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ABSTRACT

A Nonlinear Control Design Technique

for Formation Flight of a Constellation of Satellites

Anand Joshi

Autonomous control greatly reduces the demand on ground-based resources to
keep satellites in a constellation and working reliably, which would be nearly impossible
to do without such automation. Linear feedback control is primarily used to counter
unexpected small perturbations and to maintain generally sub-optimal trajectories.
Linearized approximation of the actual non-linear satellite dynamics cannot predict the
“non-local” behavior far from the operating point and certainly not the “global” behavior
throughout the state space.

The objective of this thesis is development of a formation control and station
keeping control laws for a constellation of satellites in a circular orbit. It is shown that by
utilizing feedback linearization or nonlinear compensation techniques, an efficient
nonlinear control design strategy may be implemented that leads to solutions valid for
larger set point regulation, perturbations and station keeping problems. To assess the
quality of the proposed control scheme, its performance is compared with that of linear
pole placement controller and a nonlinear controller designed using potential function
method in a number of simulation case studies. Advantages and disadvantages of the
proposed nonlinear control technique are also presented for formation control and station

keeping.
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Chapter 1

Introduction

Man has been putting single satellites into space since October 4, 1957, when
USSR launched the world's first artificial satellite, Sputnik 1. But often this lone satellite
is only over part of the world at any time. It cannot cover the entire world at once. A
number of satellites are needed for global or near-global coverage so that at least one
satellite can be seen from every point on the earth at once. Low Earth Orbiting satellites
(LEOs) are often deployed in constellations, because the coverage area provided by a
single LEO satellite covers a small area, and the satellite travels at a high angular velocity
to maintain its orbit. Multiple LEO satellites are needed to maintain consistent coverage.
Apart from the field of telecommunication, interferometric imaging using multiple
satellites in formation also has gained much interest in recent years. The advantages of
such formations include the replacement of large monolithic telescopes and superior
angular resolution.

Formally, spacecraft/satellite formation flying can be defined as the motion
control of a group of spacecrafts/satellites where the space-vehicle positions relative to
each other are of concern. In general, such satellite constellations in autonomous
formation flight can decrease mission costs and increase performance, scientific gains,
reliability, adaptability and survivability of space missions. However, the technological

challenges presented by this technique have been difficult to overcome; fleet-wide



communication and fault detection, collision avoidance, and planning and control while
minimizing fuel usage are all active areas of exploration in this field. For orbital control,
the most useful approaches consider a spacecraft perturbed from a reference orbit to
develop theoretically stable formations of multiple satellites. Planning and control are
then performed in two modes: formation keeping, where spacecraft remain in a stable
formation to within a specified tolerance; and formation maneuvering, where spacecraft
plan and execute thrust commands to move the cluster from one stable formation to
another.

Some of the many examples of spacecraft formation flying are stated here.
Gemini VI accomplished the first space rendezvous on December 15, 1965, and
performed station-keeping with Gemini VII over three orbits at distances of 0.3 meter to
90 meters. Gemini VIII followed with the first docking of two spacecraft in orbit on
March 16, 1966. The first automated rendezvous was performed by Soviet spacecraft
Cosmos 186 and Cosmos 188 on October 27, 1967, when the two unmanned spacecraft
performed a pre-programmed closure and docking manoeuvre. Since the 1960s,
numerous manned and unmanned spacecraft have performed operations in close
proximity, mostly for the purpose of docking for re-supply or crew transfer, and
observation, as in the case of Shuttle flyarounds of the International Space Station.

Autonomous formation flight became a reality for spacecraft on May 17, 2001,
when NASA-Goddard's Earth Observing-1 spacecraft performed its first autonomous
manoeuvre to maintain a one minute in-track separation with Landsat7. Examples of
satellite constellations include the Global Positioning System (GPS) and Global

Navigation Satellite System (GLONASS) constellations for navigation and geodesy, the



Iridium and Globalstar satellite telephony services, the Orbcomm messaging service,
Russian elliptical-orbit Molniva and Tundra constellations, and the Teledesic and
Skybridge [1] broadband constellation proposals. These spacecraft as well as satellite
formations have paved the way for using the formation flight and station keeping
technology for use in a number of varied scientific, military, and satellite service

operations.

1.1 Motivation

In the past twenty years spacecraft/satellite formation flying has emerged as a
topic of great discussions and research interest. Traditionally spacecraft orbits have been
controlled by engineers on the ground, who command the spacecraft to perform open-
loop thrust profiles designed to force optimal maneuver trajectories. These are not only
time consuming and inaccurate but also prone to human error and misjudgment causing a
considerable cost overhead to ground segment and mission control. Autonomous control
would greatly reduce the demand on ground-based resources to keep satellites in a cluster
and working reliably, which would be nearly impossible to do without such automation.
Linear feedback control is primarily used to counter unexpected perturbations, and
maintain the optimal trajectory. Various work in literature [2, 3] have intended to explore
the use of nonlinear techniques for controlling the orbits of the satellites in formation and
the advantage earned thereof. Fully autonomous constellation of formation flying
satellites is bound to become a reality and will set the stage for many more scientific

discoveries.



1.2 Problem statement

This research work primarily aims to investigate and develop a novel nonlinear
orbital control law, based on nonlinear compensation technique, for autonomous control
of satellites in constellation. The developed nonlinear control law should be able to
achieve the task of keeping a constellation of satellites in formation and fulfill the
mission objectives thereby. It should be able to counter the perturbations caused by for

instance atmospheric drag, J,drag and solar radiation pressure with high tolerance. It

should be applicable to real satellites and therefore must work in the presence of

constraints such as thrust magnitude.

1.3 Approach

We deal with the problem of formation control for a group of satellites in a
circular orbit. Firstly we define the geometry of the formation and the specifics of the
satellites used in the mission. We assume that the reference trajectory is uploaded into
each satellite mission computer by the ground segment. To force the convergence of the
formation flying satellites to the desired states we use controllers designed by the
conventional pole placement technique, potential function method and the nonlinear
compensation technique in separate simulations. We treat each maneuver as a rendezvous
between a maneuvering spacecraft, and a passive, target orbit and compare the simulation

results for the three control techniques used.



1.4 Thesis Outline

In Chapter 2, we present literature review and previous works on formation
design, formation geometries and formation control methodologies. In Chapter 3, we
present a review of spacecraft dynamics and concepts in orbital mechanics along with a
discussion on orbital perturbations. In Chapter 4, we describe the concept of
decentralized, relative; behavior based formation control and provide a critique and
simulations on the work done by Collin McInnes [4]. In Chapter 5, we develop a linear
orbital controller based on the conventional pole placement technique and provide
simulations for its use on linear as well as nonlinear satellite dynamics in various mission
simulations. In Chapter 6, we propose and develop a nonlinear orbital controller based on
the nonlinear compensation technique and provide simulations for its use on nonlinear
satellite dynamics in various scenarios. In Chapter 7, we present comparative discussions
and conclusion on the methodologies presented in Chapters 4, 5 and 6. Towards the end
of the 7" Chapter we provide some recommendations for future work as a direct or

indirect result of this thesis work.



Chapter 2

Literature Review

In this chapter we present a literature review on satellite/spacecraft formation
flying. We start with formation flying applications that have been defining the past and
future research needs in this area with numerous examples of missions in various stages
of completion. Then we go over some of the terminologies used in this field. Thereafter
we discuss the formation design, formation control methodologies and formation

geometries investigated and introduced by various researchers in this field.

2.1 Applications

Constellation of satellites in formation has many applications. It provides many
new possibilities such as increased accuracy for the Global Positioning System, remote
sensing, and communications systems. For some of these applications, especially remote
sensing of both the Earth and deep space, these satellites that are in close formation
should be able to provide the benefits of a lower life-cycle cost, more adaptability to
changing mission goals, less susceptibility to the loss of individual satellites, and better
performance in general. The Air Force Research Laboratory (AFRL) of U.S.A. is

considering one such constellation of 35 low-orbit "virtual" satellites (and an additional 5



for spares), in which each "virtual" satellite is actually a cluster of 8 "micro" satellites,

which would fly within 250 meters of each other. It is called the TechSat 21 program [5].

The ground control of such a system would create an almost impossible demand
on the ground crew. This is where the autonomous, onboard management of the satellites
comes in. It is proposed that by outfitting these "micro" satellites with a program such a
GPS Enhanced Orbit Determination Experiment (GEODE) such a cluster of formation
flying satellites is feasible and should be built. Some more examples of proposed
formation flying missions in various stages of development are ALPHA [6], Aqua [5],
Aura [1], Auroral Lites [7], Auroral Multiscale Midex (AMM) [7], CloudSat [8],
Clusterll, GRACE [6], ION-F [9], Leonardo-BRDF [10], Magnetospheric Multiscale
(MMS), MUSIC [6], Power Sail, ST3, Parasol, PICASSO, SMART-2, Starlight,
Terrestrial Planet Finder (TPF), and TOPSAT [11]. Missions for these spacecraft include
extra-solar planet studies (TPF), formation flying optical interferometry tests (Starlight),
magnetosphere and solar wind studies (AMM and Cluster II), and a variety of other

science studies and technology demonstrations.

2.2 Formation Design

Formation design can be broadly classified into Centralized and Decentralized

formations as shown in the figure 2.1 below



Formation Flying

Decentralized Centralized
A Relative
Absolut i e.g.
St Ielzlatlve Leader following
Behavioural Virtual structure

Fig. 2. 1 Formation flying classification

2.2.1 Centralized Approach

Previous work have dealt with the subject of formation control in two ways. Most
formation flying control papers [12, 13] attack the problem of controlling the relative
orbits of two or more spacecraft, one of which does not perform primary formation
control and follows some reference trajectory, and the rest of which perform orbit control
to maintain the relative formation. This is also referred to as the centralized formation
flying since only one spacecraft in reality is controlling the entire formation. The
controlled spacecraft appears in the literature as the follower, the slave, the deputy, the
interceptor, the chase satellite, the free-flying satellite, the collector, the daughter, and so
on. The uncontrolled spacecraft appears as the leader, the lead, the master, the chief, the
target, the reference, the head, or virtual head, the control, the combiner, the mother, and

so on. We find two approaches in the literature which can be classified under the



centralized formation flying category, Leader following approach [10, 11, 12, 14] and
Virtual structure approach [17, 18].
Leader Following

The basic idea here is that the leader regulates its position to some desired
possibly time varying goal and the followers track the position and orientation of the
leader to some prescribed possibly time varying offset. There are numerous variations on
this theme including designating multiple leaders forming a chain and other tree
topologies. Leader following generally requires that the followers feed forward the
acceleration of the leader. Given the acceleration of the leader convergence of the
spacecraft to the proper relative position is guaranteed. However this requires frequent
communication of acceleration information from the leader to the followers. One of the
first studies on leader following strategies reported by Wang [14] discusses formation
control laws for mobile robots.

The application of these ideas to spacecraft formations was developed by Wang
and Hadaegh [12] where explicit control laws for formation keeping and relative attitude
alignment based on nearest neighbor tracking were derived. Several leader following
techniques were discussed including leader tracking, nearest neighbor tracking,
barycenter tracking and other tree topologies. Leader following has been applied to the
coordination of spacecraft in earth orbit. There are two basic approaches to solve this
problem. The first approach is to linearize the spacecraft equations about a nominal orbit.
The resultant equations are known as the Clohessy-Wiltshire equations also known as the
Hill equations. Kapila [15] discretized the dynamics and derived a pulse based control

law. On the other hand Leonard Hollister and Bergman [16] used differential drag



combined with switching curves such that the follower spacecraft tracks the motion of the
leader. Yan de Queiroz [2] derived adaptive control laws to coordinate the motion of the
spacecraft based on the full nonlinear equations.

Virtual Structure

A virtual structure model [16, 17, 18] resides onboard a satellite computer. This
structure contains several states that correspond to the position, orientation and relative
spacecraft separations of the formation. The states of the virtual structure are allowed to
evolve over time to trace out the desired motion of the formation. This in turn translates
to desired trajectories for every spacecraft in the formation. The virtual structure would
simply trace out the position and orientation of some point in the formation. This
implementation of the virtual structure is similar to the leader following approach where
the leader only exists in the memory of a computer. Since leader following and the simple
version of the virtual structure approach are identical the analysis to show convergence is
identical as well.

The two approaches share the weakness that acceleration information must
continually be communicated to the several spacecraft in the formation. Thus current
implementations of the virtual structure approach are centralized. The trajectory of the
virtual leader is generated in a central location and then communicated to the other
members of the formation. This approach was applied to formations of mobile robots by
Lewis and Tan [17]. The application to formations of spacecraft in free space is described
in [18, 19].

As discussed above both the above approaches suffer from disadvantages created

due to passing of information from the leader satellites to the slave satellites or from the

10



virtual structure aboard a satellite computer to other satellites in formation. There are
obvious lags between the slave spacecrafts and the leader spacecrafts and above all since
there is no feedback from slave satellites to the master satellite, the formation becomes a
single point failure system. This means that if one of the slaves is not tracking the
required trajectory there will be a formation break-up without the master satellite even
knowing about it. Current research activities in this field are trying to combine the
concepts of virtual/leader-following formation with those of the decentralized formation

flying trying to make it more robust and less susceptible to obvious disadvantages.

2.2.2 Decentralized Approach

The decentralized formation flying approach can be either absolute or relative
depending on the way the formation is controlled.
Absolute Configuration

In the absolute formation flying approach, also called as “box method”, each
satellite is maintained within tight limit of its nominal state. It is similar to the approach
used by Global Positioning System (GPS) constellation and by the method proposed for
the Iridium constellation [20]. In this method each satellite is individually responsible for
maintaining its own position in the constellation. Closed loop controllers onboard each
satellite command thruster impulses for in-track and cross-track corrections for external
perturbations. This approach though does not take into consideration the concept of
information sharing between the satellites in formation.

Behaviour based

In behaviour based approach [2, 20, 22] several desired behaviours are uploaded

by the ground segment for each satellite. The control action of each satellite is a

11



weighted average of the relative positions of all the satellites in the formation so that
expected behaviour is achieved. Possible behaviours include collision avoidance, obstacle
avoidance, goal seeking and formation keeping. There are also numerous variations on
the behaviour based approach to multi-vehicle coordination most of which are derived by
novel weightings of the behaviours. Behaviour based control laws feed back the relative
positions among spacecraft whereas leader following and virtual structure control laws
feed forward the acceleration of the leader to achieve convergence. Behavior based
strategies have the advantage that less information needs to be communicated among
vehicles. However until now neither convergence analysis nor bounds on the formation
keeping error have been established.

The behaviour based approach is applied to the problem of maintaining a
constellation of satellites in an equally distributed ring formation in earth orbit [4].
Simple Lyapunov control functions are used to maintain distance and avoid collisions.
The application of the behaviour based approach to aircraft flying in formation is
described in [21] where the control strategies are derived to mimic the instinctive
behavior of birds and fish. Balch and Arkin [22] describe the behaviour based approach
to formation keeping for mobile robots where control strategies are derived by averaging
several competing behaviors including goal seeking collision avoidance and formation
maintenance. In [23] the behaviour based approach is used to cause a group of robots to
create line and circle formations. These ideas are extended in [24] to the problem of

controlling a formation of mobile robots to transport objects.
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2.3 Formation Control Strategies

Colin MclInnes [4] uses Lyapunov’s direct method to derive control laws to
maintain relative formation for a fleet of ten satellites in a circular orbit. An energy
function including the kinetic terms and a periodic fourier term is considered. Linearized
set of Hill’s equation is used for simulation. No cross-track correction for radial
perturbation is possible in the derived equations. It is observed that the resultant
dynamics of the overall formation induce a complex nonlinear interaction between all the
satellites and a loose formation is shown to emerge after iterations lasting several orbital
periods. The work being done at European Space Agency (ESA) for formation flying
missions is based on the work done by Colin McInnes.

Y. Ulybyshev [25] presents a control law using linear quadratic (LQ) regulator
technique to implement relative formation keeping for low-earth orbiting satellites.
Leonard [16] controlled two spacecraft positions using the differential drag between
them. The atmospheric density was assumed uniformly and the velocities and ballistic
coefficients of the satellites were assumed to be initially equal. The differential drag
between two satellites is the difference in drag per unit mass acting on each satellite. The
equations of motions were derived and a coordinate transformation was made to reduce
the formation-keeping problem. A main control law and the eccentricity-minimizing
control scheme were derived.

The main control law was able to move the average position of the slave vehicles
to the origin of the target reference coordinate system (i.e. zero) by reducing as much as
eccentricity as possible whereas the eccentricity-minimizing control scheme activated for

reducing the eccentricity when the average position of the slave vehicles was at the target
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(origin). The formation-keeping problem is formulated as the simultaneous solutions of
both double integrator and harmonic oscillator. Solving both double integrator and
harmonic oscillator obtained the position of slave vehicle to target.

Wang, and Hadaegh [14] considered the problem of coordination and control of
multiple microspacecraft moving in formation in low Earth orbit (LEO). It is assumed
that each microspacecraft was modeled by a fixed center of mass of a rigid body.
Difference schemes for creating a formation pattern were discussed, and the explicit
control laws for formation-keeping were derived. The discussions of deriving a control
law, and the integration of the microspacecraft formation coordination and control system
with a proposed inter-spacecraft communication or computing network were presented.
The result shows that there are no collisions between the microspacecraft due to the small
magnitude of the initial deviation from the desired state.

De Queiroz [2] used full nonlinear dynamics to develop a nonlinear adaptive
control law for the relative position tracking of multiple spacecraft in formation flying.
Performance was illustrated using various simulations.

A Folta-Quinn (FQ) Formation Flying Algorithm [26] uses Lambert's two point boundary
value problem and the 'C*' guidance and navigation matrix to maintain a formation of
two spacecraft.

Carpenter, Folta and Quinn [27] use the FQ algorithm, in conjunction with a
linear-quadratic-Gaussian (LQG) control to develop a decentralized control for
autonomous formation flying for use in the New Millenium Program and the Earth
Observing-1 (EO-1) mission. The formation model includes 2 spacecraft, one with real-

time GPS and autonomous control (EO-1), and one with orbit determination and
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maneuver generation performed on the ground (Landsat-7). The authors conclude that
autonomous, decentralized control is not only feasible, but beneficial over traditional
orbit control procedures.

Kapila [15] developed a mathematically rigorous control design framework for
linear control of spacecraft relative position dynamics with guaranteed closed-loop
stability.

Schaub and Alfriend [28, 29] use mean orbital element differences to control the
relative orbits of formation flying spacecraft with identical ballistic coeffcients. The
authors' use of mean orbital element differences stresses long-term behavior over short-
term deviation, by forcing the control to compensate for secular and long period drifts,
while ignoring short period oscillations. The control law establishes the desired formation
in a nearly fuel-optimal sense. The authors also develop a cartesian, Lyapanov-control
law, and apply it using relative position and velocity tracking vectors calculated from
mean orbital elements. A comparison of the two nonlinear feedback control laws shows
that the cartesian form is effective for short time frame, high thrust manoeuvres, while the
orbital element form performs best in multiple-orbit or low-thrust manoeuvres.

Iigen [30] develops Lyapunov-optimal feedback control laws using Guass's form
of Lagrange's planetary equations (LPE) in classical and equinoctial orbital-element
forms. The author presents equations of motion for the equinoctial elements in terms of
thrust components in the equinoctial coordinate axes. The paper provides an excellent
starting point for the development of an elemental, Lyapunov-optimal, formation flying

feedback control law.
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Lau [31] described autonomous formation flying concept for extremely precise
autonomous relative position and attitude determination for satellite formations. He uses
autonomous formation flying concept in Global Positioning System (GPS).

Inalhan [32] investigated precise relative sensing and control via differential GPS
for multiple spacecraft formation. He presented autonomous control architecture for
formation flying, and a generalized closed-form solution of passive apertures for
constellations with mean formation eccentricity.

Tan, Bainum [33] developed a strategy that is able to keep the separation distance
in between four satellites in a coplanar elliptical orbit configuration constant. This
strategy generated a small angular movement in the direction of the axis with respect to
the axis of the combiner satellite using the force impulse. The separation distance
between collectors was maintained within four percent of nominal separation distance for

Keplerian orbits.

2.4 Formation Geometries

The goal of formation flying is to maintain a group of satellites/spacecrafts in a
specific geometry to achieve scientific, commercial goals. Many researchers have
focused their works to find various geometries suitable for various missions. They have
worked on analytically proving the feasibility of such configurations while taking into
consideration various real life constraints.

Sabol, Burns and McLaughlin [34] investigated the stability of four basic satellite
formation flying designs: in-plane, in-track, circular and projected circular formation by
applying realistic perturbations on these formations. The formations were derived from

Hill’s equations. The minimum amount of velocity impulse, Av, is calculated to balance
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the J2 disturbance force and stabilize the satellite formations. The results show that
circular and projected circular formations are very unstable when the perturbation is
applied. However, the in-track formation is stable. The in-plane formation will require
small, infrequent, along-track maneuvers to offset the effects of atmospheric drag.
Therefore, the formation-keeping cost of circular and projected circular formations is 38
times higher than in-track and in-plane formations.

Folta and Quinn [26] describe three formation types for use in the EO-1 Landsat7
formation: the close formation, the ideal formation, and the dynamic formation. The close
formation consists of spacecraft flying with a separation of less than one kilometer in the
velocity direction, and is intended for missions making simultaneous, multi-point
observations. This formation type has also been called the in-plane23 formation, and
while it is often modeled with a transverse-direction separation only, inspection shows
that there is also a small separation in the radial direction. For this reason, it is also called
as the anomaly shift formation The ideal formation involves separation distances on the
order of 1 to 100 kilometers, and is intended for missions making time-lapse observations
of the same point. The ideal formation separation is mostly in the transverse direction, but
also in the orbit-normal direction to compensate for the rotation of the earth, and to
ensure that each formation flyer follows the same ground track.

The ideal formation is often called the same ground track, or in-track formation,
and is usually modeled as a shift in true anomaly and right ascension. The dynamic
formation is similar to the ideal formation, except that the maneuvering spacecraft is
allowed to drift with respect to the non-maneuvering reference satellite as a result of

differential atmospheric drag effects. In the case of EO-1 and Landsat7, differential drag
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effects are the largest source of error, as the two spacecraft are distinctly different in
shape, size, and mass, and therefore have different ballistic coefficients. The formation is
maintained by allowing EO-1 to drift from a carefully selected relative orbit until it either
reaches the limit of its control box, or Landsat7 performs a manoeuvre, at which point
EO-1 performs a manoeuvre to return itself to the predetermined relative orbit.

Schaub and Alfriend [29] develop an analytic method for defining /2 invariant
relative orbits for spacecraft formations. The authors assume spacecraft with equal
ballistic coefficients (and therefore negligible differential drag effects), and use mean
orbit elements and Brouwer's artificial satellite theory without drag to find J2 invariant
orbits. The method described matches the drift rates of two neighboring orbits up to the

first order by constraining the values of &a,deand di and provides the most signifficant

fuel savings for non-circular, non-polar orbits.

Vadali and Vaddi [35] discuss the formation establishment problem, the objective
of which is to maximize the inclination difference between two formation flying
spacecraft while satisfying relative mean orbit elements and rate constraints. The authors
find that satisfaction of rate constraints conflicts with the objective of maximizing the

inclination difference.

2.5 Summary

In this chapter, we have broadly reviewed formation flying literature, enumerating
various formation flying applications, and also summarizing previous works on formation

design, formation control strategies and formation geometries. In the next chapter, we
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present a detailed review of orbital mechanics and spacecraft dynamics in cartesian

coordinates as well as orbital element terms.
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Chapter 3

Orbital Dynamics

LA N13 9

The terms “orbital dynamics,” “astrodynamics,” “orbital mechanics,” “spaceflight
dynamics,” and “astronautics” are often used interchangeably in the literature. Orbital
dynamics is concerned with the orbital motion of space vehicles under the influence of
gravitational and other external forces. The dynamics of space objects is most often
described by two-body motion in a Keplerian gravitational field, with corrections to
compensate for forces from perturbations such as non-spheroidal central body effects,
atmospheric drag, solar and lunar gravitational effects, and solar radiation pressure. In
this chapter we present a brief description and mathematical equations which govern the
orbital dynamics of satellites in the form of two body relative equations of motion,

classical orbital elements and equinoctial orbital elements. Further more, we describe

some perturbations that affect formation dynamics.

3.1 Two-Body Relative Motion Equation

Here, we briefly describe the dynamic problem of two point masses under the
influence of their mutual gravitational attraction. Such a problem is called the two-body
problem in celestial mechanics. The following equations are derived using Newton’s laws
of motion and law of gravity. Kepler’s three laws of planetary motion, provide the

fundamental framework of motion of planets and celestial bodies. They describe the
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motion of planets around the sun, which is considered to be inertially fixed. As shown in

the figure 3.1 consider two particles of masses m, and m, with position vectors

Inertial
Reference
Frame

Fig. 3. 1 Two body dynamics in space

1?1 and]?2 , Tespectively, in an inertial reference frame. Applying Newton’s second law

and his law of gravity to each mass, we write the equations of motion as

m, R, =+ MM 3.1)
¥

m, R, = —G’"g’"z r (3.2)
r

, Ri = L is the
d

- — -
where r = R,— R, is the position vector of m, from m,, r=

inertial acceleration of the ith body, and G =6.6695x10™" N.m? / kg* is the universal

gravitational constant. Subtracting (3.1) times m, from (3.2) timesm, , we obtain

rpU—=0 (3.3)
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where r = % is the inertial acceleration of m, with respect to m,, r =
t

N
r|, and

u=G(m, +m,) is called the gravitational parameter of the two body system under
consideration.

Equation (3.3) describes the motion of m, relative to m, in the inertial reference
frame and is the fundamental equation in the two-body problem. In the practical case of
satellite motion around earth, the mass of the primary body (earth) is much greater than
that of the secondary body (satellite). Therefore, sincem, >> m,, it results in u ~ Gm, . It
is worth emphasizing here that the primary body is not inertially fixed in the two body
problem. Thus we can see that the orbital dynamics of a satellite around the earth is a
restricted two-body problem in which the primary body of mass m, is assumed to be
inertially fixed.

The equations of motion in (3.3) depict the ideal Keplerian situation where the

central body is a perfect sphere and all other disturbances are zero. In a more realistic

scenario, equation (3.4) below includes perturbation accelerations 7" caused by non-
spheroidal gravitational effects of the central body, atmospheric drag, third body effects

and so on.

-

- r -

The above non-linear equation can also be represented in polar co-ordinates. A
single satellite of mass m moves under the inverse law in the presence of a central

gravitational body, earth of mass M as shown in the figure 3.2 below. With m << M it
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is reasonable to assume that the central body is fixed in space and the equations of planar

motion are derived from either Newton’s second law or Lagrange as shown.

Inertial reference

g
Fr
M r
F0
Fig. 3. 2 Satellite orbital dynamics
. * #
—rf° =——+
r—r i u, (3.5)

1Br2rh=u,

r

F .
and u, =—2 are the radial and transverse low-thrust control
m m

where u, =

accelerations available from onboard thrusters, € is the mean motion or orbital rate

defined by
Y7,
9= 5 (3.6)

and r is the orbital radius.



3.2 Classical Orbital Elements

We can also express the motion of a point-mass satellite around the earth in terms
of orbital elements[36]. [28, 29] have shown that Lyapunov control based on orbital
element feedback performs well in low-thrust, multi-orbit manoeuvres. Even though the
second order vector differential equation in (3.3) is non-linear, the equation is capable of
a completely general analytical solution by specific vector operations applied to the
equation of motion re-written in the form

dv Y7,

2o, 3.7

dt r’ 3.7)
In each case, the vector manipulations result in transformed versions of (3.7)

which are perfect differentials and hence immediately integrable. The constants of

integration called integrals of motion are also referred to as orbital elements.

In general, the above two body relative motion equation given in (3.3) has three

-
degrees of freedom and the orbit is uniquely determined if the six initial conditions r and

> 5
v =r are specified. Such initial conditions can be considered as six possible classical
orbital elements. Three of these six scalars specify the orientation of the orbit plane with

respect to the geocentric-equatorial reference frame, which has it’s origin at the center of

the earth. This geocentric- equatorial reference frame has an inclination of 23.45° with
respect to the heliocentric-eliptic reference frame that has its origin at the center of the

sumn.

A set of orthogonal unit vectors {I ,J,K } is selected as basis vectors of the

geocentric-equatorial reference frame with (X,Y,Z) co-ordinates as shown in the figure
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3.3 below. The (X,Y)plane is the earth’s equatorial plane, simply called the equator. The

Z axis is along the earth’s polar axis of rotation.

Z
h
! a, e, tp
0 Perigee
F
------- 1"‘““““ R
e K w T/
/«' é \\\‘
,f’ \\
4 \
s > I‘ Y
! ¥ ’
i - J ,
“ I . l”
\\\ Q I' l "‘f
R G P T - Equator
X
Vernal Equinox Line of Nodes

Fig. 3. 3 Orbit orientation using orbital elements

The six classical orbital elements consist of five independent quantities, which are
sufficient to completely describe the size, shape and orientation of an orbit, and one
quantity required to pinpoint the position of the satellite along the orbit at any particular
time. The six classical orbital elements are:

a = Semi-major axis.

e = Eccentricity.
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t, = Time of perigee passage.

Q = Right ascension longitude of the ascending node.

i = Inclination of the orbital plane.

@ = Argument of perigee.

The elements a and e determine the size and shape of the elliptic orbit, respectively, and

t, relates position in orbit to time. The angles Q and i specify the orientation of the

orbit plane with respect to the geocentric-equatorial reference frame. An orbit with i near
90° is called a polar orbit. An equatorial orbit has zero inclination. The angle w specifies
the orientation of the orbit in its plane. The equations of motion of a controlled spacecraft
in terms of the classical orbital element set are given by Gauss's form of Lagrange's

planetary equations, as follows:

Q@ _rsnd (3.8)
dt  hsini

di rcos6

=2 39
i B )

_d_a)z_l—[—pcosfu,+(p+r) sinfug]—Muh (3.10)
dt he h sini

da 2a° . p

aa s 3.11
” p (esin fu, . Uy) (3.11)
de 1 .

Z:—};{psmfu,+[(p+r)cosf+re]u9} (3.12)
au =n+ b [(pcos f —2re)u, —(p+r)sin fu, (3.13)
dt ahe

whereu,, u, and u, are the radial, transverse, and orbit normal control acceleration

components, M is the mean anomaly, 8 = @ +v, is the argument of latitude, and b, h
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and p are the semi-minor axis, the angular momentum, and the semi-latus rectum,
respectively. The mean motion, 7 , is calculated from the gravitational parameter, 4 and

the semi-major axis,a as:

n= ﬁ} 3.14)
a

which is equivalent to equation (3.6). In case of a circular orbit semi-major axis is equal
to the semi-minor orbit. In the above equations it is also seen that the mean anomaly

M or sometimes even the true anomaly @ replace the time of perigee passage?, in the

set of orbital elements and is only a case of convenience in computing and depends on the

problem at hand.

3.3 Equinoctial Orbital Elements

Some researchers [37] use equinoctial orbital elements as further correction and
accuracy to the classical orbital elements are added. [30] develops Lyapunov optimal
feedback control techniques for low thrust orbit transfer between orbits of different semi-
major axis, eccentricity, and inclination using both classical, and equinoctial orbital
element sets. These equations have been stated here without much detail just for the sake
of completeness.

Gauss's form of Lagrange's planetary equations contains singularities for circular
or equatorial orbits. For orbits with near zero inclination or eccentricity, we can use the
non-singular, equinoctial elements. We define the equinoctial orbital element set, using

Battin's notation [38], as the semi-major axis,a, unnamed elements P, P,, Q,, O, and
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the mean longitude, /.The non-singular equinoctial elements are defined in terms of the

classical orbital elements as:
. 1, 1. .
a=a, P=esinw, P,=ecosw, O, =tan§zcosQ, 0, =tanzzst, l=w+M

where @ , the longitude of pericenter, is defined as :
o=0+0.

The true longitude, L , defined as :

L=o+v

The reverse transformation back to the orbital elements is given by:

a=a (3.15)
e=(P’+P})? (3.16)
i=2tan(Q? +0?)? (3.17)
4 O
Q=tan™| =L 3.18
(2] o
o =tan™ (ij - tan"(g) (3.19)
P, 0,
nes
M =1[—-tan (sz (3.20)

3.4 Orbital Perturbations

In an ideal Keplerian orbit, the primary body which in our case is earth, has a
spherically symmetric mass distribution and its orbital plane is fixed in space. Practically

speaking we have to consider a non-keplerian orbit whose orbital plane is not fixed in
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space due to asphericity of earth. The small deviations from the ideal Keplerian orbital
motion are called orbital perturbations. Here we describe the effects of earth’s oblateness

and atmospheric drag on the orbital motions of near-earth satellites.

3.4.1 Earth’s Oblateness Effects

The earth is not a perfect sphere but it is an oblate spheroid of revolution; that is,
the earth is flattened at the poles to produce geoid or ellipsoid of revolution. There are
also minor harmonics of the earth’s shape that produce a pear shape. This pear shape and
the polar flattening cause perturbations to the satellite orbit. The equatorial bulge caused
by the polar flattening is about twenty one kilometres and distorts the path of the satellite
each time it passes either the ascending node or descending node. The attractive force
from the bulge shifts the satellite path northward as the satellite approaches the equatorial
plane from the south. As the satellite leaves the equatorial plane, it is shifted southward.
The net result is the ascending node having shifted or regressed opposite the direction of
satellite motion. Thus earth’s oblateness not only causes motion of the orbital plane but

also affects the position of satellites within the orbital plane.

3.4.2 Atmospheric Drag

Atmospheric drag is another very important perturbation for Low Earth Orbiting
(LEO) satellites. The exact effect of atmospheric drag is difficult to predict due to
uncertainties in the dynamics of the upper atmosphere. Air density is constantly changing
in this region; there are diurnal variations because the sun heats up the air on day light
side of the earth, causing the air to expand. This heating increases the number of

molecules encountered by LEO satellites. There is a similar seasonal variation between
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summer and winter. There is also a 27-day cycle in atmospheric density, as well as an 11-
year cycle [38]. Magnetic storms can heat the atmosphere as can solar flares. Major solar
events emit charged particles that heat the outer atmosphere and produce significant
changes in satellite orbits. Because the atmosphere drops off so rapidly with altitude,
most drag is expected at perigee. The less time the satellite spends at near-perigee
altitudes, the less total mechanical energy the satellite dissipates by air drag. A reduction
in total energy produces a corresponding reduction in the length of the semi-major axis.
Also, air friction causes the eccentricity of the orbit to diminish toward zero, making orbit
more circular. Thus, it can be said that the apogee drops faster than the perigee in
elliptical orbits. Orbital perturbations due to atmospheric drag are relevant to this thesis
as the simulations consider a LEO constellation. Air density drops off so rapidly with

increasing height that high-altitude satellites can essentially ignore air drag.

3.5 Summary

In this chapter, we have presented the orbital dynamics expressed in three
different ways. In the following chapters we use the two body relative motion equation in
polar coordinates for designing the control laws and simulations. Here, we have also
discussed the factors responsible for satellite orbit perturbations. The nonlinear
controllers designed in this thesis later on will be used to correct the perturbations caused

by disturbing effects given above.
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Chapter 4

Formation Flying Using Potential

Function Method

In this chapter, we present a detailed critique of the decentralized relative
formation flying method, introduced by Colin R. McInnes [4]. We start with the concept
of Lyapunov’s Direct Method since the potential function method used by Mclnnes is
based on it. Later, the actual potential function method and derivation of the control laws
is described for formation flying as devised by McInnes. We end the chapter with

simulations and discussion on using potential function method for formation flying.

4.1 Lyapunov’s Second Method

Lyapunov's Second method also known as Lyapunov’s direct method is a well-
known mechanism to study various qualitative properties such as stability, asymptotic
stability, etc. of both linear and nonlinear systems. It is based on the concept of energy
and the relation of stored energy with system stability. Consider a physical system

described by the equation

x(t) = f(x(2))
and let x(x(¢,),t) be a solution. Further, let ¥ (x) be the total energy associated with the

system.
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If the derivative

is negative for all x(x(¢,),t) except the equilibrium

dv(x)
dt
point, then it follows that energy of the system decreases as ¢ increases and finally the
system will reach the equilibrium point. This holds because energy is non-negative
function of the system state which reaches a minimum only if the system motion stops.
For ready reference with McInnes potential function method given later and without

going into much detail, Lyapunov’s method in its simplest form can be stated as follows:

For a system described by,
x=f(x); £(0)=0
suppose that there exists a scalar function V'(x)which, for some real numbere >0,
satisfies the following properties for all x in the region"x” <g:
> V((x)>0; x#0
» V(0)=0 ,thus V(x) is a positive definite scalar function

» V(x) has continuous partial derivatives with respect to all components of x .

> %— <0(.e. %I:— is negative definite scalar function)
Then the system is asymptotically stable. It is intuitively obvious since a continuous ¥

. . .. dv .
function, ¥ >0 except atx =0, satisfies the condltlonj <0, we expect that x will
t

eventually approach the origin.
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4.2 Potential Function Method

In this section we provide the background, concept and approach of deriving the
potential function method used by MclInnes for deriving the formation flying control

laws.

4.2.1 Background

Lyapunov’s Second Method was originally translated from Russian in the early
part of the twentieth century. In the early sixties, two seminal papers by Kalman and
Bertram [39, 40] evolved the technique into the Potential Function Method, which has
been in widespread use in terrestrial application ever since. Professor Colin Mclnnes [4,
41-43] at the University of Glasgow began the process of applying the method to space
based applications. Further work by Mclnnes has also applied the technique to multi-
spacecraft operations. The control method was originally designed for the control of free
flying robots to be used in space construction problems. However, the relative interaction
and co-operative nature of the method has direct applications in formation flying. The
function itself is based on the separation and positioning of the satellite relative to the
constellation members. The main conclusion drawn from the work is that the Potential

Function Method represents a promising method of relative control in complex systems.

4.2.2 Concept

The method used by Mclnnes is the Potential Function Method, which, in turn, is
based on Lyapunov’s Second Method. The method utilises a Potential Function to
measure the ‘correctness’ of the formation. When the Potential Function evaluates to

zero, the formation is correctly deployed. This means that for a constellation
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of N satellites, the desired configuration corresponds to zero energy. Then, if the rate of
change of the energy is negative, i.e. the energy is continually decreasing, then eventually
the energy will decrease to zero and the system will converge to the desired
configuration. An analytical solution is obtained to manoeuvre the satellites in such a
manner to reduce the potential and thus configure the formation. However, the method is
not devoid of problems inasmuch as the Potential function itself is problem-dependent

and relies too much on presumptions.

4.2.3 Approach

A Potential Function is analytically derived that describes the potential energy of
the system. McInnes has then used a stability analysis approach by searching for a control
function to fit the pre-defined potential function. We discuss the notion of Lyapunov

stability in the next section.

4.3 Stability

The equilibrium state x=0 is said to be stable if, for anyR >0, there

exists 7 > 0, such that if|x(0)| <7, then ||x(?)] < R for all ¢ > 0. Otherwise the equilibrium

point is unstable. Essentially, stability also called as Lyapunov stability means that the
system trajectory can be kept arbitrarily close to the origin by starting sufficiently close to

it.
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Curve 1 - Asymptotically stable
Curve 2 - Marginally stable

Curve 3 - Unstable
Fig. 4. 1 Stability and its definitions

In our application of formation control or absolute station keeping Lyapunov
stability is not enough. When a satellite’s position is disturbed from its desired position,
we not only want the satellite to maintain its position in a range determined by the
magnitude of the disturbance i.e. Lyapunov stability, but also require that the position
gradually go back to its original value. This requirement is covered under asymptotic
stability which is formalized next.

Definition: Equilibrium point 0 is asymptotically stable if it is stable and if in addition

there exists some 7 > 0 such that "x(O)“ < r implies that x(¢) > 0 ast > .
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4.3.1 Global Asymptotic Stability

The above definitions are formulated to characterize the local behavior of systems
i.e. the evolution of states after starting near the equilibrium point. These properties say
little about how the system will behave when the initial state is some distance away from
the equilibrium. This is specified by the next definition.
Definition: If asymptotic stability holds for any initial states, the equilibrium point is said
to be globally asymptotically stable.

The specifics of the mathematical model used and the control laws derived are
given in the next section. We will investigate subsequently in this thesis the local and
global asymptotic stability of our formation control model for the linear as well as the

original nonlinear model.

4.4 Control Laws

The two body relative equation of satellite motion around the earth given in
Chapter 3 used to represent the dynamical system. For a constellation of N satellites in

orbit around the earth, the same equation can be rewritten as

;':_ri 01'2 =—£2+uri
. (i=1,..,N) (4.1)

[

r,0i+2r.0i =uy

where,
u,, =—" = Radial low thrust control acceleration.
m
F, .
u, = —= = Transverse low thrust control acceleration.
m
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It should be noted that the derivation and controller synthesis is based on
linearized dynamics model of (4.1). It is linearized around the desired orbital operating

point of(r,8), where ris the desired radius and @ is the desired orbital rate. The

linearized set of equations is given by

o ® 27 _
Li-20r¢=30°l, =u, (i=1...,N) 2
rg.+2wl; = Uy

where, ¢, =60, —at, |, =r, —;, ¢ is the actual angular position of the satellite with
respect to the ring, [ is the offset between the actual and operational radius of the ring
and o is the Keplerian angular velocity.

A Potential Function is analytically derived that describes the potential energy of
the system. It is then used to drive the state vector of the system to the desired
configuration.

_1N
V—Eg

@+ 1)+ 2 Y sec’(4,) 4.3)

joLj%i

where, ¢, =%[¢,~ (¢, —m))

The first part of the potential function in (4.3) is the kinetic energy of the system, so that
the satellite remains steady in the desired position once this term drops to zero. The
second part is a periodic function such that V(¢ +2kz) =V (¢) for k =1,2,...,integer.
This will ensure that the potential increases as any two satellites move close and
decreases as they get repelled away from each other. The selection of (3) as the candidate
potential function ensures the following:

» Satellite Separation
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» Collision Avoidance

The lower the potential, the closer the geometry of the formation is to an operational
configuration. For a minimum energy which is the desired configuration the rate of
change of potential of the system should be negative definite.
AV Ao oo fe
— = Zl, L+ ¢ {¢ -2, ,lz,jec (¢;) tan(g; )} (4.4)
In his methodology, McInnes follows the conventional stability analysis approach by
searching for a control function to fit the pre-defined Lyapunov function. This way he
ensures that he has a feasible control function that satisfies the stability criterion of

Lyapunov function methodology. The control function selected is as follows:

u, =k, [.-20r ,— 301,

1

. . N 4.5)
Uy =—kyr g+ 201, +2r 2, Y sec’ (4;) tan(g;)
jelj=i
Substituting (5) in (2), we have,
2: =—ky l.i
. . N (4.6)
& =—ky; ¢;+24; Y sec’(¢;)tan(g;)

J=Lj#i

Therefore, the rate of change of potential (4) can be rewritten as,

_z klt i ZkZz ¢l (47)

To ensure that the solution is reached, the rate of change of the potential must be assured
negative semi-definite. As seen from (4.7) the rate of change of potential function is
made to be negative semi-definite by the choice of the specified control laws in (4.5).

This may be expressed in simpler terms by considering that as the rate of change of
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potential is always nonpositive, the potential itself shall always be nonpositive.
Therefore, the configuration shall converge to the solution at the potential equal to zero.

In the next section, we will go over some simulations of formation flying using the

control laws developed by Mclnnes.

4.5 Mission Simulations

In this section, we have designed two mission scenarios to test the performance of
the formation control laws designed by McInnes. Towards this end, we consider a
constellation of 3 satellites each of mass of 75Kg with 10N thrusters for radial and
transverse control. The satellites are deployed in a relative formation at an altitude of
400Km and angular separation 0f120°.

The objective of the formation controller is to track the required radius and

maintain equal angular separation. In Table 4.1 we consider the formation variables in the

absence of any external perturbation.

Table 4. 1 Simulation scenario - potential function method

Satellite 1 Satellite 2 Satellite 3
r =400Km r =400Km r = 400Km
& =0Km o =0Km or = 0Km
=0 ¢ =120° ¢ =240°
op=0° o9 =0" o¢ =0’
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In Table 4.2, we consider the formation variables with small perturbations in the

azimuthal direction.

Table 4. 2 Simulation scenario - potential function method

Satellite 1 Satellite 2 Satellite 3

¥ =400Km r =400Km ¥ =400Km
or =0Km o =0Km or =0Km

¢ =0.0001° $=119.999° ¢ =239.999°
6¢ =—0.0001° 6¢ =0.0001" o¢ =0.0001°
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4.6 Concluding Remarks

» From the simulation scenario in Table 4.1 and the figures 4.2, 4.3, 4.4 we can see
that the designed formation control laws are able to hold the formation together.
Equal Intersatellite spacing is maintained and satellites maintain the orbital radius
they are launched at. There are no perturbations introduced.

% From the simulation in Table 4.2 and the figures 4.5, 4.6, 4.7, we can see that, the
control law leads to a complex nonlinear interaction between the satellites. All the
satellites are minimally perturbed in order to check the formation maneuvering
performance of the controller. Although the inter-satellite spacing is not thrown
into instability instantly, it shows a trend that would lead to a gradual drift and

formation break-up if not corrected manually by the ground segment. It is evident
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that although the control laws loosely hold the formation together they are

unsuitable for large perturbation corrections i.e. the group cannot maintain

formation very well during the manoeuvres.

» Mission scenarios with radial perturbation are not carried out since the designed
control laws do not allow correction in the radial direction. This is one of the
major limitations which is not addressed by McInnes in his methodology.

> This approach is not only hard to analyze mathematically but also has a limited
ability for precise formation keeping.

> The design method is not devoid of problems inasmuch as the potential function
itself is problem-dependent and relies too much on presumptions.

The potential function method shows promising results for formation flying and it
can prove beneficial for long term formation flying missions which need intersatellite
communications and some ground assistance. On the other hand, this might become one
of its major disadvantages as it heavily relies on the availability of a communication
channel and bandwidth for data passing between different satellites. Though McInnes has
claimed that the formation control laws can control the formation in the event of orbital
perturbations, it is clearly seen from the simulations that, it has a limited capability to do
so. The methodology cannot be used where precise position control of the agents is of

prime importance.
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Chapter 5

Controller Using Linearization

Technique

In this chapter, we design a formation controller using the linearization technique.
The nonlinear two body relative equation of motion is first linearized around the
operating point. State feedback using pole-placement technique is then used to develop
an orbital controller for this linearized set of equations. Applying the appropriate
definitions of variables used for linearization, the control law for the nonlinear state-
space representation is then obtained. Further we present formation control mission
simulations for the linear controller on the linear dynamics and for the linear controller on
the nonlinear dynamics. We end the chapter with discussion and remarks on the

formation control performance of the developed controller.

5.1 Linearization

A pole placement controller is developed for the linearized dynamics of the
equation of satellite motion. Here, we discuss the Linearization theory briefly for the
convenience of the reader and for the sake of completeness.

Qualitatively, a system is described as stable if starting the system somewhere

near its desired operating point implies that it will stay around the point ever after. The
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linearization method draws conclusions about a non-linear systems local stability around
an equilibrium point from the stability properties of its linear approximation. A state x
is an equilibrium state (or equilibrium point) of the system if once x(¢) is equal to x" for
all future time.

Mathematically, this means that the constant vector x" satisfies
0=f(x)

Equilibrium points can be found by solving the above non-linear equation. A linear time-

invariant system x=Ax hasa single equilibrium point (the origin0) if A is nonsingular.
If A is singular, it has infinity of equilibrium points, which are contained in the null space
of the matrix A, i.c. the subspace defined by Ax =0.This implies that the equilibrium
points are not isolated.

Practically all the physical systems are non-linear in nature. In the following
sections we would be developing a state feedback orbital controller for the satellite
model. Hence, we should linearize the non-linear satellite model around an operating
point. The intuitive basis of linearization is that a smooth curve differs very little from its
tangent line so long as the variable does not wander far from the point of tangency.
Subsequently the region of operation of a linearized non-linear equation should be

restricted to a narrow range.

The state equation x= f(x,u) of a general time-invariant system can be
linearized for small variations about an equilibrium point (x,,u,).It is assumed that the

system is in equilibrium under the conditions x, and u, , that is,
x=f(xu)=0 1)
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Since the derivatives of all the state variables are zero at the equilibrium point, the system
continuous to lie at the equilibrium point unless otherwise disturbed. The state equation

can be linearized about the operating point (x,,u,) by expanding it into Taylor’s series

and neglecting the terms of second and higher order. Thus for the i th state equation

);i =fi(xo’uo)+i ’——afi;j:,u) (x; _xj0)+i ——af;;:’u)

i x=xq&u=u
o o

(, —u) (52

x=xo&u=u,
Recognizing that at the operating point f;(x,,u,)=0 and defining the variation

about the operating point as

X =X, —X, I
TR (5.3)

~ A J
Uy =Up —Upg

the linearized i th state equation can be written as

u, (5.4)

x=xo&u=uqy x=xo&u=uy
The above linearized component equation can be written as the vector matrix

equation

x=Ax+Bu where,

A e -
Ox, Ox, Ox, Ou, Ou, ou,,
%9 . ...9 %%, .9
A=|ox, Ox, ox, B=| Ou, Ou, ou,, (5.5)
oS o Y S o 9,
Laxl Ox, ox, | o) Ou, Ou, ou,, | o)
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Matrices A and B are called the Jacobian matrices. All the partial derivatives in the

matrices A and B defined above are evaluated at the equilibrium point (x,,u,) .

In most systems governed by non-linear systems the exact analytic solution is not
known and is rarely found analytically. But the dynamical equation we are considering
here, the exact analytic solution is known to be a conic,

e =0-—circle
Yo, 0<e<1-ellipse

r= , ivin 5.6
1-e.cos(€@—9) giving e =1- parabola (5-6)

e > 1— hyperbola

2
where p = 24" semi-latus rectum and
y7,
2,2 24 ; K 0290
e=[1+p°(vy —) , vo=r,60 , A=
7, 2

Since the satellite path we are interested in here is circular, we select the operating
point (#,,6,) as a convenient point on the circular orbit. Thus, now we can linearize the

satellite non-linear dynamical equation at the equilibrium point. The above non-linear

equation can be converted into state-space representation as follows,

Letx, =r,x,=r, x,=6, x,=6 and corresponding inputs are u, =u, and

u, =u, then,

L]
X =X,
c 2
Xy =X X, ""—2'5'1/!I
X

L] ! } (5'7)
T 1
= 2x,x,
x, = ——2 2 4 —u,

X X
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To linearize, F(x,u) can be expanded into Taylor’s series around the operating point and

higher order terms discarded.

The linearized set of equations of motion are given by (5.8)

I-20r§-30%, = u,

. . (5.8)
ro+2wl =u,
The above system can be represented in the state-space form as under:
X, =0, x, =L, =0, Xy =@, uy =uy, U, =uy
X =X
x, = 2arx, +3w0°x, +u,
) > (5.9)
X, =X,
. 2w 1
X, =——X, +—U,
r r

Pole placement controller would be developed for the above set of linear
equation. Next section gives an overview on various conventional and modern techniques
used for designing a linear controller. Later we discuss in detail the pole placement
technique and give brief definitions for the Linear Quadratic and Linear Quadratic

Gaussian Controllers.

5.2 Controller design

Lyapunov’s linearization method discussed above is concerned with the local
stability of a non-linear system. It is a formalization of the intuition that a non-linear

system should behave similarly to its linearized approximation for small perturbations.
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Since all physical systems are inherently nonlinear, it serves as the justification of using
linear control techniques in practice.

Controllers vary widely in complexity and effectiveness. Simple controllers
include the proportional (P), the proportional plus derivative (PD), the proportional plus
integral (PI) and the proportional plus integral plus derivative (PID) controllers, which
are widely and effectively used in many industries. More sophisticated controllers include
the linear quadratic regulator (LQR), the estimated state feedback controller, and the
linear Gaussian controller (LQG). Controllers are designed by many methods. Simple P
or PI controllers have only a few parameters to specify, and these parameters might be
adjusted empirically, while the control system is operating, using “tuning rules”.
Controller design methods developed in the 1930’s through the 1950°s are often called as
classical controller design methods. In 1960’s through the present time, state-space or
“modern” controller design methods have been developed. These methods are based on
the fact that the solutions to some optimal control problems can be expressed in the form
of a feedback law or controller and the development of efficient computer methods to

solve these optimal control problems.
5.2.1 Pole Placement Technique

A fundamental method of classical design consists of forcing the dominant close
loop poles to be suitably located in the s- plane or z- plane to ensure satisfactory
transient response. In the pole placement technique full state feedback is considered
which gives us greater freedom to satisfy the classical performance indices. Using full

state feedback permits us to place all the poles of the characteristic equation at any
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desired positions. Consider the single-input-single-output system with nth —order state

model

x= Ax+Bu
y=Cx

The state variable feedback for this system is essentially a scalar function which takes the

form

The block diagram of the system with state variable feedback is shown below. We can
see from this figure that

u=—kx+roru=-kxifr=0

. Plant
Reference input r X

x = Ax + Bu ———— ™~ C y

+ u

A
K

Fig. 5. 1 State variable feedback system

where u is the plant input and r is the reference input. The closed loop equation becomes

x=(A-BK)x
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It is already shown that if the pair (4, B) is controllable, then by state feedback equation
above, the eigen-values of (A4— BK) can be arbitrarily assigned. The eigen-values of the
closed loop state feedback system are roots of

|AI -4+ BK|=0.

5.2.2 Linear Quadratic Regulator (LQR)

LQR falls under the realm of optimal control systems. The LQR design is an
optimal pole placement technique which combines the linear quadratic control and the
pole placement technique. Its design is based on a linear model of the system and a
quadratic performance index that penalizes both the divergences of the output of the
system with respect to the desired values and the control effort. The problem consists in
finding a control that minimizes the quadratic performance index (i.e., both the terms
under the integral sign and the function of the final event are quadratic functions), when
the dynamic system is linear. The well known analytical solution for this problem makes
reference to the solution of matrix Riccati equations. The result is a linear feedback of the
state variable of the system multiplied by a set of gains. LQR has guaranteed gain and

phase margins.

5.2.3 Linear Quadratic Gaussian Controller (LQG)

The LQG problem is a well-established approach to optimal control for stochastic
linear systems. In order to find an optimal control law that minimizes a certain
performance index (which is necessarily taken as an expected value), the Kalman filter is
used to estimate the state. Thus, the optimal estimate for the state is taken such as to

minimize the variance of the estimation error. The solution for the LQG problem is
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proved to be a controller that includes in its dynamics a Kalman filter. Mathematically,
the designer is confronted with two differential (or algebraic, in the constant case) Riccati

equations.

In this thesis we have used the pole placement technique for designing the linear
controller. The next section covers the design of the full state feedback controller for the

linearized set of dynamical equations.

5.3 Linear Controller by Pole Placement

In this section, we design a state feedback controller using pole placement
technique for the linearized set of dynamical equation. Towards this end, we consider a

constellation of 3 satellites each of mass of 75Kg with1ON thrusters for radial and
transverse control. The satellites are deployed in an absolute formation at an altitude of

400Km and angular separation of 120°. The objective of the individual/decentralized
satellite controllers is to track the required radius and maintain angular separation by
tracking the angle specifications and requirements that are assigned by an upper level
supervisory controller. For such a critical application, the control logic of the formation
deployment must display the following properties:

» Closed loop performance guarantee.

» Smooth convergence to the solution.

» Scaleable (In capability and autonomy).

» Stablility.
We now show that the state feedback control laws given below can achieve the

above objective by appropriately selecting the controller gains, namely we set
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U, = g,x, +g:x, + 1% } 510
Uy = G4 Xy T 85X, T 86X3 (5.10)

Therefore, the closed loop state space representation of the system may be given as,

N
]

X1 =x2
x2 = g,%, +B@* + g)x, + Qar+g,)+v,
. . (5.11)
X3 =x4
. 2
X4 =—g—4x4 +&x3 +(——w—+&)x2 +v,
r r r r J

where the reference signals v, and v, are added for achieving set point regulation or
tracking. With Keplerian angular velocity @ = 0.06 deg/ sec and orbital radiusr = 400Km,

open loop 4 and B matrices can be written as:

0 1 0 0] 0 1 0 0
L[ 0 020 foos 0 0 48
2w
¢ -— 90 ¢ 0 -0003 0 O
0 0 0 O
1 o (1 0
B= = (5.13)
0 0| |0 O
0 1/r] [0 0.0025

Out of the four open loop poles for the linearized system dynamics two lie at the
origin and the other two have their real parts at the origin and the imaginary part at
+0.06i. It is clear that the system in open loop is unstable. The closed loop

representation of the satellite may then be expressed as follows:

0 1 0 O

oy a0 o
A-BK = (5.14)

0 0 0 1

0 B B B
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a, =30’ +g,
a, =8
o, =2ar + g,
_ 20 g
Bi=——+0 (5.15)
g
p, ==
r
g
py ===
r )

In order to design pole placement gains, the system has to be controllable. The
pair A and B are controllable with full rank. Therefore, pole placement technique can be

used. Placing the four poles at 4, =-0.1,4, =-1.0,4, = -2.0,4, =-3.0 and solving for

(5.11) and (5.14) the controller gains obtained in our case are,

g, =—-0410

g, =-2.2

g =—48 | (5.16)
g, = 1600

g, =0.12

g, =-1200

The external reference signals v, and v, that are to provide tracking commands

for x, =1/, andx, = ¢, , respectively, are to be designed as follows,

(5.17)

_ d
Vy, = ~8¢X;3

v = _(3602 +g1)x1d}

where x”and x{ are the desired reference commands for x, and x,, respectively. The

designed controller will be tested on the linear as well as the non-linear dynamics of the

satellite.
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5.4 Linear Controller by Pole Placement for Nonlinear

Model

In the previous section a linear orbital controller is designed for the linearized
satellite dynamics. The above linear controller should actually be applied to the nonlinear
system dynamics in order to evaluate how it will perform in more realistic conditions and
in the presence of nonlinearities. Applying the appropriate definitions of variables used
for linearization of, the control law for the nonlinear state-space representation is now

obtained.

Since, x, =r,x, =r,x, =0,x, = 0, we have,

U =g,x, +g;(x, —o)+ g, (x, —r) (5.18)
U, = g,(x, — )+ gsx, + g4 (x; — x)

The external reference signals v, and v, for providing tracking for x, =7, and x, =6,

il

respectively, can be assigned as follows,

a2 d
v, =—Cw +g1)x1} (5.19)

Vv, = _ge(xgl — o)
The controller designed for the linear dynamics as well as nonlinear satellite dynamics
will be put to performance tests in the next section under two different simulation

scenarios.

5.5 Formation Control Set-up and Simulations

In this section, we present mission simulations using the controllers developed

above for the linear as well as nonlinear orbital dynamics. As discussed above, we
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consider a constellation of 3 satellites each of mass of 75Kg with10N thrusters for radial
and transverse control. The satellites are deployed in an absolute formation at an altitude

of 400Km and angular separation of 120°. The objective of the individual/decentralized
satellite controllers is to track the required radius and maintain angular separation by
tracking the angle specifications and requirements that are assigned by an upper level

supervisory controller. The results obtained are discussed subsequently.

5.5.1 Mission simulation (Linear Dynamics)

In Table 5.1 we consider the formation variables in equilibrium in the absence of
any external perturbation. The following figures show the dynamical behaviour of the

linear formation dynamics with the pole placement controller.

Table 5. 1 Simulation scenario - pole placement linear dynamics

Satellite 1 Satellite 2 Satellite 3
r = 400Km r =400Km r = 400Km
or =0Km or =0Km 5 = 0Km
=0 ¢ =120° ¢ =240°
09 =0° op=0" op=0°
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In Table 5.2, we consider the formation variables with perturbations in the
azimuthal as well as radial direction. The control laws are expected to correct for these
perturbations and track the desired positions. The following figures simulate the
dynamical behaviour of the linear formation dynamics with the pole placement

controller.

Table 5. 2 Simulation scenario - pole placement linear dynamics

Satellite 1 Satellite 2 Satellite 3

r =400Km r =400Km r =400Km
or =390Km or =410Km or =380Km
p=" $=119° ¢ =238
op=-1° op=1" op=2"
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5.5.2 Mission Simulation (Nonlinear Dynamics)

In Table 5.3 we consider the formation variables in equilibrium in the absence of
any external perturbation. The following figures show the dynamical behaviour of the

nonlinear formation dynamics with the pole placement controller.

Table 5. 3 Simulation scenario - pole placement nonlinear dynamics

Satellite 1 Satellite 2 Satellite 3
¥ =400Km r = 400Km ¥ =400Km
or =0Km o =0Km &5 = 0Km
¢=0 ¢ =120° ¢ = 240°
op =0’ o¢ =0 09 =0’

61



Operational radius

400.00 T

399.99999999 -
It

39999999998 |- | ¥t
l i Py abB ang gtd jie pie iy

son aaseseT hi Eii it ': i A yis ia A i
X

399.99999996 ~ 4 Suwi ki it

1]
399.99999995 |- | {135 14 &t

399.99999994

399.99999993 -

399.

300

e~ sat1
"""" t2
| T~ 83 t3
07 — '—-c-—ro-—‘———————--—- —
200
n
@
2
g
P e
; e
2 i
£
= s mmamme
100+
50
0 1 L It . ) l I |
0 50 100 150 200 250 300 ™ - - 1

time (mins)

Fig. 5. 9 Operational theta of the 3 satellites in formation

62



sat1 sat2

==+ sat2 sat3
=== sat3 sat1

Intersatellite spacing

!!!!!! P S ERTTREMERmE—
N T e SARREEZETLAnAN—
Il.’!’l’ld‘!-_‘ahﬁ.h“ R R B 2 -
|||||||| i “’.I" nli,._ !ﬂFllﬂlllMﬂ.ﬂu.l!!!l‘
Illllll‘:!:!hmﬁﬂﬁﬂ Mﬂﬂﬂﬂﬂlllllilllll
Lﬂ.ﬂﬁ.ﬁ:.ﬁu.m.r.wwmu...ﬁu e s =
) .- i‘“““‘-\"

A Fealhia s e B B IRl T s
PO vty 255 5, L S A
M PATUTAYE S Lydland i
G | S

T ol W e
I Frrc LT .,
............... Wiy A E UM
I S w.aln-.vn (L;EF 30 2 020 e
e S I SRABBET RS
............... e A P e

l.l-l-%ﬂ.l% TV e e e
e B - ot N
R e el T s =
- B RS/ ——

S
e R AW m w———
SAARRm e
l!;.w.ﬂ-.ﬂ.h.iw.-liliiil_.!.ll

SRDRRP ST

L =msacIEanz
e T 3 QG IEERER .o
aT SAN—

L P e

UITT | SRS
e DTS TR ——

- v e L3 W U N N e
1 Ao care N S

120.0000003

SERRRREGN | SEeAATSRsIIIIIT
e ey AT,
lllllllllllllllll s w0 T e T B M T T T o

...... _ X e _ ,

g 2 g g g

o

m 8 o 2 2
D

-3 D

o (=] s [}

< 5] (seaubaq) 2 @

b X pa

500

P

0.02Km

239.97°
56 = 0.03°

¥ =399.98Km

or

Satellite 3

¢

I
350

300
0.01Km

1
250
time (mins)

399.99Km
63

120.01°
=-0.01

Satellite 2
Yy =

o

¢ =

og

Fig. 5. 10 Intersatellite spacing

100
0.05Km
-0.03°

0.03°

r =399.95Km

Satellite 1
Ve

¢

og

119.

In Table 5.4, we consider the formation variables with perturbations in the
Table 5. 4 Simulation scenario - pole placement nonlinear dynamics

azimuthal as well as radial direction. The control laws are expected to correct for these
perturbations and track the desired positions. The following figures show the dynamical
behaviour of the nonlinear formation dynamics with the pole placement controller. For
this case we also show the control effort required for correcting the tracking error.
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5.6 Concluding Remarks

For the mission simulations for the linear dynamics (Fig. 5.2 — Fig. 5.7), we can
see that the linear controller is globally asymptotically stable. The controller is able to
maintain the formation in the desired state, in the absence of perturbations. In the
presence of perturbations, all the satellites in the formation are able to manoeuvre back
into the desired position. All the satellites in the formation maintain their position and do
not drift.

In the case of nonlinear dynamics (Fig. 5.8 — Fig. 5.16), we can see that, the linear
controller is locally asymptotically stable. It is able to maintain the formation very well in
the absence of perturbations as well as in the presence of perturbations; the satellites
smoothly manoeuvre back to their desired positions. It should be noted here though that,
the perturbation tolerance range of the linear controller is very small. Beyond the
specified ranges found by trial and error as given below, the system becomes unstable.

The closed-loop system is stable for only 399.2<r<400.3 and
—-0.09 <50 <0.03 . Due to this shortcoming, it would be required to design a gain
scheduling controller repeating the above design procedure for different operating
conditions. This is a laborious procedure and again depends too much on assumptions
and approximations. In order to improve the perturbation tolerance range for the
formation controller and also to avoid the tedious process of linearization at different
operating points, we will design an orbital controller in the next chapter using the

feedback linearization or nonlinear compensation technique.
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Chapter 6

Controller Design Using Feedback

Linearization

In the previous chapter an orbital controller was designed using the pole-
placement technique. The dynamical equation of the satellite in a circular orbit was first
linearized around the intended operating point. The mapping of the linear controller on
the nonlinear dynamics showed local asymptotic stability but very low robustness to large
perturbations around the operating point.

In this chapter, feedback linearization technique will be used for designing the
orbital controller. The chapter ends with simulations showing absolute formation control
and station keeping for a constellation of three satellites in a circular orbit. Intuitively, the
use of nonlinear control as opposed to linear control should result in significant fuel
savings. This savings should be particularly evident when feedback control is used to

perform large maneuvers, where the nonlinear dynamics effects become pronounced.

6.1 Nonlinear Phenomena and Limitations of
Linearization

As we saw in the previous chapters, an important concept in dealing with the state

equation is the concept of an equilibrium point. A point x = x" in the state space is said to
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be an equilibrium point of x = f(¢,x) if it has the property that whenever the state of the

system starts atx", it will remain at x for all the future time. As we move from linear to
non-linear systems, the situation becomes a bit more difficult. The superposition principle
does not hold any longer and analysis tools involve more advanced mathematics.

Since linearization is an approximation of the non-linear system at the operating
point, it shows the local behavior of the nonlinear system near the equilibrium point. It
cannot predict the “non local” behavior far from the operating point and certainly not the
“global” behavior throughout the state space. The dynamics of the non-linear system are
much complex than the linearized version of the same equation. So there are special
nonlinear phenomena that can occur only in the presence of nonlinearity and which
cannot be described by or predicted by linear models. The linear versus non-linear

phenomena are briefly enumerated in the table below.

Table 6. 1 Linear v/s nonlinear system characteristics

Characteristic Linear time-invariant Non-linear systems
systems
A. Finite escape time States can go to infinity | States can go to infinity in

as time approaches | finite time.

infinity

B. Multiple isolated equilibria | Can have only a single | May have multiple
equilibrium point to | equilibrium points and state
which  the states | convergence depends on
converge irrespective | the initial system state.

of the initial system
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state.

C. Limit cycles

Doesn’t oscillate unless
the system has a pair of
eigen values on the

imaginary axis

A stable oscillation must be
produced by non-linear
systems irrespective of the

initial state.

D. Sub harmonic, harmonic or

almost-periodic oscillations

A periodic input
produces an output of
the same frequency
when the system is

stable.

A periodic input may
produce an output which is
a multiple or sub multiple

of the input frequency.

E. Chaos

Linear systems do not

exhibit chaos

A nonlinear system may
have a more complicated
steady-state behavior that is
not equilibrium, periodic
oscillation  or  almost

periodic oscillation termed

as chaos.

F. Multiple modes of behavior

Non-existent in linear

system

The same  non-linear
system may exhibit more
than one mode of behavior,
e.g. an unforced system

may have more than one

limit cycle.
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6.2 Feedback Linearization

6.2.1 Concept

The main concept of feedback linearization is to find a state-feedback control
u=a(x)+ p(xy
and a change of variables z = I'(x)if required, for a class of non-linear systems of the

form

x= f(x)+G(x)u
y =h(x)

which will transform the non-linear system into equivalent linear system. This
linearization approach is different than the one used in the previous chapter. No
approximation is used in this case; it is exact. We assume perfect knowledge of the state

equation and use that to “cancel” the non-linearities in the system.

6.2.2 State-space Structure

In order to “cancel” the non-linearities the state-space equation should be in a
specific form. In order to cancel a non-linear term (x) by subtraction, the control # and
the non-linearity a(x) must always appear as a sum u +a(x). To cancel a non-linear
term y(x) by division, the control # and the non-linearity y(x) must always appear as a
product y(x)u . If the matrix y(x) is non-singular in the domain of interest, then it can be

cancelled by u = B(x)v , where B(x) =y '(x) is the inverse of the matrix y(x).
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Therefore, the ability to use feedback to convert a non-linear state equation into a
controllable linear state equation by canceling non-linearities requires the non-linear state

equation to have the structure

x = Ax+ By(0)[u — a(x)]
where Ais nxn, B is nxp, the pair (4,B) is controllable, the functions
a:R" > R”and y:R" — RP? are defined in a domain D < R" that contains the origin,
and the matrix y(x)is non-singular for every x € D. If the state equation takes the above
form, then we can linearize it via the state feedback
u=a(x)+ p(x)v

where B(x) =y '(x), to obtain the linear state equation,

;c = Ax+ By
For stabilization, we can then design v = —kx such that 4 — BK is Hurwitz or so
that the roots of the characteristic polynomial equation fall in the left half s-plane. The
overall non-linear stabilizing state feedback control is then

u=a(x)- p(x)Kx

6.3 Controller Design

Below, we have the set of nonlinear state-space equation of the satellite motion

around the earth as stated earlier. The nonlinear dynamical equations are repeated here

just for the sake of convenience.
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X, = XX, =+,
X
*
X, = x42 1
+  —2x,x
_ 2X4
X, = +—u,
X X,

% 6.1)

The basic philosophy of feedback linearization is to cancel the non-linear terms.

From the previous chapter we know that the linearized state-space of the above equation

is controllable and stabilizable. Matching the non-linear state-space equation with the

above general feedb

linearizable form. Th

ack linearizable equation it is clear that it is in the feedback

¢ following controls are designed to cancel the non-linearities and

convert it into a linear state-space equation.

_ 2, M
U ==X X, +5+ax +a,x

(6.2)

1
u, =2x,x, +bx,x, +b,x,x,

Substituting equation (6.2) into the non-linear state-space (6.1) above we get the

linearized closed loop equation as follows,

X =Xy

2

X, =ax, +a,x,
v

X3 =Xy

x, =bx, +b,x,
Therefore,

0 1

|4 9
[ 4-BK ]= o

o O

0

(6.3)
0 0
0 0

6.4
0 1 (6.4)
b2 bl
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which is in the Jordan canonical form, by selecting appropriate values of a,,a,,b, and
b,, we can place the poles of the resultant linear system in the left half of the s plane.

Let us place the poles close to the imaginary axis to avoid peaking in the transient
behavior and to avoid high gain values though this may mean slow stabilization. This is

so that we may avoid overshoots in the system stabilizations.

Let A, =—-0.1and A, =-0.15 for the top left portion of the Jordan block. The
resultant values of @, =—-0.25anda, =-0.015. Let 4, =-0.2and A, =-0.25 for the
bottom right portion of the Jordan block. The resultant values of
b, =—-0.45andb, = —0.05. The control laws designed above regulates all the variables.
We need x, i.e. r to track a reference input equal to the desired orbital radius. Also x,
i.e. @ =¢+ ot should track the desired angle from the inertial reference. The set points

will be decided by an upper level planner which may be onboard one of the spacecraft or

on the ground so that the absolute formation is maintained.

6.4 Tracking

Tracking can be achieved by adding the following tracking terms v, and v, to the

resultant linearized state-space equation (6.3) as follows,

X =X,
.

X, = ax, +a,x +v, |

(6.5)

X, =X,
L]

X, =bx, +b,x; +v,

We require the variables to have the following tracking map,
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x, >R
x, >0
xj - wt (6.6)
X, >0

where,

R = x! = Desired orbital radius.
ot = x{ = Desired angle from the inertial reference.
w = x! = Desired angular velocity.

We can define the error terms as follows,

_ d
e =X —X
L]

. ol
€; = X3 — X3

_ d
€4 = Xy — Xy

Therefore the tracking error dynamics can be stated as,

0 . . A
— v —y9 =

€ =X5"X =6

. .
_ d

€ =%, Ta,x +v, — X (6.8)

e, =e,

L] L4
- _.d

e, =bx, +b,x; +v, —xj |

Hence the tracking terms that need to be added to the resultant state-space in order

to nullify the error between the reference and the actual variables are,

"d
V=X, — a4 Y (6.9)
v, =-bx, —b,x, +x{
Thus we now have an orbital controller. In the following section we have tested the

controller on various formation keeping scenarios to gauge it’s effectiveness in formation

keeping and formation maneuvering to see if it satisfies our requirements.

75



6.5 Mission Simulation

In this section, we will test the performance of the designed formation controller
in various scenarios. As in the previous chapters, the Table 6.2 tests the orbital controller
in steady state and in the absence of external perturbations. In the table 6.3, all the
satellites will be subjected to small radial as well as transverse perturbations equivalent to
table 5.4 in chapter 5. In table 6.4, we test the orbital controller with larger perturbations.
The results obtained are discussed subsequently.

The specific parameters, initial conditions and the situations considered are

provided in the table bellow:

Table 6. 2 Simulation scenario - feedback linearized controller

Satellite 1 Satellite 2 Satellite 3
¥ =400Km r =400Km ¥y =400Km
or =0Km o =0Km 5 = 0Km
¢p=0 ¢ =120° ¢ = 240°
op=0° op=0" op=0°
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In Table 6.3 below same magnitudes of perturbations as applied to the pole

placement controller in Table 5.4, are applied to the feedback linearized controller.

Table 6. 3 Simulation scenario - feedback linearized controller

Satellite 1 Satellite 2 Satellite 3
¥ =399.95Km| r=399.99Km| r =2399.98Km

or =0.05Km or =0.01Km or =0.02Km

é=0.03° $=120.01° ¢ =239.97°
5¢ = —0.03° 5¢ =—0.01° 5¢ = 0.03°
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In Table 6.4, we consider the formation variables with larger perturbations in the
azimuthal as well as radial direction. The specific parameters, initial conditions and the

situations considered are provided in the table bellow:

Table 6. 4 Simulation scenario - feedback linearized controller

Satellite 1 Satellite 2 Satellite 3
r =405Km r =403Km r =402Km
or =—5Km or = -3Km or =-2Km
=1 $=118.5 ¢ =239°
op=-1° op=1.5" op=1
Operational radius
405 T T T
e Sat1
== sat2
404.5 ——w sat3 H
404 =
403.5 =
403 e -
s
\X”:,: 402.5 -
3
402 4
401.5 .
401 E
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400 . ‘ . .
30 40 50 60 70

time (mins)

Fig. 6. 10 Operational radii of the 3 satellites
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6.6 Remarks

From figures 6.1-6.3 it is clear that the designed formation controller holds the
configuration in a tight formation. The satellites do not drift and their exact position can
be known by the ground control at all times.

From figures 6.4-6.12, we can see that the formation controller corrects the
position errors due to external perturbations. The tolerance to the perturbations is very
good and the controller can handle high deviations from the desired values without
throwing the system into instability. The resultant closed loop system can be considered

to be globally stable, limited only by capability of thrusters to deliver the control effort

required for correcting larger perturbations.

6.7 Summary

In this chapter, we have presented a novel formation controller design using
feedback compensation. The design strategy has been explained in detail with the actual
design. Towards the end, mission simulations have proved the formation controller
successful as it satisfies our mission requirements with good formation maintenance and

high tolerance to perturbations.
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Chapter 7

Conclusion and Future Work

In this thesis we have presented and designed a novel nonlinear control law for
formation flying of a group of satellites in a circular orbit. In chapter 4, we have
presented a detailed critique on McInnes method [4] for formation control along with
mission simulations. In chapter 5, we have developed a pole placement orbital controller
and have provided various mission simulation scenarios to test its performance on
nonlinear satellite dynamics. In chapter 6, we have designed the novel orbital controller
using feedback linearization or feedback compensation technique. For the feedback
linearized controller we have provided mission simulations to test its performance.

We have discussed in chapter 2 and also through the simulations in chapters 4, 5
and 6 we have seen that corrections against in-orbit perturbations are a vital function of
the orbital controller. The mission success and performance is heavily dependant on the
orbital controller and its ability to deal with external perturbations caused for instance by
carth oblateness and atmospheric drag. We have essentially checked the controller
performances in two real life situations,

» Formation keeping in absence of external perturbations.
» Formation keeping in the presence of varying magnitudes of external
perturbations.

From the mission simulation results in chapters 4, 5 and 6 we can see that all the

three controllers, namely, McInnes controller, pole placement controller and feedback
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linearization controller, are good in formation maintenance or station keeping in absence
of external perturbations. The distinction between the controller performances is evident
when the system is subject to external perturbations.

McInnes Controller (Relative Configuration):

» The controller developed by Mclnnes using the potential function method is
applied to decentralized relative formation flying simulation scenarios. The
control action of each satellite is a weighted average of the relative positions of all
the satellites in the formation so that expected behaviour is achieved.

> The control law leads to a complex nonlinear interaction between the satellites to
achieve the desired configuration. In the absence of external perturbations, the
controller is able to hold the satellites together and hence maintain formation.

> Although the inter-satellite spacing is not thrown into instability instantly, in case
of external perturbations, it shows a trend that would lead to a gradual drift and
formation break-up if not corrected manually by the ground segment.

> It is evident that although the control laws loosely hold the formation together
they are unsuitable for large perturbation corrections.

> This approach is not only hard to analyze mathematically but also has a limited
ability for precise formation keeping, that is, the group cannot maintain formation
very well during the manoeuvres.

Pole-placement Controller & Feedback Linearized Controller (Absolute
Configuration):
» Pole-placement controller and feedback linearized controllers are applied to

decentralized absolute formation flying simulation scenarios. The controllers
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onboard each satellite, command thruster impulses for in-track and cross-track
corrections for external perturbations. This approach though does not take into
consideration the concept of information sharing between the satellites in
formation.

> Both the controllers perform well in formation keeping in the absence of external
disturbances.

> When external perturbations are induced, both the controllers perform well in
nullifying the tracking error.

» The most important advantage is that the feedback linearized controller has a
more robust design. For the pole placement controller the system is stable for only
399.2 <r <400.3 and -0.09 <66 <0.03 .

» The resultant closed loop system for the feedback linearized controller can be

considered to be globally stable, limited only by capability of thrusters to deliver

the control effort required for correcting larger perturbations.

We have proposed and investigated the use of nonlinear compensation technique
in comparison to a linear (pole-placement) and a nonlinear (Lyapunov) design technique,
for orbital formation control of 3 satellites in constellation. From a performance point of
view, the decision to use feedback to compensate for the nonlinear terms of a system
model in reality is subject to robustness concerns. We have demonstrated the application
and utility of the proposed methodology using a number of simulation scenarios and
proved it to be better as compared to the methods available in the literature. The
advantages and disadvantages of the proposed feedback linearization can be summed up

as follows:
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Advantages:

> Eliminates complex control functions and hence simplifies the commanding,
reducing the risk of errors.

» Increased robustness to uncertain perturbations.

» Can be directly applied to nonlinear dynamics eliminating the cumbersome
procedure of linearizing the nonlinear state space model, especially when
designing a gain scheduling controller.

> In comparison with the potential function method, in this approach there is no
need to find an energy function which in itself can be mathematically
overwhelming.

> Significant fuel savings can be achieved, particularly when making large
maneuvers, where the nonlinear dynamics effects become more pronounced.

Disadvantages:

> Exact mathematical cancellation of nonlinearities may be difficult to achieve due
to parameter uncertainty, computational errors though it has been shown in that
the stabilizing component obtained using such feedback achieves a certain degree
of robustness to modeling uncertainty.

> Application is limited to dynamical systems that are feedback linearizable.

> The linearized model has to be controllable.

In this work we say that, significant fuel savings can be achieved during large

manoeuvres since the design process uses the nonlinear dynamics directly instead of the

approximated linear dynamics. Future studies should seek to find analytical methods for

88



calculating fuel optimal manoeuvres. Another important consideration is the problem of
non-uniform fuel consumption throughout the formation during both formation
establishment and formation keeping manoeuvres. This is significant because it is
virtually guaranteed that at some point in the mission, the satellites in the formation will
have different levels of fuel left onboard and that will define the future of the entire
constellation.

The formation controller as designed is directly applicable to absolute formation
configurations. It would be worthwhile to apply the same feedback linearization
technique to relative configuration taking into consideration the intersatellite
communication.

Attitude and orbit dynamics and control coupling is an area requiring significant
future work. As spacecraft pointing requirements and formation relative position
requirements become stricter, the tasks of attitude and orbit determination and control
subsystems become more and more coupled. We can no longer consider the dynamics
and control of spacecraft in terms of orbital motion only. Rather, we must explore the
concept of unified attitude and orbit dynamics and control.

Although absolute formation configuration can allow non-circular orbits, it will
require further integration of collision avoidance measures to the control laws. Thus,
another important work remaining in the development of these control laws is the

modification to include non-circular orbits.
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