat domain are

chosen. Their spatial locations are shown in the following figure:

N on flashing block in the flat domain

Mon Hashing block iolth

Figure 4.1 Spatial Locations of ‘ lashing Blocks’ and ‘non Flashing Blocks’
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The decoded video sequences-sailboat.24.mpeq2 will be used to show the ‘Flashing
Blocks’. As mentioned in Chapter 2, these clips contain 300 frames. Each clip is
(480x720). The decoded video sequences are divided into S-T regions of 8x8x300.
There are 5400 S-T regions.

Figure.4.2 is the temporal plot of ‘Flashing Blocks’. 300 8x8 blocks in the same
‘Flashing Blocks’ spatial locations and in different frames of the decoded videos are
plotted together to show the temporal change of this ‘Flashing Blocks’. As shown in the

Figure.4.2, the blocks are plotted in raster order.

Blockl Block2

Hlanek20

Bleoki®l Block300
Figure 4.2 the Temporal Plot of the ‘Flashing Blocks’ (Spatial Domain)
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Figure 4.3 is the temporal plots of ‘Flashing Blocks’ in the DCT domain. Each DCT
coefficient of the compressed blocks shown in Figure 4.2 are plotted together to show the
temporal change of the ‘ Flashing Blocks’. In the DCT-Based plots, black means DCT

coefficients are zero and white means DCT coefficients are non zeros.

Block! Block2 Block?0

-
BlockZg0 Block300
Figure 4.3 the Temporal Plot of ‘Flashing Blocks’ (DCT Domain)
848 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
-78 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 4.1 2D DCT coefficients of the block in the first frame in Figure 4.3
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In Table 4.1, the 64 coefficients of the ‘Flashing Blocks’ from the first frame are shown.
The coefficient 848 located in the first row and the first column is a DC coefficient, while
the other coefficients are AC coefficients.

Figure 4.4 is the plots of ‘nqn Flashing Blocks’ location in the spatial flat domain. 300
data blocks from the compressed video are plotted together to show the temporal change.

The blocks are plotted in raster order.

Blockl Block2

Block20

Block280 Blodk300

Figure 4.4 the Temporal Plot the ‘non Flashing Blocks’ (Spatial flat Domain)

Figure 4.5 is the tempdral plot of the ‘non Flashing Blocks’ spatial location in the DCT
domain. Each DCT coefficient of the blocks in Figure 4.4 are plotted together to show the
temporal change of the ‘non Flashing Blocks’. In the DCT-Based plots, black means that

the DCT coefficients are zero and white means that they are non zero.
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Block! Block2 Block20

Block2g0 Block300

Figure 4.5 the Temporal Plot of the ‘non Flashing Blocks’(DCT Domain)

1624 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 4.2 2D DCT coefficients of the block in the first frame in Figure 4.5

Table 4.2 shows 64 coefficients from the block in the first frame. The coefficient 1624

located in the first row and the first column is a DC coefficient, while the other

coefficients are AC coefficients.
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Figure 4.6 is the plots of a ‘non Flashing Blocks’ location in the spatial domain. This is
for a non-flat block. 300 data blocks from the compressed video are plotted together to
show changes along the temporal axis. The blocks are plotted in raster order.

Blocki Blockd Block?0
P D ]

Blod220 Block300
Figure 4.6 the Temporal Plot of the ‘non flashing block’ (Spatial non-flat Domain)

Figure 4.7 is the temporal plot of the same ‘non flashing blocks’ location in the DCT
domain. Each DCT coefficient of the blocks in Figure 4.6 are plotted together to show the
change along the temporal axis. In the DCT-Based plots, black means that the DCT

coefficients are zero and white means that they are non zero.
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Figure.4.7 the Temporal Plot of the ‘non Flashing Blocks’ (DCT Domain)

1624 0 0 0 0 0 0 0
-96 48 0 144 0 0 0 0
57 -66 -78 0 0 0 0 0
66 0 78 0 0 0 0 0
-132 0 81 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 4.3 2D DCT coefficients of the block in the first frame in Figure 4.7
Table 4.3 shows 64 coefficients from the block in the first frame. The coefficient 1624
located in the first row and the first column is a DC coefficient, while the other
coefficients are AC coefficients.
Figures 4.2 and 4.3 indicate that differences along the temporal axis are present in
‘Flashing Blocks’. This makes sense as block flashing is a temporal artifact. On the other
hand, in Figures 4.4 and 4.5 which is a ‘non-Flashing Blocks’ there is little or no

variation along the temporal axis. Figures 4.6 and 4.7 show a different kind of ‘non-
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Flashing Blocks’. Here there is some variation along the temporal axis however the
spatial detail masks the block flashing artifact. Note that a high spatial detail block with
little or no variation along the temporal axis also results in a ‘non-Flashing Blocks’.

These observations will be used to develop a ‘Flashing Blocks’ QP in the next sections.

4.3 ‘Flashing Blocks’ Detection Method

In this section, ‘Flashing Blocks’ Detection Method (FBDM) will be introduced.
According to the conclusions obtained from the last section, it is found that the ‘Flashing
Blocks” are temporal artifact and locate in the spatial flat domain because spatial detail
masks the block flashing artifact. In [40], it is also found for the spatial domain that HVS
is sensitive to the artifacts in the middle luminance range but is not sensitive the artifacts
in the Over Dark and Over Bright domain. So ‘Flashing Blocks’ Detection Method can
be divided into three parts-The Temporal Method (TM) and The O ver D ark and O ver
Bright Method (ODOBM) and The Spatial Frequency Method (SFM). The outputs of
these methods are combined by the logic operation “and”. This FBDM can be expressed

as the following figure:

The Temporal Method

Original ¥ideo Sequence _é—

The Intersection ‘Flashing Blocks' found by

Opeartion

Automatically

The Spatial Frequency Methaod

Decoded Video Sequences
Sailboat.24.mpeg2

The Over Datk and
Ovwer Bright Method

Figure 4.8 ‘Flashing Blocks’ Detection Method
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Here three methods are used to identify ‘Flashing Blocks’. Blocks that are labeled as

‘Flashing Blocks’ by all three methods will be labeled as ‘Flashing Blocks’ by the overall

method. If the D is the set of ‘Flashing Blocks’ selected by the overall method and the

‘Flashing Blocks’ found by the TM is A and the ‘Flashing Blocks’ found by the SFM is

B and the ‘Flashing Blocks’ found by the ODOBM is C, then:

D=AnB~C “4.1)

In the next sections, the TM, and SFM and ODOBM are introduced.

4.3.1 the Temporal Method

In this section, a TM will be proposed to help locate the ‘Flashing Blocks’. The

proposed method has the following steps:

Get the difference sequence, e(x,y,n), between the original video sequence,
fo(x,y,n), and degraded video sequence, fd(x,y,n). That is, form
e(x,y,n)=fo(x,y,n)-fd(x,y,n). Here x is the spatial vertical location in the video
sequence where x=1,...,480; y is the spatial horizontal location in the video
sequence where y=1,...,720 and n is the temporal location in the video sequence
where n=1,...,300.

Divide e(x,y,n) into S-T regions (8x8x300).

For each S-T region there are three hundred 8x8 spatial blocks. Take the 2D
spatial DCT on each of these blocks.

For each S-T region label the 300 DC coefficients of each block d;, d,

d3, e ,d}()().
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e Take a length 300 DCT (along the temporal direction) of the DC coefficients d;,
dy, ds,...,d300. The result is denoted ti, ty, ts,..., t300. Here t; represents the DC

coefficient of the entire S-T region.

o Get the temporal AC energy (Re) of the 300 DC coefficients of each block in a

300
S-T region in the temporary domain. Re= Z(ti Y

i=2

If Re<Te, this S-T region is thought as a potential ‘Flashing Blocks’. The temporal
threshold (Te) is set in the Section 4.3.4.
4.3.2 The Spatial Frequency Method
Because the ‘Flashing Blocks’ artifact can be masked in areas of spatial detail, the Spatial
Frequency Method (SFM) mentioned in Section 2.4 attempts to find S-T regions that
have low spatial detail content. It is as follows:

1. Get the sobel filtered image (fd1 and fd2) of the first frame in the degraded video

sequences using the (Finite Impulse Response Linear Time Invariant) sobel filters.

Their impulse responses are:

-1 -2 -1 -1 0 1
Vertical Sobel Filter | 0 0 0 Horizon Sobel Filter | -2 0 2
1 2 1 -1 0 1

2. Get the sobel magnitude image fdm:

fdm(x,y) = fd\(x,y)? + fd2x, y) (4.2)
3. If the sobel magnitude of every pixel in a block <TIl, this block is labeled as a

potential ‘Flashing Blocks’. The value of Tl is empirically set.
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4.3.3 The Over Dark and Over Bright Method:

‘Flashing Blocks’ is most visible in the range of middle luminance. The Over Dark and

Over Bright Method(OBODM) has the following steps:

1. Get the degraded video sequence, fd(x,y,n). Here x is the spatial vertical location in the

video sequence where x=1,...,480; y is the spatial horizontal location in the video

sequence where y=1,...,720 and n is the temporal location in the video sequence where
n=1,...,300.

2. Divide fd(x,y,n) into S-T regions (8x8x300).

3. For each S-T region there are three hundred 8x8 spatial blocks. Take the 2D spatial
DCT on each of these blocks.

4. For each S-T region label the 300 DC coefficients of each block m;, m,, ms,...,msoo.

5. Take a length 300 DCT (along the temporal direction) of the DC coefficients my, my,
ma,...,M3g. The result is denoted ny, ny, n3,...,n300. Here n; represents the DC
coefficient of the entire S-T region.

If 11<n;<Ih, this S-T region is labeled as a potential ‘Flashing Blocks”. Here 1l and 1h are

empirically set.

4.3.4 Selection of the Temporal Threshold T1

The process of selecting the temporal threshold for the Temporal Method is given in
this section. The experimental video sequence is the decoded video sequence of
sailboat.24.mpeg2. These contain 300 frames and each clip has spatial dimensions

480x720.
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In setting the temporal threshold the thresholds of the SFM and the ODOBM are held
constant. The parameter Te in the TM is varied and the results of the overall ‘Flashing
Blocks’ Detection Method(FBDM) are examined. In this examination the concept of miss
and false alarm are used from detection theory[39]. A missed block is an S-T region that
truly has the ‘Flashing Blocks’ artifact but that FBDM does not label as a ‘Flashing
Blocks’. A false alarm block is a S-T region that does not have the ‘Flashing Blocks’
artifact but that FBDM labels as a ‘Flashing Blocks’. To use these concepts, it is
necessary to obtain a “true” labeling of each S-T region as either a ‘Flashing Blocks’ or a
‘non Flashing Blocks’. To this end, two individuals (graduate students including this
author) viewed the decoded video sequence independently. S-T regions that both
observers labeled as ‘Flashing Blocks’ are taken as true ‘Flashing Blocks’. All other S-T
regions are labeled as ‘non-Flashing Blocks’. The true ‘Flashing Blocks’ are shown

outlined in red in Figure 4.9.
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Figure 4.9 Spatial Locations of the ‘Flashing Blocks’ found by eyes

The true ‘Flashing Blocks’ are called ‘Flashing Blocks’ found by eyes. The following

standard quantities are defined:

number of mussed flashing blocks

Miss Rate = (4.3)
rumber of 'lashing blocks found by eye'

number of false alarm flashing blocks

False Alarm Rate = “@.4)
mmber of total blocks-mumber of ‘lashing blocks found by eye'

By using different temporal thresholds, the false alarm rates and the miss rates are

computed, shown in Table 4.4 and plotted in Figure 4.10.
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1398

1741

762

105

0.16

Temporal The number of [ The number of | The number of The number of | False Alarm Miss Rate
Threshold ‘Flashing Blocks’ ‘Flashing Blocks’ { False Alarm blocks Miss blocks Rate
found by FBDM found by Eye
Te
150 750 741 211 190 0.0453 0.256
130 920 741 336 167 0.072 0.23
120 1020 741 447 153 0.096 0.21
115 1150 741 556 138 0.12 0.19

0.14

95

85 1506 741 854 90 0.18 0.12
75 1588 741 923 75 0.19 0.1
65 1682 741 1002 60 0.22 0.08
50 1784 741 1083 40 0.23 0.05

Table 4.4 ‘Flashing Blocké’ found by eye and FBDM (the threshold for the SFM is

T1=400 and the threshold for the ODOBM is 11=50 and 1h=220)
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O 0.05 0.1 0.156 0.2 0.25

False Alarm Rate

relationship curve between the False Alarm Rate and the Miss rate

Figure 4.10 the
r the SFM is T1=400 and the threshold for the ODOBM 1s 11=50

(the threshold fo
and 1h=220)

The point marked A (Te) is selected as giving a good trade-off between false alarm and

miss rates and will be used in simulations in the remainder of this chapter.

4.4 Method to compute the ‘Flashing Blocks’ QP

After locating the ‘Flashing Blocks’ using FBDM, a QP denoted T must be developed.

The procedure of generating T could be expressed using Figure 4.11:
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The Temporal Method 7
Driginal Video Sequence

i~ The Intersection

'Flashing Blocks' found by

Opeartion

Automatically

A4

4 The Spatial Frequency Method

Decoded Video Sequences

Sailaoat 24 mpsg2 The Over Datk and

Over Bright Method

NV

T Generate the QP's for the
< ‘flashing block'

Figure 4.11 the Procedure for generating the QP (T) for the ‘Flashing Blocks’ artifact
The QP for the ‘Flashing Blocks’ artifact is computed as follows:

T Number of Flashing Blocks' found by automatically
Mumber of total blocks

(4.8)

The QP T is used to represent the temporal ‘Flashing Blocks’ artifact of the video
sequence. The QP (T) combined with the spatial QP’s should be used as the input to the

fuzzy system that estimates the Mean Score Value of subjective observation.

4.5. Fuzzy Model Using Temporal Artifacts as the Input

In this section, a nonlinear mapping will be used to combine the spatial and temporal
QP’s of the video sequences to simulate the perception of human beings. The spatial
QP’s are the same as the QP’s that were used in Chapter 3. It can be divided into two
parts —8 QP’s and 12 QP’s. Because this nonlinear mapping is very complex, a fuzzy

algorithm will be used to approximate the nonlinear mappings
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4.5.1 Fuzzy Models with 4+1 QP’s

In this section, four sp atial QP’s (xy, X, X3, X4) defined inthe Section 3.2 and one
temporal QP obtained from the last section (T) will be used as the input to the T-S fuzzy
system used for non linear mapping whose goal is to reflect the Mean Opinion Score of
the subjective evaluation. Define x=[x; X, X3 X4 T]. Similarly to Chapter 3, the proposed

fuzzy algorithm is as follows:
If the x, is big and x; is small and x3 is small and x4 is small and T is big, then
Joini(x)
If the x; is small and x; is big and x3 is big and x4 1s big and T is small, then
Joiny(x)

This fuzzy metric can be divided into two parts: the premise part (if section) and the

consequent part (then section) and can be described mathematically as:

Join(x)= 2‘2“;2‘_(:2‘“():)1'(") = éNormali (x)join,(x)  (4.9)
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Figure 4.12 Figure of the Fuzzy Algorithm (4.9)

where join;(x) is the output o f the c onsequent p art and normali(x) is the output o fthe
premise part. The Sum of the product (joini(x) xNormal;(x)) of the output of the premise
part and the consequent part is the output of the fuzzy system-Join(x). The detailed
description of this fuzzy algorithm and the parameter tuning of this algorithm is similar to

Section 3.2, readers can refer to it.
4.5.2 Fuzzy Model with 8+1QP’s

In this section, 8 spatial QP’s defined in Table 2.4 (x;, 1=1..8)(flat and non-flat)
combining Wolf’s and Bistawhi’s method and one temporal QP’s (T) will be used as the
input to the fuzzy system. Define x=[x; X2 X3 X4 X5 X6 X7 X3 T]. The proposed fuzzy

algorithm is as follows:
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If the x; 1s small and X, is small and x5 is small and x4 is small and x5 is small and ¢

is small and x7 1s small and xg is small and T 1s small, Then

Join(x)

If the x; is big and x; is big and x3 is big and X4 is big and x5 is big and X¢ 1s big and
X7 1s big and xg is big and T is small, Then

Joiny(x)

This fuzzy metric can be divided into two parts: the premise part (if section) and the

consequent part (then section) and can be described in mathematically as follow forms:

Toin= Zi=Bi(x)ioin; (x)

v2 B, (x) =2 Normal, (x)join, (x) (4.10)

The following figure is used to express (4.10)

Mormal l(x)
|
Premise  Part

—8

3

Join(x)

Consequent Part

joinglx)

Figure 4.13 Figure of the Fuzzy Metric
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where join(x) (i=1..2) is the output of the consequent part and Normali(x) (1=1,2) is the
output of the premise part. The Sum of the product (joini(x) xNormal;(x)) of the output of
the premise part and the consequent part is the output of the fuzzy system-Join(x). The
detailed description of this fuzzy algorithm and the parameter tuning of this algorithm is

similar to Section 3.3 and readers can refer to it.

4.5.3 Fuzzy Model with 12+1 QP’s

As in Section 3.4, for the twelve QP’s defined in Table.2.5 which are represented as x;,
i=1..12 and one temporal QP (T), the algorithm combining linear mapping and fuzzy
algorithm is used. This algorithm is divided into two parts: At first, the linear mapping
method is used to get the input of the fuzzy system. Then the fuzzy method is used to get
the final result. This method will give a simpler algorithm comparing with other
algorithms similar to Equations 4.9 and 4.10. Assume the output of the linear mapping is
M, then the following steps can be obtained:

1.

12
M=ZREGixi +REG,,T;

i=1
REG; i=1..13 is linear parameters produced by linear regression.
2.
If M is very small
Then join (M)
If M is small

Then joiny,(M)
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If M is big

Then joinz(M)

If M is very big

Then joins(M)

The second part (fuzzy algorithm) can be expressed in mathematically as follows:

Y1 MF, (M)j"i“i (M) =
T MF;(M)

Join(M)= # ; Normal; (M )join; (M) (4.11)

The following figure can be used to express this hybrid algorithm:

H orma}l(M)
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Linear Iiormaf </)\
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ol ¥ N Qik
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~ :; B fﬁ”}////ﬁ\@wf
* V Conseqpert Part | ;0.0 ¢ - " >
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Figure 4.14 Figure of the Hybrid Algorithm
where join;(M) (i=1,2) is the output of the consequent part and Normal;(M) (1=1,2) is the
output of the premise part.. The Sum of the product (joini(M) xNormali(M)) of the output
of the premise part and the consequent part is the output of the fuzzy system-Join(M).
The detailed description of this fuzzy algorithm and the parameter tuning of this

algorithm is similar to Section 3.4, and readers can refer to it.
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4.6 Simulation Result of Fuzzy Algorithms

In this section, the simulation results of the fuzzy algorithms that include the temporal
QP (T) will be shown. The fuzzy algorithms that have the same spatial QP’s but do not
include T will also be shown as a reference. The fuzzy algorithm that includes four
spatial QP’s and T is called 4QPFAT. It has the same spatial QP’s as the fuzzy algorithm
(4QPFA) defined in Section 3.5. The fuzzy algorithm that includes eight spatial QP’s and
T is called 8QPFAT. It has the same spatial QP’s as the fuzzy algorithm (8QPFA)
defined in Section 3.5. For the fuzzy algorithm that includes twelve spatial QP’s and T is
called 12QPFAT. It has the same spatial QP’s as the fuzzy algorithm (12QPFA) defined
in Section 3.5. The figure of merit is the mean square error between the results predicted
by the fuzzy algorithms and the subjective rating of human beings. The training set and

non training set of the video sequences are the same as those mentioned in Section 3.5.

Table 4.5 summarizes the simulation results for 4QPFAT and 4QPFA. It is found that
the MSE between 4QPFAT and the subjective ratings is smaller than that between the
4QPFA and the subjective rating. This indicates that the temporal QP (T) contributes to

the enhancement of Quality Scores.

4QPFAT 4QPFA

Training Set 22.8 33.14
Non Training Set 24.5 44.59
Total 23.6 36.96

Table 4.5 Mean Square Error (MSE) between the given Quality Score (4QPFAT and
4QPFA) and the subjective rating values
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Figure 4.15 is the scatter plot of 4QPFAT versus the subjective rating values, while

Figure 4.16 is the scatter plot of 4QPFA and subjective rating values.

Fuzzy Output Value

Subjective Yalue

Figure 4.15 Scatter Plot of the Output of the 4QPFAT versus Subjective Rating Values

F uzzy Outputvalue

AR

Subjective Vaue

Figure 4.16 Scatter Plot of the Output of the 4QPFA versus Subjective Rating Values
It is found that the scatter points in Figure 4.15 are located closer to the plot diagonals
than the scatter points in Figure 4.16. This further indicates that T contributes to the

enhancement of the Quality Score.
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Table 4.6 summarizes the simulation results for 8QPFAT and 8QPFA. It is found that

the MSE between 8QPFAT and the subjective ratings is smaller than that between the

FQPFA and the subjective rating. This indicates that the temporal QP’s (T) contributes to

the enhancement of Quality Scores.

8QPFAT 8QPFA
Training Set 9.17 9.68
Non Training Set 13.85 16.46
Total 10.74 11.94

Table.4.6 Mean Square Error (MSE) between the given Quality Score (S8QPFAT

and 8QPFA) and the subjective rating values

Figure 4.17 is the scatter plot of 8QPFAT versus the subjective rating values, while

Figure 4.18 is the scatter plot of 8QPFA and subjective rating values.
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Figure 4.17 Scatter Plot of the Output of the 8QPFAT versus Subjective Rating Values

Fuzzy Output Value

Subjective Value

Figure 4.18 Scatter Plot of the Output of the 8QPFA versus Subjective Rating Values

It is found that the scatter points in Figure 4.17 are located closer to the plot diagonals

than the scatter points in Figure 4.18. This further indicates that T contributes to the

enhancement of the Quality Score.
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Table 4.7 summarizes the simulation results for 12QPFAT and 12QPFA. It is found that

the MSE between 12QPFAT and the subjective ratings is smaller than that between the

12QPFA and the subjective rating. This indicates that the temporal QP (T) contributes to

the enhancement of Quality Scores.

12QPFAT 12QPFA
Training Set 27.59 25.44
Non Training Set 46.17 50.87
Total 33.79 33.92

Table 4.7 Mean Square Error (MSE) between the given Quality
Score (12QPFAT and 12QPFA) and the subjective rating values

Figure 4.19 is the scatter plot of 12QPFAT versus the subjective rating values and Figure

4.20 is the scatter plot of 12QPFA versus the subjective rating values.

9. bjective \Hue

Figure 4.19 Scatter Plot of the Output of the 12QPFAT versus Subjective Rating Values
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Fuzzy Output Value

Subjective Value

Figure 4.20 Scatter Plot of the Output of the 12QPFA versus Subjective Rating Values
It is found that the scatter points in Figure 4.19 are located closer to the plot diagonals

than the scatter points in Figure 4.20. This further indicates that T contributes to the

enhancement of the Quality Score.

4.7 Conclusions:

In this chapter, a new temporal artifact-“flashing block” is introduced. Intuitively the
addition of a temporal Quality Primitive to measure this artifact should enhance Quality

Scores. This is borne out by the simulation results presented in this chapter.
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Chapter 5

Conclusions and Further Research

5.1 Contributions

This thesis presents a method using Fuzzy Logic to automatically estimate the subjective
ratings that human users would assign to video which has been compressed. The
framework followed is to create Quality Primitives that estimate particular artifacts
commonly created by compression and then creating an equation or mapping to translate
them into an appropriate Quality Score. The main contributions of this work are as

follows:

o  Using Fuzzy Logic to do the Nonlinear Mapping of Quality Primitives to a
Quality Score
Simulation results show that this strategy is successful.
o  Define a Quality Primitive to measure the ‘Flashing Blocks’ artifact
The ‘Flashing Blocks’ is an artifact that differs from other three artifacts
previously defined (i.e., Blocking, Ringing and Blurring). It is a temporal
artifact found in video rather than a spatial artifact like the others.
5.2 Conclusions
Given the simulation results it is apparent that a linear mapping of the Quality
Primitives is not sufficient to capture the complexity of the Human Visual System. The
improvement found by using a mapping based on Fuzzy Logic indicates that non-linear

mappings offer potential to improve performance.
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Similarly, the improvement in performance of Quality Scores that use a Quality

Primitive that is temporal in nature (rather than solely spatial) indicates that temporal

artifacts play an important part in human perception. For compressed video the Block

Flashing artifact examined here was clearly important. In the context of degradations

other than those caused by compression, temporal artifacts and Quality Primitives that

measure them, should also be considered.

5.3 Further Research

In order to achieve better impairments detection and measurement, and to reach a video

quality rating that is highly correlated with subjective measurements results, the

following tasks are recommended in the future:

Other frameworks for generating Non-Linear Mappings should be explored.
Because the ‘Flashing Blocks’ is a new temporal artifact, more research work
need to be done to refine the methods to locate ‘Flashing Blocks’ and to reduce
the difference between the ‘Flashing Blocks’ found by automatically and the
‘Flashing Blocks’ found by human beings.

Extension of this framework to degradations other than those caused by
compressions should be explored.

Quality Primitives for temporal artifacts other than ‘Flashing Blocks’ (both with
compression degradation and other types of degradation) should be investigated.
The test sequences should not be limited on MPEG-2, but rather be extended to
MPEG-1 and MPEG-4 video sequences. Here, the automatic metric may directly

measure MPEG-1 and MPEG-4 video without any modification.
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