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Abstract

Adaptive Decision-Feedback Multiuser Detection for

DS-CDMA Systems

Min Li

Multiuser detection (MUD) has been proposed as a way to combat multiple access
interference (MAI) in direct-sequence code-division multiple-access (DS-CDMA) sys-
tems. The optimum multiuser detector has a high computational complexity. For
that reason, the research for MUD techniques which successfully negotiate the trade-
off between performance and complexity becomes increasingly important.

In this thesis, we propose a modified multistage linear parallel interference can-
cellation (PIC) structure using the blind adaptive minimum mean-output-energy
(MMOE) algorithm for DS-CDMA systems. The proposed receiver has a compu-
tational complexity that is linear in the number of users, and exhibits a performance
close to the optimum linear minimum mean-squared-error (LMMSE) receiver whose
complexity has a cubic dependence on the number of users. Moreover, the proposed
blind adaptive MMOE-PIC receiver requires no side information on users’ received
signal amplitudes, which can further lower the complexity of the overall system.

Anqther multistage detector with low complexity is introduced for DS-CDMA

i



systems over both flat and frequency-selective fading channels. The proposed detector
employs the blind adaptive multiuser receiver as the first stage followed by stages with
interference cancellation (IC). The performance of the proposed detector is ve1;y close
to the single user bound and is independent of system loads in flat fading channels.
In multipath fading channels, from low to moderate SNR’s, the proposed receiver
suffers less than 1dB penalty compared with ideal detection without interference. At
high SNR's, an error floor occurs for high loaded systems.

Finally we consider a class of decision-feedback detectors (DFDs) based on the
modified MMSE performance criterion in the presence of dynamic fading. Successive
cancellation is employed to mitigate the effects of error propagation. To equalize the
performance over the users with successive cancellation, an iterative DFD is presented,
which consists of cascaded DFDs, each performing successive cancellation. The effect
of error propagation is illustrated through simulation. Although error propagation
can significantly degrade performance, the proposed DFDs still offer a significant
performance and capacity gains relative to the modified LMMSE detector in fading

channels.
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Chapter 1

Introduction

1.1 DS-CDMA Communications

Over the last decade the interest in wireless communications has dramatically in-
creased. Existing forms of wireless communications: cellular mobile phones, wireless
networks, cordless phones and radio pages, continue to experience explosive growth,
and show a large increase in the number of users. Capacity, radio spectrum utilization
efficiency and service qﬁality are of primary concern, but also other factors such as the
system complexity and the associated cost are of great concern [1]. Digital modula-
tion, detection and multiple access techniques are essential components in the design
of any communication system. During last decade, many known techniques have
been analyzed and re-evaluated for the mobile communications. Spread-spectrum
communications is a well-known technique which has found a place in cellular mobile

systems. In particular, DS-CDMA systems have attracted much interest.



Code-division multiple-access is one of several methods of multiplexing wireless
users. In CDMA, users are multiplexed by distinct codes rather than by orthogonal
frequency bands, as in frequency-division multiple-access (FDMA), or by orthogonal
time slots, as in time-division multiple-access (TDMA). In CDMA, all users can
transmit at the same time. Also, each user is allocated the entire available frequency
spectrum for transmission. Hence, CDMA is also known as spread-spectrum multiple-
access (SSMA), or simply spread-spectrum communications.

CDMA has been widely applied in military communications. The development of
spread spectrum techniques was motivated by the need to combat intentional jam-
ming and also to conceal transmission [2]. In commercial mobile communications,
CDMA systems have many attractive properties such as interference suppression,
a higher spectrum reuse factor, soft capacity, soft hand-over, wideband multipath
diversity, and voice activity utilization [3]. For these reasons, CDMA has recently
attracted much attention. One of the current second-generation cellular commu-
nications systems, IS-95, is based on narrowband DS-CDMA technology [3]. The
most promising candidate for the new third-generation mobile communications sys-
tems, called International Mobile Telecommunications-2000 (IMT-2000), is wideband
CDMA (W-CDMA) [4)-[7]. Recently the European Telecommunications Standards
Institute (ETSI) decided to adopt W-CDMA technology for the frequency-division
duplex (FDD) bands [8]. In Japan, the Association of Radio Industries and Business
(ARIB), the standardization body of the radio sector, is now developing a W-CDMA

air interface standard [9].



DS-CDMA is the most popular of CDMA techniques. The DS-CDMA transmit-
ter multiplies each user’s signal by a distinct code waveform. The detector receives a
signal composed of the sum of all user’s signals, which overlap in time and frequency.
In conventional DS-CDMA systems, a particular user’s signal is detected by corre-
lating the entire received signal with that user’s code waveform. The conventional
DS-CDMA detector suffers from two major drawbacks: the near-far problem and an
interference limitation on network capacity. The near-far problem is a situation in
which users near the receiver are received at higher powers than those far away, and
those further away suffer a degradation in performance, i.e. bit-error-rate (BER).
The conventional detector consists of a matched filter and a decision device. Sihce
the output of each matched filter contains a spurious component which is linear in
the amplitude of each of the interfering users, the strongest user often severely inter-
feres with the other users. Consequently, the BER and anti-jamming capability of
the weakest user are degraded substantially. Thus, in order to maintain an accept-
able level of bit-error-rate for all user, DS-CDMA often requires strict control over
transmitter power for each user, which is often very difficult to realize. The interfer-
ence limitation refers to the fact that the number of simultaneous users is limited to
approximately 10% of the processing gain, even for the case of perfect power control
[3]. These drawbacks, caused by the fact that single-user detection treats multiuser
interference as noise, severely impair the performance of the CDMA system.

Because of the interference among users, however, a better detection strategy



would be to use multiuser detection (also referred to as joint detection or interfer-
ence cancellation). Here, information about multiple users is used jointly to better
detect each individual user. The work of Verdd [10}-[13] has shown that an optimum
maximum likelihood multiuser detector can achieve optimum near-far resistance and
a significant performance improvement over the conventional (single user) detector.
The improvement, however, is obtained at the expense of a dramatic increase in com-
putational complexity, which grows exponentially with the number of users. Thus,
when the number of users is large, the optimum detector becomes infeasible. Thus,
many suboptimum multiuser detectors have been proposed [12]-[19] to offer better
performance complexity tradeoff.

The utilization of the multiuser detection algorithms has the potential to provide
higher spectrum utilization efficiency and better performance for DS-CDMA systems.
The number of users jointly decoded in the DS-CDMA systems could be very large,
since each user occupies the entire bandwidth and is thus fully overlapped with all
other users. Multiuser detection may then only be feasible at the base station. In
general, it is easier to apply multiuser detection into a system with short spreading
codes since cross-correlation does not change every symbol as with long spreading

codes.



1.2 Motivation and Objective

The optimal multiuser detector for CDMA systems is prohibitively complex for prac-
tical implementations. Therefore, several linear suboptimum multiuser detectors have
been proposed which can be characterized as an inverse of some form of correlation
matrices. If the correlation changes, the detectors must be redesigned. An ideal com-
putation of the decorrelating or the LMMSE detector requires an order of K3 flops’
for asynchronous CDMA systems [73] or K2 flops for synchronous CDMA systems
[74], where K is the number of users. To alleviate this computational complex-
ity, many researchers have recently focused on adaptive, decentralized?, multiuser
detectors. One problem associated with these adaptive multiuser detectors is that
the optimum weights are not achieved in practice, even if the step-size is optimal.
Also the finite training period required in these adaptive detectors, together with
high system loads (the ratio of users to processing gain close to one), set some con-
straints on the achieved MSE, especially in near-far environments. As a result, the
adaptive multiuser detector usually experiences significant performance degradation
compared with its optimum MMSE multiuser receiver at high system loads. Due to
the above mentioned problems of the adaptive multiuser receivers based on linear
filtering, nonlinear adaptive multiuser detection has gained a considerable attention
for its potential capacity increase and simplicity. The main objective of this thesis is

to develop a low complexity adaptive multistage detection scheme that can improve

A floating point operation (flop) is defined to be a multiplication or an addition ([91, p. 19]).

2Centralized multiuser detectors make a joint detection of the symbols of different users. Decen-
tralized multiuser detectors (sometimes also called single-user detectors) demodulate a signal of one
desired user only.



both the convergence speed and the BER performance of the conventional adaptive
multiuser receiver in both AWGN and fading channels.

It was shown in [81] that a class of MMSE decision feedback detectors (MMSE-
DFDs) are relatively simple and can perform significantly better than linear MMSE
multiuser detectors. Most of the work up to this point dealing with the MMSE-DFD
and its adaptive implementations has assumed either an AWGN channel [83] or a
slowly time-varying multipath fading channel [84]. Up to the authors’ best knowledge,
the MMSE-DFD for relatively fast fading channels has not been presented. Therefore,
the second goal is to design a nonlinear adaptive MMSE-DFD which can operate in

fast fading channels and perform better than its linear counterpart.

1.3 Thesis Contribution

This thesis presents three different nonlinear adaptive multiuser detection schemes
that can significantly increase the spectral efficiency of the DS-CDMA systems over

their linear counterparts. The main contributions of this thesis are listed as follows:

e For DS-CDMA systems in AWGN channels, we propose a blind adaptive MMOE-
PIC multiuser detector which performs very close to the centralized optimum

LMMSE detector and has a much simpler computational complexity.

e For the more interesting case of fading channels, we introduce a nonlinear mul-
tistage LCMV-HD-PIC detection scheme which yields a near-optimum BER

performance using only a few stages. The performance of the proposed detector

6



is also shown to be insensitive to the system loads in flat fading channels.

e For the DS-CDMA systems in fast-fading channels, we present a nonlinear suc-
cessive decision-feedback multiuser detector based on the modified MMSE cri-
terion. The proposed nonlinear detector is suitable for adaptive implementation
in fast-fading channels and can achieve a spectral efficiency which is significantly
higher than that of its linear counterpart. The performance loss of the proposed
nonlinear detection introduced by the modified MMSE optimization function is

also negligible, in contrast with the modified LMMSE detection.

1.4 Thesis Outline

Chapter 2 includes a review of multiuser detection in additive white Gaussian noise
(AWGN) channels. A synchronous DS-CDMA multiuser system description is given.
Several different multiuser detection schemes are reviewed. On one hand, the conven-
tional detector is vulnerable to the near-far problem. On the other hand the compu-
tational complexity of the optimum detector is so high that is infeasible, at least with
existing technology. We then review two main classes of suboptimal detectors that
have been proposed: linear multiuser detectors and subtractive interference cancella-
tion multiuser detectors. Previous work on the multiuser detection in the literature
is also presented. The significance of the multiuser detection and its advantage are
pointed out.

In chapter 3, a modified multistage parallel interference cancellation structure



based on the blind adaptive MMOE algorithm is introduced for DS-CDMA systems
in AWGN channels. The complexity of the proposed receiver structure is shown to be
linear in the number of users and hence, a much lower complexity than the centralized
LMMSE multiuser detector. The proposed receiver utilizes soft decision (SD) of
the conventional blind adaptive MMOE detector on the interfering users’ symbols
when forming the MAI estimate. It is demonstrated that the proposed algorithm can
significantly reduce the long training period required by the standard adaptive MMOE
receiver in near-far environments. Furthermore, the BER. of the proposed MMOE-
PIC detector is analyzed and approximated using the Gaussian approximation. Both
numerical and theoretical results show that the proposed receiver performs close to
the optimum LMMSE receiver whereas the conventional adaptive MMOE detector
suffers from high BER’s due to the imperfect filter coeflicients.

Chapter 4 introduces an adaptive multistage detection scheme with low complexity
for DS-CDMA systems in the presence of time- and frequency- selective fading. The
first stage is a blind adaptive multiuser detector based on the linear constrained
minimum variance (LCMV) criterion. The interference cancellation occurs in the
following stages. Our aim is to study the performance of the proposed algorithm and
investigate techniques for efficient multistage detection for CDMA systems in fading
channels. The simulation results show that the BER performance of the proposed
algorithm approaches to the single user bound and is independent of system loads in
flat fading channels. For multipath fading channels, from low to moderate SNR’s, the

performance of the proposed detector is within 1 dB (in SNR) of the single user bound



at moderate system loads. On the other hand, the BER of the proposed receiver is
shown to exhibit an error floor at high SNR’s due to the poor MAI estimates.

Chapter 5 focuses on a class of nonlinear MMSE decision-feedback multiuser re-
ceivers which are known to offer a large performance improvemerit relative to linear
MMSE-based detection. A 2-stage modified MMSE decision-feedback multiuser de-
tector is proposed for frequency-selective fast-fading channels. Considering a multi-
path fast-fading channel, the modified nonlinear adaptive receiver is shown to offer
much higher gain than existing precombining linear MMSE receivers [77]. Consider-
ing a fixed multipath channel, and different system loads, we demonstrate that the
difference in performance between the proposed precombining nonlinear receiver and
its postcombining version is relatively small and fairly fixed over different system
loads. Finally, we present convergence results for the proposed nonlinear adaptive
receiver and compare it with the precombining LMMSE adaptive receiver [77].

In Chapter 6 a brief summary of the accomplished work, with an emphasis on the
contributions to the area of multiuser detection is presented. Some possible extension

of this work and directions of future research are also presented.



Chapter 2

Review of Multiuser Detection

Recently, there has been a great interest in improving DS-CDMA detection through
the use of multiuser detection. In multiuser detection, code and timing (and possibly
amplitude and phase) information of multiple users are jointly used to detect each user
signal. The main assumption in these detection techniques is that the codes of the
multiple users are known to the receiver a priori. In [10], Verdd proposed and analyzed
the optimum multiuser detector, or the maximum likelihood sequence (MLS) detector
(described later in this chapter). Even though the MLS detector offers a substantial
gain over the conventional matched filter receiver, its computational complexity is too
high for practical DS-CDMA systems. Therefore, over the last decade or so, most of
the research has focused on finding suboptimum multiuser detectors which are more
feasible to implement.

In general, the proposed suboptimum detectors can be classified in one of the two

categories: linear multiuser detectors [13] and subtractive interference cancellation

10



detectors [14]. In linear multiuser detection, a linear mapping (transformation) is
applied to the soft outputs of the conventional detector to provide a set of outputs,
which hopefully provide better performance. In subtractive interference cancellation
detection, estimates of the interference are generated and subtracted out. We will
review several important detectors in each category in this chapter.

An outline of this chapter is as follows. In Section 2.1 the synchronous DS-CDMA
multiuser system model is presented. In Section 2.2, we describe the idea behind
multiuser detection. Section 2.3-2.8 investigate six multiuser detection schemes: the
conventional, the optimum, the decorrelating, the LMMSE, the serial interference
cancellation (SIC) detectors and the multistage parallel interference cancellation de-

tectors, respectively. Finally, Section 2.9 concludes this chapter.

b— Code 1
bz'— COde 2
by— Code K

Figure 2.1: A synchronous DS-CDMA system model

11



2.1 Multiuser System Description

2.1.1 System Model

We consider a synchronous DS-CDMA system which is shown in Figure 2.1. All users
share the same bandwidth. The signaling interval of each user is T" seconds, and the
input alphabet is antipodal binary: {+1,—1}. The transmitted baseband Signal due

to the kth user is given by

e () = i Are?% by (7) s (t — iT) (2.1)

i=—00

where by, (%) is the ith time-independent and equiprobable symbol transmitted by the
kth user. Ay and 6; are the signal amplitude and phase shift of user k, respectively.
sk(t) is the kth user signature waveform which is assumed to have a unit energy

( fOT llsx(t)]|? dt = 1). For DS-CDMA, this spreading waveform can be written as

sk (t) = ipk [{) W (t —iT,) (2.2)

where U () is the chip pulse shape, T} is the chip duration, N = T'/T, is the processing
gain and pgi] € {:tl /VN } ,2=0,...,N — 1, is the real-valued spreading sequence.
In the reminder of this dissertation we take W (¢) to be a square pulse on the interval
[0,T:), but there is no fundamental reason why a different chip pulse shape could
not be used. Because short spreading codes are required for the adaptive algorithms

considered in this thesis, It is assumed that the same spreading waveform is used for

12



each symbol.
At the receiver side the received baseband signal is the noisy sum of all users’

signals. Considering a K-user system, the received multiuser signal is given by

K o0

r() =Y > A (i) sk (t —iT) +n (1) (2.3)

k=1 1i=—00

where n(t) is the complex addictive white Gaussian noise with two-sided power spec-
tral density o2. According to (2.1), each user’s signal travels along a single path,
so the model does not illustrate multipath propagation. The effect of multipath is
discussed in Chapter 4.

The received signal in (2.3) is sampled at the output of the chip matched filter at

a rate of T, ' = N/T. If we let r(i) be the N-vector containing samples during the

ith transmitted symbol, we can write

r(i) = SAb(i)+n (2.4)

where S = [s,,s,, ..., sk] and sy, is the column vector of spreading sequence associated
with user k, A = diag[A1e7®", Az’ ... Axei® ], b(i) = [b1(2),ba(2), ..., bx(i)]” is the
data vector where “T” denotes matrix transpose, and n is the complex channel noise
vector with covariance 021 where [ is K x K diagonal matrix.

For the rest of this chapter, we will consider a very simplified DS-CDMA system.
A number of simplifications will be exposed in the rest of the dissertation. These

assumptions are as follows:
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e We consider a channel with real attenuation. The real model is convenient
for analyzing coherent methods, and can be easily generalized to the complex
case. Under this real attenuation assumption, the received amplitude matrix
A = diag[A1, Az, ..., Ak]. In Chapter 4 and 5, we extend our treatment to
multiuser detection for fading channels, where complex attenuation need to be

considered.

e Certain parameters are assumed to be known perfectly. The multiuser detectors
presented in this chapter and Chapters 4 and Chapter 5 take advantage of the
known channel parameters so that amplitudes, phase and delays do not appear

in treatment at all.

2.1.2 Spreading Codes

In Chapter 3 and Chapter 4, we have chosen a set of Gold sequences each of length 31
chips as the spreading codes assigned to different users. In chapter 5, a family of Gold
sequences with processing gain 15 is employed in order to simplify the simulations
although the choice of length 15 does not offer good periodic cross-correlations.
Appendix A shows the Gold codes as well as their auto-correlation and cross-
correlation properties. As shown in the Appendix, the length N, of a Gold sequence
is equal to 2™ — 1, where m is an integer. The total number of Gold sequences with

length N is always N + 2 [25].
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Figure 2.2: CDMA multiuser detection concept

2.2 Multiuser Detection Concepts

The first CDMA interference cancellation references can be found in [20]-[24]. In these
works, a number of ideas that are present are still in much of the ongoing research.
Estimates based on mean-squared-error and maximum likelihood are discussed in {20].
Later on, the detection scheme proposed in that paper was known as the decorrelating
detector. In [20], however, it was erroneously shown that this detector is optimum
in terms of bit-error-rate. Reference [24] shows how cancellation is implemented by
solving simultaneous equations, in essence, by inverting a key matrix. Significant
theoretical steps were taken in [10] and [11] by Verdd, in analyzing the structure and
complexity of optimal multiuser receivers. This work also initiated a new research on

suboptimal multiuser detection.
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Multiuser detectors commonly have a front-end whose objective is to obtain a
discrete-time process from the received continuous-time waveform 7(¢). Continuous-
to-discrete-time conversion can be realized by conventional sampling, or more gen-
erally, by correlation of r(t) with deterministic signals. Therefore, the first step in
the multiuser detection process is to pass the received signal r(t) through a bank
of matched filters (or correlators). The bank of matched filters consists of K filters
matched to individual spreading codes of the same system followed by samplers as

shown in Figure 2.2.
For synchronous CDMA, the output of the kth matched filter (which is matched

to the spreading code of kth user) at the sampling time is given by

w = /0 r(2)se(£)dt

T K
= se(t A,bys, () +n(t)] dt
/0 1) | D Aubus () + (0
K T
= A+ > AbuRey+ / sk(t)n(t)dt (2.5)
v=10v#k 0
where
T
Rew = / s(t)su(t)dt (2.6)
0

is the cross-correlation between the spreading codes assigned to user k and user v.
Note that y; consists of three terms. The first term is the desired user’s information.

The second term is the result of the multiple access interference, and the last term
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is due to the noise. Schneider [20] showed that the outputs of the bank of matched
filters form a set of sufficient statistics for demodulating the input sequence b(¢) from
the received signal r(t), i.e., that no additional relevant information can be extracted
from the remaining noise process n'(t) = n(t) — S.5, fOT se(t)n(t)dt and n'(t) is
uncorrelated with the outputs of the bank of matched filters {yc}.

It is convenient to express (2.5) in a vector form given by
y=RAb+z @20

where R is the normalized cross-correlation matrix with elements Ry ,, y = [v1, 2,

..., yx)¥, and n is a zero-mean Gaussian random vector with covariance matrix equal

to

EnnT] = ¢’R (2.8)

2.3 Conventional Detector

In the following sections we briefly review several previously proposed multiuser detec-
tors of interest. Before doing so, we begin our discussion with the simplest detector,
namely, the conventional detector.

The conventional detector for the received signal is described in (2.5), which is a
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Figure 2.3: Conventional (single—user) detector

bank of K correlators, as shown in Figure 2.3. Here, each code waveform is regener-
ated and correlated with the received signal in a separate detector branch. The corre-
lation detector can be equivalently implemented through what is known as matched
filter [25]. Thus, the conventional detector is often referred to as the matched filter
receiver. The outputs of the correlators (or matched filters) are sampled at bit times,
which yields “soft” estimates of the transmitted data. The final £1 “hard” data

decisions are made according to the signs of the soft estimates as shown below
by, = sgn(yx) (2.9)

Note that the conventional detector ignores MAI and treats it as noise. Thus,

the existence of MAI has significant impact on the capacity and performance of the
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conventional direct-sequence system. In [26], the kth user probability of error for the

conventional detector was obtained as

c 1 Ak: - Zf,{: " Auvak,v
P = o 3 Q ( 1wrk (2.10)

o
be{—1,+1}K b =1 n

where Q(z) , \/% [3° e7¥/2dt. When the MAI terms (2.10) are significant, the BER
of this detector can be very high. This is due to the fact that MAI depends both on
the cross-correlation between sequences and the energies, Aq, Az, ... Ax.

It is clear from Figure 2.3 that the conventional detector follows a single-user
detector strategy; each branch detects one user without regard to the existence of
the other users. Thus, there is no sharing of multiuser information or joint signal

processing (i.e., multiuser detection).

% Y b

A 4

Matched Filter 1

Matched Filter 2 7{ 2] ——bz

Maximize
r(t) bef-1,+1)

(2b" Ay —b"ARAD)

Y

A

Matched Filter K N Yk | by

Figure 2.4: Optimum multiuser detector
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2.4 Optimum Detector

The optimum multiuser detector, which is proposed by Verdd in [27], is defined as a

detector that selects the set of symbols corresponding to that signal among the possi-

ble ones which resembles most closely, in the maximum likelihood sense, the received

signal. Furthermore, if all vectors b are a priori equiprobable, then the minimum dis-

tance rule gives the maximum-a-posteriori (MAP) decision. The optimum multiuser

detector, thus can be expressed mathematically as [27]

b=
argbe{ 1,+1}K

ZAbsv BIE

For synchronous CDMA systems, (2.11) may be written as

o

T K 2
= arg be{rﬂ?ﬁ}’f/ [r(t) — ZA“b”S“(t)J dt
= arg min / t)dt — 2ZA by / r(t)s,(t)dt

be{—1,+1}X

+22A buAyby / su(t)su(2)dt

u=1 v=1

or equivalently in matrix notation as

P Tre W
b—argbe{r_nﬁé}}{ (2b Ay —-b ARAb)

(2.11)

(2.12)

(2.13)

Equation (2.13) dictates an exhaustive search over 2% possible combinations of

the components of the bit vector b. Despite the huge capacity and performance gains
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offered by the MLS detector over the conventional receiver, the optimum multiuser
detector is impractical since its computational complexity grows exponentially in the
number of users. A realistic direct-sequence system has a relatively large number of
active users. Thus, the exponential complexity in the number of users makes the cost
of this detector too high. In the following sections, we look at various suboptimum

multiuser detectors that are simpler to implement.

 Matohed Fitler 1% 2 —— b

I Matched Fiter 2 |—-¢ 22 J'_ b,
r(t) . R_1 .

» Matched Filter K ¥ Vil J_ by

Figure 2.5: Decorrelating multiuser detector

2.5 Decorrelating Detector

The decorrelating detector shown in Figure 2.5 applies the inverse of the correlation

matrix R™" to the conventional detector output in order to decouple the data. Thus,
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the soft estimate of this detector is

y=R'y=Ab+R7z (2.14)

and the decision is

b = sgn(¥). (2.15)
Thus, we see that the decorrelating detector completely eliminates the MAI This
detector is very similar to the zero-forcing equalizer [25] which is used to completely
eliminate intersymbol interference (ISI).

The decorrelating detector was initially proposed in {20, 24]. It was extensively
analyzed by Lupas and Verdd in [12, 13] for coherent detection. In addition, the
idea of decorrelation has also received considerable attention in [28]-[32] where the
noncoherent version of the decorrelator was obtained. The decorrlating detector has

several desirable features. Foremost among these properties are:

e It offers significant performance/capacity gains over the conventional detector.

o It does not require the knowledge of the users’ energies, and thus its perfor-
mance is independent of the energies of the interfering users. This can be seen
form (2.14). The only requirement is the knowledge of timing which is anyway

necessary for the code despreading at the centralized receiver.

e It has computational complexity significantly lower than that of the optimum
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multiuser detector. The per-bit complexity is linear in the number of users,

excluding the costs of recomputation of the inverse mapping.

A disadvantage of this detector is that it causes noise enhancement. The power
associated with the noise term R~'z at the output of the decorrelating detector is
always greater than or equal to the power associated with the noise term at the output
of the conventional detector for each bit [28]. As it is shown in [26], the error rate of

the decorrelator is given by

Ay

P = . S
o e Ouy /(R

Thus, we see that the performance of the decorrlating detector degrades as the cross-

(2.16)

correlations between users increase. A more significant disadvantage of the decorre-
lating detector is that the computations needed to invert the matrix R are difficult to
perform in real time. For synchronous systems, the problem is somewhat simplified:
we can decorrelate one bit at a time. In other words, we can apply the inverse of
a K x K correlation matrix. For asynchronous systems, however, the size of R is

NK x NK, which is quite large for a typical message length N.

2.6 MMSE Detector

Based on the more classical minimum mean-squared-error criterion, LMMSE multi-
user detectors were derived and their performance was studied for both synchronous
and asynchronous channels in [19] and [33]-[35]. This detector implements linear
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Figure 2.6: MMSE multisuser detector

mapping which minimizes the mean-squared-error between the actual data and the
soft output of the MMSE detector. This linear MMSE detector (Figure 2.6) is given

by [19]

Wuymse = [R + O'iA_z] -1 . (217)

Thus, the soft estimate of the MMSE detector is simply

Y =Wynsey- (2-18)
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As can be seen, the MMSE detector implements a partial or modified inverse of the
correlation matrix. The amount of modification is directly proportional to the back-
ground noise. The higher the noise level is, the less complete an inversion of R can
be done without noise enhancement causing performance degradation. Because it
takes the background noise into account, the MMSE detector generally provides bet-
ter BER performance than decorrelating detector. As the background noise goes to
zero, the MMSE detector converges in performance to the decorrelating detector. An
important feature of MMSE detection is that it lends itself to adaptive implementa-
tions more readily than the decorrelating detector. The adaptive multiuser detector
based on the MMSE criterion as in [36]-[38] eliminates the need to know the signature
waveforms, time and amplitudes but needs to have training data sequences for every
active user for initial adaptation.

An important disadvantage of the MMSE detector is that, unlike the decorrelating
detector, it requires estimation of the received amplitudes. Another disadvantage is
that its performance depends on the powers of the interfering users [19]. Therefore,
there is some loss of resistance to the near-far problem as compared to the decorrelat-
ing detector. Moreover, while decorrelating and MMSE strategies are at once simple
and attractive from a performance standpoint for low—moderate cross-correlations,
their performance can degrade substantially for systems with higher bandwidth ef-
ficiencies. The problem here is that the structural constraint that the detector be

linear, is too severe [89)].
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2.7 Swuccessive Interference Cancellation

Here we review a class of subtractive interference cancellation detectors. The basic
principle underlying these detectors is the creation used at the receiver to estimate
the MAI contributed by each user. The bit decisions used to estimate the MAI can
be hard or soft. The soft decision approach uses soft data estimates for the joint
estimation of the data and amplitude, and is easier to implement. The hard decision
approach feeds back a bit decision and is nonlinear. It requires reliable estimates of
the received amplitudes in order to regenerate estimates of MAI. On the other hand,
if reliable amplitude estimation is available, hard-decision subtractive interference
cancellation generally outperforms soft-decision techniques. We briefly review several
subtractive interference cancellation detectors below.

The successive interference cancellation detector [39, 40] involves detection of
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users’s signals in a given order. The first user is detected by regarding the inter-
ference from other users as noise. The detected and regenerated symbols of the first
user are then subtracted from the received data and the second user is detected by
regarding the interference from the remaining users as noise, and so on.

A diagram of the SIC detector is shown in Figure 2.7, where a hard decision
approach is assumed. In each time frame, decisions are made in the order of decreasing
user’s strength, i.e., the stronger user makes decisions first, allowing the weaker users
to utilize these decisions. The sorting is performed before the interference cancellation

occurs. Thus, the decision for the kth user is given by

k—1
b = sgn(ye — Y byRurAy). (2.19)

v=1

The reasons for cancelling the signals in a descending order of their strengths
are straightforward. First, it is easy to achieve acquisition and demodulation on the
strongest users (best chance of a correct data decision). Second, the removal of the
strongest users gives the most benefit for the remaining users. The result of this
algorithm is that the stronger user will not benefit from any MAI reduction. The
weakest users, however, will potentially see a huge reduction in their MAI.

A shortcoming of the successive cancellation is that its performance is asymmetric:
equal-power users are demodulated with disparate reliability since the order in which
users are cancelled greatly affects the performance of successive cancellation for a

particular user. In next section, we explore a symmetrized version of successive
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cancellation, which mitigates some of the shortcomings of that technique.
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Figure 2.8: Multistage multiuser detector

Stage m

2.8 Multistage Parallel Interference Cancellation

A multistage parallel interference cancellation detector is shown in Figure 2.8. This

detector, proposed in [14, 15], uses (2.20) instead of (2.13)

b1k = arg max

b €{—1,+1},by=bm u,0#k

For m > 1, it is easy to show that

~

bm+1,k = Sgn(gm,k)

28

(2bTAy — bTARAD).

(2.20)

(2.21)



where §mx is the mth stage statistic for the kth user and is given by

K
gm+‘l,k =Yr — Z bm,vAvRv,k- (222)

v="1,v#k

In demodulating the information bits of all users, the maximization of (2.20) is per-
formed for each k£ = 1,2,..K. The (m + 1)th stage estimate of b can be written as

the sign of the mth stage vector of $,. = [Jm 1, Gm.2--Gm, x]T S0 that
B = sgn(§m) = sgnly — (R — L )AD, . (2.23)
From (2.7), one can see that
y=RAb+z=Ab+M(b)+z (2.24)

where Mj(b) , (R —I,)Ab represents the MAI vector. Substituting (2.24) in (2.23),

the expression for the (m + 1)th stage estimate of b is given by

Brms1 = 590(Fm) = sgn[Ab + M (b)—M,(b_) + 2. (2.25)

The result in (2.25) has a simple interpretation. The (m + 1)th stage estimate of
b is obtained as the sign of the mth stage statistic which in turn is obtained by
subtracting from the sufficient statistic y, the estimate of the MAI based on the mth

stage estimate of b.
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A potential problem with the subtractive interference cancellation detector occurs
when the initial data estimates are not reliable. In this case, even if the timing,
amplitude, and phase estimates are perfect, if the bit estimate is wrong, the interfering
effect of that bit on the signal-to-noise ratio is quadrupled in power (the amplitude
doubles, so the power quadrupled). This is also known as hang-up phenomenon where
the decision errors propagate to MAI estimates resulting in a detrimental effect on
other users’ decisions.

A number of studies have investigated PIC detection, such as [41]-[43]. In partic-
ular, [43] proposed a partial PIC scheme which takes into account the fact that the
tentative decisions of the earlier stages are less reliable than those of the laster stages.
Huge gains in performance and capacity are reported over the standard PIC detec-
tor. This recently proposed detector may be the most powerful of the subtractive

interference cancellation detectors, and needs to be studied further.

2.9 Conclusion

In this chapter, a synchronous DS-CDMA system model was given. Then, we stud-
ied the idea behind multiuser detection. Finally, six previously proposed detection
schemes were reviewed. It was shown that multiple access interference significantly
limits the performance and capacity of the conventional DS-CDMA systems. The op-
timum MLS multiuser detector can provide huge gains in performance and capacity

over conventional detector but is too complex to implement for practical DS-CDMA
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systems. Among simpler suboptimum multiuser detectors, decorrelating and MMSE
detectors provide optimum near-far resistance. Particularly, the decorrelating detec-
tor can be implemented without knowledge of the received amplitudes whereas the
MMSE detector requires estimation of the received powers, but provides a better BER
performance than decorrelating detector. Both the decorrelating and MMSE detec-
tors require nontrivial computations that are a function of the cross-correlations. This
is particularly difficult for the dynamic CDMA systems where the cross-correlations
change each bit. On the other hand, a class of subtractive interference cancellation
detectors has gained a considerable attention for its simplicity and potential capacity
increase over conventional detector. These detectors attempt to estimate and sub-
tract off the MAI in either serial or parallel approach. The subtractive interference
cancellation detectors suffer from decision error propagation which may significantly

reduce or even reverse the gains to be had from using these detectors.
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Chapter 3

Blind Adaptive MMOE-PIC

Detection

From the discussion in the previous chapter, it is clear that DS-CDMA with the
conventional detector suffers from the near-far problem. The drawbacks of the con-
ventional detector initiated efforts to develop more sophisticated receivers in which
MALI is treated as part of information rather than noise. The study of the optimum
detector showed that while superior performance over the conventional detector is
possible, it can be obtained at a significant increase in computational complexity.
Among the suboptimum multiuser detectors which were proposed to alleviate the
complexity, the LMMSE receiver is receiving significant attention as it offers an at-
tractive tradeoff between performance, complexity and the need for side information.
However, the computation complexity of the optimum LMMSE receiver has cubic de-

pendence on the number of users and is still too high for several applications. On the
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other hand, the adaptive LMMSE receiver, which is simpler, suffers from significant
performance degradation due to imperfect adaptation. In this chapter we introduce
a new adaptive multistage PIC detection scheme. The new detector yields a near-
optimum LMMSE performance, while its computational load is linear in the number
of users.

The rest of the chapter is organized as follows. In Section 3.1 previous work in the
area is summarized and the contribution of this chapter is reviewed. Section 3.2 thor-
oughly discusses the idea behind the proposed new detector, and gives performance
analysis and simulation results in synchronous AWGN channels. The proposed algo-
rithm and its performance in asynchronous channels are given in Section 3.3. Finally

Section 3.4 presents a discussion and summarizes the results.

3.1 Introduction

3.1.1 Previous Work

To alleviate the computational complexity involved in centralized LMMSE multiuser
detectors, many researchers have recently focused on blind adaptive, decentralized
detectors (e.g., [45-47] and references therein). These blind methods have been in-
troduced to eliminate the need for long training sequences. Among these blind tech-
niques, Honig et al. [25] have proposed an adaptive MMSE receiver which can be

realized in a blind mode based on the minimum mean-output-energy criterion.
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One of the prominent suboptimal multiuser detectors that has attracted the at-
tention of many researchers is the parallel interference cancellation scheme introduced
in [14]. The reason behind this is due to its potential capacity increase and simplic-
ity compared with other suboptimal detectors. Previous work on combining MMSE
detection and PIC was presented earlier in [48], but no adaptive implementation
was provided. Other related, but different, multistage feedback cancellers have been

presented in [15] where the first stage is a decorrelator.

3.1.2 Contribution

Based on the work discussed in the previous section, we propose a blind adaptive
MMOE-PIC algorithm for the uplink of a DS-CDMA system. As will be shown in
the sequel, the proposed algorithm has a computational complexity that is shown
to be linear in the number of users as opposed to the MMSE multiuser detector
whose complexity has a cubic dependence on the number of users. In addition to this
complexity feature, the blind adaptive MMOE-PIC, which utilizes soft decision to
estimate MAI, requires no side information on the received signal amplitudes as the
MMSE multiuser detector does. This added merit can further lower the complexity
of the overall system. Further to the complexity issue, our combined MMOE-PIC
algorithm is shown to improve both the convergence speed and the BER perfor-
mance of the conventional blind adaptive MMOE detector in both synchronous and
asynchronous systems. As will be shown later, the MMOE-PIC algorithm is able to

successfully suppress strong interference components arising from near-far situations
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and hence, performing close to the optimum LMMSE receiver.

3.2 Blind Adaptive MMOE-PIC Detector in Syn-

chronous Channels

In this section, we propose a new adaptive multistage parallel interference cancella-
tion scheme based on the blind adaptive MMOE algorithm in synchronous AWGN
channels. The proposed algorithm exploits both the simplicity of the blind adap-
tive MMOE detector and the novel approach of a multistage detector in maximizing
(2.13). In addition, the system model that we study in this section is the same as
what we studied in Chapter 2.

In section 3.2.1, we briefly review the conventional blind adaptive MMOE receiver.
Section 3.2.2 presents the proposed blind adaptive MMOE-PIC algorithm. Section
3.2.3 demonstrates the BER approximation for the proposed detector. Performance
comparisons between the proposed detector and its conventional MMOE counterpart

in near-far situations are discussed in section 3.2.4.

3.2.1 Blind Adaptive MMOE Detection

Here, we consider the linear detector with coefficients w that minimizes the output

variance or MOE which is defined by

MOE = E [(w"r)?] (3.1)
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It is clear from (3.1) that some constraint needs to be imposed when minimizing MOE
in order to avoid the trivial solution w = 0. In particular, it is desirable to constrain
the response of the user of interest to a constant, in which case, minimization of the
MOPEF results in minimization of the energy of the interference. The case where no
multipath is present was studied in [44]. In that case, the constraint which guarantees

no signal cancellation is given by
wls =1 (3.2)

where s is the column vector of spreading sequence. Now, consider a linear detector

for user k, the achieved MSE is given by

MSE = E | (Axbx = wix)’|

E [(Wgr)z] —2A.E [Wgrbk] + Ai

MOE — A2 (3.3)

Equation (3.3) shows that minimizing the MOE subject to the constraint (3.2) is
equivalent to minimizing the MSE. The MMOE solution of the optimization problem

in (3.1) and (3.2) is given by [44] as

s (3.4)

st sy

where T' = E[rrT] = SA?ST + ¢21I.
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The MMOE criterion has been applied in many signal processing areas, one of
which is spatial filtering or beamforming [72]. The generalized sidelobe canceller
(GSC) structure for adaptive beamforming represents an effective implementation
of our blind MMOE multiuser detection by changing a constrained minimization
problem into an unconstrained form. The basic idea is to decompose the weight

vector w into two orthogonal part

T

w=s+x where s'x=0. (3.5)

Thus, the canonical representation in (3.5) suggests that the blind adaptive detector

can be conveniently implemented as shown in Figure 3.1.

J s T

r() ! Ny @)

X
Xl

Figure 3.1: Blind adaptive detector with x, governed by (3.8).

In order to derive the adaptive part, x, of the blind MMOE detector, we need to

compute the gradient of the MOE function in (3.1) which is given by

Vi(MOE) = 2P+Twy, = 2(I — s;sT)Twy, (3.6)

where P;- = (I — sis{) represents the subspace orthogonal to s;. From (3.6), a blind
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stochastic adaptation mechanism can be derived by approximating the gradient with

Vx(MOE) = 2P;Twy, » 2P.r(i)r” (i)wy, ~ 2P.r i)y (i) (3.7)

Therefore, the stochastic gradient adaptation rule is

xg(i+ 1) = xx (i) — p(I — sesg)r(i)ye (i) (3-8)

where y is the step-size parameter and y,.(i) = wi (i) r(4) is the output of the adaptive
detector.

It was shown in [44] that the blind gradient algorithm (3.8) suffers from noisy
estimates when compared with the least mean square (LMS) algorithm [49] in the
decision directed mode. Therefore, the optimum filter coefficients in (3.4) can not be
achieved in practice. This results in a significant performance degradation, especially

in systems with high loads and near-far problems.

3.2.2 Adaptive MMOE-PIC Algorithm in Synchronous Chan-
nels

We observe from (3.3) that the filter output, yx(¢), represents an estimate of Agzby(7).
This estimate is obtained without the knowledge of either the data symbol or the
user’s signal amplitude. Thus this blind estimate together with the users spreading

codes (assumed perfectly known), can allow us to perform linear cancellation on the
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MALI. Note that the operation of the PIC algorithm alone requires signal amplitude
estimation (for all users) plus early estimates for users’ data to regenerate the MAI
estimates. On the other hand, our proposed MMOE-PIC algorithm incorporates
the MMOE to obtain these estimates and hence less computational complexity and
improved system’s performance as will be shown shortly. The improved performance
is simply due to the combined MMOE-PIC multiuser interference rejection capability
which is shown to effectively suppress MAI as compared to the blind adaptive MMOE
algorithm.

Motivated by the above thought, we propose a new linear PIC structure where the
blind adaptive MMOE algorithm is employed as the base decision function. Compared
with the conventional PIC, the proposed algorithm is shown to effectively alleviate
the effect of the hang-up phenomenon explained earlier. This of course results in a
more stable performance and faster convergence rate.

The interference suppression of the MMOE-PIC algorithm is performed using a
multistage linear PIC with soft symbol decisions obtained from the adaptive MMOE
detector. The receiver structure is depicted in Figure 3.2. The output vector for
the kth user at the ith symbol interval and the (m + 1)th cancellation stage can be

expressed as

TPICIn+1k (1) =r (i) — SO (1) Ym (4) (3.9)

where Ym (1) = [Um1(); Ym2(0), -, Ym x ()]F, and Qnx () € [0,1]F is a diagonal
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Figure 3.2: The MMOE-SD-PIC structure, stages m and (m+1) are shown.

matrix including weights for partial interference cancellation. The weight for the
desired user is set to zero (i.e., ymx(7) = 0). On the other hand, the weights v, ;(7) €
[0,1] for user j # k depend on the estimated quality of the decision statistic for the
corresponding user. In this work, however, a constant weight ~,,;(i) = 1 is used
for user j # k at each stage throughout the cancellation process. Using the PIC

algorithm, the discrete output signal yy,.1x(¢) at the (m + 1)th IC iteration is given
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by

Yme1 k(1) = Wi ()riprcims1,k (8)

=wi(i) |r(s)— Zsjym,j(i)
=1

J#k

= wi (i) | (6) = D 8itms(8) | +ymi(D) (310)
i=1 |

where wy(i) is the blind adaptive MMOE detector given by (3.5) and this result
follows from the fact that s is orthogonal to xx and has unit energy. Using vector

notation, we then have
Yome1 (1) = WT () [ (1) — Sy ()] + ¥m (1) (3.11)

where W (i) = [w1(3), w2(4), ..., Wi (¢)]. Now, using the recursion (3.11) and setting
yo = 0, we can express the soft decision output for an n-stage MMOE-PIC as y,, (i) =

GZT(i)r(i), where
GT() = 5:1(1 —WT (3) )™ DWT (). (3.12)

Since GT (i) represents a linear filter, the noise component in y, (z) is still Gaussian
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but with correlation matrix
E[GL(#H)nnTG,(i)] = 6%G. (i)Ga(i). (3.13)

Thus, the BER performance of any user at any stage can be analytically calculated
in the same way as for the matched filter detector [13]. Specifically, for binary phase-
shift keying (BPSK) modulation, the conditional BER of user k£ at the ith symbol

interval and stage n is given by

P, ilerrorb(3)] = @ {%%i%lz%t;l(—z)} (3.14)

where g, x(7) is the kth column of G, (7).

3.2.3 BER Approximation

In AWGN channels with BPSK modulation, the kth user’s average BER for the
proposed receiver at stage n is obtained by averaging (3.14) over all possible interfering
symbol combinations. Also note that for the adaptive receiver, the linear filter g, x(7)
is not fixed but is a part of averaging. This implies that its performance can not
be analyzed, so instead we take a Gaussian approximation approach to evaluate the
BER performance for the proposed adaptive receiver.

For both the MMSE and the MMOE detectors, the residual interference can of-

ten be well modelled as a Gaussian random variable of appropriate variance [35].
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Therefore, the BER can then be approximated by
P, =2 Q(VSIR) (3.15)

where SIR denotes signal to interference ratio (SIR). Note that the adaptive filter
converges to the optimum filter tap weights in (3.4) as the number of iterations goes
to infinity. Thus, if the adaptive filter misadjustment is low enough, we can express

the conditional error probability for a given realization at steady-state as
P.xlerrorb (1) = Q [ S[R(i)] (3.16)

where

&7, (D)si)°

. (3.17)
g7 (8)(r (4) = bi(d)sw)]

SIR() =

Averaging (3.17) over a number of realizations of the data vector b, we get

5 [2u0)si)’
SIR,, = =F (3.18)

S5 [0 (x () — bei)si)]?

i=P

kS

where M and P indicate the start and end of the averaging process, respectively. In
order to evaluate the steady-state BER performance, the averaged SIR needs to be

computed after convergence is reached. Using (3.18), the average BER of the adaptive
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receiver is then given by

Py (n,K) = Q (\/SIRM,) . (3.19)

This BER evaluation technique can be viewed as a hybrid of the Gaussian approxi-
mation and computer simulations. There is no general rule to determine the number

of required averages. We study this in details in the following section.

3.2.4 Simulation Results

In this section we present simulation results for the systems discussed in the previous
section. First, we present the convergence properties of the proposed algorithm.
Then, we check the accuracy of the Gaussian approximation for the proposed adaptive
detector in AWGN channels. The BER performance at steady-state is investigated
at last. All simulation results are obtained in a near-far environment where the
interfering users have a 20 dB higher energy than the desired user.

The convergence behavior of the multistage adaptive MMOE-PIC algorithm is
shown in Figure 3.3. As can be seen from this figure, the adaptive LMS MMOE re-
ceiver requires approximately 800 training symbols before convergence can be reached.
On the other hand, the RLS algorithm drives the SIR to 15dB in less than 400 sym-
bols, which is roughly two times faster than the convergence time of the stochastic
gradient algorithm. When it comes to the MMOE-PIC algorithm, a single iteration

can drive the SIR to 15dB in less than 100 symbols. With more iterations, as shown in
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Figure 3.3: Averaged SIR versus time for the adaptive MMOE-PIC receiver compared
to the conventional adaptive MMOE receiver for a synchronous 10-user DS-CDMA
system with F,/No=20dB, and N=31 (Gold Codes).
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Figure 3.4: BER computed using Gaussian approximation and BER obtained by
computer simulations of the adaptive MMOE-PIC receiver and the adaptive MMOE
receiver versus SNR per symbol, K=20 users, and N=31 (Random Codes).
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the plot, the proposed algorithm can further increase the convergence speed. Specif-
ically, for the above DS-CDMA system, 4-iteration MMOE-PIC algorithm attains
the MMSE theoretical SIR without training requirement. This is in contrast with
the weighted linear PIC in [50] where it was shown that for a K-user system, K PIC
stages and optimal choice of weights are required to achieve the MMSE theoretical
SIR at the final stage. Thus, we can conclude that the proposed adaptive MMOE-
PIC receiver is capable of providing near MMSE performance with less computational
complexity than the weighted linear PIC which approaches the MMSE detector. Also
note that the proposed receiver with different number of iterations attains the same
steady-state SIR. It is therefore reasonable to assume that they achieve the same
steady-state BER performance. Hence only the performance of a 1-iteration adaptive
MMOE-PIC receiver is given for BER performance comparisons throughout following
simulations.

The accuracy of the BER approximation presented in Section 3.2.3 is illustrated in
Figure 3.4. Both computer simulations and approximate BER, evaluation averaging
over 10000 randomly chosen data sequences are performed. Spreading codes assigned
to each user are randomly selected from a uniform distribution. The results in Figure
3.4 show that the Gaussian approximation yields a precise BER, approximation for
both the adaptive MMOE-PIC and the conventional adaptive MMOE receivers.

Finally, we investigate the steady-state BER performance for the proposed algo-
rithm and its conventional counterpart in a severe near-far situation. These results

are shown in Figure 3.5 and 3.6 using a long training period for both algorithms to
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ensure convergence. The BER analysis method is based on the Gaussian approxima-
tion presented in Section 3.2.3. The MMSE theoretical BER in (3.5) is also plotted
for comparisons. As shown, the proposed adaptive algorithm achieves a BER perfor-
-mance which coincides with the theoretical LMMSE BER curve. On the other hand,
the BER of the conventional adaptive MMOE detector shows an error floor at high
SNR’s due to the severe near-far problem which results in the imperfect filter coeffi-
cients. Note that the BER performance of the proposed receiver is excellent even at
high SNR’s and no error floor occurs. This superior performance is due to the fact
that the decisions are correct with a high probability and the adaptive MMOE-PIC
receiver can gain from that in terms of MAI estimation, whereas the conventional
blind adaptive receiver suffers from a large performance loss due to the convergence
problem in the severe near-far environment.

In Figure 3.6, we use short spreading sequences to observe the performance of
both the MMOE and the MMOE-PIC algorithms in terms of the number of users.
As shown, the proposed adaptive receiver can provide significant capacity gain over
its conventional counterpart. For example, if we set the maximum tolerable BER to
2 x 107, then the adaptive MMOE receiver is seen to accommodate 7 users whereas
the proposed receiver can support 14 users. This represents a factor of 2 increase in
user-capacity. It is also shown that the proposed adaptive MMOE-PIC receiver yields
an identical performance with the optimum LMMSE detector even at high system

loads.
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3.3 Blind Adaptive MMOE-PIC in Asynchronous

Channels

In this section, we derive the MMOE-PIC algorithm in asynchronous CDMA chan-
nels. The detection problem in asynchronous channels is more complicated than in
synchronous channels. In a synchronous channel, by definition in Chapter 2, the bits
of each user are aligned in time. Thus, detection can focus on one bit interval in-
dependent of the others, i,e., the detection of N bits of K users is equivalent to N
separate “one-shot” detection problem. In most realistic applications, however, the
channel is asynchronous and thus, there is overlap between bits of different intervals.
Here, any decision made on a particular bit ideally needs to take into account the
decisions on the 2 overlapping bits of each user. The decisions on these overlapping
bits must then further take into account decisions on bits that overlap them and so
on. Therefore, the MMOE-PIC receiver for synchronous channels must be modified
and generalized to asynchronous channels by considering the 2 overlapping bits of
each user in interference cancellation.

The rest of this section is organized as follows. First, an asynchronous DS-CDMA
system model is described based on the synchronous channel model in Chapter 2.
Then, we derive the proposed MMOE-PIC algorithm in asynchronous AWGN chan-
nels. The performance of the proposed detector in asynchronous AWGN channels is

given finally.
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3.3.1 Asynchronous System Model

The continuous-time model expressed in (2.3) can easily be generalized to asynchro-
nous channel by including the relative time delays (offsets) between signals. The

received signal is now written as

r(t)= > > Ak (i) sk (t — T — 1) + n(t) (3.20)

t=—00 k=1

where 7y is the delay of the kth user. Without loss of generality, 7} is taken to be
uniformly distributed over [0,7"). The received continuous-time signal is assumed to
be sampled after front-end filtering and the receiver is synchronized to the desired

user timing. Thus, the received signal vector for the ith symbol of the kth user is

ZS i— j)Ab(i —j) +n(i) e RY (3.21)

where S;(i) = [8,(4),52(3), .8 (4)] is the sampled spreading sequence matrix with
S,(i) as the column vector of chip matched filter outputs (synchronized to the kth
user) during symbol ¢ associated with the inputs s, (¢t —iT —7,). P denotes the

channel spread. In particular, P = 1 for single path AWGN channels in this chapter.
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3.3.2 Adaptive MMOE-PIC Algorithm in Asynchronous Chan-
nels

The blind adaptive MMOE-PIC detector for asynchronous CDMA systems has the
same structure as shown in Figure 3.1. By taking into account the channel spread due
to the transmission delay among users, we now generalize the proposed MMOE-PIC
algorithm in Section 3.2.2 to asynchronous channels. Based on (3.21), the output
vector for the kth user in the ith symbol interval and the (m+ 1)th cancellation stage

can be written as

rprcimee (3) = 1i (1) — Z Si(i - )18 = 1)Ym(E = 7). (3.22)

Using the PIC algorithm, the discrete output signal ym+1x(z) at the (m + 1)th IC

stage is then given by

Yme1k(8) = Wf(i)rl_mamﬂ,k (1)
= WEG) |1400) = 32 Bu()mald) — 30 3 5uli = thmoli )
] ;};;Ic ];ZOPU=1
= W) 1) = 3 8l mali =) s (32)

where w (%) is given by (3.5), and s;, is orthogonal to x; with unit energy.
It is easy to show that the implementation complexity of the MMOE-PIC algo-

rithm, given by (3.23), requires O[I0KNM + 2K N? + 4K N| flops where M is the

o1



number of PIC iterations. On the other hand, the computational complexity of the
optimum MMSE multiuser detector requires O[11N;K® + 6N;K?] flops where N; is
the finite memory length of the detector [73]. As can be observed, the complexity of
the MMOE-PIC algorithm increases linearly with the number of users whereas the
MMSE multiuser detector has a cubic dependence. At the same time, our results
show that the MMOE-PIC can still perform close to the optimum MMSE detector.
Other related work on the complexity of the MMSE multiuser detector and possible
simple implementations include the work in [76].

It is important to mention that in our work we assume a perfect knowledge of all
users’ code sequences, similar to the MMSE multiuser detector. This assumption is
important since the MMOE is known to be sensitive to code sequence mismatch [46].
In scenarios where such a mismatch exists, one can use alternative adaptive algorithms
such as the one introduced in [46]. The proposed linear constrained constant-modulus
(LCCM), in [46], is shown to be robust against errors in timing and code sequence

estimates.

3.3.3 Simulation Results

In this section, we present simulation results for both the conventional MMOE and the
proposed MMOE-PIC algorithms. First, we examine the convergence properties of the
proposed algorithm. Then, we check the accuracy of the Gaussian approximation for
both the MMOE and the MMOE-PIC receivers. Finally, we examine the self recovery

capability of the proposed MMOE-PIC algorithm. Unless otherwise mentioned, a
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Gold sequence family of length 31 chips is used.

Output SINR

The convergence behavior of the adaptive MMOE-PIC algorithm is shown in Figure
3.7. In Figure 3.7(a), the received signal energies are the same, whereas in Figure
3.7(b) the near-far problem is considered. Specifically, we consider a severe near-far
scenario where all interfering users are at 10 dB higher SNR than the desired user.
As seen from Figure 3.7(a), the adaptive MMOE receiver requires approximately 800
training symbols before convergence can be reached. On the other hand, for the case of
severe near-far problem more than 2000 training symbols are required for convergence
to be reached. A close look at the performance of the MMOE-PIC algorithm shows
that a small number of IC stages can be sufficient to bring the performance close to
the ideal MMSE detector. Furthermore, the effect of increasing the number of IC
stages on the convergence speed is evident from the results in Figure 3.7. Specifically,
with more than 2 IC stages, the training period required by the proposed receiver
is almost the same for both environments in Figure 3.7(a) and Figure 3.7(b). We
also observed that the proposed MMOE-PIC algorithm can significantly reduce the
long training overhead introduced in the near-far situation, and successfully drive the

output SINR close to the MMSE theoretical value.
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BER Performance and User-Capacity

In order to facilitate further discussions, the accuracy of the Gaussian approximation
is first examined. Both computer simulations and the Gaussian approximation with
an average taken over 10000 randomly selected data sequences are obtained. The
results of this investigation are shown in Figure 3.8. In these results, we consider
randomly selected spreading codes for all users. For the near-far scenario, the results
show that the Gaussian approximation is accurate for both the adaptiv;e MMOE and
the proposed MMOE-PIC receivers. For the perfect power controlled scenario, we
note that the Gaussian approximation becomes more accurate as the number of IC
stages increases. It is also observed that at high SNR’s, the Gaussian assumption
yields a precise BER approximation evaluation for the adaptive MMOE-PIC receiver
over both environments. Also since minimizing the MOE is equivalent to minimizing
the MSE (equation (3.4)), one can expect that the performance of the MMOE receiver
will converge to the decorrelator receiver at large SNR’s.

Examining the performance of the MMOE-PIC versus the conventional MMOE
receiver (see Figure 3.8), we see that the proposed receiver structure is more superior
in both scenarios (equal power and near-far). It is shown that at high SNR’s, the
average BER of the adaptive MMOE receiver is significantly higher than the adap-
tive MMOE-PIC receiver. This poor performance of the standard adaptive MMOE
receiver relative to the MMOE-PIC receiver is also clear from the attained SINR level
at the end of the training period (see Figure 3.7).

Now, we investigate the BER performance versus SNR of the proposed algorithm
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Figure 3.8: BER computed using the Gaussian approximation and BER obtained by
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receiver versus SNR per symbol; K = 10 users.

in Figure 3.9 where we consider Gold sequences and asynchronous transmission, and
compare it with Figure 3.6 where synchronous channel is considered. Figure 3.9 and
Figure 3.6 demonstrate that the proposed adaptive MMOE-PIC receivers degrade
substantially in the presence of asynchronous transmission among users. This perfor-
mance loss is mainly due to the combined effects of error propagation and imperfect
coefficients. On the other hand, in asynchronous channels, the proposed MMOE-PIC
detector still significantly outperforms the conventional adaptive MMOE receiver and
achieves a BER performance which lies within 2 dB of the ideal LMMSE receiver at
high SNR’s.

In Figure 3.10, we plot the BER for both the MMOE and the MMOE-PIC algo-

rithms as a function of the number of users. Also, we consider two scenarios: (1) equal
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Figure 3.9: BER of the adaptive MMOE-PIC receiver and the adaptive MMOE
receiver versus SNR per symbol; K=10 users, Near-far problem.

power users with SNR of 10 dB. (2) a near-far situation where the interfering users are
at 10 dB SNR higher than the desired user. As shown, the proposed algorithm offers a
significant increase in the number of users compared to the standard MMOE receiver.
For instance, if the maximum tolerable BER is set to 2 x 1073, the adaptive MMOE
receiver is shown to accommodate 4 users compared to 10 users for the proposed
MMOE-PIC receiver in the near-far environment. This gain in user-capacity is more
evident in the power-controlled scenario where the number of users can be increased
to 13 users, more than a factor of 3 increase in system’s user-capacity. These results
also suggest that increasing the number of IC iterations can provide an increase in
user-capacity for both equal power and near-far scenarios in systems with moderate

loads.
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Self Recovery

Finally, in Figure 3.11, we examine the transient behavior of the MMOE-PIC algo-
rithm due to abrupt changes in the number of interferers. The results in Figure 3.11
depict a scenario where a new user, with SNR larger than the desired user by 20
dB, is added to the system at iteration number 800. Our results show that both the
MMOE and the MMOE-PIC have self recovery capabilities with varying degrees in
sever near-far scenarios. One can see that the standard MMOE suffers from large
SNR degradation of approximately 10 dB as opposed to one-stage MMOE-PIC where
the SNR loss is more mild ranging from 5 dB. More interestingly, we observed that

as the number of MMOE-PIC iterations increases the system becomes more robust
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to abrupt changes in the received signal amplitude. In fact, with 3 MMOE-PIC iter-
ations both the recovery time and the instantaneous SNR degradation are shown to

be minimal.

3.4 Conclusion

In this chapter, we introduced an adaptive MMOE-PIC iterative algorithm that is
shown to effectively estimate users’ signal amplitudes and hence, simplify the in-
terference cancellation process. The proposed iterative algorithm offers much lower

complexity than the MMSE multiuser detector with a comparable BER performance.
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Further, we proved that the proposed receiver outperforms the conventional adap-
tive MMOE detector in-terms of the convergence speed and the BER achieved. We
demonstrated that using only 1-stage MMOE-PIC detection scheme can sufficiently
bring an identical performance to the ideal MMSE detector when synchronous trans-
mission is considered. On the other hand, the proposed MMOE-PIC receiver was
shown to experience performance degradation in asynchronous channels although it

is still within 2 dB of the optimum LMMSE detection.
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Chapter 4

Blind Adaptive LCMV-HD-PIC
Detection in Dynamic Fading

Channels

In chapter 2 various types of multiuser detection schemes as well as conventional
detectors are reviewed. In Chapter 3 we introduced a new suboptimum multiuser
detector, namely the blind adaptive MMOE-PIC detector, as well. We studied these
detectors in AWGN channels. On the other hand, given the fact that CDMA trans-
missions are frequently made over channels that exhibit fading and /or dispersion, it
would seem appropriate to design receivers for such channels. Henceforth we consider

multiuser detection in dynamic fading channels.

In the present chapter, we propose an adaptive multistage detection scheme with
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low complexity for DS-CDMA systems in the presence of time- and frequency- selec-
tive fading. The first stage is a blind adaptive multiuser detector based on the linear
constrained minimum variance (LCMV) criterion. The interference cancellation oc-
curs in the second stage. Our aim of this work is to study the performance of the
proposed algorithm and investigate techniques for efficient multistage detection for
CDMA systems in fading channels.

The rest of this chapter is organized as follows. In Section 4.1 previous related
work on multiuser detection for fading channels is summarized and contribution of
this chapter is described. Section 4.2 lays out the system model for the reverse link
DS-CDMA in frequency-selective fading channels. In Section 4.3 we describe the
proposed adaptive multistage detector which we choose for multiuser detection in
fading channels. Section 4.4 presents simulation results of the proposed multiuser
detector in both flat and frequency-selective fading channels. Finally, Section 4.5

concludes this chapter.

4.1 Introduction

4.1.1 Previous Work

In the past ten years multiuser detection theory has been extended to handle multiuser
fading channels. Zvonar and Brady [51] have developed optimum detectors for slowly
Rayleigh fading channels. They used a single-path fading model for the channel. In

addition to the data detection, the received amplitude must be estimated in multipath
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time-varying channels. Thus, the optimal multiuser receiver for fading channels is
even more complex than the optimal receiver for AWGN channels. Previous work on
slowly frequency-selective fading channels has been presented in [52]-[54]. Also, the
optimal multiuser detector for very fast Rician fading channels has been presented in
[55] and [56].

In order to relieve the prohibitive computational complexity of the optimal multi-
user detector in fading channels, linear suboptimal decorrelating receivers for slowly
fading channels have been considered in [53], [57], and [58]. The relatively fast fad-
ing channel case has been considered in [59], where decision-directed (DD) channel
estimation was proposed. Furthermore, based on the more classical minimum mean-
squared-error criterion, linear MMSE receivers for flat fading channels have been
considered in [60]-[62]. Other related works on frequency-selective fading channels
can be found in [63]-[65].

In additional to linear suboptimal detection, another class of nonlinear multistage
detector was also generalized to multipath channels by Fawer and Aazhang in [66].
Nonlinear parallel interference cancellation receivers for slowly fading channels have
been studied in [66, 70], and serial interference cancellation receivers in [67]. PIC

receivers for relatively fast fading channels have been considered in [68] and [69].

4.1.2 Contribution

In this paper, we propose an adaptive multistage detection scheme where the first

stage is the blind adaptive LCMV detector and the second stage is a PIC receiver.
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The proposed receiver uses hard decision PIC on the standard least mean squares
algorithm implementations of blind adaptive LCMV receiver to improve both the
convergence rate and the BER performance in multipath fading channels. Therefore,
it is also termed LCMV-HD-PIC receiver. Our aim of this work is to study the per-
formance of the proposed algorithm and investigate techniques for efficient multistage
detection for CDMA systems in fading channels. The simulation results show that the
BER performance of the proposed algorithm approaches that of ideal detection with-
out interference (single user bound) in flat fading channels even at high system loads.
Moreover, it is observed through computer simulations that the proposed algorithm
is insensitive to the number of users in flat fading channels. For multipath fading
channels, from low to moderate SNR’s, the performance of the proposed detector is
within 1 dB of the single user bound at moderate system loads. However, the BER
of the proposed receiver saturates at high SNR’s since decision errors degrading the

MALI estimates, especially in high loaded CDMA systems with near-far problem.

4.2 System and Channel Model

4.2.1 System Model

In mobile communication environments, since there are many propagation paths with
different delays between the transmitter and the receiver, the transmitted signal com-
ponents corresponding to these multipath propagation paths arrive at different times.

We assume a multiuser system in a multipath environment. The impulse response

64



of the channel for the kth user can be represented by a tapped delay line given by

ha(t) = gck,l(wa(t 1) (41)

where ¢, (t) is the complex channel gain and 7 is the delay of the lth path of the kth
user. In this chapter, we assume that the path delays 7,; = IT, | = 1, ..., L. Thus, the
received baseband CDMA signal is the superposition of the channel distorted signals

from the K users and the additive channel noise given by

r(t) =

i{: zL: Akbk(i)ckyl(i)sk(t e T — Tk,l) + Z(t) (42)

where 7;(t) is the transmitted signal due to the kth user given by (3.20). z(t) is
the complex zero mean additive white Gaussian noise process with two-sided power
spectral density o2, and ® denotes convolution. The received signal in (4.2) is sampled
at the output of the chip matched filter (CMF) at a rate of T,' = N/T. Then, the

received discrete-time signal r(nT;) can be expressed as

r(nTy) = -01 :1 bu(D)hl(n — At — iN)TL] + 2(nTy) (4.3)

S

Akck,l(i)sk[(n — Z)Tc] (44)

M 5

hk (TLTC) =
l

I
-

where hy(t) is the composite signature waveform of user k, and A7y is the delay of
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user k in chip period T (we assume that 7; is the integral times of T;). Furthermore,

notice that the composite signature vector of user k at symbol ¢ can be decomposed

to
hk(l) = AkSkck(i) (45)
where
px(0) 0
S, = : - nl0) € RIV+L-DxL
pe(N —1)
0 k(N =-1)
ck(2) = [e1(2), e 2(2), ...,ck,L(i)]T e Ch. (4.6)

Let us collect N+ L — 1 samples of 7(nT,) in a vector r. If the receiver is synchronized

to the kth user, the vector ry(z) has the expression

rp(i) = f;PHk(i — j)b(i — ) + (i) € CNV*ET (4.7)

where Hy(i) = [h,(i), hy(s),..hg(d)] is the sampled composite spreading sequence
matrix with h,(;) as the column vector of chip matched filter outputs (synchro-

nized to the user k) during symbol i associated with the inputs h, (t —iT — 7).
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b (5) = [b1(i), b2(), ..., bk (4)]” is the data vector, and z(s) is the vector of noise sam-

ples at time 4, assumed to be white with covariance o21.

4.2.2 Fading Channel Model

Channel coefficient vector ¢ = [¢T(0), ¢7(1), ..., ¢ (N,—1)]7 where c(i) = [c] (3), ¢ (4),
..., ¢L()]" is assumed to be a complex Gaussian random vector with zero mean
and covariance matrix ) .. It is assumed that the fading channel coefficients are
complex Gaussian random variables with zero mean and variance normalized for
convenience so that 37 (|, (i)|?) = 1. The channel coefficients are assumed to
be independent, i.e., E <ck,l(i),c:(,,lo(i)) = 07, 0 00,0, where ;o is the discrete

Kronecker delta function and o2

= E(|cx1(3)]?) is the power of the Ith path of user
k. This assumption is equivalent to the common uncorrelated scattering (US) model
[25]. The channels are assumed to be stationary over the observation interval so that
the channel autocorrelation (autocovariance) function ¢k, (i,s) = E (ck,l(i),cz,l(io))
is a function of the time difference i — 4 only. This assumption is equivalent to the
common wide-sense stationary (WSS) model [32]. The stationary assumption is valid
if the vehicle speed does not change during the transmission. The Doppler power

spectrum is assumed to be the classical Jakes’ spectrum ({71], Sec. 5.4), which results

2 Jo(2rf4Ti), where Jy

Ck,1

in the Clarke’s channel autocorrelation function ¢;(i) = o
is the zero-order Bessel function of the first kind, f3 = (v/Ciignt) fc is the maximum
Doppler spread, v is the speed of the vehicle, ¢ is the speed of light, and f. is the

carrier frequency.
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4.3 Adaptive LCMV-HD-PIC Algorithm

In this section, we first introduce the blind adaptive LCMV algorithm for frequency-
selective fading channels. Then, we propose a new multistage detector with LCMV in
the first stage. The proposed algorithm exploits both the simplicity of the adaptive

LCMYV detector and the novelty of the multistage detector.

4.3.1 Blind Adaptive LCMYV Detection for Multipath Chan-
nels

In Section 3.2.1 we studied the linear constraint optimization problem in the absence
of multipath in which case the linear constraint is given by w”s = 1. Unfortunately,
constrained optimization methods are known to be very sensitive to signature mis-
match due to signal cancellation effects [44]. Hence, special care needs to be taken
when multipath is present. Following the similar ideas of Section 3.2.1, the receiver

vector wi (i) may be optimized by minimizing the output variance
S = B [Jun@)|?] = Wl (OTe(weli) and Tw(i) = E [rne@ef )] (49)
subject to the constraint that the response of the user of the interest is a constant

wi (i) (i) = 1 (4.9)
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where hy(7) is the composite signature vector of user k and is priori known, and the
superscript H represents Hermitian transpose operation. For a given hy(z), this linear

constraint minimum variance criterion results in the solution

1

P K _ -
where T4 (i) = E[rx (i)t (6)] = 3. 3 hi(i — 5)hH (i — j) + 021, and the theoretical
j=—Pk=1

minimum mean-output-energy is given by

1

hf ()T (3)hy (i) (4.11)

MMOE =

It is shown in Section 3.2.1 and [44] that any w satisfying the constraint (4.9) can

be represented in the canonical form as

wi(1)=0p(3)hy (1) + x (i) where hff(i)x 4(i) =0 (4.12)

where o (1)hg(7) is the nonadaptive part and oy (2) is a scalar which makes the weight
vector wi (i) satisfy the constraint (4.9). x () is the adaptive part which lies in the
nonspace of hg(3).

In order to minimize output variance with respect to x x(z), the gradient of output

variance in (4.8) is given by

Ve(MOE) = 2P Ry (1w () = 2[T — he()hy (1) Tk (1) Wi (5) (4.13)
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where Pt = [I — hy(i)hf (4)] represents the subspace orthogonal to hy(i). Finally,
by using an instantaneous approximation I (i)= r;(;)r¥ (s) for Tx(4), the stochastic

gradient adaptation rule is given by
% k(i 4+1) = x x(i) = plI = he(@)hy ()ea(D)ye(d) (4.14)

where p is the step-size parameter and (i) = w¥ (i) ri(4) is the output of the blind

adaptive detector.

4.3.2 Blind Adaptive LCMV-HD-PIC Algorithm

Suboptimum multiuser detection based on interference cancellatién from tentative
decisions was introduced in the form of multistage detection by Varanasi and Aazhang
[12]. The two-stage detector makes a decision at the second stage on a user’s symbol
by estimating and then subtracting from that user’s matched filter output. The
choice of the first stage proved to be important in the performance of the multistage
detector [13]. Particularly, the multistage detector based onvdecorrelating first stage
was shown to perform significantly better than the decorrelating detector, in a number
of situation of practical interest such as in high bandwidth utilities and near-far
situations [13]. On the other hand, it was shown in [73] that in the time-varying
channels, an ideal computation of the decorrelating or the LMMSE detector requires
O[cN;{(K L)3] flops where Ny is the frame length and c is a constant depending on the

algorithm. The implementation complexity has cubic dependence on KL, and is too
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Figure 4.1: LCMV-HD-PIC receiver for multipath fading channels

high for several practical implementations. Clearly, we need simpler implementations
of linear MUD to replace the decorrelating detector as the first stage of multistage
detection in a dynamic CDMA system.

Motivated by the above thought, we propose an adaptive multistage PIC structure
where we employ the blind adaptive LCMV algorithm as the base decision function
in the first stage. The proposed receiver structure is depicted in Figure 4.1. As
shown, the interference suppression is performed using a multistage nonlinear PIC

with the hard decisions obtained from the blind adaptive LCMV multiuser detector.
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The output of adaptive LCMV detector and the corresponding tentative decisions are

wosmia(®) = w ()G (4.15)

l;k(l) = sgn {Re [y[LCMV],k(i)]} (416)

The interference suppression performs multistage PIC utilizing hard decisions.
The output vector for the kth user at the ith symbol interval and the mth cancellation

stage is given by

tprcims () = 1(i) = 3 Byl )G - DBoGi—g)  (@417)

j==P

where Q,,, (i — §) € [0,1]%"% is a diagonal matrix including the weights for partial
interference cancellation. The weight for the ith symbol of desired user is set to
zero (i.e., ¥mx(i) = 0). On the other hand, the weights ~,, (i') € [0,1] for user
K # k and i # i depend on the estimated quality of the decision statistic for the
corresponding user. Here, however, a constant weight -,,, 0 (io) = 1 is used throughout

the cancellation process. Using the PIC algorithm, the discrete output signal at the
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mth IC stage is given by

Yp1cymk(5) = by ()2 (prcimk (1)

— () |r400) = 3 Bol®)bmels) - ,f 5 B = bmoli = 9)
I vk T
L CIECES 2 3 Bl Dbmai = 3)| + bna B ).

(4.18)

Using vector notation, we can write the output of the LCMV-HD-PIC receiver as

Yercn () =y @) = 3 (RG=1) = 6,o¥0)bali=)) (419

where y (i) is the output of the bank of matched filters. R(z) is the correlation
matrix, and ¥(i) is a diagonal matrix with the diagonal element hf(:)h(:). The

output vector of the tentative decision is then obtained as

Bmr1(3) = sgn {Re [yrprcym (4)] } - (4.20)

4.4 Simulation Results

Here, the performance of the proposed LCMV-HD-PIC detector is investigated by
Monte-Carlo computer simulations, since the proposed receiver is highly nonlinear

and its performance can not be analyzed. Both flat and frequency-selective fading
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channels are considered. In particular, the frequency-selective channel for each user
consists of three independent Rayleigh fading paths separated by T.. The delay of the
users is assumed to be uniformly distributed over [0,7) .The Doppler power spectrum
is assumed to follow Jakes’ model [75] with vehicle speed 60 km/h, carrier frequency 2
GHz, and symbol rate 16 kbits/s. A Gold sequence family with processing gain 31 is
used in the simulations. The BER simulations are carried out in steady-state after a
training period of 5000 symbols. The simulation results are obtained by averaging the
BER’s of randomly selected users with different delays. Simulations include examples
with equal transmitted energies for all users, and examples with a near-far problem.

The BER performance of the proposed adaptive LCMV-HD-PIC algorithm in flat
fading channels is shown in Figure 4.2 and 4.3 where both moderate (K = 20) and
heavy (K = 30) system loads are considered. In Figure 4.2(a) and Figure 4.3(a), the
received signal energies are the same for all active users, whereas in Figure 4.2(b) and
Figure 4.3(b) the near-far problem is considered. Specifically, we consider a severe
near-far scenario where all the interfering users have a 10 dB SNR higher than the
desired user. In Figure 4.2, the BER performance of the LCMV-HD-PIC algorithm
demonstrates that a small number of interference cancellation (IC) stages yield per-
formance close to the ideal detection without interference. The similar performance
can be observed in Figure 4.3 where a heavy loaded system (K = 30) is considered.
Moreover, it can be observed form Figure 4.3 that conventional blind adaptive LCMV
receiver and the first stage of the proposed detector become interference limited in

heavy loaded systems with a near-far problem. On the other hand, the BER curves
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Figure 4.2: BER performance of the LCMV-HD-PIC receiver versus SNR in a flat
fading channel; K —90 users. (a) Equal received energies. (b) Near-far problem.
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Figure 4.3:

fading channel; K=30 users. (a) Equal received energies.
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of the third and fourth stage of the LCMV-HD-PIC detector approach that of the
single user bound at high SNR's.

Figure 4.4 shows plots of BER performance for the proposed adaptive LUMV-HD-
PIC receiver versus the number of users in flat fading channels. It can be observed
that the performance of the proposed detector is not sensitive to the number of users.
Figure 4.4(a) shows that the third stage and fourth stage of the LCMV-HD-PIC
detector can achieve a performance which is very close the single user bound. Oﬁ
the other hand, Figure 4.4(b) demonstrates that the BER curve of a 3-stage LCMV-
HD-PIC receiver coincides with the single user bound, meaning that three stage is
enough for the adaptive LCMV-HD-PIC to achieve the optimum performance even
in heavy loaded systems with a severe near-far problem. Moreover, the second stage
of the proposed receiver suffers from a small performance degradation relative to the
single user bound in both scenarios.

Now, we investigate the BER performance versus SNR for the proposed algorithm
and its conventional counterpart in frequency selective fading channels. These results
are shown in Figure 4.5 where simulations are performed only for K = 20 active
users to simplify the simulations. Both cases of equal received energies and a near-
far problem are considered. It is shown that from low to moderate SNR’s, a 4-
stage LCMV-HD-PIC lies within 1 dB (in SNR) of ideal detection in the absence
of interference. However, the BER of the LCMV-HD-PIC receiver saturates at high
SNR'’s since decision errors degrade the MAI estimates, especially in the systems

with near-far problem. It is also observed that the performance difference between
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Figure 4.4: BER performance of the LCMV-HD-PIC receiver as a function of the
number of users in a flat fading channel; SNR=12 dB. (a) Equal received energies.
(b) Near-far problem.
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the third stage and fourth stage is negligible from low to moderate SNR’s whereas
at high SNR’s the performance gap becomes larger since the BER of the third stage
saturates earlier than the fourth stage as the SNR increases. It can be concluded
that the proposed LCMV-HD-PIC detector with more than 3 stages suffers less than
1 dB relative to the single user bound and can provide satisfactory performance at
most practical system loads and SNR’s. On the other hand, the proposed receiver
suffers from BER saturation at high SNR’s due to the error propagation, which can
be effectively relieved by increasing the number of IC stages.

In Figure 4.6, we plot the BER of the adaptive LCMV-HD-PIC algorithm as a
function of the number of users in frequency-selective channels. We observe that the
performance of the proposed LCMV-HD-PIC detector is more sensitive to the sys-
tem loads in frequency-selective channels than flat fading channels. In particular, a
4-stage LCMV-HD-PIC receiver can achieve same performance over different num-
ber of users from low to moderate system loads. On the other hand, the proposed
receivers degrade substantially in highly loaded systems. Moreover, the results in
Figure 4.6(b) show that the degradation is more severe in systems with a near-far
problem. We also observe that the third stage of the LCMV-HD-PIC algorithm offers
a significant increase in user-capacity relative to the second stage. For instance, if we
set the maximum tolerable BER to 1 x 1073, a 3-stage LCMV-HD-PIC receiver can
accommodate 19 users as opposed to 10 users for a 2-stage LCMV-HD-PIC receiver
in the near-far environment. This user-capacity gain is seen to increase to 10 users

for systems with perfect power control, which represents a factor of 2 increase in
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user-capacity. On the contrary, the performance difference between the third stage
and the fourth stage is negligible from low to moderate system loads. At high system
loads, the fourth stage gradually outperforms the third stage, but the performance
gain is not significant. This result also demonstrates that increasing the number of

IC stages provides increase in user-capacity for heavily loaded systems.

4.5 Conclusion

In this chapter, we introduced an adaptive multistage LCMV-HD-PIC algorithm
whose first stage is an blind adaptive LCMV detector followed by IC stages. In flat
fading channels, it was shown that a 3-stage LCMV-HD-PIC can achieve a perfor-
mance which is very close to the single user bound and insensitive to the system loads.
In frequency-selective fading channels, the proposed algorithm was shown to offer an
excellent performance complexity tradeoff since it is within 1dB of ideal detection at
moderate SNR’s and system loads. It was also shown that in frequency-selective chan-
nels, the BER performance of the proposed detector degrades significantly at high
system loads and increasing the number of IC stages can relieve this performance

degradation.
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Chapter 5

Adaptive Nonlinear MMSE-DFD

in Fast-Fading Channels

In Chapter 4, a blind adaptive multistage detector was proposed and shown to of-
fer near-optimum performance at practical SNR’s and system loads over both flat
and frequency-selective fading channels. However, the ability of our blind adaptive
multiuser detector to successfully combat multiuser interference is based on the exact
knowledge of the signature waveform of each user. In the fading channels, however,
the transmitted waveforms are subject to unknown (and time-varying) channel dis-
tortion. Therefore, it is important to obtain an adaptive multiuser detector which
can provide a tradeoff between performance and complexity in practical fading chan-
nels without the knowledge of user’s spreading sequence. In this chapter, we propose
a multistage decision feedback multiuser detector based on successive interference

cancellation for fast fading channels. The proposed multiuser detector employs a
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modified adaptive LMMSE algorithm as the feed-forward detector and only needs
training data sequences for every active user for initial adaptation.

The chapter is organized as follows. In Section 5.1 previous related literature is
reviewed and the contributions of this chapter are put into perspective. In Section
5.2 we briefly describe the system that we consider in this chapter. Section 5.3 gives
the derivation of the proposed decision feedback multiuser detector for fast fading
channels. In Section 5.4 we present simulation results of the proposed detector in
both flat and frequency-selective fast fading channels. Finally, Section 5.5 concludes

the chapter.

5.1 Introduction

5.1.1 Previous Work

Linear minimum mean-squared-error detection has been proposed as an alternative
to the matched filter receiver for DS-CDMA systems (see [26, Ch. 6] and [90] and
references therein). In particular, given a training sequence, the adaptive LMMSE
receiver does not require explicit estimates of the interference parameters such as
relative amplitudes, phases, and spreading codes for initial adaptation. On the other
hand, the use of standard adaptive interference suppression algorithms in time varying
channels may result in poor performance results. For instance, in [61] a severe tracking
problem has been reported when a conventional MMSE adaptive receiver was used

in a frequency-nonselective (flat) fading channel. It was shown that the standard
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LMMSE adaptive algorithm can lose track of the time varying channel when the
channel goes into a deep fade. In addition to this, adaptive MMSE receivers are
known to breakdown if the time variations of the channel are too fast relative to the
transmission rate [77]. To solve these channel tracking problems, several modified
adaptive algorithms have been proposed in [60]-[62] for flat fading channels, and in
[63]-[65] and [77] for frequency-selective fading channels. For an excellent literature
survey of the different MMSE adaptive algorithms, the reader is referred to [78] and
[79].

In multipath fading channels, the decentralized algorithms often suffer from im-
perfect filter adaptation due to: large system loads, severe near-far problems, and/or
large levels of intersymbol interference (ISI) [80]. To overcome these problems, re-
searchers have recently focused on a class of nonlinear decision feedback MUD tech-
niques [16], [17] and [81]-[85] (and references therein). Initial work on decision-
feedback detection was first introduced in [16]. The proposed nonlinear feedback
receiver in [16] uses previous and/or tentative decisions of data at the output of the
feedback filter to cancel the effects of multiple access interference (assuming no er-
rors in the feedback direction). More recent works related to nonlinear detection
include the work in [81] where a class of MMSE multiuser DFDs (MMSE-DFDs) was
proposed. These DFDs are relatively simple to implement and their performance is
shown to be significantly better than linear MMSE multiuser detectors over AWGN
channels. The adaptation for both the feed-forward and the multiuser feedback filters

in [81] is jointly optimized in a MMSE sense using a training sequence. Similar to
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the work in [19], but including adaptive antennas, [84] has proposed a space-time
adaptive MMSE decision-feedback multiuser detector for high data rate applications
over quasi-static frequency-selective fading channels. Up to this point, and to the
best of our knowledge, all the works dealing with MMSE-DFD and its adaptive im-
plementation have assumed either an AWGN channel model [81], [83], [85] or a slowly

time-varying multipath fading channel [84].

5.1.2 Contribution

In this chapter we extend the work of [81] to frequency-selective fast-fading channels.
It is assumed that the channel parameters for all users are perfectly known at the re-
ceiver. The modified MMSE-DFD receiver has less adaptation requirements than the
adaptive MMSE-DFD in [84], and is suitable for fast fading channels. The proposed
receiver incorporates the complex channel coefficients in the adaptation process for
both the feed-forward and feedback filters. In this case, the receiver employs a modi-
fied MMSE optimization function which results in a separate adaptive filter for each
resolvable path. In fixed multipath channels, and using the modified (precombining)
MMSE-DFD, our results show a minimal performance loss from the standard (post-
combining) MMSE-DFD receiver (i.e., the one that employs DFD after multipath

combining).
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5.2 System Model

The system model that we study in this chapter is the same as the one we studied
in Chapter 4. However, here we make different assumptions, which lead to different
analysis. We consider a K-user asynchronous DS-CDMA system model where each

user signal propagates through L different paths. The received signal has the form

Ny-1 K L

T(t) = EZZAk’lbk(i)ck’l (i)sk(t — s — Tk,l) + n(t) (51)

i=0 k=11=1

where A, bi(7), cki(i), sk(t), and 7, are the received amplitude, the ith trans-
mitted BPSK modulated data symbol, the complex fading coefficient, the spreading
sequence, and the relative delay for the Ith received path, all for the kth user’s sig-
nal, respectively. In (5.1), N, is the number of the received symbols and n(t) is the
white Gaussian noise with two-sided power spectral density o2. We assume that the
fading among different users is independently and identically distributed (iid). We
also assume that all path delays 7; < T, where T is the symbol interval. Now, the

Ith path of the kth user’s contribution to r(t) is

rea(t) = Y b8y (8)gra(t — iTs) (5.2)

1=—00

where
9ra(t) = Arse(t — 7e1)- (5.3)
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The received signal, in (5.1), is applied to a chip matched filter and the output is
sampled at a rate of ;1 = N/T,. If we let r be the vector containing the samples

over a data block of length N, symbols, we can write

r =SCb +n e CMV (5.4)

where the vector r = [r7(0), ..., r” (Ny—1)]” with elements r7 (i) = [r(iT\+T%), ..., r(¢Ts+
NT,)], C =diag[C(0), ..., C(N, — 1)] € CELNexKNe 5 the channel coefficient matrix
with C(2) = diag[c1(3), ..., cx (1)) € CKI*K and cx(i) = [cr1(8), cr2(3), ..cr, L (1)]T €
CL, b = [b7(0),..., bT(N,—1)]T € EXM isthe data vector with bT (i) = [b1(3), ..., bx (3)],
and n € CMV represents the sampled noise vector. In (5.4), S = [S(0), ...S(0), ..., S(Ny—
1)] € RMY*KLN ig the windowed signature sequence matrix with S(i) = [sq11(4),
$12(%), ..., sk,(?)], and sk,(z) is the windowed signature for the symbol b;(:) and

channel parameter c;(¢), defined as

sk1(8) = E(br (1) (9)r). (5.5)

This windowed signature for a given symbol and channel coefficient represents the
signature of the [th path of the kth user as seen through the receiver time span.
Assuming uncorrelated data symbols and normalized complex fading coefficients (i.e.,

E (|ex1|?) = 1), a direct calculation of the pth element, sx;(p), of the windowed
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signature s ;(7) yields to

ski(p) = E(b (1) (1) (pT))

= b (1)ck (e (pTe)
= Z gkl (pTc‘ - 'LTs)

where p=1,..., N,N, and * denotes complex conjugate operation.

5.3 Precombining MMSE-S-DFD

(5.6)

I\

>

=
A X
~

N

Channel € () -
estimator % >R
_ "
FFF fk,l(i) ‘*;r‘? Vi) _:AD (D)
LMS |« e, ()
Channel €, (D) >R
estimator R
o e +r‘<’k,L @)
FFF..() oLl
LMS [« €., ()
FBF | | LMS

hy G Xovime D,

Figure 5.1: General block diagram of the precombining adaptive MMSE-S-DFD re-

ceiver.
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The proposed receiver structure is shown in Figure 5.1. As shown, the feed-
forward filter (FFF) processes Ny chip samples from a chip matched filter. It was
shown in [30] that a multiuser finite-impulse response (FIR) filter of time span less
than ten symbols is in many cases sufficient for practical detection of user data. In
this chapter, the received signal is processed in blocks of M symbols where M = 3
symbols. Now if we let the input sample vector at the ith data bit be F(i) = [r” (i —

P),..x"(3),..,r" (i + P)]T € CM¥N with M = (2P 4 1), we can write

K Ls
£(7) =Z E Sk(t — m)ck(i — m)br(i — m) + n(7) (5.7)

where Lg represents the span of the channel time dispersion. We further define the
FFF coeflicients vector with impulse response fi;(i) = [f (0)() ,f;SMN 1)( )"
CMN,

Similar to the structure of the FFF, the multiuser successive feedback filter (S-
FBF) proceéses a finite number of the most recent N, data symbols from all users
and current data symbols from detected users. Instead of feeding back hard data
decisions of by(i) as in [84], we use as a reference signal the soft estimate by (z)cy (%)
for the FBF contents. This approach can avoid the FBF from tracking the fading
coefficients of all paths for all users, which are often too fast for typical adaptive
algorithms to track. Assuming perfect channel state information (at the receiver)
and correct data decisions bg(i) at the FBF output, the precombining MMSE-FBF

will subtract the postcursor ISI and the MAT due to the previous symbols of all users
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and current symbols of detected users. In order to diminish the detrimental effects of
error propagation in DFDs, we consider successive DFDs which detect and feedback
the current symbols of the users in a specified order as in [81]. Using the partition of

users as in [81], the S-DFD divides the users into two groups

1,.,K:me{l,2,..,Ns}

1,.,k—1:m=0

Ur = { D} (5.8)

where m € {0, ..., N5} represents the feedback symbol set. That is the most recent
N, data symbols from all users and current data symbols from detected users. Based
on the partition in (5.8), and given a FBF with coefficients vector wy (), we define

the feedback data vector

he(3) = [h11(i = Ny), ..., hiy(s = m), ..., haq ()] € CHENs+(=DL (5.9)

with j € Di, m € {0,...,N,}, and hj;(¢) = b(é)ex(2). Now to find the optimum

MMSE feed-forward and feedback filters’ coeflicients, we form two vectors

xi (1) = [£7(2), b (1)) (5.10)
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and
ugy(4) = [ (3), wiy (9)]- (5.11)
The output of the Ith branch of the kth user can then be written as
Y (3) = gy ()% (2) (5.12)

and yi(¢), l =1,.., L can then be combined coherently as shown in Figure 1.

Note that the only dependence of user j’s coefficients on user i is through the
reliability of user j’s previous and current (if j < ¢) decisions that are fed back to
user 4. Throughout the steady-state analysis, we assume that all feedback decisions
are correct. Also in order to remove the dependence of the FFF and FBF on the state

of the fading channel, we choose uy;(?) to minimize the modified MSE criterion
MSEi(uy) = E {lbk(i)ck,l (i) — uf!, (i)xk(i)lz} . (5.13)
The solution of this optimization problem is given by the Wiener-Hopf equation as

Ug ('L) = R‘l:1 (’L')Vk’l (’L) (514)
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where
Ryi(i) = E{x()xi (3)} (5.15)
and
Via() = E{xx(0)br(0)ck (8)} = ska(2). (5.16)
The matrix Rx(i) can be written as

Ry(i) = E{x(5)xf (3)}
r(i)r? (i)  r()h{()
=F
hi()rf(5) hy()hi (3)
_] e et (5.17)
o7 (1) k(i)

From (5.17), it is easy to show that

O4(i) = [S1(3), .-S;(i — m), ... Sk (& — N)]jeDpmef0,... N} (5.18)
and
K Lg
T =Y Y Sk(i—m)S{(i—m)+Ren (5.19)
k=1m=—-Lg
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where R, = E{n(:)n"(7)} is the autocorrelation matrix corresponding to the FFF
noise vector, and @ (i) = I where I is the identity matrix. Using (5.17)-(5.19), the
FFF and the FBF coefficients are given by

-1

fk,l(i) = Z Zs S](Z - m)Sf(z — m) + R, Vil (Z) (520)

j¢ka=—LS

Wi (i) = —OF (1) (4) (5.21)

As discussed in [81], due to the partitioning of users, different users obtain different
performance levels resulting in a non-uniform performance over all users. This is due
to the structure of the decision feedback detector where only interference from the
recent Ny symbols and all current symbols of all users in set Dy, is cancelled using the
FBF. The remaining interference from the rest of the users in set Uy is compensated by
the feed-forward filter in MMSE sense. One solution to this non-uniform performance
problem was suggested in [81] where a two-stage MMSE-S-DFD is used to successively
detect users in a reverse order (relative to the first stage). In this case, the first stage
is the same as before while the second stage uses soft data decisions at the output of
the first S-DFD stage (shown in Figure 5.2). Based on this algorithm, users’ data in

the second stage are detected successively using the first stage stored decisions.

(i) S-DFD B S-DFD B2

2 2
' why T Wiy

Figure 5.2: A 2-stage DFD with successive detection at each stage.
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As opposed to the work in [81], where a centralized nonlinear S-DFD was proposed
for time invariant channels, we introduced a modified precombining adaptive imple-
mentation of the 2-stage receiver suited for multipath fast-fading channels. To relax
the tracking requirements of the MMSE feed-forward filter, the modified nonlinear
decision feedback detector is employed prior to multipath maximal ratio combining.
As it will be seen, shortly, the nonlinear structure of the modified receiver is robust
against MAI, ISI, and the number of resolvable paths in the fast-fading channel.

Up to this point, we have only considered centralized multiuser detection where
explicit knowledge of all users’ parameters is needed at the receiver side. Since adap-
tive implementations are usually less computationally complex than centralized im-
plementations, in what follows, we present a stochastic gradient algorithm for the
nonlinear decision feedback detector. We rely on adaptive trained techniques where
initial filter adaptation is achieved using a training sequence, after which the non-
linear receiver switches to the decision directed mode. Note that in both modes of
operations (i.e., training and decision directed) the receiver uses a modified estimate
for filter’s adaptation incorporating both the detected data symbol and the corre-
sponding channel coefficient associated with the desired user’s resolvable path. From

(5.13), the gradient of the modified MMSE function is given by

vu(MSE) = 2(Rk(i)uk’l(i) — Vk’L(i)). (522)

Using the normalized least-mean-squared algorithm, the coefficients of the nonlinear
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receiver (both FFF and FBF) can simply be adjusted in an adaptive manner using

the following recursion

llk’l(’l; -+ 1) = uk,l(z‘) - Yu (MSE)

= (1) + 2\ [ (5) — uf ()4 (5)] " () (5.23)

where hy, (i) = by(i)ck (3) in the training mode, and ) is the time-variant step-size
parameter chosen to reduce the effects of channel variations on the adaptation process

[49].

5.4 Simulation Results

In this section, we present simulation results to investigate the performance of the
modified MMSE-S-DFD receiver over both flat and frequency-selective fading chan-
nels. The simulation parameters used in our study are listed as follows (unless oth-
erwise mentioned): carrier frequency at 2.0 GHz, symbol rate of 16 kbits/s, and
15-chip Gold codes. An asynchronous reverse link equal energy multipath Rayleigh
fading channel is considered. The delay between two adjacent paths is a random
variable uniformly distributed over the interval [1,6) chips. The fast-fading scenario
corresponds to a mobile speed of 40km/h. In what follows, we refer to the proposed
modified nonlinear receiver with successive feedback as the precombining MMSE-S-
DFD, and we call its conventional counterpart (with standard MMSE optimization

cost function) as the postcombining MMSE-S-DFD.
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Figure 5.3: BER as a function of the averaged SNR for the precombining adaptive
LMMSE receiver and the 2-stage precombining adaptive MMSE-S-DFD in a two-path
fading channel. (a) 6 users; (b) 12 users.
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5.4.1 Nonlinear Versus Linear Detection in Fast-Fading

Figure 5.3 compares the performance of the precombining adaptive LMMSE and the
proposed 2-stage precombining adaptive MMSE-S-DFD using the adaptive algorithm
in (5.23). These results are obtained for a 6-user (Figure 5.3.a) and 12-user systems
(Figure 5.3.b). Four curves are shown for the proposed 2-stage MMSE-S-DFD, corre-
sponding to the performance obtained for user 1, user K/2, the last user of the first
stage, and the last user of the second stage, respectively. The performance results
for the precombining LMMSE receiver corresponds to the results of the precombining
LMMSE receiver presented in [77]. We see that the MMSE-S-DFD offers a signifi-
cant performance improvement relative to the precombining MMSE receiver in the
fast-fading channel. Note that, in the first stage, the last user receives the best per-
formance due to the successive feedback detection. On the other hand, the first user
of the MMSE-S-DFD (only) receives cancellation of the MAI and ISI from previous
symbols. The advantage of this DFD is that it can be implemented in a parallel style,
and hence avoiding multistage detection. Our results show that the performance of
the first user (i.e., worst performance) at the first stage of the proposed receiver is still
better than the performance of the linear receiver in both heavily and medium loaded
systems. On the other hand, the second stage of the proposed MMSE-S-DFD offers
significantly lower BER performance compared to both the precombining LMMSE
and the one-stage MMSE-S-DFD. Specifically, the performance of the last user in

the second stage of the precombining 2-stage adaptive MMSE-S-DFD is within 2 dB
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of the ideal detection (single user bound) in a 6-user CDMA system. It is also ob-
served that the performance difference between the last user in the first stage and
the last user in the second stage is negligible which proves that the 2-stage adaptive

MMSE-S-DFD offers nearly uniform performance over all users.

5.4.2 Flat Fading

Figure 5.4 deals with the difference in performance between the precombining adap-
tive LMMSE receiver and the proposed 2-stage precombining adaptive MMSE-S-DFD
in flat Rayleigh fading channels. Both fast fading and slow fading scenarios are con-
sidered. For the slow-fading channel, we consider a mobile with 4km/h and the same
parameters as before. We clearly see that the proposed adaptive MMSE-S-DFD offers
no loss in performance from slow to fast fading channels, even when the system is
heavily-loaded (see Figure 5.4.b). As a final observation, we see that the performance
of the precombining MMSE-S-DFD in the flat fading case is closer to the single user

bound than in the multipath channel (Figure 5.3).

5.4.3 Effect of Multipath

To examine the effect of multipath on the receiver performance, we increase the
number of paths for all users to four resolvable paths. The results are shown in Figure
5.5 for the MMSE-S-DFD and the LMMSE over both fast and slow fading channels.
In these results, we assume that all users’s paths are of equal energy. Based on these

results, we can draw the following conclusions:
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Figure 5.4: BER as a function of the averaged SNR for the precombining adaptive
LMMSE receiver and the 2-stage precombining adaptive MMSE-S-DFD in fast and
slow flat Rayleigh fading channels. (a) 6 users; (b) 12 users.
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1. The performance of the precombining LMMSE receiver deteriorates as the num-
ber of paths increases. On the other hand, the proposed precombining MMSE-
S-DFD provides much better performance (relative to the LMMSE) as the signal

energy is distributed among more paths.
2. The MMSE-S-DFD performs the same over both fast and slow fading channels.

3. When the system load and the number of paths per user are both large, the
precombining LMMSE receiver suffers from large performance degradation ex-
hibited in the error floor shown in Figures. 5.3.b, 5.5.b. On the other hand,
the MMSE-S-DFD is still able to contend to large interference levels but with
a limited performance gain. One can use the same argument as in [78] to ex-
plain the performance difference between the LMMSE and the MMSE-S-DFD
in heavily loaded multipath channels with large number of resolvable paths.
Simply put, the use of multiuser feedback filtering in the MMSE-S-DFD helps
to conserve the available degrees of freedom for the feed-forward filter. Hence
a better interference rejection capability is supplied by the feed-forward filter
relative to the LMMSE filter, which has to use its own degrees of freedom to

cope with the overall input interference.
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Figure 5.6: BER as a function of the number of users for the postcombining adaptive
MMSE-S-DFD and the precombining adaptive MMSE-S-DFD in a fixed multipath
channel with SNR=12 dB.

5.4.4 Precombining Versus Postcombining in Fixed Multi-
path

As we discussed earlier, the postcombining MMSE receiver has serious tracking prob-
lems in fast-fading channels. However, it is still interesting to compare the BER
performance of the two versions of the MMSE-S-DFDs and LMMSE receivers in
fixed multipath channels (no fading). The results of this investigation are shown in
Figure 5.6 where we fix the SNR to 12 dB and obtain the BER performance versus
the number of users. The postcombining MMSE-S-DFD and postcombining LMMSE
receiver always have better performance than their precombining counterparts. More

importantly, our results show that the performance difference between the nonlinear

103



precombining technique and its postcombining counterpart is relatively small. This is
of course not the case for the LMMSE where the postcombining receiver is shown to
offer much larger gain than the precombining one, especially in systems with heavy
loads. Our argument here is that both precombining and postcombining MMSE-S-
DFDs cancel interference from the symbols in Dy set while suppressing interference
from the symbols in Uy in a MMSE sense. That is, the FBF in the MMSE-S-DFD
can significantly suppress or completely cancel many effective interfering users (as-
suming no errors in the feedback direction). This in turn, relaxes the requirements of
the FFF since it needs only to deal with small levels of signal interference. As such,
the performance of the MMSE-S-DFD performs in a way similar to the LMMSE in
the presence of few interfering users. In other words, the performance gap between
the two versions of the nonlinear MMSE-S-DFD should be similar to that of their
linear counterparts in systems with small number of users (see Figure 5.6). This
result is important since one can rely on the same precombining nonlinear adaptive
receiver (with minimal degradation) in channels that experience both fast and slow

time variations within a block of data.

5.4.5 Convergence

Here, we examine the convergence behavior of the 2-stage precombining MMSE-S-
DFD at two different system loads. These results are shown in Figure 5.7, and
compared with the precombining LMMSE receiver. It is seen that the 2-stage pre-

combining adaptive MMSE-S-DFD achieves lower steady-state MSE than its linear
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counterpart in both scenarios. However, the improvement is more significant for the
system with 12 users as shown in Figure 5.7.b. We noted that the linear MMSE
receiver always has a faster convergence rate than the MMSE-S-DFD, especially in

systems with heavy loads.

5.5 Conclusion

In this Chapter, we introduced a modified adaptive MMSE decision-feedback detec-
tion scheme for multipath fast-fading channels. The adaptive implementation of the
nonlinear receiver is quite simple, yet effective in both fast and slow fading chan-
nels. Compared to the precombining LMMSE receiver, the modified precombining
nonlinear receiver is shown to offer a substantial performance improvement over both
slow and fast-fading channels. Most importantly, we demonstrated that the MMSE-
S-FDF is robust in channels with large interference levels manifest in heavily loaded
systems with large number of resolvable paths. Considering a flat fast-fading channel,
and heavily loaded system, the precombining MMSE-S-DEFD offers no performance
degradation relative to its performance in slow fading channels. Furthermore, we have
demonstrated that the precombining MMSE-S-DFD performs close to its postcom-
bining counterpart in fixed multipath channels. Finally, we examined the convergence
behavior of the adaptive nonlinear receiver and noted a slower convergence rate rel-

ative to the LMMSE in heavily loaded systems.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

A brief summary of the accomplished work is presented in this section, with an
emphasis on the contribution to the area of multiuser detection.

In this thesis we first proposed a new parallel interference cancellation multiuser
detector based on the blind adaptive MMOE algorithm. The proposed algorithm has
a computational complexity which grows linearly with the number of users. The BER
performance of the proposed detector is identical to the optimum LMMSE receiver
in synchronous CDMA systems. On the other hand, The proposed receivers degrade
when asynchronous transmission is present, but is still within 2 dB (in SNR) of the
optimum LMMSE receiver. It was also observed that the proposed adaptive MMOE-
PIC detector can greatly improve the convergence speed and BER performance of

the conventional adaptive MMOE receiver.
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In Chapter 4, we considered a new multistage detector for frequency-selective
channels. The proposed multistage detector, namely LCMV-HD-PIC detector, em-
ploys blind adaptive LCMV algorithm as the first stage followed by IC stages. The
simulation results show that the proposed detector can offer an excellent tradeoff be-
tween complexity and performance. In particular, a 3-stage LCMV-HD-PIC receiver
can achieve a performance which approaches that of ideal detection (single user de-
tection) without interference and is independent of system loads and near-far problem
in flat fast-fading channels. When it comes to frequency-selective fading channels, a
4-stage LCMV-HD-PIC receiver was shown to perform within 1 dB (in SNR) of the
single user bound at most practical system loads and SNR’s.

In Chapter 5, we presented a nonlinear MMSE decision feedback multiuser detec-
tor based on successive interference cancellation for multipath fast-fading channels.
The proposed MMSE-S-DFD receiver employs a modified MMSE criterion and incor-
porates channel coeflicients into feedback filter, and therefore can be made adaptively
even in relatively fast fading channels. It was shown that the proposed nonlinear
multiuser detector significantly outperforms its linear counterpart in either flat or
frequency-selective fading channels. Moreover, the performance loss due to the uti-
lization of the modified MMSE criterion instead of standard MMSE optimization
function is negligible for the proposed nonlinear decision feedback detector. Finally,
we considered a 2-stage MMSE-S-DFD to achieve a uniform performance over users

with successive demodulation.
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6.2 Future Work

Some topics for future study are now addressed. For numerical and simulation results
presented in Chapter 3 and 4, we assume that the receiver has perfect knowledge of
the signature waveform used to modulate the bits of the desired user. However, this
may not be true in practice. In addition, as we mentioned before, the blind adaptive
algorithms that we used in Chapter 3 and 4 are extremely sensitive to inaccuracies in
the acquisition of the desired user’s timimg and spreading code. Thus, how the pro-
posed MMOE-PIC and LCMV-HD-PIC detectors are affected by imperfect spreading
sequence estimate would be a good topic to investigate. In addition, if the perfor-
mance of the proposed detectors are not satisfactory under the spreading sequence
mismatch, searching for another blind adaptive algorithm which is robust to code and
timing inaccuracies would be another useful topic. In this case, the blind adaptive
LCCM detector [46] seems to be a good candidate since it can provide better perfor-
mance than the blind adaptive MMOE receiver and is not sensitive to the errors in
timing and spreading code estimates.

All of the research conducted in Chapter 3 and 4 has focused on standard ( “brute
force”) PIC detector and no partial interference cancellation has been used for the
proposed receivers. On the other hand, we noted that the proposed LCMV-HD-PIC
detector shows an error floor at high SNR’s due to the severe decision error propaga-
tion which can be effectively relieved by partial interference cancellation [43]. In our

opinion, further work is needed to add the merit of partial interference cancellation to
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the proposed receivers in this dissertation to combat error propagation. In particular,
one should consider the problem of determining a good set of weights for partial PIC

with only few stages.
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Appendix A

Gold Sequences

Gold sequences are useful due to the large number of codes that they supply. They
can be chosen so that over a set of codes available from a given generator, the cross-
correlation between the codes is uniform and bounded [87, 88]. In this appendix we
describe how we generate a set of Gold sequences.

Let u and v represent a preferred pair of m-sequences [87] having period N = 2"—1.
The family of codes defined by {u,u + v,u+ Dv,u+ D?v,...,u+ D¥~"v}, where D
is the delay element, is called the set of Gold codes for this preferred pair of m-
sequences [25]. It can be proved that the N + 1 elements of Gold codes set have the
property that the cross-correlation between any pair of codes in the set is three-valued
[89], where those three values are —t(n), —1, and t(n) — 2, where

for n odd
t(n) = (A.1)

14+ 2”5 for n even
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[89], where those three values are —t(n), —1, and t(n) — 2, where

1+ 2% for n odd
t(n) = (A1)

1+ 2”51 for n even

A set of Gold codes with length 31 is generated by two preferred m-sequences with

generator polynomials which are described by the parity polynomials

h(p) = p°+p°+1

ho(p) = pP+pt+p°+p-+1

The registers for generating the two m-sequences and the corresponding Gold se-
quences are shown in Figure A.1. In this case, there are 33 different sequences cor-
responding to the 33 relative phases of the two m-sequences. We choose a subset of
codes from the set of 33 codes so that the cross-correlation between each pair is -1.

The autocorrelation of each code is obviously 31, i.e equal to the length of the code.

e
L% 1 PL M
h(p)=p’+p*+1 EV Gold
p)=p* + o'+ pr+1 K sequences
OO
(Al \UPA D+

Figure A.1: Generation of Gold sequences of length 31
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Appendix B

List of Abbreviations

AWGN
BER
BPSK
DS-CDMA
DFD
FDMA
GSC
Hb
LCCM
LCMV
LMMSE
LMS
MAI
MAP
MLS
MMOE
MUD
PIC

SD

SIC
SIR
SNR
SSMA
TDMA

additive white Gaussian noise

bit error rate

binary phase-shift keying

direct sequence code division multiple access
decision feedback detection
frequency division multiple access
generalized sidelobe canceller

hard decision

linear constrained constant modulus
linear constrained minimum variance
linear minimum mean-squared-error
least mean square

multiple access interference
maximum-a-posteriori

maximum likelihood sequence
minimum mean-output-energy
multiuser detection

parallel interference cancellation
soft decision

successive interference cancellation
signal to interference ratio

signal to noise ratio

spread spectrum multiple-access
time division multiple access

Table B.1: List of Abbreviations
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