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ABSTRACT

Compression of long-term EEG using power spectral density
Tarun Madan

Continuous long-term electroencephalogram (cEEG) has been shown to be extremely
valuable in monitoring patients whose brain function may be in jeopardy, particularly in
the neurological intensive care unit (NICU). Since cEEG monitoring can last from days
to weeks, the amount of data generated can become unwieldy and methods that can help
in the review process are necessary. Recently, a technique that compresses several hours
of cEEG has been presented. The compressed summary includes a graph showing the
temporal evolution of the different patterns in the cEEG along with their representative
samples presented in the traditional EEG display format. This technique is based on
segmentation and classification using a set of features called the generic features consisting
of the amplitude, frequency, and frequency-weighted energy. Because the generic features
used in this method are not always optimal, our aim in this thesis is to incorporate an
alternative feature set in the above cEEG compression method. Specifically, in this thesis
we propose a set of features based on power spectral density, referred to as the spectral
features. Different methods are proposed to classify the segments that are parameterized
with these features. We also propose a method, referred to as the hisfogram technique,
to find the required initial seeds for the k-means clustering algorithm used to classify
the segments. The performance of the existing classification scheme and the proposed
classification methods are evaluated using sleep EEG on an epoch-to-epoch basis. For
this purpose, we use two matrices namely, the epoch cluster-sieep stage matrix and the
agreement matrix. Based on eight full-night sleep EEG records, our results indicate that
the average classification is improved by six percent with the use of the spectral features
over that with the generic features. Furthermore, the average classification performance is

improved by approximately one percent with the proposed histogram technique compared

it



to that with the technique used in the literature. We also present the application of the
compressed cEEG results for an eighteen-hour NICU cEEG recording of a patient in stafus
epilepticus. The compressed results show that the spectral features can identify certain
changes in the given NICU cEEG recording, which are not identified using the generic
features. On the basis of our analysis, it can be concluded that the proposed method using
the spectral features can provide an improved performance over that using the generic

features.
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INTRODUCTION

Electroencephalogram can provide a generalized view of the complex neurological activities
inside the brain. Applications such as sleep staging and epilepsy monitoring require the
recording of the electroencephalogram (EEG) for durations extending from a few minutes
to a few hours or even days, generating a huge set of data. In neurological intensive
care units, the long-term EEG can provide information about the ensuing abnormalities
well in advance of clinical manifestations, thus providing a window of time during which
corrective action can be taken, before irreversible brain damage can occur.

Visual analysis of the EEG by a reviewer requires a lot of time and the analysis depends
to a great extent on the reviewer’s expertise and experience. Thus, the visual analysis
of the EEG is subjective. Further, it is not feasible to manually keep a continuous vigil
on long-term EEG for changes. These limitations cause the neurologists to refrain from
the frequent usage of long-term continuous EEG recording. To énceurage the usage of
long-term EEG monitoring by the clinicians, we need to develop computer-based systems
that can present the long-term EEG in a simplified compressed format.

In this chapter, we discuss the basics of the EEG and the requirement of computer-based
methods to compress continuous long-term EEG. A brief overview of the literature related

to various computer-based methods for the compression of long-term EEG i1s also provided.



1.1

An EEG is a recording of the electric potentials generated by nerve cells in the brain
and 1s measured using electrodes that are placed either intracranially or extracranially.
The recorded signals reflect the potential differences between the two electrodes, caused
by the flow of ionic currents through the tissue surrounding the electrically active brain
cells. An EEG recording consists of various channels and each channel represents the
amplified potential difference between the two electrodes. The potential difference is
primarily recorded in two formats : (1) Referential or Monopolar and (2} Bipolar. The
referential recording determines the potential differences with respect to a single common
electrode and hence, makes it possible to compare the amplitude of the signals recorded at
the different electrodes. A bipolar recording determines the potential differences between
the pairs of electrodes and is useful in noise environments as it nullifies the effect of noise.
A block diagram representation of a two-channel EEG recording in referential and bipolar
formats is shown in Figure 1.1. The placement or configuration of the channels in the EEG
record is termed montage. Figure 1.2 shows a sample from the EEG, recorded in bipolar
format.

EEG waveform has various patterns that differ in frequency, amplitude or duration of
occurrence. Every waveform is a result of an activity in the brain and can be considered
as a pattern. A pattern may be short-lasting or may occur for a sustained duration of time.
Typical examples of transient or short-lasting activity are sleep spindles (bursts of EEG
activity of 12-14 Hz waves lasting 0.5-1.5 seconds with amplitudes generally less than
501V ) or K-complexes (EEG activity with a frequency less than 0.5 Hz and duration less
than 0.5 second). The patterns occurring for sustained duration constitute the background

activity.
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formats. (a) Referential montage (b) Bipolar montage

e L

:  Gofy Molsgs TemScele Channels Flters Buents Tosk
i " ¥ 2008 wWiom 5
L Mswbage 2 O 1529
L ety e bie
. T _
R T TS R ‘Z g AT og g "%;!fb“ e

%//

el

R Mf‘{w{w’fﬁ‘%ﬁ%ﬁ%}@&wﬂw
.,"’ﬁ‘"f”\‘éﬂu&wﬂwﬁ%@ﬁﬁ*@j%wjﬁg@ﬁﬁ?ﬁ},ﬁ?@gﬁﬂ@%ﬂéj&,{ﬁ%ﬁ%@% el dpsagyanpdidianti «}Wé#,,a,@%m@

T R T R T

g .
.

| . S—
b Ao B i e o bbb

L oy Agtinadidheo oty Pl ndpaeigiviopedodedyd

gty Sk

Mm*wf‘wmwﬂv'wwwéyﬁgu g gt guigabm ot g

firlptieiphy

g;ﬁv~m~mf“¢g’ e N Sy A P gt

/¢ g
sy

Figure 1.2: Sample of bipolar EEG recording in the circumferential montage.



During sleep, the brain goes through different states repeatedly. Each state is represented
by an EEG pattern that is sustained in time. These different states of the brain present an
example of background activity. Typically, short-lasting patterns occurring continuously
can also be considered as a background activity. For example, continuous seizure activity
can be considered as a background activity. In applications such as sleep staging or epilepsy
monitoring in neurological intensive care unit (NICU) or monitoring the effect of medication,
the BEG is generally categorized in the frequency range 0.1Hz to 35Hz. The most commonly

used frequency bands are shown in Table 1.1.

Table 1.1: Classical Bands of EEG

SPECTRAL BAND | FREQUENCY (HZ)
Delta (9) 0.25-4
Theta (6) 4-8
Alpha (a) 8-12
Sigma (o) 12-15
Betal (54) 15-24
Beta2 (8;) 24-36

1.2 CONTINUOUS LONG-TERM MONITORING OF EEG

The EEG allows the reviewers to map electrical impulses across the cortex and observe
changes over time. It can show the state of the brain during sleep, wakefulness, sedation
or epileptic activity because of the characteristic EEG patterns associated with these states.
The duration of the EEG recording varies with the pathology in question. It can be either
short (approximately 30 minutes [2]) or of a longer duration that can span weeks. The
continuous long-term EEG (cEEG) monitoring is typically used to study the epileptic
activity like spikes and seizures for pre-surgical evaluation, and provides information in
localizing the regions of the brain that generate epileptic activity [3]. Certain biological
cycles such as those of sleep or fluctuations in dominant frequencies of EEG, may be readily

detected with cEEG monitoring.



Further, EEG can play a vital role in patient management. For example, by using
the appropriate electrode placements and montages, the EEG abnormalities detected at
the scalp can provide useful inferences about the disease localization [4]. The cEEG
monitoring in the NICU can provide information about the ensuing brain abnormalities well
in advance of clinical manifestations, thus providing a window of time in which corrective
action can be taken prior to any irreversible brain damage [3, 5]. For example, in case of
cerebral ischemia, the EEG becomes suppressed with a decline in the cerebral blood flow
well ahead of irreversible brain tissue injury, i.e., EEG becomes substantially suppressed
in amplitude with a decline in cerebral blood flow ranging from 2 to 30 ml/100g/min [6].
Since reversible damage occurs at flows of 10-12 mi/100g/min [6], changes in the EEG can
provide early indication of the cerebral ischemia.

Quantitative analysis of cEEG can also give some useful information about the changes
in the brain. For example, quantitative cEEG shows that the variability of the power in the
alpha (8-12 Hz) band declines in conjunction with vasospasm! and later returns to excellent
or good variability as the blood flow velocities return to normal. In the study given in [7],
it has been observed that for over 70% patients considered, the variability in the alpha
band monitored using cEEG predicted vasospasm before the commonly used transcranial
doppler ultrasound did.

For the patients in NICU, the ¢cEEG can play an important role in analyzing the effect
of treatment on the brain. Patients in NICU may be therapeutically paralyzed and serial
neurologic examination (clinical examinations) even when performed conscientiously are
discontinuous and may miss important evolving changes in the patient’s condition. On the
other hand, the cEEG monitoring being continuous can provide information on the evolving
changes in the brain in response to the treatment. For patients in deep coma, the study of
the changes in the EEG activity may be the only change noted with stable clinical findings

(8L

1Yasospasm is a narrowing of the cerebral arteries, which reduce the blood flow to the brain.




1.3

ANUAL REVIEW OF E

Presently, in most laboratories the EEG is reviewed manually. The reviewer visually
examines the EEG, section by section or page by page, and using the rules for the pathology
in question makes judgment about the recording. For example, to identify the different
states of the brain in sleep, the reviewer examines the EEG in 20-second epochs along with
other signals like electrooculogram (EOG), electromyogram (EMG), electrokardiogram
(EKG) and scores it with a sleep stage as defined by internationally accepted Rechtschaffen
and Kales (R&K) sleep classification rules [9]. Visual analysis requires an enormous
amount of time by the reviewer. Also, the rules defined for reviewing are not based on
strict quantitative measures and thus, even under the best circumstances, the analysis by
expert personnel is subjective. The analysis of the same EEG by different reviewers may
be in discord. For example, the comparison of visual scoring of two healthy subjects in
10 sleep laboratories in Japan showed an average inter-scorer agreement of only 67-75.3%

[10].

1.4 COMPRESSION OF CEEG

As discussed in the previous sections, the cEEG monitoring in NICU can provide vital
information about the patient and can even allow for corrective actions to be taken before
irreversible brain damage can occur. Also, cEEG monitoring can play an important role
in various applications like postoperative progress and monitoring the progress of patients
with head injury or stroke [11, 12, 13]. Since the cEEG monitoring generates extensive
data, cEEG review requires an enormous amount of neurclogist’s time. Further, the analysis
depends on his expertise :cmd experience. Also, it is not feasible to manually keep a
continuous vigil on the cEEG for changes. There is always a possibility of missing the onset
of abnormalities by the staff. These limitations restrain the clinicians from the frequent use

of ¢cEEG monitoring for diagnostic purposes.



To encourage the clinicians to use the cEEG monitoring, we need to provide tools that
can assist them in the analysis of the cEEG with minimal effort and still obtain similar or
improved degree of diagnosis over manual analysis. We need to develop computer-based
systems, which can aid in assessing the ¢cEEG and present the information in a simple
compressed format. Such techniques for the compression of the cEEG do not aim to replace
the manual analysis, but rather to supplement the review process by providing a bird’s eye
view of the functionality of the brain. The compressed results, if presented in a format
that can be easily understood by the NICU staff (typically non-EEG specialists with little
or no knowledge of EEG), can help the NICU staff to identify possible evolving structural
abnormalities. Such compression techniques can search for patterns with relative changes
and do not require any a priori information about the data in question. This enables in the
detection of evolving patterns or states of the brain that are not easily recognized during
the initial manual analysis.

Various computer-based techniques for the compression of cEEG have been proposed
in the literature [1, 14, 15, 16, 18]. A simple method to analyze and present the cEEG is
the trend analysis [14]. Depending on the brain pathology to be monitored, the features
for the segments of the EEG are calculated. The temporal profile of these features gives an
indication of the variation in the EEG. Labar ef al. [14] has shown that the trend analysis
of the total power or alpha ratio reveals changes with subarachnoid hemorrhage prior to
clinical manifestations. Bickford ef al. [15] introduced the compressed spectral array
(CSA) that represents the results of sequential power spectral density estimates of digitized
EEG over time in an array format, i.e., the power spectrum is calculated using the fixed
length EEG segments and displayed in a waterfali-type of graph. Bricolo er al. [8] used
the CSA in the long-term continuous monitoring of comatose patients to obtain a temporal
profile of the brain states of the patienis.

Another technique followed for the compression divides the cEEG into quasi-stationary

segments. These segments are then evaluated for their characteristic features and accordingly



grouped together using the various clustering methods. In the process, the segments with
artifacts are removed. One such method was proposed by Creutzfeldt ef al. [16] using
adaptive segmentation based on the autocorrelation method [17]. The segments formed are
clustered in a feature space spanned by the mean frequency and logarithm of the power in
the segments. Local maxima are identified as clusters. A temporal profile of different
clusters along with the frequency and amplitude of spectral peak of the representative
segments are presented to the reviewer. As reported by the authors [16], certain background
EEG recordings considered in the study were represented by a number of clusters that are
not optimal compared to the actual patterns in the EEGs. Also, it is mentioned that for
long-term EEG monitoring, the performance of the method can degrade because of the
absence of clear maxima or minima.

A method for the compression of the cEEG, which is similar to the method given by
Creutzfeldt et al. [16] was suggested by Vladimir ef al. [18]. The EEG is divided into
segments using adaptive segmentation based on the autocorrelation function [17]. Each
segment is parameterized by a set of features: average amplitude, variability of the segment
amplitude, the maximum positive and negative values in the segment, and amplitudes in
delta, theta, alpha, and beta spectral bands. Depending on these features, segments are
clustered into different groups using fuzzy-c means clustering algorithm [19]. Each cluster
is color coded, i.e., all the segments of a single cluster are assigned the same color, but
different from the segments of the other clusters. The color coding allows the different
EEG patterns to be identified easily from the graphical presentation. This approach has the
drawback that the segmentation is performed for individual channels resulting in segments
that are not time locked (i.e., the segment boundaries are not synchronized across all
channels). Thus, at a given time instant the corresponding segment in the various channels
may not represent the same type of pattern or cluster, increasing the complexity in reviewing.
The number of fuzzy clusters is also fixed initially and these may or may not differentiate

all the patterns present in the data set. Moreover, the segmentation criterion used does not



perform well for the cEEG [20].

The methods described above [14, 135, 16, 18] generally require training and experience
for proper interpretation of the compressed cEEG. None of these techniques have been
clinically accepted. A few years ago, Agarwal ef al. [1] suggesied a new method for
the compression of the cEEG. It relies on the observation that the background activity
in the cEEG usually consists of different patterns that are recurrent, and summarizes the
cEEG recording using a simple bar chart with different colors. The temporal profile of
the colors depicts the temporal profile of the different EEG patterns that may be present.
Based on Teager’s non-linear energy operator (NLEO) [38], a simultaneous multi-channel
segmentation procedure was used in [1]. The segments are characterized by three features
(referred to as the generic features) - amplitude, dominant rhythm, and frequency-weighted
energy. Segments with similar features are grouped into clusters using an iterative method
based on the k-means clustering algorithm. The results of compression are displayed as a
color-coded temporal profile bar-graph. Along with the temporal profile, a representative
sample of actual-EEG for each pattern type is provided. Since the reviewer is already
experienced in reading the actual-EEG, the use of the actual-EEG epochs in the compressed
results simplifies the review process. Thus, minimal training is required for identifying the

relative changes.

1.5 SCOPE OF THESIS

The method proposed by Agarwal er al. in [1] for the compression of the cEEG uses
the generic features - amplitude, frequency-weighted energy, and dominant rhythm to
parameterize the segments for compression. These features have only limited information
about the amplitude and frequency of the signal. During manual analysis of the EEG,
the EEGer (EEGer is a person who interprets the EEG) requires a good understanding of

the frequency and amplitude of the signal. Moreover, the complete spectral content of the



signal is inherently used by the reviewer for reviewing. Hence, we expect the features based
on a wider information about the frequencies of the EEG to provide a better description of
the segments and to give improved compression results. We propose to replace the generic
features with features based on the power spectral density, henceforth, referred to as the
spectral features, as the basic descriptors of the segment in the compression framework
proposed by Agarwal et al.

The classification algorithm proposed in [1] was designed based on the generic features
and thus, may not work optimally with the proposed spectral features. Hence, we propose
a new technigue for the classification of the segments using the spectral features. We also
propose a generalized histogram-based technique, henceforth referred to as the histogram
technique, to replace the the technique given in [1], henceforth referred to as the temporal
technique used to calculate the initial seeds? required for the k-means clustering algorithm.

In order to compare the performance of the spectral features and the generic features in
the compression framework, we evaluate them in terms of their ability to form homogeneous
clusters that can provide clinically meaningful information. A methodology is designed to
compare the clusters formed with the different manually determined states of the brain
during sleep. For this purpose, we use two matrices, viz, the epoch cluster-sleep stage

matrix and the agreement matrix.

UTLINEOF T

SIS

In Chapter 2, we first give a description of a some techniques existing in the literature for the
various blocks in the compression framework, viz, segmentation, artifact rejection, feature
extraction and classification. The second part of this chapter explains in detail the method
presented by Agarwal ef al. [1] for the compression of the long-term EEG. We describe the

techniques used for multi-channel segmentation, rejection of the segments contaminated

2The k-means clustering algorithm requires a set of data points, which is used as the centroids of the
probable clusters present in the data set under consideration. These data points are called as initial seeds.
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with artifacts, calculation of the generic features to parameterize the segments, classification:
of the segments based on the iterative k-means clustering algorithm, and display of the
compressed results.

In Chapter 3, we propose a method for the compression of the cEEG, which is similar to
the method by Agarwal ef al. given in[1]. We propose to use the spectral features to replace
the generic features used in [1]. Different classification methods are proposed to cluster
the segments which are parameterized using the spectral features. Histogram technique is
proposed to calculate the initial seeds for the k-means clustering . In the second part of this
chapter, we explain the methodology followed to compare the performance of the different
compression methods using two matrices, namely, the epoch cluster-sleep stage matrix and
the agreement matrix.

Chapter 4 discusses the performance of the method presented in [1] using the generic
features and the proposed method using the spectral features for the compression of the
cEEG. We explain the advantages of the proposed method using the compressed cEEG
results of eight different full-night sleep EEG recordings. In Chapter 5, we present an
application of the compressed cEEG with the neurological intensive care cEEG recording
of a patient in status epilepticus. A comparison between the onset and offset of the various
patterns as shown by the compressed cEEG and the clinical information provided by the
physician is given in this chapter. Finally, in Chapter 6 we give a summary of the contributions

in this thesis and provide guidelines for some future work in the area.
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The technique for the compression of the cEEG consists of four basic blocks - segmentation,
feature extraction, artifact rejection and classification. In this chapter, we first present a
brief overview of the literature related to the different blocks in the compression technique.
Since our work is based on the methodology followed by Agarwal et al. [1] for the
compression of the cEEG, we explain it in detail in the last section of this chapter.

The goal of the cEEG compression techniques is to present a summary of the cEEG to
assist the review process. It provides a bird’s eye view of the different activities during the
¢EEG monitoring, which otherwise can take enormous amount of time for review. Further,
it allows the reviewer to easily identify the relative changes in the cEEG. A block diagram
for the compression of the cEEG is shown in Figure 2.1.

The first block is Segmentation. EEG is assumed to be composed of stationary segments
of variable length. For example, a single EEG record might have slow waves of small
duration, rhythmic bursts (like seizures, spindies, and k-complexes) or ongoing patterns
that differ in duration (like transition from wakefulness with eyes closed to wakefulness
with eyes open). EEG is analyzed in stationary segments where it appears to be unchanging.
The segments are created by drawing boundaries at time instants corresponding to the

changes in amplitude and/or frequency content of the signal.
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Results

Figure 2.1: Block diagram for the compression of cEEG

During the manual review, the reviewer analyzes the EEG on the basis of its features like
frequency, amplitude and duration of the different patterns. He/she accordingly differentiates
between the normal and abnormal EEG activity. In accordance to this, a set of features is
selected to parameterize each EEG segment. This is the role of the second block in the
compression technique - the Feature Extraction block in Figure 2.1. The selection of these
features is dependant on the application in question. For example, monitoring during drug
titration, the power in the alpha band or the power in the different frequency bands may
be relevant, whereas in epilepsy monitoring the power in the different frequency bands,
information about the duration, amplitude and frequency may be needed.

EEG is presumed to represent only the cerebral activity, but it also includes other
electrical activities that are not of cerebral origin. These signals are undesirable and are
considered to be artifacts. The presence of these artifacts can severely degrade the
performance of the compression method and thus, must be removed. Hence, the need for
the third block - the Artifact Rejection block in Figure 2.1.

The fourth block in Figure 2.1 is called Classification. By using the features that
parameterize each segment, segments with similar features are grouped together. This
allows the identification of the different patterns present in the data set and can be used to
provide a temporal view of the occurrence of each pattern in the data. Finally, the summary
of the temporal profile of the different patterns in the data set is presented to the reviewer.

In the following sections we provide an overview of the different techniques available

in the literature for each of the blocks in Figure 2.1.
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2.1 SEGMENTATION

As mentioned earlier, the EEG is divided into quasi-stationary segments by drawing bound-
aries at time instants corresponding to the changes in the amplitude and/or frequency
content of the signal. There are two basic types of segmentation techniques available -
fixed point and adaptive. In the fixed-point technique, the data is divided into fixed length
segments, whereas in the adaptive segmentation, the segments are created when there is a
change in the EEG pattern. The adaptive segmentation results in variable length segments.

In the literature, various methods have been suggested for the adaptive segmentation
of the EEG. Most of the methods are based on a common scheme - features are extracted
from an initial reference section of the EEG and continuously compared with those of
the subsequent EEG (i.e., the EEG in a sliding test window). A segment boundary is
declared, if this difference exceeds a predefined threshold. Once the segment has been
established, the reference window is placed just adjacent to the segment boundary and
entire process starts again. Figure 2.2 shows the commonly used segmentation procedure.
The EEGs in the reference and the sliding windows are compared to detect the boundaries

for segmentation.

EEG

N g

Reference Window Shiding Window

Figure 2.2: Commonly used segmentation technique

2.1.1 PARAMETRIC MODEL

An adaptive segmentation method based on an autoregressive filter was suggested by

Bondenstein ef al. [21]. The EEG in the moving test window is passed through an
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eighth-order autoregressive filter, whose coefficients [ar(0), ... ar (p)]" are determined from
the auto-correlation function of the EEG in the reference window. The prediction error e(?#),

gives an estimate of the difference between the spectral content of the two windows :

e(t) = ap(k)s(t— k)

k=0
where s(¢) is the EEG in the test window. The spectral error measure d(t), is given by

=[5 -1 {Ef)

k=0

where
ik

re(k,t) =Y e(i)e(i+k)

i=t—L+1
When d(t) exceeds the predetermined threshold, a signal boundary is placed at the centre
of current test window.

Michael and Houchin [17] suggested calculating the autocorrelation function of the
EEGs in the reference and the temporal sliding windows. Differences in the spectral power
were determined from the zero lag point of the two autocorrelation functions. The distance
measure d(f) based on autocorrelation is calculated from the normalized measures based
on the energy difference and spectral distance. If d, is the threshold value of the distance

measure, then d(t) > d, indicates a segment boundary.

2.1.2 GENERALIZED LIKELIHOOD RATIO

A segmentation algorithm based on generalized likelihood ratio test was proposed by Appel
and Brandt [22]. In this method, prediction error quantities in three windows - reference
window (growing till a boundary is detected), test window of fixed length L, and a pooled
window formed by concatenation of the two windows are calculated. From these values, the

distance measure d; (¢) is calculated. Assuming a normal distribution of the EEG, d; (%) is
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the generalized log-likelihood-ratio test statistics. If d; (¢) crosses the threshold, a segment
boundary is created at that instant.

This method requires larger number of numerical computations compared to the methods
based on parametric models, Also, when applied in a scenario of multi-channel EEG

segmentation, it results in non-synchronous segment boundaries across the different channels.

2.2 ARTIFACT REJECTION

As mentioned earlier, the EEG is presumed to represent only the cerebral activity, but
may have unavoidable signals, which are considered as artifacts. The artifacts may be
physiological or non-physiological. The physiological artifacts are signals originating from
the patient, but from sources other than brain. These can include EKG, EOG, muscle
contractions of neck, forehead, blinking, coughing, and swallowing. The non-physiological
artifacts originate from the electrodes or switch contacts of other devices or external signals
such as the 60 Hz interference. Moreover, any pattern or signal not needed for a given
application is considered as an artifact. The brain signal of interest for background cEEG
monitoring consists of patterns that occur for sustained durations and the presence of
transients like spikes or seizures can also be considered to be artifacts.

In the computer-based ¢cEEG analysis that are based on classification algorithms, it is
extremely important to remove the segments with artifacts, which otherwise can severely
degrade the performance of the classification methods. There always exists a trade-off
between the performance of the computer-based system and the scheme for artifact removal.
If the artifact rejection strategies are made very stringent, we are bound to lose a significant
amount of the vital data. On the other hand, it can degrade the performance of the system
by allowing the artifacts to contaminate the vital data. The selection of the technique for
the automated artifact removal is based on the application in question. In the literature,

various techniques for automatic detection and elimination of the EEG artifacts have been
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presented. Some of the technigues are discussed in the following subsections.

2.2.1 FREQUENCY AND AMPLITUDE

The electromyogram (EMG) activity is the electrical activity of the muscle fibers. It is
typically a high frequency activity. Thus, a low pass filter with a cut-off frequency around
15 H z can make the artifact contaminated EEG segments free of the EMG artifacts [23, 24].
In an application of seizure detection, a low-pass filter of 25 Hz was used to eliminate
the artifact due to the EMG [25]; it was argued that during the contractions of the scalp
muscles, most of the energy of EMG activity is above 15 — 20 H z. The rhythmic activity
of the seizures typically has a fundamental frequency lower than 25 Hz . Therefore, the
total elimination of activity above 25 Hz would eliminate most of the EMG activity with a
minimal risk of eliminating rhythmic cerebral activity.

For normal healthy subjects, the EEG amplitude is typically in the range of 20~100 'V,
whereas the EKG has an amplitude in the order of mV. The relative high energy of the
EKG may have a pronounced effect on the EEG. Many techniques have been described in
the literature to remove this artifact. Nakamura et al. [26] has proposed the segmentation
of the EKG-contaminated EEG synchronously with respect to the R-peaks of the EKG. The

average across the segments, when subtracted from the raw series, results in a clean-EEG.

2.2.2 NEURAL NETWORKS

Concept based on neural network has been used for the separation of artifact contaminated
segments and the EEG segments. The network learns a certain mapping from the set of
realization examples, which can later be used to classify the segments. For example, Ahn
et al. [27] have suggested a multi-layer perceptron-based classifier to separate the artifact
contaminated segments. It consists of three layers: an input layer, a hidden layer and an
output layer. The learning data set is classified into three classes: good quality, middle

quality and artifact. Depending on the input segment, the network assigns it to one of
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the three classes. The performance of the network is determined by several factors, like
error allowance in the learning process, values assigned to the target layer, training data
set, and threshold applied in the decision rule. Since neural network based technigues
require a priori information about the different classes that are possible with the training
set, they cannot be used in the computer-based EEG analysis methods that have no a priori

information available about the data in question.

2.2.3 INDEPENDENT COMPONENT ANALYSIS

Tzyy et al. [28] proposed an approach based on independent component analysis (ICA) for
the artifact rejection in the EEG. The ICA approach assumes a linear mixing of the signals
from statistically independent sources at the sensors and uses spatial filters to recover these
sources. Sources such as the brain, heart, and eye movement generators are assumed to be
independent. Hence, using ICA it is possible to separate the activities from these sources.
ICA resolves the recorded EEG into various components and by visual examination, the
components corresponding to artifacts are identified and excluded in the reconstruction of
the signal. The resulting reconstructed EEG is free of the artifacts. The major disadvantage
with ICA is that it requires visual inspection of the components in order to select the artifact
components to be removed. This requires time and thus, is not a feasible technique to be

used for the artifact rejection in the computer-based EEG analysis methods.

2.3 FEATURES

The selection of features for the classification of segments is based on the application in
question. Some of the features used in the analysis of the EEG for different applications

are summarized in the following subsections.
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2.3.1 PARAMETRIC MODEL

Autoregressive (AR) parameters are used for spectral estimation. AR models have been
demonstrated to successfully model the EEG. Thus, the coefficients of the AR model can
serve as features to parameterize the segments. The use of the AR model was exemplified
by Tsoi ef al. [30]. They used the coefficients of the 8" order AR model, computed using
the Yule-Walker equations, to differentiate between the different psychiatric disorders,
In another application, to monitor the depth of anesthesia, AR coefficients of the EEG
segments (2 seconds duration) were used as features to construct a classification scheme
[31]. The basic drawback with the AR model is that it requires a priori information about
the data set to select the appropriate order of the AR model, and this is not always available.
Further, in the cEEG monitoring the computation of the AR model for each segment will

result in high computational complexity.

2.3.2 HJORTH PARAMETERS

In 1970, Hjorth [32] introduced three parameters to describe the EEG in the time domain.
The first parameter m; is the mean power representing the activity of the signal s. The
second parameter my called the mobility is an estimate of the frequency and the third
parameter mg gives an estimate of the bandwidth of the signal. The three parameter are

defined as
my = O’g

— O
m2-—;§

my = ;24
where o? is the variance of the signal s, o, the standard deviation of first derivative of
the signal, and o4y the standard deviation of the second derivative of the signal. Since the
calculation of the Hjorth parameters is based on the variance of the data, the computational

cost of this method is less compared to the other methods.

Vourkas ef al. [33] used the Hjorth parameters as features to discriminate between
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three mental tasks - baseline (epochs with eyes closed), math 1 (addition and subtraction
with dictation under eyes closed) and math 2 (repetitive simple subtraction). In another
application involving epileptic seizures, Wu and Gotman [34] used the Hjorth parameters

along with other features for segmentation and classification of the EEG.

2.3.3 WAVELET TRANSFORMATION

During EEG analysis, the reviewer is interested in the temporal profile of the frequency
content of the EEG. Wavelet provides the joint time-frequency information of the data
set. In discrete wavelet transform (DWT), the signal is decomposed using a series of
high and low pass filters. The original signal is divided into high and low bands and
the low frequency signal is again divided into high and low bands. The number of times
this is performed is known as the level of decomposition. The output of the low pass
filter is known as approximation and that of the output of high pass filter as detail. The
approximation and detail components provide information about the signal in different
bands. The definition of each band is dependent on the level of decomposition and the
sampling rate of the EEG signal.

In brain tumor diagnosis, for classifying the region of the brain with lesions, Karameh
et al. [35] expanded the EEG signal using wavelets. It was proposed that the absolute mean
and the number of zero-crossings of the approximation and details at different levels can
be used as characteristics features for the brain tumor diagnosis. In another application,
Stephane ef al. [36] used the Daubechies wavelet for decomposition and concluded that
by comparing the probability distribution function of the wavelet coefficients of the detail
band (32Hz - 64 Hz) before and after the administration of the drug, the hypnotic state of

the anesthetized person can be assessed.

20



2.4

CLASSIFICATION

Classification refers to the process of separating the data set into different groups based on
certain features. The key property to evaluate the performance of a classification technique
is its ability to form homogeneous groups, i.e., all the members in the respective group
should have similar features but different from the other groups.

The clustering techniques can be divided into two types; hierarchical and partitional.
Hierarchical clustering arranges the data into nested sequence of groups, whereas partitional
clustering generates partitions of data in order to recover the different groups that may be
present in the data set [37].

The k-means algorithm is a partitional clustering method ([37] and the references
therein). In k-means, the data points are assigned or partitioned into one of the K clusters
so that the degree of association (generally euclidean distance) of a member with respect to
the cluster centroid is minimized, while the distance between any pair of cluster centroids
is maximized. The k-means algorithm is an iterative procedure. It starts with an initial
partition of the data points by assigning them to their nearest possible cluster. The centroids
of the initial set of probable clusters are termed as initial seed points. The initial seed points
can be the first K data points or K points determined from a matrix defined by the data
set. Subsequently, with each iteration, the data points are reassigned to a cluster such that
the degree of association between the members and the cluster centroid is minimized. For
each iteration, the centroids of the clusters formed in the previous iteration are used as the
seed points.

The computer-based EEG analysis system classifies the segments of the EEG such that
each group represents one type of the brain activity. The results of the classification can

later be used to formulate a clinically-relevant evaluation.



2.5 A RECENT METHOD FOR COMPRESSION OF CEE(

The recent method for the compression of the cEEG used by Agarwal ef al. in [1] is
based on the idea that the background ¢EEG has patterns which are sustained in time and
repetitive in nature. It involves 4 basic steps: segmentation, feature extraction, classification,
and display of results. The non-stationary EEG is first broken down into segments by
adaptive segmentation based on the Teager’s non linear energy operator (NLEO) [38]. Each
segment is parameterized with the generic features: amplitude, frequency and frequency
weighted energy. The segments with similar features are grouped into various clusters
using an iterative method based on the k-means clustering algorithm [39]. The artifact
contaminated segments are removed by applying the artifact or outlier removal methods at
several stages. Figure 2.3 shows the block diagram representation of the method given in

[1]. The details of the different blocks are provided in following subsections.

2.5.1 SEGMENTATION

During the review of the EEG, the neurologist is interested in the onsets and offsets of the
various thythms in the EEG. The metrics based on the frequency and the amplitude are
typically used to quantify the rhythms. Thus, a measure that varies with the changes in
the frequency and amplitude of the EEG can be used for adaptive segmentation. Since
the output of Teager’s NLEO [38] is a function of the frequency and/or the amplitude, the
method used in [1] uses this operator for multi-channel adaptive segmentation {20]. Details
of the NLEO can be found in Appendix A. The output of the NLEO is termed frequency
weighted energy (FWE). Algorithm 2.1 describes the overall segmentation procedure used
in [1]. A sliding temporal window of a predefined length as shown in Figure 2.4 is used to
detect the segment boundaries. At the time instant when the difference between the sums
of the FWEs in the left and right halves of the window is greater than an adaptive threshold,

a segment boundary is defined.
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Figure 2.3: Block diagram for the compression of the cEEG as suggested by Agarwal es
al. [1}

23



ALGORITHM 2.1:

MULTI-CHANNEL SEGMENTATION BASED ON NLEO

STEP I

STEP II:

STEP III:
STEP IV:

STEP V:

STEP VL.

Consider a channel from the given duration of EEG, z(n), and calculate
the FWE defined as

FWE = Ulz(n)] = 2(n — Dz(n —2) — z(n)z(n - 3)

The segment boundaries are detected by sliding a temporal window
over U [z(n)]. At any time instant n, the window has 2N samples, N
samples to the left and N samples to the right of instant n. The sum
of the FWEs in the left half of the window is subtracted from that in
the right half of the window to generate the segmentation criterion,
GnLgo(n):

Gnipo(n) = mnye U(m) — Lt ¥ (m)

Repeat Steps I and I, for all the P channels under consideration.

Add the Gy rgo values of all the P channels.

Grpo = Giieo + -Giiro

To remove the spurious peaks in the segmentation criterion, a threshold
based on window length L is applied.

T(n) =maz(Girpoln—%:n+%) n=%(5+1), ..

The time instant of the local maxima of G(n) is used to find the
segment boundary, where
Gnieo(n) if Gireo(n) 2 T(n)

0 if Ghreo(n) <T(n)
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Temporal Window

Figure 2.4: Placement of temporal window for the generation of the segmentation criterion
for segmentation based on the NLEQG. At any instant n, there are N samples on the either
side of the instant n.

Figure 2.5 shows the different stages of the method. An example of Channel 1 EEG to
be segmented is shown in part (a). The corresponding FWE is shown in part (b). The sum
of the FWEs in the left half of the window is subtracted from that in the right half of the

window to generate the segmentation criterion, G go(n), as shown in part (c).
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Figure 2.5: Different stages of process for segmentation using the NLEO. (a) Example
of Channel 1 EEG to be segmented. (b) Corresponding FWE (c¢) Segmentation Criterion
(G Lpo): difference between the FWEs in the right and the left halves of the temporal
window.



The performance of the segmentation method is dependent on two main parameters, namely,
the temporal window length (2N samples) and the window length L used to calculate the
threshold. The temporal window length is chosen depending on the application of the
resulting segments. It must be long enough such that a rational measure of the FWE can be
obtained, while being short enough to represent the shortest segment expected. There exists
a trade-off between a good measure of energy and the expected minimum segment length.
If the window length is chosen too small, then the subtle changes in the EEG generates
segment boundaries; on the other hand, if the temporal window length is made to include
a large number of samples, then the segmentation becomes coarse. The window length L
chosen for the calculation of the threshold T determines the sensitivity of the method. By
increasing L, the threshold becomes coarse and the number of segments are reduced, and
vice-versa.

It was argued by Agarwal ef al. in [20] that the segmentation based on the NLEO is
more effective compared to the segmentation based on the parametric models [17, 21] (see
Section 2.1 for details) and requires a significantly reduced numerical calculation.

Moreover, the technique in [1] is applicable to multi-channel segmentation. If the EEG
recording has more than one channel and each channel is segmented independently using
the segmentation criterion from the respective channel, the non-synchronized segment
boundaries are created across different channels. This will make it more complex to
study the patterns that exist in the different channels. The multi-channel segmentation
uses the segmentation criterion from all the channels. It results in synchronous segment
boundaries across all channels. Since during the clinical review, all the channels are
reviewed simultaneously, multi-channel segmentation may yield groups that are clinically
more relevant compared to the groups formed with single-channel segmentation. Figure
2.6(a) shows the results of segmentation when the segmentation criterion from each channel
is used independently to create the segment boundaries in the respective channel. The

classification based on the characteristic features of the respective segments yields the
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clusters labeled above the traces. Segment S1 and 83 of Channel 1 have features similar to
those for Segment S4 of Channel 2. Hence, these segments belong to Cluster A. Similarly,
Segments S2 and S5 belongs to Cluster B. During multi-channel segmentation, the
segmentation criterion from both the channels are used simultaneously. The resulting
segment boundaries are shown in Figure 2.6(b). The multi-channel segmentation creates
synchronous segment boundaries across both the channels, which allows the features from
both the channels of Segment S3 to be considered simultaneously. Although the activity
in Channel 1 of $3 is similar to that of activity in S1 and activity in Channel 2 of 83 is
similar to that in S2, but when both the channels are considered together, S3 represents a

new activity that belongs to a new Cluster C.
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Figure 2.6: Classification of the segments (a) when the segmentation criterion from each
channel is used independently, and (b) when the segmentation criterion from all the
channels is used collectively (multi-channel segmentation).



The background activity during the cEEG monitoring is assumed to be stationary for
least 3 seconds [20]. Thus, the minimum length of a segment was selected as 3 seconds.
The temporal window length of 2.5 seconds (i.e., 1.25 seconds on each side of each time
instant) and a length L of 1.5 seconds have been used in [1]. To increase the speed of
segmentation procedure, the sliding temporal window is moved in steps of 5 samples along

the signal.

2.5.2 ARTIFACT REMOVAL

The strategies used in artifact removal are multi-staged and implemented at various points
in the complete compression method.

Since in general signals with amplitude greater than 3001V are not considered to be of
cerebral origin [1], any segment with a maximum absolute amplitude greater than 300uV
is considered as artifact and neglected from further analysis.

EEG can sometimes be contaminated by EMG. A segment contaminated with EMG
is expected to have a high energy compared to an EMG-free segment. Segments with
relative high energy can be considered to be artifact contaminated. To find these segments,
an adaptive artifact rejection method based on the output of the NLEO was suggested by
Agarwal et al. [1]. For different segments in each channel, the histogram of the FWE,
feature is constructed. It is argued that most of the segments will not be contaminated
with EMG and therefore, will represent the dominant mode in the histogram. However,
due to the relatively large energy of the EMG compared to that of the EEG, the segments
contaminated with EMG will lie at the high end of the histogram. Removal of the segments
corresponding to high energy can yield an effective artifact removal strategy. The procedure

is defined in Algorithm 2.2.
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ALGORITHM 2.2:

ARTIFACT REJECTION IN EACH CHANNEL

STEP L

STEP II:

Determine the histogram for the FWESs of all the segments using 100

equally spaced bins.
Seti=1 (i=1t0 10)

STEP ila:

Set range =1

Find the number of segments (M) with FWE in the bins -
(100-range*5 : 100).

If M < N(i), range = range + 1

Goto STEP 1la. (for range = 1 to 20)

If M > N(i), range = range - 1

The segments in bins (100-range*5 : 100) can be neglected as

artifacts.

STEP 11b:

Goto STEP Hig, [ = i+l

The threshold for the number of segments to be rejected is adaptive and depends on the

data set. For each channel, it varies with iteration i . The threshold is calculated as:

N(i) = {0.005 % (1 — (i — 1) % 0.1) * (number of segments) + 0.5}
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Figure 2.7 shows the histogram of the FWE of a single channel for all the segments
in a data set. The density of the values in the left side of the histogram corresponds to
the FWE of the EMG-free segments, whereas the points towards the right side marked
"ouiliers’ depicts the high FWE of the likely EMG-contaminated segments and therefore

are removed.

Numuher of SeZments sy

OUTLIERS

Y W . i '

300 0 [ ew ]
FWE =t~

Figure 2.7: An example showing the distribution of the FWE of all the segments in Channel
F3, subject A. The FWE values away from the majority (towards the right of the distribution
and marked ’outliers”) represents the high FWE of the likely EMG-contaminated segments
that are removed.

2.5.3 FEATURES
GENERIC FEATURES

Amplitude and frequency are inherently used during visual examination of the EEG. Hence,
the generic features, namely, measure of the amplitude, measure of the dominant thythm,

and measure of the energy have been used in [ 1] to parameterize each segment. The average
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of the absolute amplitude has been used as a measure of the amplitude of the segment.
Based on a second order autoregressive model, a measure to estimate the dominant rhythm
of each segment has been used. The pole frequency of the second order AR model that best
models the segment was used as an estimate of the dominant rhythm. In the cases where
more than one rhythm may be present, the second order AR model represents a compromise
of the two rhythms. Energy, the third feature, was calculated from the output of the NLEO
[38]. Since the output of the NLEQ, termed as FWE, varies with the change in the frequency
or amplitude of the signal, it was reasoned that the FWE can be considered to provide a
combined measure for the frequency and amplitude of the EEG (refer to Appendix A for

details). The mean of the FWE of each segment was used as a measure of the energy.

2.54 CLASSIFICATION

The classification technique as suggested in [1] is a three stage procedure, which revolves
around iterative clustering. Figure 2.8 shows the three stages of the complete classification
technique. In the first stage, the features of each segment are scaled such that all features
span the same range of feature space. The scaled features are used to define vectors, termed
feature vectors, that parameterize each segment. The feature vectors are used to classify
the segments using the k-means clustering algorithm. The k-means clustering requires an
initial selection of a set of points to be used as the centroids of the clusters around which
the clustering is performed. The points are called as the initial seeds and are determined in
the second stage. Initially a set of K feature vectors greater than the required K initial
seeds are chosen. With these K; feature vectors as the initial seeds, the k-means clustering
is performed. The resulting clusters are merged until Ky, clusters are left. Subsequently,
the centroids of the clusters formed in the previous step are used as the Ky initial seeds for

final k-means clustering in the third stage.
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FEATURE VECTOR

Each channel in a segment is parameterized by the generic features (set of 3 features) and
each segment is defined by a 1 x 3P feature vector, where P is the number of channels in
the segment.

Let Segment S consists of two channels, the first channel defined by features {Al, 7,
E!} and the second by {AZ, f2, B2}, where A, £, and E are the average absolute amplitude,
dominant rhythm, and FWE, respectively. Then, S is parameterized by the feature vector,
FV, = {Al, fLEL, A% f2 EZ?} such that s represents Segment S and the superscripts 1

and 2 represents the channel numbers of Segment 5.

SCALING

The generic features consist of a set of features that represent amplitude, frequency and
energy of the EEG signal. These features span different ranges of the feature space. For
example, amplitude can be in the range 0 — 300 £V and frequency in the range 0 — 30 Hz.
The k-means clustering algorithm assigns each feature vector (or data point) to the different
clusters depending on the euclidean distance between the feature vector and the centroids
of the clusters around which clustering is performed. The euclidean distance weighs each
feature equally. If the absolute values of the features in a feature vector are not in the same
range, the resulting euclidean distance will be dominated by the feature(s) with the higher
range of values. In these cases, the clustering would be based mostly on the information
from the feature(s) with the higher values and the feature(s) with lower range of values
become insignificant. This can degrade the performance of the classification technigue.
Hence, it is required to have a scaling method to bring all the features in to the same range.
It was proposed in [1] to scale the individual features as explained in Algorithm 2.3. The

feature vectors with the scaled features are used as the data points during classification.
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ALGORITHM 2.3:SCALING OF GENERIC FEATURES

STEPI: Consider a feature F';, and find its maximum in the complete data set,
Maz;. 1=1,2,3.
Maz; = mazimum (F;},j=1 ... number of segments.

STEP II: Calculate MazAll = mazimum(Maz;)

STEP HI: Scaled feature, Fy; = (MaxAll/Maz;) x Fy

INITIAL SEEDS

To determine the initial seeds, a methodology, henceforth referred to as the temporal
technique was used in [1]. In this technique, first a large number of feature vectors K
(K; > K;) are selected from all the K, feature vectors at equally spaced time intervals
in the cEEG recording. It is argued in [1] that for the cEEG recording with the repeating
patterns, the feature vectors spaced in the time can provide a good sampling of the various
EEG types present in the data set. Next, the K feature vectors are iteratively merged until
the K feature vectors are left. A description of the merging process is explained later
in this section. With the K feature vectors as the initial seeds, the k-means clustering
is performed. Since for the background cEEG monitoring the short duration patterns are
not of significant interest, any cluster with members fewer than the prespecified number
are considered to represent the short duration patterns in the EEG and therefore rejected
from further analysis. The remaining clusters are divided into two groups depending on
their average inter-cluster distance (ICD) (see Figure 2.9), where ICD is defined as the
euclidean distance between the centroids of the two clusters. This is done to isolate the
clusters that are far away from the majority of the clusters and to reduce the effect of any

outlying cluster in the cluster merging process. The clusters are merged iteratively until the
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Cluster Z,

Figure 2.9: A set of three clusters - X, Y and Z is shown. The beld dot in each cluster
represents the centroid of the respective cluster. JCDxy represents the distance between
the centroids of cluster X and cluster Y and D; represents the distance between the i
segment and the centroid of the cluster to which it belongs.

required number of K (K < K;) clusters remain. With the centroids of these Ky clusters

as the initial seeds, the final k-means clustering is performed. The complete procedure for

the classification is described in Algorithm 2.4.

CLUSTER MERGING

To explain the technique used in [1] to merge two clusters, we consider two clusters, viz,
Cluster X and Cluster V. Let the centroid of Cluster X have a feature vector F'Vx =
{AL, f¥, B, A%, %, E%} and that of Cluster Y be the feature vector F'Vy = {AL fL EL,
A%,, 12, E%,} Let IC Dy be the euclidean distance between the centroids of clusters X
and V', and TCD, be the average of the inter-cluster distances between all unique pair of

centroids,

ICD, = average {ICDo + ICDy3 + ... +ICDxy} XY =1toN, X #Y

where N is the number of clusters and JC Dy is the euclidean distance between the

centroids of the two clusters.



ALGORITHM 2.4: CLASSIFICATION BASED ON ITERATIVE K-MEANS CLUSTERING

ALGORITHM

STEPL:
STEP IL:
STEP IIL:

STEP IV

STEP V:

STEP VI
STEP VII:

STEP VIIL

Calculate K initial seeds for clustering.

Cluster using k-means algorithm.

Clusters with member elements less than 0.5% of the total number of
segments in the data set are marked as artifacts and are not considered in
further analysis

For each cluster, say X, calculate the average of the inter-cluster distances
ICDx:

ICDx= ICDX1+101?{,534{....+10DXY, X, Y=1to K;, X#Y

IC Dxy= euclidean distance between the centroids of Cluster X and
Cluster Y.
Divide the clusters into two groups
Group 1: Clusters with ICDx<ICD + 2 o1¢cp
Group 2: Clusters with ICDx>T1CD +2 o1op
where ICD = average {ICD; + ...+ ICDy + ...+ ICDx}
o1op= standard deviation {ICDy + ... +ICDx}
X =1k,
In each of the two groups formed, merge the clusters.
If the number of clusters in both the groups combined is greater than the
required K clusters, the clusters are iteratively merged until the required
K clusters are left.
Use the centroids of these new clusters as the initial seeds to perform the

final k-means clustering.
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If the distance IO Dxy < TinergelC Dy, then the clusters X and YV are merged and the

resulting Cluster Z has the centroid with the feature vector given as

A+ Ay i+ ER+EY
S L

where Tperge 15 a constant used to define the percentage of the average distance /C D to
be used as the threshold to decide the degree of similarity between clusters. Tierge= 0.4

was experimentally determined to be adequate in {1].

2.5.5 DISPLAY

An EEG analysis method is effective only if it can present the information to the clinicians
in a clinically relevant manner. In [1], a temporal profile of the different clusters in a
compressed format is provided to the reviewer to assist him during the EEG analysis. The
different clusters are color coded to represent the various pattern types. By examining
the temporal evolution of the different patterns types, the neurologist can get a bird’s eye
view of the evolution of the various patterns for a full-night recording. For example, in
sleep analysis the temporal profile of the different colors can provide information about the
transition of the brain through the different states of sleep and their duration of occurrence
in the night. Any abnormality will result in a distribution of colors different from the
expected ones and can be easily identified by the reviewer. Figure 2.10 shows a compressed
temporal profile for a 60-minute EEG block. Each color represents a different type of

activity and white represents the occurrence of artifacts.

CLUSTER REPRESENTATION

The key advantage of the method in [1] is the ability of the reviewer to understand the
results with no specialized training. This is due to the fact that along with the temporal

profile of the patterns in the cEEG, a representative segment of the aciual-EEG recording
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of each cluster is also provided to the reviewer. These representative segments provide an
indication of the members in the respective cluster and can be considered as a legend for
reading the different patterns in the temporal profile.

In a cluster, the centroid is minimum euclidean distance apart from all the members
and can provide the best example of the activity in its members. Since the method for
classification described in Algorithm 2.4 merges the clusters or segments at different stages,
it is possible that the centroid of a cluster will not represent feature vector of any specific
segment. To overcome this limitation, the segment with its feature vector nearest to the
centroid and with a predefined minimum length is selected as the representative segment.
The steps followed are shown in Algorithm 2.5. The minimum length of the representative
segment should be significant for later visual analysis by the reviewer. For example,
in sleep analysis the representative segment should be 20 seconds long, so that during
the analysis of the compressed cEEG by the reviewer, the representative segment of the
different clusters could be associated with the sleep stages (as most sleep laboratories use
20 second epochs to mark sleep stages). For background cEEG monitoring in the NICU,
any epoch of duration of less than three seconds may not be clinically relevant [1]. Thus,
the minimum length of the representative segment can be chosen to be three seconds as

done in [1]. Figure 2.10 shows three different representative segments.

2.6 SUMMARY

The method for the compression of the cEEG has four major blocks, namely, segmentation,
artifact rejection, feature extraction, and classification. In first part of this chapter, we
provided an overview of the different techniques in the literature for these different blocks.
In second part of this chapter, we presented the method given in [1] for the compression
of the ¢cEEG recording. The techniques used in [1] for the multi-channel segmentation,

artifact rejection, and the classification of the EEG segments parameterized with the generic
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ALGORITHM 2.5: T0 FIND THE REPRESENTATIVE SEGMENT FOR EACH CLUSTER

STEPI: Calculate the intra-cluster distance D;, between all the members and
the centroid of the respective cluster. i = 1 to n, where n is the
number of segments in the respective cluster.

STEP II: Calculate the mean of D; (D) and the standard deviation of D; (op)

STEP IiL: Find the segment having the minimum euclidean distance d between
its feature vector and the centroid. The segment should have a length
greater than the predefined minimum length.

{fj —-op<d< D+ UD}(refer Figure 2.11).
STEPIV: If no segment with the minimum predefined length is found, than the

segment nearest to the centroid is selected.

Figure 2.11: The distribution of the intra-cluster distance, D, for the respective cluster. D
and o p represents the mean and the standard deviation of the D .
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features were explained. Also, an example of the compressed results for a 60 minutes cEEG

recording, using the method given in [1], was provided.
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L OPOSED

In Chapter 2, we described the computer-based method of Agarwal er al. [1] for the
compression of the background cEEG. We observed that the generic features provide a
limited information about the EEG. Hence, if we can replace the generic features with
features that provide a more detailed information about the EEG, then we may be able to
achieve a better classification of the EEG segments resulting in improved compression.

In this chapter, we present a method for the compression of the cEEG. Figure 3.1
shows the block diagram of the proposed method for the compression of the cEEG. The
basic blocks of the method are similar to those used in the compression method of [1].
We replace the generic features with a set of new features, referred to as the spectral
features. As the spectral features differ from the generic features, it is necessary to modify
the classification technique given in [1]. Different classification methods are proposed to
classify the segments parameterized with the spectral features. We compare the proposed
compression methods against the compression method given in [1, 6] using the background
cEEG recording for sleep application. For this purpose, two matrices, namely, the epoch

cluster-sleep stage matrix and the agreement matrix are used.
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Figure 3.1: Block diagram of the proposed method for compression of the cEEG.
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The measures used to calculate the generic features in [1] provide limited information about
the signal characteristics. In day-to-day practice, the rules used by the reviewer tc classify
the different types of the EEG patterns are based on the information about the frequency
and amplitude variations of the EEG segment. For most applications, the EEG is analyzed
based on its spectral information across various frequency bands. In the literature, features
based on spectral composition have been extensively used as descriptors of the EEG for
many applications [40, 41, 42].

During sleep, the brain cycles through several repetitive states that can be readily
mapped to different patterns in the cEEG. Hence, the features used to differentiate the
EEG patterns during sleep may be used to parameterize the cEEG segments. The R&K
sleep classification rules [9] use information about the power spectral distribution as well
as other information to differentiate the different patterns in the sleep EEG. For example,
the EEG of an alert person with eyes closed will have high alpha activity (7 — 11 Hz)
and beta activity (15 H z or more) compared to deep sleep that has dominant delta activity
(0.25—3 H z). The use of spectral analysis for classifying different states of the brain during
sleep has been exemplified by various researchers. Johnsen ef al. [43] have used spectral
analysis to characterize the visually selected epochs from different sleep stages. Larsen ef
al. [44] evaluated these features with multiple regression and multiple discriminant analysis
and concluded that spectral analysis can be used to classify the sleep EEG. Osvaldo et al.
[45] used the power in delta and alpha bands along with the EMG and the EOG for analysis
and automatic classification of sleep stages.

We propose to use the features based on the power spectral distribution to parameterize
the segments for the compression technique. Since the spectral features cover information
in a wider frequency range, we expect them to provide a better differentiation among the

cEBEG segments. Hence, an improvement in the compression results is expected.
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CALCULATION OF SPECTRAL FEATURES

To calculate the spectral features, the spectral content of the EEG is divided into different
frequency bands. Table 3.1 shows the definitions of the different frequency-bands used.

We calculate the spectral features for each channel of each segment independently using

the fast Fourier transform (FFT).

Table 3.1: Frequency bands to calculate the spectral features

SPECTRAL BAND | FREQUENCY (Hz)
Delta (4) 0.25-4
Theta (6) 4,25-8
Alpha () 8.25-12
Sigma (o) 12.25-15
Betal (5;) 15.25-24
Beta2 ([s) 24.25-36

The power spectral density, P, is calculated as:

1 *
P = = X(NX*(f

where X (f)is the FFT of z(n), a channel of the EEG in a given segment, and X*(f)
represents the complex conjugate of the X (f). The signal x(n) is zero padded to obtain

the length ', which is equal or greater than the length of the signal z(n) and is a power of

fwo.

The power in each band is defined as:
Py=P(fi : fr)

where f; and fy define the frequency range of the *" band in Table 3.1,¢ = {4, 6, «, o, 1, B2}

Hence, each channel of each segment is defined by a set of six features - { Ps, P, Py, Py, Pg,, P, }
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3.2 CLASSIFICATION

FEATURE VECTOR

Each channel in a segment is parameterized by the spectral features as defined in the
previous section. Each segment is parameterized by a vector, termed feature vector (FV),
formed by concatenating the features from all the channels in the segment.

Let Segment S consists of two channels 1 and 2 such that Channel 1 is defined by the
features { P}, Py, P, Py, P}, P, } and Channel 2 by {P?, P}, P2, P2, P} , P }. Then,

S is parameterized by the feature vector F'V; as
FV, = {P{,F;, Pa, Py, P}, Py, PL, Py PL, P2 PG Pa )

The feature vectors that parameterize the different segments are used as the data points in

the classification stage.

PROPOSED CLASSIFICATION MEETHODS

In the following subsections, we present different methods to classify the segments that are

parameterized using the spectral features.

[ETHOD I

3.2.1

To evaluate the performance of the spectral features against the generic features in the
method of {1], we implement the classification method given in [1] (see Algorithm 2.4}
using the spectral features. Based on the spectral features, the block diagram of the
classification technique given in [1] is shown in Figure 3.2 and henceforth, is referred to as
Method 1. Since the absolute power in each frequency band can span different ranges, we
use the scaling method as given in [1] (see Algorithm 2.3) to scale the power in each band

across all the segments to a single range.
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3.2.2 ETHOD 1T

We propose a new classification technique, referred to as Method II, which is similar to
Method 1 except that the scaling of the features is not required {46].

Figure 3.3 shows the block diagram for Method 11 It is the same as Method 1 except that
the feature vector that parameterize cach segment is now defined using the relative power
in each band. The relative power is defined as the ratio of the absolute power in each band
(delta, theta, alpha, sigma, betal and betal) to the sum of the absolute powers in the six
bands of the segment under consideration,

Consider Channel 1 of Segment S with the spectral feares { P}, P}, Ps, P} Pj, P31

Then the features based on the relative power that describe Channel 1 are defined as :
1
Prl = F{Pdlvpelapal’P;7Pﬁ117Pﬁlg}
T
where Pr = Fj + Fj + Py + P} + P} + P,

3.2.3 METHOD III

An analysis of the temporal profile of the relative powers shows that the relative power
in the delta band is the highest compared to the other five bands. For example, Figure
3.4 shows the temporal profile of the relative powers in the different frequency bands for
a 90-minute sleep EEG. We observe that the relative power in the delta band represents
around 80-90% of the total power in each segment, whereas the relative powers in other five
bands collectively represent the remaining 10-20% of the total power. During the k-means
clustering, the unequal distribution of the relative powers can lead to biased euclidean

distance’, which can degrade the performance of Merhod 1L

{Ror details on the biased euclidean distance and its effect on classification, refer to Section 2.54.
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Figure 3.3: Block diagram for Method I1.
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To overcome this limitation we modify Merhod 11 and propose a new method, henceforth
referred to as Method Il Figure 3.5 shows the block diagram of this method. First using
only the absolute power in the delfa band, all the segments are grouped into three clusters.
The cluster having the highest power in the delfa band is separated and the remaining
segments are classified using Method 11

The cluster with the highest average power in the delfa band is separated, if and only if,
the three clusters satisfy the following conditions:

Condition 1: None of the clusters should have more than 85% of the total number of
the segments.

Condition 2: Cluster with the highest average power should have more than 5% of the
total number of the segments.

Condition 1 assures that a single cluster does not have a significant number of the
segments. Otherwise, it means that only one pattern exists in the data and the classification
technique has not been able to separate the different patterns, and hence, the classification
has failed. Such a scenario can be possible for a given data set, if there are not sufficient
number of segments with absolute power in the delfa band different from the majority of
the segments. Based on the empirical calculations, eighty-five percent is determined as a
sufficient number to judge the failure of the classification technique.

Condition 2 checks whether the cluster having the highest average power in the delta
band has sufficient number of members to represent a different pattern that could be easily
recognized in the compressed temporal profile. If the cluster has less than 5% of the
total number of segments, then it is possible that the corresponding cluster has segments
that may represents a transient activity that may be randomly spread across the complete
cEEG recording. Since the transient activities are not considered during the background
cEEG monitoring, the cluster having less than 5% of the total number of segments is not

considered to have any clinically relevant information.
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Figure 3.5: Block diagram for Method 111
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Further, it is exemplified from the fact that a six-hour sleep recording with average
segment length of 3 seconds, results in approximately 7200 segments. Five percent of
7200 segments representing 18 minutes or 54 20-second epochs.

For the 90-minute block of the sleep EEG shown in Figure 3.4, the temporal profile of
the absolute power in the delfa band is shown in Figure 3.6. Based on the absolute power
in the delra band it is expected that if the cluster with the highest power in the delsa band is
removed, then the classification of the remaining segments may improve. For the remaining

segments, the temporal profile of the relative powers is shown in Figure 3.7.
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Figure 3.6: (a) Temporal profile of the absolute power in the delza band for a 90-minute
¢EEG. The temporal profile of the relative powers for the same cEEG block was shown in
Figure 3.4. (b) Different states of the brain during sleep.
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Figure 3.7: Temporal profile of the relative power for the segments that remain after the
cluster of segments with the highest absolute power in the delfa band has been removed. (a)
Temporal profile of the relative power in the delta band (b) Temporal profile of the relative
powers in other bands. Zero in (a) and (b) indicates that the segments had high power in the
delta band and have been removed. {(c¢) Different states of the brain during sleep. (d) Zero
indicates those segments that had high power in the delta band and were removed, whereas
0.7 represents the segments that remain for further classification.
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3.24 ETHOD IV

It can be noted from Figure 3.7 that although the segments with high absolute power in the
delta band has been initially removed, the remaining segments can still have sufficiently
high relative power in the delta band (almost 70%-80% of the total power in the segment).
This unequal distribution can still yield biased euclidean distance, which may degrade the
performance of the classification technique. For the remaining segments, if the absolute
power in delta band is assumed to be zero, the distribution of powers in the other frequency
bands may become more relevant and may lead to better classification of the segments.
Hence, we propose a new method, referred to as Method 1V. A block diagram for Method
IV is shown in Figure 3.8. First, the segments with high absolute power in the delra band
are removed as suggested in Merthod III. Next, for the remaining segments the absolute
power in the delta band is set to zero. Each segment is now parameterized by the relative
powers in only five frequency bands - {Fy, Py, Ps, P, , Ps, }.

Consider a single channel, say 1, of Segment S with the spectral features as {0, P},
PL, P} P}, P; }; then, the features based on the relative powers that describe Channel K
are calculated as

1 1
7 {0, P}, P., P}, P3,, P3,}

where Pr, total power of the five bands in the segment = Pj + F} + P} + P3 + P} and 0
represents the absolute power in the delta band.

Figure 3.9 shows the temporal profile of the relative powers for the segments that
remain after the cluster with the highest average power in the delfa band has been removed.
Figure 3.9(b) shows the temporal profile of the relative powers in bands with the delfa band
excluded from the remaining segments. It can be noted that the distribution of the relative

powers in Figure 3.9(b) is more clearly discernible compared to that in Figure 3.7(b).
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Figure 3.9: Temporal profile of the relative powers across the segments that remain after
the segments with the highest absolute power in the delta band have been removed. The
power in delta band is set as zero. (a) The relative powers in other frequency bands (b)
Different states of the brain during sleep. (c) Zero indicates that the segment belongs to the
cluster, which had highest average power in the delfa band and was removed, whereas 0.7
represents the segments that remained for further classification,
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3.2.5 INITIAL SEEDS USING HISTOGRAM TECHNIQUE

A key factor in the success of the k-means clustering algorithm is the selection of the seed
points for the initial cluster ceniroids. In the method of Agarwal e al. [1], a temporal
technique to select the initial seeds (see Section 2.5.4 for details) was suggested. It is
based on the observation that the different patterns in the background cEEG are repetitive
and exist for sustained periods of time. Further, if the feature vectors at equally spaced time
intervals are selected, there exists a high probability of achieving a reasonable representation
of the various pattern types by the initial seeds. Also, it was suggested that nine initial seeds
be used for clustering the complete data set. Since the cEEG recording varies with each
patient and their status during the recording, it may not be reasonable to assume the pattems
to be repetitive. The nine initial seeds may not be sufficient in number. To overcome this
limitation, we propose a new histogram technique for the calculation of the initial seeds. It
determines the possible variations in the data set using a histogram of the feature vectors.
By using a histogram, the data set is classified into several groups such that each group
represents a subset of the data and all the groups collectively cover complete data. The
centre point or centroid of each group gives an idea about the variations in the data set.
Based on the idea of a histogram, we propose to find the groups present in the data set, and
the centroids of these groups can be used as the initial seeds. With the proposed method, the
number of the initial seeds is adaptive and determined by the data set under consideration.
The proposed histogram technique is a two-stage procedure as given in Algorithm 3.1.
First, all the feature vectors are divided into K groups (X is a number higher than the
expected number of groups in the data set). Each group is termed as a bin. The presence
of transients in the data set may result in bins with very few members. Since the centroids
of the bins are to be used as the initial seeds, bins with a fewer members may degrade
the classification of the cEEG segments, Hence, bins with members less than an adaptive

threshold are merged with those having members greater than the median of bin count.
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ALGORITHM 3.1

CALCULATION OF THE INITIAL SEEDS USING THE HBISTOGRAM

TECHNIQUE

STEP L.

STEP II:

STEP 1M

STEP IV:

STEP V:

STEP VL

STEP VII:

Choose a feature vector,
FV, = { P}, P}, P}, P}, P}, P}, P}, F}, P2, P2, P3, PR, |

Find all those segments that have their feature vectors in the range
{Pg +0.1,.., P + 0,1}.

From the remaining segments, repeat Steps I and II, until all the segments
are assigned to a bin or K bins have been created.

If some segments have not been assigned to any of the K bins, then these
segments are assigned iteratively to the bin that has minimum euclidean
distance between its centroid and the feature vector representing the
segment.

In ascending order of the number of members, consider the bins with
members that collectively add up to 1% of the total number of the
segments in the given data set. These bins are considered to represent
segments contaminated with artifacts and are not considered in further
steps.

Let N, be the number of the segments in the " bin, then py =
median(NN;), =1 to n, where n is the number of bins.

Any bin with members less than py is merged with the nearest bin having
members greater than py .

For each of the remaining bins, calculate the mean of the feature vectors

describing its members and consider them as the required initial seeds,
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3.3 MANCE EVALUATION

FOR

We evaluate the performance of the proposed classification methods and the method given
in [1] for the compression of the cEEG in terms of their ability to form homogeneous
clusters, i.e., each cluster should have segments that have similar EEG activity. Since there
exists no standards to define the patterns or types of activities present in the cEEG, we use
sleep EEG and compare our results against the different states of the brain during sleep. The
different states of the brain can be mapped to the repetitive patterns in the cEEG. Each state
can be considered to contain segments of the EEG with similar activity. Hence, the clusters
formed during compression of the cEEG can be assessed for homogeneity with respect to
these states. Moreover, since the states of the brain have been classified manually based on
the well accepted R&K sleep classification rules [9], our comparison is against an accepted
standard. To explain the methodology followed in evaluating the performance using the

sleep EEG, we provide a brief overview about sleep.

FUNDAMENTALS OF SLEEP

Sleep is a non-uniform biological state that can be divided broadly into two types, REM
(rapid eye movement) and NREM (non-rapid eye movement). NREM can be further classified
into four stages viz. Stage 1, Stage 2, Stage 3 and Stage 4 (refer to Table 3.2). The
classification of these stages is based on the recordings of the EEG, EMG and EOG.
Normal healthy sleep is composed of these stages that cycle every 60-90 minutes. Each
cycle is characterized by a sequence of sleep stages starting with light sleep, followed by
deep sleep, and rapid eye movement. The sleep EEG recording is called as polysomnogram
(PSG). A PSG is divided into epochs of 10, 20 or 30 seconds depending on the preference
of the sleep laboratory. These epochs are manually scored by the sleep technologist into
one of six stages {Stage 1, Stage 2, Stage 3, Stage 4, Stage REM, Stage Wake} according
to the R&K [9] sleep classification rules. The resulting time profile of the different stages

is termed the hypnogram, and is presented to the clinician for diagnostic purposes.
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A single epoch may have patterns that resemble more than one stage or part of the
epoch may belong to one stage while another part may belong to another stage. But the R&
K sleep classification rules assigns only one stage to each epoch based on the maximum of
epoch rule, i.e., the stage that occurs for maximum duration in the epoch is assigned to that
epoch [47, 48]. Sleep is a continuum and transition from one stage to another cannot be
clearly identified. The exact time of change in the sleep stage is highly subjective and gives

scope for discrepancy between two different scorers for a single sleep file.

CLASSIFICATION BASED ON EPOCHS

We use the sleep EEG to evaluate the performance of our method. Most sleep laboratories
analyze the sleep EEG in 20-second epochs. Hence, we need to translate the classification
information based on variable-length segments to conventional fixed-size epochs of 20
seconds. This is done by assigning a cluster number to each 20-second epoch such that
the corresponding cluster number has its members occupying a majority of the 20-second
epoch. For example, consider two epochs as shown in Figure 3.10. The first epoch has
four segments - S, belongs to cluster C1 having length 3 seconds, Sp belongs to cluster
C2 and 7 seconds long, Sc belongs to cluster C'1 and length 5 seconds, and Sp belongs
to cluster C'land length 5 seconds. The first epoch is assigned to cluster C2 as the Sp and
Sp collectively span majority of the epoch (12 seconds out of 20 seconds). Similarly, the

second epoch is assigned to cluster C'1.

F
e
40
sec::nds

I
Epoch 2

Figure 3.10: Conversion of clustering information based on variable length segments to
clustering based on 20-second epochs.
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If in an epoch, two or more clusters span equal time duration, then the epoch is assigned
to the cluster number that was assigned to the immediate preceding epoch. The resulting
clusters of epochs represents the different patterns of activities that exist in the recording.

3.3.1 QUALITATIVE ANALYSIS

To have a qualitative assessment of our results, we compare the temporal profile of patterns
obtained using computer-based compression method over the manually-scored hypnogram.
We compare the onset and offset of the clusters in the compressed results with the onset
and offset of the sleep stages as marked by the reviewer. A cluster is considered as
homogeneous, if the occurrence of the respective cluster mostly correlates with the occurrence
of a single sleep stage.

We use the classification information based on 20-second epochs as discussed in the
previous section. The data set is clustered into eight clusters. Six clusters account for the
six sleep stages as defined by the R&K sleep classification rules. Since during the course
of the night certain epochs can have varying spectral content within the same stage or can
be contaminated, we consider two additional clusters to account for these epochs [39]. For
example, Figure 3.11 shows the temporal profile of the cluster of the epochs representing
different EEG patterns on an hour-by-hour basis as determined using the computer-based
method. These are labeled 'C’ on the left of the horizontal bar. Each color represents a
cluster of the segments with similar EEG activity. As a reference, the manually scored
hypnogram is also provided. It is labeled as M’ on the left of the horizontal bar. Here,
each color represents a sleep stage. The comparison of temporal profile and hypnogram
suggests a high degree of correlation between the onset and offset of the different activities
found by the computer-assisted method and the manual staging as marked by the reviewer.
The clusters created appear to be homogeneous as each cluster matches a single sleep stage.
For example, the segments represented by the green color map mostly to Stage 1, whereas

the segments represented by red map mostly to Stage Wake.
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CLUSTER REPRESENTATION

The method in [1] provides the reviewer the representative segments of the actual-EEG for
each pattern type along with the temporal profile of the different patterns. Since the sleep
EEG is classified manually using 20-second epochs, the representative segment should be
of 20-second duration. The algorithm used in [1] finds the representative segments based
on the variable length segments (see Algorithm 2.5). We modify Algorithm 2.5 to find a
representative epoch for each cluster using the clustering based on 20-second epochs.

Let us assume Sy to be the representative segment for Cluster ¥ determined using
Algorithm 2.5. Let SZ° be the desired representative epoch for Cluster Y. Using the
clustering information based on 20-second epochs, we search for an epoch that is assigned
to Cluster Y and contains Sy. If yes, that epoch is selected as S2°; otherwise, we search for
an another epoch that is assigned to Cluster ¥ and has the segment having the minimum
euclidean distance from Sy.

Figure 3.11 shows the representative epochs for each cluster. For example, the cluster
with cyan color mostly matches to SWS?, which has slow activity mostly in the delta band.

The representative epoch with cyan color shows the slow activity similar to SWS.

3.3.2 QUANTITATIVE ANALYSIS

To have a quantitative assessment of the ability of the computer-based compression method
to create homogeneous clusters, we use two matrices, namely, the epoch cluster-sleep stage
matrix and the agreement matrix. The epoch cluster-sieep stage matrix maps the epochs
in each cluster to the manually scored epochs and allows the labeling of each cluster as
one of the sleep stages. The overall agreement between the epochs belonging to the
computer-based classification and the manually classified epochs is evaluated using the

agreement matrix.

2Since Stage 3 and Stage 4 have similar spectral properties, for the purpose of evaluation they are
combined as slow wave sleep (SWS).
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EroCcH CLUSTER-SLEEP STAGE MATRIX

To compute the epoch cluster-sleep stage matrix, we use the classification information
based on the 20-second epochs as discussed earlier. We consider each cluster of epochs
formed by the computer-based classification and compare the epochs to the corresponding
manually-staged epochs. Each row in the epoch cluster-sleep stage matrix represents a
single cluster of epochs. The entries in a given row provides the information about the
number of epochs that match the different sleep stages. Subsequently, each cluster is
assigned a sleep stage. The assignment of a sleep stage to each cluster is based on a match
of the majority of the epochs in the cluster to the manually-staged hypnogram. For example,
if a cluster has a majority of its epochs matching Stage X of the manual hypnogram, then
all the members of the cluster are classified as belonging to Stage X. For the case where a
cluster has identical number of maximum epochs matching two or more sleep stages, then
the cluster is assigned a stage that occurs first in the sequence - {Stage Wake, Stage 1, Stage
2, SWS, Stage REM}.

For a cluster to be homogeneous, it should have a majority of its epochs assigned to
a single sleep stage in the epoch cluster-sleep stage matrix. However, in certain cases a
cluster can be considered homogeneous even if its epochs matched to multiple sleep stages.
It is feasible that the multiple sleep stages have similar spectral composition and some
additional information like the EOG or EMG is needed to distinguish between them. For
example, the epochs of Stage 2 and Stage REM can often have similar spectral composition
and may require additional information about the EOG to differentiate between them.

An example of the epoch cluster-sleep stage matrix for subject C is shown in Table
3.3. The bold-italics cells represent the manually marked sleep stage that majority of the
epochs from each cluster matched. For cluster C1, out of total 13 epochs, 10 epochs map
to Stage Wake, 1 to Stage 1, and 2 to Stage REM. Since C1 has a majority of its epochs

mapping to Stage Wake, all epochs in this cluster are assigned to Stage Wake.
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Table 3.3: Epoch Cluster-Sleep Stage matrix for subject C

Stage Wake | Stage 1 | Stage2 | SWS | Stage REM | Stage Assigned

C1 b/ i 0 0 2 WAKE

C2 i 1 20 0 95 STAGE REM
C3 6 1 iz 0 43 STAGE REM
C4 7 4 137 4 19 STAGE 2
Cs 8 6 52 3 53 STAGE REM
C6 ¢ 2 67 6 0 STAGE 2
C7 5 7 136 57 2 STAGE 2
C8 1 1 78 213 2 SWS

AGREEMENT MATRIX

The agreement matrix is based on the epoch cluster-sieep stage matrix. In the epoch
cluster-sleep stage matrix, clusters assigned the same stage are summed together to compute
the agreement matrix. Each row of the agreement matrix shows the epoch distribution
of each sleep stage determined by the computer-based classification across the different
manually-classified sleep stages. The sum of the diagonal epochs of the matrix divided by
the total number of epochs gives the overall agreement.

Based on the epoch cluster-sleep stage matrix for subject C as given in Table 3.3, the
agreement matrix for subject C is shown in Table 3.4. Epochs of clusters C2, C3 and
C5 were summed together to form the row Stage REM in agreement matrix. The row
Stage REM shows that among the 293 epochs marked Stage REM by the computer-based
classification, only 191 epochs map the manually-classified epochs of Stage REM. Overall
agreement between the computer-based and manual classifications is 71.2% for this sleep
record.

Each sleep stage is assumed to be distinct and should form a homogeneous cluster. The
overall agreement calculated from the agreement matrix provides a measure of similarity
between the computer-based and manual classifications of the epochs to the various sleep

stages.
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Table 3.4: Agreement matrix*for subject C

Manual
T Stage Wake | Stage 1 | Stage2 | SWS | Stage REM
Stage Wake ig H 6 o} 2
Stage 1 0 0 6 0 o
Stage 2 2 i3 334 67 2t
SWS 1 1 78 213 2
Stage REM 7 8 84 3 197

«based on the gpoch cluster-sieep siage matrix for subject C, Table 3.3

Hence, the overall agreement can be considered a metric to measure the homogeneity of the
clusters formed. A higher overall agreement indicates that an increased number of epochs
were assigned the same sleep stage during the computer-based and manual classifications.
Thus, higher overall agreement depicts that the clusters formed are comparatively more

homogeneous.

3.4 SUMMARY

In this chapter, we have presented a new method for the compression of the cEEG, which
is essentially modification of the method used by Agarwal ef al. in [1]. To parameterize
the segment we have used a set of features based on power spectral density, termed as the
spectral features as opposed to the generic features used in [1]. Different classification
techniques were presented to cluster the segments parameterized with the spectral features.
We also proposed a methodology to compare the performance of the proposed method for
the compression of the cEEG and the method given in [1]. Two matrices namely, the epoch
cluster-sleep stage and the agreement matrix were discussed.
In the following chapter, we present the results with the proposed method for compression

using the different classification schemes - Methods 1, 11, I and IV. We compare these
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results with those obtained with the method given in [1]. We also present the performance
of these different methods with the initial seeds calculated using the remporal technique

and the histogram technique.

69



RESULTS AND DISCUSSION

In Chapter 2, the classification scheme first presented by Agarwal ez al. [1] to cluster the
segments based on the generic features was discussed. Based on the spectral features, we
then proposed four classification schemes Methods 1, 11, Il and IV to cluster the cEEG
segments (see Chapter 3). In this chapter, we will discuss the performance of each of these
methods along with that of Agarwal er al. by assessing the overall agreement between
the computer-based classifications and the manual classification by an EEG expert. The
overall agreement is calculated using the agreement matrix introduced in Section 3.3. Also,
we evaluate and compare the performance of each of the classification methods with the
initial seeds for the k-means clustering algorithm being selected using the original remporal
technique and the proposed histogram technique. The results for the compression of sleep
¢BEG recording using the generic features as well as the spectral features are discussed.
For the comparison, we use the full-night sleep EEG records of eight different subjects,
recorded with a sampling rate of 128 Hz using the software developed by Stellate Systems,
Montreal, Canada. No prior information about the sleep patterns of the subjects was used
in the data selection. There were only two constraints for the selection of the data set. First,
the recording must include one of each of the frontal and occipital channels on the same

side (either right or left) of the brain. Second, recordings must have been previously staged



using the R&K sleep classification rules [9].

X FORMANCE OF CLASSIFICATION METHODS

In this section, we study the performance of the different classification methods proposed in
this thesis as well as the original method described in [1] which uses the generic features to
parameterize the EEG segments. The four classification methods uses the spectral features.
This study is carried out first by utilizing the temporal technique and next by using the

histogram technique to select the initial seeds required for the k-means clustering algorithm,

4.1.1 INITIAL SEEDS SELECTED USING THE TEMPORAL TECHNIQUE

As mentioned in Section 3.2.5, the performance of the k-means clustering algorithm depends
on the selection of the initial seeds used in the clustering. It is expected that a robust
selection of the initial seeds will yield a reasonable classification of the segments. In the
method given in [1], the initial seeds are selected using the temporal technique (see Section
2.5.4). This technique is based on the idea that in applications with recurrent patterns
such as in full-night cEEG recording, where cycling sleep stages is a normal occurrence,
the initial seeds selected from the equally spaced feature vectors are likely to provide a
reasonable sampling of the variations present in the data set. We first use the temporal
technique to select the initial seeds and study the performance of the various classification

methods.

OrIGINAL CLASSIFICATION METHOD

To compare the performance of the proposed spectral features with that of the generic
features, we implemented the methodology in 1] to cluster the segments of the cEEG based
on the generic features. For the eight subjects under consideration, the overall agreement

between the manual and computer-based classifications on an epoch-to-epoch basis are
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Table 4.1: Agreement between the manual and computer-based classifications using the
generic and spectral features

Generie Spectral Speciral Epectral Spectral
(Original Method) Method © Method 11 Method 111 Method IV
Subject A 82.3% 73.5% 78.1% 77.5% T1.4%
Subject B 61.5% 67.0% £6.7% 65.7% 69.0%
Subject C 63.2% 62.6% 71.2% 70.6% 70.6%
Subject D 67.5% 70.9% 72.7% 70.7% 71.3%
Subject B 52.8% 53,1% 66.9% 66.9%7 66.9%*
Subject F 59.6% 62.0% 66.3% 66.3% 71.0%
Subject G 60.2% 63.6% 67.0% 67.0%* 61.0%*
Subject H 68.3% 68.0% 70.3% 67.9% 69.8%
Mezn 64.4% 8.7 65.1%+63 | 69.9%+4.1 69.1% +4.0 696%+1.8

fCondition 1 (see Section 3.2.3) was not satisfied and Method 11 was used to classify the segments.

shown in the Generic column of Table 4.1. An average overall agreement of 64.4% (+8.7)

is observed.

METHOD I

As mentioned in Section 3.2.1, Method 1 is similar to the original classification method
presented by Agarwal er al. [1], except that the feature vectors for clustering are now based
on the absolute power in the different bands that are scaled as in the original method [1].
The overall agreement between the manua! and computer-based classifications for the eight
subjects are shown in the Spectral Method I column of Table 4.1. We observe an average

overall agreement of 65.1% (£6.3).

MrTEGOD 1!

Method 11 uses the relative power in each of the six frequency bands to define the feature
vectors (see Section 3.2.2). The overall agreement between the manual and computer-based
classifications using the spectral features and Method II for the eight subjects are shown in

the Spectral Method 11 colurnn of Table 4.1. An average overall agreement of 69.9% (£4.1)

72



is observed.

MrTHop i1

As explained in Section 3.2.3, if we observe the temporal profile of the relative power in
the different frequency bands, it is found that the relative power in the delfa band spans
almost 80% of the total power in the six bands. The relative power in the delfa band may
mask the information from the other bands and can degrade the performance of Method 11
To overcome this limitation, we proposed Method II1. Since the power in the delta band
is highest compared to the other bands, we separate the cluster with the highest average
absolute power in the delta band. The remaining segments are classified using Method
IL The Spectral Method 11 column of Table 4.1 shows the overall agreement as 69.1%
(+4.0) between the manual and computer-based classifications for the eight subjects under
consideration.

If we compare the results for subjects E and G in the Spectral Method 111 and Spectral
Method 1I columns of Table 4.1, we observe that Method Il gives the same results as
Method 11. On further analysis of the results with Method I11, it was found that during the
clustering of segments based on only the absolute power in the delra band, a single cluster
with more than 85% of total number of segments was formed, i.e., the necessary Condition
1 (see Section 3.2.3) required to separate the cluster was not satisfied. Thus, the segments
with a relatively high power in the delta band could not be separated and hence, all the
segments were classified using Method I1. On the visual analysis of the EEGs for subjects
E and G, it is observed that these subjects have a majority of epochs belonging to Stage
2 with only a fewer number of epochs belonging to SWS. Since the demarcation between
SWS and Stage 2 is highly subjective [49], it is possible that the majority of the epochs

belonging to Stage 2 and SWS lie in the same cluster as observed with the results.
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MerHOD IV

Method IV is similar to Method Il except that the segments remaining afier the segments
with high absolute power in the delta band have been removed are parameterized using the
relative powers in only the five bands - {0, Py, Py, Py, Ps,, Ps, } (see Section 3.2.4). The
overall agreement between the manual and computer-based classifications using Method
IV is shown in Spectral Method TV column of Table 4.1. As previously explained in
connection with Method 111, the subjects E and G (denoted by ¥) do not satisfy Condition
1 and thus, all the segments for these subjects are classified using Merhod I1. The average

overall agreement is observed as 69.6% (£1.8)

COMPARISON OF PERFORMANCE

The average overall agreement for the eight subjects under consideration using the spectral
features and Method 1 parallels that of the original method in [1] based on the generic
features (see Table 4.1). However, the performance of Method 1 is inferior compared to
that of Methods 11, III and IV (refer Table 4.1). For all the subjects, Method I showed a
higher ambiguity in the classification of the epochs belonging to Stage 2 and Stage REM
compared to Method II. For example, Figure 4.1 shows the compressed results for the
two hours of cEEG recording for subject C. The horizontal bar labeled "M’ indicates the
sleep stages as determined from the manually staged hypnogram and the label *C’ indicates
the temporal profile of the clusters obtained using the computer-based classification. Each
color represents a particular cluster. Figure 4.1(a) shows the temporal profile of the different
clusters using Method 1 and Figure 4.1(b) shows the results using Method II. Since the
compressed results with Methods I and II are calculated independently, the same colors in
the Figures 4.1(a) and (b) may represent different activity. On comparing Figures 4.1(a)
and (b), we observe that using Merhod 1 we are not able to differentiate between the epochs
from Stage 2 and Stage REM. They are represented by the green color. However, using

Method 11, the epochs from Stage 2 and Stage REM are separated into different clusters.
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The epochs from Stage 2 are mostly represented by grey and dark green colors, whereas
the epochs from Stage REM are mostly represented by red, light green, and cyan colors.

From the results obtained with our data set, we observe that even though a certain
number of segments have high relative power in the delfa band, the performance of Method
11 is not degraded as initially expected during the development of the various classification
methods. For example, the agreement matrices for subject C based on Merthods 11, T
and I'V are shown in Tables 4.2, 4.3 and 4.4, respectively. The overall agreement between
the manual and computer-based classifications with Methods 11, III and 1V is found to
be 71.2%, 70.6% and 70.6% respectively. If we compare Tables 4.2, 4.3 and 4.4 on a
stage-to-stage basis, we observe that the agreement between the computer-based scoring
and manual scoring is very similar for all the classification methods.

The feature vectors used with Methods 11, I1I and IV are based on the relative power
in each of the six frequency bands. The relative power in each band spans the same range
(0, 1) and a method to scale the features as required with the generic features is not needed.

As mentioned earlier, for subjects E and G, the high power segments in the delta band
could not be separated as expected by Methods Il and IV. Therefore, Method 11 was used
to classify the complete set of segments. If we exclude subjects E and G in Table 4.1, the
average overall agreements for the remaining six subjects using Methods I, III and IV are
70.8%, 69.85% and 70.5%, respectively. These results indicate that the performance of
Method 11 is marginally better compared to that of Methods I1I and IV. Also, it is noted
that there is no added benefit of the initial classification using the power in the delta band.
Further, from Table 4.1, it can be seen that the performance of Merhod Il is approximately
5.5% higher compared to that with the original method in [1] which is based on the generic
features. Hence, based on our results, Merthod Il is seen as the best method to classify the
segmenis of the cEEG that are parameterized with the spectral features and is also better
compared to the method given in [1] when the initial seeds for the k-means clustering

algorithm are selected using the temporal technique.
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Table 4.2: Agreement matrix for subject C based on the spectral features and Method 11

Manual
Auto

Stage Wake

Stage 1

SWS

Stage REM

Stage Wake

9

1

G

2

Stage 1

G

Y

¢

Stage 2

13

67

21

SWS

213

2

Stage REM

181

Table 4.3: Agreement matrix for subject C based on the spectral features and Method 111

Manual

Auto

Stage Wake

Stage 1

Stage 2

SWS

Stage REM

Stage Wake

6

0

0

0

Stage 1

0

0

0

0

Stage 2

10

322

49

27

SWS

wWiw |l o]o

6

109

232

2

Stage REM

7

65

187

Table 4.4: Agreement matrix for subject C based on the spectral features and Method IV

Manual
T Stage Wake | Stage 1 | Stage2 | SWS | Stage REM
Stage Wake i4 0 4 1 1
Stage 1 0 0 0 0 0
Stage 2 i 2 308 63 6
SWs 1 16 128 217 6
Stage REM 14 5 56 3 203
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4.1.2 INITIAL SEEDS SELECTED USING THE HISTOGRAM TECHNIQUE

As mentioned earlier in previous section, the temporal technique is based on the idea that
for applications with recurrent patterns, the initial seeds selected from the equally spaced
feature vectors are likely to provide a reasonable sampling of the variations present in
the data set. However, the initial seeds selected from the equally spaced feature vectors
may not represent the patterns that do not recur frequently or occur for short durations
like the occurrence of seizures in epilepsy monitoring. For example, in the neurological
intensive care unit, the cEEG recording of a patient in status epilepticus has short bursts of
activities occurring randomly but very often. The initial seeds selected with the femporal
technique may miss these short bursts of activities. To overcome this limitation of the
temporal technique, we proposed the histogram technique (see Section 3.2.5) based on the
features of the different patterns and not on the temporal information of the patterns. The
initial seeds selected with the histogram technique are more likely to represent these short
bursts. For example, consider Figure 4.2, which shows a sample of the EEG recording with
different patterns: A, B, C, and D. If the initial seeds were selected by taking equidistant
samples (thick lines indicate equally-spaced sampling) as in the femporal technique, then
pattern B might be missed in the samples and not represented in the initial seeds. However,
with the histogram technique, pattern B would be considered as it has features different

from the other patterns.

Figure 4.2: Temporal profile of different patterns in a sample EEG recording. Each colour
represents a different type of pattern. With the femporal technique, pattern B may not be
represented in initial seeds but with the histogram technique, pattern B will be sampled.
The thick lines indicate the equidistant samples of the EEG selected using the remporal
technique.



The performance of the different classification methods with the initial seeds determined

using the histogram technique are shown in Table 4.5.

Table 4.5: Agreement between the manual and computer-based classifications using the
generic and spectral features.

Generic Spectral Spectral Spectral Speciral
(Original Method) Method 1 Method T Method 111 Method IV
Subject A 83.3% 73.7% 71.7% 77.9% 72.2%
Subject B 61.0% 66.4% 66.7% 65.6% 70.4%
Subject C 65.8% 59.5% 74.0% 70.6% 70.9%
Subject D 67.6% 72.7% 71.9% 70.8% 72.8%
Subject E 52.7% 53.1% 70.2% 70.2%* 70.2%¢
Subject F 60.2% 62.3% 66.7% 65.4% 70.9%
Subject G 63.5% 66.0% 71.7% 71.7%% 71.7%}
Subject H 68.1% 68.1% 70.1% 67.0% 69.0%
Mean 65.3%+8.8 65.2%+6.8 71.1%+3.7 69.9%+4.1 71.0% 1.2

YCondition 1 was not satisfied and Method 1I was used to classify the segments.

1t can be noted from Table 4.5 that the average overall agreement between the manual
and computer-based classifications using Methiod 11 to classify the segments based on
the spectral features is higher compared to that of Merhods 1, 1II, and IV. The average
agreements for subjects E and G with the initial seeds selected using the histogram technique
are same for Methods 11, 111, and IV. As explained in the previous section, subjects E and
G do not satisfy Condition 1, and thus, all the segments are classified using Method I1. If
we exclude subjects E and G in Table 4.5, the average overall agreement for the remaining
six subjects using Methods 11, Il and IV are 71.2%, 69.8% and 71%, respectively. These
results show that there is no added advantage of the initial classification using the power
in the delta band. It can also be seen from Table 4.5 that the average overall agreement
using Method 11 is almost 6% higher compared to that with the original method given in
[1] which is based on the generic features. Hence, the results show that Method Il provides

best results among the different methods used to classify the segments based on the spectral
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features and the method given in [1] which is based on the generic features.

4.1.3 COMPARISON OF PERFORMANCE BASED ON THE METHOD OF

SELECTION OF INITIAL SEEDS

In this section, we compare the performance of the different classification methods using
the initial seeds selected using the histogram technique as well as the remporal technique.
If we compare Tables 4.1 and 4.5, we observe that the average overall agreement of each
of the classification methods is improved with the histogram technique compared to that
with the temporal technique. For example, the classification method given in [1] shows
an improvement of almost 1% with the histogram technique compared to that with the
temporal technique. Similarly, the average overall agreement for Method 11 used to classify
the segments based on the spectral features with the initial seeds selected using the histogram
technique is 71.1%, whereas with the femporal technique the average overall agreement is
69.9%.

From the comparison of the average overall agreements for the eight sleep cEEG recording
in Tables 4.1 and 4.5, it is observed that irrespective of the method for the selection of the
initial seeds for the k-means clustering algorithm, Method 11, which is based on the spectral
features, provides better classification of the segments compared to Methods 1, IIl and IV
based on the the spectral features and the original method in [1].

In our further study of the proposed method for the compression of the cEEG, we will
use Method 11 to classify the segments parameterized with the spectral features. Also, for
the proposed method as well as the original method given in [1], we will use the histogram

technique to select the initial seeds for the k-means clustering algorithm.
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The method for the compression of the ¢cEEG as given in [1] provides the actual EEG
segments as a legend to read the compressed results. Because actual EEG samples are
used, these results are easy to understand compared to the results with other compression
techniques such as CSA [15] or the trend analysis [14]. As mentioned earlier, the compression
method in [1] uses the generic features to parameterize the segments of the cEEG, and
since the generic features provide a limited information about the segments compared to
the spectral features, it is expected that the spectral features can better parameterize the
segments and hence, may improve the classification and the overall performance of the
EEG compression method. We evaluate the performance of the proposed compression
method based on the spectral features and the compression method given in [1] which is
based on the generic features by comparing the patterns as identified by the computer-based
methods with the different sleep stages in the manually staged hypnogram on an epoch-to-epoch
basis. For this comparison, the two matrices, namely, the epoch cluster-sleep stage matrix
and the agreement matrix, as explained in Section 3.3.2, are used. As mentioned in the
previous section, if we compare the columns Generic and Spectral Method 11 columns of
Table 4.5, we observe that the results using the generic features as given in [1] provide an
average overall agreement of 65.3% when compared to the manua! classification, whereas
the proposed method based on the spectral features gave a 71.1% agreement. Thus, an
improvement of almost 6% is achieved.

The transition between the sleep stages is a continuum and the demarcation between
the sleep stages is not clearly defined. The epochs during the transition from one stage
to another, such as the transition from Stage 2 to SWS or Stage Wake to Stage 1, may
have overlapping or similar features. These transitional epochs can be assigned to either
one of the two stages by the scorer depending on his/her preferences. This often lead to
discrepancies in the scoring of the same sleep cEEG recording by two different scorers.

For example, on an epoch-to-epoch basis the visual scoring of two healthy subjects in
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10 different sleep laboratories in Japan showed only 67%-75.3% agreement [10]. Since
typically there is only 80%-90% inter-scorer agreement in the manual classification of the
same sleep ¢cEEG recording [48], the 71% average overall agreement between the manual
classification and our computer-based classification based on the speciral features is a
significant achievement.

A computer-based method similar to the method for the compression of the ¢cEEG in
[1] was presented for the classification of the sleep EEG epochs in [39]. The segments
were parameterized using the generic features and additional sleep related features like
presence of spindles, alpha-slow-wave, presence of eye-movement in the EOG channels.
Comparison between the computer-based and manual classifications of the epochs showed
an average overall agreement of 61.1% for the twelve different sleep cEEG recordings. If
we compare the 61.1% agreement against our results based on only the spectral features, we
find our results to have a higher average agreement (71.1%) with the manual-classification.
Moreover, the use of the spectral features together with additional sleep related features are
expected to provide an even better classification of the segments and will further enhance
the performance of our method.

The overall agreement as calculated from the agreement matrix provides a measure
to evaluate the similarity between the manual and computer-based classifications. Since
each sleep stage is considered to represent epochs that have EEG activities with similar
properties, a higher overall agreement can be considered to indicate comparatively more
homogeneous clusters. As the average overall agreement obtained with the speciral features
is higher compared to than with the generic features (see Table 4.5), the clusters formed
with the spectral features can be considered to be more homogeneous.

During our performance analysis of the compression method, we consider a cluster to
be homogeneous if majority of its members match with the same sleep stage. Moreover,
a cluster with members that match to different sleep stages is consider as homogeneous, if

and only if, the epochs of those sleep stages require some information in addition to the
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spectral information to differentiate between them. For example, on basis of the R&K sleep
classification rules [9], the epochs of Stage 2 and Stage REM can have similar EEG. In
certain cases, to differentiate between these epochs it is necessary to use some information
in addition to the EEG, such as information about the EOG or the EMG activity. Several
computer-based automatic sleep staging methods have shown that on the basis of only the
EEG, it is difficult to distinguish the epochs of Stage 1 and Stage REM, and that additional
information is required about the EOG and EMG [51]. Similarly, in order to distinguish
between certain epochs of Stage 1 and Stage Wake, the EMG information is indispensable
[51]. Table 4.6 shows the epoch cluster-sleep stage matrix for subject D. Cluster C3 has
epochs mapping to Stage 1, Stage 2 and Stage REM. As per the R&K sleep classification
rules, the epochs of Stage 1 and Stage 2 can have similar power in the theta band or the
epochs of Stage 1 and Stage REM have similar power in the beta or alpha band. Hence,
classification based on only the power in the different bands as considered by using the
spectral features, the epochs belonging to Stage 1, Stage 2, and Stage REM may lie in
same cluster. On the other hand, Cluster C3 has a negligible number of epochs that map
to SWS because there is generally no overlap in the spectral content of SWS with Stage 1,

Stage 2, or Stage REM. Hence, Cluster C3 can be considered to be homogeneous.

Table 4.6: Epoch Cluster-Sleep Stage matrix for subject D based on the spectral features

Stage Wake | Stage 1 | Stage2 | SWS | Stage REM | Stage Assigned

C1 2 3 0 6 g Stage REM
C2 4 18 71 4 31 Stage 2

C3 1 33 50 2 35 Stage 2

C4 18 1 0 0 0 Stage Wake
Cs 2 g 2 0 35 Stage REM
cé 1 15 157 13 12 Stage 2

C7 0 3 166 71 1 Stage 2

CR 2 2 20 269 2 SWS
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For the data under consideration, we cluster the segments into eight clusters - six
clusters representing the six different sleep stages and two additional redundant clusters.
The EEG changes during the course of the night and it is possible that the epochs from
the same sleep stage can have different properties at different times during the course of
a full-night recording. For example, during the course of the night the epochs assigned to
Stage 2 can have dominating K-complexes (the EEG activity with frequency less than 0.5
Hz and duration less than 0.5 sec) or spindles (bursts of the EEG activity with 12-14 Hz and
lasts around 0.5 to 1.5 seconds) or dominating theta (4-8 Hz) activity or any combination of
the three EEG activities. Furthermore, since Stage 2 is a transitional stage from drowsiness
(Stage 1 or Stage Wake) to SWS, it is possible that during the course of night different
degrees of the delta activity can be present. Since these epochs can have different spectral
content, based on only the spectral features these epochs may fall in different clusters. As
expected, our results indicate that we can have more than one cluster representing a single
sleep stage. For example, Table 4.6 shows the epoch cluster-sleep stage matrix for subject
D. Clusters C2, C3, C6 and C7 have majority of the members matching to Stage 2 and thus,
are labeled Stage 2. Figure 4.3 presents the representative segments for Clusters C2, C3,
C6, and C7. All these four segments have features that are characteristics of Stage 2, but
quantitatively these segments are different. The segment in Figure 4.3(a) show a mixture of
spindles and theta activity, and the representative segment for Cluster C3 in Figure 4.3(b)
resembles the rhera activity. The representative segments of Clusters C6 and C7 in Figures
4.3(c) and 4.3(d) have spindles and K complexes. Since Clusters C6 and C7 represent

similar activity, they can be considered to be examples of redundant clusters.

EXAMPLE: FAILURE OF GENERIC FEATURES

In our data it was observed that in some of the sleep EEG records, the spectral features are
able to differentiate between the different stages, which was not possible using the generic

features. For example, Figures 4.4(a) and 4.4(b) show the compressed results for two hours

84



of sleep recording of subject E based on the spectral and generic features, respectively.
Each color represents one type of activity and the repetition of colors gives the temporal
profile of the different activities. Since the compressed results with the spectral and generic
features were evaluated independently, the same colors in Figures 4.4(a) and 4.4(b) may
not necessarily represent similar EEG activity. The horizontal bars marked "M’ show the

manual classification.
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Figure 4.3: The representative segments of Clusters C2, C3, C6 and C7 based on the epoch
cluster-sleep stage matrix for subject D given in Table 4.6. {a) Cluster C2 (b) Cluster C3
(¢) Cluster C6 (d) Cluster C7.
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On comparing the onset and offset of patterns obtained with the computer-based methods
to the manual classification, we observe a better classification using the speciral features
compared to that using the generic features. The generic features are not able to classify
between the different stages and the epochs from various stages are grouped into a single
cluster. For example, the blue color represents epochs from Stage 1, Stage REM and Stage 2
(Figure 4.4(b)), whereas the spectral features are able to differentiate between these epochs
as different sleep stages. The epochs from Stage REM are represented mostly by cyan color,
and pink and yellow colors represents most of the epochs from Stage 2 (Figure 4.4(a)). The
agreement matrices for subject E, based on the spectral and generic features are shown
respectively in Tables 4.7 and 4.8. By using the spectral features, the epochs are clustered
into four stages - Stage Wake, Stage 2, SWS and Stage REM (see Table 4.7), whereas
based on the generic features, the majority of the epochs are grouped as Stage 2 or SWS
(see Table 4.8). Further, the classification of the epochs using the spectral features is in

concordance with the various sleep stages as shown in the hypnogram.

Table 4.7; Agreement matrix for subject E based on the spectral features

Manual
o Stage Wake | Stage 1 | Stage 2 | SWS | Stage REM
Stage Wake 14 7 3 0 3
Stage 1 0 0 0 0 0
Stage 2 9 24 430 37 118
SWS 1 1 67 231 4
Stage REM 2 2 36 3 75
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Table 4.8: Agreement matrix for subject E based on the generic features

Manual
T Stage Wake | Stage 1 | Stage2 | SWS | Stage REM
Stage Wake 6 ¢ 0 g 0
Stage 1 0 ¢ 0 o 0
Stage 2 18 33 495 203 196
SWS 8 t 41 68 4
Stage REM 0 ¢ ] 0 0

4.3 SUMMARY

In this chapter, we first studied the performance of the classification scheme based on the
generic features given in [1] and Methods I, 11, Il and IV that are based on the speciral
features, with the initial seeds selected using the tremporal technique and then, with the
histogram technique. Our results indicate that the overall average agreement of the different
classification methods has improved with the histogram technique as compared to the
temporal technique. Further, it was observed that the performance of Method 11 is better
than that of Methods 1, III and 1V, as well as that of the classification scheme given in
[1]. Since the average overall agreement using the proposed method based on the spectral
features shows an improvement of 6% compared to that of the method given in [1] which is
based on the generic features, it is argued that the clusters formed with the spectral features

are comparatively more homogeneous than that formed using the generic features.
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APPLICATION OF CEEG NICU

The compressed cEEG in a neurological intensive care unit (NICU) can assist the reviewer
during the visual analysis of the cEEG recording. In this chapter, we apply the proposed
compression method to a single eighteen-hour NICU EEG recording of a patient in status
epilepticus. We correlate the onset and offset of the patterns as determined by the compressed
cEEG with the clinical information provided by the physician. We compare the performance
of the proposed method for the compression of the cEEG with the method given by Agarwal

etal. in[1].

5.1 INTRODUCTION

Research in medicine has proved the effectiveness of the EEG in studying the complex
behaviour of the brain. The EEG along with the EKG, EOG and EMG constitutes the
vital recordings in the neurological intensive care unit (NICU). The cEEG recording in the
NICU is generally performed for those patients who have the brain function in jeopardy.
The reviewer compares the changes in the EEG at different times to have an insight about
the state of the brain at different times and analyze the effect of medication administered to
the patient. During the cEEG recording, clinical staff is required to be attentive to be able

to take the corrective action as well as identify any abnormality in the EEG for later review
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by the neurologist. The manual review of the ¢cEEG recording is complex and requires
an enormous amount of time to review. Thus, the onset and offset of the emerging EEG
patterns as determined by the compressed cEEG can provide assistance to the reviewer
during the visual analysis of the cEEG recording [50].

Epileptic seizure is the result of the electrical disturbance in the brain. Most seizures
last for 1-2 minutes, but can last for longer durations. If the seizure recurs multiple
times in a short period of time or becomes continuous, the state of the patient is called
as status epilepticus. During status epilepticus, the patient is administered with sedatives
like propofol to induce coma in order to suppress the occurrence of the anti-epileptic drug
resistant seizures. The seizures may recur as the patient is taken out of the induced coma

(i.e, on a reduced medication).

5.2 METHODOLOGY

SUBJECT

We use an eighteen-hour cEEG recording of a subject in status epilepticus to demonstrate
the application of the compressed cEEG in the NICU. The subject was diagnosed to be
in status epilepticus and propofol was administered to suppress the long-lasting seizures.
During the eighteen-hour recording under consideration, much of the EEG activity was
associated with the burst suppression!. The subject was induced into coma and during this
period, frequent intermittent bursts and 1-3 Hz activity consistent with the electrographic
seizures were identified by the physician. During this period, the subject was taken out
of coma once (i.e., the propofol was stopped) and within a short period of time, a clinical
seizure was observed. Following the clinical seizure, the propofol was again administered

to induce coma in order to suppress the seizure.

"Typically, the bursi suppression activity refers to episodes of the EEG activity with low amplitudes
(fattening of EEG) that are interrupted by bursts of mixture of sharp and slow activity. The episodes of the
suppression ate longer than the bursts of activity.
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METHODS FOR THE COMPRESSION OF THE CEEG

We compare the visual findings reported by the physician for the given cEEG recording
with the onset and offset of the emerging EEG patterns as identified using the method
proposed in this thesis as well as the method given in [1]. To facilitate an easy understanding
of the compressed results, we briefly summarize the method given in [1] and the proposed
method. The method given in [1] uses a multi-channel adaptive segmentation technique
based on Teager’s NLEO (see Section 2.5.1). Segments with amplitude greater than 300uV
or with an energy that is higher than that possessed by the majority of the segments are
considered as artifacts (see Section 2.5.2). The segments are parameterized with the generic
features and are classified based on the iterative k-means algorithm (see Sections 2.5.3 and
2.5.4).

The proposed method is similar to the method given in [1] except that the segments are
parameterized with the spectral features. In Chapter 4, we discussed Methods I, 11, Il and
IV in terms of their ability to classify the segments parameterized with the spectral features.
On the basis of our results with the sleep cEEG recordings, we found the performance of
Method 11 to be the best among the four proposed classification methods. Hence, in this
NICU application we use Method 11 to classify the segments that are parameterized with
the spectral features,

As discussed in Chapter 4, the performance of the different classification methods
improved when the initial seeds calculated using the histogram technique were used instead
of those calculated using the femporal technique. Therefore, we use the histogram technigue
to calculate the initial seeds required for the k-means algorithm.

We analyze the complete eighteen-hour cEEG recording in three independent sections
of six hours each. The cEEG recording from the right side and the left side of the brain
are analyzed independently. For each side, only two channels of the cEEG recording are
considered, F P2-T'4and T4-02 from the right side and F'P1-73and 73-01 from the left

side. Since the physician in his report indicated three types of the EEG activity - burst
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suppression, 1-3 Hz slow activity and 4-8 Hz activity, we classify the EEG segments into

three clusters,

5.3

The proposed method and the method given in [1] differ primarily in the set of features
used to parameterize the segment. The ability of each method to distinguish between the
different types of the EEG activities can be considered as an adequate measure for the
corresponding set of features, namely, the spectral and generic features to parameterize the
segments.

As an overall assessment of the compressed result for the given eighteen hours of the
¢EEG recording, it is observed that the compressed results with the proposed compression
method provide a better classification of the different EEG activities compared to that with
the method given in [1]. In the following subsections, we present examples where the
proposed method is able to identify the changes in the EEG activity, whereas the method

given in [1] failed to identify these changes.

5.3.1 CASE 1: First six hours of the cEEG

The compressed results for the six hours (19h:28m:55s - 01h:28m:55s) of the cEEG recording
on the right side of the brain are shown in Figures 5.1 and 5.2.

Figure 5.1(a) shows the compressed results using the proposed method. Each horizontal
bar represents the compressed results for one hour of the cEEG recording. Each color
represents a single cluster of segments. The temporal profile of the different colors show the
presence of the different patterns in the cEEG recording. Figure 5.1(b) shows the sample
segments of the EEG activity represented by each cluster, which provides a legend to read

the temporal profile shown in Figure 5.1(a).
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For example, the EEG activity associated with the segments shown in green color in
Figure 5.1{(a) is represented by green color EEG in Figure 5.1(b). Figure 5.2 shows the
results using the generic features as given in [1]. Since the compressed resulis with the
proposed method and the method given in [1] are calculated independently, the segments
with same color in Figures 5.1 and 5.2 may not represent similar activity. For example, the
segments represented by blue color in Figure 5.1(a) represents burst suppression, whereas
the segments with burst suppression in Figure 5.2(a) are shown in green color.

When the compressed results for the six hours of cEEG recording shown in Figures 5.1
and 5.2 are compared to the visual review of the actual cEEG recording, it was observed
that the onset and offset of patterns as shown in the compressed results is in accord with the
pattern changes in the actual cEEG recording. For example, at the time instant 77 (11:10
PM) the compressed results show a change in the EEG activity from a mixture of slow
and fast activity to burst suppression. This change is found to be in accordance with the
changes in the cEEG recording. Further analysis show that the spectral features are able to
identify the changes in the EEG activity that were not identified using the generic features.
For example, in Figure 5.1, around 1:00 AM and the duration labeled 75, we observe a
change in the activity from burst suppression represented by blue color to a mixture of
burst suppression and 1-3 Hz slow activity represented by blue and red color. However,
during the same interval the results using the generic features in Figure 5.2 do not show the
transition to 1-3 Hz activity. The temporal profile indicates a continued burst suppression

activity represented by green color.

5.3.2 CASE 2: Second six hours of the cEEG

As with case I, during the second six hours (01h:28m:55s - 07h:28m:55s) of the cEEG
recording on the right side of the brain, we compare the performance of the proposed
method with that of the method given in [1]. Figures 5.3 and 5.4 show the results with the

spectral features as used in the proposed method and the generic features as used in [1].
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On comparing the compressed results in Figures 5.3 and 5.4, it is observed that the
spectral features are able to classify the segments into three different clusters, whereas the
generic features classify the segments mostly into two clusters represented by green and
blue colors, i.e., the spectral features are able to detect a third pattern which is not found
using the generic features. The onset and offset of the different activities as indicated by the
compressed results based on the speciral features have a higher agreement with the onset
and offset of the patterns in the actual cEEG recording compared to that using the generic
features. For example, during the time frames marked T3 and T, the spectral features as
shown in Figure 5.3(a) are able to distinguish between the burst suppression represented
by red color and the 1-2 Hz slow activity represented by blue color, whereas the generic
features in Figure 5.4(a) identify only a single activity that resembles the burst suppression

and is represented by green color.

§.3.3 CASE 3: Third six hours of the cEEG

We present the compressed results for the third six hours (07h:28m:55s - 13h:28m:55s) of
the cEEG recording on the right side. The clinician had indicated in the EEG report that
around 12:00 pm the propofol was stopped and the subject had a clinical seizure around
12:40 pm. Following the clinical seizure, the propofol was restarted.

Figure 5.5 shows the compressed results for the six hours of the cEEG recording using
the proposed method and Figure 5.6 shows the results with the method given in [1]. A
change in activity around 12:00 pm is indicated in Figure 5.5. The activity shown in blue
color and representing a burst suppression has now changed to red color representing 1-3
Hz slow activity. At approximately 12:15 pm, the 1-3 Hz activity represented in red color
is followed by the 5-6 Hz activity represented by green color. Since the clinician reported
that around 12:15 pm there was a semi-rhythmic build up of 1-3 Hz slow wave activity
and the activity progressed to semi-rhythmic 5-6 Hz activity, the changes at approximately

12:15pm in Figure 5.5 are in accord with the findings of the physician.
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The results using the method given in [1], presented in Figure 5.6, show no change in
the EEG activity at around 12:00 pm and it can be inferred that the generic features failed to
identify the change in the BEG activity. The clinical seizure is associated with the muscle
movement. Since the segments with muscle activity have a high energy and we classify
the segments with high energy as artifacts, the clinical seizure has been classified as an
artifact by the compression method. Figures 5.5 and 5.6 shows an artifact around 12:40 pm

representing a clinical seizure as expected.

54 SUMMARY

For the given eighteen-hour cEEG recording, the proposed method for the compression
of the cEEG using the spectral features yielded a better classification of the segments
compared to that given by the generic features used in [1]. The compressed results with
the spectral features parallel the visual classification by the clinician. Hence, on the basis
of our results with the given eighteen-hour cEEG recording, it can be concluded that the
spectral features may provide an improved bird’s eye view of the cEEG activity to assist

the reviewer during the visual cEEG analysis compared to that using the generic features.
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UMMARY AND FUTURE

This chapter gives a summary of the research contributions reported in this thesis. Some

directions for future work are also pointed out.

6.1 Summary

Electroencephalogram (EEG) is the recording of electrical potentials generated by the
brain, which can provide a view of the complex cerebral metabolism. EEG is normally used
for epilepsy monitoring by detecting transient events like spikes and seizures. Further, the
background EEG can provide significant information about the state of the brain prior to
clinical manifestations. This allows time for corrective action to be taken before irreversible
damage occurs to the brain. The continuous long-term EEG (cEEG) monitoring generates
extensive data, which requires an enormous amount of time for the neurologist to analyze.
In order to facilitate the analysis of the cEEG recordings and the proper detection of ensuing
abnormalities of the brain, automatic analysis techniques are being developed. These are
aimed at simplifving the cEEG data into compressed graphical formats to suppiement the
analysis. Such techniques can help the non-EEG specialists to identify possible evolving
structural abnormalities.

Various techniques for compressed EEG have been proposed in the literature, which
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generally require training and experience for proper interpretation of the compressed data.
Recently, Agarwal ef al. [1] presented a method of automated cEEG analysis, which
relies on the observation that the background activity in cEEG usually consists of different
patterns that are recurrent. The compressed display includes the representative samples
of each pattern type, presented in the traditional EEG display format, along with a graph
showing temporal evolution of the various patterns. As aresult, minimal training is required
for identifying the relative changes in the cEEG.

In this thesis, we have proposed a method for the compression of the cEEG, which
is similar to the method of Agarwal ef al. [1]. Since the spectral content is inherently
used by the EEGer in the manual assessment of the background EEG, we have proposed
a set of features based on the spectral content of the EEG, termed spectral features, to
parameterize the EEG segments instead of the generic features consisting of the amplitude,
frequency-weighted energy, and dominant rhythm used in [1]. We have proposed four
classification Methods I, 11, 111, and IV to classify the segments that are parameterized using
the spectral features. These methods can be summarized as follows: Method I is similar to
the classification scheme used in [1], but uses the spectral features instead of the generic
features. In Method 11, we classify the segments of the EEG based on the relative powers
in the different frequency bands. Since the absolute power in the delta band dominates the
power in all the other bands, in Merthod III we initially separate the segments with high
absolute power in the delta band and then, classify the remaining segments using Method
I1. Method IV is similar to Method I except that for the remaining segments the power in
the delta band is not used.

The performance of the k-means clustering algorithm depends on the initial seeds used
to initialize the algorithm. The method used in [1], termed femporai technigue can miss
the patterns that do not recur frequently or occur for short durations like the occurrence of
seizures during epilepsy monitoring. To overcome this limitation, we have proposed a new

more generalized method based on the idea of histogram, termed hisfogram technique.
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To assess the performance of the method given in [1] and the proposed classification
methods, we have used eight full-night sleep EEG recordings. We compare the patterns
identified by the computer-based methods and the manual classification on an epoch-to-epoch
basis. For the purpose of comparison, we have defined two matrices, namely, the epoch
cluster-sieep stage and the agreement matrix.

The following observations can be drawn from the results presented in Chapter 4:

e For the eight full-night sleep cEEG recordings under consideration, the average
overall agreement between the various patterns identified using the computer-based
and manual classifications have shown that Method 1 yields results better than Merthods
I, L, and IV, as well as the original method in [1], irrespective of the method used for
the selection of the initial seeds required for the k-means clustering algorithm. With
the initial seeds selected using the histogram technique, an improvement of almost
6% was observed with the proposed method compared to the method given in [1].
Thus, it can be concluded that the spectral features used in the proposed method
provide a better classification of the segments compared to the generic features used

in{l1].

e Classification Method 11 does not require the scaling of the speciral features as

needed with the generic features in [1].

e For the various classification methods, the average overall agreement between the
computer-based and manual classifications with the initial seeds selected using the
proposed histogram technique has shown an improvement upto 1% compared to

those selected using the temporal technique givenin [1].

In Chapter 5, we have demonstrated the application of the compressed cEEG in the NICU.
The compressed results for an eighteen-hour cEEG recording of a patient in status epilepticus
have provided the information about the EEG activity to be in accordance with the visual

findings reported by the physician. Further, for the given NICU recording, the compressed
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results have shown that the proposed method could identify certain changes in the recording

that were not identified with the previous method given in [1].

An important aspect of the compression method presented in this thesis is the classification
of the cEEG segments. Our results with the sleep EEG have shown that the spectral
features provide an average agreement of approximately 71% between the computer-based
and manual classifications. Since the manual classification is based on the well accepted
R&K sleep classification rules [9], the clusters formed with the classification method can be
modified by incorporating decision trees, which can automatically label each cluster with
a relevant sleep stage [48, 52], i.e., a completely automated sleep staging algorithm can
be developed. Also, the method can be developed further to match the patterns associated
with the right and the left side of the brain, which could assist the reviewer in judging the
symmetries between the left side and the right side using the compressed results.

The histogram technique calculates bins, which are adapted to the data set under consideration.
Decision rules can be used to merge bins with similar features. Since the number of bins is
adapted to the data set, the bins that remain after the merging process can give us an idea
of the different types of patterns present in the data set.

The k-means clustering algorithm performs a sharp classification, i.e., each data-point
is assigned to one of the K clusters, whereas the fuzzy-C means clustering algorithm
[19] assigns each data point to several clusters at the same time with different degrees
of association. Since the segments of the cEEG can have overlapping properties, the use of
fuzzy-C means clustering algorithm in the classification method used by Agarwal et al. [1]

may improve the performance of the method and can be studied in future.



LINEAR ENERGY

The energy of a sinusoidal signal is dependent on the frequency and the amplitude of the
sinusoid. Teager [38] gave a measure of energy, which considers both the frequency and
amplitude of the sinusoidal signal. To understand the concepts involved in the algorithm

given by Teager in [38], we consider the example of a simple harmonic motion.

SIMPLE HARMONIC MOTION

According to Newton’s second law of motion, the equation representing the motion of a

mass m suspended from a spring with force constant & is given by

d*z kK
'EEZ' + ;7-2'1' =0 (Al)
The solution to the above equation is
z(t) = Acos(wt + ) (A.2)
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where A and w are the amplitude and frequency of the oscillation, respectively.

The total energy of the above system is given by

1 5 dz
E-—i(kx w‘—rn(E;)

Substituting (A.2) in (A.3), we obtain

23

)

F = -1—mw2A2
2
Therefore,
E o w?A?
TEAGER’S ALGORITHM

Consider a signal with samples z(n), such that

z(n) = Acos(wn + ©)

where w is the digital frequency in radians/sec and © phase.

Consider three consecutive samples of the signal

z{n—1) = Acos{w(n — 1)+ ©)
z(n) = Acos(wn + ©)
z(n+1) = Acos(w(n+ 1)+ 8)
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Using the trigonometric property, cos(a + 3) cos(a — ) = 3 [cos(2a) + cos(26)], it can

be shown that

zn+1jzin—-1) = %2 lcos(2{wn + @)} + cos{2w)]

= A% cos*(wn + ©) — A?sin®*(w)

= z?(n) — A% sin®(w)

The above equation can be written as

A%sin®(w) = 2*(n) — z(n+ Dz(n — 1) (A.6)

For small values of w, approximating sin(w) = w gives
A2t =12 (n) —z(n+ Da(n — 1) (A7)

The above expression has unique solution for w < %
Comparing (A.7) and (A.4), it can be shown that (A.7) is the estimate of energy of the

sinusoid. Based on (A.7), Teager described the non linear energy operator (NLEO) ¥ as
T z(n)] = 2%(n) — z(n — Dz(n+ 1) (A.8)

The above equation gives the estimate of the energy of the signal based on its amplitude
and frequency. Therefore, the output of the equation (A.8) is termed as frequency weighted
energy (FWE).

In case of a multi-ione signal [20, 38}, the output of the NLEO is given by

R
v [25;1 A; cos(wiy + @}} = Z AZsin?w;
i=1

(A9)

DC time varying
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i=1,2.n, 751
Itis to be noted that the above output of the NLEO in (A.9) consists of a DC part representing
the FWE and a time varying part corresponding to the cross terms. Taking the time average
of (A.9) yields

B\

R
Z A; cos{wyy, + O)

§=1

R
=" AZsin®w; (A.10)
g==]

If the multi-tone input signal contains a zero-mean additive white Gaussian noise (AWGN),

then (A.10) contains an additional noise term as shown

E v

R R
D Aicos(win +©) + w(n)H =Y A?sin®uw; + o, (A.11)

i=1 i=1

where w(n) is a AWGN with variance o2. Since the above equation contains an additional
noise term, to avoid erroneous estimation of the energy of the signal using NLEQO, a high
signal to noise ratio is needed. A more generalized NLEQO that is robust to noise is presented

by Plotkin and Swamy [53, 54]
U [z(n)] = z(n — g)z(n — p) — z(n — g)a(n — s) g+p=gq+s (Al

Using the above NLEO, the time average of the output of the NLEO for a multi-tone input

signal containing a AWGN w(n) is given by [20]

E U [SE A cos(win + ©) + w(n)]]
r %
0 g#pag+#s

O §=DqF s (A.13)

2
= Zil A sin w; (B ginw, (5 4 ¢
on 9FPG=S

202, g=p,q=s
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Forg=1,p=2 ¢=0, s=3,(A.12) becomes
U z(n)] = z(n — Dz(n - 2) - z{(n)z(n ~ 3) (A14)
Taking the time average of the output of NLEO in (A.14), it can be shown that [20]

ZA cos(win + ©) + w(n)

§=1

] Z A" sin® w;

It is to be noted that the above equation is independent of the noise, and therefore is more
robust.

The NLEO output can be used as a measure of the energy of a given signal and is an efficient
tool for detecting the instantaneous changes in frequency-dependent energy. For the EEG
signal, the frequencies of interest (0 — 30 H z) are less than one-fourth of the sampling rate
128 H z, so the output of NLEO as defined in (A.14) can be considered as a measure of the

spectral content of the signal.
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