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ABSTRACT

Radiation Pattern of Aperture Coupled Prolate Hemispheroidal
Dielectric Resonator Antenna

Yunpeng Song

A detailed analysis and study of a prolate hemispheroidal dielectric resonator antenna
(DRA) excited by a rectangular slot aperture are developed. The method used is based
on the dyadic Green’s function technique in the spheroidal coordinates. In this work,
the dyadic Green’s functions pertaining to a magnetic-current source located in a
dielectric spheroid is derived and expressed in a form convenient for numerical
computations. The dyadic Green’s functions are then employed to formulate the
electromagnetic fields radiated by the DRA. The electromagnetic far field is

expressed analytically in a compact form.

The antenna radiation patterns and directivities are computed for different design
parameters. The accuracy of the solution is attested by both comparing with HFSS
simulation results and with published data for the corresponding hemispherical
dielectric resonator antenna. Furthermore, efficient algorithms for calculating the
prolate spheroidal wave functions are developed using the software package MATLAB.
The algorithm developed here for calculating the prolate spheroidal function is

compact, fast, and efficient, and compared well with other results in the literature.
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Chapter 1

Introduction

1.1  Survey of dielectric resonator antennas

Since the early experimental study of dielectric resonator antenna (DRA) by Long,
McAllister and others [1]-[3], the dielectric resonator antennas have been studied
extensively. Much of the early work focused on characterizing the basic properties of
DRAs for a variety of simple shapes and feed configurations. It has been shown that
dielectric resonator antennas can be used as effective radiators at microwave
frequencies where ohmic losses become a serious problem for conventional metallic
antennas. DRAs offer a number of advantages such as small size, light weight, low
cost, ease of excitation, and ease of integration with active circuitry. Furthermore,

they offer wider bandwidth than the microstrip patch antennas commonly used at the

same frequency [4].

1.1.1  Cylindrical and half cylindrical dielectric resonator antennas

The first cylindrical dielectric resonator antenna excited by a coaxial probe was
investigated by Long et al. [1] in 1983. An experimental investigation of the radiation
and circuit properties of cylindrical DRAs has been undertaken in their work. Kishk et

al. [5] studied the cylindrical dielectric resonator antenna excited by a narrow slot in

1



the ground plane of a microstrip line. The resonance frequencies for various
resonators are predicted numerically, and radiation characteristics are verified
theoretically. Leung et al. [6] investigated an aperture-coupled DRA loaded by a low-
profile dielectric resonator disk of a very high permittivity. The antenna bandwidth is
increased from 8% to 25%. Other studies have presented different methodologies to
obtain circular polarization [7]-[9]. A half cylindrical DRA was investigated by

Mongia et al. [10]. A microstrip line slot feed scheme is reported in their work.

1.1.2 Hemispherical dielectric resonator antennas

Leung et al. [11] studied the hemispherical DRA excited by a coaxial probe both
theoretically and experimentally. In their work, the Green’s function and method of
moment technique are used to derive probe current and input impedance. The input
impedance of aperture coupled DRA and cross-polarization characteristic of a probe-
fed DRA were well investigated by Leung et al. [12], [13]. Other researchers like

Kishk et al. [14] presented radiation characteristics of a DRA excited by coaxial probe

or slot.

1.1.3 Rectangular dielectric resonator antennas

The earliest rectangular DRA was investigated experimentally by McAllister et al.

[2]. Salameh et al. [15] presented a coplanar-waveguide-fed slot-coupled rectangular



dielectric resonator antenna. They have obtained linear polarization patterns with very
low-cross polarization components. Oliver et al. [16] investigated circular polarized
DRA excited by a single slot. The antenna element was mutually orthogonal nearly
degenerate modes to generate circular polarization with a low axial ratio over a wide

frequency band and a wide beam width.

1.1.4 Triangular dielectric resonator antennas

The triangular DRA is more compact in size than rectangular and circular disk DRAs.
They were investigated recently by several researchers. Kishk [17] examined
numerically and experimentally a truncated tetrahedron dielectric resonator antenna.
The tetrahedron base is an equilateral triangular over a ground plane and excited by a
coaxial probe to provide a broad side radiation pattern. The tetrahedron with narrow
base attached to the ground plane achieves a wide-band performance, about 40% for
the impedance matching and the radiation patterns. In [18] a aperture-coupled
equilateral triangular DRA of very high pemmittivity (&,= 82) was investigated

experimentally. The impedance matching, radiation patterns and antenna gain were

presented.



1.2 Survey of spheroidal geometry applications

Concomitant with the development of the important properties of the spheroidal
functions and the development of computer facilities, there have been an increasing
number of applications of these functions in computational electromagnetics. Antenna
mounted on aircrafts, rockets, satellites, and guided missiles can be considered to
have part of a spheroidal shape. Related EM wave scattering problems to these shapes
have been studied for many years [25]-[29]. With the development of mobile
communications, spheroidal dipoles and monopoles have been investigated
intensively [21]-[24]. Also, electromagnetic interaction between the human head and
a cellular antenna has been a hot topic in recent years where the human head can be

approximated as a dielectric prolate spheroid [36].

1.2.1 Spheroidal antennas

Chu and Stratton [19] investigated the boundary problem of the forced EM
oscillations of a conducting prolate spheroid which was fed by a gap of infinitesimal
width across the central section of the spheroid. Schelkunoff [20] analyzed the prolate

spheroidal antenna where the voltage is applied symmetrically between two halves of

the spheroid by means of a biconical transmission line.



Weeks [21] analyzed the prolate spheroidal antenna from a different angle. Instead of
having the excitation gap in the centre of the antenna, he allowed the gap to be located
arbitrarily along the antenna without disturbing the symmetry in the direction. Some
other researchers, such as Jen and Hu [22] presented the radiated field and input
admittance of a metallic prolate spheroid excited by a circumferential slot, and Zhang
and Sebak [23] studied the radiation characteristics of an asymmetrical slot antenna

on a conducting prolate spheroid.

In some practical applications or to widen the beam width of microstrip antenna, the
antennas are normally mounted on curved surfaces. Tauchi ef al. [24] analyzed the
radiation characteristics of a circular microstrip antennas inserted at the center of an

oblate spheroidal conductor.

1.2.2 Electromagnetic scattering by spheroids

Electromagnetic scattering by a single spheroid or two spheroids have been well
investigated, and many analytical solutions have been obtained. Asano and Yamamato
[25] studied the EM scattering by a homogeneous prolate (or oblate) spheroidal
particle with arbitrary size and refractive index at any angle of incidence. Sinha and
Macphie [26], [27] analyzed the scattering of plane wave with arbitrary polarization

and angle of incidence by conducting prolate spheroids. Cooray and Ciric [28], [29]



have presented solutions of EM wave scattering by a system of two perfectly

conducting or dielectric spheroids of arbitrary orientation.
1.2.3 Electromagnetic waves inside dielectric spheroids

Uzunoglu and Angelikas [30] studied the electromagnetic fields in a three-layered
prolate spheroidal human body model due to a loop antenna that is used as an EM
therapy apparatus. This investigation of the radiated fields inside a prolate spheroidal
human body model due to loop antenna was limited to the scalar analysis and the(z;-
component of fields only. Iskander et al. [31-32] investigated the exposure of a
prolate spheroidal model to the near field of a short dipole or a small loop antenna,
using the extended boundary condition method. Ruppin [33] calculated the
eléctromagnetic power absorption in tissue prolate spheroids irradiated by a plane

wave using point-matching method. The calculation is restricted to prolate spheroids

of small eccentricities.

1.3  Overview of this report

In this thesis we present an analytical solution for the radiation by a prolate
hemispheroidal DRA using dyadic Green’s function technique. The aperture-coupled
prolate hemispheroidal DRA excited at the fundamental broadside TE;; mode is

shown in figure 1.1. Radiation patterns are calculated and presented for different



design parameters. The input impedance is also investigated by using Ansoft HFSS.
The primary motivation for this study is that no study of hemispheroidal DRA has
been found so far, and hemispheroidal DRA has more design freedom than
hemispherical DRA. The analysis of the radiation characteristics of a hemispheroidalv
DRA is very complicated. The difficulty is mainly due to two aspects. One is the very
complicated calculation of the spheroidal angular and radial functions; the other is
lack of orthogonality of spheroidal vector wave functions. This is part of the reason
that there have been fewer reports about the applications of spheroidal wave functions

in computational electromagnetics than those related to other canonical geometries.

Fig. 1.1 The geometry of a hemispheroidal dielectric resonator antenna excited by

a slot aperture



In Chapter 2, the prolate spheroidal wave functions are reviewed and calculated. An
efficient algorithm for computing prolate spheroidal wave functions and their
eigenvalues is developed with the Matlab software, and numerical results calculated
are compared with results in the literature. The numerical results have a better

accuracy than other results in the literature.

In Chapter 3, the dyadic Green’s functions pertaining to a magnetic-current source
located in a dielectric prolate spheroid is formulated. The modal series is ;epyesented
as a sum of unbounded and scattering solutions. The unbounded solution alone
represents the source radiating in the unbounded dielectric medium, while the

scattering solution accounts for the presence of the dielectric discontinuity.

In Chapter 4, the unknown scattering coefficients of the dyadic Green’s functions are
obtained by enforcing the boundary conditions. The scattering coefficients of each of
the scattering dyadic Green’s functions are coupled with one another. The coupled
system of linear equations satisfied by these coefficients is obtained. The point source
information is included in the coupled equations. The unknown scattering coefficients
cannot be obtained analytically from the equations without calculating the integrals of
current source. This is different from the spherical case, where the transmitting and
scattering coefficients are independent of integrals of source currents and decoupled
from each other. However, for a given source excitation in a spﬁeroidal structure, the

current distribution is assumed and the source point does not appear after integration



over the entire source region. Also in Chapter 4, the formulation of electromagnetic
far fields are simplified according to the asymptotic form of the spheroidal radial
function whencé — . The electric far field is expressed in a very simple and

compact form.

In Chapter 5, the antenna radiation patterns and directivities are computed
numerically for different design parameters. The accuracy of the solution is checked
by both comparing with HFSS simulation results and comparing with published data
for a corresponding hemispherical dielectric resonator antenna [14] when the axial
ratio b/a of the hemispheroid approaches one. Also, the input impedance of the

hemispheroidal DRA is studied using HFSS.

Finally, in Chapter 6, conclusions are summarized and some recommendations for

future research are presented.



Chapter 2

Spheroidal Wave Functions

2.1 Introduction

Spheroidal wave functions are the solutions of the Helmholtz equation in a spheroidal
coordinate system. In the evaluation of electromagnetic fields in spheroidal structures,
spheroidal wave functions are frequently encountered. Theoretically, the formulation
of these functions is well documented by J. A. Stratton et al. [34] in 1956 and C.
Flammer [35] in 1957. Computation of the spheroidal functions is very complicated,
which requires the eigenvalue computation and the forward and backward recursion
formulations. There are two kinds of spheroidal coordinate systems: prolate
spheroidal coordinates and oblate spheroidal coordinates. In this work, only prolate
spheroidal wave functions are computed, because the geometry of the dielectric
resonator antenna discussed in this project is a prolate hemispheroid. The oblate
spheroidal wave functions can be computed similarly. An efficient algorithm for
computing spheroidal prolate wave functions and their eigenvalues is developed with
the Matlab software, and the numerical results calculated are compared with results in

the literature [36]-[38]. The numerical results agree very well with other results in the

literature.
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2.2 Prolate spheroidal coordinates

A 3-D prolate spheroid and the prolate spheroidal coordinates (7, £, ¢) are shown in

figure 2.1. The prolate spheroidal coordinates are related to the rectangular

coordinates (x, y, z) by
x=%\/(l—n2)(§2—l)cos¢ (2.1a)
y=2Ja-n*xe - Dsing (2.1b)

z= i né (2.1¢)
2
where

-1s7<1, 126<w, 0<9<2n. (2.1d)

g2 2 (2.2a)
22 x’+y? =(i1_)2
7 -1 2 (2.2b)

It can be seen from equations (2.2a) and (2.2b) that £ = constant defines a family of

confocal ellipses revolving around the major axis, which is the z-axis, and =

11



constant defines a family of confocal hyperbolas revolving around the z-axis. In the

formulas given above,

d=2xb'-a’ (2.2¢)

is the interfocal distance of the ellipses, with a being the semi-minor axis and b being

the semi-major axis of the ellipses.

A prolate spheroidal coordinate system is a curvilinear orthogonal system. Its metric

coefficients are given by

_ i Oxa OV, 22:'1 & -n
h”_\/(an) S G =5 (23a)

_ | Ox2 Oy 0z, =£ & -n
hf—‘/(af) T (2:3b)

h, =\/<a—x)2 r( 2y e &y =§J(l—n2)<:2 - 2.3¢)

o0 o9 O

12



(b)

Fig. 2.1 (a) 3-D geometry of a prolate spheroid; (b) the prolate spheroidal
coordinates (3, &, ¢). Coordinate surfaces are prolate spheroids (¢ =
constant), hyperboloids of revolution ( = constant), and half-planes (¢=

constant).

13



2.3  Wave equation and its solution in prolate

spheroidal coordinates

In a curvilinear orthogonal coordinate system, the scalar Helmoholtz wave equation

(V + )y =0 2.4)

can be written in a prolate spheroidal coordinate system as

d 20 8,5, .0 E2-nt 3
(1~ = ) | Wi, S S
[an( n )an+a§('f )6§+(§2-1)(1-n2)a¢2]w @.5)

+c? (-t =0

where ¢ = —;—kd , k s the propagation constant, and d is the interfocal distance.

By the usual procedure of the separation of variables, solution of equation (2.5) can be

obtained in the form of the Lame product,
"COS .
Vo =S (€, R,(c,E) sin mo . (2.6)

Substituting (2.6) into (2.5) and separating the equation, can obtain the second-order
differential equations for the angular function S,.(c, #) and the radial function R,.(c,

¢) as
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m2

L =12 L5 ., 1+ (A — 1 =215, () =0 @.7)
dn dn -7

LEERNS A g _

FE1E7 D R €, Uy =767+ (,6) =0 (28)

In these two equations, m and 4,,, are separation constants and, known as eigenvalues.
Their values will be determined in the following sections. Sua(c, 1) and Ry.(c, &) are

called, respectively, the angular and radial prolate spheroidal wave functions.

2.4 Angular and radial prolate spheroidal scalar

‘wave functions

2.4.1 Angular wave functions

There are two linearly independent solutions, or two angular wave functions, that

satisfy equation (2.7). They are the angular prolate spheroidal wave functions of the

first and second kind given by

Sem)=Dd(c)Pr(n) (2.9)
k=0,1

SP(em)= Y dr ()0 (n) (2.10)
k=—
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where d]"(c)are the expansion coefficients to be determined later; P, (x)is the
associated Legendre function of the first kind with —/<x </, and Q. (x)is the
associated Legendre function of the second kind with |x| >]. The prime on the
summation sign indicates that the summation is carried out for even k£ when (n-m) is

even and for odd £ when (n-m) is odd.

In most problems only the angular spheroidal functions of the first kind are required.
The angular spheroidal functions of the second kind have not found much application
in electromagnetic wave theory. However, it is very useful to calculate the spheroidal

radial function of the second kind, which will be introduced in the following sections.

2.4.2 Radial wave functions

The radial prolate spheroidal wave functions, which satisfy equation (2.8), are defined

by

RO, =13 gm0 -y
i § 2.11)
- y ok+m-n (2m + k) i (P)
z l ( )Zm+k (Cé)
k=0,1 k!

where d}"(c) are the same expansion coefficients in the expansion of the angular
wave functions in equations (2.9) and (2.10). z{? (c&) represents the spherical Bessel

functions given by



FAY (z)=\/—2£:J,,+1/2 (2)=/,(2) (2.12a)

z® (z)=\/;1;Yn+l/2 (2)=ya(2) | (2.12b)
Zm(z)zjn(z)+iyn(z):h,f“(z) (2.12¢)
Z(z)=j(z2)~iy,(z)=h(z) (2.12d)

with j, (z) and y,(z) being the spherical Bessel and Neumann functions, and %" (z) and
h?(z)denoting the spherical Hankel functions of the first and second kinds.

Accordingly, R®) (c,&)and R (c, &) are related to RD (c,&) and RD (¢, &) by

n

RD)(c,&) = RG) (e, &) +iR() (¢, &) (2.13a)
RY (e.)= R0 (c,§)~iRD (e, &) | (2.13b)

The radial prolate spheroidal wave functions satisfy the Wronskian relation

RO, mdzRﬁfn’ ©8)-RD(c,&)L RO =] (2.14)

dé "™ (£ -1

Equation (2.14) is a very useful relation of R (c,£) and RP(c,&) . It can be used to

check the analytical or numerical solutions of R{) (¢,&) and R (c,&).
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2.4.3 Relation of spheroidal angular and radial wave functions

The angular wave function S,,(c, ) and radial wave function R,,(c, {) are related by

S (e,z) = kg (RGN (¢, 2) (2.15)
53 (c,2) = kD (IR (¢, 2) (2.16)

where k% (c) and k@ (c) are called the jointing factors given by

(2m+1)(n+m)!i'd,f'" (C)2m+ k) k!

k=0

n+m

2n+m d‘;'l

)

(n~m —even)
K0 = @17
(2m+3)(n+m+1)!Z'd,’{‘" ©Cm+k)/ k!
k=1
n-m-1_, . n+m+1

2" g™ (e ™ ml( > H( 5 )

(n—m=odd)
and
(2m- I)m/(n+m)/cm/ 2. df" (c)(2m+ )l /k!
(n—m=even) 2.18)
ki (c)=

e n-m-1 +m+1
27 (2m )N A (€) o okt o

(2m=3)(2m—-Dm!(n+m+1)!c"? .y k!
(n—-m=odd)

(c)

18



Therefore, the radial wave function of the first kind and the second kind can also be

obtained from equation (2.9) and equation (2.10) respectively as

1 «©

RY(c,é) =k(,—(c)2d ()P (&) (2.19)
RO (c,)= kfz) S ()or (€) (2.20)

2.5 Eigenvalues 4, and expansion coefficients ;"

The A, in equations (2.7) and (2.8) are the eigenvalues of the prolate spheroidal
angular and radial functions. To evaluate the prolate spheroidal wave functions, we

have to determine the eigenvalues and the expansion coefficients.
2.5.1 Determination of expansion coefficients 4;” (¢

We substitute equation (2.9) into (2.7), to get

S mn d 2 d m
'd —[-n*)—P"
| DI O PO R i)
X |
+ [ (€)= —112—1P:+k(n)} =0, 2.21)

19



Since the associated Legendre functions satisfy the differential equation

4 -2y 9 pm
dn[(l %) an P (m]
2

+[(m+k)(m+k+1)— l’_"7]13,;,1,c (=0 (2.22)

and the recurrence relation

(2n+1)nPl(n)=(n+m)PL(n)+(n-m+I1)FL (1) (2.23)

we can write (2.21) as

oo, mn (2m+k)(2m+k_]) S
]FZOJdk (C){(2m+2k+1)(2m+k—])c P (n)

+[(m+k)(m+k+1)-2_(c)
+2(m+k)(m+k+1)—2m2-102
(2m+2k-1)(2m+2k+3)

(k+1)(k+2) 2 am _
(2m+2k+1)(2m+2k+3)c Frva (1)} =0

1P(1) (2.24)

Setting the coefficient of the P, (n) equal to zero, we obtain

(2m+k+2)(2m+k+1)
(2m+2k+5)(2m+2k+3) ’
2Am+k)(m+k+1)=-2m* -1 , ..
(2mt2k—T)(2m+2kr3) <% (¢ (2.25a)
N k(k—1)
(2m+2k—3)(2m+2k—1)

cdi(c)+[(m+k)(m+k+1)

~ A (€)+

czd,:"_"z(c) =0

which provides a recurrence relation for the expansion coefficientsd;" (c) . Let

20



_ (2m+k+2)(2m+k+1) &

k= (2.25b)

(2m+2k+5)(2m+ 2k +3)

2
B, =(m+k)(m+k+1)s 2mEkmrksl)=Im” -1 , (2.25¢)
(2m+2k—-1)(2m+2k+3)

y, = k(k-1) ¢ (2.25d)

(2m+2k-3)(2m+2k—-1)

We rewrite (2.24) in a more compact form as

aod3" () +[Bo = Amn (€)ldg" (c) = 0 (2.26a)
a,d3" (€)+[ By = Ay ()]d]" () =0 (2.26b)
Ay () +[ B = Amn (ML (€) + 7, {5 (€)= 0. (2.26¢)

Equations (2.26a)-(2.26¢) represent a set of homogeneous equations, from which we
can only determine the ratio of the expansion coefficients, that is, 4" (c)/d[™ (c). If
we let n = 0, the angular wave functions S,,(c, 1) reduce to the associated Legendre

functions. Carrying out the normalization at # = 0, we require that

(=D™I2 (5 + m)!

S (c,0)=Pr(0)=
mn (¢:0) = P;" (0) o i

(n—~m = even)

and
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n—-m-1)/2
5O (@0y= pm 0y =D remr )

aon—-m~1_ n+m+l
27( 5 M( 5 )1 (2.27b)

(n—m=o0dd)

We thus obtain the normalizing relations:

k
-, (=1)*(k+2m)! ..
> dm(c)
=k )'("” )

n-m

_ (—1)7(n+m)/ , (n - m = even) (2.282)
2,,_,,, n +m)

and

k—l
53, (- 1) (k+2m+1)!

di"(c)
~ 2"( - )/(k+22m+1)!

n~m—-1

__(-1) ? (n+m+1)! , (n-m=odd) ‘ (2.28b)
wem H—m—=1  n+m+]
2" 5 M( 5 )!

The expansion coefficients d;” (c) are thereby uniquely determined.

2.5.2 Determination of eigenvalues A,,,(c)

It can be seen from equations (2.26a)-(2.26¢) that in order to determine the expansion
coefficients, we have to find the eigenvalues Am,(c) first. Equations (2.26a)-(2.26c)

define a set of homogeneous equations for d; (c). To have a nontrivial solution, the
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determinant must be zero, from which we can determine the eigenvalues A,,,(c). This

1s equivalent to solving the tridiagonal eigenvalue problem given by

B, a, 1 [di(e)] dy"(c)]
7, B o, d;"(c) | d3"(e)
' T (e (2.292)
Yu Bu ay dy (c) dy(c)
(n~m=even)
6, « 1 [drmee) ] [ (c) ]
vy By a dy"(c) di"(c)
- =Aa(c) . (2.29b)
Yorr  Poer Capur dza(e) dya(c) '

(n—-m=odd)

The solution of equation (2.29) produces a sequence of eigenvalues An(c) (n = m,

m+1, ...) for a given m and c.
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2.6 Computation of prolate radial wave functions of

the second kind

Once the expansion coefficients are determined, the prolate spheroidal wave functions
can be computed using equations (2.9), (2.10), (2.11), (2.19) and (2.20) except for the
radial wave function of the second kind when ¢ is small. When the ¢ is small, the
rate of the decrease in 47" (c) is about the same as, or even slower than at the
beginning, the rate of increase iny,,, (c£), thus making the summation converge very
slowly. It is very difficult to obtain the accurate value of the prolate radial function of
the second kind by simply adding more terms in the summation. In this case, the
following method can be employed to calculate R\ (¢, &) accurately.

In this method, we calculate R? (¢,£) from the angular function of the second kind

using equation (2.16), let write (2.16) here as

RO =KD ST (e, 8) (2.30)

where

SP(cE)= 3 (c)OrA(E)

-2m
=2m+1

i’di"”(c)Q:+k(§)+= >rdr(e)on. (&) (2.31)

k=0,1 k=—1,-2

+ 3 dm(e)on, (£)
k=2m+1
2m+2
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In the first summation, where k>0, 4. (c) can be determined by equations (2.26)
and (2.27). In the second summation, where 0 > k > -2m, d;" (c¢) can be determined

by equation (2.26) using the following procedure. Let us rewrite equation (2.26) as
A dia(c)+ Bld " (e)+ CLd"(c)=0 (2.32)
where
A7 =ayy B =P —Apn(0)  C{ =i (2.33)

Dividing (2.32) by 4} (c) and letting k = -k yields

HON A",
r am o am A0 ¢ (2.34)
B_k + ek mn
% (©)

Letting £ = k£ + 2 and substituting into equation (2.34), we obtain, after a series of

such substitutions, a continued fraction

A7 () Ay Clnly Chsle,
d’l..(c) B - B, ,- BL,-

(2.35)

From equation (2.33) we know that 4;" =0when k = -2m or k = -2m + 1. Thus,

equation (2.35) is a finite continued fraction wheno > k>-2m, from which we can

calculate
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2, () d7nn()  d5(0) )
4% 2(©) dma(@) dE"(e) (n - m = even)

-2m+4

or

dZG5m(€) 4oy () dT ()
d:n(;m—a) () d:"(’ﬁm-s) () di"(c) (n-m= odd).

Since dg"(c) for (n - m = even) or d""(c) for (n - m = odd) is already calculated,

™ (c) can be determined for0 > k > -2m .

In the third summation in equation (2.31), whend”} (c) —» 0, O.", (£) - 0. However,

their product 4”7 (c)Q_, — finite. It was shown that
m m : 1 m
Oy (2)= O (2)+ ’1,13}) ;P,,_ »(2). (2.36)
From equation (2.36) we can get
A5 ()0mk (§)=d gk ()P, ($) (k> 2m) (2.37)

where

L) (2.38)

a0 = lim
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To calculate d 7j; (c) , we first use (2.35) to calculate

d poms2(€) L (A5 7 Pl pso ClomsayAlame2)y Cliomes) A (2mea) (2.392)

d25(c) Blomaz) = Bl sy = Blomee) —

(n - m = even)

or
Zi;mﬂ (C) [AT(Zm—l)ﬂJ /p]p—->0 CT(2m+3) AT(2m+l) CT(2m+5) A-'-"(2m+3)
mn =" m m m " (239b)
dZom-1y(©) Blomay — Blomeny — B amesy —
(n-m = odd)
where
PR [ - (2.40a)
240 Ploso = T o1 2m+ 1) '

2

[Ain(zm—l)w / /’L_,o =ch)(2m—_l) . (2.40b)

Then, we can calculate

dzll’2'm+4(c) d;ﬁ;mm(c) d;:l;m+8 ©

’ ] 3aee
d;‘]gm+2 (C) ,’:I'Z'rn+4(c) Z};mm (C)

(n~m = even) (2.41a)

or
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dp|2m+3 (©) dp|2m+5 (o) dp|2m+7 (©

p|gm+l (C) dp|2m+3 (C) dp|2m+5 (C)

(n—m = odd). (2.41b)

Since we have already calculated 4”5, (c) (for n - m = even) or 475, (c)(forn - m =
odd), d7j; (c)can be readily determined for k = 2m + 2, k = 2m + 4,... (forn —m =

even)ork=2m+ 1, k=2m+ 3, ... (for n — m = odd).

Finally, substituting equations (2.31) and (2.37) into equation (2.30), we obtain

R(c.)= [k,(ni)(C)]"[Z d" (e )nul(S)

k=0,1

(2.42)
2 A (E)+ S dz (B (€]

2.7 Derivatives of spheroidal wave functions

The first-order derivatives of the spheroidal angular functions can be obtained directly
by taking the first-order derivatives of the associated Legendre functions. The first-

order derivatives of the spheroidal radial functions can be obtained by taking the first-

d
2

order derivatives of the spherical Bessel functions multiplied by (/ — L =)%.
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2.8 Numerical calculation of spheroidal functions

Expressions for evaluating the angular and radial prolate spheroidal functions and
their eigenvalues are computed. An efficient algorithm is developed using Matlab.
The numerical results calculated are compared with results in the literature [35-38]. It
is found that that the current algorithm is very efficient and accurate. The equations
that are finally chosen in my Matlab code are as follows:
e Expansion Coefficients d; (c) using equation (2.21)
e Eigenvalues 4, (¢) using equations (2.26a)-(2.26¢) and (2.28)
e Prolate spheroidal angular function of the first kind and their first-order |
derivatives using equation (2.15)
e Prolate spheroidal angular function of the second kind and their first-order
derivatives using equation (2.16)
e Prolate spheroidal radial function of the first kind and their first-order
derivatives using equation (2.11) |
e Prolate spheroidal radial function of the second kind and their first-order

derivatives using equations (2.11) and (2.30).

The spheroidal angular and radial functions can be reduced to spherical Legendre and
Bessel functions, respectively, whenc — 0. Plots of some prolate spheroidal
functions are shown in figures 2.2-2.10. Some numerical results computed in this

work and others from literatures [35]-[38] are shown in Tables d.1 to d.7 in Appendix
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D. All the numerical results have been checked using the Wronskian relation in this
work. In Table 2.1, some selected values of the Wronskian computed by this work
and other researchers are compared with theoretical values. It can be seen that the
algorithm developed here for calculating the prolate spheroidal functions has a better

accuracy than other results in the literature.

Table 2.1 Comparison of selected values of the Wronskian computed by F lammer, Li-

Wei Li, this work with theoretical values.

¢ |(mmn)| ¢ |Flammer[35] | Li-Weili[36] | This work Theoretical
values

1.0 | (0,0) | 1.005 99.75 99.7506 99.7506 99.7506
0,1) 99.75 99.7506 99.7506 99.7506
0,2) 99.75 99.7506 99.7506 99.7506
(1,1 99.75 99.7506 99.7506 99.7506
(1,2) 99.75 99.7506 99.7506 99.7506
(2,2) 99.75 99.7506 99.7506 99.7506
0,0) | 1.077 6.253 6.2528 6.2528 6.2528
0,1) 6.253 6.2528 6.2528 6.2528
0,2) 6.253 6.2528 6.2528 6.2528
(LD 6.253 6.2528 6.2528 6.2528

| (1,2) 6.253 6.2528 6.2528 6.2528
(2,2) 6.253 6.2528 6.2528 6.2528
5.0 | (0,0) | 1.005 19.95 19.9501 19.9501 19.9501
0,1) 19.95 19.9501 19.9501 19.9501
0,2) 20.77 19.9503 19.9501 19.9501
(L,D) 19.95 19.9501 19.9501 19.9501
(1,2) 19.95 19.9501 19.9501 19.9501
(2,2) 19.95 19.9501 19.9501 19.9501
0,0) | 1.077 1.2506 1.2506 1.2506 1.2506
0,1) 1.2506 1.2506 1.2506 1.2506
0,2) 1.2503 1.2509 1.2506 1.2506
(L, 1.2506 1.2506 1.2506 1.2506
(1,2) 1.2506 1.2506 1.2506 1.2506
(2,2) 1.2506 1.2506 1.2506 1.2506
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Fig.2.10 R{”(c,£) versus & for different values of ¢

2.9 Prolate spheroidal vector wave functions

A vector wave function, by definition, is an eigenfunction that is a solution of
homogeneous vector wave equation. The vector wave functions are the building
blocks of the eigenfunction expansions of various kinds of dyadic Green’s functions.
These functions were first introduced by Hansen [39]-[41] in formulating certain
electromagnetic problems. The effectiveness of these functions was recognized by
Stratton [42] who, for example, reformulated Mie’s theory of diffraction of a plane

electromagnetic wave by a sphere using the spherical vector wave function. In his
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original work Hansen introduced three kinds of vector wave functions, denoted by L,

M, and N, which are solution of the homogeneous vector Helmholtz equation

(V+k?)a=0. (2.43)
Since it operates on vectors, by V2 we mean here the operator
VI =VV.--VxVx. (2.44)

Since the gradient operator commutes with the Laplacian, one can obtain immediately
an irrotational solution L of the vector wave equation from a solution y of the scalar

wave equation, simply by taking the gradient of y . Thus
L=Vy (2.45)
is an irrotational vector wave function. We do not use L in this project.

Of more importance, however, are the solenoidal vector wave functions, which satisfy

the equation
VxVxA-k?>4=0 (2.46)

The divergenceless nature of the functions is ensured by writing them in the form
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A=Vxay (2.47)

where y is a scalar wave function, and 4 is a constant vector or the position vector. 4

can be expressed in the form

A=Vyxa, a=eorr (2.48)

where édenotes a constant unit vector such as (£,,2Z) and 7is the position vector. If

A is a solution of equation (2.46), a further solution is obviouslyVx 4.

Spheroidal vector wave functions are obtained by expressing the quantities in
equation (2.48) in spheroidal coordinates. The transformation between the unit vectors

in the Cartesian and spheroidal coordinate systems is

F=-n( 522 - 12 )? cos ¢ + &( 12" ’722 )7 cos ¢& — sin ¢, (2.49a)
& -7 . &-n

o 52_1 i . A ]‘—772 i . ~ ~

y=-n(—=)? singn + &{(—5——)? sin ¢ + cos ¢, (2.49b)
& -n & -n
ot 1 g I,

z=¢( ]2 1 2)2ﬁ+n(€ 12)25. (2.49¢)
&' -n & -n

The position vector 7 becomes, in spheroidal coordinates,
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.1 I-n* 1. 1 -1
F=—dn(-——=)'n+=d&(
2 T -y A

)2E. (2.50)

The spheroidal scalar wave functions are denoted in equation (2.6), they are

i R CcoS
W m =S, (cn)R(c,E) L (2.51)

We define now the following spheroidal vector wave functions:

G) (o _ @0
M7 (c;n,,8) =V x {V’e:,,,, a} (2.52)
o o
N“(">(c-n§¢)=lvwx 0 4 (2.53)
zm" 2 3 b k Wzmn . .
where a=1=x, y, 2;0r 7.

The explicit expression of the vector wave functions defined above is given in

Appendix B. The vector wave functions of any one set are, unfortunately, neither

orthogonal among themselves, nor orthogonal to those of the other sets. The

appropriate spheroidal vector wave functions in terms of eigenfunction expansions are

discussed in Chapter 3. Expansions of electromagnetic field in dyadic Green’s

function are also discussed in Chapter 3. It is worth noting that in the limit when the

focal distance d becomes zero or the radial coordinate approach infinity (7

constant), S, (c,n7) reduces to the associated Legendre functions, R,(,.‘;,) (c,& jreduces
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to the spherical Bessel function and the spheroidal vector wave functions above

reduce to vector wave functions in spherical coordinate system.
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Chapter 3
Dyadic Green’s Functions in Prolate

Spheroidal System

3.1 Introduction

To analyze the electromagnetic radiation from an arbitrary current distribution located
in a layered homogeneous medium, the dyadic Green’s function technique is usually
adopted. If the geometry is spheroidal, the representation of the dyadic Green’s
function (DGF) under the spheroidal coordinate system should be the most
convenient. If the source current distribution is known, the electromagnetic fields can
be integrated directly from DGF, which plays an important role as the response
function of multilayered dielectric media. If the source is an unknown current
distribution, the method of moments, which expands the current distribution intoi a
series basis functions with unknown coefficients, can be employed. In this case, the
DGF is considered as a kernel of the integral equation; and the unknown coefficients

of the basis functions can be obtained by enforcing the boundary conditions.

In this work, it is required to get the dyadic Green’s functions pertaining to a slot-
aperture source inside a dielectric prolate hemi-spheroid, figure 1.1, of £ = £, (region
2), characterized by permittivity £, and permeability 4,, and located in an unbounded

medium (region 1), characterized by permittivitye, and permeability x,. Image
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theory shown in figure 3.1 permits the removal of the ground plane by placing a
virtual image source of the other side of the ground plane. The ground plane in figure
1.1 is assumed infinite. Image theory can be used to remove the ground plane to
obtain an equivalent problem of a full dielectric prolate spheroid excited by a

magnetic current source. By applying image theory, the equivalent problem of figure

1.1 is shown in figure 3.2. The dyadic Green’s functions G, (r, r ) pertaining to a
2

m

magnetic-current source are called the electric and magnetic dyadic Green’s function
of the second kind according to Tai [43]. The EM fields inside and outside the
spheroid are expressed in terms of the spheroidal dyadic Green’s functions and an

arbitrary current source distribution.

/] | i
/. : :
u, e M€\ € E | hE
/] ! :
/] . :
/] : .
/ : }
7 :
/] :

o= ; M, =-fixE, M/ | M, =-AxE, M, =-2ixE,
/] |
/) :
7 !
/] :
7/

Fig.3.1 Equivalent models for magnetic source radiation near a perfect

electric conductor.

41



:
i
!
i

-—ve

............
......

s ..

WA X

-—

Fig.3.2 Equivalent problems for the hemispheroidal dielectric resonator
antenna in figure 1.1, excited by a slot aperture, after using image

theory.

By using the principle of scattering superposition [36], the dyadic Green’s functions
can be considered as the sum of the unbounded dyadic Green’s function and
scattering dyadic Green’s functions. The unbounded solution represents the source -
radiating in the unbounded dielectric medium, while the scattering solution accounts
for the presence of the dielectric discontinuity. The unbounded dyadic Green’s
functions under prolate spheroidal coordinates are formulated in terms of prolate
spheroidal vector wave functions M’ and N/ (a = x, y, z; and i = I, 2, 3). The
scattering dyadic Green’s functions are formulated using the method originally
developed by Tai [43] and later by Li et al. [36]. Scattering coefficients of each of the
scattering dyadic Green'’s functions are coupled with one another. The coupled system

of linear equations satisfied by these coefficients is constructed under the
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requirements of the boundary conditions, and these unknown coefficients can be

solved numerically. The dyadic Green’s functions of the first kindG, (r,#') pertain
I

m

to an electric-current source, and the dyadic Green’s functions of the second kind

G, (r,r') pertain to a magnetic-current source. Here, only the dyadic Green’s

m?

functions of the second kind G, (r,r')are presented because the dyadic Green’s

m2

functions of the first kind G, (r,7)can be obtained from the second kind
1

G, (r,r' )by applying the duality principle M - H, H > -E,J > M ,M — -7,
2

m

H—>¢e,ande > —u.

3.2 General formulation

The EM radiation fields Ef and Hy in the fth region (f= 1 and 2), due to magnetic

current source M located in region 2 are expressed by
VxVxE —kjE, =(-VxM)5,, (3.1a)
VxVxH,~k2H, =( joe,M)5,, | (3.1b)

where &, is the Kronecker delta (6,,= / for f= 2 and 0 for f#2), k, = a),/,ufgf is
the propagation constant in the fth layer of the multilayered medium. A time

ot

dependence e is assumed throughout this project.
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The EM field excited by a magnetic current source M, which is in region 2, can be

expressed in term of integrals containing dyadic Green’s functions as

E (r)= —mc_:,;g)(r,r')-M(r')dv' (3.2a)
H (r)=ioe, j j jﬁegf)(r,r' )-M(¥ )dv , (3.2b)

where r denotes the coordinates (£,7,¢) at the field point; #’ denotes the coordinates
(&',71',¢") of the magnetic current source M; v denotes the volume occupied by the
source in region 2; G//’(r,r' ) denotes the magnetic dyadic Green’s function of the
second kind; G/’ (r,r') denotes the electric dyadic Green’s function of the second

kind. The superscript (/) denotes the dyadic Green’s function in region 1 or region 2.

Substituting (3.2a) and (3.2b) into (3.1a) and (3.1b), respectively, we obtain
VxVx f?_e(zf)(r,r')—k;a(zf)(r,r') = fé(r—r’)é'fz (3.3a)
VxVx Ex)(r,r')—k}?a:‘{)(r,r') =VxIé(r- r')o,, (3.3b)

where I is the unit dyad andd(r —r' ) is the three-dimensional Dirac delta function.

G/!'(r,r') and G{'(r,r') are related as

V<G (rr)=G(r,r) (3.3c)



VxG(r,r ) =K.G{ (r,r )+ I5(r-r') (3.3d)

By solving equations (3.3a) and (3.3b), we can obtain the Dyadic Green’s functions of

the second kind, which areG//’(r,r' ) andG/'(r,r'" ).

Since the electric dyadic Green’s functions can be obtained simply from the magnetic
dyadic Green’s functions using equation (3.3a) or equation (3.3b), we need to solve
one of them first. Let’s solve the magnetic dyadic Green’s function of the second
kindG//’(r,r').  The magnetic dyadic Green’s function of the second -

kind G/{’(r,r' ) satisfies the following boundary conditions at the spheroid interface

(£=¢):
ExGY =ExGY (3.42)
Iz =y _ 1z ~(2)
—EéxVxG ) =—ExVxG, 5. (3.4b)
gl 82

To construct the EM dyadic Green’s functions in the layered media, two methods are
usually employed. One of them is to apply the coordinate tensors to represent the
dyadic Green’s functions while the other is to use the vector wave functions to
formulate the dyadic Green’s functions. Here, we will use the latter method to
construct the dyadic Green’s functions. First, we construct the unbounded dyadic
Green’s function, and then construct scattering dyadic Green’s functions. By using the

principle of scattering superposition, the dyadic Green’s functions can be considered
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as the sum of the unbounded dyadic Green’s function and scattering dyadic Green’s
functions. The unknown scattering and transmission coefficients can be solved by
using the following EM boundary conditions at the prolate spheroidal interface, i.e.,

continuity of the tangential component of both electric and magnetic fields.

ExE, =¢(xE, (3.4¢)
I ; I ;

—ExVXE, =—E&xVXE, (3.4d)
Ky H;

Substituting equations (3.2a) and (3.2b) into equations (3.4c) and (3.4d), we get

Ex ([[Gcrr )M(r )av =Ex [[[G2(r.r)-M(¥ Jav (3.40)

,ui,éx V x J-;”E,:é)(r,r’ JM(r )dv' = #Lz(f x V x Iﬂﬁ,’fj)(r,r’ IM(r )dv' (3.49H)

3.3 Unbounded dyadic Green’s functions

According to Tai [43], the unbounded magnetic dyadic Green’s functions of the

second kind can be expressed in terms of the scalar Green’s functionG(r,r' ) as

G (rr)=Vx[IG(r,r)] =VG(r,r)xI (3.5)
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The scalar Green’s function G(r,r’)of the scalar wave equation is, by definition, the

function which gives the solution at the point » when there is a unit source at the
pointr’. G(r,r' )satisfies the inhomogeneous equation

(VI +k®)G(r,r)==6(r-r") (3.62)

where J(r~r')is the three-dimensional Dirac delta function. In spheroidal

coordinates d(r—r') is
o(r—r)=h'hh]'S(n-n')6(5-&')5(p~¢') - (3.6b)

When there are no boundaries, the well-known solution of equation (3.6a) which

satisfies the radiation condition at infinity, i.e., represents diverging wave at large
distance, is

eik|r—r'|

G(rr')=——
(r.r') 4z |r-r'| - (3.7)

We expand this scalar Green’s function in terms of the spheroidal wave functions.

According to Flammer [35], we get

eiklr—r'l
G(rr)=———
4r|r—r'|

ZZ——Smn(c WISl e )05 [m($—¢')] (3.8)

n=0 m=0

RO(CEIRD(cE), &<
(R cENRI(cE), &> &
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S (ke +2m)!(d]" )

where J,,is the Kronecker delta andN =2
= (2k+2m+ 1)k!

the

normalization factor of the angular function of the first kind.

To develop the dyadic Green’s functions for a prolate spheroid, a very convenient and
compact method is to employ the spheroidal vector wave functions for construction.
Several kinds of vector wave functions have been proposed, and almost all of them
have been used in the study of plane wave scattering by a single spheroid, a system of
two spheroids, and a layered spheroid. However, not all of these vector wave
functions can be used conveniently to construct dyadic Green’s functions for
electromagnetic radiation problems. Although it is possible to use these vector wave
functions with piloting vectors ﬁ,af , andqg , they are still inconvenient spheroidal vector

wave functions. Since V x ( 775 q§ ) # 0 in spheroidal coordinates,

Vx N2 2 kpgec? (3.9)

where a =n,£, or ¢.

Thus, the most appropriate spheroidal vector wave functions for the construction of

dyadic Green’s functions are defined in terms of the scalar eigenfunctions are

emn
0

M (c;n.€,9) =V>{w“’ &} (3.10a)
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o

a(i 1 i) oA
Ne’i:(c;n,f,(b):;VxVx{wi’:”a} (3.10b)

These vector eigenfunctions are obtained by using the scalar eigenfunctions y shown
in Chapter 2 as the generating function and the coordinate vectorz, j, or 7 as
piloting vector. The explicit expression of the vector wave functions defined above is
given in Appendix B. The vector wave functions of ansl one set are, unfortunately,
neither orthogonal among .themselves, nor, in general, orthogonal to those of the other
sets. Thus, it is inconvenient to employ them to construct dyadic Green’s functions by
the conventional method described by Tai [43]. A combined method, developed from

the two methods above, is thereby presented for spheroid.

In terms of the above-defined spheroidal vector wave functions, the magnetic dyadic

Green’s function given in (3.5) can be obtained by substituting equation (3.8) into

(3.5). We get

W(l)(czrr,)
ik 2-0,4
G,o(nr')= ’ZZ V09
=0 m=i Nmn € ’ '
=0 m=0 ‘/’,,,,,(Cz’) G.11)

(Mx(ﬁ)(cz,r)x+M’“)(c2,r)y+Mz(3)(6‘p")2) (£>¢')
(M"(“(c, ,)x+My”)(cz,r)y+M’“)(c2,r)2) (£<¢')
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1 . . . . . .
where ¢, = Ekzd , k2 is propagation constant in region 2, and d is the interfocal

distance of the prolate spheroid. r denotes (7,£,4) and r' denotes(7n’,&',¢’) .

3.4 Scattering dyadic Green’s functions

By using the principle of scattering superposition, the dyadic Green’s function can be
considered as the sum of the unbounded Green’s dyadic in equation (3.11) and the

scattering dyadic Green’s functions to be determined. The dyadic Green’s functions

are therefore given by
G\ (rnr)=Gl(rr) (3.12a)

Ginr')=G  (rnr)+G M (nr) (3.12b)

where the scattering dyadic Green’s function G/’(r,r') represents the scattered-
wave portion of the field due to the discontinuity of the boundary while the
unbounded dyadic Green’s function, G, ,(r,r'), given by eqﬁation (3.11) represents
the contribution of the direct waves from radiation sources in an unbounded medium.
The subscript (s) 'denotes the scattering dyadic Green’s functions. For the sake of
simplicity, only G(/’(r,r') will be considered since G!7’(r,r') can be obtained

directly from G//’(r,r') using equation (3.3c) or equation (3.3d).
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The scattering dyadic Green’s functions must be of a form similar to that of the

unbounded dyadic Green’s functions. To satisfy the boundary conditions, however,

the additional spheroidal vector wave functions M;") and N :,:j) (@ =xy orz

should be included to account for the effects of multiple transmissions and reflections
and satisfy the boundary conditions. Such an inclusion can be found in the cylindrical

case in Tai [43]. The dyadic Green’s functions for each region can be expressed as

Gul(rr) =G5 STyl e )

n=0 m=0 ,,,

0 ((M"( e, r)EFM P (¢, r))+ AN ((N"(:)(c,,r )t N;‘"::)(c,,r )

emn emn Omn Omn

+ A;;j’((M;’”(c, r)t M’(”(c,,r)) + A""”((N"(”(c,,r) FNYc,r))]x (3.13)

amn emn

F[AMAM (e, r) £ MY (e, e )+ AN (c,,r)FN (¢, r)
o,,,,, 1 e,,,,, 1 ! o,,,,, 1

amn emn emn

A,,”{j‘ (M (c,r)¥ M (c,,r))+ Ae”m ((N"(”(c, r)t Nﬂj)(c,,r NIy

omn emn

+2-[AM M P (e, r)+ AN N (c,,r)]3}

emn emn °mn amn

G nr) =223 S Lyt e, ).

n=0 m=0 m

{[B”M((M”’“(Cz.')+M’”)(cz-r))+B”"((N:,::)(Cz.r)iNf,,f””(Cp'))

emn emn Omn Omn

€mn Emn

+Be"::’((M"( Dic,r)x M) e, r ))+B;m ((N::"'l)(cz,r JENY(c,,r)]x (3.14)

LB (Mo (car) £ MYV (cyr ) + BN (e, r) TN (cyur))

Omn emn emn °mn

B (M) (et FMYL) (cor )+ B (NG (0r) 2 N (s e )] 3

amn Emn emn "mn

+2-[BM M’:”(cz,r)+B’N NX¢c,r)]z}

emn "mn amn

where &, ,1is the Kronecker delta function. ¢; =~;-k,.d (i =1or2). 4G 0N and

Bi:.: +2.2MM are unknown scattering coefficients to be determined from the EM field
o

boundary conditions at the interface ¢ = ¢, . The above vector wave functions denoted
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by the superscripts (1) and (3) are chosen so that the functions R (c,&) and RY) (¢, &) ,
in spheroidal coordinates, represent waves which remain finite at ¢=0andé—»w,

respectively.

So far, the dyadic Green’s functions are obtained. The unknown scattering

coefficients of the dyadic Green’s functions will be determined in Chapter 4.
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Chapter 4
Application to Prolate Hemispheroidal DRA

4.1 Introduction

In this chapter, the solution to the problem of radiation by a hemispheroidal dielectric
resonator antenna, in figure 1.1, excited by a slot aperture is presented. The equivalent
problem of a full dielectric spheroid is shown in figure 3.2 by using image theory. The
early studies have proven that the DRA can be excited efficiently with different
excitation mechanisms, such as a coaxial probe [14], microstrip-transmission line
[48], an aperture-coupled microstrip-transmission line [47], [5], and a coplanar
waveguide [49]. A coaxial probe feed may be difficult to fabricate for high-frequency
array applications. In microstrip-transmission line feed and the coplanar-waveguide
feed excitation methods, the DRA is on the same side of the feed network and is not
isolated from active circuitry. This causes spurious radiation and coupling between

the DRA and active circuitry. These problems are avoided in the aperture-coupling by

virtue of the ground-plane isolation.

The radiation fields are expanded in terms of dyadic Green’s functions. In this
analysis, the slot field distribution is assumed to be known and of a sinusoidal form.

The unknown scattering coefficients are determined by a system of equations derived
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from the boundary conditions. According to equations 3.2a and 3.2b, the general
expressions of electromagnetic fields are obtained. For the electromagnetic far field,
we can simplify the formulation according to the asymptotic form of spheroidal radial
function whenc& — . The electromagnetic far fields are then expressed analytically

in a very compact form.

4.2 Determination of scattering coefficients

In equations (3.12a), (3.12b), (3.13) and (3.14), the dyadic Green’s functions in terms
of appropriate prolate spheroidal vector wave functions using the principle of
scattering superposition are formulated. Because of the lack of general orthogonalty
of the spheroidal vector wave functions, the dyadic Green’s functions are expressed in
a different way, where the coordinate unit vectors also combined in the construction.
The unknown scattering coefficients can be determined from the EM field boundary
conditions on the spheroidal interface (& = &, ). The boundary conditions are expressed
in equations (3.4). As regards the boundary conditions, it is only demanded that the
tangential components of G') and G/ , which pertaining to the tangential
components of E and H, be continuous across the surface of the spheroid [36]. The
condition that the normal components be‘ continuous across the surface follows from
the above conditions and from Maxwell’s equations. Substituting equations (3.12a)
and (3.12b) into equation (3.4), the coupled unknown coefficients in the equations

(3.13) and (3.14) can be solved uniquely.
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In Chapter 2, it has been shown that the angular functions depend not only on the
angular component but also on the characteristics of the medium c¢. In spherical
coordinate systems, however, the angular functions reduced to 2" (%), which are not
dependent on ¢. Only one of the three independent functions is dependent on ¢ in
spherical coordinate systems, so that the determination of the scattering coefficients is
only associated with this independent function that has a particular value at the
interface. In the spheroidal coordinates, however, two functions, i.e. the radial and
the angular functions, are related to the propagation constant. Therefore, the equations
used to determine the unknown coefficients constitute an infinite system of coupled

linear equations with complex coefficients.

The following is the procedure for obtaining a system of linear equations for the
unknown coefficients from application of boundary conditions. By solving this
system of linear equations, we can obtain the unknown coefficients of the scattering

dyadic Green’s functions.

First the dyadic Green’s functions equations (3.12a) and (3.12b) are substituted into

the boundary conditions (3.4e) and (3.4f), respectively. After some lengthy

manipulations, the boundary conditions can be expressed as
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o ZZ{{[ A (M (e, )T MY (epr )+ AN (NZD (e, r) N (e, or))
n=0 m=0 o P o ° ° :

A (M (e r) £ M2 (e, r))+ AN (e, )TN (e, e )] i
LA (M (e r)E MY ) 4 AN (N (e )TN e, )

Omn mn emn
e ° &

Omn o 2
e K °

+4TM ((M:'::)(c"r)’tMey'::)(cl’r))+A—yN((N:,::)(c,,r)iNy”)(cI,r))]}‘,

+2-[Ae’”'::

3 -~
MV (e r)+ Ag Not (e, r)] 2]
o e e

‘ Jﬂ%w;’; (et )M (¥ )dv’}

o

=£XZZ{{[B:’:'I'W (M, (cor)F M) (cpr)+ By (NS (e )£ N2 (e, r))

€mn omn 20
n=0m=0 o 0 e ’

_xM ! J . . ° / ‘ )
+Bg,,,,, ((M:’:n)(cz.r)iM:’:n)(cz,r))+30mn ((N:,:,.)(czrr)'l'N:':n)(cz,l:))]x
0 0 o ° ° ‘

Omn Omn
e e

# LB (Mt (err )2 MO (e )+ BN (NS (c0r) TN ()

+Bo (Mo (cor)F MUY (cpr )+ B2 (N (c,ur)ENSD (e )] 5
e e o X 0 o

M ! N ; .
+2-[BYM M (c,r)+ B2 NX(c,r)]2)
° e

° e

vz e 0|

(4.1a)

and
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amn Omn
=0 m=0

J— ZZ{{[AZ:.?’ (N2 (e P )TN (e )+ A (ML) (c,r) 2 MY (c,r)
AN (e, r) £ N (e, r )+ A"” (MX¥(c,r)¥ M;m(:)(c,,r))]i

emn an "mn ”mn

+[A+yM((Nx(3)(c r )+N’(“(c ,.)).,.A*y”((M””(c ,r)+My(3)(C )
i / ! !

"mn emn emn Dmn

Umn Emn

A ((N:,:j)(c,.r)+N:”)(c,,r))m (ML (cpr) £ ML (e r )] 5

+ 2. [AM N e r)+ AN M (¢, r)]z)

emn emn °mn "mn

' m%%”‘wg;f, (Cz:”)Ms(r')dv'}

J—ZZ{{IB;‘Z” N:;;)(cz.rﬁN:;;)(cz,r))+B“”((M"”’(c2,r)iM:;;’(cz,r))
rZ ” € e

Omn Omn
=0 m=0

# B (NI () E N (e )) + Bt ((MULY (€,1) T MY (e,,1)
+2N:m(:)(cz,r)]x
[B”M((Nx(”(cz,')*'N’(“(Cz.r))+B”N((M'(”(Cz.’ﬁM,f,:,f)(cz,'))

Smn Omn errm emn enm

+BMANID (e, r )TN (e, r )+ BN (M (e, r)x M (c,,r))

omn ”mn emn emn emn amn

+2N,.,’,£f)(cz,r)]51

+2- [B”" N’(’)(cz,r)+B‘N M’(“(cz,r)+N’”)(c2,r)]2}

PR M e )dv}

(4.1b)

In equation (4.1a), we now consider the % component, $ component andZ component,
respectively. We employK = J' I j—— W(‘) (c,," M (r')dV in the following

expressions. Split equation (4.1a) into three equations as follows:
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From the % component of equation (4.1a), we get

~ w n
£x2 2K,
n=0m=0 o™

M 3 —_ 3 N 3
LA (M (e, NF MO (e, 1)+ ALY (N2 (e, ) £ N2 ey, 7))
o [} e e e o

—-xM 3 -xN 3 — 3
FA (M ()£ MO ey, ) + A7 (N2 (e, N F NIO (), 1)
o [ e e e o

o (4.2a)

Emn Omn
o e

(B (M) (c3, ) F MY (), 1))+ B2 (NS0 (c,, 1) £ N (e, 1))

- ~xN T i
+ B, (M) (cy, 1) M) (e, 1)+ B (NGO (e, ) F N2 (cy, 7))
4 o e e e 4

+2M 9 (c,,r)]

From the j component of equation (4.1a), we get

~ o0 n
§x2 DK,
n=0m=0 o""

LA (M7 (e, 1) 2 MY (e, ) + A (N (), ) F NP (e, 1)
e e [ 4 o e

+A (M (e, FMD (c,,r))+ 4

n=0m=0 o

(B (M3 (e, )£ M) (03, )+ B2 (N2 (3, ) F N2y, 1)

-yN 3 3
o (N2 (e, Y END (e, r))]
o [ e

(4.2b)

mn

Omn €mn €mn
e [ 4

- —_ - 1 -
+ B (M0 ey, ))F M2 (e, )+ BV (N0 ey, 1) £ N2 (c,, 1)
e e o o o e

+2M 9 (c,,r)]
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e  From the 2 component of equation (4.1a), we get

ZZ2 Omo

n=0 m=0
[A;jfn M"” (cl , r) + AzN ‘D e ,r)]

o,,,,,

(4.2¢)

mn

ORI
n=0 m=0

[B MZ(l)(czar)+Bom N (023r)]

€mn n amn

o

In equation (4.1b), similarly, we consider the %component, jcomponent

and 7 component, respectively. Split equation (4.1b) into three equations as follows:

e From thei component of equation (4.1b) , we get

PO TN
K
=22k,

T4 (NP e, 1) F Nj'fi) (c,,rN+4

9mn

o (M52 (0,r) £ M2 0,or)

omn

+ A (N :,‘”3) (c,r)x N o (Crs )+ Aeid (M) (¢, Y F M (¢, 1))]

emn Dmn

(4.3a)

n=0 m=0 o™

(B (N (e, )TN ’,f,') (c,, PN+ BZ,::' (M ,("') (c;,r)EM 5,,(,? CNY);

emn emn

B o ((N W JES N 2O (cy )+ B (M ",f,” (cr,0)F M S (ON))

"mn

+2N % (c,,n)]

59



e  From the y component of equation (4.1b), we get

Omn

LA (N ;‘j,’n’ (c,r)tN Z,jj) (¢,,r))+ A;ff (M :jj) (c, NFMO (c,,r))
+ A o ((N"(” (c,,")F N’(” (e, )+ A V(M (e, 1) £ M (c,, )]

emn

| @ ' (4.3b)

Omn emn

B ((N::,‘j (cz,r)iN:j,‘j (¢, 1))+ B ((M:,ﬁ‘: (c;,NFMV (c,,r)

Emn emn

+ B o ((N (€, VTN ey )+ B o (M0 (e, N EM ) (cy, 1)

+ ZN:,E,:) (¢;,1)]

e  From theZ component of equation (4.1b), we get

n=0 m=0 o™

‘/—lZZK

4™ N’(” (c,,r)+ A‘” M’“) (c,,r)]

emn

(4.3¢)

[BzM

emn

N’(') (c,,r)+ N’(” (c,,r)+ B’N MV (c,,1)]

c'mn

Because of the orthogonality of the trigonometric functions cos(mg)andsin(mg), in

each expansion, the coefficients of the same ¢-dependent trigonometric function must
be equal, component by component. The equalities must hold for each corresponding

term in the summation over m. So we can eliminate the summation with respect to m.
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For the summation over n, however, the individual terms in the series cannot be
matched term by term. This is the cause of difficulty in determining the unknown
coefficients in spheroidal coordinates because of the dependence of the angular

function on the electrical properties of the medium.

At the interface (& =&, ), as mentioned above, the tangential components of fields are

continuous, iLe., then-component and gg-component of fields are continuous.
Therefore, the boundary conditions can be expressed more specifically as follows.

Rewriting equations (4.2a), (4.2b), (4.2c) and equations (4.3a), (4.3b), (4.3c),

respectively, we obtain

emn o,,,,,u

ZK (4. Mx(” (e, F MO (e, 1)) + A+,:N (N0 (e £ Ney,,(,il (¢,1))
e
omn omn" e,,,,,u

+ Ae_,::l (M:,f,il (e,r)* M;,f) (e, r)+ AN (e,nF N (¢,1)]

= Z K B”M M"(” ) (c,y,r)F M;":L)u (c,,r)) + B*"N (N0 (c,,) £ NP (c,,r))

om,,u e mny

om,,u

—-xM 1 -xN 1 -
+Be,:,, ‘(M:;L)u(czyr)iMj,f,) (CZ!r))+Bo:m (NX() (c2’r)+N:l,,(,:,)u(c2’r))
0 [ e o

+2M % (c,,r)]

(4.5a)
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ZK LA (ME0 (e £ M (eom)) + A2 (NG (e, VT N, (2101)

a,,,,,u em"ll Om”ll
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+ 2My(3) ' (c,,1)]
(4.5b)
Z K A;j:" M:,f;)u (c,,r)+ A”mv N;f")u (¢, )]
(4.5¢)

= ZK B:ZM’(” (cy,1) +M’(3) 2 () + B NI (cy,m)]

ZK AN (cl,r)+Ny(3) (cl,r))+A+;" 0 i (cl,r)+M{§ (c,»r))
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o,,,,,u
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Dmn Om u
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Emn e,,, u omn Omn¥
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(4.62)
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°mn om,,u
o,,m emn"

+ 4,0 (N A CHOES N v (€11 + A (M (e, r) £ MY (e,m))]

— K +yM x(l) (C ,r)_,’_Ny(l) (C ,r))+B+yN(Mx(l)
2 2

°mn Umn“ emn“ emn emnt

(e, 1) FM f,f,‘,,’ (c2,1))

+B ~oM (N‘(" (c,,r)F Ny“) (cz,r))+B w (M"“’ (c,,r) +M’(') ' (c,,7))

+ ZN;V,,(,:L (Cz ’r)]
(4.6b)
2K, A N cun)s 4y, Mo, (0]
n=m o™ o
=YK, [ Bj:: NZO (c;,r)+ N’(” ) (¢y,1) + B’” Mj::u (c,,7)]
(4.6¢)
where u denotes 7 - or ¢-component and K = .”.[ ,/,a) (cp P VM (r')dv' -

The method used to solve equations (4.5a), (4.5b), (4.6a) and (4.6b) is as follows: the

equations that stand for the continuity of 7 - components are multiplied by

(&2 -5 JU- Y IEE —1) = (€2 -1+ A-n* o JU- ) AE2 - 1) (4.72)

and the equations that stand for the continuity of ¢? -components are multiplied by

—PW=n?) =[€2 -+ 1-n)Ka-n?) . (4.7b)
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The method used to solve equations (4.5¢) and (4.6¢) is as follows: the equations that

stand for the continuity of 7 - components are multiplied by

2@ -y =Lt -y - @.7¢)

and the equations that stand for the continuity of ﬁ-components are multiplied by
] l
(& - )-n") &S -2 = (&2 -+ A-n")KEE -2 (4.7d)

These multipliers are positive in the full range of ;. Replace all the factors that are
functions of » by the series of the associated Legendre functions of the first kind,
which are orthogonal functions in the interval-1<7<1. The functions of » can be

expanded in term of P, () as follows [25], [44]:

(1=7 7V S(en) = 313 (€)- PEu(n) (4.82)
(1-0°))S, (e1) = gm"(c) P2 (1) (4.8b)
(1=7 S (e = 133 () BE5 () (4.80)
(1=7 A Suu(en) = 2 03 (e)- P () (4.8d)
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-1 i
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1 o0
n(1-n*)"S, (en)=Y I (c)- P72 (n)
=0
3 o
(1= )28, (cn) =31 (c)- P ()
=0
] dS » c mn m-
(1-7 /5 —d(c—’” =S rme)- P ()
n =0
¥ dS X > -
(1-n* )" —%71 =S 1) P in)
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Y/ dS » c mn m—
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n =0
v dS (c, N m—
(1-7 5 —% =S e) P ()
n =
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n(1-n )’ —7(;1) =S rme) P ()
=0

(12 ), (en) =S 1) PL(n)

(112 S,(en) =S 1% (c)-PL(n)
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(1-17 )8, (cm) = ZI”"(c) PL(n) (4.80)

n(J—nZ)%%ﬂ=ZL";‘o(c) P(n) (4.8p)
n(1-n° ) "S""(; ) Z ()Pl . (4.89)

The coefficients of these expansions are functions of ¢ and can be evaluated by using
equation (2.9) to express the angular function$,,,(c,7) and its derivatives in terms of
Pr . (pand it derivatives. The closed form expressions of these intermediate

coefficients I are given in Appendix B.

Inserting equations (4.8a)-(4.8q) into the equations representing the boundary
conditions, and then considering the orthogonality of the associated Legendre
functions of the first kind, it can be seen that the individual terms in the summation

over ¢ must be matched term by term.

For easier manipulation of the equations, we employ the following substitutions. They

are defined by

WL (0)= (ML T M0 xS & ' PI=n &)

"mm]

=/ Rm(c ) T ”;50
déo §0 -

x[(&" =1 I (c)+ A& = DI () +1I75(c)]

RO (cL,)] | (4.92)
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emnn
[

z(i)t z(i d 2 2 7
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RO (£ I (¢)~E, (;f: 8o 1) (4.10b)

x(1 z{1 d P/
pEOI () = N E(é:—nz)ﬁ

emnﬂ ‘-’mm]
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dé,
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_dRUY ' ’
d(fc 0 11880 ) = (£ Ay "€ SR 060 )+ (55" -

dR(l)( 50 ] ]mn

dE )+ [mE(E )R (c.&, )1 (c)}

z(i 2(i d i
Vi (e) = N xS (& =t (1= & 1)
0 (4.10d)

(i)
gt S R (e 611 (0)+ [ d(; BRon (¢:60) 1)y

where the intermediate coefficients 1;}"(c) (t=10,1, 2,...and[ =0, 1, 2, ... 1]) are

provided in closed form in Appendix B.

With these parameters, the equations for determining the unknown coefficients in the

prolate spheroidal system are now written for each value of m, in the following forms:

e  From equations (4.5a) and (4.6a), the coefficients of the dyadic Green’s
functions associated with Mx and Nx in equations (3.13) and (3.14) can be

calculated from equations (4.11) and (4.12) where p = \/¢,,/¢,, as
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e  From equations (4.5b) and (4.6b), the coefficients of the dyadic Green’s

functions associated with My and Ny in equations (3.13) and (3.14) can be

calculated from equations (4.13) and (4.14) where p =./¢,,/&,, as
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e From equations (4.5c) and (4.6¢), the coefficients of the dyadic Green’s
functions associated with Mzand Nz in equations (3.13) and (3.14) can be

calculated from equation (4.15) where p =./¢,,/¢,, as

3 3 1 1 3
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€

emn @ e"l" 14

(4.15)

Thus, we have obtained an infinite system of coupled linear equations with complex

coefficients.

4.3 Convergence of the solution

Equations 4.11-4.15 are valid for each value of ¢, so that taking ¢ sufficiently large an
adequate number of relations between unknown coefficients is generated. The
convergence of the infinite series is expected both physically and mathematically.
Practically, the infinite system of equations is truncated to a finite number of
equations. According to Sinha and MacPhie [26], this truncated number is taken as N,

= Integer (|kb| + 4) (where k is the propagation constant in the media, b is the major

semiaxial length of the spheroid). In other words, there exist 4 x N, scalar unknowns
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for each of the above matrix systems. Assuming that the index ¢ in the equations is
taken as 0, I, ... , N; -1, we can obtain a 4N, x4N, matrix system, and determine

¢

these 4 x N, unknowns uniquely.

Because of the non-existence of orthogonality of spheroidal wave functions, the
unknown scattering coefficients are coupled to each other. By using the method of
functional expansion, the coupled unknowns are then determined explicitly from the
matrix system of the linear equations. Although determination of these unknowns has
been provided in closed form, it should be noted that the point source information is
also included inside the coupled equations, and the unknowns cannot be obtained
analytically from the equations without the integrals of the source current. This is
different from the spherical case, where the transmitting and scattering coefficients
are integrals of source currents and decoupled from each other. However, for a given
~ source excitation in a spheroidal structure, the distribution is known and the source

point does not appear after integration over the entire source region.

4.4 Far field expression

4.4.1 Slot-aperture excitation

Figure 1.1 shows the configuration of the prolate hemispheroidal DRA, excited by a

narrow slot. The narrow rectangular slot with width w and length /, and is parallel to
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the x-axis at the centre of the dielectric spheroid. At the opening, the field is
approximated by the dominant TEo mode [45]. The electric field, Ej, in the slot along
the x-axis is assumed to be y-directed, and must vanish at the ends of the slot. Also,

the electric field is assumed not to vary across the width of the slot. Thus

. T, [-1/2<x"<1/2 :

E =yE, cos(—x') , . (4.16)
I -wf2<y' < w2 ‘

As discussed in Chapter 3, image theory is used to remove the ground plane to obtain

an equivalent problem of a full dielectric prolate spheroid, excited by M; = 2M, as

shown in figure 4.1. The equivalent magnetic current is x-directed and only varies in

the x-direction. It is

. A " T, —l/ZSx’Sl/Z
—22x E =-2ZxJE, = X2E  cos(—x")
M = l —wf2<y <w/2. 4.17)
0 - elsewhere
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(@) (b)

Fig. 4.1 (a) The hemispheroidal dielectric resonator antenna excited by a slot aperture;
(b) Equivalent problems for the hemispheroidal dielectric resonator antenna,

excited by a slot aperture, after using image theory.

4.4.2 Formulation of far field

The general expressions of electromagnetic fields are expressed in terms of dyadic
Green’s functions pertaining to a magnetic-current source located in a dielectric
spheroid in Chapter 3. We can use these general expressions of electromagnetic fields
to calculate the electromagnetic field everywhere, such as far field, near field and the
field inside the spheroid. In this work, the source. current distribution only has an x-
component. Thus, only the x -component of the dyadic Green’s functions is needed.
For the electromagnetic far field, we can simplify the formula according to the
asymptotic form of spheroidal radial function when ¢& — o« [35]. The far zone

electric field can be expressed as
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where the prime symbol denotes the source point location; M, is the magnetic
current distribution that is along x-axis. 4™, 4™, 4™, and A4 ™ are scattering

coefficients, which were already determined in section4.2; I, p,, £s, Pss Pes Pss

and p, are

an = N 1)( 2'r) (421)
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From equations (4.18), (4.19) and (4.20), it can be seen that the7 - and J-components

- of the electric field become dominant in the far field. Theé -component of electric

field is very small because of the factor of —]7 The detailed derivation of the above

far field expressions is presented in Appendix C.
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Chapter 5

Results and Discussion
5.1 Introduction

In this chapter, radiation patterns and directivity of the hemispheroidal DRA as shown
in figure 1.1, excited by slot aperture with different parameters are presented. To
check the validity of the solution, the numerical results, when the axial ratio
approaches one, are compared with published data [14] of the corresponding
hemispherical DRA. Also, the validity of the solution is examined by comparing the
numerical results with HFSS simulation results. In addition, the HFSS simulation
results for input impedance are presented to show the effects of the slot length and the

dielectric constant on the input impedance of the hemispheroidal DRA.

5.2 Radiation Pattern

The relative radiation patterns calculated for the hemispheroidal DRA in figure 1.1
are shown in figures 5.1-5.9b. As a test of the validity and accuracy of the solution,
the radiation patterns for an extreme case, i.e. b/a=1, are calculated and shown in
figure 5.1. Also shown are the corresponding hemispherical DRA results calculated

by Kishk et al. [14]. It can be noted that our results are in a good agreement with
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Kishk’s results. Another test of validity and accuracy of the solution is that the
calculated radiation patterns are compared with HFSS simulation results (b/a = 1.15).
The calculated radiation patterns and simulation results are shown in figure 5.2. It can

be seen that our results are in very good agreement with HFSS simulation results.

To examine the effects of the axial ratio of b/a on the magnitude of the radiation field,
H-plane and E-plane patterns for the prolate hemispheroidal DRA with different
values of b/a are shown in figures 5.3a-5.3b. All the calculated patte;ms are
normalized using same normalization factor. It can be noted that the beam width
becomes wider when the ratio of b/a becomes bigger. Therefore, when the slot length

L is fixed, increasing the ratio of b/a increases the radiated power.

To examine the effects of the slot length (L) on the magnitude of the radiation field,
H-plane and E-plane patterns for the prolate hemispheroidal DRA with different
values of L are illustrated in figures 5.4a-5.4b. Again, all the calculated patterns are
normalized using same normalized factor. These figures show that when the axial

ration b/a is fixed, decreasing the slot length L decreases the radiated power.

Radiation patterns of the hemispheroidal DRA are calculated at the resonant
frequency (fo) and other frequencies (0.95f; and 1.05fy). H-plane and E-plane patterns
are shown in figures 5.5a-5.5b. It can be seen that the antenna radiates the most power

at the resonant frequency.
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To examine the effects of the dielectric constant (‘¢,) on the magnitude of the radiated
field, the calculated radiation patterns for the hemispheroidal DRA with different
values of &, are shown in figure 5.6. It is found that when the slot length and the axial

ratio b/a are fixed, increasing the value of &, increases the radiated power.

More patterns of the hemispheroidal DRA are calculated for big values of b/a. They
are shown in figures 5.7-5.8. We can note that the bigger the ratio of b/a is, the wider

the beam width becomes.

In figures 5.9a-5.9b, the radiation patterns of a hemispheroidal DRA are computed
and compared with HFSS simulation results of a cylindrical DRA. The radius (r) of
the cylindrical DRA is eqqal to the minor radius (@) of the prolate hemispheroidal
DRA. The height (%) of the cylindrical DRA is equal to the major radius () of the
prolate hemispheroidal DRA. These figures show that the patterns of the

hemispheroidal DRA is more directive than those of the cylindrical DRA.

In addition, the directivities are calculated numerically for different values of b/a at
resonant frequencies. The directivity of an antenna is the ratio of the radiated intensity
in a given direction from the antenna to the radiation intensity averaged over all

directions. The average radiation intensity is equal to the total power radiated by the
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antenna divided by 4 7 . If the direction is not specified, the direction of the maximum

radiation intensity is implied. In mathematical form, it can be written as

AU

Dy = _P% (dimensionless) (5.1

whee  Pag= [ [Usinadods 62)
1 2 2

U@eb~, | E,0.0)P +|E,0.0)1]. (53)

The directivities of the prolate hemispheroidal DRA with different values of b/a are
calculated and shown in table 5.1. It is noted that for a fixed slot length, increasing the

ratio of b/a decreases the directivity.
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Fig. 5.1 Radiation patterns (in dB) of DRAs with a =2.975cm, L=5.0 cm, W =
0.06 cm, £,= 649, and f=1.375 GHz. Solid line denotes patterns of a

hemispheroidal DRA (b/a=1.001) of this work, and dash line denotes

patterns of a hemispherical DRA [14].

Fig. 5.2 Radiation patterns (in dB) of a hemispheroidal DRA excited by a slot
aperture, with ¢ = 2.975 cm, b/a = 1.15, L= 5.0 cm, W= 0.06 cm, ¢,=

6.49, and f = 1.375 GHz. Solid line denotes results of hemispheroidal

DRA of this work, and dash line denotes HFSS simulation results.
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Fig. 5.3a Calculated radiation patterns (H-plane in dB) of a hemispheroidal

DRA excited by a slot aperture, with @ =2.975 cm, L= 5.0 cm, ¥ = 0.06

cm, £,=6.49, f=1.375 GHz and different values of b/a.

Fig. 5.3b Calculated radiation patterns (E-plane in dB) of a hemispheroidal

DRA excited by a slot aperture, with ¢ =2.975 cm, L= 5.0 cm, W =0.06

cm, £, = 6.49, f=1.375 GHz and different values of b/a.

81



Fig. 5.4a Calculated radiation patterns (H-plane in dB) of a hemispheroidal

DRA excited by a slot aperture, with a = 2.975 cm, b/a = 1.15, W= 0.06

cm, £,=6.49, f=1.375 GHz and different values of L.

Fig. 5.4b Calculated radiation patterns (E-plane in dB) of a hemispheroidal

DRA excited by a slot aperture, with a = 2.975 cm, b/a =1.15, W = 0.06

cm, &, = 6.49, f=1.375 GHz and different values of L.
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Fig. 5.5a Calculated radiation patterns (H-plane in dB) of a hemispheroidal

DRA excited by a slot aperture, with @ = 2.975 cm, b/a = 1.5, W = 0.06
cm, £,= 6.49, L =5 cm and different frequencies (f; is the resonant

frequency).
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Fig. 5.5b Calculated radiation patterns (E-plane in dB) of a hemispheroidal

DRA excited by a slot aperture, with a = 2.975 cm, b/a = 1.5, W = 0.06
em, &,= 649, L =5 cm and different frequencies (f; is the resonant

frequency).
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Fig. 5.6 Calculated radiation patterns (in dB) of a hemispheroidal DRA

excited by a slot aperture, with a =2.975 cm, b/a=1.2, L=5.0 cm, W=

0.06 cm, f=1.375 GHz and different values of ¢, .
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E-plane —— —H-plane

Fig. 5.7 Calculated radiation patterns (in dB) of a hemispheroidal DRA

excited by a slot aperture, with a =2.975 cm, ba =2, L=5.0 cm, W =

0.06 cm, &, = 6.49 and resonant frequency f; = 1.15 GHz,

Fig. 5.8 Calculated radiation patterns (in dB) of a hemispheroidal DRA

excited by a slot aperture, with a = 2.975 cm, b/a =3, L=5.0 cm, W =

0.06 cm, £, = 6.49 and resonant frequency f; = 1.18 GHz.
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Fig. 5.9a

Fig. 5.9b

0

Radiation patterns (H-plane in dB) of a hemispheroidal DRA and a

cylindrical DRA, both excited by a slot aperture, with a = 2.975 cm,
b/a=h/r =12, L=5.0 cm, W =0.06 cm, &,= 6.49 and f=1.12 GHz.

Solid line denotes results of hemispheroidal DRA of this work, and

dash line denotes HFSS simulation results of a cylindrical DRA.

Radiation patterns (E-plane in dB) of a hemispheroidal DRA and a

cylindrical DRA, both excited by a slot aperture, with @ = 2.975 cm,
b/a=hir =12, L=5.0 cm, W = 0.06 cm, & = 649 and f= 1.12 GHz.

Solid lilie denotes results of hemispheroidal DRA of this work, and

dash line denotes HFSS simulation results of a cylindrical DRA.
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Table 5.1 Directivities of hemispheroidal DRA with a = 2.975cm, L = 5.0 cm, W =

0.06 cm, &= 6.49 and different values of b/a (fy denotes resonant

frequency).

b/a 1.001 1.2 1.5 2.0
fo (GHz) 1.10 1.12 1.14 1.17
Gy (dB) 5.83 5.78 5.67 5.50

5.3 Input Impedance

HFSS simulation results of the input impedance for different design parameters are
presented. The resonant frequency is obtained from the input impedance. When the
input reactance is equal to zero (X;, = 0) and the input resistance (R;, ) is at its peak

value, the corresponding frequency is the resonant frequency.

The results of input impedance of the hemispheroidal DRA with different values of
b/a are shown in figures 5.10a-5.10b. It is noted that as the ratio of b/a increases, the

input-impedance level decreases and the resonant frequency increases.

The input impedance of the hemispheroidal DRA excited by a slot aperture with

different slot lengths are shown in figures 5.11a-5.11b. These figures show that as the
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slot length decreases, the input-impedaﬁce level .decreases, and the input-resistance
peak shifts toward higher frequencies, to approach the free-source resonant frequency.
These figures also show that the reactance part of the input impedance of the shortest
slot becomes inductive, and is higher than the real part of the input impedance. This
indicates the strong influence of the slot reactance on the input impedance of the

antenna.

The input impedances of the hemispheroidal DRA with different values of dielectric
constant are shown in figures 5.12a-5.12b. These results indicate that the resonant

frequency decreases as the permittivity increases.

In addition, the simulation results of power distribution inside the hemispheroidal
DRA are shown in figures 5.13a-5.13b. Three spherical surfaces (» = 5 mm, 15 mm,
and 25 mm, r is the radius of the spherical surface) are chosen. The power

distributions in both H-plane and E-plane on these surfaces are plotted.
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Chapter 6

Conclusion

In this work, the problem of radiation from a prolate hemispheroidal dielectric
resonator antenna, which is located above an infinite ground and excited by a slot
aperture, has been investigated ﬁsing the dyadic Green’s function technique. The
dyadic Green’s functions have been constructed and the unknown scattering
coefficients are obtained by enforcing the boundary conditions. Formulations of
electromagnetic fields in their general forms were expressed in terms of dyadic
Green’s functions and a known current source. Also, simple and compact far field
expressions for the electric field are derived for a prolate hemispheroidal DRA excited

by a slot aperture.

Several radiation pattern results were obtained for different parameters. The effect of
the slot length, the shape of the spheroid and dielectric constant on the radiation
pattern were considered. The validity of the solution was examined by using HFSS
simulation results. The results were in a very good agreement with HFSS simulation
results. The solution was also examined for the case where the hemispheroid
approaches the hemispherical shape (b/a ~1). The results were in a very good
agreement with the known results for hemispherical DRA. Moreover, the input

impedance is investigated using HFSS.
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The solution for radiating by an oblate hemispheroidal DRA can be obtained from
that of the prolate hemispheroidal DRA by replacing the prolate spheroidal wave
functions with the oblate ones. In this work, only the radiation patterns of the prolate
hemispheroidal DRA have been investigated. One potential extension of this study is
the investigation of input impedance theoretically. Another potential study is the
investigation of optimum designs for the hemispheroidal DRA, taking into account

the shape of the hemispheroid, the dimension of the slot and dielectric constant.
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Appendix A
Expressions of the Prolate Spheroidal

Vector Wave Functions

MV (c;né.8)
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The expressions of the components are obtained from those of M :’:;) (c;n.¢,8) by

replacing the factors cos ¢ and sin¢ by sing and —cos ¢, respectively.
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replacing the factors cos ¢ and sing by sing and —cos ¢, respectively.
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Appendix B

Intermediate Coefficients - in Closed Form

B.1 For m>7 and (n-m) +t = odd:
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B.2: For m>/ and (n-m) +t = even:
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3
I = [N, (1= S, . (e )P (n)dn
(t+2m=1)(t+2m)(t+2m+1)(t+2m+2)
(2t+2m+1)(2t+2m+3)
" d . am C2(t=1)(t+2m)(t+2m=1) B-11)
(2t+2m+1) (2t+2m+5)  (2t+2m=3)(2t+2m+1)
<[ d’ 4 L He=1)(t=2)(t-3)
(2t+2m—=3) (2t+2m+1)" (2t+2m=3)(2t+2m-5)
47 d’ 7

+[ -
(2t+2m-7) (2(+2m-3)
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I = [N T (1= S, ()P (n)dT
—rm oy (t+2m—-1)(t+2m) ‘(t+2m+1)(t+2m+2)(t+2m+3)
Y (2t +2m A5 )(2t+2m+1) (2t+2m+3)

y (t+1)d™ . (2m+1)d™,

(24 2m+ 1) (2t+2m+3) (2t+2m+3)(2t+2m+7)
(2m+t+4)d™ CH(t=2m)(t+2m—1)(t+2m)(t+2m+1)

+4

_(2t+2m+7)(2t+2m+9) (2t+2m—-3)(2t+2m+1)(2t+2m+3)
<[ (2m+1)d™ _ (t+2m+2)d,
(2t+2m—1)(2t+2m+3) (2t+2m+3)}(2t+2m+)5)
_ M- 1)(=2)(t+ 2m—1)(t+4dm—1) (t—3)d™,
(2t+2m=5)(2t+2m—-3)(2t+2m+1) (2t+2m-7)(2t+2m—-35)
(2m+1)d”, _ (2m+t)d™
(2t+2m-5)(2t+2m—-1) (2t+2m-1)(2t+2m+1)
Ht=-1)(t=2)(t=3)(t-4) , (t=5)d"
(X+2m=7)(2t+2m-5)(2t+2m—-3) (2t+2m—-11)(2t+2m-9) (B-12) .
. (2m+1)d™, . B (2m+t-2)d", 1)
(2t+2m—-9)(2t+2m-5) (2t+2m-5)(2t+2m-3)

/ dSmm+r(c’ ) m—
p? /s Cnmeel O pret

mo_ 1 14
11,10 = N’:J'.ll 77(] - dT] m—1+t

_ t(t—f)(““m_z)d,'f’;+m(2t,+2m"1)

(2t+2m-3) (B-13)
& HE=1) (t+2m)(t42m=1) .
ng' [T+ 2ormel) 14

Im = N%I Lnfl-n* ) i‘%71134"_‘,’”(77»177
_ (t+2m=1)(t+2m) Ht+2m+1)(t+2m+2)
_(2t+2m+1)(2t+2m+3)'[( 22t+2m+1)
+(t+1)((t+2)(t+2m))d,,,,,+(t+m+3)(t+2m+])(t+2m+2)d
2A2t+2m+1) ! (2t+2m+35)
~ 2(t—1) .[((t—Z)(t+2m—1)(t+2m)
(2t+2m—3)(2t+2m+1) 2(2t+2m-3)
+(t—1)t(t+2m—2))d,,,,,+(t+m+1)(t+2m—1)(t+2m)
2(2t+2m-3) 7" (2t+2m+1)
JHE—D(E=2)(t=3)(14m=1) (py _m(t+1)(t+2m=1)(t+2m)
(2t+2m-5)(2t+2m-3)* (2t+2m+1)*
_ mi(t=1) _[1_2(t—1)(2t+2m—1)]dﬁ,;
(2t+2m+1) (2t+2m-3)*
He=D)(t=2)(1=3)(t+m=4)
(2t+2m—-7)(2t+2m~5)(2t+2m—-3) "*

ri2]

ar]

e

(B-14)
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B.3: For m=0 and (n-m) +t=odd:

IZ(c)=1I0(c)=I"%(c)=1"(c)=1"(c)=0 (B-15)

I =[N, J" [ n(1-n? )28, (c.n)PL(n)dn

+t

On On On On
- t+ 3 ( dr+l _ dz+3 )+ t ( dz—l _ d1+1 ) (B-16)
2t+5 +3 2u+7 u+1 2t—-1 2Hu+3

% =[N, J7 [ (=12 )28, (c.n)PL(n)dn

+t

_(t3)(t+4)(t+5) ar ~ 2d”,
T (2t+5)(2t+7) T (2043)(2t+5) (2t+5)(2t+9)
L d L dtx3) o d (B-17)
(2t+9)(2t+11)"  (2t+1)(2t+5) "(24-1)(2t+1)
dly o dl _Yi=1)(1=2)
(2t+1)(2t+5) (2t+5)(2t+7) (2t—=1)(2t+1)
d) 2d}", ;)
x [ . - ‘ + ]
(2t=5)(2t-3) (2t=3)(2t+1) (2t+1)(2t+3)
on _ df+lpg 2 %dSor(C:ﬂ) ! d
17 =[N I D31 )2 = e B () &-15)
=,
I = [N, I (1= ) @%P/mm
_(t+3)(t+4).( dr0+"l _ dtof3)
C 2t+5 2+3 2A+7 (B-19)
_t(t—l),( ar dl )

2t+1  2t-1 2t+3
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. g+ 5, dS,.(c,
I = [N, ] 10 (1= ) %d(ni)f’,i,(n)dn

_ o (t+3)(t+4)(t+35) (t+1)d” . ]

_ i+
IR

(20+5)(2t+7)  “(2+3)(24+5) 2t+7

><(t+6 ~ t+1)d,,,,_ (t+6)dys  1(t+3)
2049 2t+50 %Y (2+11)(2t+9) 2t+3
_ On
X(t+4__t 1)_[ (t-1)dj, 1

(B-20)
2t+5 2t+1" T (2t-1)(2t+1) 2t+3

t+4 t—])d""— (t+4)d’, 14 tt-1)(t-2)
2045 2+17 " (2t+7)(2t+5) (2+1)(2t-1)

_ On _ On
./ (t=3)dly, |, 1 t+2 t-3 (t+2)d

(2t—5)(2t-3) -1 2e1 2=3 '_';—(2t+3)(2tt++])]

x(

B.4: For m=0 and (n-m) +t = even:

On _ yOn _ yOn _ y0n _ y0n _
Ir,5 _It,6 _1,7 —It,é’ _II,9 _0

(B-21)
)
I = [N, ] 1% (1= )28, (c.n)PL(n)dn
dl)n dOn (B'22)
=% G2
2t+1 2t+35
3
I = [N, ] [ (1= )28, (e, )PL,(n)dn
:(t+3)(t+4)[ a'to" : del"z
2t+5 (2t+1)(2t+3) (2t+3)(2t+7)
di w1, dn (B-23)

+
(2t+7)(2t+9)  2t+1 " (2t-3)(2t-1)
2d]" )

TU2=I)(2t+3) (2i43)(2t+5)
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I =[N, ][5 (1= )5S, ()Pl (n)dn
Lo _(1H3)(1+4)(145)(t+6) d),

(2t+5)(2t+7)(2t+9) "~ (2t+5)(2t+7)

_ 2d.}, + d/ys ] _(t+3)(t+4)
(2t+7)(2t+11) (2t+11)(2t+13) 2t+5
"y (t+1)(t+5) N 3t I d’
(2t+5)(2t+7) (2t+1)(2t+5) "(2t+1)(2t+3)
x 2dto+n2 + df:: ] _ t(t - 1)
(2t+3)(2t+7) (2t+7)(2t+9) 2t+1
‘ 3t(t+3) _(t+2)(t—2)]'[ ar
(2t+1)(2t+5) (2t+1)(2t=1)" " (2t-3)(2t-1)
~ 2d’ N a’, I Ht-1)(t-2)(t-3)
(2t+3)(2t—=1) (2t+3)(2t+5) (2t+1)(2t~1)(2t-3)
o Ay
(2t=7)(2t-5) (2t-1)(2t=5) (2t+1)(2t-1) (B-24)
N O T
_ LIRS o L gon (B-25)
2t+5 2t+1
1 =1 - e el pr
, dn
_(t+3)(t+4)(e+5) dlr,  dp,
(2t+5)(2t+7) 2t+5 2t+9 (B-26)

34(t+3) e  dr

¢ 1+2

(2t+1)(2t+5) 2t+1 2t+5
_H(t=1)(t=2) ( ar, B a’r
(2t—1)(2t+1) 2t-3 2t+1

)

where the normalized coefficients N; and N are given by
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2 (t+2m-2)!

N,=N = B-27

P ot dm - 1 t! (B-27)
2 (t+2)!

N,=N,,,, =—— B-28

2 1.1+t 2t+3 t./ ( )
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Appendix C

Derivation of Far Field Expressions

C.1 The asymptotic forms of radial functions

The prolate radial functions have the asymptotic forms as

R;’,,)(c,f)m—-)—J—cos[cf —i(n + ]
c& 2

R;(nl)(C.f)*ch)—c—ézcos[c\f—é(n +1)x] —ésin[cf ——é—(n +1)r]

R;i)(c,é)m—)isin[cf ——é—(n +1)r]

¢
R,(z)(c,g)—_a—isin[cf—i(n +1)x] +ic0s[c§——1—(n+1)ﬂ]
mn cEoo sz 2 f 2

1 ilct—Lintin)
(3) ; .
R, (Crf)—cg‘_m_’R;.,.)(C,f)ﬁ“IR,("f,)(C,f)=Ee ?

i[c{-—-;-(rﬁl)n']

RO (e,E ) RV (c,E )+ iRV (¢, &) = 'é” +L)e
c

5w
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C.2 The asymptotic forms of vector prolate

wave functions

Substitute the asymptotic forms of the radial functions into the prolate vector wave

functions in Appendix B. After some tedious manipulation, the following simplified

forms can be obtained:

x(3)
emn’l
[

x(3) _

emn®P
o

x(3)

emns
o

M V(einé.¢)

€mn
[

2 ifes-Lnet)n cos
&~(i+])~e " ]sin(p . me
dé ¢ sin
i —l—n+ E
dé c sin
1

—_pn?)? co. sin
200=1)7 1B i o g+ s, cosgp

cd&’ dn sin 1-n

M) V(einé.g)

(—])cosm

(C-7)

(C-8)

N !
(ojel[c:—;(m-l)ﬂ] (C"9)

The expressions of the components are obtained from those of M*'(¢;7,£,¢) by

replacing the factors cos ¢ and sing by sing and —cos ¢, respectively.
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NV (einé.¢)

€mn
o

2 m dS m sin
Nx(3) = —_— mn + 77 S P
o czdé‘{[fz dn  &l-n2)" S Deos?

- \c I l - m 17 i C{—I n+l)r
( 4 )( _772) mn (cznl ( _)jS < CO CO.S } [ ( 1) ]

sin

2
N:»(,j«): .—_ZL lZdS,,,,, r(c+ mz _Js,, -sin(oa_)smgo
s cldg (&7 dn (1-n° )¢ sin

(C-11)
2.2 . ire —1n+ ;
¢ dn  (1-n° )¢ (—1)cos
x 2 ‘- c+I)NI+ 2 __m2 ldS
Nem(:é =_C2d§2 5”’ ( )( 177 )§ 'Smn —(C+1)77(1_772)2 .dmn
’ (1_772)25 (C_lz)
7 i —l—n+ n
-COS(DC?Sm(p+wI+—Iz-SM.Sin(p( jl)n mqp}-elu S(mHha]
sin L ~1)cos
(1-1°)%¢

NY(j)(C,'ﬂ,§'¢)

€mn
o

The expressions of the components are obtained from those of N :,:j)( c;n&,.¢) by

replacing the factors cos ¢ and sing by sing and —cos ¢, respectively.
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C.3 Far field expression

The far field expression of prolate hemi-spheroidal DRA can be obtained by

substituting above expressions in C.2 into equation (3.2) through equation (3.13). The

far field expressions are

n=0 m=0

1
ifcé-—(n+l)n ]
{(cmen +¢,S, +1)-e 2

-[AyM1m«m+LM)—&ﬂﬁsm«m—LM)—

(C-13)
A7 sin((m+1)B)-(p, + p, )+ A7 sin((m—1)¢)-( p, - p, )]
([ M 7 av }
l[le—-;-(IH‘l)HJ
E,= ﬂdc,§ ZO”;){( einS,, +emS,, +1)-e
[A7M cos((m+1)p)+ A -cos((m—1)¢)— (C-14)
A7 cos((m+1))-(py+ p, )+ A7 - cos((m~1)8)-( p; - p, )]
A[[raM (7 )av }
ki 12 ifey —% n+l)m]
Be=s—rs 522{[ e(1=n' )" +2¢,-2] ¢ "
A sing(m+ 1) ( Py 7s,.)
dn I-7p
A sin((m—1)g) (B _ Mg ) €15
dn I-n

A7 sin((m+ 1)§)-(py = pg )+ A7 sin((m—=1)p)-( p; + py )]

mr M (7 )dy' }
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where the prime symbol denotes the source point location; M, is the magnetic
current distribution that is along x-axis. 4™, 4™, 4", and A4 " are scattering

coefficients, which are already determined in section 3; 7, p,, P;s P3> Psr Ps»

mn?

and p, are
22—
L =225y (er) (c-16)
o = By MmN ¢ (C-17)

& dn E(1-n°) "

ds m’n
— +1)1- 2 mn 2.2 + S C-18
pz (cl )( 77 ) dT] (cl 77 52(1_772) mn ( )
n dS 2 2
ps=—5—"+(¢, +——5)S, (C-19)
T ay T ey '
2
p, =M A M7 ¢ (C-20)

& dng &(1-m°) "

_(c1 +1)77(1 n )2 d?] m (6 1) (CI+1)(1+77 )5 mn
§'(1-n )2

(C-21)

0, = mﬁ(c,_tl) S (C-22)

&1-n°)?

From equations (C-13), (C-14) and (C-15), it can be seen that then- and qg-

components of electric field become dominant in the far field. Thef -component of

electric field is very small because of the factor of EI; , and it can be ignored.
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Appendix D

Tabulated Numerical Data of Spheroidal

Functions

Shown and compared in Tables d.1 to d.7 are some of the numerical results computed

using Matlab code and others from literatures.

Table D.1: Comparison of selected values of Eigenvalues A,, computed by
Flammer, Li-Wei Li and this work.
c (m,n) | Flammer [35] Li-Wei li [36] This work
1.0 0,0) (-1)3.1900 (-1)3.1900008 0.31900005514689
0,1) (0)2.59308 (0)2.5930846 2.59308457997714
0,2) (0)6.53347 (0)6.5334718 6.53347180052379
(1,1 (0)2.19555 (0)2.19555484 2.19554835541301
(1,2) (0)6.42470 (0)6.4246991 6.42469914377514
2,2) (0)6.14095 (0)6.1409490 6.14094899185770
5.0 (0,0) (0)4.19513 (0)4.1951289 4.19512887261635
©,1) (H1.291171 (1)1.2911703 12.91170324504386
0,2) (1)2.017691 (1)2.0176915 20.17691472053328
(1,1 (0)5.35043 (0)5.3504223 5.35042229846410
(1,2) (1)1.464294 (1)1.4642956 14.64295624486815
(2,2) (0)8.74767 (0)8.7476743 8.74767425153947




Table D.2  Comparison of selected values of S{) (c,77) computed by Flammer, Li

‘Wei Li and this work.

c (m,n) | n | Flammer[35] | Li-Wei Li[36] This work

10 | 0,00 [05] (-1)9.9606 (-1)9.960611 | 0.96061108379212
0,1) (-1)4.878 (-1)4.877753 | 0.48775317760058
0,2 (-2)-9.876 (-2)-9.8751 -0.09875149920899
(1,1) (-1)8.450 (-1)8.45042 | 0.84504245525652
(1,2) (0)1.276 (0)1.276209 1.27620870646391
2,2) (0)2.211 (0)2.21063 2.21063000478601
0,00 |1.0 (-1)8.481 (-1)8.48141 0.84814157331933
0,1) (-1)9.046 (-1)9.04596 0.90459613933557
0,2) (0)1.022 (0)1.022189 1.02218857040739
(1,1) 0 0 0
(1,2) 0 0 0
2,2) 0 0 0

5.0 0,0) |0.5 (-1)5.742 (-1)5.74224 0.57422428737684
(0,1) (-1)3.104 (-1)3.10366 | 0.31036643299778
0,2) (-1)3.844 (-1)3.84387 0.38438655216441
(1,1) (-1)5.602 (-1)5.60163 0.56016304181379
(1,2) (-1)8.957 (-1)8.95726 0.89572596758390
(2,2) (0)1.580 (0)1.580245 1.58024491766210
0,00 1.0 (-2)5.024 (-2)5.0230 0.05022979252991
o, (-2)9.161 (-2)9.1606 0.09160581033840
0,2) (-1)6.018 (-1)6.01737 0.60173711860713
(1,1) 0 0 0
(1,2) 0 0 0
2,2) 0 0 0
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Table D.3 Comparison of selected values of S’ (c,7) computed by Zhang&Jin,

Li-Wei Li and this work.

c (m,n) | 5 | Zhang & Jin [37] | Li-Wei Li [36] This work
1.0 | (0,00 [0.5 (-1)-1.55623 (-1)-1.5562274 | -0.15562274047848
0,1 (-1)9.26953 (-1)9.2695348 | 0.92695348094307
0,2) (0)1.576815 (0)1.5768153 | 1.57681528265636
(1,1) (-1)-6.46554 | (-1)-6.4655371 | -0.64655371248883
(1,2) (0)1.610924 | (0)1.6109241 | 1.61092409312373
(2,2) (0)-3.103903 (0)-3.1039031 | -3.10390311004353
0,00 |1.0 (-1)-2.88792 (-1)-2.8879218 | -0.28879218232905
0,1) (-1)7.20549 (-1)7.205408 | 0.72054908034118
(0,2) (0)2.828126 | (0)2.8281258 | 2.82812581458354
(L,1) - - -0
(1,2) -0 - -0
(2,2) (0)-5.588624 (0)-5.5886245 | -5.58862448342572
5.0 (0,0) 0.5 (0)-1.352776 (0)-1.3527760 | -1.35277603152896
(0,1) (-3)-1.868 (-3)-1.8683473 | -0.00186834720444
(0,2) (0)2.253880 | (0)2.2538797 | 2.25387961398492
(1,1) (0)-1.390932 | (0)-1.3909322 | -1.39093219212983
(1,2) (-1)-1.82351 | (-1)-1.8235108 | -0.18235106920427
2,2) (0)-4.407164 (0)-4.4071637 | -4.40716378682281
0,00 |1.0] (-1)-5.22512 | (-1)-5.2251218 | -0.52251218017003
o,1) (-1)5.53679 (-1)5.5367911 | -0.55367910992443
0,2) (0)-1.451115 (0)-1.4511146 | -1.45111471943139
(1 ’1) -0 -0 -0
(1,2) -0 -0 -0
(2,2) (0)-1.242292 (0)-1.2422924 | -1.24229244294798
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Table D.4

Comparison of selected values of R (c,&)computed by Flammer,

Li-Wei Li and this work.

c (m,n) ¢ | Flammer [35] | Li-Wei Li [36] This work

1.0 | (0,0) | 1.005 (-1)9.468 (-1)9.4675413 | 0.94675413010661
0,1) (-1)3.153 (-1)3.1530632 | 0.31530631944421
0,2) (-2)4.470 (-2)4.4699843 | 0.04469984508812
(1, (-2)3.270 (-2)3.2699111 | 0.03269911140717
(1,2) (-3)6.503 (-3)6.5032691 | 0.00650326911384
(2,2) (-4)6.612 (-4)6.6119132 | 6.6119132246e-004
0,00 11.077| (-1)9.228 (-139.2275734 | 0.92275733533302
0,1) (-1)3.328 (-1)3.3276892 | 0.33276892454286
(0,2) (-2)5.375 (-2)5.3727668 | 0.05372766940739
(1,1) (-1)1.287 (-1)1.2864554 | 0.12864554097870
(1,2) (-2)2.754 (-2)2.7536876 | 0.02753687595442
2,2 |- (-2)1.044 (-2)1.0435256 | 0.01043525630813

5.0 | (0,0) |1.005 (-1)5.313 (-1)5.3150158 | 0.53150157521257
©,1) (-1)5.381 (-1)5.3812189 | 0.53812188654774
0,2) (-1)4.952 (-1)4.9520455 | 0.49520458557214
(1,1) (-DH1.211 (-1)1.2109114 | 0.12109114094800
(1,2) (-2)9.035 (-2)9.0348283 | 0.09034828143914
(2,2) (-2)1.372 (-2)1.3718611 | 0.01371861106395
0,0) | 1.077 | (-1)1.869 (-1)1.8698828 | 0.18698828324163
0,1) (-1)3.317 (-1)3.3163581 | 0.31363581293428
0,2) (-1)3.976 (-1)3.9760946 | 0.39760949630322
(1,1 (-D)3.118 (-1)3.1169107 | 0.31169107001903
(1,2) (-1)2.803 (-1)2.8029786 | 0.28029785306548
(2,2) (-1)1.639 (-1)1.6392284 | 0.16392283606430
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Table D.5

Comparison of selected values of R.{(c,&)computed by Flammer,

Li-Wei Li and this work.

c (m,n) ¢ | Flammer [35] | Li-Wei Li [36] This work

1.0 | (0,0) | 1.005] (-1)-3.242 | (-1)-3.2420704 | -0.3242070354076
0,1) (-1)2.493 (-1)2.4924622 | 0.24924621817597
(0,2) (-1)1.224 (-1)1.2240951 | 0.12240951337462
(L, (0)3.271 (0)3.2714545 | 3.27145452188116
(1,2) (-1)6.575 (-1)6.5747943 | 0.65747942612200
2,2) (-11.325 (-1)1.3247288 | 0.13247288100077
0,0) | 1.077 ] (-1)3.422 (-1)3.4220489 | -0.34220489171700
0,1) (-1)2.357 (-1)2.3571202 | 0.23571201576769
0,2) (-1)1.283 (-1)1.2827216 | 0.12827216088182
(L, (-1)8.384 (-1)8.3833553 | 0.83833553326184
(1,2) (-1)2.067 (-1)2.0673152 | 0.20673151792349
(2,2) (-1)1.389 (-1)1.3893377 | 0.13893377014625

5.0 | (0,0) |1.005 (0)-5.696 (0)-5.6978496 | -5.69784957817588

‘ ©,1) (0)-3.329 (0)-3.3286265 | -3.32862645265462
(0,2) (0)-1.230 (0)-1.2296344 | -1.22963440659343
(1,1) (1)1.148 (1)1.1475032 | 11.47503186131254
(1,2) (0)8.774 (0)8.7739487 | 8.77394849601707
(2,2) (0)2.699 (0)2.6992089 | 2.69920891705825
(0,0) | 1.077 (0)-3.901 (0)-3.9024990 | -3.90249900826638
(0,1) (0)-2.881 (0)-2.8807343 | -2.88073428701833
0,2) (0)-1.460 (0)-1.4595536 | -1.45955369490267
1,1) (-2)-2.580 | (-2)-2.5861761 | -0.02586176086985
1,2) (-1)7.911 (-1)7.9105678 | 0.79105676105262
(2,2) (0)1.502 (0)1.5020973 | 1.50209730240341
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Table D.6

Comparison of selected values of R (c,&) computed by Flammer,

Li-Wei Li and this work.

c (m,n) ¢ | Flammer [35] | Li-Wei Li [36] This work

1.0 | (0,0) }1.005] (0)-2.838 (0)-2.8378072 | -2.83780723811360
0,1) (0)-6.912 (0)-6.9118575 | -6.91185750174113
0,2) (1)-3.593 (1)-3.5925889 | -35.92588874323741
(L,1) (1)-1.506 (1)-1.5055640 | -15.05564000972804
(1,2) (1)-7.295 (1)-7.2952166 | -72.95216566055947
(2,2) (2)-3.750 (2)-3.7497723 -3.74977223965¢2
0,0) |1.077| (0)-1.356 (0)-1.3557080 | -1.35570885304140
0,1 (0)-2.920 (0)-2.9198450 | -2.91984501408759
(0,2) (1)-1.056 (1)-1.0558461 | -10.55846235872703
(L,1) (0)-3.432 (0)-3.4319411 | -3.43194111712486
(1,2) (1)-1.275 (1)-1.2753532 | -12.75353150221821
(2,2) (1)-2.156 (1)-2.1563195 | -21.56319542332019

50 | (0,0) |1.005| (-1)-3.052 (-1)-2.9785864 | -0.29785863644297
0,1) (-1)-4.293 (-1)-4.3050633 | -0.43050632917237
0,2) (-1)-7.388 (-1)-6.8154226 | -0.68154230068294
(L, (-1)-9.101 (-1)-9.0913849 | -0.90913849419465
(1,2) (0)-1.778 (0)-1.1775917 | -1.17759159452534
(2,2) (0)-3.775 (0)-3.7497723 | -3.75519370254124
0,00 [1.077| (-1)2.291 (-1)2.5395874 | 0.25395874252412
0,1) (-1)1.594 (-1)1.5717657 0.15717657262933
(0,2) (-1)-1.340 (-2)-5.152477 | -0.05152473999533
(1,1 (-1)-1.248 | (-1)-1.2352925 | -0.12352924529051
(1,2) (-1)-2.651 (-1)-2.6426695 | -0.26426694752392
(2,2) (-1)-3.910 (-1)-3.9044210 | -0.39044209641026
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Table D.7

Comparison of selected values of R;,f,f) (c,£) computed by Flammer,

Li-Wei Li and this work.

c (m,n) ¢ | Flammer [35] | Li-Wei Li [36] This work

1.0 | (0,0) | 1.005 (2)1.063 (2)1.0633242 | 1.0633242286675¢e+2
0,1) (2)3.109 (2)3.1089726 | 3.1089725468020e+2
0,2) (3)2.133 (3)2.1331831 | 2.1331830724444e+3
(1, (3)1.544 (3)1.5442861 | 1.5442860578986¢e+3
(1,2) (3)7.963 (3)7.9630836 | 7.9630835695164+3
2,2) (4)7.574 (4)7.5736490 | 7.5736490437915+4
0,0) |1.077 (0)7.279 (0)7.2789540 7.27895039446102
©,1) (1)1.672 (11.6721910 16.72191032381964
(0,2) (1)9.116 (1)9.1171233 | 91.17123337841893
(1,1) (1)2.624 (1)2.6239981 26.23998046516048
(1,2) (2)1.313 (2)1.3132273 | 1.3132273059612e+2
(2,2) (2)3.121 (2)3.1210720 | 3.1210720043946¢+2

50 | (0,0) | 1.005 (1)4.082 (1)4.0728531 40.7285310219949
0,1) (1)3.973 (1)3.9736573 | 39.73657265798575
(0,2) (1)4.212 (1)4.1978593 | 41.97895810422797
(1,1) (1)7.849 (1)7.8599734 | 78.59973427066133
(1,2) (2)1.064 (2)1.0645467 | 1.0645467224624e+2
(2,2) (2)7.153 (2)7.1538382 | 7.1538381803708e+2
0,0y |1.077 (0)1.909 - (0)1.3876869 1.38768690964025
©,1) (0)2.523 (0)2.5436221 2.54362212146930
0,2) (0)3.637 (0)3.334322 3.33432191815735
(L, (0)4.022 (0)4.0224111 4.02241109274360
(1,2) (0)3.713 (0)3.7157073 3.71570729779921
(2,2) (0)4.045 (0)4.0511312 4.05113119033999
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