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ABSTRACT

Design of Dynamic Nonlinear Control Techniques for Flexible-

Link Manipulators

Victor Gavriloiu

In the past several years, considerable research interest has been made in the literature to
the problems of modelling and control of flexible-link manipulators. These manipulators
have a number of potential advantages such as increased payload-to-arm mass ratio,
faster motion capabilities, lower energy consumption, and smaller actuators. However,
design of controllers for flexible manipulators is a challenging and a complicated task
due to the highly nonlinear and coupled dynamics of the system. In addition, the non-
minimum phase characteristic of a flexible manipulator makes the design of stable
controllers that ensure stringent tracking requirements a highly nontrivial and challenging
problem.

In this thesis, we develop robust dynamical controllers for addressing the problems of
tracking and regulation of both rigid-link and flexible-link manipulators. The design of
- the dynamical controller is based on construction of a two-time scale dynamical motion
of the closed-loop system. Furthermore, other conventional control methods such as the
PD control, computed torque, and localization methods are investigated for comparison

purposes. The main control objective is to achieve stability of the closed-loop system

1ii



while ensuring boundedness of all the control signals as well as sufficiently small tip-
position tracking requirement. In order to achieve a minimum phase behaviour for
utilizing output feedback control strategy, a new redefined output is proposed. Instead of
using the joint angles as outputs in the rigid-link case, a new output is chosen for the
flexible-link case which will provide and guarantee stability of the closed-loop flexible
system. Simulations results are provided for both the rigid-link and flexible-link
manipulators using the proposed control strategies. A comparative analysis is also
included to demonstrate and illustrate the advantages and disadvantages of the considered

control methodologies.
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Chapter 1 Introduction

"A reprogrammable, multifunctional manipulator designed to move material, parts, tools,
or specialized devices through various programmed motions for the performance of a
variety of tasks". This is the definition given in 1979 by the “Robot Institute of America”.
Even though the definition dates 26 years ago, it reflects the current status of robotics
technologies [1]. Because of its programmability, an industrial robot is a part of an
automated system. In the last decades, automation has been increased in industry, and one
important link in this chain is represented by manipulators. The manipulator consists of a
sequence of rigid or flexible links interconﬁééfed by means of joints. Another part could
be the end-effector at the end of the last link. The motion of the links is provided by the
actuators, and the status of the manipulator is given by measurements using sensors. The
desired motion of the manipulator is achieved by using a control system which provides
commands to the joint actuators depending on the implemented control methodology.

Conventional rigid-link manipulators have been widely used in industry. Their load-
carrying capacity is only five to ten percent of their own weight. This restriction is due to
the requirement of the rigidity. Other disadvantages are represented by the power
consumption which is very high for these large-weight manipulators, and the speed of
operation which is generally low. All of these problems could be avoided by using a
lightweight flexible manipulator. At the same time, the number of applications of the
manipulators has been increasing in the last decades. For example, space operations
require the same lightweight manipulator which is characterized by flexibility of the

links. Below are some benefits of using flexible manipulators: -



¢ increased load-carrying capacity — the ratio of acceptable ratio payload weight to
robot weight is increased
e energy consumption — the lightweight manipulators require smaller actuators,
which means less energy consumptions
e cost — flexible robots require fewer materials and smaller actuators
e movement — flexible links can handle higher accelerations
e safer operations - the low inertia of the flexible manipulator reduces the
possible damages resulting from physical interaction between the manipulator
and the working environment.
However, there are some disadvantages using the flexible manipulators. There are
stronger nonlinear effects due to the joint friction, backslash in the control system,
nonlinear interaction and couplings. These along with the known flexibility of the link
could decrease the performance of the manipulator in terms of accuracy, vibrations,
and/or interaction with the working environment.
In order to minimize the effects of flexibility of the link, and to exploit maximum
advantages provided by the flexible manipulators, it is required to have realistic, accurate
and complete dynamic models to use for control. A suitable model is very useful in the

development of control methodologies for the manipulator as well as for simulations

purposes.



1.1 Literature review

The rigid and, especially, the flexible multi-body structures have been extensively
analysed in the recent years [2], [3], [4]. One reason is the increasing demand coming
from the industry regarding the use of manipulators. Research has been conducted in the
literature both on modelling and controlling the manipulators. This chapter presents a
literature review of the research in the area of deelling and controlling of flexible

manipulators.

1.1.1 Modelling the flexible-link manipulators

Flexible manipulators are continuous systems characterized by infinite number of degrees
of freedom, and are governed by nonlinear partial differential equations. The dynamic
equations of motion of a manipulator can be derived using different methods such as
Newton-Euler equations, Lagrangian equations, Hamilton’s canonical equations etc.
Within these methods, the Lagrangian method is the most applied because of its scalar
nature even though the Newton-Euler method is more efficient in terms of computation
factors.

As a first step in modelling the flexible manipulators, one could consider a one-flexible
link manipulator. Wang and Vidyasagar [5] investigate the transfer function between the
torque input and the net tip deflection. It is shown that by increasing the number of
modes, the relative degree of the system becomes ill-defined. An alternate solution is
provided by using an output defined as the rigid body deformation minus the elastic

deformation. In this case, the resulting transfer matrix has a well-defined relative degree



even though the number of modes approaches infinity. Using three or four modes makes
the task of control of a flexible link manipulator easier.

Hasting and Book [6] provide a linear state-space model for a flexible link manipulator
arm. This method uses a separable formulation of assumed modes to represent the
transverse displacements due to bending. The kinetic and potential energies for the
system are obtained using the Lagrangian formulation. Subsequently, the dynamic
equations are organized into a state-space model which can be investigated using linear
control system design procedures. It was shown that the proposed model agrees with the
experimental measurements using only two assumed flexible modes.

| Canon and Schmitz [7] provide a detailed dynamic analysis of a single flexible-link. The
dynamic analysis was done using Euler-Bernoulli beam theory, Hamilton principle and
Lagrangian approach. The assumption of small deflection was used. The results are in
form of infinite ordinary equations in decoupled form, but only a finite number was
applied.

Extensive research was conducted in the literature for modelling one flexible-link
manipulators [8], [9], [10]. The results are very important in order to better understand
the nonlinear interactions between the rigid and flexible components of arm dynamics.
Furthermore, various methods have been proposed for dynamic modelling of multilink
manipulators [11] [12].

Book [13] uses a four by four transformation matrix to represent the joint and deflection
motion. The link deflection is assumed small so that the link transformation is
represented in terms of summation of modal shapes. The equations are free from

assumptions of a nominal motion and do not ignore the interaction of angular rates and



deflections. It was shown that the computational complexity and time is reduced by using
proper choice of mode shapes. This method uses recursive formulation for calculation of
different coefficients and transformation matrices.

A dynamic model for multilink manipulators is described in [2] by Alessandro de Luca
and Bruno Siciliano. The kinematic model describes both rigid rotation and flexible
displacement under small deflection assumption. The dynamic model of the manipulator
is derived using the Lagrangian approach. The links are modeled as Euler-Bemoulli
beams with clamped-mass boundary conditions. In order to obtain a finite-dimensional
model, the assumed modes method is used. The equations of motion are detailed for a
two-link manipuiator assuming two modes of vibration for each link.

Another class of multilink manipulators is represented by the manipulators having only
the last link flexible. Wang and Vidyasagar [3] provide a modelling for an entire class of
multilink manipulators with the last link flexible such as: the five bar linkage
manipulator, the elbow manipulator, the cylindrical manipulator, or the spherical
manipulator. The studied manipulator is the five-bar-linkage manipulator with the last
link flexible while the others are assumed rigid. In order to obtain a simplified model
some assumptions are considered: the dimensions of the last link are assumed to have a
cross-section where the height is greater than the width so that the link will flex
horizontally but not vertically. In addition, it is assumed that there is no payload or a
small payload. This method neglects the small elements of the inertia matrix to simplify
the dynamic equations. If this manipulator is used for “pick-and-place” operations, a rigid
controller can be used for “pick” and “place” operations while for “move” any other

controller designed for flexible link could be employed.



1.1.2 Control of flexible-link manipulators

In the past several years a considerable interest has been focused on the modelling and
control of flexible-link manipulators. This was necessary due to the increased demand of
energy efficient lightweight robot manipulators in industry. These manipulators have a lot
of potential advantages such as: an increased payload-to-arm mass ratio, faster motions,
lower energy consumption, and small actuators. Along with these advantages, some
disadvantages arise due to flexibility of the links. Designing controllers for flexible
manipulators becomes a complicated task because of the highly nonlinear, coupled
dynamics of the system. The flexible motion is approximated by using finite dimensional
system, and a large number of flexible modes is required to accurately model the
dynamics. The rigid body dynamics and the flexible dynamics results in large system
dimensions which can cause computational problems in the controller design. Another
problem is represented by the non-minimum phase characteristic of the flexible
manipulators.

In the last decades, a variety of methods have been investigated including linear control,
adaptive control, frequency domain techniques, singular perturbation, and neural
networks based approach. Initial experimentation on flexible robots began with single-
link manipulators. One of the first complete work in this area was reported by Cannon
and Schmitz [7]. They applied a linear quadratic Gaussian (LQC) control by designing an
optimal controller that assumes the availability of all of the states of the system. Due to
the unavailability of the states, they should be reconstructed from the available input,
which is the applied torque at the hub and from the output, namely the hub velocity and

the tip position. An optimal estimator was used to reconstruct the states by assuming that



the measurement errors and disturbances have Gaussian probability density functions. In
[14] Sakawa et al. used a linear quadratic control (LQ) to dampen the flexible modes
while tracking the hub reference trajectory by assuming that all of the states are available
for measurement.

Luca and Siciliano [15] proposed a simple controller for the regulation problem of
flexible manipulators under gravity with or without internal damping of link vibrations.
The control law does not require any feedback from the deflection variables, and it
consists of a linear term plus a nominal feedforward term. This is a joint PD feedback
plus a constant feedforward term. The link stiffness K and the gravity term should be
known for defining the steady-state deformation. Global asymptotic stability of the
reference equilibrium state is provided. Asymptotic stability of joint PD controller for
planar manipulator without gravity has been shown in [16], and for the case without
internal damping has been considered in [17]. Full state asymptotic stabilization of
flexible manipulators using strain measurements was described in [18].

In [19] Arteaga and Siciliano presents a controller for solving the tracking problem of
flexible robot arms. In order to achieve this goal, the desired trajectory for the link
(flexible) coordinates is computed from the dynamic model of the robot arm and is
guaranteed to be bounded, and the desired trajectory for the joint (rigid) coordinates can
be assigned arbitrarily. The case of no internal damping is also considered, and a robust
control technique is used to enhance the damping of the system.

A widely used control method is the inverse dynamics control [20]. This approach
consists of transforming the nonlinear system dynamics of the flexible manipulator into a

linear one, where then linear control techniques could be employed. Because of the non-



minimum phase characteristic of the flexible manipulators, one could use a re-defined
output instead of the direct tip position.

Wang and Vidyasagar [21] have shown that the nonlinear flexible-link manipulator is not
in general input-state linearizable, but it is locally input-output linearizable. If the tip
position is considered the output of the system, for the associated zero-dynamics are
unstable. The output redefinition approach was used to overcome the non-minimum
characteristic of the system. The same authors have proposed in [5] the redefined output
as the reflected-tip position in order to achieve stable zero dynamics. De Luca and Lanari
[22] have studied the regions of sensor and actuator locations for achieving the minimum
phase property.

Kwon and Book [4] decomposed the inverse dynamics of the flexible link manipulator
into a causal system, which was integrated forward in time, and an anti-causal system
which was integrated backward in time by using coordinate transformations. Bayo [23]
has proposed a non-causal controller by integrating the end-point acceleration profile that
acts before the tip starts to move and after the tip stops to move. Both of these two
approaches require substantial amount of computation, and are under assumptions of
linear approximation model of flexible-link manipulator.

An inverse dynamics control strategy for tip position tracking of flexible multilink
manipulators is presented in [24]. The control objective is to achieve small tracking errors
for a class of multilink manipulators. The redefined output is used, and the control inputs
are augmented by terms which ensure stable operation of the closed-loop system under
specific conditions. This approach requires measurements of rates of change of flexible

modes with time which is difficult to measure. This problem is solved by using an



observer-based inverse dynamics control strategy [25]. In [26] the authors present an
inverse dynamics sliding control of flexible link manipulators. To achieve minimum
phase characteristic the redefined output and inversion techniques are employed. The
robustness of the system is given by two main factors: the resulting input-output
linearization scheme tends to approximately decouple the dynamics, and the sliding
control component forces the off-manifold trajectories to be attracted to the surface.
Command shaping methods have also been applied to the control of flexible multi-link
robots. Hillsley and Yurkovich [27] use input shaping for gross slewing motion based on
the natural frequency for an intermediate configuration. A feedback controller with link
acceleration feedback is used to damp out thé unavoidable residual vibrations caused by
the nonlinearities. Later, Tzes and Yurkovich [28] developed an adaptive approach
combining a frequency domain identification and a scheme for adjusting the necessary
control impulses.

The transmission zero assignment for linear system was presented by Patel and Misra
[29]. Based on this approach, Geniele et a]. [30] applied this method to a single-link
flexible manipulator to achieve tip position tracking control. The model was linearized
about an operating point. The control strategy consists of an inner control loop that
incorporates a feedthrough term to assign the system’s transmission zeros at desired
locations in the complex plane, and a feedback term to move the system’s poles to
appropriate positions in the left-half plane. In addition, a feedback servo loop is used to
allow tracking of the desired trajectory.

The singular perturbation theory has been addressed by many researchers. This method is

feasible due to the two-time-scale nature of the system dynamics. Khorasani and Spong



[31] has provided a singﬁlar perturbation model for the case of flexible-joint
manipulators. The control strategy was based on stabilizing the fast dynamics and
tracking the joint trajectories. Siciliano and Book [32] proposed a similar approach in
terms of modelling for the case of multilink manipulators. The same approach was used
in [33], [34], [35]. Aoustin et al.[36], experimentally has provided a comparison between
some of these methods. In general, the joint position has béen taken as output to avoid the
non-minimum phase problem. The drawback could be large tip position, especially when
the singular perturbation parameter is not small enough. To overcome this limitation,
several researchers have used the integral manifold approach provided in [37, 38] to
control flexible link manipulators [39] [40, 41].

Apart from the conventional control techniques, recently, intelligent-based control
techniques have been investigated. Fuzzy logic and neural networks based approaches
have been proposed. Khorasani [42] presents an intelligent-based control methodology
for tip position tracking control of a single-link flexible manipulator. Based on the
inverse dynamics method, two neural networks are proposed to learn the nonlinearities of
the flexible arm associated with the inverse dynamics controller. In order to achieve the
minimum phase property the redefined output approach is used. No a priori knowledge
about the nonlinearities of the system is needed and the payload mass is also assumed to
be unknown. It has been shown that by utilizing a neural network having the structure of
a typical inverse dynamics controller, the limitations of the inverse dynamics scheme
may be relaxed significantly.

Kubica and Wang [43] have proposed a fuzzy control strategy to control the rigid body

and the first flexural mode of vibration in a single link robotic arm. They have shown by

10



simulation and experimentally that the rigid and flexible modes can be adequately

controlled with the proposed technique.

1.2 Outline of the Thesis

Because of the large use and future potentials of the manipulators, researchers are trying
to improve the control methodologies for such systems. One direction is the control of
rigid link manipulators which have been widely used in industry. Because of the new
demands from the industry, the lightweight manipulators are used in a number of
applications. This is the reason that researchers have been trying to develop and improve
new control methodologies.

The thesis outline is presented below:

Chapter 2 is devoted to the modeling of the rigid and flexible manipulators. In the first
part of the chapter the rigid manipulators are presented. Kinematics is considered in terms
of direct kinematics, inverse kinematics, and velocity kinematics. Using the Lagrange
formulation the equations of motion of a manipulator in the joint space are derived. In the
second part of the chapter, the flexible manipulators are presented. The assumed modes
approach and the Euler-Bernoulli beam theory are used to derive the dynamic model for a
flexible link manipulator. Using the recursive Lagrange approach, the dynamic equations
for multi-link flexible manipulator are derived.

In Chapter 3, we present different control methods for comparative purposes for rigid link
manipulators. Simulations are performed using different scenarios (different sets of initial
conditions, different sets of gains, and in the presence or absence of a disturbance).
Chapter 4 is devoted to the control of flexible-link manipulators. First, some concepts

such as output redefinition, input-output linearization, and zero-dynamics are presented.
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Afterwards, the computed torque and the dynamic control methods are used for
controlling a flexible link manipulator and a two-link manipulator for which the first link
is rigid and the second link is flexible. Finally, a comparison between the rigid and
flexible link manipulators is presented.

Chapter 5 presents the conclusions and suggestions for future work.

12



Chapter 2 Mathematical Models for

Rigid and Flexible Manipulators

2.1 Modelling of rigid-link manipulators

A robotic manipulator can be modeled as a chain of rigid bodies called links. The links
are interconnected to one another by means of joints. One end of the chain of links is
fixed while the other end is free to move. In general, the mobile end of the manipulator
has a tool or end-effector attached to it.

The objective is to control the position of the end-effector in the two-dimensional space.
In order to control the end-effector, we have to formulate the relationships between the
joint variables and the position of the tool through kinematics. Differential kinematics or
velocity kinematics describes the analytical relationships between the joint motion and
the end-effector motion in terms of velocities.

In order to analyse the structure of the manipulator and to design the control algorithms
we need the dynamical model of the manipulator. There are two methods for derivation
of the equations of motion of a rigid manipulator: the first method is based on Lagrange

formulation and the second method is based on the Newton-Euler formulation.
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2.1.1 Kinematics of rigid link manipulators

Direct kinematics

Let consider a two-link rigid manipulator as shown in figure 2.1. The manipulator

consists of two rigid links of weight m, and m,and length /, and/,, respectively. The

joint angles are denoted by ¢, andg,.

Figure 2-1 Two-link rigid manipulator

Direct kinematics problem may be stated as follows: given the joint anglesq,,q,,

determine the end-effector’s position (coordinates) and orientation with respect to a
coordinate frame attached to the robot base. Using this method we can express the

position of the tip in terms of the joints angles as follows:

{x =1, cosq, +1, cos(q, +94,) 2.1

y =l sing, +1,sin(g, +q,)
where the orientation of the tool frame is given by:

{izio =cos(q, +q,)
Jaiy =sin(q, +q,)
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{izjo = —sin(g, +q2) (2.2)

jzjo = cos(ql +Q2)

{izio Jako :l _ [COS(% +q,) -—sin(g, + Q2):'
Ljo JaJo sin(q, +q,) cos(q, +q,)

Inverse kinematics

The inverse kinematics problem may be stated as follows: given a desired position and
orientation for the end-effector of the manipulator, detérmine a set of joint angles that
achieve desired position and orientation. The solution to the inverse kinematics problem
is very important in order to transform the motion specifications of the end effector which
are given in the operational space into the corresponding joint space motion.

Due to the structure of the equations the solution may not be unique. If we have a

given(x, y), we can find two different solutions, named elbow-up and elbow-down.
That is we can write:

x? +y2 —112 —122 _

D 2.3
211, 23)

cosq, =

This implies:

g, =cos™ (D)

V1-D?

We will find the solutiong, = tan™ (i--T). The sign + implies that we have two

different solutions.
Now, we can calculate:

I si
g =tan™ (X)—tan™ (2L
x I, +1,cosq,
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The two solutions of the inverse dynamics are given by:

q, = tan -1 (Z) — tan—l (_l_Z__S_l.nL
x I, +1, cosq,
- 2.4)
- 1-D
g, =tan™ (£ D )
A
Yy

Solution 1

Figure 2-2 Multiple manipulator solutions for the inverse kinematics problem
Referring to figure 2.2 we can distinguish the two different solutions namely solution 1

which is named elbow-up, and solution 2 which is named elbow-up.

Velocity kinematics

The velocity kinematics problem determines the relationships between the joint
velocities and the end-effector linear or angular velocity. The direct kinematics equations
define a function between the space of Cartesian positions and orientations and the space

of joint positions. The velocity kinematics uses the Jacobian of this function, namely:

x=-1lsing, q,~1,sin(q, +q,)(q,+4g,) @.5)

y =—1, cosq, cosq,+1, cos(q, +q,)(q,+q,)

Let us denote:
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X
y 9,
Now, we can rewrite the equation (2.5) in the following form:

&'[-Aﬁn%—ésm@T+%) _hﬁM%+q»}‘ (2.6)

I, cosq, +1,cos(q, +q,) I,cos(q, +q,)

or.

X=Jg 2.7)
The matrix J is called the Jacobian of the manipulator and it represents the contributions
of each joint velocity to the linear and angular end-effector velocities. The Jacobian
matrix is a function of the manipulator configuration. The cases when the Jacobian matrix
is singular are named kinematics singularities, and the manipulator is said to be in a
singular configuration.

Another form of the equation (2.6) is given below:

) 1, co + 1, sin(qg, + :
.ql =Lsinq2[ »c0s(g; +q,) 2 (4 ‘ ) } X (2.8)
q, L1, -1, cosq, —1,cos(q, +q,) —Ising, —1,sin(q, +q,) y

or

g=J" X, where J'is the inverse of the Jacobian matrix assuming that it is well-

defined.

2.1.2 Dynamic modelling of rigid link manipulators

The dynamic model of the manipulator has a very important role for analysing the
manipulator’s behaviour, for designing control methodologies, and for simulation of

motion. Simulation of robot motions could help one in developing improvements to the
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control strategies without having an experimental manipulator. The control of the
manipulator is improved if complex control strategies are used. In order to develop them,
we need very precise dynamical models.

The dynamic behaviour of a manipulator is described in terms of the time rate of change
of the arm configuration in relation to the joint torques. This relationship can be
expressed by a set of differential equations, called equations of motion that govern the
dynamic response of the manipulator to input torques. There are two methods for
derivation of the equations of motion of a manipulator in the joint space: the Newton-
Euler formulation and the Lagrange formulation. The following section presents only the

Lagrange formulation. The details for Newton-Euler formulation are omitted for brevity.

2.1.1.1 Analytical model - Lagrange formulation

In this method, the system’s behaviour is described in terms of work and energy using
generalized coordinates. The resulting equations are generally compact and provide a
closed-form expression in terms of joint torques and joint displacements.

Let consider the manipulator shown in figure 2.1 with the vector of generalized

coordinatesq =[g, ¢,[ . Let /jand /_,be the distances of the centers of mass of the
two links from the respective joint axes. Let m;and m,be the masses of the two links.

Let /yand I, be the moments of inertia relative to the centers of mass of the two links.

Using the inverse kinematics we can write:

Va =4, 4
b 2.9)
ch = ']vc2 q
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where:

[-1,sing, 0
Jvcl =| 1, cosq,
0 0

_"ll sing, —1,,sin(q, +q,) —1,sin(g, +q,)
']vc2 =|—1 cosq, -1, cos(q, +q,) l,cos(gq, +q,)
0 0

Let us assume that the following conditions are provided: kinetic energy is a quadratic

function of q and the potential energy is function of ¢, that is kinetic energy is given by:

1 2 e o l.T .
K=22.4,@4,9,=59 D@)q (2.10)
ij

where D is a symmetric and positive matrix for each g € R*.

We can derive the Euler-Lagrange equations by defining the Lagrangian as

2 . o
L=K-V =23 d,@4,4,-V (@) @.11)

ij
where V(g) is the potential energy.
We have:
oL

= =4, (a)q, 2.12)
oq, /

and

.0 d 'Y (Y 6d .. .
———=2.dy(@Dq,+ > —dy(@q, =2 dy(@Dq,+ D> —2q,q, (2.13)
dt g, ~ dt - ~ dq,

g - (2.14)
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Thus, we can write:

Yy 6d 1ad ' . aV
d. Yy g = =1 k=1..,n 2.15
; (@a Z{dqi zaqk}q,q, oy (2.15)

where 7, , k£ =1,..,nis the torque input applied to each joint.

By interchanging the order of summation and taking into consideration the symmetry, we

can show that:

od,, od, od,. *
g g =S Py 2.16
> ¢ i, 1919, Ei,j,{ 0, dg 34,4, (2.16)
Hence,
.. 1 0d, oy .-
= 2.17
dq, 91957 25 G o0 "o 217)

od,, . od,
Yo+ 0dy _ Oy —> Christoffel symbols. For a fixed £ we have:

Let us denote ¢, =

dq; 0q j g,
¢ - Let us denote
oV
& =5 (2.18)
g,

We can rewrite:

DAy @q,;+ Y cu(@)aq, +g.(a) =1, (2.19)
i ij

In the matrix form, we have:

D(g)q+C(q.9)g+g(q) =7 (2.20)
Let us derive the mathematical model for the two rigid-link manipulator.

The translational part of the kinetic energy is:
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1 l . .
Emlchlvcl + Emzchzvcz = ';—Q{ml-]V;Jvcl + szVcTzJch}q (2.21)

The rotational kinetic energy is:

1-’110111- .
Eq{100+211}q (2.22)

From (2.10), (2.21), and (2.22), the inertia matrix is given by:

T T L+1, I,
D(q) =m I Jv, +m,Jv,,Jv,, + (2.23)
I, I,
where:
dy = mllczl +m, (112 + 1022 +211,, cos(g,) +1, +1,
dy =dy, =m, (I}, +11, cosq,) +1,
dy = mzlczz +1,
The Christoffel symbols are now explicitly given as:
Cn = 1 ody =0
0q,
Cyg =Cyy = l oy =-mll,sing, =h (2.24)
2
o, _lody 1ady
209, 2 0g
1od,, 10d,
Clie ="~ = =
20q 20q,
1 0d,,
cC Cp, =——===(
12 = G =5 o9,
1 od
Cop = =
2 oq,
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The potential energy of the manipulator is simply the sum of those of the two links:

Vi =mGl, sing,
V, =m,G(l;sing, +1,sin(g, +q,))
That implies:

V =mGl,sing, + m,Gl, sing, + m,Gl_, sin(q, +q,)

oV
g =——=(ml, +m,l)Gcosq, +m,l ,Gcos(q, +q,)
1
oV
g, = =m,l,Gcos(q, +g,)
6%

Explicitly, the mathematical governing equation can be written as:

{dn dlz:l 9, " hq, hq,+q,) 91 +|:g1:l=[rlj!
dy  dy q.; _hél 0 éz &> 7

We can rewrite equation (2.27) as follows:

D(q) ;1.+ C (q,t})(}+ glp=r

where:

(2.25)

(2.26)

2.27)

(2.28)

D(g)is the inertia matrix (2x2 symmetric positive definite matrix), C(g,q)is the term

due to Coriolis, and centrifugal forces, g is the 2x1 vector of joint variables, g(g)is the

term due to gravity, 7 is 2x1 vector of input torques.

As discussed previously for direct and inverse kinematics, for the behaviour of the system

there are two dynamics problems: direct and inverse dynamics. The direct dynamics

problem is concerned with computing the joint trajectory ¢(f)given the applied

torquez(¢) , whereas the inverse dynamics problem computes the applied torque profile
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7(¢) which corresponds to a given joint trajectoryq(¢). The inverse dynamics is very

useful in some control techniques based on the detailed model of the manipulator.

2.1.1.2 Properties of the dynamical model
Let us consider a planar, two-link, articulated manipulator. The dynamics of this two-

rigid link manipulator can be written in the general form as

D(q)q+ C(a,9)q+ () =7 2.29)

Properties of the inertia matrix

As discussed earlier the matrix D is symmetric and positive definite. Another important
property of the inertia matrix is .that is it is bounded above and below [44]. The inertia
matrix is only function of ¢ through sin and cos functions which are bounded by [-1 1],
so that we can write:

wl <D(g)< p,l, (2.30)
with ¢, p, computable scalars. Similarly, the inverse of the inertia matrix has the same
property:

L r<p (q) <l (2.31)

2 H

Properties of the Coriolis and centrifugal term [45]

Define the matrix N (q,(}) = i)(q) -2C(q, (}). Then N(gq, é) is skew symmetric, that is, the

components n, of N satisfyn, =-n,; .
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Properties of the gravitational term

As discussed above, the gravitational term is defined as:

oV
& =5= (myly +myl)G cosq, +m,l,,Gcos(g, +q,) (2.32)
1
ov
g, =——=myl,Gcos(q, +¢,)
9q,

The gravitational term is function of ¢ through sin and cos functions, therefore they are
bounded [44], that is

lc@)] <, (2.33)

2.2 Modelling of flexible-link manipulators

This section is devoted to modelling of a flexible link manipulator. The manipulator
considered consists of a flexible beam attached directly to a motor and is driven by a
torque. One end of the beam is fixed (hub), while the other one is free (end-effector). The
end effector could have a small mass attached as a payload. In order to design a better
control method for this type of manipulators an accurate dynamical model should be
used. The dynamical model is derived using thé Euler-Bernoulli beam theory in order to
obtain a partial differential equations with the corresponding appropriate boundary
conditions. Furthermore, using the Lagrangian formulation approach and the assumed

modes method we can obtain the state-space representation of the manipulator.
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Figure 2-3 Schematic of a flexible link

2.2.1 Euler-Bernoulli beam equations

Consider a flexible link as shown in figure 2.3 moving in the planar field. The arm is
clamped at the base and is driven by an actuator. The reference frame X0-YO is fixed,
while the origin of the frame X-Y is attached to the actuator. In order to derive a
mathematical model, we should take into consideration the following assumptions [46].

Assumption 2.1 The arm is a slender beam with uniform geometric characteristics and

homogenous mass distribution.

Assumption 2.2 The arm is flexible in the lateral direction, being stiff with respect to

axial forces, torsion, and bending forces due to gravity; furthermore, only elastic
deformations are present.

Assumption 2.3 Nonlinear deformations as well as internal friction or other external

disturbances are negligible.

The deflection of any point on the beam is given by the Euler-Bernoulli equation [47]:
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o*w(e, 1) oA, I O’ w(e, 1)

EI
og* ot?

=0 (3.34)

where & = x/L is the normalized position along the link of length L and area 4,, E is
the Young’s modulus of elasticity, / is the inertia of the cross-section of the beam,
and p is its density.

Let us assume that the separability in time domain and space domain is satisfied:

w(x,) =Y @, (x)¥,(t) for i=12..n (3.35)
In this case, the flexible deflections are described by two functions, one function is a
function of time while the second function is function of a spatial variable. This yields:

GZ‘I’(t)

2 i (g)‘I’(t) pA,L'D(s) =0 (3.36)
&

Let us assume that ‘¥ (¢) = ¢’ . This implies that
El{d aq)(g) pA, L' D(g) o }1}(1) =0 (3.37)
&

This equation should be satisfied for each t which means that the term within the brackets

should be equal to zero:

d*d(e
22 _ gige) =0
og*
where S =ﬁ"’-L“a)2
ET

The solution to the above equation could be written as:
D, () = Asin(BE) + B cos(BE) + Csinh(SE) + D cosh(BE) (3.38)

Boundary conditions
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In order to find the solution®,(¢) , we need four boundary conditions which are given
by:

D(£) = 0for £=0

40() =0 for £=0
dé

%:o for £ =1 (339)
Io@) _ Mp
a¢’ PpA, L

D(£) for £ =1

The conditions at the joints yield:
B=-D and 4=-C
The third condition yields:
_ sin £ +sinh 4
cos S +cosh S

A
The mass conditions at the end-point lead to Q( ﬂ)[B] =0.

By setting the determinant of matrix O(f) to zero, a frequency equation could be

obtained as follows:

M

1+ cosh(B)cos(f) +
P,

2+ f(sinh(f)cos() ~ cosh(f)sin()) = 0 (3.39)

The natural frequencies of vibration are obtained from:

EI
od,L

w, =p’ (3.40)

Substituting the boundary conditions in the form of the mode shapes, we can write:
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sin(5,$) + sinh(B,£)

©,(¢) = B, (sin(f,$) — sinh(B,£) - cos(B.&) + cosh(B.&)

[cos(B,5) —cosh(B,5)])  (3.41)

The coefficients B are chosen by normalizing the mode shape functions®,(&):

[@l&)de=1,i=1,..m.

Each natural frequency o, yields a specific mode shape function ®,(£) and specific
amplitude ¥, (¢) .. A single éolution to the deflection problem is now given by:

w;(x,) = ©,(x)¥;(?) (3.42)
The single solution w; (x,#) will not usually satisfy the initial conditions for position and

velocity. Since the equation (3.34) is linear and homogenous, the principle of

superposition holds and the sum of the infinitely many solutions w;(x,¢) is a solution of

equation (3.34), that is

W(x,t) = iCD,. 6L 20) (3.43)

2.2.2 The assumed modes method

The solution of equation (3.43) requires an infinite number of modes. Instead, an

approximated solution could be used using only a finite number of modes, that is.
W(x0) =3 0,(0%, () (3.44)
i=1

where ¢, is any function satisfying the boundary conditions. If the functions ¢, are

selected as polynomials in x, the resulting frequencies of vibration are approximations to

the natural frequencies of the system. If the functions ¢, are selected as the
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eigenfunctions @, (x) , the resulting frequencies of vibration equal the natural frequencies

of the system.

In conclusion, the deflection of the cantilever beam can be approximated by:

W(s0)= 3 0,(0%,0) (3.49)

2.2.3 Dynamical equations of a single flexible-link manipulator

Taking into consideration a finite number of modes, the dynamic equations can be
derived using the recursive Lagrange approach [13]. The dynamic equations for a planar

single link manipulator are given by:

M!:q:|+ A(Q>q)+gl(q>q;57§)+'Elq - T:, (3.46)
f2(q,9)+g,(9,9,6,0)+E, 5+ KS

The inertia matrix M is given by:

my =Jy+J, + ML’ +1,+M,(DT5)

m, =M, LD, +J,@ , +0,,

for j=2,..m+1

m, =m, +ML<I>2i_1,e + JLCD?_L‘_, for i=2,.,m+1
m;=M,®,_®, +JLCI);._L5<I>']._L,_, fori=2,..,m+1and j=#i
with:
o =7, =[®, .. ®,].,, 0, = D, (&),
L3 L} 1 L} @-
T = [0 .. Dl D 4 ,(f)\é_:l
ag
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o, = pL; J:CD,.(f)fdf for i=2,..,m
The nonlinear terms f, f, representing the Coriolis and centrifugal forces are calculated

by differentiation of the inertia matrix:

1, =2M, ¢(p,”5)p,” &)

) - Coriolis and centrifugal forces
.f2 = —ML q (¢e¢eT5)

The matrices K, E, are given by:

K =diagik,,....k,} where k, = {d il Cﬂ:ldf
LO
E, = diag{f, .. f,} where fa =02k,

2.2.4 Dynamics of a multi-link flexible manipulator

Using the same recursive Lagrangian approach, the dynamics for multi-link flexible

manipulator can be derived as:

MF}F f@a)+ g (q,é,&c.?)fEl(} - T} (3.47)
1240+ £,(4,,6,6)+ E, 5+ K&

where ¢qis the nxlvector of joint variables, &is the mx1vector of deflection variables,

/1,81, /5,8, are the terms due to gravity, Coriolis, and centripetal forces, E,is the

structural damping matrix, K is the stiffness matrix, E,is the hub damping, and 7 is the

vector of joint control torques.

If the number of flexible modes taken into consideration for each link is m,, then

s=l6, .. 5,F ands =[5, .. &, fori=t,nandm=m,.

i=1
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As it can be seen from the dynamical model of the flexible manipulator, the number of
mechanical degrees of freedom is greater that the number of control inputs. That means
that the flexible manipulator is an under-actuated system. This limitation makes the
control of this type of manipulators more difficult than the ones designed for rigid
manipulators where the number of degrees of freedom equal to the number of control

inputs.

2.3 Conclusions

In this chapter the mathematical models for rigid and flexible-link manipulators are
presented. The first part is devoted to rigid link manipu1ators. The kinematics and
dynamics of this type of manipulators are discussed. Some important properties of the
dynamic model are presented. In the second part of this chapter, the flexible link
manipulators are considered. Basic assumptions for the validity of the model are stated
[46], leading to the Euler-Bernoulli beam equations of motion. Furthermore, using the
assumed modes method, the dynamical equations of a single flexible link manipulator are
obtained. Taking into consideration a finite number of modes and using the recursive
Lagrange approach, the dynamic equations for a multi-link flexible manipulator are

derived.
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Chapter 3 Control of Rigid

Manipulators

The control problem for manipulators is to determine the joint inputs required to cause
the end-effector execute a commanded motion [45]. The objective of the control can be
divided into two different categories: regulation and tracking. Regulation problem or the
point-to-point control is when the desired trajectory of the end-effector is chosen to be
constant by specifying the final point. Tracking problem consists of following a time-
varying joint reference trajectory. In this case, we have to take into consideration the
manipulator’s capacity in terms of maximum velocity and acceleration which should
cover the corresponding values imposed by the desired trajectory. One could say that the
regulation problem is a particular case of tracking problem where the desired velocity and
desired acceleration are set to zero.

This chapter will presents four different control methods for rigid link manipulators,
namely, PD control, computed torque, localisation, and dynamical control methods. For
each method different scenarios are used with different sets of initial conditions and using

different sets of control gains.

3.1 PD control method

We have shown in previous Chapter that the equations of motion of a rigid manipulator

are described by:
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D(g)q+C(g,9)q+g(g) =7 G.1)

The objective of the control is to determine the n components of the torques for the

revolute joints that permit the end-effector move to a given final positiong, = [q‘“ ] .
942

In order to achieve the desired position, we can use a proportional-derivative (PD)

controller. The control law is based on the local measurements of the position errors

9, =9, —q,and joint velocities g, .

First, we consider the case when g(q) =0 (that is, no gravitational forces). The control

law is given by:

T, = —kpj qt.—kdj q (3.2)

where k p,,k p, are strictly positive constants. To show that the above control law is
J

stable and achieves zero steady state error, consider the Lyapunov function candidate:

T T

V=%[é D(@)g+q k,q] (33)

We can rewrite the conservation of energy in the following form:

T

2214 Da1=gr (3.4)

2dt

The right term represents the power input from the actuators, and the left term represents

the derivative of the robot’s kinetic energy. We have:
T, = —-kpj q,.—kdj q 3.5)
where k p’kd are constant symmetric positive definite matrices (usually diagonal

matrices).
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We can write the time derivative of V as:

T

V=gq [t+k,q] (3.6)

Usingz; = —kpj (} i~ kdj q , it implies that:

. T

V=-q k,qg<0 3.7
Let us consider ¥ = 0. This implies that

g=0=g=0=g=D"kg=g=0 (3.8)
In this case, the system trajectories converge to the desired state. Now, let us assume

that g(g) # 0. In this case, we can write the control law in the following form:

7, =k, q,~k, 9+ g(q) (3.9)
In this case, the control law cancels the effects of the gravitational terms. This control law

requires the calculus of g(g) at each instant from the Lagrangian equations.

3.1.1 Simulation results

We present the results of the PD control method for two rigid links manipulator. In these
simulations the following parameters are used: the masse of each link ism = 1kg and the
length of each link is:/ = Im .

The simulations are run using three different sets of initial conditions for the manipulator:
the equilibrium point, near the equilibrium point, and away from the equilibrium point.
Also, we can consider two different cases regarding the manipulator:

1. g(q)=0-in the absence of gravitational force
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7, =10Nm _r .
2. g(9)=0 and - in the absence of the gravitational force, and in the
T2 =

presence of the external torque disturbance 7, at joint 1.

The simulations results are shown in figures 3.1-3.4. The same simulations are conducted

Ty =

Tin =

again but in the presence of a disturbance{ . The results are shown in figures 3.5-

3.8. These simulations are run using the following scenario: the initial conditions

gy =-7/2 . e . qn =—7 .
are , and the desired final position is set to , and the gains used
9, =0 9ar =7
{ 5, =100
are .
» =100

For the tracking case, the results are shown in figures 3.9-1.12 and in figures 3.13-3.16 in

T _
a . For the tracking case, the trajectories to be

the presence of a disturbance{
Ta2

followed are given by y,, = Asin(@¥), and y,, = Asin(wt) where 4=1and @ =1. The

k, =100

gains selected are .
k, =100

The simulations results are summarized in Tables 3.1-3.3. The three sets of initial

conditions are given below.
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L Initial conditions are:
{qil =-7r/2 {‘]dl =-7 {le =10
g, =0 qs, =7/2 7, =0
PD Gain Disturbances
1sturban ts er1 er2 lrllm I‘[’2 max
k, =25 7, =0 2 -1.28¢-8 1.36¢-5 40 40
ky, =10
z, =10 3 -0.4 1.59¢-5 40 40
k, =100 | 7,=0 2 9e-6 4e5 160 160
k, =20
r, =10 2 0.1 2¢-5 160 160
k, =400 7,=0 0.5 8e-6 -1.9e-5 600 600
k, =40
z, =10 0.5 -0.0249 14e5 600 600
k, =900 7,=0 0.4 -6¢-6 3e5 1500 1500
k, =60
T, = 10 04 -0.011 7 e-5 1500 1500

Table 3-1 Summary of the results using the first set of initial conditions
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IL Initial conditions are;:

gy =-n/2+7/18 qn=-7 7, =10
q, =7/18 Gg =712 T, =0
PD Gain Disturbances t, er, er, Iz.l . |Tzlmax
kP =25 7,=0 2 6e-6 2e-5 40 40
k, =10
T, = 10 3 -0.4 -4e-5 40 40
kP =100 7,=0 1 4e-6 le-5 150 180
k, =20
7, =10 2.3 -0.1 0.0002 150 180
kP =400 T, = 0 0.6 6e-5 0.0002 600 700
kD =40
T, = 10 2 -0.025 0.0003 600 700
kP =900 T, = 0 0.5 4e-5 0.0001 1500 1500
k, =60
-0.011 4e-6 1500 1500

7, =10 0.5

Table 3-2 Summary of the results using the second set of initial conditions
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I11. Initial conditions are:

{%’1 =0 {qdl =-7 {le =10
i = 9, =712 Tax =
PD Gain Disturbances 1, er, er, |Z-1 . ITZImax
kp =25 7, =0 2 3.8¢-5 3365 80 40
k, =10 :

7, =10 3 0.4 6.2¢-5 80 40
kP =100 T, = 0 1 2e-6 -5e-6 300 150
ky, =20

7, =10 2 20.099 385 300 150
k, = 400 7, =0 0.5 7e-5 20.0003 1300 600
ky, =40

7, =10 0.5 20.024 565 1300 600
k, =900 7,=0 0.4 3.5¢-6 -1.9¢-5 2900 1500
k, =60

T, = 10 04 -0.011 -3.9¢-5 2900 1500

Table 3-3 Summary of the results using the third set of initial conditions

3.1.2 Conclusions

In order to decrease the error we can use higher gains K ,and K, . Another effect of using

k
higher gains is the decrease of the settling time. For gains {kp
D

settling time of 0.4 seconds in all of the three sets of initial conditions. The effects of the
torque disturbance are reduced by using higher gains. The most important disadvantage

of using higher gains is that it could lead the system to the neighbourhood of large

oscillations and transients.
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In all of the cases, there is a large initial value for the control signal. Because of the
mechanical restrictions imposed by the manipulators, a saturation function after the
controller can be employed. For example, a threshold logic having as minimum and
maximum values of +/- 50Nm could be used.

In the case of tracking results, the error is increased, but the system can generally track
the desired sinusoidal trajectory. The steady state error could be removed by using a PID
controller instead of a PD controller. This controller is locally stable, and can solve the
regulation problem, but at the same time, cannot achieve uniformity of the transient
behaviour [46].

In the cases presented above, gravity is not taken into consideration. In order to avoid the
static error due to gravity for a manipulator operating in a gravitation field (that is not in a
horizontal plane), a PD controller that takes into consideration the gravity term can be
used. In this case, the controller requires exact knowledge of the gravity term in order to

calculate the control signals.
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3.2 Computed torque method

Computed torque method, known in the literature also as inverse dynamics control, is an
approach that uses the complete dynamic model of the manipulator in order to cancel the
effects of the nonlinearities such as Coriolis and centrifugal forces, friction, as well as
gravity terms. These terms are compensated by adding them to the control input.

The computed torque method is based on finding a control input as function of system
state which can realize an input/output relationship of linear type.

Let us consider a planar, two-link, articulated manipulator. The dynamics of this two-

rigid link manipulator can be written in the general form [48] as in the equation (3.1):

D(q)q+C(g,9)9+g(q) =7
Let us define the following control law structure, taking 7 as a function of the

manipulator state namely:

t=Du+Cq+g (3.10)
Substituting the above control law structure in the equations of the manipulator model
leads to the system described by:

q=u (3.11)
where urepresents a new input vector. The nonlinear control law (3.11) is named

computed torque control or inverse dynamics control because is based on the calculation

of the inverse dynamics. The closed loop system using this control is linear and

decoupled with respect to the new input u.Each component of the input vector u,
influences each joint variableg;, .

Next step is to find a stabilizing control law u . Let us define:
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u=q,~28q-2q, (3.12)

where A,£ >0, and é=Q‘qd

This implies that:

g2 g+ g =0 (3.13)
The above equation represents the differential equation of the linearized closed loop

system.

3.2.1 Simulation results

We present the results of the computed torque control method for two rigid links
manipulator. In these simulations the following parameters are used: the masse of each
link ism = lkg and the length of each link is [ = 1m.

The simulations are conducted using three different sets of initial conditions for the
manipulator: the equilibrium point, near the equilibrium point, and away from the
equilibrium point. Furthermore, we can consider two different cases regarding the
manipulator:

3. g(q) =0 - in the absence of gravitational force

7, =10Nm
a - in the absence of the gravitational force and in the

4. g(¢g)=0 and {

Taz
presence of the external torque disturbance 7, at joint 1.

We can choose different values for the settling time and we will have different values for

the parameters of the controller.
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Trajectory calculus
T’ .q.di+2Tdédi+qdi =r (3.14)

where r is the final position for the joints.

We can choose:

T=0.125
a
d=09
T=05
b)
d=09
T=1
<)
{d =0.9

The equation of the closed-loop system is given by:

g+28q+ 2 q=0 (3.15)
We can set the time constant7 ten times faster then the time constant T for the trajectory

calculus. In this case, we can set:

a)T = % =0.0125= %, so that 4 = 80. We can also choose& =.7.

b)r = 1_T6 =0.05 =% , so that 4 = 20 . We can also choose& =.7.

)T =1=0.1 =% , so that 4 =10. We can also choose£ =.7.

10

We can rewrite the equation of the closed loop system as:

g+K,q+K,q=0 (3.16)

In this case, the values for the gains used are as follows:
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K, =112
K, =400
b)
K, =28
K, =100
c)
K,=14

The simulations results are shown in figures 3.17-3.20. The same simulations are

T =
di .
. The results are shown in

performed again but in the presence of a disturbance{
Ta2

figures 3.21-3.24. These simulations are conducted using the following scenario: the

.. qi1=—ﬂ'/2 . . . qn =—7
initial conditions are , and the desired final position is set to , and
g, =0 G =72
i kp, =400
the gains used are
k, =28

For the tracking case, the results are shown in figures 3.25-3.28, and in figures 3.29-3.32

Th =

in the presence of a disturbance{ . For the tracking case, the trajectories to be

Ta2
followed are given by y,, = Asin(wt) and y,, = Asin(wt) where A=1and @ =1.

The results of the simulations are presented in the Tables 3.7-3.9, with the three sets of

initial conditions given as:
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I

Initial conditions are:

{‘111 =-7/2 {qdl =—7 {le =10
4, =0 Gy =712 Ta2
Design Parameters Disturbances t er, er, '71 . Irz lmax
T=0125 7, = 0.5 12¢5 9e-7 190 190
d:O.g KP =6400 Td2 =0
A=80 K, =112 05 0.0011 0.0011 190 190
£=07 Ta =10 % ' '
7, =0
T=05 7, =0 2 56-6 46 13 13
d =O.9 KP :400 sz —O
A=20
K, =28
=07 D 7, =10 2 0.018 0.018 13 13
7, =0
T=1 7, =0 4 -0.002 0.002 3 3
d:09 KP:].OO ‘[dZ:
A=10 ) g 14
£-07 P 7, =10 4 0.07 0.06 3 3
T, =0

Table 3-4 Summary of the results using the first set of initial conditions
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II.

g, =m/18

{qﬂ =-7/2+7/18

Initial conditions are:

{

9n =

-7

9er =712

{rdl =10
Tiz =

Design Parameters Disturbances t, er, er, |T1 Imax l z, lmax
T=0.125 7, =0 0.5 5%107 6*10°° 230 65
d=09 | ¢ 6400 | Taz=0
; i gg Kp =112 7, =10 0.5 -0.0011 0.0011 230 65

7, =0

=05 7, =0 2 2*10° 6*10° 13 4

d=09 | g _400 | Tax=0

;:z(; K, =28 7, =10 2 -0.018 0.0.18 13 4
Ty =

T=1 7, =0 4 0.0025 0.0020 4 1

d=09 K, =100 T, =0

;::)07 Kp=14 ™15 4 20,076 0.069 3 N
T4, =0
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III.

Initial conditions are:

{qil =0 {le =—7 {le =10
g, =0 Gay =7/2 T; =0
Design Parameters Disturbances ¢ er, er, Irll ITZI
T =0.125 7, =0 0.5 2*10° 7*107 470 140
d=09 | g —6400 | Ta2=0
A =80
K, =112
£=07 D 7, =10 0.5 -0.0011 0.0012 470 140
Tin =
T=05 7,=0 2 2*10°° 2%107 30 9
4=09 | g —400 | Ta2=0
A=20
K, =28
£=07 D 7, =10 2 -0.018 0.018 30 9
Tia =
T =1 7, =0 4 -0.0046 0.0023 7 2.5
d=0.9 KP=100 sz _O
A=10
K,=14
£=07 D 7, =10 4 0.078 0.069 14 2.5
Tia =

3.2.2 Conclusions

Table 3-6 Summary of the results using the third set of initial conditions

As in the case of PD controller using higher gains can decrease the error for all the three

different scenarios having different initial conditions. At the same time the estimated

settling time is achieved. Using different values for the gains we can achieve settling

times between 0.5 to 2 seconds.
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Because of the high values for the gains used, the initial values for the input torque are
very high, reaching to 230N or 470N. One solution would be to use the saturation limits
used after the controller. As we discussed for the PD controller, we can choose the
minimum and maximum values of +/- 50Nm.

In the case of tracking problem, the errors increase, but the system can track quite
satisfactory the desired sinusoidal trajectory.

The method of computed torque control works quite well, and we can have better control
than the PD control, but only if we have all necessary information about the dynamic
model of the manipulator and the parameters of the robot. These are very hard to have in
practice. At the same time, the dynamics of the robot can change during the ﬁfocess, and
that can affect the results of the control, too. In this case, the performance of the
computed torque method can decrease because of the inaccuracy of the dynamic model.
As we have seen the performance of the computed torque control and PD controller is
acceptable. We can achieve the desired settling time and we can achieve very small

steady state tracking errors.
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3.3 Localization method

The localisation is a method used for systems governed by partial differential equations.
Using this method we can obtain the desired transients for the controlled system under
the condition of incomplete information for finite-dimensional control systems. The
localisation method is based on the use of state time derivatives as control law and high
gain values in order to decrease the influence of disturbances and the uncertainty of
model parameters on dynamic properties of the output trajectories.

Let us consider a planar, two-link, articulated manipulator. The dynamics of this two-

rigid link manipulator can be written in the general form [48]:

D(q)q+C(q,9) g+ g(q) =7

We can rewrite the above equation in the following form:

q=1(g:q)+B(@)u

where:

{f =D ()[C(4,9) + 2(9)]
g=D"(g)

We assume that the information about the functions f and Bis incomplete. Let us form

the reference model for the output transients:

T} q+25,T,q+q=4q, (3.17)
Solving for the highest derivative we obtain:

. 1 3
q=’F(_2§de 9-9+49,) (3.18)
d

Let us denote:
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. 1 .
F(q,q,qd)=;2—(—2é‘de q-q9+4q,) (3.19)

d

and
e’ =F(q,9,9,)— ¢ (3.20)
where

e’ is the realization error of the desired dynamics which is assigned by F(q,q,q 4)- Let

us also assume that we have ideal differentiating filters and therefore we can consider the

following structure:

u=Ke" >u=k(F—-gq (3.21)
where £ is the gain matrix, k = kyk,, k, € R' and k,is the “accordance matrix”. The k,

matrix can have the form &, ~ D . In order to calculate the control input u, it is necessary

to calculate the instantaneous value of the inertia matrix D during the process dynamic
changes.

The closed loop system is governed by:

g=f+Buc [+Bk(F-q)=g < q=(1+Bk)" f+(1+Bk)" BkF (3.22)

In this case it follows that, ]lcim q = F, which ensures the desired transients are achieved.
—>00 .

>0
In order to realise the control law it is necessary to obtain the derivatives ofg(z) and we

can obtain them by means of a differentiating filter. It is possible to use a linear filter of

the following form:

A AN A

H'q +2udq +q =q (3.23)
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where 4 is a small parameter, u,d >0, and (-)’ denotes i differentiation.

Using this differentiating filter, we can have the high derivative of the output namely:

A ) A A

q (t)=;12—[Q(t)~2ﬂd q ()—q()] (3.24)

3.3.1Simulation results

We present the results of the localization control method for two rigid-links manipulator.

In these simulations the following parameters are used: the masse of each link ism = lkg

and the length of each link is /=1m. For the simulation purposes the following

=1
parameters are used: for the desired high derivative: { ¢, and for the differentiating

=0.2
filter: {* .
d=3
The simulations are run using three different sets of initial conditions for the manipulator:
the equilibrium point, near the equilibrium point, and away from the equilibrium point.

Similarly, we can consider two different cases regarding the manipulator:

1. g(q)=0- in the absence of gravitational force

7, =10Nm | - .
2. g(g)=0 and - in the absence of the gravitational force, and in the
Ti2 =

presence of the external torque disturbance 7, at joint 1.

The simulation results are shown in figures 4.33 - 4.36. The same simulations are

Th =

conducted but in the presence of a disturbance{ . The results are shown in figures

Ta2

4.37-4.40. These simulations are obtained using the following scenario: the initial
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gy =—7/2
4, =0

9o =%

, and the
G =7/

conditions are{ , and the desired final position is set to{

k, =100

gains used are .
k, =200

The results of the simulations are presented in the Tables 3.11-3.13. The three sets of

initial conditions are given as follows:

2 {q,., =-7/2 {qd, =-7 {rdl =10
9, =0 Gqr =712 T =
Gain Disturbances ¢ er, er, l"l 'max ITZ lmax

Parameters
7, =0 3 20.00004 0.0001 200 60

K, =100 | %o =0

K, =200 "0 3 20.07 0.035 200 60
7,,=0
7, =0 3 20.00004 | -0.00003 500 250

K, =200 | Ta2=

Ky =400 "0 3 20.03 0.01 500 250
T2 =
7, =0 3 -0.00004 | 0.00006 1300 500

K, =400 | T2 =0

K, =800 ™10 3 20,01 0.009 1300 500
T,, =0

Table 3-7 Summary of the results using the first set of initial conditions
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b) {qﬂ =—7/2+7m/18 {%1 = —7 {le =10
q, =n/18 Q=72 Ty =
Gain Disturbances er, er, ITI lmax |1-2 lmax
Parameters
7, =0 0.00005 0.0007 200 80
K, =100 | 72=0
K, =200 ™ 10 20.07 0.03 200 80
T, =0
7, =0 20.00005 0.0002 500 200
K, =200 | %az™
Ky =400 ™10 0.03 0.01 500 200
T2 =
7, =0 0.00005 0.0001 1200 500
K, =400 | =0
K =800 ™10 0.01 0.009 1200 500
Ti2 =

Table 3-8 Summary of the results using the second set of initial conditions
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o). JL% =0 {q(u =7 {le =10
g =0 Gar =712 Tar =
Gain Disturbances t, er, er, Irl |max IT2 'max
Parameters
7, = 3 20.00009 | 0.00001 350 100
K, =100 | o =0
Ky =200 70 4 007 0.03 350 100
T =
7, = 3 20.00009 | -0.00009 900 250
K, =200 | Ta2=0
Ky =400 ™10 4 20.03 0.01 900 250
Taa =
7, =0 3 20.00008 | 0.00005 2000 800
K =400 | Fa=0
K, =800 ™10 4 20.01 0.009 2000 800
T, =0
7, =0 3 -0.0001 0.0001 5000 2000
K,=1000 | Fa2=0
K, =1000 "0 3 -0.007 0.007 5000 2000
T, =0

Table 3-9 Summary of the results using the third set of initial conditions
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3.3.2 Conclusions

First, we used as initial condition for the manipulator the equilibrium point, that is

{qﬂ - ;) . Using different values for the gains used, we can see that the error is in the
9o =

same neighbourhood for the first link (- 0.00004), while the error for the second link is
decreasing (from 0.0001 to 0.00006). If we increase the gains we require higher torque,
but the error remains still in the same range. In the case that there is a disturbance we can
see that both errors are decreasing with increasing of the gains. For all the gain values the
settling time is around 3 seconds.

Secondly, we change the initial conditions of the manipulator.The new set of initial

e . . S . g9, =-7/2+m/18
conditions is given by a point near the equilibrium point such as: 8 .In
9 =7

this case, we achieve the same results as reported above.

Thirdly, we change the initial conditions of the manipulator with a point away from the

g, =0

0 In this case, the errors for both of the links are
9 =

equilibrium point such as {

decreasing with the increasing of the gains used. In the case of disturbance, if we use a
higher gain, we can achieve an acceptable etror for both links (that is error = 0.007). As
we have seen above, increasing the gains implies an increase in the torques used. The
settling time is around 3 seconds or 4 seconds in the case of disturbance. Using higher
gains, we can achieve the same settling time (3 seconds) even though there is a

disturbance.
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In order to use this method, we need to measure the acceleration for each jointg . Since
generally this is difficult to measure, we should use a differentiating filter and estimate
the position, velocity and acceleration for each joint. The most important advantage of
this control method is that the desired transients are achieved under the conditions of

incomplete information about disturbances.
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3.4 Dynamic control method

In this section a novel dynamic control method for rigid-link manipulators is presented.
This method allows us to obtain the desired transients under the incomplete information
about the system. In order to decrease the influence of disturbances and model parameters
uncertainty on dynamic properties of output trajectories, a high feedback gain is used. At
the same time, a higher-order output derivative in the feedback loop is used. This method

is a generalization and further development of results reported in [49], [50],[51].

3.4.1 Model of the rigid -link manipulator

Let us consider a planar, two-link, articulated manipulator. The dynamics of this two-

rigid link manipulator can be written in the form [48]:

D(q)q+C(g,9)q+g(g) =7 (3.25)
System (3.25) can be written in the state-space form:

q=f(g.9)+B(g)u (3.26)

where

f=-D"@IClg:9)+2(@)], B=D"(q)

Let us now denote:

e(®)=r(t)-y(@) (3.27)
as the tracking error where y(¢)is the manipulator end-effector output and r(¢)is the
reference input signal. The control system is being designed to provide the following:

lime(t) = 0 (3.28)

t—>0
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The output transient for y(¢) should have a desired behaviour which does not depend

either on the external disturbances or on the possibly varying parameters of the rigid-link

manipulator model.

3.4.2 Control problem reformulation

Let us form a reference model for the output transient of y(¢) according to the following
vector differential equation:

v =F(,y,rr) (3.29)
For example, (3.29) may have the form of a linear vector equation

;z—Al" y— Aly+ B! r.+Bgr (3.30)
By selecting 47, 4] and B{ as diagonal matrices, then we require the decoupling of the

control channels.

Let us now denote

" =F(3,y,r,7)— y (3.31)

where e’ is the realization error characteristics of the desired dynamics which is assigned

by F().;,y,z:,r).

Accordingly, if the condition

e’ =0 (3.32)
is satisfied, then the desired behaviour of y(¢) with prescribed dynamics of (3.29) is

achieved.
The expression (3.32) corresponds to the insensitivity condition of the output transient

performance with respect to the external disturbances and varying parameters of the
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flexible-link manipulator model. In other words, the control design problem (3.27) may
be reformulated as the requirement (3.32).
To satisfy the (3.32) requirement let us construct the control law according to the

following differential equation:

12 v+ uD, v+ Dyv = K€", %(0) = vo (3.33)
where
u=Kyy (3.34)

_ . T
and v = [v vJ
Assume that D, ,D,,K are diagonal matrices, x# is a sufficiently small positive
parameter, and K, = diagik,,....k,}.
Consequently, when taken together, equations (3.31) and (3.33), the dynamic control law
(3.33) may be re-written in the form:
123 v+ uD, v+ Dy = K, {~y— A% y— A%y + BY r+ Blr) (3.35)
The analysis for the properties of the slow and fast motion dynamics properties will be

provided later on for the case of flexible-link manipulators.

3.4.3 Simulation results

We present the results of the dynamic control method for two rigid links manipulator. In

these simulations the following parameters are used: the masse of each link ism = lkg

and the length of each link is/ =1m. Let us take the reference model according to the

following differential equation:
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T} x+2&,T, x+ x = b, r+byr

For simulation purposes we can choose the following parameters

b =2 T, =1
and .
b, =1 &, =1

The simulations are conducted using three different sets of initial conditions for the
manipulator: the equilibrium point, near the equilibrium point, and away from thel
equilibrium point. Similarly, we can consider two different cases regarding the
manipulator:

1. g(q)=0-in the absence of gravitational force

7, =10Nm
4 - in the absence of the gravitational force, and in the

2. g(q)=0 and {

Ta
presence of the external torque disturbance 7, at joint 1.

The simulations results are shown in figures 3.41 - 3.44. The same simulations are

T, =10
conducted again but in the presence of a disturbance{ a . The results are shown in
Taa =

figures 3.45-3.48. These simulations are obtained using the following scenario: the initial

Ao =7

G =70/

9a

, and the
9 =0

2
conditions are{ , and the desired final position is set to{

. 40 0
gains used are K| = .
0 40
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For the tracking case, the results are shown in figures 3.49-3.52, and in figures 3.53-3.56

T =
a . For the tracking case, the trajectories to be

in the presence of a disturbance{
Ta2

followed are given by y,, = Asin(e#) and y,, = Asin(wt) where 4=1 andw =1.
The simulation results are presented in Tables 3.14-3.16 for the following three sets of

initial conditions.

I {qil =—pi/2 {qdl =-—pi {le =10

g, =0 9 =pPil2 (74 =0
Gain parameters Disturbances t er, er, lrl lmax lrz Imax
—— 5 0.0008 0.0008 35 1
40 0 T =0
b [ 0 40} 7, =10 5 70.0005 0.0021 15 1
T, =0
7, =0 5 0.0007 0.0007 5 1
80 0 T =0
b { 0 80} 7. =10 5 0.0007 0.0011 17 2
7,,=0
7, =0 5 0.0008 0.0007 6 2
K :[200 0 ] ar =0
0 200] 7o 5 0.0007 0.0011 17 2
T, =0

Table 3-10 Summary of the results using the first set of initial conditions
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II. Initial conditions are:

q,=-pi/2+pi/l18 q, =—Di 7, =10
g, =pi/18 942 = Pi/2 T, =0
Gain parameters Disturbances ; er, er, |T1 - IT2lmax
7 =0 5 0.0008 0.0008 600 200
40 0 a2 =0
K, =
0 40 7, =10 5 0.0005 0.0019 600 200
T2 =
7. =0 5 0.0007 0.0007 2000 1000
80 0 T2 =0
K, =
0 80 7z, =10 5 0.0007 0.0011 2000 1000
Tin =
7. =0 5 0.0003 0.0002 2000 900
200 0 Ta2 =0
K, =
0 200] ™7 1o 5 0.0007 0.0011 2000 900
Tin =

Table 3-11 Summary of the results using the second set of initial conditions
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1L q,=0 9y =PI T, =10
Ty =0

g, =0 G4 =Dil2
Gain parameters Disturbances er, er, |‘L'1 lmax Irz lmax
T, =0 0.0017 0.0006 9 2
40 0 Ty, =0
K, =
0 40 7, =10 5 0.0014 0.0019 15 3
7, =0
7,=0 5 0.0017 0.0006 10 3
80 0 T4 =0
K, =
0 80 Ty = 10 5 0.0014 0.0019 15 3
Ty =
Ty = 0 5 0.0016 0.0007 11 3
200 0 Taz =
K, =
0 200 T, =10 5 0.0015 0.0010 17 3
T, =0

Table 3-12 Summary of the results using the third set of initial conditions

3.4.4 Conclusions

First, we use as initial condition for the manipulator the equilibrium point, that

. {qil =—7/2
1S
g, =0

same range for both links (that is - 0.0008). In the case of a disturbance, the error still

. Using different gain values we can see that the error values are in the

remains around 0.0007, but for the second link the error increases to 0.002. Increasing the

gains, we can achieve a smaller error for the second link by as much as 0.001.
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Second, we change the initial conditions to a point near the equilibrium point as

g, =-n/2+x/18 ) i
. In this case, the same results as reported above are also obtained.

g, =m/18
Third, we change the initial conditions of the manipulator to a point away from the

9; =

0
0 In this case, the error for the first link is higher that the one
9n =

equilibrium point as{
achieved in the previous two cases that is 0.0017. The error for the second link is around
0.0006.

As for the previous two cases, in the presence of a disturbance the error for the second

link increases to 0.0019. In order to reduce it, we can increase the gains.

200 O

Fork, Z{ 0 200

], we can achieve an error of 0.0015 and 0.001, for the two links

respectively.
In the case of tracking the errors increase, but the system can still track the desired

sinusoidal trajectory satisfactorily.

3.5 Conclusions

In this chapter, the control of rigid-link manipulators is discussed. Using the
mathematical model of a two rigid-link manipulator [48], four different control methods
are investigated namely PD control, computed torque method, localization method, and a
novel dynamic control method. For each case, different sets of initial conditions are used
for simulations. For comparative purposes, different control gains are used for each

controlling method. It was shown that in general acceptable performances are achieved
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using the proposed techniques. The potential and utility of these techniques for flexible-

link manipulators are shown in the next Chapters.
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Chapter 4 Control of Flexible-Link

Manipulators

This chapter is dedicated to the control of a single flexible-link manipulator and a two-
link manipulators for which the first link is rigid and the second link is flexible. One of
the most important issues in controlling of the flexible link is that there are fewer number
of inputs than the degrees of freedom. This yields to the difficulties in having different
desired trajectories for each generalized coordinate.

In the previous chapter the dynamical model of one flexible-link was discussed. In this
chapter issues such as output redefinition, input-output linearization, and non-minimum
phase problems will be discussed. Furthermore, control techniques such as computed

torque, and a novel dynamical control method will be presented.

4.1 Output redefinition

The objective of the control can be divided into two different categories: regulation and
tracking. Regulation problem or the point-to-point control is when the desired trajectory
of the end-effector is chosen to be constant by specifying the final point. Tracking
problem consists of following a time-varying joint reference trajectory. A very important
issue in the case of control of flexible-link manipulators is the stability. The problem of
tip-trajectory tracking has been investigated by many researchers. As it was shown in
[21] if the tip-position is the controlled output, and the joint-torque is chose as the input,

the system is then non-minimum phase.
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4.1.1 Input-output feedback linearization

Let consider the following system:

{;C = f(x,u) 4.1)
y=h(x)

The control problem consists of designing u such that a desired trajectory y,(f) is
tracked by the output y(¢) , while the states remain bounded. Furthermore, y(f) and its
derivatives are assumed to be known. In this case, the output y(¢) is related to the inputs

through the state variable x of the nonlinear state equations. This framework is difficult
to design a controller to ensure the output tracks a desired signal. An easier way to design
the control is to find a direct relationship between the output to be controlled and the
inputs applied to the system.

By means of input-output linearization, an n™ order system could be divided into two
parts: the external dynamics (input-output map), and the internal dynamics (the
unobservable subsystem). The external dynamics is observed from the output and its
derivatives with a relative degree of “r”; the internal dynamics could not be seen from
the input-output relationship, and it has the order” n —r . In order to achieve the control

objective, the internal dynamics should be stable, which means that the states remain

bounded during tracking.
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4.1.2 The zero dynamics

The stability of the internal dynamics for linear systems is based on the locations of the
zeros. In the case of nonlinear systems, one approach to check the stability is using the
zero-dynamics [52]:

Definition: The zero-dynamics is defined to be the internal dynamics of the system when
the system output is kept at zéro by the input.

It can be shown that local asymptotic stability of the zero-dynamics is enough to provide
the local asymptotic stability of the internal dynamics. If the zero-dynamics is
asymptotically stable then the original system is a minimum-phase, otherwise, the system
is called non-minimum phase. The flexible link manipulator has a non-minimum phase
characteristic due to the actuator-sensor non-collocated configuration. In the open-loop
case, the transfer function from the joint-torque to the tip-position has zeros in the right
half s-plane, and therefore, the closed-loop system using non-collocated control is

conditionally stable.

4.1.3 The output redefinition

In order to achieve a minimum-phase characteristic, the concept of output redefinition is
used in this thesis. The objective is to define a new output which provides a stable zero-
dynamics. A new output can be defined using [53]:

W(liat)

yredeﬁned_i = qi +o (4'2)

1

where-1<q; <1.
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In the equation (4.2), by settinga = -1, the output becomes the reflected tip position, for
a =0 the output becomes the joint angle, and for @ =1 the output becomes the tip
angular position.

Following [53], there exists a value @ =, <1, such that the zero-dynamics is stable if

a < a: , and the zero-dynamics becomes unstable for o > a; . In this case, the controlled

output will be a point close to the actual tip position.
In the following section, let us consider the dynamics of a multi-link flexible manipulator

with a structural damping added and is given by:

M|+ [@D+&@a.0.0)rEq | (T)} @3
5 . . . .
f(a,9)+g,(q,9,6,6) + E, 6+ K&
where

gis the mnxlvector of joint variables,dis the mxl vector of deflection variables,
1,8, 15,8, are the terms due to gravity, Coriolis, and centripetal forces, M is the

positive definite mass matrix, u the nx1vector of input torques.

Let us define

_ sl _ H, H,
H=M7"(q,0)= 4.4)
HZ] H22
Then, the above equation may be expressed in the state-space form:
x=f(x)+gx)u 4.5)

where

96



q
o

fx)= : :
-H,, (f; +g, +E 9)_H12(f2 +8, +K5+Ez o)
—H, (i+&+Eq)-Hy(f,+8,+KS+E, 5)
0(m+n)xn
g(x)=|H,(q,9)
HZ](q95)

Assuming the beam deflection is small with respect to the length of the link, we can
write:
yi=q;tad, /l,i=12,.,n (4.6)

The tip deflection can be written as:
d, =Y ®,()3, (4.7)
=1

where @ id the j-th mode shape function of the i-th link and &, is the j-th mode of the i-

th link. The output vector can be expressed as:

where
vioohooL.
or .. 0
l//nxm__-

o' 0" v
VT =fl‘i[cb,.l(1,.) e @, ()], i=1n

y' =[,V1 yn]
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67 = lAfﬂ AT, AfmJ, where A, is the vector of the deflection variables of link i,
defined as AT, = [51 o By ]

Let us consider equation (4.5) and the new redefined output given by (4.8). In order to
achieve input-output linearization, it is necessary to derive the output till the inputs

appear. The state-space form can be rewritten as following:

7 = a(a@, %)+ B(a,q,6)u (4.9)
where
a’ z[0‘1 an]aB(as%5)=Hll TV o 15

a(a,x)=~(H, +yH,)(fi+g +E q)—(H,, +yH,)f, + g, +K6+E,0).
By selecting specific values fora, the matrix B(«,q,,0) can be made non-singular. Let

us express the input torque as:

u=B""(a,q,0)v-a(a,x)) (4.10)
This implies:
; =V 4.11)

which describes the input-output linearized system with a new input vector v. Now, we
can consider the state transformation:
z=T(x)=D,x (4.12)

where

_r T T _|.r _
z= I_Zo Z, _I’ z, = lzal ZOZJ’ Zy = I.Zul quJ'
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Inxn anm 0 nxn 0 nxm
0 1

DT — nxn nxm nxn W nxm
O mxn mxm 0 mxn O mxm
0 mxn mxm O mxn Imxm

The original space state form is rewritten as:

Z01 =2y,

20 = ala, x) + B(a,¢,8)u (4.13)

24 = C(x) + D(X)u

Y=2zZy

In order to find the zero dynamics, we have to set z, and z,identically to zero. We can

find the following relationships for the zero dynamics:

Zul = Z,

zw=[~H, + H, (H, +yH,)" (Hyy +WH )] 1,03 %
(0, 0,)+ g(0,0,,0,,0,)+Kz,, +E,z,,] 4.14)
where o, =-yz, 0, =-yz,, @, =z, 0, = z,, Linearizing the system given by (4.14)

about the equilibrium point z ,; , z ,, = 0 wehave:

Zul = Zyp 4.15)
zw=[-H, +H, (H, ‘H//Hz])_] (Hp, +yH )] o0 [Kz, +Eyz,,]

2415242

In order to investigate the conditions for minimum phase propetrty, let us consider the

matrix A:
Ala) 0 ! (4.16)
a) = .
~-RK -RE,
where
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By =[~Hy + Hy (Hy, +yH, )" (Hy, +yH )] |00 -
If the matrix A(cr)is a Hurwitz matrix, then the origin of system (3.15) is locally

asymptotically stable and the original nonlinear system is locally minimum phase [48].

As discussed in [54], the parameter o, depends on the payload. In order to achieve the
exact values fore; , the exact value of the payload should be known. The lowest value of

thea, is obtained when there is no payload. This guarantees the stability of the zero-

dynamics when the payload is added.

Using Matlab, the value obtained for @, is «; =0.84. For values @, < 0.84 the stability
of the zero dynamics system is achieved, while for values «, > 0.84 the zero-dynamics

will become unstable.

4.2 Computed torque method

4.2.1 A single-flexible link manipulator

Taking into consideration a finite number of modes, the dynamic equations can be
derived using the recursive Lagrange approach [13]. The dynamic equations for a planar

single flexible-link manipulator are given by:

MH+ haa+a@asd)+Eq |_[r @17)

f(q,9) +2,(4,9,6,6) + E, 6+ KS
The output of the system is defined as:

y=q+vy,,0 (4.18)
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where .. (a)is the matrix depending on the modal shape functions and the vector

a = [al an] defines the physical output locations on the links for ensuring the
stable zero-dynamics .
We present the results of the computed torque method for one flexible-link manipulator.

In these simulations the following parameters are used: the masse of the link is
m =1.356kg and the length of the link is / =1.2m. The value @, =0.84 was obtained

using the approach discussed above. The initial condition is y =0, and the desired final
positionis settoy =1.

:10(; are shown in the figures 4.1-4.4.

The simulations graphs for the set of gains {k”

D
The results of using the same control method for tracking purpose are shown in figures

4.5-4.8. The simulations results are presented in Table 4.1.

Design er, er, t, [sec] | |r,|  [Nm]
parameters

k, =50 0.0037 7e-8 5 4

k, =50

k, =100 0.0038 4e-7 5 8

k, =100

k, =400 0.0038 2e-7 5 30

k, =400

Table 4-1 Summary of the simulation results for one flexible link using the computed torque method

Analyzing the simulation results for the one flexible-link manipulator using the computed
torque method, it can be stated that this method has acceptable results for both the
regulation and the tracking cases. The regulation error between the desired tip position

and the redefined position is about 4e-7, while the error between the desired tip position
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and the real position is about 0.0038. The settling time is about 5 seconds. These results
are comparable for the three different sets of gains used. The maximum torque used is
increasing with the increasing of the gains.

In the case of tracking, the error between the desired position of the tip and the redefined
position, and the error between the desired position of the tip and the real position have
almost the same value about 0.0044. As in the case of regulation, the maximum torque

k, =100

used is about 8 Nm for )
k, =100
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4.2.2 A two-link planar manipulator

Let us now consider a two-link manipulator having the first link rigid and the second link
flexible. The parameters of the manipulator are as follows [55]:

I, =20cm,l, = 60cm, A, = 5cmx0.9mm, A, =3.14cmx1.3cm

p, =2700kg / m*(Al), p, = 7981(StainlessSteel),

M, =1kg,M, =0.251kg,m = 0.236kg,m, = 0.216kg
E=194x10°N/m’,J, =0.11x10" kgm*,J, =0.11x107* J, =3.8x107°

where /,,l,are link lengths, A4,,4,are cross-sectional areas, Eand pare modulus of
elasticity and mass density, M,,M,,J,,J, are masses and mass moment of inertia at the

end-points of the two links. In the previous section, the critical value of & was obtained

to be @” =0.84. In the case of two-link manipulator, &" = 0.45. The initial condition for

both links is y = 0, and the desired final positions are set to y =1. For the tracking case,
the trajectory to be followed is given by y, = Asin(wt) , where 4 =1andw =0.1.

Table 4.2 shows the results of using the computed torque method for a two-link

manipulator. The simulations results are presented in figures 4.9-4.16.

Design parameters er, er, t, [sec] ITI T, Imax [Nm]
k, =50 0.0011 0.0006 5 2.5
k, =50
k, =100 0.0011 0.0004 5 2.5
k, =100
k, =400 0.0010 0.0006 5 2.5
k, =400

Table 4-2 Summary of the simulation results for a two-link manipulator using computed torque
method
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where er; denotes the error between the desired position of the tip and the real position of

the tip, and er, denotes the error between the desired position of the tip and the redefined
position of the tip.

Analyzing the simulation results for the two-link manipulator using the computed torque
method it can be stated that this method has acceptable results for both the regulation and
the tracking cases. The regulation error between the desired position of the tip and the
redefined position is about 0.0006, while the error between the desired position of the tip
and the real position is about 0.0011. The settling time is about 5 seconds. These results
are comparable for all the three different sets of gains used. The maximum of the torque
used remains about 2.5 Nm with the increasing of the gains.

In the case of tracking, the error between the desired position of the tip and the redefined
position and the error between the desired position of the tip and the real position are

k, =100

about 0.004. The maximum used torque is about 23 Nm while using {k 100°
2 =
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4.3 Dynamic control method

In this section, a novel dynamic control method for a flexible-link manipulator is
developed. This method allows us to obtain the desired transient behavior under the
condition where there is incomplete information about the system. In order to decrease
the influence of disturbances and the uncertainty of model parameters on dynamic
properties of the output trajectories, a high feedback gain is used. Furthermore, a higher-
order output derivative in the feedback loop is used. This method is a generalization and
further development of results that are reported in [49], [50],[51].

In this section, we develop a control strategy based on input-output linearization of the
flexible-link system. The output re-definition concept is employed to choose points near
the tip outputs such that stable zero-dynamics are achieved. It is assumed that the
vibrations are mainly lateral vibrations about the axis of each link. In other words, for
each link it is assumed that a considerable amount of potential energy is stored in the
direction of bending corresponding to the axis of rotation of that link, and that the
potential energies due to deflections in other directions are negligible. This may be
achieved by proper mechanical structure design. A planar manipulator with rectangular
cross sections in which the height to thickness ratio of each cross section is large is an
example of such a system.

A closed-loop stability analysis is performed and conditions for achieving stable closed-
loop behavior are stated. The theoretical developments are further complemented by
simulation studies for a flexible-link manipulator as well as for a two-link manipulator
with the second link flexible to demonstrate the potential and capabilities of the proposed

dynamic controller. In particular, stable closed-loop performance with small tip position
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tracking errors is achieved with relatively large control gains, resulting in reduced closed-

loop sensitivity that would otherwise not be achieved by conventional methods.

Model of the flexible-link manipulator

Let us rewrite again the dynamic equations for the planar single-link manipulator as

AN fl(q,q)+g1(q,q,5,5)+_E1q _|* (4.19)

[

5 L4 . L] °
f>(q.9)+2,(q,9,6,6)+ E, 5+ K5

where as before gis the nxlvector of joint variables, & is the mxlvector of deflection

variables, f,g,,f,,g,are the terms due to Coriolis and centrifugal forces, K is the

stiffness matrix, and 7 is the vector of joint control torques.

H, H
Let us define H =M ' (q,6) = l:HH le ] . Consequently, (4.19) can be rewritten in the
21 22

state-space form:
x= f(x)+g(xu (4.20)

T ot
wherexT=l:qT s g 6]and

q
5‘ 0(m+n)xn
f(x) = . e | g(x) = Hll(q’é)
-H,(fi+g +E q—H,(f,+g,+KS+E,?) H, (q,5)
—H,(fi+g +E q—Hy(f,+g,+K6+E, o) |

As it was previously discussed in section 4.1.3, since the beam deflection is usually small

with respect to the link length, we have:

yvi=q;,+tad, /l,i=12,..n 4.21)
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Defining the output vector as:
Y=g HY (@) (4.22)
where . (a)is the matrix depending on modal shape functions and the

a' = [051 an] is the vector defining the physical output locations on the links for

ensuring stable zero-dynamics.
Input-output model of the flexible link manipulator
The input-output description of (4.19) with the output described by (4.22) is then

obtained by differentiating the output vector y with respect to time until the input vector

appears which is given by:

y=a(a,x)+ B(a,q,0)u (4.23)

where y=[y, .. », I’ is the output available for measurement, and
T .

u=[u, .. u,[ is the control vector

B(a,q,6)=H, +y,,,H, (4.24)

a(a,x)=—(H,, +yH, )(f, + g, + E, q)-(H,, +yH ) f, +g, + K6 + E, 6) (4.25)

Let us specify a finite region around the desired joint angles reference trajectories g, and
q, thatis given by:
Q = {x:l 99, 1<k,|qg—ql|<k,,|0|<ks,]|d < k4} (4.26)

where k; are some positive constants.

Assumption 4.1 Let detB(c,q,6)#0,VxeQ where x€Q, c R*™™and Q is a

bounded set of R2"*™
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Assumption 4.2 Let the vector & , the matrices H(0,0),K, E, be such that the matrix:

0 I
Aler) = [_ Pk PR } (4.27)

with P, given by:

Py =[-Hy, + Hy (H,, +yH,, )" (Hy, +WH )] | (4.28)
is a Hurwitz matrix.

Consequently, the origin of the manipulator model is locally asymptotically stable, and
the original nonlinear model (4.20), (4.22) is locally minimum phase.

Assumption 4.1 is basically a controllability-like assumption [48] and is guaranteed to
hold when for instancea = 0. In this case, B = H,,is positive-definite and therefore
invertible. Thus in a neighborhood of @ =0, Bis guaranteed to be invertible since it is
continuously dependent on ¢ .

Output tracking control problem

Let us denote

e(t)=r()-y@®) (4.29)
as the tracking error where y(¢)is the manipulator end-effector output and r(¢)is the
reference input signal. The dynamic controller designed is to ensure and guarantee the
following condition:

lime(t) =0 (4.30)

Moreover, the output transients for y(¢) should have a desired behavior which does not

depend either on the external disturbances or on the possibly varying parameters of the

flexible-link manipulator model (4.20) and (4.22).
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Control problem reformulation
A. Desired dynamic equations

Let us form a reference model for output transients of y(¢) according to the following
differential equation:

y=F(,y,rr) (4.31)
For exatﬁple, (4.31) may have the form of a linear equation

y=—A% y- Ay + B’ r+Blr (4.32)
By selecting 4, 4] and B as diagonal matrices, then we require the decoupling of the

control channels. Let us denote
e =F(3,7,7,7)-y (433)
where e is the realization error characteristics of the desired dynamics which is assigned

by F(y,y,rr). Accordingly, if the condition

e’ =0 ' (4.34)
is satisfied, the desired behaviour of y(¢) with prescribed dynamics of (4.31) is achieved.
The expression (4.34) corresponds to the insensitivity condition of the output transient
performance with respect to the external disturbances and varying parameters of the
flexible-link manipulator model. In other words, the control design problem (4.29) may
be reformulated as the requirement (4.34).

To satisfy the requirement of (4.34) let us construct the control law according to the

following differential equation:

412 v+ uD, v+ Dyv = K,e”, %(0) = vo (4.35)
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where

u=Kyv (4.36)

—_— . T
and v= [v v]

Assume that D,,D,,K are diagonal matrices, u is a sufficiently small positive
parameter, and K, =diagik,,....k,}. Consequently, when taken together, equations

(4.33) and (4.35), the dynamic control law (4.35) may be rewritten in the form:

p2? v D, v+ Dy = K, {- y— A% y— Ay + B r+ BIr) (4.37)
Analysis of the two-time scale dynamic motion
The analysis below for the properties of the slow and fast motion dynamics properties

assumes that the states of the manipulator, namely, ¢ and & are bounded within an open

set. This is also consistent with the assumption of internally stable dynamics of the
flexible manipulator system.
A. Fast-motion subsystem

Theorem 4.1 Associated with the closed-loop system (4.23), (4.35) as u — 0, the fast-

motion subsystem is governed by the following equation:
12 v+ uD, v+ (D, + K, B(@,q,8)K,}v = K, {F (3, y,r,7) - a(a, x)} (4.38)

where it is assumed that y = 0, r =~ const., y ~ const.and r ~ const. during the fast-time

scale transient of the system.

Proof: The closed-loop input-output governing equations have the following form:

¥ = a(a, %)+ B(@,q,5)K,v (4.39)
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1% v+ D, v+ Dy = K, e" (4.40)

From (4.31), (4.33) it follows that the closed loop system equations may be rewritten in

the form:
y=a(a,x)+ B(a,q,0)K,v (4.41)
12 v 1D, v+ Dy + K\ B(@, 4, )K v = K, {F (3, y,7,7) — a(@, %)} (4.42)

The equations (4.41), (4.42) may be rewritten in the following state-space representation:

-

d
E”I =1;,

d
—n, = a(aa X)f + B(a) q, 5)K0v1 s

dt
s 4.43
4 (4.43)
—V, =V,

dt

d *
:UEVZ = _{DO +KlB(a,q,5)K0}v1 —D1v2 +K1{F(772>771,”a”)—a(057x)}

where 77, = y,11, =y, v, =v,v, =v
Following the standard singular perturbation procedure, let us introduce the new fast time

scalet, =t/ u, where we now have:

K
dto 1 ,U772,
d
;772 =,u{a(a,x)+B(a,q,5)K0vl},
{ %o (4.44)
—_ v, =V,
dto ' 7
d

;vz =—{D, +K,B(a,q,0)K,}v, —Dv, + K, {F(1,,7,,7,7) —a(a,x)}
L 0

By setting u# — 0 in the above equations we get
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[ d
L p =0,
ar, m

d
a"
J7r0 4.45
4 (4.45)
dto ! 2

d .
- W =—{D0 +K1B(azqa5)K0}vl —Dlvz +K1 {F(”Zaﬂlarar)_a(aax)}7

4,

Expressing the above in the original time scalet= uf,, we obtain the following

fast-motion subsystem:

(

n, = const,

p |
J =y, (4.47)

d .
/UEVZ = _{DO +K1B(a7q:5)K0}vl _DIVZ +K1{F(772,771,r,r)—a(0{,x)}

The above fast-motion subsystem equations may be alternatively rewritten in the form
(4.38).
Remark 4.1: The asymptotic stability, desired behaviour of transients and desired

settling time of v(¢) can be achieved by a proper choice of the control law parameters.
Remark 4.2: In order to provide stability of the fast motion subsystem (4.38), the matrix
K, should be nonsingular such that KB is positive definite (or e.g. if K, ~ {B™'}.)

B. Slow-motion subsystem
Theorem 4.2: If 2 — 0 and the fast-motion subsystem of (4.38) is asymptotically stable

then

y=F(,,r,/)+ KDy {K'D, + BK,} " {a(at, x) - F} (4.48)

represents the slow-motion subsystem.
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Proof: If the fast-motion subsystem (4.38) is stable, by taking the limit 4 — Oin (4.41),
(4.42) the slow-motion subsystem (4.48) may be obtained.

Remark 4.3: If D; #0and £, >>1, V i=12 then the slow-motion subsystem (4.48)
approaches that of (4.31). If D, =0 and k,>>0, V i=12 then the slow-motion

subsystem (4.48) is the same as (4.31).

Remark 4.4: If g — Othen from (4.41), (4.42) it follows that the behaviour of
y(¢)tends to the solution of the reference model and accordingly the controlled output

transients in the closed loop system have desired performance specifications after the

fast-motion subsystem transients.

4.3.1 A single-flexible link manipulator

Let us rewrite again the dynamic equations for the planar single link manipulator that are

given by:

MH+ /@9 +@.0.5.0)+Eq | _ ,}
110 0)+ £,(4,,8,8) + E, 5+ K5

The output of the system is defined as

y=q9+y,,0

wherey, . (a)is the matrix depending on modal shape functions and the vector

a’ = [a1 an]deﬁnes the physical output locations on the links for ensuring the

stable zero-dynamics.
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We present the simulation results of the dynamic control for one flexible-link

manipulator. In these simulations the following parameters are used: the masse of the link
is m =1.356kg , and the length of the link is / =1.2m . The value @; = 0.84 was obtained
using the approach discussed previously. The initial condition is set to y =0, and the
desired final positionis setto y =1.

The simulations graphs for the set of gains K, =100 .are shown in the figures 4.17-4.20.

The simulation results for the dynamic control method for tracking problem are shown in

figures 4.21-4.24. The simulations results are summarized in Table 4.3.

Design er, er, t, [sec] |71| [Nm]
parameters max
k, =50 0.0018 0.0016 5 1.25
k, =100 0.0017 0.0014 5 1.25
k, =400 0.0012 0.0010 5 1.25

Table 4-3 Summary of the simulation results for one-flexible link using dynamical control method

Analyzing the simulation results for one-flexible link manipulator using the dynamical
control scheme, it can be stated that this method performs better than the computed
torque method. The regulation error between the desired position of the tip and the
redefined position is about 0.0016, while the error between the desired position of the tip
and the real position is about 0.0018. The settling time is around 5 seconds, which is the
same with the one achieved using computed torque method. The error between the
desired position of the tip and the real position of the tip has decreased using this control
method from 0.0038 to 0.0016. At the same time, the maximum torque command has
decreased from about 8 Nm in the case of computed torque method to 1.25 Nm for the
dynamic control. Increasing the gain, the error between the desired tip position and the

real tip position, and the error between the desired tip position and the redefined tip
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position can be decreased. However, the settling time and the maximum torque command
remain in the same range.

For the problem of tracking, the error between the desired position of the tip and the
redefined position, and the error between the desired position of the tip and the real
position have almost the same value about 0.18. The maximum torque used is about 8

k12100 o5 in the case of computed torque method.

2

Nm while using{

123



is ' i . . T T T T T
.° S LT
e e
7
-
0.5} | // ]
| ’ ‘
E of- J// |
>
0.5- |
4 |
--------- Desired output
—— Redefined output
.......... Real output
-15 ) | L 1 1 1 Il ] ]
0

1 2 3 4 5 6 7 8 9 10

0.8 \\ J
0.6 .
AN

e [m]
o

0.2} 4

041 .

0.8 ~

1 I I ! L 1 I i 1

Figure 4-18 Dynamical control method applied to a flexible link manipulator - error between the real

and the desired output

124



1.5 T T T T T T T T

.

0.5-

A
o
V
\/
v

7y

A WANAW2 ~
\,/ \\//\“J/\'\/ IVAVAVAVAVAVAVE

torque [Nmy]
(=3

-0.5f

0.5 -

y coordinate
(=3
T
1

0.5 E

RS -4

~—— Tip position
2 L 1 ] t | 1 1

-2 -1.5 -1 0.5 0 0.5 1 1.5 2
x coordinate

Figure 4-20 Dynamical control method applied to a flexible link manipulator - tip position

125



Output

1.5 T T T T T T T T T
— Desired output
— Redefined output
---------- Real output
1+ - = -
e RN 4 AN
’ LN / R
s AN /7 W\
N 4 N
| s/
\ V"\ 7 ; B
: \\ i /”
— ’ i . \ / /
E o R i
P A /
VY 77
AN "\\ ‘
\ \ ’ \
050 A /7 N
\\ \ 4 /l
\ \ /{/
Y L
Ak \\\\,.(// ! i
1.5 L ' L ) 1 I I L 1
0 10 20 30 40 50 60 70 80 90 100
t [sec]

Figure 4-21 Dynamical control method applied to a flexible link manipulator - tracking case —

redefined output

Error

— Error

0.8 B

0.6 4

02F . )

e[m]
o
T
/
S,
e
1

o2k e - S

0.6+ 4

-0.81 4

t [sec]

Figure 4-22 Dynamical control method applied to a flexible link manipulator - tracking case - error

between the real and the desired output

126



Torgue
0.1 T T T T T T T T T

0.081 4
0.06} .
0.04 - b

0.02 iu i

torque [Nm]

0.02+ B

-0.06 - -

-0.081 -

! 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100
t [sec]

Figure 4-23 Dynamical control method applied to a flexible link manipulator - tracking case - torque

command

Tip position
2 v T T T T T

— Tip position

1.5 4

0.5- -

y coordinate
o
:
1

o
L
1

K1s 4

2 i L [ 1 )
-2 -1.5 -1 0.5 0 0.5 1 1.5 2

x coordinate

Figure 4-24 Dynamical control method applied to a flexible link manipulator - tracking case - tip -

position

127



4.3.2 A two-link planar manipulator

Let us now consider a two-link manipulator having the first link rigid and the second link
flexible. The parameters of the manipulator are as follows [55]:

l, =20cm,l, = 60cm, 4, = 5cmx0.9mm, A, =3.14cmx1.3cm

P, =2700kg / m* (Al), p, = 71981(StainlessSteel),

M, =1lkg,M, = 0.251kg,m, = 0.236kg,m, = 0.216kg
E=194x10°N/m*,J, =0.11x10 kgm®,J, = 0.11x107*,J, =3.8x107°

where [,l,are link lengths, A4,,A4,are cross-sectional areas, Eand p are modulus of
elasticity and mass density, M,,M,,J,,J,are masses and mass moment of inertia at the

end-points of the two links. In the previous section, the critical value of o was obtained

to be @’ =0.84. In the case of a two-link manipulator, " = 0.45. The initial condition

for both links isy =0 and the desired final positions are set toy =1. For the tracking
case, the trajectory to be followed is given by y, = Asin(wr) where 4 =1and @ =0.1.

Table 4.4 shows the results of using the dynamical control method for the two-link

manipulator. The simulations results are shown in figures 4.25-4.32.

D:;i%l;rs en er, t, [sec] 7,7, [Nm]
parame max
Kz[so 0] 0.0058 0.0053 5 3.9

"lo 50
K :[100 0 ] 0.0025 0.002 5 4.2

Lo 100
K {400 0 } 0.0004 0.0004 5 4.9

Lo 400

Table 4-4 Simulations results for a two-link manipulator using dynamical control method
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where er; represents the error between the desired position of the tip and the real position
of the tip, and er, represents the error between the desired position of the tip and the

redefined position of the tip.

Analyzing the simulations results for the two-link manipulator using the dynamical
control method, it can be stated that this method has acceptable results for both regulation
and tracking problems. The results are not much better than the results when compared to
the computed torque method for gains less than 100. For higher gains, the dynamic
control method performs better than the computed torque method. For example, the
regulation error between the desired position of the tip and the redefined position and the
error between the desired position of the tip and the real position is 0.0004 in case of

400 O
0 400

100 O

}. For a smaller gain X =[ 0 100

using K, =[ :I, the errors are about 0.002.

The settling time is about 5 seconds. The maximum of the torque used is increasing with
the increasing of the gains but remains about 4 Nm.

In the case of tracking problem, the error between the desired position of the tip and the
redefined position and the error between the desired position of the tip and the real
position are about 0.17 and they do not depend on the gain used. The maximum value of

torque used is about 0.2 Nm.
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4.4 Performance comparison between rigid and flexible link
manipulators control methods

In Chapter 3, the control of rigid link manipulators is discussed. In this chapter the
control of a flexible-link manipulator, and a two-link manipulator having the first link
rigid and the second one flexible are presented. In this section, the control of a flexible-
link manipulator by using the rigid control methodology is investigated.

Let us consider the dynamic equations for a planar single link manipulator given by:

.

ulls| H@D+2(4.9.6.6)+Eq | _ H
5 L] . . ) . O

fz(%Q) +g2 (%%595) + EZ 5+ K§
The controlled output of the system is defined as y = ¢ . The dynamic control method that

is designed based on the rigid model assumptions is now applied to the above flexible
system.

In these simulations the following parameters are used: the masse of the link
ism =1.356kg and the length of the link is / =1.2m . The initial condition is setto y =0,
and the desired final position is setto y =1.

When the controller that is based on rigid model assumptions is applied to the actual
flexible system the closed-loop system is unstable. The controlled output in the rigid case
is the joint angle g, whereas the controlled output in the flexible case is the redefined

output y = g +'¥'6 . The simulation results are shown in figures 4.33-4.36.
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4.5 Conclusions

In this chapter the control problem of flexible-link manipulators is discussed. Issues such
as input-output linearization, zero dynamics, and output redefinition are introduced.
Because of the non-minimum phase characteristic of the flexible manipulators, a new re-
defined output is used instead of the joint angle. Based on this new output, two control
methods are used for controlling a single flexible-link and a two-link manipulator for
which the first link is rigid and the second one is flexible. Furthermore, it is shown that
the dynamic control method designed based on the rigid model assumptions when applied
to the actual flexible system results in an unstable system. This justifies and rationalizes

the reasons for development of flexible-based control techniques as done in this chapter.
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Chapter 5 Conclusions and Future

Work

| 5.1 Conclusions

In this thesis, we develop robust dynamical controllers for solving the problem of
tracking and regulation for rigid link manipulators and flexible link manipulators. The
design of the dynamic controller is based on construction of a two-time scale dynamical
motion of the closed-loop system. Stability conditions imposed on the fast and slow
subsystems can then ensure that the full-order closed-loop system achieves the desired
properties provided that the singular perturbation parameter is selected sufficiently small
[37]. The output performance can then be made insensitive to disturbances.

The objective of the control is divided into two different categories: regulation and
tracking. Regulation problem or the point-to-point control is concerned when the desired
trajectory of the end-effector is chosen to be constant by specifying the final point.
Tracking problem on the other hand is concerned with following a time-varying joint
reference trajectory.

In the first part of the thesis, the modelling of the rigid and flexible-link manipulators is
reviewed. Issues such as kinematics and dynamics of the manipulators are discussed. The
properties of the dynamic models for rigid and flexible manipulators are presented. Based

on Euler-Bernoulli beam equations of motion and using the assumed modes method and
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taking into consideration a finite number of modes the dynamic equations for flexible-
link manipulator are derived.

In Chapter 3, the control of rigid link manipulators is presented. Using the mathematical
model of a two-rigid link manipulator [48], four different control methods are
investigated: PD control, computed torque method, localization method, and a novel
dynamic control method. Simulations are provided for each control method using
different sets of initial conditions and their relative performance capabilities studied.

The PD control method is a simple and linear controller. In order to achieve smaller
errors, larger gains have to be selected. The drawback is that system could become
unstéble if gains are not properly selected and/or the initial conditions deviate from the
equilibrium points significantly. Another disadvantage is that the control torque could
generally lead to large values. This could be an impediment when this method is
implemented on a real manipulator. When there are disturbances in the system, the PD
controller is generally not capable of overcoming their effects.

The manipulators are known as highly nonlinear systems. This is one reason that linear
control theory is not generally suitable. One control method commonly used in robotics is
the computed-torque technique. This approach works well and gives better control than a
simple PD controller when an accurate dynamic model of the manipulator is available.
However, in practical situations, it is very difficult for the parameters and nonlinearities
associated with the robot model to be exactly determined. In addition, during the
operation the dynamics of a robot may change significantly and rapidly. In this case, the

trajectory tracking performance when using the computed-torque control method
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significantly degrades due to the inaccuracy of the dynamic model for computing the
control torques.

Taking into account the above discussion, two other control methods are investigated in
this thesis.

The localization method uses state time derivatives and higher gains in order to decrease
the influence of disturbances and model parameters uncertainties on dynamic properties
of the output trajectories. In order to realise the control law, it is necessary to obtain the

values of the derivatives of ¢(rf) and they are obtained by means of a linear

differentiating filter. As was shown by simulations, it can be stated that this method
performs bettéf than the PD controller or the computed torque method. For both the
regulation and tracking cases, in the presence and absence of a disturbance in the system,
the localization controller is capable of achieving small errors. One drawback is that the
initial input torques could have large values.

In Chapter 4, the control problem of flexible-link manipulators is presented. It is known
that flexible manipulators are non-minimum phase systems. In order to achieve
minimum-phase characteristic, a new re-defined output is used instead of the joint angle
or the tip position. Based on this new output, two control methods are used for
controlling a single flexible link and a two-link manipulator for which the first link is
rigid and the second one is flexible. For both flexible-link manipulators, the proposed
dynamic control approach performs better than the computed torque method as

summarized in the following tables.
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Parameters | er, er, t, [sec] | |r,| [Nm]
Gains -
computed | k, =100 0.0038 4e-7 5 8
torque k, =100
dynamic | k =100 | 0.0017 0.0014 5 1.25
control
Table 5-1 Comparison between the computed torque and dynamic control for a single link flexible
manipulator
Parameters er, er, t, [sec] | |r,| [Nm]
Gains i
computed k, =400 0.0010 0.0006 5 2.5
torque k, =400
dynamic _|400 0 0.0004 0.0004 5 4.9
control "l 0 400

Table 5-2 Comparison between the computed torque and dynamic control for a two link flexible
manipulator

In the Tables 5.1 and 5.2 er; is the error between the desired position of the tip and the

real position and er, is the error between the desired position of the tip and the redefined

position. Furthermore, the dynamical control method designed based on the rigid model
assumptions is also applied to the actual flexible system. In this case, the closed loop
system is unstable justifying the need for development of flexible-based control

methodologies.

5.2 Contributions of the thesis

In this thesis, we develop a robust dynamical controller for solving the problem of
tracking and regulation for both rigid-link and flexible-link manipulators. The design of
the controller is based on construction of a two-time scale dynamical motion of the

closed-loop system. Stability conditions imposed on the fast and slow subsystems can
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then ensure that the full-order closed-loop system achieves the desired properties. The
output performance is insensitive to disturbances.

Furthermore, other control methods such as the PD control, computed torque and the
localization methods are investigated for comparative purposes. The main control
objective is to achieve sufficiently small tip-position tracking. It is known that flexible
manipulators are systems characterized by non-minimum phase behavior. In order to
achieve the minimum phase behavior, a new redefined output is proposed. Instead of
using the joint angles as for the rigid link manipulator case, a new output is chosen which
will provide the stability of the system.

Using a sufficiently small pertufbation parameter and high-order derivatives of the
output, a two time-scale separation of the fast and slow modes are induced in the closed-
loop system. In order to decrease the influence of disturbances on dynamic properties of
the output trajectories, a high feedback gain, and a higher-order output derivatives in the
feedback loop are used.

It has been shown that if a sufficient time-scale separation between fast and slow modes
in the corresponding closed loop system and stability of the fast motion subsystem are
guaranteed, then the slow motion equations have the desired form and thus after rapid
damping of the fast transients the output transient performance indices become
insensitive to external disturbances.

By simulations it was shown that the dynamic control method yields better results than
the previously presented methods. For all of the gains used the error remains in the same
range. In the presence of disturbances the dynamic controller can achieve an error bound

ofe=0.0007. The issue regarding the initial large values for the input torques has
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disappeared. Using this control method, the input torque value is aboutz =2 to 3 Nm.
This is a clear advantage when a method is going to be physically implemented, because
the torque availability and energy consumption are important issues in the

implementation of any control method.

5.3 Future work

New dynamic control approaches proposed in this thesis were applied to a two-rigid link
manipulator, to a single-link flexible manipulator and to a two-link manipulator for which
the first link is rigid and the second link is ﬂexible. One could naturally extend the results
of this thesis to a multi-link flexible manipulator.

In the modelling of flexible-link manipulators, a finite number of modes were considered
for the approximated model of the deflections. Specifically, only two modes were used.
Derivation of an analytical model of the deflections using a larger number of modes
could be studied. Furthermore, the elastic deformations are assumed to be small in order
to have a linear relationship between the elastic deformation and the strain. In some
applications, this assumption cannot be applied, so that analyzing the effects of the
nonlinear relationships between the elastic deformation and strain could be examined.

In this thesis the effects of a varying payload was not addressed. A time-varying payload
makes the design of the control for rigid and flexible manipulators more challenging.
This issue could be investigated as part of our future work.

The modelling and control methods used in this thesis are illustratéd by simulation using
Matlab and Simulink. To realistically and actually demonstrate the effectiveness of these

methods, experimental work should be done.
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