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ABSTRACT

Real-time Distributed Simulation of Partial Differential Equations
Sheng Feng Zhou

Recent advances in high speed network technology has allowed clusters of computers
to be linked together to form distributed computing networks capable of real-time
simulation of large scale complex mechanical systems. Real-time distributed
simulation can potentially be used to develop highly detailed virtual prototypes for
testing and optimization in automotive, aerospace, and manufacturing industries.
Industrial applications, however, have been limited until now due to lack of

systematic methods for constructing real-time distributed simulations.

This thesis investigates new methods for real-time distributed simulation of partial
differential equations (PDEs). This represents an important class of mechanical
systems that in most cases requires multiple computers in order for simulations to
proceed in real-time. The focus is on the wave equation since it has well known
properties and it is representative of many types of PDE systems. The proposed
approach uses an innovative time division multiple access (TDMA) real-time
communication protocol based on gigabit Ethermnet. Equation distribution and
real-time simulation algorithms based on finite-difference approximations are
developed for both explicit and implicit integration methods. Together, these results
provide a more systematic approach for real-time distributed simulation of PDE

systems.
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1 Introduction

1.1 Motivation

In the past, complex simulations were implemented by expensive supercomputers. But
now, with the development of high-speed network technology, it is possible for standard
computers to be linked together economically to form distributed computing networks to
perform this task. Real-time distributed simulation has been used extensively in many
application areas such as the defence industry, automotive and aerospace applications.
However, there are currently few fundamental approaches to guide the development of

distributed real-time simulation.

A mechanical system consists of complex interconnections of heterogeneous mechanical
models that involve different types of equations with different methods of solution.
Simulation of these problems generally requires the solution of large numbers of partial
differential equations (PDEs) and ordinary differential equations (ODEs) with algebraic

constraints.

This thesis investigates innovative methods for real-time distributed simulation of PDEs,
including realistic visualization of distributed simulation results. The performance and

scalability of the methods is also studied.



1.2 Literature review

This thesis mainly deals with the following areas: real-time distributed simulation
methods, PDE, DAE, and PDAE systems, and real-time distributed simulation
implementation. In the following literature review, the three areas indicated above are

presented respectively.

1.2.1 Real-time distributed simulation methods

J. B. Roger and S. Robinson give a broad introduction of simulation and general concepts
in their book [21]. Explicit Euler method is widely used for simulations because it is
easy to implement. However, if the simulation time step becomes too large, the
simulation becomes unstable. An improved large time step method known as “implicit
Euler” method has also been investigated. D. Baraff and A. Witkin proposed an implicit
Euler method in their cloth simulation. They applied Taylor series expansion and made
the first order of approximation [2][3]. The simulation time step using this method is
much larger than explicit Euler method, but the implementation of this method still has
step size problems due to truncation errors, and the implementation of this method can be

difficult for general nonlinear systems.

When implementing implicit simulations, we normally use Newton’s method to find roots,
which proceeds by iteration. When using Newton’s method, the root finding procedure

may take a short time, but sometimes it may take a long time until the results are obtained.



This form of non-determinism is acceptable for non-real-time simulation, but it cannot be
used in real-time simulation because it is difficult to guarantee deterministic execution
times required for real-time operation. Currently, no methods have been proposed for

real-time implicit simulation.

1.2.2 PDE, DAE and PDAE systems

Many engineering models consist of PDEs. The wave equation is a typical PDE that
can be used to represent many engineering systems (such as sound, fluid, vibrations,
tissue, virtual reality, etc). It is similar to many PDE problems in engineering, so we use
it as an example to investigate our simulation methods. To simulate the wave equation,
first of all it must be discretized so that it can be solved numerically. There are several

PDE references available such as H. Begehr and A. Jeffrey’s [11] and M. Braun’s [17].

A differential-algebraic equation (DAE) is a set of differential equations with a set of
algebraic constraints [Appendix C: 11]. J.-J. E. Slotine and W. Li gave basic sliding
control concepts and sliding surface design for non-linear control systems [7]. B. W.
Gordon proposed a singularly perturbed sliding manifold (SPSM) approach {4]. F. Rum
and B. W. Gordon applied the SPSM approach in deformable objects simulation (such as

cloth simulation) using explicit and implicit Euler method [5].



PDAEs (Partial Differential-Algebraic Equation) are combinations of PDEs with
algebraic constraints (DAEs). M. Giinther used the PDAE concept in electrical circuit
simulation [6]. Y.-I. L. Lim, et al. used a space-time conservation element and solution
element method to solve a chemical engineering PDAE problem [20]. Currently there

are no published approaches for real-time distributed simulation of PDAEs.

1.2.3 Real-time distributed simulation implementation

Real-time distributed simulation systems have broad applications in automotive,
aerospace and industrial automation industries. To implement real-time simulation,
several operating systems or software tools can be used, such as QNX [Appendix C: 13],
VxWorks [Appendix C: 14] and TDMA protocol [12][Appendix C: 15]. TDMA (Time
Division multiplexed Access [12]) being a protocol now is widely used in wireless
communication area because of its fairness, simplicity, and it is deterministic. The
TDMA real-time Ethernet protocol has several advantages [10]:

= Deterministic response time

= High data rate

* Various hardware available for use

» Fair protocol, no nodes can monopolize the network

» Low cost because the hardware is cheap

» Great potential to upgrade to new Ethernet hardware i.e. 10gigabit Ethernet



J. Lu designed an Ethernet based real-time distributed system and a TDMA protocol in
his thesis [10].  Actually it is a set of real-time distributed simulation development tools.

His thesis didn’t deal with realistic real-time distributed simulation problems.

This thesis uses the TDMA protocol as real-time simulation tool. Several companies are
developing real-time simulation products such as Opal-RT Technologies [Appendix C: 6]
and Mechanical Simulation Corporation [Appendix C: 12]. Opal-RT Technologies’
RT-LAB products provide software, hardware, and related solutions for real-time
simulation applications. They use QNX and real-time Linux, Simulink and LabVIEW.
Mechanical Simulation Corporation develops CarSim and TruckSim software package
for simulating and analyzing the behavior of vehicles. No literatures have been found
that use TDMA protocol and VenturCom RTX environment to implement the real-time

distributed simulations.

1.3 Thesis outline and contributions

1.3.1 Thesis outline

This thesis consists of six chapters. Chapter 1 describes the motivation for the real-time
distributed simulation and contributions of the thesis. Chapter 2 discusses the numerical
simulation of PDEs, including ordinary explicit Euler method, implicit Euler method,
wave equations and its simulation. Chapter 3 expounds the numerical simulation of

PDAESs, including sliding implicit method and simulation of PDAEs (a combjnation of

-5



DAE and PDE). Chapter 4 deduces the distribution of equations and real-time
distributed simulation using TDMA protocol and proposes the distributing method
(divide the equations into different computers). Chapter 5 describes simulation results
optimization and analysis of the simulation system. Chapter 6 concludes this thesis.
Appendix A describes distributed simulation with Winsock. Appendix B describes the

visualization and animation of simulation results.

1.3.2 Thesis contributions

1. New method for real-time simulation: sliding implicit method

When implementing the implicit Euler method, we need to use Newton’s method to find
roots that proceeds by iteration. When solving non-linear algebraic equation problems,
the root finding procedure may take a long time until the results are obtained. It is
difficult to guarantee real-time operation. The new sliding implicit method proposed in
this thesis has deterministic solving time and can guarantee real-time operation. This is

a new result that has not been previous developed in current literature.

2. Implementation of TDMA based real-time distributed simulation of PDEs

First of all, this thesis gives one of the most important PDE (the wave equation) a clear
numerical discretization solution so that it can easily be implemented in computer
simulation. Secondly, the thesis gives an equation distribution algorithm. Finally, the
thesis successfully implements the real-time distributed simulation of PDE and PDAE

systems using a TDMA based protocol. This result is innovative and one of the first



investigations to implement real-time PDE simulation using this approach.

3. Implementation of real-time distributed simulation of PDEs with algebraic
constraints (PDAEs)

It is difficult to evenly distribute the PDAE equation in each computer in real-time
distributed simulation. Some computers may have more computational tasks; others
may have less computational tasks. When implementing real-time simulations,
measures must be taken to keep same time step for all of the computers, to make sure that
the simulation results are correct and real-time. This thesis solves the problem

successfully by adjust the appropriate simulation parameters.

4. Real-time distributed simulation analysis

Real-time distributed simulation analysis is an important part in real-time distributed
simulations. This thesis uses two parameters to analysis the simulation performance:
the CPU usage ratio and the network communication capacity.  From the calculation of
these two parameters, the thesis improves the performance by changing the
computational tasks and the communication parameters. The CPU usage ratio can be
reached as high as 0.97 for single computer, and 0.73 for four-computer distributed
simulation, and the communication capacity is less than the maximum communication

capacity. Finally the thesis gives the real-time distributed simulation scalability.



5. Real-time distributed software development

Currently no software package exists that is flexible enough to study these simulation
research problems. The software developed in this thesis can be used to investigate new
real-time equation distribution and communication protocols. The software is
developed in modules (equation computation). When new equations are going to be

simulated, they can be easily implemented by changing these modules.



2 Numerical Simulation of PDEs

Numerical solution of the wave equation using finite-difference approximation is
investigated in this thesis since it has well known properties and it is representative of
many types of PDE systems. In this chapter, wave equations, explicit Euler method, and

implicit Euler method will be discussed.

2.1 Wave equation and its discretization

The wave equation is one of the most important PDE equations. The wave equation can

be used to represent many engineering systems (such as sound, fluid, vibrations, tissue,

virtual reality, etc).
1. 1D Case

The 1D wave equation with damping can be written in the following form:

Fo_,o0

——b, — 2.1
ot ox? ot b2atax2 @D

where, ¢ is the wave speed (m/s)
b, is external damping (1/s)
b, is internal damping (m%/s)

01s the wave displacement (m)

The domain is discretized using the one-dimensional grid shown in Figure 2-1.



0 1 2 3 4 5 6 7 N-2 N-1

Figure 2-1 1D wave grid

where N is the total number of grid points. Points 0 and (N-1) represent the end point
boundary conditions. Using a second order finite difference approximation:

%6, _ 6,720,460,

v = e 2.2)
Apply equation (2.2) to equation (2.1),
d’e, 0., —20 +6._ de, 0, —26 +6._
dt? zcz( | AX® lj_bl_dt—_bz( 1 Ax? ]]:Wi =)
Let o; = éi
Then
do, ¢ b
E = E(em -20, + ei—l)_ b, - A):Z (‘”m 20, + mi—l)
c? 2¢? ¢? b 2b b
= 6., — 0.+—06., -bo ——2 0, +—20 ——o
A2 AT A T T A T A A !
¢’ 2¢? c’ b 2b b
= AxZ i - Ax2 0, +§ei—l —-b,o, - A;; ®;,, + Ax22 ®; = A;2 0. (2.4)
Let
c? b, 2¢?
al = . aZ = — = -
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2.5)

o, =a,0,, +a,0,, +a,0, +a,0, +a,0,, +a,m,,,i=12,..N-1

If an external input is applied to point 0 with boundary point N-1 fixed (0y_, = wy_,=0),

then write equation (2.5) in matrix form:

(6, ) (010 0 0 0 0 0 0 oY 6 ) 0 )
@, a, a, ag a;Z 0 0 O O 0 0} o a,0, +a,0,
0, 0O 0 01 0 O O O 0 o0} 6, 0
®, a, a, a, a, a; a, 0 O 0 0] o, 0
0, 0 0 0 0 01 0 O 0 of o, 0
®, [=|0 0 a a, a; a, a,; a4 0 0 oy |+ 0
0, 0 00 0 0 0 0 1 0 of o, 0
o, 0 0 0 O a a, a, a, 0 0 o, 0

Oy 0 0 0 0 0 0 0 O 0 1|6, 0

(Gyo,) LO 0 0 0 0 0 0 0 - a; a, o,/ { 0

Written in vector form,

Xx=Ax+u, Xu€R,you AE€Rnpen-a (2.6)

2. 2D Case

The 2D wave equation with damping can be written as follows:

2 2 2 3 3
ae=c2(ae+aeJ , 90 b[ae ae] 2

o o "oy ) T a2 ek T anay?

The domain is discretized using the two-dimensional grid shown in Figure 2-2.
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2. @ ® ® ® & 0 ¢ o

. @ O @ O O 0 O o

0,4 o ¢ & 6 ¢ ¢ O o
VM2 @ @ @ @ O 0 O [
OM-1 .

Figure 2-2 2D wave grid

Points (i, 0) (i = 1,2,...N-1) and (0, j) (j = 1,2,...M-1) represent the point boundary

conditions. Use second order finite difference approximation:

2
0 eij _ 9i+1,j - 265,‘ + ei—l,j
ox’ Ax?
) (2.8)
2
o 91‘,‘ _ ei,j+1 “29ij + ei,j—l
| ay2 Ayz

Apply (2.8) to (2.7),

i

bodt

2
d’0; _ Cz[em,j ~20,+0,,; ©

il —29ij + Qi’j_]] b do
dt? -

Ax? Ay?

~b éi+l,j _29ij + éi—l,j 9i,j+1 - 29ij + éi,j—l _
? AX? " Ay’ -V

2.9)

Let o; = E)ij
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d(x)i. C2 C2
T (6., — 20, +6,,)+ e (0,5, — 20, +6,,)- b,

- _At_))_:_{ ((Di+1,j —20; + @ )" ‘Al?;‘—z‘ ((Di’jﬂ —2w; + (oi,j_l)

c? c? b 2¢cr 2c?
= Ax> ei—l,j - Ax22 O, +A_y2'ei,j—1 - A;z O 51 _(A—xz“" Ay2 Jeij

2b, 2b,
+ A + Ay2 -b, o,

c? b c? b,

+§ i+, _X)f'z'mm,j Ay2 Ll Ay2 ®; 541 (2.10)
Let:
a, = ¢’ a,=— b,
Ax*’ 2 AxY
a, = ¢’ a, =— b
Ay*’ oAy
ag =—2a, —2a,, ag =—2a,—2a,—-b,,
a,=a,, ag =a,
a9 =45, dyo = Ay
We get:
8, = o,
®; =a,0_;+a,0,_,,+a,0 , +a,0 ,+a0;+a,m;+a,0,,  +a,0,,
+a40, ,; +a,0, ., i=12,.N-2,j=12,,.M-2 (2.11)

Converting 2D equations to 1D form and applying external input on point (0,1) with
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boundary point fixed (8;¢ = 6;m.1 = Bpj = On-1j = 0), write equation (2.11) in matrix form,

0, 6 1.0 0 0 O O O 0 0)9 0
o, a, a, a, azZ 0 0 0 O 0 0w a,0,, +2,0,,
6,/ |0 0 0 1 0 0 0 O 0 0|6, 0
o, a, a, a; ag a;, az 0 O 0 0| o, 0
6,/ [0 0 0 0 0O 1 0 O 0 0|6, 0
®,|={0 0 a a, a; a;z 0 O 0 0w+ 0
0, 0 0 0 0 0 0 0 1 0 0fb8, 0
@, 0 0 0 O a a, as ag 0 0w, 0
0, 0 0 0 0 O 0 1o, 0
o, a, a, 0 a; ag o,
(2.12)
where n = (M-2)*(N-2).
Writing equation (2.12) in matrix form, we get:
x=Ax+u, xueR, , AeR,,. (2.13)

2.2 Explicit Euler method

Explicit Euler’s method is commonly used in solving finite different approximations of

PDEs (ODEs) which have the form:

x = £(t,x) (2.14)

Assume Xy = X(t+At), X, = X(t), At is the time increment step, and X is the derivative
of X. Then use the first term of the Taylor series to approximate the new state as

follows:
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X =X+, X, ) At (2.15)
where f(t,,x,)can be written in the following form:
f(t,,x,) =%, = Ax,+u (2.16)

So,

X = X+ (AX + w)At

X,,,= I+ AAt)x, +uAt (2.17)

where I is an identity matrix.

2.3 Implicit Euler method

Although explicit Euler method is easy to use, it is unstable in solving PDEs for stiff
systems. If the step size becomes bigger, the simulation results will become unstable.
A widely used method called “implicit Euler’ method is often used for improving

numerical stability.

To solve the problem that the explicit method has the time increment equation (2.14) is as
follows:
X, =X I, X, ) AL (2.18)
X, =X, + (AX, +u) At
X~ AX,, At =X, +uAt
(X —-AAt)x,,, =X, +uAt

So,
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X =~ AAt) ! (x, + uAt) (2.19)
This can be written in the following two forms:

x=A"b (2.20)
or

Ax

i
-

(2.21)

To solve this equation, Gauss-Jordan Elimination method, LU Decomposition method,

SV Decomposition and Conjugate Gradient method can be used [1].

When using implicit Euler method for non-linear PDEs, equation (2.21) results which
needs to be solved using Newton’s method for xi,;. Using Newton’s method to find
roots proceeds by iteration. When solving non-linear algebraic equation problems, the
numbers of iteration are unknown. It must keep finding solutions over and over again
until the iterations finish. In some special cases, as illustrated in Figure 2-3, the root
finding procedure may take a long time until the results are obtained, or may not

converge at all [1].

Therefore, Newton’s method cannot guarantee real-time execution. This is the main

reason why Newton’s method is not generally used in real-time simulation. To solve

this problem, a new method called sliding implicit method will be proposed in chapter 3.
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oo )

Figure 2-3 Newton’s method encounters an extremum and shoots off

In this thesis, these methods are applied as numerical calculations. The comparison of
these methods will be discussed in section 2.5; Explicit Euler method, implicit Euler

method, and sliding implicit method are used respectively as simulation methods.

Here, take the one-dimensional wave equation as an example to compare the simulation

results using explicit Euler and implicit Euler method. Parameters used are listed in

Table 2-1.
Table 2-1 Simulation parameters (Implicit/Explicit Euler comparison)
Name At b, b, c 0 N L
. Angular speed
i Time Internal External Wave Number
Meaning . . of external . Length
step damping | damping speed . of grids
mput
Value 0.001s 0.5 1/s 0.2 m%s 15 m/s 1.5 m/s 20 100m

Figure 2-4 shows the comparison results.
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1 r . . .
| A —— Explicit Euter | |
08 \ / - - Implicit Euler | ]
os} / / 1
i
04F / / 4
02f / .

02F

04l \
IV VA

Position
/
\

Figure 2-4 Comparison of explicit Euler and implicit Euler methods

The computation time of implicit equation (2.18) is longer than the explicit equation
(2.15) for the same At. Figure 2-5 shows the computation time with number of grid

points of these two equations.

158 T ™ . T
- BExplictmdnod |/
— Implickmehod | /
/
_ /
(7] rd
E 1r K 4
1] / o
£ , B
= / .
k=]
/
Q
505- // 1
// "',"
f{.{‘{""
0 C o el L 1 1 1 1
0 200 400 600 800 1000 1200 1400

Numbers of grid points

Figure 2-5 Computation time comparison of explicit and implicit method
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2.4 Wave equation simulation results

From the equations and the simulation methods discussed above, the wave equation
simulation using single computer and multiple computers (distributed) has been
implemented. This chapter gives a single computer simulation. Distributed simulation

will be discussed in chapter 4. Parameters used in this part are listed in Table 2-2.

Table 2-2 Simulation parameters (Single computer)

Name At bl b2 M N 0]
Angular speed
. ) Internal External Number of | Number of
Meaning Time step . . . . of external
damping damping grids(Y) grids(X) .
input
Value 0.001s 02 s |02 ms 22 22 2
Name Lx Ly c
Width of Height of
. Wave
Meaning wave wave
. speed
surface surface
Value 100m 100m 10 m/s

Figure 2-6 shows the two-dimensional wave equation simulation results, the external
input is in the upper left point; Figure 2-7 shows the simulation results when the input is

in the middle.
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Wave equation simulation

Figure 2-6 Wave equation simulation result (external input is in the upper left point)

+ Wave equation simulation

Figure 2-7 Wave equation simulation result (external input is in the middle)
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2.5 Solution of sparse linear systems

This section discusses the problem of solving linear sparse systems which occurs for
implicit and sliding implicit approaches to the wave equation. The performance of this
procedure is critical since it can take a significant amount of time for large matrix
dimensions. As mentioned above, many simulation problems can be written in the form
of Ax=b and solved using Gauss-Jordan Elimination, LU Decomposition, SV

Decomposition or Conjugate Gradient methods [1].

Gauss-Jordan elimination is efficient in inverting a matrix. For solving sets of linear
equations, Gauss-Jordan elimination produces both the solution of the equations for one

or more right-hand side vectors b, and also the matrix inverse Al

LU decomposition method is convenient to solve matrix inverse A™' and Ax=b equation;

conjugate gradient method can be easily used in solving the Ax=b equation.

Different methods have different computation efficiency. Here, we take these methods
to solve the one-dimensional wave equation as an example to calculate the matrix inverse
Al using Gauss-Jordan elimination and LU decomposition, and solve the Ax=b using LU
decomposition and conjugate gradient methods. Figure 2-8 shows the computation time

with matrix dimension (sparse matrix). Figure 2-9 shows the structure of matrix A.
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Figure 2-8 Computation time with matrix dimension (sparse matrix)
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Figure 2-9 The structure of matrix A

Figure 2-10 shows a full number matrix computation time with the matrix dimension.
The values of the matrix (A) in this example are set to:

A=0.2E+I

S22



where, E is matrix of ones

I is identity matrix.

200 T T T T T T

80r [ Inverse of matrix A: Gauss-Jord s
— Inverse of matrix A: LU Decomposition

160 | — - Solve AX = b: LU Decomposition 4
- - - Solve AX =h:. Conjugate Gradient e

140 1

-
(8
o
T
1

Computation time {ms)
® o
o o
1 1

60} o o

40t

3 = =1 1 Id
40 60 80 100 120 140 160 180
Dimesion of matrix A

Figure 2-10 Computation time with matrix dimension (full number matrix)
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3 Real-time Simulation of DAE and PDAEs

3.1 DAE and PDAE

A Differential-Algebraic Equation (DAE) is a set of differential equations combined with

a set of algebraic constraints [Appendix C: 11].

Mechanical systems are often described by a mixed set of partial differential equations
(PDEs) and differential algebraic equations (DAEs). These equations can be described
in the general form [4]:
x =1(t,x,z) 3.1
0=g(t,x,z) (3.2)

where xe R*, ze R™, f: > R",and g: RXR"xR™ 5> R™.

In multi-body mechanical systems, X would represent the position and velocity described
by momentum equations (3.1), z would represent the forces that are determined by
kinematic constraints (3.2). In many cases, the constraints are identically singular with

respect to z.

Real-time distributed simulation of DAEs is complicated by the constraint equations (3.2)
which must be solved during each time increment of the simulation. This usually

involves an iteration process to solve the nonlinear algebraic constraints. The
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constraints will generally involve variables that are updated on many different processors.
Therefore, to simultaneously solve the constraint equations communicated must occur
between the computer nodes. Further more, the constraints imply instantaneous
information transfer between computer nodes since changes in the state variables x imply
immediate change in the constrained state z. Thus, the solution could potentially be
very sensitive to communication delays that occur in distributed simulation. In the
worst case, all computer nodes would have to be completely synchronized to the slowest
node to guarantee integrity of the simulation. Furthermore, iteration cannot be tolerated
in real-time simulation because they are not guaranteed to complete in a fixed time

interval.

From Gordon’s dissertation [4], a new approach using the concept of virtual control
based on an important new analogy between DAE system and nonlinear control theory

was proposed. The DAE modeling problem formulated as:

x=f(t,x,2) 3.3)
Z=V 34
w = g(t,X,z) (3.5)

where w is an output equal to the violation of the constraints and v is the virtual control

input.
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Figure 3-1 DAE realization approach diagram

By developing an appropriate virtual nonlinear controller, the output can be forced to

zero that will result in a non-iterative ordinary differential equation model of DAE

system, refer to Figure 3-2.

Singularly perturbed system

DAE
Error=0(¢)

/\\ X

Figure 3-2 The singular perturbation approach

For the vector index to be defined z must be explicitly determined by

dr'_lgi

e (t,x)=0 , Lix=0, . , L& 3.6)
dt dt

(t,x,z) =0

Using the new approach to model, the constraints are applied to a sliding manifold:
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si=|ip%+1:| g, u>0 (3.7)

When s = 0, the constraints are asymptotically satisfied with stable values.
3.2 Sliding implicit method

As mentioned in Chapter 2, using Newton’s method to solve implicit Euler time steps
proceeds by iteration. When solving nonlinear algebraic equation problems, the
numbers of iterations are unknown. One must keep finding solutions over and over
again until the iterations converge. This cannot guarantee real-time simulation. The
sliding implicit method has a deterministic solving time for a specific problem. It can
be used to solve real-time problems. The method proceeds by replacing derivatives by

finite difference approximations:

X =X HI(L, X, ) - At (3.8)

X~ B Xp0) - At =X, (3.9)

where Xy, is the new states data, and xy is the last states data.
Let z =Xy.1, then

z—1(t,,,,2) - At=x, (3.10)

The constraints are:

g(z) =z—1(t,,,,2)- At —x, (3.11)
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For the wave equation f(t,, ,z)can be written in the following form:
f(t,,,z)=z=Az+u (3.12)
Therefore,
g(z)=z-(Az+u) -At-x,
g(z)=z—-Az-At—u-At—x,

g(z)=2—-Az-At-Az-u (3.13)

Therefore we take index r;= 1 for the sliding mode in equation (3-8). Thus,

s(z)=g(z)

$(z)=g(z)=2—-Az-At—Az-u

So,
$(z)=(I-A-At)z-Az—u (3.14)
We get
3= o1 Aa (3.15)
oz
and
G=-Az-u (3.16)

Using the singularly perturbed sliding manifold (SPSM) approach:

e-z=R-s (3.17)
where

R=-J

So we get,
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Joz=—~ (3.18)
€
Equation (3.18) can be written in the following form:
Ax=b
where, X 1S Z

A=J;

b=-2
€

If 2 issolved by using matrix inverse method, then equation (3.18) can be written in the

following form:

i=—le'1-s
g

=_%[(I—A-At)-l -(z—A-z-At—u-At—Xk)]

= —é{(l— A" (- A ALz - (u At +x, )]}

=1[(1—A-At)“(u-At+xk)—z] (3.19)
&

If € 1s very small, z can be solved using:
Z=2+Z- At (3.20)
Which converge to Xi4;.

Figure 3-3 shows the time steps.
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Y

At

At

Figure 3-3 Simulation time steps

For singular perturbation approach (equation (3.17)), the ratio of A: can be selected as

s

around 10. Take the mass-spring-damper system as an example, as shown in Figure 3-4.

Figure 3-4 A mass-spring-damper system

From Newton’s law,

ma = —kx ~bv (3.21)
mX = —kx —bx
Let
X X
X = , X=|
v Y
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Then,

X = Ax (3.22)
0 1
where, A=
k _b
m m
The parameters chosen are listed in Table 3-1.
Table 3-1 Sliding implicit method parameters (Single computer)
Name m k c t € At
Meaning mass stiffness Wave Final time | & parameter | Time step
speed
Value lg 1 Ns/m 0.1 m/s 20s 0.0001 5 ms
Name X1 Vi ‘
Meaning Initial Initial
position speed
Value 1m 0m/s

The results are shown in Figure 3-5, Figure 3-6, and Figure 3-7.

" ' Shd:ng mmpheit
08 \ -~ Euler Imglict |4
} N - -- Bxprcit
a6} | !y
J4 "/ \\‘ y /_\ 4
{
o2k b { \ \ / \
s tt / § /
g 0 J \ i \ /
5? \ r‘ i ! J’
a2} \ v\ )
| ri \ / \ o/
st ] \ / L |
! /
06 % / N i
oy
oK1 \ j
-1 1 1 1
] 5 10 155 20
wre sy

Figure 3-5 Comparison of sliding implicit and Euler method
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Erorvalue

Error value

"y

o

-2

-8

-8

8t

-10

As a special case, if choose At= 0.001, &=0.0001, then zero error is obtained.

6
Time {s}

Figure 3-6 Sliding implicit and Euler implicit error

10
Time {s)

Figure 3-7 Sliding implicit and Euler explicit error

It means

that if correct parameters are chosen, the results are the same using sliding implicit and

implicit Euler method. For explicit Euler method, when At = 0.005 seconds, It is
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unstable, but for sliding implicit, when At = 0.16 seconds, it is still very stable,

Ats=0.16/10=0.016 > 0.005, as shown in Figure 3-8 and Figure 3-9.

2 T T T
Sliding implicit
— - Euler Implicit
15¢ — Explicit i
1 4
05+ -
= —
2 0 1
o T
0. !
05 i
1t 4
150 4
_2 1 1 1
0 5 10 15 20

Figure 3-8 Comparison of sliding implicit and Euler method when we increase time step

002 T T —

0015+

001r

0.005

0

Error value

-0.005+

-0.01

0015+

5 10 15 20

Figure 3-9 Sliding implicit and Euler implicit error

This means that the sliding implicit method is much more stable than the explicit Euler

method.
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3.3 Simulation of PDAE systems

The problem we study here is how to simulate the motion of an object with an external
geometry touching the wave surface. The object can be at any shape. This problem

can easily be solved using partial differential-algebraic equations (PDAEs).

1. 1D case
The object touches some of the wave grid points, as illustrated in Figure 3-10. The

object can be any shape. Here we take the wedge as an example.

L’/,j The object

Wave grid points

Figure 3-10 1D PDAE

The force diagram of the object is illustrated in Figure 3-11.

), Ip N

e

mg;,

Figure 3-11 1D PDAE force analysis (object)
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Using Newton’s 2™ law,
. N
my=m-g —3z;+F

=

Write equation (3.23) in derivative form,

Here an external force F=A-sin(w-t) is applied.

For the wave points, applying z to the wave equation (2.3) gives,

The constrain is as follows:
g =y-6

Derivatives of g:

&=y-6,
=Vy—-0)i
g =y-0
=V, =0
1 N
=g, ——yz +——(y, +z,)
r m 4 j m i i
=l

The index isr = 3:

d 31
s=(ua+lj g

=p’g+2pg+g

235.

(3.23)

(3.24)

(3.25)

(3.27)

(3.28)

(3.29)
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So,

ds
J,=—
oz
=-u>-A (3.31)

m+1 i 1

m m m

_1_ m+1 __1_

Where, A=| m m m

11 m+1

m m m

S,ZE c‘RNXI’ A’Js € S)'{NXN
Use SPSM approach, the equation is:
. a4 S
z=-J.5 (332)
€
2. 2D case

2D case PDAE is shown in Figure 3-12 and Figure 3-14. Suppose the object touches

IM and IN wave grids.

mg,

Figure 3-12 2D PDAE force analysis (object)
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* Use Newton’s 2" law,

IN M
my=m-g -3 32z;+F

i=1 j=1

Write in derivative form,

Here an external force F=A-sin(w-t) is applied.

For the wave points, applying z to the wave equation (2.9) gives,

d’e,
a2 Vit

The constraint condition is as follows:

gx_, =y—ux_|
=Vy W
g =Y~ Uy
=VyTW
1 IN M

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)



The index isr=3:

d 31
S = [Ma + 1) g

=g +2u8,+ g, (3.39)

Converting to one-dimensional form and written in vector form (k=(i-1)*IM+j):

So,
ds
Jo= 0z
= —uzA (3.40)
m+1 i i
m m m
}_ m+1 i
where, A=| m m m
1 1 .. m+l
m m m

S, YA %(MXIN)XI | S A’ JS € 9%‘(IM)(]}f))((n\/[)(n‘l)

Using the SPSM approach, the equation is:

z=-J1.2 (3.41)
&

Using the following parameters (list in Table 3-2), the simulation results shows in Figure

3-13 (using wedge shape object).
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Table 3-2 PDAE simulation parameters

Name g m 3 ¢ 0] N
. Angular speed | Number of
. . Object From From
Meaning Gravity . . of external wave
mass equation | equation . .
input grids(X)
Value 9.8 m/s® 0.003 g 0.1 0.2 2 22
Name Lx Ly c bl b2 M
Width of Height of Number of
. Wave Internal External
Meaning wave wave . . wave
speed damping damping .
surface surface grids(Y)
Value 100m 100m 10m/s | 0.1 s 0.1 m%s 22

Figure 3-13 PDAE simulation result
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4 Real-time Distributed Simulation of PDEs

4.1 Equation distribution algorithm

This section discusses the 2D wave equation distribution algorithm. After the equations

are distributed to each computer in the network, each computer can only compute its own

part.

4.1.1 One-dimensional systems

The one-dimensional equation distribution can be horizontal or vertical as illustrated in

Figure 4-1 and Figure 4-2.

1<:>2<:>3<_—_>4

Figure 4-1 1D horizontal distribution

A\
£ W N —
\ \ L4

Figure 4-2 1D vertical distribution
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The computation task is divided into N parts horizontally or vertically. Each part is

calculated in one computer.

Figure 4-1 is a four parts horizontal distribution example. The arrows means that
boundary values need to be sent between the parts. The boundaries are the left and right
edge; Figure 4-2 is a vertical distribution. The boundaries are the upper apd bottom

edge.

Here, take vertical distribution to discuss. Part 3 in Figure 4-2 is a representative one.

Its grid points are shown in Figure 4-3.

1
2
3
4
00 1,0 20 30 40 50 6,0\ 7,0 N-2,0 N-1,0 ¢
T e e e e 9 & e >
ol @ & O & @ 0 O L
2" & & 0 0 0 © ®
B 0 e e e e e e °
. © ®© e 0 e e e °o -
oM O ® O e e e e e
oMH Y O O O O B DD O

Figure 4-3 1D equation distribution with boundary points

where,
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M is total vertical points

N is total horizontal

M, =(M-2)/pn  where, pn is the number of parts
In this part, upper boundary grids (&) will be obtained from upper part (part 2 in this
figure); bottom boundary grids ({’) will be obtained from bottom part (part 4 in this
figure).

For top part (part 1 in this figure), upper boundary grids (') have:
0=0,,=0,i=1.N-1

For bottom part (part 4 in this figure), bottom boundary grids (M) have:

eileﬂ = mi,Ml+l = Oal = lN —1

4.1.2 Two-dimensional systems
In one-dimensional distribution, there is only one boundary or two boundary data need to
communicate with their neighbours, while the two-dimensional case may have up to four

boundary data to communicate with their neighbours. Figure 4-4 is a 9-part distribution

case.
AN AN
1 2 [ 3
NV N Y
o~ T — —
b b
A\ AN
4 5 { 6
\ LJ \ L/
1L 1L
AN\ AN
7 \ 8 9
\ B/ \ B

Figure 4-4 2D equation distribution
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Here, part 5 in Figure 4-4 is a representative part. Its grid points are shown in Figure

4-5.

00 1,0 20 30 4,0 5,0 6,0\ 7,0 N0 N+1,0
e e e 5 & 6 8 - 9
o © © © ® 0 0 @ °
20 © ®© © © © 0 ©® ® ©
¥ © © © 0 0 0 e ® ©
“S ® © © ®© © 0 © ® ©
oMe® O O @ O O 0 O ® O

oM+1]| - ()]

Figure 4-5 2D equation distribution with boundary points

where, M, = (M-2)/Vpn
N; = (N-2)/Hpn
where, Vpn is the number of vertical parts

Hpn is the number of horizontal parts

In this part, upper boundary grids (“*) will be obtained from upper part (part 2 in this
figure); bottom boundary grids ({IF) will be obtained from bottom part (part 8 in this

figure); left boundary grids (@) will be obtained from left part (part 4 in this figure);
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right boundary grids (@) will be obtained from ri ght part (part 6 in this figure).

For other parts, their boundary conditions are illustrated in Table 4-1.

Table 4-1 Boundary conditions

Part 1 Part 2 Part 3
ei,0 = (Di,() =0 é ei,o = (Di,() =0 @ ei,O = (Di,O =0 @
eo, =0y; = 0 eN,+1,j =On4,j = 0
Part 4 Part 5 Part 6
eO,j Wy, = 0 6N1+1,j =Wy 4, = 0%
Part 7 Part 8 Part 9
8y, = ,; =0 S One = O,y =0 @
ei,Ml+1 =00 T o® ei,MlH =0 mu = od ei,Ml+1 =0 M = oW
i=1...N;, j=1.M;

4.2 Real-time simulation using TDMA communication

4.2.1 Real-time TDMA communication protocol

The TDMA (Time Division Multiplexed Access) protocol is a protocol’Based on time

slots.

transmitting, there are no other nodes transmitting message on the network. By this
method, Ethernet will send the message on the network without collision at anytime.

Figure 4-6 shows the comparison of TCP/UDP/IP protocol and the TDMA protocol.
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This protocol cooperates with other nodes to guarantee that while its message is
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Figure 4-6 TCP/IP and TDMA protocol

The clocks on different computers have drift. All the computer nodes have to be
synchronized to one global clock. A synchronization signal is used on the Ethernet
Network. The master computer sends the synchronization signal. After the slaves
receive the signal, the simulation begins. This TDMA protocol is implemented under

Venturcom RTX environment.

Venturcom RTX (Real-Time Extension) operating system is a Windows NT, Windows
2000, and Windows XP extension. It adds real-time properties to the Windows
operating systems, and provides an ability to use a single, low-cost platform to satisfy a
full range of real-time and embedded application requirements. RTX adds a real-time
subsystem RTSS to windows operating system. Figure 4-7 illustrates the message
communication path between two computer nodes over the network. Figure 4-8 shows
the computer connection diagram. Switch 1 connects fast Ethernet cards that used to

control these computers by users.
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Figure 4-7 Information path

Switch 1 Switch 2

Animation Node 1 Node 2 Node 3 Node 4
Node

Figure 4-8 Computer connection using TDMA

At the beginning, all the slave computer nodes are waiting for synchronization signal.
After the master computer node sends a synchronization signal, the network simulation
begins. Then computers send and receive data by the clock time. When the slot time

is arrived, the computer sends the packet. Just several microseconds before finish this
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synchronization cycle, the computer starts to wait the synchronization signal again.

Figure 4-9 shows TDMA protocol synchronized by signal.
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Y

Figure 4-9 Synchronization for each computer

Figure 4-10 shows the computational diagram using TDMA communication. At each
time step, computers get data from last time step. If the computational time is different

from computer nodes, then set different waiting (sleep) time to synchronize them.

X X(t+AN X(t+2A0)
At, Tsena Sleep
2 f,w: I o /Lfﬁ)”t}‘ e
//s / A}A’%%M ) ! / ',«' »\/f)
1 2 3 4 1 2 3 4 1 2 3 4
~ ~
~ ~
~
o Data transfer %
x AN
1 2 3 4 1 2 3 4 1 2 3 4 e
"\ o R -
voor oy time
b . Trpma o
Computer node - -

Figure 4-10 Simulation time
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Figure 4-11 shows the computational diagram of two-computer nodes calculation time is

different.
X(t) X(t+AD X(t+2At)
At. Teena Sleep
15555959557 TR A, AT
Computer 1 {75707/} s p0sea009494

Atc Tsend

?/‘v .It‘k ;P/‘;'/‘« /‘-"“‘

o iy
potteeioit

Computer 2

Trpma -

ot

A

Figure 4-11 Computation time difference for each computer

4.2.2 Real-time distributed simulation

1. Wave equation with explicit Euler method

For the typical PDE wave equation, the computation can be evenly distributed to each of

the computer nodes. The distributed algorithm used in the thesis is illustrated in Figure

4-12. Each of the four computer nodes needs to communicate boundary data with two

neighbour computers.

o =

l Computer 1 J C::)

N e e e

t Computer?)? t:) i Computer 4 1

S~ S S

Figure 4-12 PDE distributed algorithm

.48.-



In this Chapter, the simulation parameters are listed in Table 4-1.

Table 4-1 Simulation parameters

Name At Teom T, Njor Slot Size N
) ) Communication | Computational Number of
Meaning Time step ) ) Slot number )
period period grids(X)
Value 1 ms 4 ms 4.2 ms 8 0.5 ms 20
Name Lx Ly c bl b2 M
Width of . ‘
. Height of wave Internal External Number of
Meaning wave Wave speed . ] .
surface damping damping grids(Y)
surface
Value 100m 100m 10 m/s 0.2 s 0.2 m’/s 20

Figure 4-13 and Figure 4-14 shows single computer and multiple computer (distributed)

simulation comparison results (position) of point (3,2).

communication delay.
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Figure 4-13 Comparison of single computer and distributed results: point (3,2)

The error is the results of




Figure 4-14 Single computer and distributed result error

Figure 4-15 and Figure 4-16 shows comparison results of point (3,4).
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Figure 4-15 Comparison of single computer and distributed results: point (3,4)

-50-



15

Error

2 4 6 8 10
time (s)

15 L
o]

Figure 4-16 Single and distributed error

2. Wave equation with sliding implicit method

The sliding implicit method can guarantee deterministic execution, so it is a good choice
in real-time simulation. The distributed algorithm is illustrated in Figure 4-12.
Figure 4-17 and Figure 4-18 shows single computer and distributed simulation

comparison results of point (3,2).

04 T
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o
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Figure 4-17 Comparison of single computer and distributed results: point (3,2)
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Figure 4-18 Single and distributed error

Figure 4-19 and Figure 4-20 shows comparison results of point (3,4).
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Figure 4-19 Comparison of single computer and distributed results: point (3,4)
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Figure 4-20 Single and distributed error

3. Real-time distributed implementation of the PDAE system

The PDAE consists of a DAE part and a PDE part. This system has been investigated
and analysed in section 3.3. This section will describe the distributed simulation
implementation of the PDAE system. The computation cannot be evenly distributed to
each of the computer nodes. The distributed algorithm used in the thesis is illustrated in
Figuré 4-21. One computer calculates the DAE part; other three computers calculate the

PDE part.
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Figure 4-21 PDAE distribution simulation algorithm

Figure 4-22 shows single computer and distributed simulation comparison for point (8,6).
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Figure 4-22 Comparison of single computer and distributed results: point (8,6)
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Figure 4-23 shows comparison results of point (9,7).
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Figure 4-23 Comparison of single computer and distributed results: point (9,7)
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5 Real-time Distributed Simulation Analysis

This chapter will optimize and analyse the real-time distributed simulation performance.
The most important parameters used to evaluate the network performance are the CPU

usage ratio and network communication rate.

5.1 CPU usage ratio

The CPU usage ratio is used to evaluate the computer’s computational load. The bigger
the CPU usage ratio, the heavier the computational load. In order to guarantee real-time
property, this parameter should be less than 1 (100%). CPU usage ratio can be

calculated using Equation (5.1).

R=—= (5.1)

where, R is CPU usage ratio
At. is computational time
T, 1s computational period

Figure 5-1 shows the relationship between the two parameters.

At

A
Y

- T _

et} -

Figure 5-1 Computational time and computational period

In order to efficiently use the computational resources of the cluster we should have:
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max (R;)
i=1..n (where nis number of computers) (5.2)
R; <1

The CPU usage ratio R is between 0 and 1. If the value is equal or greater than 1, the
computation is over load, the simulation becomes non-real-time. However, we want it
to be as large as possible by putting as many grid points on a computer as we can. In
practice the maximum value of R may be less than one due to overhead associated with
the network communication, so we need to experimentally determine the maximum R for

a given application.

For a good network design, to fully utilize the CPU efficiently, the CPU usage ratio R
should be as close as possible to 1. The CPU usage ratio will increase when the
computation time increases. For the wave equation problem, the computational time for

a simulation time step increases rapidly if the grid points increase, as illustrated in Figure

5-2.
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Figure 5-2 Computational time with grid points
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Figure 5-3 shows the maximum CPU usage ratio on a single computer.

parameters are listed in Table 5-1.

They are chosen according to thesis [10].

Table 5-1 Simulation parameters (Single, implicit Euler method)

The simulation

Name At Teom T, Nijot Slot Size N
) . - | Communication | Computational | Number of Number of
Meaning Time step . . .
period period slots grids(X)
Value 6.8 ms 6.4 ms 6.8 ms 8 0.8 ms 16
Name Lx Ly c bl b2 M
Width of .
. Height of wave Internal External Number of
Meaning wave Wave speed . . .
surface damping damping grids(Y)
surface
Value 100m 100m 10 m/s 02 1/s 0.2 m%s 16

CPU Usage Ratio
o o o o o o o o o
~ o w ' w o ~ e © —

o

1

o

05

1
tims (s)

Figure 5-3 Maximum CPU usage ratio (Single computer, implicit Euler method)

Figure 5-4 shows the maximum CPU usage ratios for each of four computers in

distributed simulation.

The simulation parameters are listed in Table 5-2.
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Table 5-2 Simulation parameters (distributed, implicit Euler method)

Name At Teom T, Niiot Slot Size N
. . Communication | Computational | Number of Number of
Meaning Time step . . .
period period slots grids(X)
Value 4.9 ms 4.8 ms 4.9 ms 8 0.6 ms 24
Name Lx Ly c bl b2 M
Width of .
. Height of wave Internal External Number of
Meaning wave Wave speed . . .
surface damping damping grids(Y)
surface
Value 100m 100m 10 m/s 02 s 02 m%s 24
0.8 T T T
—— computer 1
o6l - computer 2 i
: —— computer 3
—— computer 4
2 0.5f .
g
)
g 0.4 N
=2
&oaf 1
0.2} B
0.1 J
0 1 I 1
0 0.5 1 1.5 2

time (s)

Figure 5-4 Maximum CPU usage ratios (distributed, implicit Euler method)

Another factor that affects the CPU usage ratio is the sleep time. In order to get bigger
CPU usage ratio, the smallest sleep time should be used. In this thesis, the sleep time is

chosen to be 1 ms (The smallest sleep time in the TDMA protocol).
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5.2 Network communication rate

The network communication rate is another important criteria to evaluate the network
performance. It is used to evaluate the network’s capacity. The bigger the network
communication rate is, the heavier the load on the network will be. The network
communication rate must be less than the network capacity. The maximum data rate

can be calculated as follows:

_N,N,N,

max

(5.3)

TTDMA

where,
Crax 18 maximum communication rate (bps)
Nc s the number of computers
Npis bytes per packet
Ny is bits/byte, Ny = 8

TTDMA 1s TDMA pCI‘iOd

If four computers are used in the network, then N; = 4; for this network driver program,
bytes per packet N,=1500, TDMA period Ttpma= 4.8 ms. From equation (5.3), the

maximum communication rate is as follows:

_ 4x1500x8

= = 10000000(bits/s) = 9.54Mbps
0.0048

The network communication rate C; for each computer can be calculated using the
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following equation:

Ci=nyy Svarn  (bytes/second)
= 8 Nyar Svar n (bits/second, bpS) (54)

where,

C;is network communication rate for computer i
n is frames per seconds
Nyar 18 number of variables

Svar 18 size of each variables (bytes)

The frames per second 7 can be calculated by the following equation:

N=5— (5.5)

com

where Tcon 1S the communication period.

The network communication rate C; should have:

min (C;)
i =1...n (number of computers) (5.6)
Ci <C

max

For 26x26 grids, evenly distributed to four computers, and each grid uses two variables

(0 and w), so the total number of variables for each computer are:

Nyar =26 X 26 X 2 /4 =338
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For float data type, the size of each variable s, = 4, the communication period is set to 4

ms. From equation (5.6) the network communication rate for each computer is as

follows:

1
C, =334x4x x8 (bps
' 0.004 (bps)

= 2704000 bps = 2.57 Mbps << Cppax i=1,2,3,4

5.3 Simulation scalability

This section discusses the relationship between number of grid points and number of
computers in the network. It means how many grid points (computational tasks) we can
reach if we increase the number of computers. Ideally, the relationship should be linear.

But actually, communication capacity and CPU usage ratio will affect the results.

In order to make it comparable, one-dimensional equation distribution is used (as shown
in Figure 4-2). The following steps are used to choose the simulation parameters:

1. Choose the number of computers (maximum slot number)

2. Choose the sleep time

3. Choose the slot time

4. Calculate the TDMA cycle (slot time * maximum number of slots)
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Theoretically, the number of grid points can be calculated in a network is the number of
grid points that a single computer can multipled by the number of computers. First of
all, we test the maximum number of grid points for a single computer can compute, as
listed in the second column of Table 5-3, then we use Equation (5.7) to calculate the

maximum number of grid points multiple computer theoretically can compute.
[Noax =24000N,,  Casel

9 Nmax =256 Ny Case?2 5.7

(Nmax =48 Ny Case3

where, Npax is maximum numbers of grid points can be simulated in the network

Npt 1s computer numbers in network

The calculation results are listed in Table 5-3 (column 3-9). Figure 5-5 shows the

relationship between the two parameters in graphics mode.

Table 5-3 Maximum theoretical number of grid points and number of computers

Matrix A 1 2 3 4 5 6 7 8
Casel -
. 2400 | 4800 | 7200 | 9600 | 12000 | 14400 | 16800 | 19200
Constant, Explicit Euler method
Case 2
256 | 512 768 | 1024 | 1280 | 1536 | 1792 | 2048
Constant, Sliding implicit method
Case 3

. e 48 96 144 192 240 288 336 384
Varying, Sliding implicit method
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Figure 5-5 Maximum theoretical number of grid points and number of computers

Actually, the experimental maximum number of grid points are less because
communication between computers takes CPU time. Table 5-4 shows the maximum
experimental number of grid points with the number of computers. Figure 5-6 shows

the relationship between the two parameters graphically.

Table 5-4 Maximum experimental number of grid points and number of computers

Matrix A 1 2 3 4 5 6 7 8
Casel
o 2400 | 3456 | 5184 | 6912 | 8640 | 10368 | 12096 | 13824
Constant, Explicit Euler method
Case 2
L . 256 364 546 728 910 1092 1274 | 1456
Constant, Sliding implicit method
Case 3

48 72 108 144 180 216 252 288

Varying, Sliding implicit method
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Figure 5-6 Maximum experimental number of grid points and number of computers

From Table 5-4 and Figure 5-6, we have the following equations:

[N, =1728N_, Casel, N, >1
N =182N Case2, N, >1 (5.8)
N, =36N,, Case3, N_, >1

where, Npay is the maximum numbers of grid points can be simulated in the network

Nepe 18 the computer numbers in network

Combining Figure 5-5 and Figure 5-6, Figure 5-7, Figure 5-8 and Figure 5-9 illustrate the
comparison of maximum experimental and theoretical number of grid points with number

of computers.
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Figure 5-7 Comparison of maximum experimental and theoretical number of grid points with number of

computers (case 1)
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Figure 5-8 Comparison of maximum experimental and theoretical number of grid points with number of

computers (case 2)
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Figure 5-9 Comparison of maximum experimental and theoretical number of grid points with number of

computers (case 3)

From Equation (5.7) and Equation (5.8), we can calculate that the ratio of experimental

maximum number of grid points to theoretical maximum number of grid points is around

0.73. This means that the communication takes about 27% (1-0.73) of CPU time.
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6 Conclusions and Future Work

6.1 Conclusions

In this thesis new approaches for real-time distributed simulation are implemented and
investigated in detail. The main results and contributions of this thesis are summarized

as follows:

1. Sliding implicit method

This thesis discusses and implements explicit and implicit Euler method in non-real-time
distributed simulation. However, the implicit Euler method cannot guarantee real-time
execution due to the difficulty in solving nonlinear algebraic equation problems. A new

sliding implicit method is proposed for real-time implicit simulation.

2. New method for real-time simulation of PDAEs
By combining the PDEs with DAEs, a new approach for PDAEs (Partial Differential-

Algebraic Equations) is proposed and implemented in distributed real-time simulation.

3. Real-time distributed simulation of PDEs
Real-time distributed simulation of PDEs using TDMA protocol communication are
developed and implemented. The selection of simulation parameters and experimental

verification are performed using the wave equation.
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4, Optimization and analysis of real-time distributed simulation
The CPU usage ratio and network communication rate are investigated in real-time
distributed simulations. The scalability is analysed for the simulation methods proposed

in the thesis and experimentally verified.

6.2 Future work

In the future, the following problems will be investigated:

1. More sophisticated PDE and PDAE systems
The distributed simulation approach will be expanded to a larger class of PDE and PDAE
systems with varying structure and boundary conditions. This will have great

applications for virtual reality problems using PDE models.

2. New real-time equation distribution and communication protocols
Except for one-dimensional and two-dimensional equation distribution method, other
complex distribution method will be investigated; new communication protocols other

than TDMA will be investigated.

3. New applications
The real-time distributed simulation approach will be applied to many new industrial
applications, such as high fidelity automotive and flight simulation problems that use

PDE models. It will also be applied to enhance virtual reality and video game systems.
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Appendix A: Distributed algorithm using WinSock

Winsock is now widely used in industry. It is a networking API for Windows. This
API provides functions for sending and receiving data in a network via a protocol, such
as TCP/IP. A socket is a connection between two computers in a TCP/IP network.

Sockets are used to exchange information such as data, files, mails and websites, etc.

There are two types of sockets: TCP (Transmission Control Protocol) sockets and UDP
(User Datagram Protocol) sockets. These two types are called protocols. A protocol is
a set of rules used to determine the way the information is received and sent in a network.
To connect a socket to another computer, one need to know its IP-address and which port

is going to connect to.

Winsock using client/server architecture to communicate data between connected
computers. One is served as “the client”, the other is used as “the server”. The server
can send data to and receive data from the other side - the client; the client, on the other
hand, can receive data from and sent data to the server. Each client can send data to

several servers; several clients can send data to one server in one time processing.

In this thesis, five computers are used to form a network: four of them are used to do
computation and simulation; another one is used to display simulation results. The five

computers connected using a hub or switch, as illustrated in Figure A-1.
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Hub or Switch

==
Animation  Node 1 Node 2 Node 3 Node 4
Node

Figure A-1 Computer connection using Winsock

A.1 Distributed algorithm

A.1.1 One-dimensional distribution

Figure 4-1 and Figure 4-2 shows the equation distribution. Assume computer 1
calculate part 1, computer 2 calculate part 2, and so on. In the communication process,

the following assumption is made:

At any time the computer that calculates the right part is used as the server (bottom part
for vertical distributed); the one that calculates the left part (upper part for vertical
distributed) is used as client. For example, computer 2 and computer 3 will calculate
part 2 and part 3. When the two computers communicate each other, computer 3 is the

server, computer 2 is the client.

When the computation starts, the computer that calculates the far right part (or far bottom

for vertical distribution, for the case above, node 4) runs first, then computer 3 runs
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communicating with computer 4, then computer 2 runs communicating with computer 3,
and so on. As for the animation computer, it is always served as a server.

This thesis uses the following functions to initialize server and client respectively:

int InitClntSock() {// initialize the client

WSADATA Data; /* Structure for WinSock setup communication */
int sock;

WSAStartup(2, &Data);

memset(&CIlAddr, 0, sizeof(ClAddr)); /* Zero out structure */
ClAddr.sin_family = AF_INET;, /* Internet address family */

ClAddr.sin_addr.s_addr = htonlINADDR_ANY); /* Any incoming interface */
ClAddr.sin_port = htons(7); /* Local port */

sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP); /* Create socket */
bind(sock, (struct sockaddr *) &ClAddr, sizeof(ClAddr));

return sock;

int InitServSock(struct sockaddr_in *SvAddr, char *svIP) {// initialize the server

WSADATA Data; /* Structure for WinSock setup communication */
WSAStartup(2, &Data);

memset(SvAddr, 0, sizeof(struct sockaddr_in *)); /* Zero out structure */
SvAddr->sin_family = AF_INET, /* Internet address family */
SvAddr->sin_port = htons(7); /* Server port */

SvAddr->sin_addr.s_addr = inet_addr(svIP); /* Server IP address */

return socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
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A.1.2 Two-dimensional distribution

This distribution mode is illustrated in Figure 4-4, an inclined line that drawn from
left-bottom to upper-right is used to determine which computer is served as the client,
and which one is used as the server. In one communication step, if the part is below the
line, then the computer that calculate this part is the Server; if the part above the line,
then the node that calculates this part is the client. Every three neighbor parts that in the
«_|e« position form a group. For example, part 6, 8§ and 9 form a group, part 5, 7 and 8
form a group, and so on. Take part 6, 8 and 9 as an example. These three parts form a

group. Computer 9 will be the server; computer 6 and computer 8 will be the clients.

See Figure A-2.

6 | Nodes

- Client

Node 8 <r'?':—:> 9 | Nodeo
Client .o" Server

Figure A-2 Server and client

In this group, computer 9 calculates part 9 and runs first, waiting to receive data, then
computer 6 calculates part 6 and computer 8 calculates part 8 and runs to send boundary
The animation

data to computer 9 and receive value from the computer 9 (the server).

computer is served as a server.
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A.2 Implementation and results

In this part, 2D wave equations are took as examples to illustrate the simulation results.

A.2.1 One-dimensional distribution results
Here we choose the following parameters:

Ix=100m; Ly=100m; ¢=10m/s; bl=02 1/s; b2=0.2 m2/s; o=2m/s
Figure A-3 shows single computer simulation and distributed simulation comparison

results of point (3,2) in 2D wave equation.
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Figure A-3 Comparison of single computer and distributed results: point (3:2)

Figure A-4 shows the results comparison of point (4.3).
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Figure A-4 Comparison of single computer and distributed results: point (3,4)

A.2.2 Two-dimensional partition results

Figure A-5 and Figure A-6 shows single computer simulation and distributed simulation

comparison results of point (3,2) in 2D wave equation.
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Figure A-5 Comparison of single computer and distributed results: point (3,2)
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Figure A-6 Single and distributed error

Figure A-7 and Figure A-8 shows the results comparison of point (4, 3).
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Figure A-7 Comparison of single computer and distributed results: point (3,4)
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Appendix B: Visualization/Animation of Simulation Results

To animation and view the simulation results on the screen make it more realistic.
Nowadays, with the development of computer technology, computer graphics,
multimedia are very common. It has good user interface than just plain text and
numbers. There are many methods to view animation results. In this thesis, Microsoft

DirectX 9.0 is used.

Microsoft DirectX is a set of low-level application programming interfaces (APIs) for
creating graphics and other high-performance multimedia applications. It includes
support for two-dimensional (2-D) and three-dimensional (3-D) graphics, sound effects
and music, input devices, and networked applications. It includes: Microsoft Direct3D,
Microsoft Directlnput, Microsoft DirectMusic, Microsoft DirectSound, and Microsoft

DirectPlay.

In this thesis, animation uses Direct 3D. It is used to perform graphics functions at a

lower level Windows GDI;

The animation of the simulation results is implemented in Windows 2000 environment,
using Direct3D 9.0 and Visual C++ 6.0.

The process is as follows:
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¢ Store calculated at previous frame in Bufferl, at current frame in Buffer2
o Use Buffer2 to render
o Exchange Bufferl and Buffer2
Repeat the process continuously, the animation is implemented.
When rendering each scene, rectangle texture is used. In order to improve the rendering

speed, making it much faster, an index buffer is used.

An index buffer is a memory buffer that holds indices that "point" to vertices in the
vertex buffer. When a scene is rendered, DirectX performs certain calculations on each
vertex such as lighting and transformations. What we want to do is minimise the
amount of calculations that DirectX has to do, therefore, we need to minimise the number

of vertices. An index buffer can be used to do this.

For example, if we want to draw a square, it will be made up from two triangles, which
have six vertices (using a triangle list). But we only really need four vertices to define a
square (one for each corner). We have to use six vertices because two of them are
shared (have the same value). Because we have shared vertices, it's a geod idea to use
an index buffer. By defining the four comers of our square as vertices in the vertex
buffer, then define six indices in the index buffer. Each of which "points" to a vertex in
the vertex buffer, then render the triangles from the indices in the index buffer and so,

only use four vertices. Figure B-1 below shows this example.
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Vertex Buffer
[0] =(0,0,0)
[0] (0,0,0) [1] (0,10,0) [1] = (0,10,0)
[2] = (10,10,0)
[3] = (10,0,0)

Index Buffer
[0]=0
[1}1=2
2]=3

[3] (10,0,0) [2] (10,10,0) [B1=1

{4]1=2

[51=0

Figure B-1 Index buffer

The index buffer used in this animation is showed in Figure B-2.

The following source code is used for creating the index buffer:

for(z =0; z <M; z++)

{

for(x = 0; x < N; x++)

{

vtx=x+z*(M+1);
pBufli + 0] = vtx;
pBufli+ 1] =vix + N+ 2;
pBufli+2] =vtx + N+ 1;
pBufli + 3] = vix + 1;
pBufli + 4] = vtx + N + 2;

pBufli + 5] = vtx;
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i+=6;

0,0

O,N

Figure B-2 Index buffer used in the thesis

The animation results are shown in Figure 2-6 and Figure 2-7.
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