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Abstract

Blind User Identification in a Chip-Synchronous CDMA System

Afshin Haghighat, Ph.D.

Concordia University, 2005

User identification provides valuable information about the active users in a Code
Division Multiple Access (CDMA) system that could be ﬁsed in numerous applications.
Most importantly, it can produce a reliable estimate of multiple access interference,
whose cancellation is the main objective of multiuser detection schemes. Several schemes
have been introduced for user identification in a synchronous CDMA system. The main
distinguishing factor between different user identification schemes is the amount of
information about each user required to be available in advance at the receiver. The
existing schemes require prior knowledge of users’ spreading codes or some other forms
of assistance. However, the proposed method does not need the prior knowledge of the
spreading codes nor relies on any assistance. Thus, using the scheme proposed in the
thesis, one will be able to perform complete blind identification for a group of users. This
identification involves determination of the spreading codes of active users and

estimation of their relative timings.
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In this thesis, a scheme for blind identification of users in a chip-synchronous Direct
Sequence CDMA (DS-CDMA) system is presented. The proposed approach is based on the
subspace decomposition and searches for a solution that minimizes a defined cost function. The
search is performed over both signal space and time domain. By completing the identification of

the users, other important parameters such as user timings and power can be evaluated.

Blind identification of users for an-asynchronous CDMA system lends itself to several
applications such as CDMA up-links, ad-hoc networking, signal interception and non-intrusive

tests.
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Chapter 1

Introduction

1-1. Background

Voice transmission has been the driving force in progress and development of cellular
wireless systems. However, data services are expected to have significant growth over the
next few years and will likely become the dominant source of future generations of
wireless system. As the popularity and use of packet-data services increases and new
services are introduced, end-users will require higher data rates and improved quality of
service (QoS). In order to realize multimedia applications, operators will also require
more capacity in their systems. Terminals such as or PDA’s (Personal Digital Assistant),

smart phones and PCs with high-resolution color screens, larger displays and greater



memory capacity have become more common, requiring greater speed and shorter delays
when downloading audio, video and large files, or playing games.

The personal mobile wireless systems currently in use around the world are first,
second and third generation systems. First generation systems consist of the analog
mobile phones that offered only voice communications, like Advanced Mobile Phone
System (AMPS) and Total Access Cellular System (TACS). Second generation systems
offer digital voice and low to medium-rate data communications (e.g. 9.6 kb/s). The main
systems are Global System for Mobile Communications (GSM), Digital AMPS
(DAMPS)/IS-136, Personal Digital Cellular (PDC), and cdmaOne/IS-95B. Third
generation systems offer multimedia capabilities to second-generation platforms like
support for high bit rates (144 kb/s to 2 Mb/s) and extended capabilities over second-
generation systems [1-6].

CDMA-based systems are widely used in various wireless applications. In order to
exploit the capacity of a CDMA system, employing multiuser detection techniques
becomes essential. A large number of schemes and algorithms have been devised to
enhance the performance and also to reduce the complexity of a CDMA receiver in a
multiuser environment.

In most CDMA applications, some prior knowledge of the user parameters, e.g., the
spreading code, timing of users, and power is assumed. However, in a real system, this
may not be the case. Users enter and exit the system irregularly and the base station has
to keep track of the status of each user. Various methods could be used to transfer users’
parameters to the base station, however, one way or the other, they impose some

overhead and reduce system capacity. Therefore, another important aspect of the CDMA



reception is to assist multiuser detection schemes by user identification and their
parameters estimation.

In other words, it is desired to know how many active users are operating at any given
time and who they are. This enables the receiver to dynamically adapt itself to a multiuser
environment. This capability has a two-fold benefit for a CDMA multiuser system. First,
the receiver will be able to maximizel the cancellation of Multiple Access Interference
(MAI), since it has the updated information on other active users. Second, the degree of
complexity, which is almost directly proportional to the performance of the receiver, can
be optimized against the number of active users. In other words, when there are a small
number of users the receiver will be able to select a more complex detection algorithm to
achieve a lower bit error rate. This is an attractive feature for software defined radio
platforms.

Blind identification of users enables the receiver to be more self-reliant and it may
also improve the system efficiency, since side information is not required. Currently, a
great deal of complexity of a CDMA system is spent on establishing the basic
synchronization that includes code or channel assignment tasks and so forth. Therefore a
self-reliant scheme can notably reduce the task load of a base station. Moreover, a blind
scheme that is capable of identifying users and their spreading sequences is very valuable
for other applications such as: signal intercept, ad-hoc networking and non-intrusive

performance evaluation tests.



1-2. Scope of the Work

The most typical information needed in every CDMA network is the available
random spreading codes and access slot in the cell. As the terminal cannot register to the
cell without having access to the information, a broadcast channel is usually needed for
transmission of such information. The broadcast channel is a transport channel that is
used to transmit information specific for a given cell. This occurs with transmission of a
relatively high power in order to reach all the users within the intended coverage area.
Also, in an uplink CDMA, the base station does not have any control or knowledge of
activity of users in adjacent cells. Therefore blind identification can assist the base station
in estimation and cancellation of inter-cell interference. Thus, there is bandwidth as well
as power penalty involved using a broadcast channel. This motivates the idea of user
identification without reliance on any side information or a broadcast channel.

Acquiring information revealing the identity of an active user in a CDMA system
without benefiting from a broadcast channel is called user identification. The type and
extent of the information resulted from user identification process can be varied from one
application to another. This information covers various parameter of an active user such
as: spreading waveform, transmitted power, timing, direction of arrival. Many systems
employ coerdination between the transmitter and the receiver units to eliminate the
necessity of acquisition of those parameters. For example, in order to initiate a call the
mobile unit and the base station must follow certain protocols before being able to make
a call. However such coordination causes extra cost and over-head on the system.

Therefore it is desirable to minimize the reliance of a communication platform to any



supervisory information to improve the efficiency of the system. This opens the topic of

blind identification of users that is the subject of this work.

1-3. Contribution of the Thesis

Several user identification schemes have recently been introduced [18]-[27]. In all, the
prior knowledge of the signature sequences or some other forms of constraint on the
system are assumed, i.e., training sequences or direction of arrival of the signal. The main
contribution of the thesis is that the proposed approach does not require the prior
knowledge of the signature sequences nor it relies on other conditions or requirements
called for in the previous works. The only parameters required to be available at the
receiver are the processing gain and the rate of transmission that are basic parameters of

the system.

In this work, a blind scheme based on Multiple Signal Classification (MUSIC)
algorithm for user identification in a chip-synchronous multiuser CDMA system is
suggested. The scheme is blind in the sense that it does not require prior knowledge of
the spreading codes. Spreading codes and users’ power are acquired by the scheme.
Eigenvalue Decomposition (EVD) is performed on the received signal, and then all the
valid possible signature sequences are projected onto the subspaces. However, as a result
of this process, some false solutions are also produced and the ambiguity seems un-
resolvable. Our approach is to é.pply a transformation derived from the results of the
subspace decomposition on the received signal and then to inspect their statistics. Based
on the difference in the statistics of a false and authentic solution, a cost function is

defined. Then, the scheme searches over both signal subspace and time domain to



minimize the defined cost function. The proposed scheme is able to perform user
identification without any external assistance in both symbol-synchronous and symbol-

asynchronous CDMA systems.

1-4. Organization of the Thesis

The thesis is organized in five chapters. In Chapter 2, a short overview of the CDMA
system and basic definitions are presented. Also, a quick scan of the multiuser detection
schemes is provided to highlight the requirement and importance of the prior information
about users’ parameters. Then, the topic of user identification and its applications in
CDMA systems are presented. Finally, a summary of the prior works on the subject of
user identification ends Chapter 2.

In Chapter 3, the proposed approach for blind identification of users is presented.
The scheme relies on subspace decomposition of the received signal into orthogonal
subspaces of signal and noise. System model is discussed and the proposed scheme for
distinguishing between false and authentic solutions is introduced. Then, the method is
analyzed for a synchronous system and then extended to an asynchronous case. Also,
simulation results are presented to reflect the performance of the scheme.

Chapter 4 is dedicated to performance evaluation of the proposed method. The first
subject discussed is how the algorithm can be accelerated in order to meet the speed
required for a dynamic CDMA system where users can enter and exit the system at any
time. The other topic discussed in the chapter is the performance evaluation of the

scheme. The main measure of the performance is the probability of false and miss



detections. Thus, the false and miss probabilities are evaluated and analytical versus
simulation results are compared.

In Chapter 5, concluding remarks are presented and the contributions of the thesis are
highlighted. Furthermore, some suggestions for future work are presented. The
suggestions are grouped into two groups. The first group covers suggestions for
continuétion of the work for the same application only with more stringent constraints. In
the second group, possible extension of the proposed method to other applications is

discussed.



Chapter 2

User Identification
in Multiuser CDMA Systems

2-1. Introduction

Ever increasing demands for wireless communication call for higher data rates,
bandwidth efficient modulations as well as more efficient multiple access techniques.
Multiple-access is one of the critical functions of any network. The two traditional
multiple-access techniques, based on frequency and time division, are being employed in
several applicétions for the past decades. CDMA has taken on a significant role in
cellular and personal communications. CDMA has also gained interest for satellite
applications, providing multimedia services over a larger number of audiences. To
enhance the efficiency of CDMA, multiuser detection concept is introduced. As it will be

explained in more detail in the next sections, multiuser detection enables each receiver to




detect the desired signal in presence of severe co-channel interference, resulting in a
larger capacity for the whole network.

Although there are several flavors of CDMA-based spread spectrum system, such as:
Frequency Hopping (FH) and Hybrid FH-DS, the focus of this work is only on DS-
CDMA systems. Also, although the entire discussion holds for both base station and
handset applications, the main focus of this work is more oriented for base station

applications.

2-2. A Short Review of the CDMA History

CDMA was first tried in the military field and for navigation systems [1]-[5]. In 1950,
De Rosa-Rogoff proposed a Direct Sequence Spread Spectrum (DS-SS) system and
introduced the concept of processing gain. In 1956, Rake concept was proposed by
Price-Green. Between 1961 and 1978, cellular applications based on spread spectrum
system were suggested. In 1980, DS-CDMA was proposed by Qualcomm and later they
would offer 2™ generation CDMA radio network. In July 1993, IS-95 standard and
narrow band CDMA were introduced. Commercial applications of IS-95 and multiuser
detection and MLSE (maximum likelihood sequence estimation) concept in AWGN
channel were formulated in 1996 by Verdu. During the 1990s, wideband CDMA
techniques with a bandwidth of 5 MHz or more have been investigated and several
standards such as FRAMES-FMA?2 in Europe, Core-A in Japan and CDMA2000 in the
United States [6] are introduced. These standards that constitute the third-generation of

wireless mobile communication systems, or so-called 3G, are expected to be widely



deployed by 2010. Meanwhile, forth generation system definition and development have

already begun.
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Figure 2.1 A Basic BPSK DS-CDMA system

2-3. DS-CDMA Principle

In CDMA, as the name implies, each user is assigned a distinct code to encode its
information bearing signal. Figure 2.1 shows a simple implementation of a BPSK DS-
CDMA system. The data stream, x(?), is processed by the encoder block and enters the
modulator with a rate of R, bit/s. It is modulated by the carrier ¢(?) and the spreading code
s(t). The spreading or signature sequence s(?) is generated at a rate of R, chips/s by the
Pseudo-Noise (PN) generator block. This block produces a deterministic sequence, which
has a very long period replicating a real random sequence. The rate at which the
spreading sequence is generated is called the chip rate. Chip rate is usually much higher

than the data rate Ry. The ratio

N === 2.1)
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defines the processing gain of the system. Following the encoding process, the bandwidth
of the spreading code is much larger than the bandwidth of the information bearing
signal. Processing gain determines the amount of spreading of the original signal.

At the receiver, we assume an established synchronization at carrier, clock and code
levels. The received signal, after the down-conversion, is correlated with the local
signature signal. If the signature sequence of that receiver is the same as the one used in
the transmitter, the correlator de-spreads the received signal successfully. That can be
accomplised since the correlation between the desired user’s code and other users’ code
is assumed to be negligible. The de-spread signal is decoded and processed to regenerate
x(t). However, as Figure 2.2 shows, if the codes are different, the correlator spreads the

signal even further and protects the privacy of the link.

A e

User 1

S
o %M%fﬂﬂw

s:)

Figure 2.2 De-spreading the received signal at the receiver

2-3.1. CDMA Features

In general there are certain features of the DS-CDMA that make it very attractive for

various applications [1]-[6]:

11



Multiple access: By spreading, the original signal is virtually buried in background

noise both in time and frequency domain. This not only gives discreteness and Low-
Probability of Intercept (LPI), but also offers the opportunity of overlaying low level DS-
CDMA on top of existing narrow-band users and improving the network capacity.

Interference rejection: The interference could be a hostile interference, like a jammer,

or a simple case of simultanous use of the channel by other users in the system. In either
case, the de-spreading operation at the receiver improves the signal to interference ratio
by the processing gain N. In the case of a narrow-band interferer, at the receiver, the
interference signal is correlateded by the spreading code resulting in spread of the
narrow-band interferer over a larger frequency and reduction of its power spectral
density.

Robust multipath performance: Since the ideal autocorrelation of a spreading code

vector is zero outside the code interval, the multipath signals will be threated as an
interfering signal and hence, its influence on the information-bearing signal will be
limited.

Soft capacity: As mentioned earlier, CDMA has a soft capacity. This means that the
capacity of the system can be enhanced to some extent by simply tolerating some
degradation on the Bit Error Rate (BER) performance of the system.

Security: This can be interpreted in two ways, privacy and low probability of
interception. In the case of privacy, the transmitted data can be recovered if and only if
the code used to transmit the data is known at the receiver. Hence, any attempt for
eavesdroping fails, if the assigned spreading code for the chanel is not a priori known. On

the other hand, the first step for a hostile interferer or eavesdropper is to locate the used

12



channel. Since the spread data has a very low power spectral density, it is quite difficult
to detect the spread spectrum signal across the whole frequency band. This provides a

satisfactory level of LPI for many applications.

2-3.2. CDMA Limitations

There are two main problems associated with a CDMA system [7]-[8]:

Multiple Access Interference (MAI): In a conventional DS-CDMA system, each user

processes its own signal and treats the other users’ signals as additive noise. In this
approach, the only protection for combating MAI is provided by inherent suppression
capability of CDMA, measured by the processing gain N. This interference suppression
capability is, however, limited and as the number of users grows, some degradation is
introduced in BER performance of the system. This problem arises from the fact that the
spreading codes of different users are not orthogonal, and hence in the de-spreading of a

given user’s signal, there will be some contribution from other users’ signals.

Near-far problem: The near-far problem arises when the signals from different users
arrive at the receiver with widely varying power levels. In the case of a large difference, a
strong user could overwhelm all the weaker signals. This problem could be a serious
limiting factor for the capacity of a system, unless is taken care of by using a power
control algorithm. The difference in the power between different users can be originated
from either having different physical distances to the base station or experiencing a deep

fade during the signal reception.

13



2-3.3. CDMA Receiver Model

Figure 2.3 shows a DS-CDMA system with K users. They all operate at the same data
rate of R,, sharing the same allocated channel. A synchronous DS-CDMA system is
considered with a processing gain of N. The received signal prior to chip rate sampling

can be modeled as

(t)= iAkbksk ()+n(t) te(o,T] 2.2)

where A;, by and si(f) denote the received amplitude, transmitted bit and the spreading
sequence of the &y user, respectively. 4, is assumed to be unknown but constant during
the period of observation. b, is a random variable taking values 1 with equal probability.
Spreading codes are assumed short, i.e., supporting only the bit interval 7. The white
Gaussian noise with a variance of ¢ is denoted as n().

After the chip rate sampling, Equation (2.2) can be written in a vector form as

K
r=>Y Anbs, +n (2.3)

k=1

where s, = (1/ JN )[s,‘1 Spy 0 skN]T represents the normalized signature sequence of the
ky, user. Superscript © denotes the transpose operation, n is a zero mean white Gaussian

noise vector with a covariance matrix OZIN, where Iy is the N x N identity matrix. For

convenience Equation (2.3) can be rewritten as
r=SAb+n 2.4)

where S=]s,; s, s, ], A=diag[4, 4, - 4] and b=[p, b,--- b, ] .

14



At the receiver, the detector is responsible for separating users’ signals and detecting

their corresponding information bits. In Figure 2.3, the iy, estimated information bit is

represented by b; .

A

S1(t)

b
—4 52(%) —»@

n()

v

bx
—>  Sk(?) ———>®

b’

—>

()

CDMA
Receiver

by’

Figure 2. 3 A simple presentation of a CDMA channel

2-3.4. Conventional CDMA Receiver

A conventional receiver consists of a bank of correlators, each matched to a

corresponding spreading code [5]. The detectors outputs are sampled at each bit interval

and the decision is made based on the sign of the samples. This can be shown as

y =8'r=S"SAb+S"n

=RAb+8"n

2.5)

where R =SS is the cross-correlation matrix of the spreading waveforms. In practice,

the spreading waveforms are not orthogonal, therefore R will not be a diagonal matrix.
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Hence, there will always be some interference from other users. A conventional CDMA
receiver treats MAI as AWGN; therefore it has a limited performance in a multiuser
environment. As cited earlier, the performance of the conventional detector vastly

depends on the number of active users in the system and their relative powers.

2-4. Multiuser Detection for CDMA Systems

As stated earlier, a conventional CDMA receiver has two main drawbacks, i.e., MAI
and near/far problem. They both originate from the interference of other users and cause
a degradation of performance. To overcome the shortcomings of a conventional CDMA
system, transmit-oriented techniques and receive-oriented techniques are introduced.
Power control algorithms and spreading with orthogonal codes belong to the former and
multiuser detection [8]-[9] is the core subject of the latter. Potential capacity increase and
near/far resistance can be achieved if the negative effect that each user has on others can
be cancelled. Hence, using joint detection of users, the destructive effect of MAI can be
significantly reduced. Although the idea is easy to comprehend, the implementation could
be very complex [8]-[10]. Here a short review of some of the principle multiuser schemes

is presented.

2-4.1. The Optimum Detector

The optimal detection is based on the Maximum Likelihood Sequence Estimation
(MLSE) [11]. The objective is to find the sequence, which maximizes the conditional
likelihood of the given sequence. The maximum likelihood decision for the vector b’ is

given by:
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arg{ max [2yTAb‘—b‘T ARAb‘]}. (2.6)

be{-1.+1}¢

The estimated elements of the input vector are evaluated based on a search over all 2%
possible combinations of the original input vector b’. This can be implemented using the
Viterbi algorithm. The optimum detection shows an excellent performance approaching
single user bound, also it is capable of overcoming the near/far problem. As Equation
(2.6) shows, the scheme requires the knowledge of amplitudes of all users. From the
practical point of view, this technique is prohibitively complex to be implemented; it has
251 states and requires K storage updates per symbol interval. The complexity grows

exponentially and this is a major drawback of this method.

2-4.2. The Linear Decorrelating Detector

Multiplying the two sides of the Equation (2.5) by R™', the inverse of the cross-
correlation matrix, leads to the linear decorrelating detection scheme [8], [12]. The

resulting vector is:
R'y=Ab+R™n 2.7)

resulting in the information vector b plus a new noise term. Since the new noise term

still has zero mean, the decision will be based on:

b'= sgn(lR“'yJK)= sgn(lAb + R"nl,(). (2.8)

A very important feature of the decorrelator detector is that, unlike the optimum
detector, it does not need the prior knowledge of the signal powers. Equation (2.8) shows

that neither signal nor noise terms are influenced by the interference. Hence the
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performance will be independent of the strength of the interfering users, and the
decorrelator receiver is capable of combating the near/far problem. Decorrelator receiver
is less complex than the optimum detector and its complexity grows linearly with the
number of users. One of the issues regarding the use of the decorrelator detector is that
the cross correlation matrix of the spreading code has to be known a-priori or estimated
for each detection interval. Also, since a decorrelator detector does not take into

consideration the noise term, the decorrelation process leads to noise enhancement.

2-4.3. The Minimum Mean-Square Error Detector

To address the drawback of the decorrelator, Minimum Mean-Square Error (MMSE)
detector is devised [12]-[13]. MMSE detector is a linear receiver that minimizes the mean
square error:

min .. Efjb-My[’] @.9)

where M is found as the optimal solution:

M=[R+o?A]". (2.10)

It provides a considerable level of MAI rejection while maintaining additive noise term at

a very low level. The receiver structure for this method is very similar to the

decorrelating detector. The only difference is replacing the processor block R™

byM = [R+o-2A’2 r . The conventional matched filter receiver is basically optimized to

fight the background white noise exclusively, whereas the decorrelating detector

eliminates the multiuser interference disregarding the background noise. In contrast, the
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MMSE linear detector can be seen as a compromise solution that takes into account the
relative importance of each interfering user and the background noise. In fact both the
conventional receiver and the decorrelating receiver are limiting cases of the MMSE
linear detector. For this type of receivers, the prior knowledge of users’ power is
required. The complexity of the receiver grows linearly with the number of users, and the

required computation involves matrix inversion.

2-4.4. The Decorrelating Decision Feedback Detector

The decision feedback detectors [8], [14] are characterized by two matrix
transformations: a forward filter and a feedback filter. These detectors are similar to
decision feedback equalizer used to fight inter-symbol interference for single user
applications. However, in addition to equalization, the decision feedback multiuser
detectors employ successive cancellation. In each time frame, decisions are made in the
order of decreasing users’ strengths. The receiver makes the decision for stronger users
first, allowing weaker users benefiting from this information toward their own decisions.
The receiver structure can be motivated from the following. The cross-correlation matrix

R can be factorized by Cholesky method as:

R=F'F (2.11)
where F is a lower triangular matrix. The output vector of the matched filter bank after
multiplying by [FT r is:

¥=FAb+n (2.12)

where 1 is a Gaussian vector. The output vector after cancellations becomes:
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b'=sgn(F "y - (F - diag[F]) Ab). 2.13)

Best performance is achieved when at the receiver a power sorter precedes Cholesky
factorization. So that the strongest is ranked first, and the weakest is ranked last. As such,
the signal of the strongest user, that is least corrupted by MAI, is detected first. This
decision is then used to subtract MAI from the signal of the second user, and so forth.

The performance of the decorrelating decision feedback detector for weak users is
superior to the conventional and the linear decorrelating detector. This detection method
requires the knowledge of users’ signal strength. In terms of the complexity, it requires to

perform Cholesky factorization and matrix inversion.

2-4.5. The Successive Interference Canceller

The successive interference cancellation [15] is motivated by the idea of a simple
augmentation of the conventional detector in order to achieve multiuser detection. The

output after k,;, cancellation equals to:
k-1
y(t)- Z;aibe"f (2.149)
Jj=
and the bit decision for the &, user is:
. k-1
b,'=sgn| y(t)->.a;b;R, |. (2.15)
j=t

where Ry; is the &j, element of the R. To remove the MAI, the knowledge of users’
amplitude and also their decisions are required. These can be obtained by separate

estimation of each or directly by using the output of a decorrelator. Similar to the
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decision feedback detector, it is important to cancel the stronéest signal before detection
of the other signals. The benefit of cancellation in order of signal strength is twofold.
First, canceling the strongest signal has the most benefit because it has the most negative
effect. Secondly, canceling the strongest signal is the most reliable cancellation and also
provides the best bit decision.

In this technique, there is one bit delay per stage of cancellation. Therefore the
number of cancellation has to be traded off with the complexity and the maximum delay

requirement of the receiver.

2-4.6. The Multistage Interference Cancellation

The multistage interference canceller in principle is similar to the two above detection
schemes [16]-[17]. The term multistage detection is suggested by the fact that various
decisions are produced at consecutive stages. The iy stage of this detector uses decisions
of the (i-1),, stage to cancel MAI present in the received signal. The decision for the iy

stage of cancellation is:

b, =sgn[yk —I,ﬁ“’] (2.16)

where Ik(i'l) is the estimated interference for £ user in the (i-1), stage of cancellation,

I =%ab,"Ry;. @2.17)

Jjzk
The performance of multistage detector depends on the relative energies of the users.

It best performs for equal power users.
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2-4.7. Summary of the schemes

Table 2.1 shows a comparison between various main multiuser detection schemes. As

presented, in every scheme, some advance information on users are required for

successful detection.

Scheme Principle Features Disadvantages
Conventional Receiver Correlators bank Minimum cost and Not near-far
complexity resistant
Severe degradation
due to MAI
Optimum Detector Maximum Likelihood Outstanding Very complex
Sequence Estimation performance in implementation
(MLSE) employing Viterbi MAI cancellation Prior knowledge of
. algorithm all users’ powers
Linear Decorrelating Complete Noise
Detector Decorrelating the received cancellation of enhancement
signals by multiplying the MAI Prior knowledge or
received vector by the No need for prior real-time
inverse of the cross- knowledge of all estimation of
correlation matrix users power matrix R’
Minimum Mean- Minimizing the mean square Relatively good Prior knowledge of
Square Error (MMSE) error of: performance users’ powers
Detector . 2 Requires matrix
‘ min,_exx £ l”x - My” J inv(tlarsion
Decorrelatig Decision Better Power sorting
Feedback Detector Cholesky factorization of H performance than Requires Cholesky
MMSE. factorization as
well as matrix
inversion
Prior knowledge of
all users’ powers
Successive Canceling interference Near-far Power sorting
Interference Canceller | starting form the strongest resistance. One bit delay per
to the weakest. cancellation stage
Prior knowledge of

all users’ powers

Table 2.1 — A summary of main multiuser detection schemes
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2-5. User Identification in CDMA Systems

Acquiring information revealing identity of an active user in a CDMA system is
called user identification. The type and extent of the information resulted from user
identification process can vary from one application to another. This information covers
various parameter of an active user such as: spreading waveform, received power, timing,
direction of arrival and so on [18]-[29]. Many systems employ coordination between the
transmitter and the receiver units to eliminate the necessity of the acquisition of those
parameters. For example, in order to initiate a call the mobile unit must send and receive
certain signals to and from the base station before being able to make a call. However,
such coordination causes extra cost and over-head on the system. Therefore, it is
desirable to minimize the reliance of a communication platform on any supervisory
information to improve the efficiency of the system. This is the topic of blind

identification of users that is the subject of this thesis.

2-5.1. User Identification in Multiuser Detection

In a DS-SS system, users operate in the allocated channel simultaneously. Since the
spreading waveforms are not always orthogonal, there is interference between the users.
Multiuser detection schemes are developed to combat the Multiple Access Interference
(MAI). The promise of performance enhancement by multiuser detection is valid
provided availability of information about each user, such as: spreading waveforms,
users’ relative delays and users’ powers. The parameters needed to characterize a
multiuser environment are dynamic. The dynamism originates from the mobility of users,

and burstiness of the transmission. Therefore, it is essential to maintain updated
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information about users. Unless those parameters become available through some
coordination, i.e., by employing a side channel, they must be estimated and tracked.
Using a side channel to supply such information requires extra bandwidth and imposes
extra cost and complexity.

Even if some form of coordination exists between the mobile and the base station,
this information may be available only within a cell. Therefore, these parameters cannot
be accessed, if the interference is originated from the adjacent cells. Also, if users are not
symbol synchronous, the a-priori knowledge of the spreading waveforms is not
conclusive, since users’ timings are still to be found. Therefore, an efficient multiuser

detection scheme requires performing user identification as well.

2-5.1.1. Case Study; Decorrelator Multiuser Detector

In this subsection, through an example, the importance of user identification for
decorrelator receiver is shown. Figure 2.4 shows a basic structure of the receiver
comprising of a correlator bank and the decorrelator function itself.

Figure 2.4 shows the Bit Error Rate (BER) performance of a multiuser system with
and without user identification. The processing gain N=16, and all users are assumed
equal power with a signal-to-noise ratio of 12dB. The matched filter receiver or
traditional CDMA receiver that does not employ a multiuser approach exhibits worst
performance. In such scenario, the BER of the system degrades quickly as the number of
active users increases. However by using a decorrelator detector in conjunction with the

matched filter, the BER performance improves as demonstrated in Figure 2.4.
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Figure 2.4 A decorrelator receiver

This improvement is possible if the receiver knows exactly who the active users are
and then comes up with the appropriate decorrelating transform. If that information is not
available, the performance will deteriorate and it might even become worse than a
receiver that does not have any multiuser detection. For example, if the number of users
drops and the receiver does not acquire this information and still continues to employ the
un-updated decorrelation, the performance is degraded. This is shown by the curve using
the third legend. In this case, the receiver assumes that there are 14 active users in the
system and applies that information for any number of users. As Figure 2.5 shows, in
such a scenario, for small number of users the performance is even significantly worse

than a single user receiver.
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Figure 2.5 BER performance with and without user identification

2-5.2. Eavesdropping and Signal Intercept

Military and law-enforcement agencies employ SS-based systems extensively. While
SS techniques propose basic steps towards security of a friendly link, they make it more
difficult to intercept a hostile transmission using such system. For eavesdropping and
signal intercept applications, we have to add new dimensions to the dynamism of a
multiuser environment; the dimensions are spreading waveforms and relative delays of
the targeted users. In a hostile or non-cooperative scenario, users may not employ any
predefined spreading waveforms and may often change their spreading codes. Therefore,

the first step for signal interception is to determine spreading waveforms and relative
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delays of the operating users. From there, all other parameters of the user can be

estimated and the targeted signal could be successfully detected.

2-5.3. Ad-Hoc Networking

In an Ad-Hoc wireless network with M nodes, O(M°) orthogonal channels are
required. For efficient implementation of such networks, the allocated bandwidth should
be optimized. This means that for a CDMA based Ad-Hoc network, N<<M? [18]. This
can be achieved if a user, just before setting-up a connection, assesses the traffic of the
channel by identifying the identity of each active user and the usage of spreading codes.
Then, from the pool of the remaining available codes, one waveform can be selected and
be used for the call. The selection can be even done based on the amount of the cross-
correlation that it could have with the other used spreading codes. Thus in order to

minimize interference, the one that results minimum cross-correlation will be selected.

2-5.4. Non-intrusive Performance Evaluation

In many applications, such as cellular wireless system, existing test procedures
require that the test equipment simulate the functionality of one hop in order to test the
performance of the other hop. However, a wireless communication platform can be tested
and its performance be evaluated by monitoring the transactions between the two
working hops. This technique avoids cutting off the link and disrupting the flow of
information.

To implement such technique in a DS-CDMA based system, it is essential that the

monitoring equipment be able to acquire all the required information simply by listening
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to the signal in the air. This is another application of blind estimation of spreading

waveform and user parameters.

2-6. Prior Works

Several schemes for user identification in a DS-CDMA system have been introduced.
They can be sorted based on the amount of expected information about each user
available to the receiver and also the presumed conditions. Here, we review main

schemes that are most cited in literatures.

In [19], Chang et al propose an approach for user identification and parameter
estimation in an AWGN channel. In their proposed scheme, a filter bank with each
branch matched to a given signature sequence is used. The outputs of the matched filters
are further processed to identify the activity of users. The scheme requires the advance
knowledge of spreading waveforms. Also it is inefficient, since it always has to process

the receive signal as if all the users are active.

Yu et al presented a technique for user identification without relying on users’
spreading waveforms that employs an antenna array [20]. The approach is limited to
cases when users’ signals arrive at the receiver from different angles. Therefore in a
practical scenario, where users are located randomly, the proposed scheme fails to

identify the users who are in a same proximity.

28



The approach proposed by Halford et al [21] relies on two important requirements. It
needs to know the spreading waveforms of all users in advance and also the identity of

the current active users in order to identify a new active user.

Schemes based on the subspace theory have been proposed for blind channel
estimation as well as blind detection for a CDMA multiuser receiver [28]-[30]. The
subspace concept has also been used for user identification in a CDMA system [22]-[25].
Techniques presented in [22]-[23] and [25], all require advance knowledge of the
spreading waveforms. Zhang et al proposed a technique for blind estimation of signature

waveforms, yet it relies on training sequences sent by the transmitter.

The paper by Wu et al [25] presented a subspace approach based on Multiple Signal
Classification (MUSIC) algorithm for a synchronous DS-CDMA. This scheme also
requires the prior knowledge of all the signature sequences. In this work, it is assumed
that the system is a symbol-synchronous CDMA system with all the spreading
waveforms available in a pool. Then, by having access‘to this pool, the active users are
detected by inspeéting their signal subspace properties. The work by Wu has stemmed
several other studies on the subject [18], [26]-[27], yet they all share the same restriction
of requiring prior knowledge of the spreading waveforms. Moreover, the work presented

in [27] requires frequent transmission of training signals.

In this thesis, we propose an approach for blind identification of active users in a DS-

CDMA system. It can be employed for both synchronous and asynchronous models. The
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approach does not rely upon any training signal and does not require any prior knowledge
about the activity, spreading waveforms, power or relative delays of users. Basically, this
work addresses the shortcomings of previous works, namely, requiring advance
knowledge of the signature waveforms, assumption of a symbol-synchronous channel,
necessity of training epochs and presumption of different direction of arrival for each

user.
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Chapter 3

Blind Estimation of

Spreading Waveforms and Users’ Timings

3-1. Introduction

A blind scheme is proposed for blind discovery of spreading waveforms and timing
estimation in a DS-CDMA system. The model throughout this work is based on a chip-
synchronous DS-CDMA with symbol-asynchronous users. Hereafter, synchronous or
asynchronous refer only to the timing of the active users.

The approach does not require any advance knowledge of users’ parameters or any
training signal. The scheme is based on the subspace decomposition and searches for
solutions that minimize a defined cost function. Minimizing the cost function leads to the

elimination of false solutions that originate from linear combination of active users and
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also acquiring the timing of the active users. The search is performed over both

waveform and time domains.
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Figure 3.1 A basic graph of the system for user identification

3-2. Problem Formulation and Signal Model

Figure 3.1 shows a chip-synchronous BPSK DS-CDMA system with K active users.
Equation (3.1) is a mathematical presentation of such system operating over a Rayleigh

fading channel. The spreading factor is assumed to be N. The received baseband signal

prior to chip rate sampling can be expressed as

H0)=3 Aybys, (-7, ) +n(t) 1€[0,7] 3.0)
k=1
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where by and si(f) denote the transmitted bit and the spreading sequence of the 4, user,
respectively. During transmission, each user’s signal can be subjected to uncorrelated

Rayleigh fading. This is implemented in Equation (3.1) by 4, where
A, =|4,]e”™ (3.2)

wherelAk| , 18 the ky active user’s Rayleigh distributed amplitude with second order

moment EQAk|2)= 7.’ . The channel random phase shift ¢, is uniformly distributed

over [O, 27). We assume that the channel is a slow fading channel, i.e., channel
parameters are constant during at least one symbol interval. by is an euiprobable random
variable taking 1. Spreading codes are assumed short; supporting only the bit interval 7.
The white complex Gaussian noise with a variance of ¢ is denoted as n(z). The delay of
each user is represented by 7,€[0, 7) and is equal to a multiple of the chip period T, i.e.,
5= m T, where my is a positive integer smaller than N. The residual random carrier phase

corresponding to each user is shown by 6, that is uniformly distributed over [0, 2m).

Hereafter, we only consider an AWGN channel and also assume that users’ amplitudes
are constant during the observation intervals. After chip rate sampling, for the i, bit

interval, Equation (3.1) can be written in a vector form as
K -0 . 1 .
r(i)= kzl: A’ {b; D’ +bD;, }sk +n (3.3)

where s, = (1/ JN ) [s,cl Spy  Sin ]T represents the normalized signature sequence of the
ky user [31]. Noise is represented in a vector form as n with a covariance matrix o’ly,

where Iy is the NxN identity matrix. D; and D, are permutation matrices that are

defined based on the delay of the %, user. The two matrices determine the contribution of
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the previous and current bits within the collection window. They can be expressed in

block forms as
DP — 0 I'"k xny ]
‘ 0 0 NxN

0 0
D¢ = )
m 0
NxN

For convenience Equation (3.2) can be rewritten as

r(i)=SA0b(i)+n
where
S= lD,I:,lS] D, s Dy sy Df"KsKJNx2K
A =diag [A1 A - Ag Ay ]szzK

= diac le® o0 ... pi% joxj
O—dlag[e e e’ e’ | vk

b()=[bi" bi b bE [ sk

(3.4)

(3.5)

(3.6)

3.7

(3.8)

(3.9)

(3.10)

Matrix S contains the effective signature waveforms that spread portions of the two

consecutive bits of each user within the collection window. So that users do not cancel

each other’s signals, it is assumed that S has a rank of 2X.

3-3. Signal and Noise Subspaces

The autocorrelation matrix of the collected samples of the received signal can be

evaluated as
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c=E (@)}

= SE{AOB( b)Y 07 A% 57 + 071,

@.11)
—SE{AA" 8" + 571,
=SS’ +o’I,
where
. 2 22 2 2 2
F=dlagl71 Yw Vs Y2 o Vk Yk J (3.12)

Since noise is assumed white and independent from the users’ signals, then the
received signal can be decomposed into orthogonal subspaces. Performing Eigenvalue
Decomposition (EVD) on the autocorrelation matrix of the received signal results in two

orthogonal subspaces of signal and noise [25].

T As 0 UsT
C=UAU"=[U, U,] (3.13)
0 A, jJjU

where U and A are the general eigenvector and eigenvalue matrices. Since the
autocorrelation matrix C is symmetric, then all the eigenvalues are positive [34]. Matrices
U, and U; represent eigenvectors of noise and signal subspaces, respectively. The'signal
and noise subspaces can be separated as follows:
e U;: The signal subspace
A, =diag[4, 4, - 4,] (3.14)
U,=[uu, u,] (3.15)
o Uy, The noise subspace, for all 1, = o
A, =diag [y, Ap; A ] (3.16)

U, =[“P+1 Up,, "'“N] (3.17)
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where the columns of Uy are the P eigenvectors associated with the largest eigenvalues of

C. The columns of U form a set of basis vectors of the signal subspace, that is, the

subspace spanned by constituting signals in C. Hence, all the constituting signals are

orthogonal to noise subspace, providing the basic measure for user identification. In a
)

symbol-synchronous DS-CDMA, if the spreading waveforms of active users are known,

active users can be distinguished by projecting each signature sequence s; vector onto the

noise and signal subspaces [25],

fo=70,)siu, ) =fsi,

(3.18)

2

g, =70, Js7u, ) =|sTu,

(3.19)

If s; belongs to an active user, it lies in the signal subspace and then f; is equal to zero.
So, if f; is not equal to zero, it indicates that the user corresponding to s is not active at
this moment. By the same principle, if the k; user is active, s, resides in the signal
subspace and g will be equal to one. However the approach cannot be directly applied
when spreading waveforms are not known and it becomes even more involved for a

symbol-asynchronous case.

3-4. Blind Spreading Waveform Discovery and Identification

In this section, the approach for blind spreading waveform discovery and user
identification is presented. In the following, the scheme is first proposed for a
synchronous CDMA model and then later its application is extended to the asynchronous

case.
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3-4.1. Synchronous DS-CDMA

Assuming that users are all synchronized and their timings are known to the receiver,

i.e., m=0, we have,

D! =[0],. (3.20)
D, =Ly (3.21)

and, consequently
S=[0 s, 0 s, - 0 sglyux (3.22)

In a non-cooperative case, where the signature sequences of the users are not known,
we have to examine the orthogonality of S and the noise subspace for all combinations of
spreading waveforms. Since the spreading code is comprised of N chips, this examination
calls for a complete search over 2% different possible combinations of chips in a
spreading code.

If there are K active users in a system, depending on the cross-correlations between the
activé codes and also tﬁe set threshold for Equations (3.18)-(3.19), signal projection may
not only result in all the active spreading codes in Equation (3.22), but also in falsely
declaring their linear combinations. That is simply because the linear combinations of the
codes will also satisfy

fi=0 (3.23)
g ~1. (3.24)
Therefore, instead of K, we may obtain K’ mixed solutions (K < K’< 2" h. Depending on
the value of K and the selected thresholds for detection in Equations (3.18)-(3.19), K’

might be several times larger than K. Since the received signal r is comprised of only K
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authentic spreading codes, in order to resolve the ambiguity and distinguish between the
authentic and false solutions, we have to somehow inspect the relation of each solution to
r. The approach is as follows. For every solution resulting from the initial signal
projection, we apply a transformation based on that solution on the received signal and
then inspect the statistics of the results. The transformation has to be able to separate
different users’ signals to avoid their statistics being mixed up. A proper choice for this
task is to use a decorrelating transformation. This does not seem possible since the
spreading codes are not known yet. Assuming prior knowledge of signature sequences, in
a symbol-synchronous CDMA system, a decorrelator receiver can be devised only based
on signal subspace information for each active user [28]. In this case all the K solutions
resulting from the signal projection, can be regarded as a-priori known signature
sequences and since the signal subspace information is already available from the first
step, one can proceed to implement the decorrelator receiver d; for each of the candidate

solutions

d, =4U,(A, -0’ )'UTs, 1<i<K' (3.25)

i
where p is a non-zero normalizing factor [28].

1
B s,.TUS(As -0’ )—lUfs,.

n (3.26)

Depending on the nature of s;, application of Equation (3.25) to the received
signal produces different results. If s; is an authentic solution, then d; represents a single

decorrelating function similar to the Equation (3.25).

d, =pU,(A, -0, )'UTs, 1<i<k (3.27)

H
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However, if s; is not an authentic solution, i.e., if it has resulted from a linear combination
of active codes, then d; will be a linear combination of decorrelating functions of the

active codes.
K
s, = .08, (3.28)

where @;’s are real numbers representing the combining factors. Thus, the decorrelating

transform is
2 RS
d, =1 U, (A, -1, ] UTY as,
j=1
i qa, (3.29)
:ﬂi a . —
=1 ! Hj
where
3 1
o S T 2y Vlor( s
> as! US(AS—-O' I ) Ul D as,
j=t I=1
1
= - (3.30)
ZZ%“:SW:(A: _O'ZIK) Uss,
Jj=t I=1 .
3 1 1
L& aa B
PIPI I T S
L= Hy =y
By applying Equation (3.25) to the received signal, we have
z,=d'r=d’SAb+d'n
(3.31)

=d7SAb+w,
where w; is white Gaussian noise with a varianceo,, ’ =(d,.T d,.)Uz. In either case,

application of Equation (3.27) or (3.29) results in noise enhancement. The results of

39



decorrelating transforms operating on the data part of Equation (3.31) are significantly

different.

Ab, +w, where s,1s a single code

= K a,
i 1; ). —=Ab,+w, where s,isalinear combination of codes (3-32)
j=1

Hj
Figures 3.2 and 3.3 show the histograms of z; based on 5000 samples for the two cases of
authentic and false solutions. The distinct difference between the two cases lies in their
probability density functions. For the case where s; is an authentic solution, samples at
the decorrelator output are clustered about the #4,. In Figure 3.2, the only source of
perturbation of the samples is the additive noise; interference from other codes does not
exist. However, when the s; is a false solution, resulting samples are dispersed
significantly. The amount of the dispersion depends on the number of constituting codes,
corresponding data bits, combining factors and users’ amplitudes.
Based on this difference, we define a cost function J(d;) that measures the deviation

from the average of the absolute value of the decorrelation results.

Elz?
Z‘ _1

E? z,.l

where E( ) denotes the expected value of the produced samples over all possible noise

Jd,) = (3:33)

and data sequences. Another way to interpret the definition of this cost function is the
following. The main difference between the two cases of a false or authentic solution is
how the power of the signal is distributed over the amplitude samples. In the case of an
authentic solution, the power is mainly concentrated over a small range of amplitudes in
the vicinity of the mean absolute amplitude. Howéver, in the case of a false solution, the

values are irregularly spread over a wide range of samples. Hence, the difference between
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the total power and the power of the mean absolute amplitude can be used to distinguish

the two cases.

P,
Jd,)=—52< -1 (3.34)

Av.Abs.Amp.
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Figure 3.2 Histogram showing the probability density function of the produced samples for
an authentic solution
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Figure 3.3 Histogram showing the probability density function of the produced samples for
a false solution
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Thus, we decide in favor of s; as an authentic solution if the corresponding d; results in a

small value in Equation (3.33). In other words, we seek for the solution,

§, = arg max .
CTEERT @)

(3.35)
Now, let’s take a deeper look at the two cases of authentic and false solutions. If's; is an

authentic solution then,

z, = Ab, +w, (3.36)

1 —(Z.-+-A‘)2 1 —(z.—A.)2
p(z;)= exp — |+ exp — . (3.37)
2V2ro,, ( 20, 2 ) 2V2ro, [ 20, 2

where p(z;) is the probability density function of the decorrelator output z,. Now,

assuming 4; >>o,, ,

o1 _(Jzil _Ai)z
P~ oo exr{ o ] 339
then we have,
: E(z.z IA,2 'i'O'w'2 O'w.2
d)= 1= -l =— .
J( 1) E2 Zil I Aiz Aiz (3 39)

Now, we consider the case when s; is a false solution. In this case, since the interference
from the other codes is the dominant contributor to the dispersion, the additive noise is

much less significant.

K o .
z, =) — A, +w, (3.40)
=y

The probability density function of z; is a function of the combining factors, the receive

amplitudes and the information bits of interfering users. Therefore, a closed form general
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derivation does not seem to be easy to find. For a special case where there are many
active users, the probability density function p(z;) can be approximated as a zero mean

Gaussian distribution by using the central limit theorem.

1 -z}

p(z;)= exp - (3.41)

V2ro, (20’21 ? j

where
2

7 2

c,’=> "L a,d,| +0,”. (3.42)
' Jet\ M;

Then the mean of the absolute amplitude is

He)=2 Jeune) = 2o, o
0

Now the cost function for a false solution can be approximated to

_IE(Z:'Z) 1=
J(d,.)_’Equ’_l)—l_ga2 1="2%. (3.49)
P

As Equation (3.40) shows, even if the noise is removed, the interference term will still
remain. The only way to remove the interference term and to make Equation (3.39)
insignificant is to have all the combining factors ;=0 for iz, but this contradicts the

assumption of a false solution.

3-4.2. Asynchronous DS-CDMA

In a real system, users are not always symbol-synchronized and there is some amount

of delay between any two users. There are several reasons for the delay. In applications
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where users initiate and drop their calls without coordination, a random delay between
the signals is inevitable. Even if the calls become coordinated, due to the fact that users
have different locations, their signals travel different paths and may experience several
chips delay relative to each other.

Now let’s consider an asynchronous system. In such a system, the receiver does not
know the timing of users. Consequently, the collection window has to start from an
arbitrary point that could be at the middle of a received bit. For the iy bit interval, if we

ignore the noise term, the contribution of the &y, user to the received signal is

: EEIEC X
Y wsh )

{s, -s¢}

S2

|~

~
Collection window
Figure 3.4 The equivalent synchronous model of a two asynchronous users

r,(i)= 4,6 " D? +5DC ks, (3.45)

Figure 3.4 shows the effective spreading waveforms for the k; user. In the Figure 3.4,

superscript” and * denote the first and second portion of the spreading waveform, as the

collection window partitions it. Since b, b € {1}, the effective spreading waveform
from the receiver point of view is either

s ={D?, +D;, k, (3.46)

or,
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s, ={Dz ~DS, K,. (3.47)
Therefore, by performing EVD and waveform projection onto the signal and noise
subspaces, the effective spreading waveforms for the &y, user will be found as Equations
- (3.46)-(3.47). Now, if we implement decorrelating transforms corresponding to each of
the effective spreading waveforms, based on the property of the decorrelating transform

we will have

d.'s, =1, but d,"s, =0 (3.48)

1

d,'s, =1, but d,"s, =0. (3.49)

2

but since the collection window is assumed to be not synchronous with the k&, user, its

information bit will be toggling during the decorrelation and therefore
d, T{b;;"D;k +b,D;, }sk %0 _ (3.50)
d,’ {b,ﬁ“D,‘,’,k +b,D¢, }sk #0 (3.51)
Thus, the decorrelation process is successful only if the candidate spreading waveform

belongs to a user that is synchronous to the collection window,

D! =0 (3.52)

dfs, =1, but d,’s, =0 (3.53)

1=k
Thus, we can jointly estimate the spreading waveform and timing of active users by
simply extending the dimension of the search in (3.35). Then, the argument that
maximizes the following, results in joint discovery of spreading waveform and timing of

active users,

S 1
{ "] = arg max . (3.59)
Tk SksTk J(dk )
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that requires the search to be performed over both waveform and time domains.

After finding the active spreading codes, user identification will be completed by
estimating the users’ power. An estimate of the users’ powers can be obtained from
Equation (3.11) as follows

AAT =(s7s]'sT(c-o1, B(sTs) ", (3.55)
or, equivalently

AAT =R7'ST(C-o, BR, (3.56)
where ¢ is estimated from the initial subspace decomposition. Also, instead of a group

estimation of powers, a given user’s power can be independently estimated as

42 = E(z2)- oy = Ez?)-(a7a,)2. (357

3-5. Flow-graph of the proposed scheme

The approach can be summarized as shown in Figure 3.5. The colléction of the
samples of the received signal can be started from an arbitrary point in time. An EVD on
C is performed to decompose the signél and noise subspaces. Then, Equation (3.18) and
Equation (3.19) are examined for the entire 2! possible combinations of spreading
sequences and reject s,’s that do not satisfy orthogonality condition between signal and
noise subspaces. For the sequences that satisfy Equation (3.18) and Equation (3.19), then
Equation (3.33) is evaluated.

If J(dy)" is a large value, it implies a low dispersion of the decorrelation results and
consequently, the corresponding spreading waveform belongs to an active user who

shares the same timing as the collection window. Thus, in order to estimate the delay for
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all users, we have to slide the collection window by one chip interval 7, at a time and
repeat all the evaluations.

For an asynchronous system with a processing rate of N, to complete the search in
time, N shift is required to cover the entire bit interval. This indicates an order of

complexity of 2" 'xN for a complete identification.

: Picking the signature
N Decor{rielatlon sequences associated
‘ with highest 1/j(d,)
r Checking the > ghest1/jd)’s
Y —» Statistics
1- Evaluating C
2- Performing EVD 1 Yes
(MUSIC)
Noise and Signal
Spreading Code Subspace
Generator > Projection
(2M-1-binary counter)

A

Figure 3.5 The flow-graph of the proposed algorithm

3-6. Simulations

Here some simulation results are presented to demonstrate the capability and the
performance of the proposed scheme. Through out the simulations, a processing gain of
N=16 is assumed, unless specified otherwise. User’s signal strength and noise power are
set according to each simulation scenario. The accumulation length for the evaluation of
the autocorrelation matrix, L;, and the observation length for inspecting the statistics of z;,

L;, are L;=5000 and L,=500 samples, respectively. Since the spreading codes are not
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available in advance, signature sequences are generated by a 2! counter and then

projected onto the subspaces.

Figure 3.6 shows the Quadrature components of the decorrelated received signal as
expressed in Equation (3.31). Figures 3.6a and 3.6b show the decorrelation results for
two different false solutions. In each case, results indicate a high degree of dispersion that
is exploited for eliminating that candidate. As shown in Figures 3.6a and 3.6b, the
distribution of samples for false solutions can be different from each other, however it
always demonstrate some form of dispersion.

Figure 3.7 shows the results for an authentic solution. In the case of the authentic
solution, the produced samples exhibit much less dispersion that makes the solution very
distinct from a false solution. Evaluation of the Equation (3.33) for such solution

indicates a high value.
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Figure 3.7 Decorrelation results from an authentic solution

Figure 3.8 shows the results of blind identification in a synchronous DS-CDMA
model. The processing gain N=16, and there are 10 active users operating in the system.
The receiver has no advance knowledge of the spreading waveforms and the activity of
the users. The vertical axis represents the inverse of the cost function value for each
candidate solution, and the horizontal axis represents the index number corresponding to
each waveform. Two different power scenarios are considered. Figure 3.8a demonstrates

the results for the case where all the 10 users have equal power with an SNR of 30 dB.
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Figure 3.8 Plots of 1/J for all the candidate solutions, (a) — Equal power users with SNR=30
dB, (b) — Unequal power users, one user with SNR=20 dB and all others with SNR=30 dB
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From the 2"¥"'=2"° possible choices for the spreading waveforms, subspace signal and
noise projection identifies only 64 candidate solutions. Evaluation of the cost function
(3.33) reveals the 10 authentic solutions as shown in Figure 3.8a. For the next simulation,
a worst-case scenario of power balance is considered. It is assumea that there are 9 equal
power users with an SNR of 30dB, and the 10™ user is weaker by 10 dB, having an
SNR=20dB. Figure 3.8b shows the identification results for this condition. In Figure
3.8b, the solution corresponding to the weak user is shown by an arrow. It is worthwhile
to note that even the solution associated with the weak user exhibits a strong peak
compared to the false solutions. From Figure 3.8, two observations in conjunction with
Equations (3.39) and (3.44) can be made. As estimated earlier, the value of the cost
function for false solutions approaches Equation (3.44). Also, as stated in Equation
(3.39), for authentic solutions, J(d;) ' is proportional to the user’s power.

Figure 3.9 shows the estimation error (oy/ A;) of the receive amplitude at various
users’ power scenarios. In this case, we assume that there are 8 active users in the system.
After performing the identification, we estimate their powers. Users are grouped into one,
two, four and eight equal power groups of equal powers with the following SNR’s (in

dB) at the receiver side

SNR =[20 26 29.532 34 35.536.9 38]
SNR=[20 20 26 26 32 32 38 38}
SNR=[20 20 20 20 26 26 26 26}
SNR=[20 20 20 20 20 20 20 20]
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Figure 3.9 Users’ power estimation error for different users’ power scenario

As demonstrated in Figure 3.9, in any scenario, the estimation error for users with the
highest SNR 1s very low. Also, it should be noted that the estimation error for a user with
a certain SNR is about the same in any users’ power scenario. For example, the
estimation error for users with a SNR of 20 dB, in any of the above scenarios, is in the
same range of 5x10~ to 8x10~. Similarly, the estimation error for users with SNR of 38
dB is always in the vicinity of 1x107. In other words, the estimation error is mainly a
function of the signal to noise ratio of each user and the interference from other users
does not have significant impact on it.

In the next simulation, we consider an asynchronous DS-CDMA system with a
processing gain of N=8. There are 4 asynchronous users operating in the system. The
goal is to identify their spreading waveforms as well as their relative timings. For an
asynchronous system, we have to implement the Equation (3.54). Therefore, we start to

collect samples of the received signal from an arbitrary point within a bit period. Then the
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subspace decomposition is performed for signal projection and the cost function Equation
(3.33) is evaluated for each candidate solution. We slide the collection window N times,
every time by one chip period T, and repeat the process again. In other words, to realize
Equation (3.54), we implement Equation (3.33) N times, and every time we start to
collect samples from a new point. Figure 3.10 and 3.11 show the simulation results. In
Figure 3.10 and 3.11, we have the new dimension represented by “Relative Delays”
which signifies the results of cost function evaluation for different starting points of the
collection window. Figure 3.10 shows the result for the case where all four users have
equal power with an SNR of 30 dB. However, Figure 3.11 exhibits the results for the case
where there is a weak user and the other three users have equal power, each 10 dB
stronger than the weak user. As Figure 3.10 and 3.11 demonstrate, in both cases, four
users with relative delays of T, 4T, 6T, 7T are identified. Similar to the synchronous
case, there is a higher margin for detection when a user has a high power. Nevertheless,
for the unequal power case, the margin for correct detection is still high enough. In

Figure 3.11, the arrow points to the solution corresponding to the weak user.
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3-5. Concluding Remarks

In this chapter, we presented a novel scheme for blind identification of active users
and timing estimation for a symbol-asynchronous DS-CDMA system. The main feature
of the proposed approach is that it does not require any prior knowledge of users’
parameters or any training sequence. By exploiting subspace signal decomposition, the
proposed approach is able to discover the spreading waveform as well as the relative
delays of the active users. The defined cost function resolves the ambiguity originating
from the false solutions. The scheme is applicable to both synchronous and asynchronous
systems. The simulation resulfs indicate the robustness of the scheme in various users’

power as well as channel scenarios.
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Chapter 4

Performance Evaluation

4-1. Introduction

This chapter presents the performance evaluation of the proposed algorithm under
various conditions. These conditions cover main practical aspects such as: channel
scenarios and computational load. In a multiuser environment, users’ signals travel
different paths and arrive at the receiver from different directions with different powers.
Therefore, £h6 channel can behave as a simple AWGN channel or take on a more
complex fading model.

Also, in a dynamic CDMA channel, it is vital to minimize the computational
complexity to match the dynamics of the users. Reduction of computational task can be

accomplished by using vartous techniques such as: restricting the search, reducing the

58



observation intervals as well as efficient evaluation of autocorrelation matrix in
asynchronous systems. Each proposed method is discussed and simulation results are
presented.

A meaningful way to evaluate the performance of a detection block is by measuring
the probability of false and missed detections. So, the probability of false and missed
detection are evaluated and analytical as well as simulation results are presented.

Improving the accuracy in estimation of user’s timing by employing over-sampling is
also discussed. It is shown that by using over-sampling, the resolution of the timing

estimation can be enhanced.

4-2. Reliability and Robustness of the Algorithm

Before proceeding to performance evaluation analysis of the algorithm, it is
worthwhile to investigate the consistency of the algorithm, which is very important in
selection of the threshold. Figures 4-1, 4-2 and 4-3 show the simulation results for a
system with a spreading factor of N=8 where 7 equal power users operate. The
accumulation .and the decorrelation length are L;=2500 and L;=250 symbols,
respectively. For each SNR, the simulation was repeated 100 times to investigate the
consistency of the general form of the results.

For the extreme case of low SNR=5dB, presented in Figure 4.1, the algorithm does not
produce a consistent response. As a result, a significant number of misses as well as false
detections can be expected. Figures 4-2 and 4-3 show the results for signal to noise ratios’
of 15 dB and 25 dB, respectively. Both graphs exhibit a similar general form of the

response, however, at high signal to noise ratio there is more margin between the floor
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and the peaks. Thus, to avoid detection errors, the threshold has to be set according to the
signal to noise ratio. Since the number of active users, K, becomes available from the
subspace decomposition of the received signal, the threshold can be set iteratively. As
such, the cost function is measured against a default threshold and then the results are
compared to K. If the number of detected authentic solutions is lower than K, then the
threshold is reduced further until K authentic solutions are detected, and vice versa.

For the simulation results presented in Figures 4.2 and 4.3, confidence intervals
corresponding to a certain confidence level can be estimated [33]. As an example, for the
first peak associated to the first detected user, confidence intervals with a confidence
level of 0.95 are measured. For a SNR=15 dB and SNR=25 dB, the estimated confidence
intervals based on the measurement are 17.77 £0.38 and 147.90 £2.46, respectively. In

both cases, the results confirm consistency of the algorithm.

4-3. Reducing the Processing Delay

The algorithm presented in the previous chapter can be summarized as follows. The
collection of the samples of the received signal can start from an arbitrary point. An EVD
on C is performed to decompose the signal and noise subspaces. Then, we examine the
orthogonality conditions for the entire 2" possible combinations of spreading sequences
and reject s;’s that 'do not satisfy the orthogonality between the signal and noise
subspaces. For the remaining s;’s, the cost function is evaluated. A large 1/J(dy) implies a
low dispersion of the decorrelation results and that, the corresponding spreading
waveform belongs to an active user who has the same timing as the collection window.

Thus, in order to estimate the delay for all the users, we have to slide the collection
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window by one chip interval, T,, at a time and repeat the same process all over again. In
order to complete the search in time, N shift is required to cover the entire bit interval.
This indicates an order of complexity of 2""'xN for complete identification.
For a dynamic communication environment, it is essential that the processing delay for

detection of the active users be reduced. Thus, the followings initiatives are vital:

> optimization of the observation interval

» reduction in time and complexity involved in projection of s;’s onto the signal

and noise subspaces,

» avoid repetition of sample collection to form C in an asynchronous system

4-3.1. Optimizing the Observation Interval

In the following simulations, we investigate the effect of observation length on the
detection process. In the simulations, 10 equal power users with SNR=30dB are assumed.
Figure 4.4 presents the result for the effect of L;, while L,=500. In principle, L; has to be
long enough to assure an accurate capture of the statistics of the received signal. Thus, in
a system with K active users, one may expect that L, should be several times larger than
2K As Figure 4.4 shows, although L;=50 causes significant reduction in detection
margin, a value of L;=500, while not being too long, can provide a reasonable margin for
the detection. Since the length of L; is proportional to the number of active users, in
practice the selection of L; can be done adaptively as follows. The process starts with a
moderate value for L, and then by obtaining the number of active users from the
subspace decomposition, L; can be adjusted for the next batch accordingly. For example,

if the number of active users is found to be small, then L, can be shortened. On the other

62



hand, if K is large, then L; should be increased for an accurate tracking of the users.
Mainly, the effect of L; is on the accuracy of the subspace components. If L; is selected
too low, the orthogonal properties of signal and noise are adversely affected, as shown in
Figure 4.4a. The effect of L, on the accuracy of subspace components is thoroughly
investigated in [32]. Therefore, we mainly focus on the effect of L;.

Figure 4.5, shows the effect of L, on the detection process. L, can be selected
significantly smaller than L, since b takes only +1. As Figure 4.5 demonstrates, the
difference between L,=100 and L,=1000 seems to be negligible. Therefore, in order to
acquire an accurate estimate of the statistics of z;, L, might be only a few tens of bit
periods long. Also, it is worth noting that the main difference between L,=10 and L,=100
is in the floor level of the plots. A higher value of L, results in a lower and a more
uniform floor for the J(d;)™ plot. To summarize our observations from Figures 4-4 and 4-
5, it can be concluded that the impact of L, is on the peaks and L, influences the floor

level of the J(d,)™' plots.

In order to better appreciate the effect of L, on the performance of the proposed
method, probability of false and missed detections should be measured. Figure 4.6, shows
the probability of missed detection for a user with SNR=25 dB. The measurement is
repeated for three different values of L,. Basically, an L,=10 is not acceptable, however
the results start to be come reasonable only in the vicinity of L;=1000 and higher. Figure
4.7 show§ the measurement results for probability of false detection. It is assumed that
there are 10 active equal power users in the system each with an SNR=25 dB. Similar to
the previous case, an L,=10 is too short and the result is not acceptable. However, unlike

the previous case, L,=100 and L,=1000 show more consisting result.
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The difference between the two cases can be explained as follows. In order to detect
an active user, the cost function associated to it needs to be minimized. Clearly, the
minimization becomes more accurate as more statistics becomes available for
measurement. However, since for a false solution, there is an inherent factor of

dispersion, then the observation length L, does not need to be very long.

4-3.2. Exempting Improper Waveforms from the Search

By applying a simple constraint on candidate waveforms, we can limit the search over
the signal space and significantly reduce the computational load. The source or the logic
behind constraints can vary. Spreading waveforms are used for spreading as well as
channelization. The main distinction is, when a certain degree of spreading is required
not every sequence from the pool of 2%/ is appropriate. For example, since the system
intends to have a processing gain of &, any candidate that does not have a certain number
of chip cycle transitions has to be dropped without any further inspection. Figure 4.8
shows the effectiveness of imposing constraints in reducing the number of candidate
waveforms. For example, for a processing gain of N=16, by having a constraint of 5 chip-
cycle transitions, the number of qualified waveforms falls to only %30 of the waveforms.

This in turn leads to a similar reduction in the order of complexity.
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Figure 4.8 The effect of applying constraints in reducing the search

4-3.3. Efficient Evaluation of C in an Asynchronous System

In an asynchronous system, new subspace information requires new sample collection
to form C and to perform EVD on it. Therefore for a system with a spreading factor of N,
N collections are required. Figure 4.9 shows, the sliding of the collection window for
evaluation of C. If an arbitrary point for collection of samples is assumed, then the
autocorrelation matrix corresponding to that point is referred to as Cy, and the
autocorrelation matrix corresponding to a starting point shifted by kT, is called C; . For a

system with a processing gain of N, all the autocorrelation matrices up to Cy.; have to be

evaluated.
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Figure 4.9 Evaluation of the autocorrelation matrix at different starting points

When the collection window starts at ¢,

C,=FE {ro(i)ro(i)ﬁ}

and if the collection windows starts at t+7,, we have

C=F {rl(i)rl (i)H}

@.1)

@.2)

where r,(i) and r,(i) represent the received vectors that correspond to the collection

starting points ¢ and #+7,. By noting Figure 4.9, r, (z) can be written as

—roz(i)— [0 1
r03(i) 0
r,(i)=|: +1
rozv(i) 0
0 | [r(+1)
=Pr,(i)+P,r,(i+1)

where P and P, are shift-permutation matrices defined as
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01 0 0
P=00"O 4.4)
1o e o1
00 0 0
0 0 0 O
P=OO 0 4.5)
2 1o - 0
1 0 0 0

Then Equation (4.2) can be rewritten as,

C, = E{(P.r, () + P,x, (i + ))P,r, (1) + P,r,(+1)" }
= E{Pr, 0, () P, + Py (), G +1)7 P, + (4.6)
E {1>2r0 G+, ()Y P, +P,r, (i + ), (i +1)7 Pz”}

Since the received vector is a statistically independent random sequence, then
Eley (i), +1)* }=0 @7
Efr, (i +1), () =0 .8)
Thus C; can be simply evaluated from Cy as

C, =P Efr, (0, ()" IP," +P,E fr, G+ r, (G +1)" p,”
=P C,P," +P,CP,"

4.9)
and from there,

Cc,=pC_P"+pP,C_P," 0<i<N 4.10)
Therefore, in an asynchronous system, it is only required that the autocorrelation matrix

be evaluated completely once for an arbitrary starting point. Then from that, the

autocorrelation matrices for other starting points can be derived using Equation (4.10).
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By employing this method, after the evaluation of Cj once, the wait time for collection of

L, samples for consequent C;’s will be saved.

4-4. Probabilities of False and Missed Detections

In the calculation of the cost function, measurement errors occur that causes deviations
from the nominal values. The result will be declaration of a false solution as an authentic
solution and the vice versa.

An important measurement error is due to the limited observation lengths of L; and L,.
Since L, and L; are not infinite, E (zf), E(’zil) and consequently J(d,) will be evaluated
with some error. As shown in the previous section, reasonable choices for L, and L; are
required to reduce the likelihood of detection errors and at the same time to avoid an
excessive amount of processing delay. The effect of finite observation length L;, on EVD
evaluation has been studied [32]. Therefore, here the focus is only on the measurement
errors due to a finite observation length for L, and its influence on the evaluation of the
cost function.

A proper assessment of the performance of the proposed approach is to measure the

probability of missed and false detections. A missed detection occurs when the value of
J(d,) ' resulting from an authentic solution falls below the threshold. Then, the
probability of a missed detection can be defined as

| P. = p(J(d,.)_I < nl s; is authe_ntic) 4.11)
On the other hand, a false detectioﬁ occurs whenJ(d,)™ resulting from a false solution,

exceeds the threshold. Similarly, the probability of a false detection can be defined as
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Py = p(J(d,.) <n”'|s;is false) 4.12)
where 77 is a threshold.
In order to evaluate the above probabilities, the density functions ofJ(d,)™ and
J(d,) for each case need to be found. However, by employing some approximations,
alternative approaches can be utilized to evaluate Equation (4.11) and Equation (4.12).

In practice, for the evaluation ofJ(d;), sample mean-absoluteﬁ, and sample

variance v are used instead of £ (]z,.l) and E (z,.2 ), where

—_ 1 Lz
=22z @“.13)
2 i=1
y=—t i(x ~z) 4.14)
Lz -1 i=1 ‘

Since z; ’s are uncorrelated, the following can be concluded [33], forl?' ,

Elz])= (=) (4.15)
2
o GLz (4.16)

Ep)=E(:?) @17
2 20—2,-4
o == (4.18)

Since L, is assumed large, by using the central limit theorem, a Gaussian distribution for

v and |z| can be considered.
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4-4.1. Probability of Missed Detection

If the threshold is set higher than a certain value, then it is probable that some or all of

the active users be left un-detected. Therefore, the likelihood of a missed detection for a

* given threshold needs to be evaluated. For an authentic solution, J(d,)™ is evaluated to

be,
-1 -1
a E z,.2 B _lE(ziz)—Ez(jz’.])l
Jd)" = 2(z) 1 "I ) I
. 4.19)
|42 +o,t -4 B
= Ez(jzi|) | - O'W,Z
Then, the estimate of J(d,)™" based on the sample statistics is
T
Jd)' =15 (4.20)

g,

zl can be assumed to have a Gaussian distribution with the

As explained before,

1

parameters stated in Equation (4.15) and Equation (4.16). Then, J (d,.)—E will also have a

Gaussian distribution with the following features

E\z. )
m = —*‘-ﬁZ'I) - A @.21)
T2 Wi O-Wi
Elz?) 1 A’
0-2_1 = 7 Ejtz ) =L—2[1+ 0_2’ } 4.22)
772 2 w; w;

Thus, J (d,)”', that is actually the square of J (d ,.)_5 , has a density function described by

the following [33]
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2 2
(\/&“”{4} (\/;JF”E_L]
—1—-—exp— 27 b expd- . w >0
S5 (v)=1 2\2ryo 20 712 25 ,°
J J2 i
, LO v <0
(4.23)

Therefore, the probability of error can be evaluated by integrating Equation (4.23) over

the relevant range

n
Py = [fraWw)dly (4.24)
[

4-4.2. Probability of False Detection

A comparison between Equations (4.16) and (4.18) reveals that the measurement error

of E (ziz) is significantly greater than the measurement error of E* (jzil).

s> 2 (4.25)
This would not have much impact for the case of an authentic solution. Because, in

2
o- O
terms of the percentage of the measured parameter; i.e., (” 2) or Ezlqzl D , the error is
z, z;

negligible. However, in the case of a false solution that is of interest in evaluation of false

detection. Then as expressed in (2.25), o ?is the dominant source of the error. Therefore,

for simplicity we can ignore the measurement error in E(]zil) and merely focus on the
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error contribution fromv. Since L, is large, using the central limit theorem, a Gaussian

distribution for v can be considered as

£;()= 21 eXp[—(V—E(ZiZ))ZJ (4.26)

Then, the distribution of

~ v
)= -1 .
J@,) (E ] J @.27)

will be Gaussian as well, with the following parameters

= (EW(ZL)) - 1) =2 | (4.28)

—\/’2- i 4.29
NG B oL o

Using the above derivations, Equations (4.11) and (4.12) can be evaluated as

P = P(J(d,-)< n | s, 1s false)

=_1__"j'lexp —(x_(ﬂj;_zjjz 4.30)
He) L ()

Some observations:

> As expected, increasing the observation length L,, improves the accuracy of
the estimation.
> The parameters for an authentic solution are functions of the signal to noise

ratio of the active user. A higher signal-to-noise ratio leads to lower variance in

the evaluation of J (d ; )
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» For the case of a false solution, the accuracy of the estimation depends only on

the observation length L,.

Figure 4.10 and Figure 4.11 show the simulation versus the analytical results for
missed and false detections. The processing gain is N=16, L;=10000 and L,=250. In both
Figures, the probability of missed detections is plotted versus the threshold 7. Figure
4.10 shows the probability of missed detection for a user with a SNR of 15 dB. Figure
4.11 exhibits the probability of false detection in a model where there are 10 equal power
active users each with a SNR of 15 dB. In both cases, presented in Figure 4.10 and Figure

4.11, simulation and analytical results are in close agreement.
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Figure 4.10 Simulation and analytical results for probability of missed detection
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Figure 4.11 Simulation and analytical results for probability of false detection

4-4.3. Performance in AWGN and Rayleigh Fading Channels

Figure 4.12 shows probabilities of false and missed detections in an AWGN channel at
different SNR’s. In each case, the detection test is repeated 100 times and then the
number of errors is averaged. As Figure 4.12 shows, the number of false detections
reduces while the number of missed detections mounts as the threshold is increased. If
the impact of a missed detection is eqﬁal to a false detection, then the optimum threshold
for each case is the threshold value corresponding to the cross over point or region of the
two graphs. For high SNR’s, the range of proper threshold values becomes wider.

However, at low SNR’s, the selection of the threshold is significantly more delicate.
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Figure 4.12 Simulation results for probability of false and missed detections in Gaussian

channel
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Figure 4.13 Simulation results for probability of false and missed detections in a

~ Rayleigh channel
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Figure 4.13 shows the simulation results for a‘ Rayleigh fading channel. For such a
model, following observations can be made. First, the general behavior of the probability
of false detection is not different from a Gaussian channel and also is not much affected
by SNR of the active users. This can be justified by noting that when the number of
active users, K, is large the approximation of z; in Equation (3-40), to a Gaussian
distribution is not influenced by either amplitude or SNR variations of the active users.
On the other hand, the probability of miss detection is considerably deteriorated by the
existence of fading in the channel. This necessitates a refined selection for the threshold

to minimize detection errors.

4-4.4. Selection of the Detection Threshold

As exhibited in (3-39), the value of the inverse cost function for an authentic solution

is

42 42
1 = ’2= T' 2ocSNR‘. 4. 31)
J(d,) o, (di di)o'

where SNR; represents the signal to noise ratio of the iy active user. Thus, the cost

function approaches zero as the signal to noise ratio increases. On the other hand, for a

false solution

_IE(Z:'Z) _l szz _r=2
J{,) IEZGZ.-I)_I_EG M . 32)
T

If we equate Equation (4.31) with Equation (4.32), a minimum approximate value for the

SNR; required for detection becomes available
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SNR,; . = 2 ~1.75=24dB 4. 33)
-2

"Thus, in an AWGN channel, an active user must have a SNR of more than 2.4 dB in
order to be detected. Thus, the threshold 7 should be selected in such a way to have a
reasonable margin from Equation (4.32) while being not too high to cause miss detection
of the active users. For example, if the minimum expected SNR of an active user in a cell
is 10dB, then the threshold can be selected in the range of,

1.75<n <10 (4. 34)
Although, this is not an accurate approach for setting the threshold, it could be very
helpful to appreciate its range. Also it is worth mentioning that the presented simulation

results in Figures 4.12 and 4.13 confirm this finding.

4-5. Improved Estimation of User’s Timing

In the basic model presented in the Chapter 3, the sampling interval is assumed T or a
chip interval. Therefore, the capability of resolving timing of the users is limited to a chip
period. However in an over-sampled system, the received signal is sampled at a rate of
higher than the chip rate. Thus, a higher resolution in timing estimation can be expected
and users’ timing can be estimated more precisely. The implication of such consideration
is that the dimension of the receive vector and consequently the autocorrelation matrix
and all other related vectors increase. This increase in dimension makes the
computational burden more prominent.

Figures 4.14-4.17 show simulation result for timing estimation and user identification

in an asynchronous system with N=8. The over-sampling is assumed to be 2. Therefore,
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