PROTERAN: ANIMATED TERRAIN EVOLUTION FOR
VISUAL ANALYSIS OF PROTEIN FOLDING

TRAJECTORY

Kush Kapila

A Thesis
in
The Department of

Computer Scilence

Presented in partial fulfillment of the requirements for
the degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

August 2004

© Kush Kapila, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94743-2
Our file Notre référence
ISBN: 0-612-94743-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

PROTERAN: Animated Terrain Evolution for
Visual Analysis of Protein Folding Trajectory

Kush Kapila

In the field of bio-informatics, the analysis of voluminous data is becoming
increasingly crucial to understanding the underlying biology and answering important
questions. Various clustering techniques such as Hierarchical, SOMs, K-means and PCA
are being used to cluster gene expression data to find the functions of unknown genes.
Even these sophisticated algorithms are futile if the results are not appropriately
interpreted, thus visualization techniques play an important role in analyzing data.
Similar to clustering of gene expression data is that of clustering the characteristics of
protein folding trajectory and a good visualization tool can help visual analysis and can
provide faster and deeper insights into the manner in which a protein folds.

With protein characteristics data and specific visualization requirements provided
by Dr. Laxmi Parida and Dr. Ruhong Zhou of the Computation Biology Group at the
IBM T. J. Watson Research Center, a new 3D visualization technique was designed and
developed. This customized technique helps identify the major states a protein folds into
through the use of an animated terrain. This technique was implemented as part of the
interactive visualization program PROTERAN and tested with the p-Hairpin clustered

data provided.

iii

Acknowledgements

I would like to express my sincerest appreciation to all those who helped in the
completion of this thesis. I would especially like to thank my supervisor, Dr. S.P. Mudur
for his knowledge, his encouragement and his guidance during my research. For this I
am forever indebted to him.

I would also like to thank Dr. Laxmi Parida and Dr. Ruhong Zhou of the
Computational Biology Group at the IBM T. J. Watson Research Center for their
patience and giving me the opportunity to work with them.

I would finally like to thank my family (Mom, Dad, Aarti, Kamal, Jij, Bhabhi,
Pooja and Neel) for their support. Last but not least 1 would like to thank my fiancée,

Sandhya, without her this thesis would not have been possible.

iv

TABLE OF CONTENTS

CHAPTER 1 - mtroduction
I.1 GEnes & PIOTEINS ..vcuceeereieieiereeeieeieteteseresesionesesesssensassessosssssesescsessoseseresssensassenens
1.2 Microarrays (Gene-Chips/Protein Chips)cccccoeeereeeriererereereresseeseessenceeneene
12,1 GENE-CRIPS coveeeveeeecerreresereieesestsseesesesssetesesesesesesesssescssosseensasseseesessasasesases
1.2.2 Protein Chips.......ocoeumrurieceiecmiecerieeetetesseseccsssesesseueesescsessencssencsesssnesens
1.3 ClUStEring OF AALA.....cceeverererererereirrrereeeeeseesteeasassssssesssesersesesesensssassesenesasessesens
1.4 Visualization Of CIUSTETS.......cccceeurueeersieietrernesesseeeseeeetesesesteaeesseseessestesesesseneas
1.5 ReSEArch PIODIEMcucuiveiirecreecesies e esesesessesessssasasesessssscesassessssesesencnens
1.6 Objectives of this ReSEArch........coccoueueireririeiecieeceeneeceieteccneresesscseeesaees 10
L7 OVErvIEW Of TRESIS ...uvurueererersieeesncnisiesisisassssssesesessesesesesessosecassessesensusscsesens 10
CHAPTER 2 - Clustering and Visualization Techniques 12
2.1 EXPression MatriX........coeeieeveeererreeiereeetessesesssesssesesaesssnssssssssssssessssesessanns 12
2.1.1 Data AQJUSIMENLS......cocveverirerererererereresensecnsreresasesissresaesesssesssesessssssesssassnes 13
2.2 SIMIIATIY MELHICS ..vovoveeeeveii e eeeeeeescresesenssesesens st sessse s sesesesnssesasesenene 13
2.3 Clustering MethOdSevivimrirererirnieerererisssesessessssessassesesssessssessssssssssssesssssassees 14
2.4 Hierarchical CIUSTETINGccovevevereirreeeererereneeceeseseestesesesaseseseseseseneseeseseassens 14
2.4.1 AlZOTITHM ccuouivrrieiriereiirectrtrestetesseteeseseesesresesaressesessosesnossssosonsansnssastonses 15
2.4.2 ViSUBHZAONooeeieiietevcreecetee ettt assese s s sse s sessese s snsesesssensnenes 17
2.4.3 AQVANAZES....cvrereeererereinreteteretsssse s seasesasesniesesssesssessssssasessnsssessssesssssenens 18
2.4.4 DiESAAVANTAZESooveveveerereeeeiveresieeeaseesenseasresssesessesesserssesssesssesesssassasens 19
2.5 Self Organizing Maps (SOMS) c.u.cceecriererernieisrerseseessisesssasssssssessassssssssssessssss 20
2.5.1 ALGOFItAIN ..ottt ee et te st s ns bt ssrsas s s nesesnanesenas 20
2.5.2 ViSUBLIZALON ..vevcveeererereterniceseeniieieseseesssssesssesssasesssssssessssssssssasesensasssesases 22
2.5.3 AGQVANIAZES......coovevieeeeriereitetetsvesscetesestessssasessssesennse e ness st et essaseasens 25
2.5.4 DiSAAVANTAZES ..vevverreererererirrerererersesessesssaesssessssesessssesessssssssesesessessssasensssens 26

2.6 KMEANS........ceiieeriieeececiteecceteee s csteees s nteesssetea e s sassassmanasessssassessassssassesessasanes 26

2.6.1 ALGOTIRIM....ccvieteeec et es st e se s s e e ne 27
2.6.2 ViSUANZALION ...ttt ene 30
2.0.3 AQVANLAZES......cveeereeererreeieeeeeiese et eteaesse et ae e sers bbb st saeseraresesssenees 30
2.6.4 DiISAAVANTAGESoecvveeceeecreeete ettt seeb st senssssn s eseenen 31
2.7 Principal Component ANAlysis (PCA).....ccerererrimmmsrsssesessressuniessesersisiseasasesns 31
2.7. 1 AlGOTIRIN ..ttt es s a s 32
2.7.2 VISUBHZALON ...uceereeeeecreieeseeeeeesesesesessssssaenseeesesesssssnassessesesesssessssssssassesns 34
2.7.3 AQVANAEES......cooeeeeececereeeenceeeieeeneae ettt se s nene 34
2.7 4 DiSAAVANIAZESoveveveererererrererierssesssssresseseessssssssssseseressssasessencasesssassessenensas 35
2.8 BACHUSIEIINE ...cvoveveiereiiieieieieee ettt iete et ettt se e eeteseseuenemesesaenssencncecssans 35
2.8.1 ALGOTIAIM ..ottt sttt sttt st et st sne 36
2.8.2 ODSETVALIONScoereereeeeerieeeieerereereeesetesssese s e sesesesesesesesesesesesesesessseneasarasns 38
2.9 Available SOMIWATE........ccererreirrersereerirernirsrescssesssensasssessessssssssssssssssssssssaserens 38
CHAPTER 3 - Protein Folding Trajectory Analysis 40
Bl DBIA ettt ea et ben et eb et s e aeaeaan 41
3.2 Patterned CIUSLETSovoveveeererrerererersessenseesesesesessssrsencessssnsssnecsssssesssscssseses 44
3.2.1 The Need for Visually Analyzing the Patterned Cluster Data................. 46
3.2.2 Program REQUITEIMENLS.cccoveeuererereessiesessessssnsessesscsesssersssssssesessssnases 47
3.2.2.1 GIODAL VIEW: c.cuirrireceiiinireceenecneseseesseiesesesennsasessencenessenceenesens 47
3.2.2.2 Navigation and fOCUS:covveeeeererenerernrrireresesesesenieresecsssesesesssssnsesens 47
3.2.2.3 Relative growth Tates:ccccceeeeceerrrirenenireseereneeseesecscseseescens 48
3.2.2.4 Detailed QUETY:...oioviceicieeteeieeeeeteeeeee et stee et aesaessaessasssasssesaans 48

3.3 The need for a Custom Visualization TOOL.......ccccccerueeruerreveeeecsiecresenccncsecenacas 48
CHAPTER 4 - PROTERAN 50
4.1 Terrain MEtaphOrc.cvcecveererrieeeecierteesesseessssesesssesesesesesasssessssesssasssssssasnsens 50

vi

4.2 Mapping of Patterned Cluster Data into Terrain Geometry............ccccevrueunnees 51

4.2.1 Patterned CIUSLEr LaYOUL.........coeerremereercienercecntraeeeenecesecsen s seesesesesasinens 54
4.2.2 Animated Terrain EVOIULIONcccrvrvrecenrereernenerercneneresersencsenserescacscseesnecs 58
4.2.3 Interaction FACIHIES.....ccoccveerrerrerrrrreerirereseereiesereseseeeenesseeseeseseenesennaseneses 58
4.3 Programming TOOLScccerveeererrrsesessrerecemenerasnerstsesessnesssestesorsesesssssssesssses 59
4.4 PROTERANooieereteeteereeerreeressesasseeaesessassssastessessersassassessessessassesssesassessnen 60
4.4.1 OPening SCTEEN......cccouuiurerircmeceeireercrcurentesessieseasaeessssssssssssssssasssssnssssens 60
4.4.1.1 ‘Filter FIle’ BULOMccvevereeerererreesieserseenssssesessssssesesssssssssnsesessanes 60
4.4.1.2 “Processed File’ BUttOn......cccceeeeverruereieerereeserareseseecseseseseesesesssssenene 60
4.4.1.3 “QUIL’ DULOM....cveceeererreterereeseeese s ssnsssesesersessssssssnsensssssassonscssasanes 60
A.4.2 MaIN SCIEEIL c...eeeieerereteeeeseeteteeseanesetstesetetesaaeeneateesssesenssnenssencacaenessss 61
4.4.2.1 Fly Through and Landing on MoUntain:.........cceceevverruerererensueereeneenes 62
4.4.2.2 Data CaPON: .c.cecveeeeererereieierererenseseesense e sssssssenssetesesesesesssessssenees 63
44221 Pattern: ...ccocveiviereireiirceecese ettt e as s 63
4.42.2.2 Hill NUMDEL: ...cuviirieirreeeterrestceeeecesceetesseeeeicsnecete s esaneesae s 63
44223 COlUMN Xitiiiiiiiiniininrinseeeeenrenessiesneseesseesesssssssesssssesssossessssssesssesanes 63
44224 HEIGhti. oottt ettt esve st sesat s ae s s s s annne 63
4.4.2.2.5 TINE: oeeeiieeeereecreerrerereesteeseseesteseesseesaesssnessaessnessnsessanssssesssesoseessans 64
4.4.2.2.6 FPSi ittt r et e s esre sttt se s s b e b s bas 64
4.4.2.3 BUIODS: c.oucvveevesereerieeseserereneeeiesesessesssssssassesstassessssssssssssssssnssssssasesens 64
4.42.3.1 ANIMALION ...oueeeieiinnirierieereeicsitctecttreer e saeesecnesasssasesseessssessaes 64
442311 SHAILiccueicceeiirerrrerre st seent st et asssas s be et s s s 64
4.4.2.3. 1.2 StOP: coieieiieciiecccrierte e st srae e s e e e saasstas s rase s s e e abeseanes 65
4.4.2.3.2 PaNNUNE: ccooveireeerniererenernteneeeeeeessessreesaessssssstessaesssessssesssesssssssanssanes 65
R R O AT O 65
4.4.2.3.2.2 Forward/BacK:.......cccevreuerirecieeeeererereneenteeseesesneseennene 65
442323 Stop Panning:................ feterrbteressteeraaeaaeeesaeeeseraessanesetnesasaasaanes 65
4.4.2.3.3 QUICK VICW! ..ttt cciesesnentesesteessnessnesseenoneesssonastesnsenenes 65
4.4.2.3.3.1 Top & Bottom VIEWS:.....ceeceeceirerreeenrrereesseeseesnesnnesieeesesssesnees 65

vii

Q4.3 OUNET fAIUICS . veeeeeeeeeeeeeeeeeeeeeeeeeseeesseeseesassseseessessesesseasosesssssessesantasssasans

4.5 Testing and RElEaSEcvoveruvuererrriniriisienieresssesnsensestsesesessasescsessssmsssessssasesens
CHAPTER 5 - Conclusions and Extensions

5.1 Initial Experience with PROTERAN.........ccccoitiitimrreineree ettt enesaeeene

5.2 EXUCISIONS cuvevrerveereereerseeseeeseesesssesssensesssessesssesssssssssestenssesneestossssssasssersessessnssras

References

Appendix
APPENDIX A...oovieveeiriireniereieetsesesissesesesesestssssesessansasssssessssssessasasesssssssssassssssssesensans
APPENDIX B...ociieiirireierectniscteeseteestsessestsesssstsssssssssssssssesssssssassessonssssasnssnssssnses

Viii

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:

Figure 3-1:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:

LIST OF FIGURES

DNA double heliX StrUCTUIEcocvverereererioreerereereeniereneeeneeeessesnssssseessesns 2
Nucleotide SIUCTULE.c.veveeerereirreeeree et sar s ae s 2
IMICTOAITAYueeveeeeeneereeeeeeeeteneerteasseeeeseeseestesesotenresesatesessasasenesseeserneeesnes 5
High-speed robot used to imprint cDNA strands onto a slide..................... 6
Process of creating & MICTOAITAYc.cccccevvererrenrersenisesieneseresnesessssessnessens 7
Steps 1-4 of Agglomerative Hierarchical Clustering.ccocoveenennenen. 16
Dendrogram 1 ..ottt 17
Dendrogram 2 ...ttt 17
Dendro@ram 3cocvviiiciiiicintr e 17
Dendrogram and reordered expression matriX.......ccccceevecvreniiersneenanenanens 19
Principle 0f SOMS......ccuorvevuinuineieinineeieneeenieesreessessnesisssssesiesssssessssseens 22
Hierarchical Clustering of SOM subsets.......ccccocevvieernereeernerencrcrceneneennes 23
Error bar representation of gene expression data..........ccccooevveericcininnnas 24
U-matrix representation of the SOMcccoveeininiceinnnnnnceniinnennne. 24
Neurons in @ SOM. ..ot 25
Example of K-means, K =2 ...ttt 29
The results of the k-means algorithm with different k-values. 31
Principal component analysisccceccenrmveneccrnnrincnnnronenneeoe. 32
Visualization of PCA on gene eXpression.coccoeeeverieneeseeesiececsseesseeens 34
Biclustering versus traditional clusStering.........ecceeeevereviececieccerrnvcineenanees 37
A hypothetical state diagram of a folding protein.ccccccveiienieens 41
Patterned CIUSLETccovueerireieieeeee ettt e 44
PROTERAN ..ottt seese st sesseses e st e es e senesbessassosssssssne 51
Layout of Pattern Types on the Ground Plane...........ccocenurieniriecinnnnnnne 55
Layout of Column Combinations...........ccccoveevviiniiiiiniiinniiininennnes 56
Opening screen Of PROTERANc..ooiiiiiiiccrnitcrecccccrenneeeneesnseeaes 61
Main Screen of PROTERAN........ccooviririniereereneeteeneeessesneesssiasiosnns 62
Data CAPLiONeeeveevereiererierenerressecressneressesasssesesssessesessassesssssessssessssaseserss 63
Buttons used in PROTERAN.......cccvvimirirnmrncrcnretesisnessiesssesnasessens 64

ix

Table 1-1:
Table 2-1:
Table 2-2:
Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:

LIST OF TABLES

The 20 amino acids and their codons...........ccccaierneiiniiinnnicninciniieneiiees 3
EXPIession MatIiXccceeererseererierieeisesencsieseeeeseeesessssessreresscssersnssssssons 12
Some Image analysis and Data Mining Software Packages..........c.......... 39
Sample data of B-hairpin's reaction coordinates over time.cco.eu.. 43
Threshold added to each characteristic.ccoevenivinininnininininininne 43
Results after adding threshold..........c.coooveeiniinninnninninicnciinnns 44
Sample patterned cluster file..........cc.ocovrierviiniiii 46
Patterns OF tYPEC 2 ceeveveeeieerereeeeeeeerecenense sttt n s sbeseassens 53
Number of permutations of each pattern type.......c..coccveevniiinnniiicninnne 54
Pattern 2 with combination 01c.cocoivininiininnicnnecncee e 57
List of the Pattern Type Colors.......cooicceevererrenrenneeneeseeereenenienreseecasenns 66

CHAPTER 1 — Introduction

With the recent fusion of biology and computer science known as the discipline of
bioinformatics, the last few decades have shown an explosion in the availability of
biological data for the scientific community. This can be seen with the recent completion
of the Human Genome Project where almost 95% of the genome, consisting of 6 billion
nucleotides, has been mapped giving biologists a master blueprint for all the cellular
structures. The analysis of this data is crucial to understanding the underlying biology
and for answering vital questions. Various techniques such as data mining and clustering
are being used on large data to extract useful information. Even algorithms and analysis
techniques would not be useful if the results are difficult to interpret or are not
appropriately interpreted: thus visualization techniques play an important role in bridging
this gap. Through the use of visualization techniques, scientists are able to understand
their results better as well as get a different perspective of the data that would otherwise

be lost in a very large text file.

1.1 Genes & Proteins

The complete set of instructions for making an organism is called its genome and
is found in every nucleus of a person’s trillions of cells [1]. This blueprint is organized in
the form of 23 chromosomes, which are made up of entwined deoxyribonucleic acid
(DNA) [1, 2]. DNA is a double helix structure (c¢f Figures 1-1) of repeating nucleotide
base pairs, with each nucleotide containing one phosphate group, one sugar and one base

(guanine, thymine, cytosine or adenine) (c¢f. Figure 1-2). A sequence of three nucleotides

constitutes a codon, which is the protein coding vocabulary. The sequence of codons in a

gene specifies the amino-acid sequence of the protein it encodes (¢f’ Table 1-1) [3].

Adenine

Thymine

Guaning =

Cytazine

Figure 1-1: DNA double helix structure

Figure 1-2: Nucleotide structure consists of one phosphate group, one sugar and one
base (guanine, thymine, cytosine or adenine).

Table 1-1: The 20 amino acids used in proteins and the codons that code for each of
those amino acids.

uAmino Acids : Codbﬁs Amino S Codons
N 7 7 Acids
Ala GCU, GCC, GCA, GCG Leu | UUA,UUG,CUU, CUC,
7 i CUA, CUG
Arg CGU, CGC, CGA, CGG, Lys AAA, AAG
AGA, AGG i
Asn AAU, AAC Met ‘ AUG
Asp GAU, GAC Phe Uuy, yucC
Cys ; UGU, UGC Pro CCU, CCC, CCA, CCG
Gln f CAA, CAG | Ser UCU, UCC, UCA, UCG,
; : AGU,AGC
Glu GAA, GAG Thr ACU, ACC, ACA, ACG
Gly i GGU, GGC, GGA, GGG Trp UGG
His ‘ CAU, CAC Tyr UAU, UAC
Tle AUU, AUC, AUA Val GUU, GUC, GUA, GUG
Start AUG, GUG { Stop | UAG, UGA, UAA

- Ala, Arg, Asn etc. are shortened names of Amino acids. The full names can be
found in any text book on biology [2].

- A, G, C, and U are shorthand for nucleotides Adenine, Guanine, Cytosine and
Uracil found in Ribonucleic Acid (RNA). RNA is a form of genetic information,
involved in the translation process from DNA into proteins. A combination of
any of these three nucleotides makes a codon which specifies an amino acid [2].

Through the proteins they encode, genes govern the cells in which they reside. In
multicellular organisms they control development of the individual from the fertilized
egg and the day-to-day functions of the cells that make up tissues and organs. The
instrumental roles of their protein products range from mechanical support of the cell
structure to the transportation and manufacture of other molecules and to the regulation

of other proteins' activities [3].

Although there are roughly 3 billion nucleotide base pairs only 10% of the
genome is known to include the protein-coding sequences called genes [1]. Furthermore
even though most of the Human Genome has been mapped and the location of these
genes has been found what still remains to be discovered are the functions of the proteins
they code for. Knowing the function of these genes and their proteins could lead to

improved drugs and cures to many diseases.

1.2 Microarrays (Gene-Chips/Protein Chips)

1.2.1 Gene-Chips

It is these thousands of genes and their corresponding proteins that work together
in a complex fashion to perform the everyday functions of an organism. Traditionally,
experiments on genes and proteins have been performed on a one-by-one basis. Thus the
throughput was limited and a global view hard to achieve. This problem was solved with
the advent of microarrays (cf. Figure 1-3) or better known by Affymetrix’s trademark
name, Gene Chips. Usually made on glass but sometimes on nylon substrates,

microarrays enable scientists to analyze genes on a genomic level [4].

Figure 1-3: Microarray’

Using high-speed robots, like the one depicted in Figure 1-4, thousands of
complimentary DNA (cDNA) strands can be printed onto a slide. ¢DNA is similar to
DNA except it is single stranded. Each of these cDNA strands called spots represent a
gene; an entire genome can be printed on the standard microarray size of 1x3 inches [5].
Cells are then allowed to grow in regular conditions called the control, and experimental
conditions called the sample. The mRNA from each of these types of cells is extracted
(cf. Figure 1-5 (A)).

Each mRNA is then converted to fluorescently labeled cDNA by incorporating
either Cye-3 or Cye-5-dUTP using a single round of reverse transcription (cf. Figure 1-5
(B, C)) [6, 7]. The control sample is labeled with Cye-3 dye and the sample with Cye-5
that are green and red colors respectively. Both types of cDNA are mixed together and
then placed on the microarray to incubate with the spots on the chip (¢f. Figure 1-5 (D)).
Each ¢cDNA has a corresponding spot on the chip to attach itself to. Four possibilities
could occur with a spot (gene) when the microarray is allowed to incubate with the
cDNA.

1. Only control cDNA attaches itself to the gene

! http://www.dpz.gwdg.de/clineu/people/abumaria/bild.jpg

5

2. Only sample cDNA attaches itself to the gene
3. Both types of cDNA (Red, Green) attach themselves to the gene
4. Neither the control nor the sample cDNA attach to the gene

Any unbound cDNA is then washed off and the microarray is placed in a black
box. The microarray is then passed over with a green laser that creates an image of only
the spots with green cDNA attached to it. This image is stored for later use. The same
thing occurs with a red laser, this time only spots with red cDNA are stored.

By means of software, both images are then superimposed on each other. Spots
with more control cDNA will appear green while spots that contain more sample cDNA
will appear red. Spots with an equal amount of both types of cDNA will appear yellow
(green mixed with red). Finally spots without any cDNA will appear black. By
examining the fluorescence intensities we can compare the relative expression levels of

thousands of genes in a control versus sample condition.

Figure 1-4: High-speed robot used to imprint cDNA strands onto a slide?

? http://www.research.vt.edu/resmag/resmag2001/s_maroof _lab.htm]

A. RNA Isolation

E. Imaging

Sample A Sample B
@ﬂ . Sample A> 8

€y ‘ =

* . Sample B> A Sample A=B

i ot g
B. ¢cDNA Generation ; PP
C. Labeling of Probe -

Reverse Transeriptase ®

]

D. Hybridization
to Array
—_—

Figure 1-5: Process of creating a micma:rray3

1.2.2 Protein Chips

In addition to studying genes through microarray experiments, proteins can also
be analyzed using protein chips [4]. With more than 3 million proteins versus some
40,000 genes there may be more of a need for protein chips.

Protein chips fall into two categories:

* http://www.fa0.0rg/DOCREP/003/X6884F/x6884¢00.jpg

1. Capture chips - Count the number of proteins in a sample.
2. Interaction chips - Look at protein-protein interactions.

Protein chips are a relatively new technology and their 3D nature along with their
tendency to denature on contact with the chip makes their creation far more difficult then
microarrays [8].

Gene-chips and protein chips are however just the first step to finding the

functions of unknown genes and the proteins they produce.

1.3 Clustering of data

A Kkey step in the analysis of gene expression data is the identification of groups
of genes that manifest similar expression patterns [9]. Complex algorithms are used to
group together genes of unknown functions with those whose functions are known. This
is done in an attempt to learn more about the gene whose functions are unknown. This
process of organizing genes into biologically relevant groups is called clustering and
there are three reasons for this [7].

1. Genes that share similar expression patterns are said to be coexpressed.

Evidence supports that many functionally related genes are coexpressed.
2. Coexpressed genes can reveal much about regulatory systems

3. Gene expression varies greatly in different cell types and states

1.4 Visualization of Clusters
While clustering algorithms have proven to be useful as a first pass in finding

more information about genes and their proteins, without a proper visualization of the

clustered data, valuable information is lost. With thousands of clusters, scientists lose the
overall picture of the data. In addition, the relationship between individual clusters is
hard to determine, if presented to the scientist in textual formats.

A good visual representation should allow scientists to keep a global view as well
as observe the relationship between clusters. A visual representation can also give

biologists a different perspective on the data.

1.5 Research Problem

Understanding how a protein folds into a functional or structural configuration is
arguably one of the most important and challenging problems in computational biology.
The interest is not just finding the final fold but of finding the major states that a protein
folds into. Because the computational power necessary to calculate a realistic all-atom
simulation is far from feasible, scientists aim to simplify the folding process by
identifying the major states.

By calculating the characteristics of a protein over time while folding and then
clustering these characteristics, it is possible to confirm existing states as well as identify
new ones.

Similar to microarray experiments a matrix of data is the result of calculating the
characteristics of a protein over time. Also similar to microarray data a clustering

technique needs to be applied in order to extract the useful information.

In our research we have addressed the problem of visualization of the above types
of data. The motivation for this research is part of our collaboration with two scientists

of the Computational Biology Group at the IBM T. J. Watson Research Center in New

York. Dr. Laxmi Parida and Dr. Ruhong Zhou of this center are studying the effects of
the B-Hairpin protein folding over time. Comparable to microarray data, clustering of the
protein’s characteristics proved to be a useful first step. With the very large data set that
resulted there was a need for an appropriate visualization tool. We carried out a
comprehensive survey of scientific visualization tools available in the public domain.
However a single tool that provides all the visualization facilities required for this
purpose could not be found. Hence it was decided that we would develop our own

customized visualization software.

1.6 Objectives of this Research
The main objectives of the research are:
1. Carry out a comprehensive study of visualization techniques and

tools suitable for protein state data

2. Develop a customized visualization software with the following
capabilities
. Provide a visual global view of the data
. Enable visual identification of major data clusters
. Enable visualization of relative growth of data clusters over
time

1.7 Overview of Thesis
Chapter 2 provides a comprehensive survey of the current state of the art in

clustering and visualization techniques used for gene expression data. In Chapter 3 we

10

describe some details of the protein folding experiments carried out by Dr. Parida and Dr.
Zhou and their technique of using patterned clusters for gaining insight into the different
states of a protein during the folding operation. In this chapter we also bring out the need
for a customized visualization tool. In Chapter 4 we describe the new visualization
techniques that we have created to visualize patterned clusters through the use of an
animated terrain. Protein Terrain Analyzer or PROTERAN for short uses mountains
that grow to reflect the evolution of major states over time. PROTERAN is a novel
approach to visualizing patterned clusters and was successfully proven on the B-hairpin
protein data provided by Dr. Parida and Dr. Zhou. Chapter 5 outlines the results of
PROTERAN for Dr. Parida and Dr. Zhou as well as the future work to be done. Finally
Appendix A gives a list of distance metrics used to compare genes for clustering while
Appendix B provides the mathematics necessary to perform Principal Component

Analysis, a common clustering technique.

11

CHAPTER 2 - Clustering and Visualization Techniques

Clustering is the process of organizing objects into groups whose members are
similar in some way [10]. In gene expression, genes of unknown function are clustered
with genes of known function in an attempt to learn more about the former®. This then
poses the problem of how to decide how similar two genes are. In order to determine the
similarity of two genes, it is necessary to adopt a mathematical description of similarity
[11]. Before a mathematical description can be formulated, the exact data that

characterizes a gene must be examined.

2.1 Expression Matrix
The data obtained from a microarray consists of a matrix of fluorescence intensity
values for N genes by M experiments. These values are obtained by taking the ratio of

C5 (red dye) to C3 (green dye) (¢f Table 2-1).

Table 2-1: Expression Matrix

Experiment 1 | Experiment2 | Experiment M
Gene 1 CS]]/C?’H C512/C312 C51M/C31M
Gene 2 C521/C321 C522/C322 CSZM/C32M
Gene N C5N1/C3N1 C5N2/C3N2 CSNm/C3NM

* Though we present clustering and visualization for gene expression data the same techniques are
applicable to protein state characteristics.

12

Therefore a gene in which the sample is overexpressed (i.e. sample is greater than
control) would have a fluorescence value greater than one (C5>C3). A gene that is
underexpressed (C3>C5) would have a value of less than one and greater than zero. This
however does not lend itself to a well dispersed range. Overexpressed genes range
between one and infinity while underexpressed genes range only between zero and one.
Therefore by taking the logarithmic of the ratio, overexpressed genes will map to positive
values and underexpressed genes to negative values. Thus each value in the matrix can
now be replaced with logo(C5;i/C3;;) where i (0<i<N) represents the gene and j (0<j<M)

represents the experiment [11].

2.1.1 Data Adjustments

Prior to analysis, different types of adjustments can be performed on gene

expression data. Some examplcs arc:

1. Adding random values for missing data
2. Subtracting the mean from each element
3. Removing expressions with little change

2.2 Similarity Metrics

A look at the matrix defines each gene as a vector of experiments or each
experiment as a vector of genes. All clustering algorithms use a similarity measurement
between vectors to compare the genes or experiments. Appendix A gives a list of

distance metrics used along with the applicable formulae.

13

2.3 Clustering Methods

There are three ways of clustering microarray data:

1. Clustering genes (i.e. rows in the expression matrix)
2. Clustering experiments (i.e. experiments in the expression matrix)
3. Cluster both genes and experiments (biclustering)

The goal is to use clustering algorithms to define clusters that minimize intra-
cluster variability while maximizing inter-cluster distances using a distance metric [12].
Clustering algorithms can be divided into two types of methods:

1. Supervised
2. Unsupervised
In supervised clustering, vectors are classified with respect to known reference

vectors while in unsupervised clustering no predefined reference vectors are used [11].

2.4 Hierarchical Clustering

Hierarchical clustering is currently the most common technique used to cluster
gene expression data. Michael Eisen was the first to cluster gene expression data in 1998
by using hierarchical clustering on the Saccharomyces Cerevisiae (Baker’s yeast) [13].
This algorithm falls under an unsupervised clustering technique because there is little a

priori knowledge of the complete repertoire of expected genes [11].

14

2.4.1 Algorithm

The hierarchical clustering algorithm constructs a tree of nested clusters based on
proximity information. There are two different approaches for the construction of this
tree.

1. Agglomerative: Start with all n elements each representing a cluster and

merge the most similar elements until only one cluster is left.

2. Divisive: Start with 1 cluster, which contains all the elements until n

clusters remain.

Agglomerative hierarchical clustering is preferred because its running time is
O(nz) whereas divisive is O(2") [12]. Since agglomerative is the most widely used it is
the method we discuss further in detail.

The agglomerative approach is a five-step process.

1. Compare all elements (genes) to each other and create an upper diagonal

matrix with all the distances. Each of these elements represents a cluster.

2. Find the two closest clusters.

3. Merge these two closest clusters together. Redo the distance matrix taking

into account these two clusters as one bigger cluster.

4. Repeat steps 2 and 3 until only one cluster is left

Figure 2-1 illustrates these steps.

15

A|[B|C]|D (AB)] C | D (AB) | (CD)
A|lo0 |16 8| |[@AB] 0 |57 (AB)| 0 5
B 0517 C 0] 2 (C.D) 0
C 0| 2 D 0
D 0

(@) (b) ©

Figure 2-1: Steps 1-4 of Agglomerative Hierarchical Clustering using single linkage.

Computing the distance matrix in step one is simple using a defined similarity
metric. The difficulty arises in step 2 when we need to compare distances between
clusters that contain more than one element. A variety of methods exist to compute

distances when dealing with clusters of more than one element.

1. Single Linkage Clustering: Distance between clusters X and Y is the
minimum of all pairwise distances between items contained in X and Y
2. Complete Linkage Clustering: Distance between clusters X and Y is the
maximum of all pairwise distances between items contained in X and Y
3. Average Linkage Clustering: Distance between two items X and Y is
the mean of all pairwise distances between items contained in X and Y
There are many variations to the above methods with the main one being the use
of weights, i.e. clusters that have a lot of elements are weighted more than clusters with

fewer elements.

16

2.4.2 Visualization

The result of the agglomerative hierarchical algorithm is to visualize as a
"dendrogram". A dendrogram is a binary tree with a distinguished root, which has all the
data items at the leaves. Figure 2-2 depicts a dendrogram created using the results from

Figure 2-1.

R e -2

TITTT

A BCD

Figure 2-2: Dendrogram 1!

For any dendrogram of n elements there are 2™ ways to structure the tree. In
Figure 2-1 there are 4 elements and thus 2*' or 8 ways to structure the dendrogram.

Figures 2-3 and 2-4 are just two other ways.,

RS - __2 _— ..-_.....___2

B ACD C DB A

Figure 2-3: Dendrogram 2 Figure 2-4: Dendrogram 3

17

This visualization is then coupled with the original expression matrix. Each value
in the microarray is colored on the basis of its fluorescence value and re-ordered by the
dendrogram. Figure 2-5 shows an image of a dendrogram and the re-ordered expression
matrix.

To compute an optimal linear ordering is impractical but through the use of

weights such as average expression levels, a satisfactory arrangement can be achieved.

2.4.3 Advantages

This method is very familiar to biologists through its application in sequence and
phylogenetic analysis and is probably the reason it is the most popular way to cluster and
visualize microarray data. Furthermore besides choosing the similarity metric and the
type of method to compare clusters, no further parameters are required. The result is a
reordering of the initial expression matrix in which similar genes are placed beside each

other.

18

Figure 2-5: Dendrogram and reordered expression matrix’

2.4.4 Disadvantages

Despite being the most popular technique, hierarchical clustering and its
corresponding visual, the dendrogram have many shortcomings. Large datasets require
large amounts of memory and fast CPUs to store and calculate the distance matrix.
Another disadvantage is the algorithm just rearranges the dataset leaving the user to find

the important clusters (subtrees). In addition hierarchical clustering has been noted by

3 http://www.biostat. wisc.edu/bmi576/fall-2002/lecture 1 5 pdf

19

statisticians to suffer from a lack of robustness, nonuniqueness and inversion of problems
that complicate interpretation of the hierarchy. Furthermore the deterministic nature of
hierarchical clustering can cause points to be grouped based on local decisions with no
opportunity to reevaluate the clustering [14].

Despite being very useful in visualizing the cluster decomposition the dendrogram
has a significant disadvantage, that of cluster validity. A dendrogram will always suggest
n-1 different clusters where n is the number of elements to be clustered, regardless of the
specific data characteristics [15]. Finally dendrograms only represent hierarchically

organized data and do not scale for large amounts of data.

2.5 Self Organizing Maps (SOMs)

Developed by T. Kohonen (1997) and first used on gene expression by P. Tamayo
(1998) et al, Self-Organizing Maps (SOMS) have proved to be very useful in clustering
microarray data [14]. Like Hierarchical Clustering, SOMs is also an unsupervised
clustering technique [7], but unlike Hierarchical Clustering, it enables the user to impose

partial structure on the clusters [14].

2.5.1 Algorithm

SOMs is the most popular artificial neural network algorithm in the unsupervised
learning category {16]. SOMs assume the number of clusters is known and is chosen by
the user [9]. The user specifies a grid of “nodes” which represent the clusters, such as an
X by Y grid for X times Y clusters. FEach of these nodes is then mapped to M-

dimensional space where M represents the number of experiments in the microarray. The

20

initial mapping of the nodes is random and eventually adjusted. Randomly, a vector v
from the expression matrix is picked and compared to each of the nodes using one of the
similarity metrics discussed in Appendix A. The node’s values are adjusted to move
closer to this vector v, with the closest node moving the most [16]. This is repeated until
all the nodes move less then a certain distance (i.e. nodes have settled) or a certain
number of iterations. Each vector in the expression matrix is then clustered by assigning
it to the closest node. Figure 2-6 illustrates the steps in a SOMs clustering algorithm.

Besides selecting the number of clusters and the distance metric used, the user
must also choose the type of learning function to adjust the nodes with. Two common
types are:

1. Neighborhood Function:

All nodes outside a distance of node n, where n is the node closest
to vector v, are not modified. All nodes within this distance are modified
by a(i), which is the learning rate and decreases with the number of
iterations denoted as i. Tamayo ef al. in their program GeneCluster use
the learning function a(i) = 0.02T/(T + 100i) where T is the maximum
number of iterations [9].

2. Gaussian Function:

In this approach all nodes are modified but nodes farther away
move less. The modification is by the following learning rate a(i) - exp(-
d(n,np)/ZGz(i)), where a(i) and o(i) decrease with i. This method is more

accurate but computationally more expensive.

21

Figure 2-6: Principle of SOMs. Hypothetical trajectories of six nodes as they migrate
to fit data during successive iterations of the SOMs algorithm are shown. Data points are
represented by black dots, nodes by large circles and trajectories by arrows [14].

2.5.2 Visualization

The algorithm partitions the data into a distinct number of convex Voronoi
regions which are specified by the user at the beginning. The result is a group of smaller
subsets of the expression matrix in which clusters closer to each other resemble each
other more than clusters farther away.

Because the data is partitioned into smaller subsets, there are many ways to
visualize the data. One technique is to use the hierarchical clustering method on the

subsets and visualize using the dendrogram (cf. Figure 2-7) [17].

22

ﬂ 5 S S— r —
[©,0n=136 [1,09)n=215 | @2,0)n=20 |
mis|J |

[@9n=112
1B|S|J !

Figure 2-7: Hierarchical Clustering of SOM subsets®

Another method is that of plotting each gene’s path on a graph where the x-axis
represents the time points and the y-axis represents the expression level. One problem is
that too many genes in the cluster clutter the visual and it becomes hard to tell genes
apart. A solution to this is to use error bars indicating the maximum and minimum

variation from the average expression levels (cf. Figure 2-8) [14].

¢ http://smd.stanford.edw/help/clustering.shtml

23

Cluster: 1, Size=160 Cluster: 2, Size = 86
2.0

1.5

-1.5 A

(o]
.
=
]
s
(naa]

12

Figure 2-8: Error bar representation of gene expression data’.

Besides these techniques the most popular way to visualize the SOM is by the

unified-distance matrix or U-Matrix for short (cf. Figure 2-9).

Figure 2-9: U-matrix representation of the SOM®

The U-matrix allows easy detection of clusters of nodes by visualizing distances
between the neurons [18, 19]. Neurons are colored on the basis of their similarity to
other adjacent neurons. The result is a map with an extra element between each neuron
depicting the distance between adjacent nodes. One common way of coloring the nodes

is with gray levels. A node closer to another node is shaded a lighter gray than a node

7 http://www.cs.tau.ac.il/~rshamir/expander/EXPANDER_Images.html

® http://www.scs.org/scsarchive/getDoc.cfm?id=2363

24

farther away. This value is determined by creating a matrix of distances between
adjacent nodes using the same distance metric as used in the SOM algorithm and
normalized so that the farthest two nodes are black and the closest nodes are white (cf.

Figure 2-10).

Figure 2-10: Neurons in the two-dimensional graph are colored according to their
similarities to adjacent neurons. The result of the U-matrix procedure is an extra element
between the neurons. X & Y are similar to each other while Z has a distinct reference
vector.

2.5.3 Advantages

Unlike hierarchical clustering, SOMs enables the user to impose partial structure
on the clusters and is scalable to large datasets [14]. Also the SOM is able to perform all
this with moderate memory consumption and has a running time of only O(n) [7]
Furthermore SOMs can implement fuzzy clusters which allow gene expression vectors to
be in more then one cluster.

Because SOMs partitions the data into smaller subsets almost any visual
technique can be used on the smaller data. This flexibility cannot be found with
Hierarchical Clustering and allows the user to get different perspectives on the same data

with different visual techniques.

25

Finally SOMs can be used on partial data or complete data, another quality that

cannot be found with hierarchical clustering.

2.5.4 Disadvantages

Although SOMs allow the user to impose structure on the clusters this requires
knowledge of how many clusters there are beforchand. Besides specifying the

dimensions of X and Y (number of clusters) many other parameters have to be specified

such as:
1. Number of iterations
2. Initial Learning rate o
3. The neighborhood radius
4. Type of neighborhood function
5. Type of vector initialization prior to training
6. Topology of the map
2.6 K-Means

K-means is another algorithm used to cluster gene expression data. Like the
SOM, k-means is an unsupervised algorithm that partitions the data. Many variations

exist; the following version is the approach by MacQueen (1965) [21].

26

2.6.1 Algorithm
For a given n, the number of possible partitions is definite but extremely large.
Because it is not viable to check every possible partition a cost function is used to find an

optimal one. A widely used cost function is defined below [22].

E= lklznl:y,.,,d(X,.,Q,) 2.1

Where:

k = number of clusters

n = number of vectors

Q= mean of cluster 1

X; = the input vector

yii =1 if Xj is in cluster 1, 0 if not.

d = similarity measure
and: O<izk, O0<i<n

The goal of k-means is to minimize this cost function through the following

algorithm.
1. Selection of initial k
2. Calculation of similarity between an object and the centroid (Q) of a
cluster
3. Allocation of the object to the cluster whose centroid is closest to the
object
4. Recalculation of the centroid for which the object was moved from as well

as the centroid for which the object was moved to

Steps 2-3 are repeatedly performed until the algorithm converges [22].

27

Initially k-means starts with k random centroids. Each input data is compared to
all centroids and placed in the cluster that it is closest to (c¢f Figure 2-11(a)). All
centroids are then recalculated by taking the average of all the vectors in the respective
cluster (¢f Figure 2-11(b)). Each input data is then compared to each centroid and then
again re-clustered (¢f Figure 2-11(c)). This is repeated until no more data points are
moved.

One notable variation to the algorithm is that of fuzzy k-means in which one

vector can belong to more then one cluster.

28

00 o [+ -]
ol o o |0 op°
.m0 e o
o acné'oe
0,00
° °
o o
{a)

b)

oc?ﬁ_f.’a"‘5
[+
0

_—

e ©® o %
° ° GM
o o o o A
H)oo.o‘.o
o
) °
o

)

-

Figure 2-11: Example of K-means, k = 2.

(a) Input data is compared to all centroids &
placed in closest cluster.

(b) Centroids recalculated

(c) Input data is again compared to all centroids &
placed in closest cluster.

2.6.2 Visualization

No specific visualization technique has been developed for k-means clustering.
This is because like SOMs, it partitions the data into k distinct clusters and on each of

these clusters almost any applicable visualization technique can be used.

2.6.3 Advantages

K-means clustering method is comparable to that of SOMs and thus holds many
of the same properties as SOMs. It is best suited for data mining because it is efficient in
processing large amounts of data O(tkmn) where [22].

¢ m = vector attributes

¢ k= number of clusters
¢ n = number of vectors
e t=number of iterations

Also since there is no similarity matrix to calculate it requires only moderate
memory requirements O(n) [7].

Unlike SOMs, only the number of clusters and the number of iterations to prevent
infinite calculations are needed to cluster the data.

Finally there is the possibility of creating fuzzy clusters. This has been shown to

be a better model for the regulatory system where one gene affects more than one gene

[71.

30

2.6.4 Disadvantages

The number of clusters has to be specified in advance. If k equals the right
number then k-means algorithm will cluster the data correctly, if not we could end up

with an incorrect clustering result as shown in Figure 2-12 [23].

- = &
T T T T T Y T T T T T T T T T T T T

-1 PO S S W ST S ST S -3 PR U S T SN SO S T -1 PR T SN S WA T S S 1
£F 0 BE 1 15 2 25 2 3E 4 48 O5 4 BE T 16 2 25 % A5 4 45 05 0 08 1 15 2 25 83 35 4 45
(a) H ()

Figure 2-12: The results of the k-means algorithm with different k-values.
(@ k=1;(b) k=2; (c) k=3. Only k =2 clusters the data properly [23].

Also it is difficult to discover clusters with non-convex shapes because all the k-
mean’s clusters have convex shapes [22, 23]. Finally there is the possibility of the “dead-
unit” problem where if one unit is initialized far away from the input data then it

immediately becomes dead without a learning chance.

2.7 Principal Component Analysis (PCA)

Microarray data with N genes and M experiments can be seen as a mapping into a
M-dimensional space. Visual interpretation restricts the number of dimensions to a
maximum of 3 (x, y and z). The problem is how to map from this M-dimension to three

dimensional space in order to enable visualization.

31

Principal Component Analysis (PCA) is a mathematical process that reduces the
M variables into M principal components called factors. Each factor is ordered in
importance where the first factor explains the most about the differences between the
data, the second factor as much as what the first factor could not and so on. By finding
the principal components of a microarray experiment the first 3 factors that describe the
data as much as possible could be displayed in a 3D environment where X, y, z represent
factors 1, 2 and 3 respectively. An example of condensing the data from two dimensions
to one dimension is shown in Figure 2-13. It must be noted that the M factors are not just
a re-ordering of the M experiments but M principal components that account for as much

of the variance in the original data.

— eSS Sty ai1ible |

Figure 2-13: Principal component analysis

2.7.1 Algorithm

For mathematical concepts in PCA please refer to Appendix B.
1. Process the data:
One method is to subtract the mean from each data dimension.

This is an optional step and is left to the discretion of the user.

32

Calculate the covariance matrix:

Create an M x M covariance matrix from the N x M data matrix.
Calculate the eigenvectors and eigenvalues:

Using the M x M covariance matrix calculate the m eigenvectors
and their respective eigenvalues. By finding these eigenvectors, we
are able to extract the lines that characterize the data.

Form the feature vector:

The eigenvector with the highest eigenvalue is the first principal
component while the second highest eigenvalue is the second principal
component and so on. Thus to reduce the dimensionality the
components that are least significant are thrown away and the
components kept are stored in a matrix called a feature vector where
the eigenvalues represent the columns.

FeatureVector = (eig; eig eigs... eigy)
Create the New Data Set:

To get the final data the transpose of the feature vector is
multiplied by the transpose of the original data.

FinalData = FeatureVector' x Original Data Matrix"

The final data is now expressed as an N x P matrix where N is the

number of genes and P is the number of principal components.

33

2.7.2 Visualization

The top three principal components are usually chosen in order for the data to be
compressed to an N x 3 matrix. Each gene can then be plotted in 3-dimensional space
where principal component 1, 2 and 3 represent the x, y and z axis respectively. Figure

2-14 shows an example visualization of PCA on gene expression:

(©) O]

Figure 2-14: Visualization of PCA on gene expression [7].

The net result is points close to each other in the Principal Component Space have

the same basic patterns and thus have similar gene expression.

2.7.3 Advantages

Unlike the previous methods no parameters have to specified beforehand. Also

besides being deterministic, PCA removes the noise from the data [7].

34

Until now all the visualization techniques used on the clustering algorithms
discussed have been 2D, whereas PCA inherently proposes 3D. Finally the 3D world is

more flexible than the 2D world and users often find it more intuitive [24].

2.7.4 Disadvantages

Since there are no parameters to specify, the user has little control on the outcome
of the data. Furthermore PCA has a computational complexity of O(N®). Whilc all the
earlier methods can work with both gene expression data as well as distance matrix data,
PCA is only applicable to gene expression data. It is not applicable when only a distance

matrix of genes is provided as data [24].

2.8 Biclustering

Typical clustering methods look at either clustering gene expression levels in all
experiments (rows in the expression matrix) or expression levels of all genes considered
in each experiment (columns in the expression matrix) [25]. Any formula of equally
weighing all conditions or genes will lead to the discovery of a similarity group at the
expense of ébscuring other similarity groups. Biclustering is a novel approach first
introduced on gene expression data by Cheng and Church in 2000 to overcome the
problem of information lost during the use of oversimplified clustering techniques [21].
This is done by simultaneously clustering both rows and column sets to obtain a subset of
the data matrix with a high similarity score. With this, the involvement of a gene or a
condition in multiple pathways can be determined. Other terms to describe biclustering

are “direct clustering” and “box clustering” [21].

35

2.8.1 Algorithm

The algorithm for biclustering measures the coherence of the genes and
conditions by calculating the mean squared residue. The mean squared residuc of an
element a;jis defined as

a-ay -a;tay
where
a;; = Mean of the jth column in the bicluster
ajj = Mean of the ith row in the bicluster
ajy = Mean of all elements in the bicluster

The mean squared residue is the variance of the set of all elements in the bicluster,
plus the mean row variance and the mean column variance. The objective is to find large
clusters with low mean squared residue. In addition to finding the low mean square
residue a reasonably large row variance is also specified. The reason for this is that the
mean squared residue only shows that genes and conditions fluctuate in unison and
therefore this includes trivial biclusters, those with little or no fluctuation at all [26]. The
most interesting biclusters are those that have low mean square residue and show similar
up-regulation and down-regulation under a set of conditions [26]. Figure 2-15 shows

how biclustering can be more advantageous over traditional clustering techniques.

36

Conditions

ABCDEFGH
| B]

Clusteting Biclustering

Figure 2-15: Biclustering versus traditional clustering

Partitioning the rows and columns to find the optimal biclusters has been proven
to be an NP-hard problem [21, 25, 26]. Therefore heuristic algorithms have been
designed to find acceptable biclusters. The following is a brute force algorithm by Cheng
and Church. It has a running time of O((N+M) x NM), where N and M are the row and
column sizes of the expression matrix. For more efficient algorithms, see “Biclustering
of Expression Data” by Cheng and Church [21].

The following is defined for the mean squared residue score of a matrix.

____1__. Z (a,-j—aL/—Cle‘"aU)z (2.2)

Algorithm 0 (Brute-Force Deletion and Addition)
Input:
A, a matrix of real numbers, and 6 >= 0, the maximum acceptable

mean squared residue score.

37

Output:
Aij, a d-bicluster that is a submatrix of A with rows set I and
column set J, with a score no larger than 9.

Initialization:

I and J are initialized to the gene and condition sets in the data and

A]J = A.
Iteration:
1. Compute the score H for each possible row/column

addition/deletion and choose the action that decreases H the

most. If no action will decrease H, or if H<= 3, return Ay;.

2.8.2 Observations

By taking into account both the rows and columns of the expression matrix,
biclustering differs from previous clustering algorithms discussed. As we will see in
Chapter 3 the notion of biclustering has similarities with the clustering algorithm used by
Dr. Parida and Dr. Zhou. Although their algorithm is a combinatorial “optimization”
problem with an output sensitive algorithm (work proportional to the size of the output)

the end result is similar in that clusters contain both rows and columns.

2.9 Available Software

Many of the clustering and visualization techniques discussed in this chapter are

available in a wide variety of software packages, both in the public domain and from

38

vendors.

available. Table 2-2 lists some of these software packages.

Similarly the imaging software for microarrays in Chapter 1 is also widely

Table 2-2: Some Image analysis and Data Mining Software Packages

Software Description Available at

Name

F-Scan Quantification and analysis of fluorescently http://abs.cit.nih.gov/fsc
probed microarrays; scatterplots; multiple an/
image comparison.

TIGR Spot identification. http://www.tigr.org/soft

SpotFinder ware/

Cluster Hierarchical clustering, K means clustering http://rana.lbl.gov/Eisen
Self-Organizing Map (SOM), PCA Software.htm

Genesis A Java suite containing various tools such as | http://genome.tugraz.at/
filters, normalization, visualization tools, Software/GenesisCenter.
common clustering algorithms, SOM, k- html

means, PCA,

J-Express Pro

Hierarchical clustering, K-means, Principal

http://www.molmine.co

2.0 Component Analysis, Self-organizing maps, | m/frameset/frm_jexpress
Profile similarity search, Normalization and | .htm
filtering, Raw data import, Project
organization
TreeView Cluster output visualization http://rana.lbl.gov/Eisen
Software.htm

In most situations, when the visualization requirements are standard it is possible

to use one or more of the packages available.

39

CHAPTER 3 - Protein Folding Trajectory Analysis

The way a protein folds and its final native structure determine the function of
that protein. Since genes are the genetic code for producing proteins, finding the function
of the protein is essentially finding the function of the gene.

Besides obtaining the final folded state, it is also important to understand the
kinetic process of folding [27]. Determining how a protein folds is one of the hardest
problems in molecular biology. Certain proteins called fast-folders can go from an
unfolded to a folded state in a matter of microseconds or milliseconds. With this short
time frame, along with experimental and hardware limitations, mapping the full folding
process has proven to be a difficult task.

An all-atom realistic recreation of a protein’s kinetic folding process is well
beyond the reach of today’s technology. Therefore the folding mechanism is usually
characterized by calculating the thermal dynamics of the folding, i.e., the free energy
landscape. The folding free energy landscape is often characterized by contour maps
versus the so-called reaction coordinates (reduced coordinates to describe protein

structures due to too many degree-of-freedoms). Below is a list of some reaction

coordinates:
1. Fraction of native contacts
2. Radius of gyration of the entire protein
3. RMSD from the native structure

4. Number of beta-strand Hydrogen bonds
5. Number of alpha-helix turns

6. Hydrophobic core radius of gyration

40

7. Principal Components
Through the course of folding, a protein goes through certain shapes or states
before settling on a final fold. In order to understand this process an obvious step is to
find the intermediate states that occur through the course of folding (¢f Figure 3-1).
Through the use of a combinatorial pattern discovery algorithm, Dr. Laxmi Parida and
Dr. Ruhong Zhou at the IBM T J Watson Research Center are working on the discovery

of existing states as well as new ones.

Figure 3-1: A hypothetical state diagram of a folding protein.

The combinatorial technique involves clustering of the protein’s reaction
coordinates or characteristics in order to find the states. This method is analogous to the
clustering of microarray data with the slight exception that the clustering is a matrix of

the protein’s characteristics whereas microarray data clusters a matrix of gene expression.

3.1 Data
To demonstrate the effectiveness of their technique Dr. Parida and Dr. Zhou
tested their algorithm on the B-hairpin, a small protein which has been studied

extensively. The protein was solvated and subjected to temperatures that ranged between

41

270K and 695K. Seven characteristics of the protein were then measured at different

time intervals. These time intervals are usually equal, but the time sequence is not

necessarily in real time, since these simulations were carried out with the Replica

Exchange Method (REM), which is essentially a Monte Carlo method [28]. A list of the

seven reaction coordinates are used for this particular B-hairpin:

1.

2.

6.

7.

Number of Native beta-strand hydrogen bonds

Radius of gyration of the hydrophobic core residues

. Radius of gyration of entire protein

. Fraction of native contacts

Principal component 1
Principal component 2

Root mean square deviation (RMSD) from the native structure.

For the details of the reaction coordinates, including their definitions and the way

they are calculated, the reader is referred to [28].

Table 3-1 shows a sample data set:

42

Table 3-1: Sample data of B-hairpin's reaction coordinates over time [27].

) T3 gt A Je T
NE g PC-l PO2 RMSD
5 000 3 LO00 -7.819 0.0
4 468 5 0091 -7.008 1.575
4474 2 7.7 1505
4.354 J3RA0% 1379
4159 5.589 34609 1.439
4000 5445 -A5 502 '
4053 5257 AR5 LTOR
8776 5.18 |) 35415 1624
2308 5268 TNON OFTR 27

2155 5390 TRIG 0.77R
4842 6043 T2 0578
0000 K468 10,134 0249 44,625 10.357
0000 8303 10033 0242 43.521 10163
2047 5132 TEIR OTTE 2238 24008 3007
2707 5900 TH14 0728 308 30188 4508
ZROR 5483 TO75 OUTTR 2RSS -26.254 19

=i)
o 1]

=2 |
e

#

Gr Gn Oo 0o e
=y

o On
o G oda G
ool B

e s

kel [
—f G5 ik

oo G
ES
L%

Lodn
wf G
!

b |
iy
g

-26.3091 3T

-2.27 ST 01T 3672

'
[T]
=

Do

5%
| 35

33572 53R

N -

rﬁ"% S b
v Bl

fre

o

A total of 19087 different time points were measured giving a matrix consisting
of 133609 (19087*7) elements. Furthermore a threshold was added to each characteristic

in order to limit the total number of patterns (cf. Table 3-2).

Table 3-2: Threshold added to each characteristic.
Characteristic0 | +0.2

Characteristic 1 +0.6

Characteristic2 | +0.35

Characteristic3 | £0.15

Characteristic4 | +5.0

Characteristic 5 +16.5

Characteristic 6 +1.0

43

For example row 1 of Table 3-1 values with Table 3-2 thresholds added can vary in

between any of the following values as depicted in Table 3-3.

Table 3-3: Results after adding threshold

48t052 | 4575 t0|8303 to|0850 to|-12.819 to|-50.508 to |-1.0to0 1.0

5.775 9.003 1.150 -2.819 -17.508

3.2 Patterned Clusters

In order to find the major states, a “patterned cluster” is extracted from the data
which is defined as a cluster of some column combinations that satisfy a quorum k, (the
specific pattern is present (within tolerance) at least k times).

Each Patterned Cluster is described in two rows. The first row gives the pattern
as number of columns, and subsequently each column number and its corresponding
value. The second row gives the number of occurrences and the list of occurrences in the

original data. For example, a single patterned cluster could be described by Figure 3-2:

2 001 4 023 < Pattern
3 23 26 27

Figure 3-2: Patterned cluster

44

Definition of “Pattern”:
A pattern is defined as the total number of columns along with the actual columns

and their respective values.

Definition of “Patterned Cluster”:
A patterned cluster is defined as a pattern along with the total number of

occurrences and the list of occurrences.

With these definitions, the data in Figure 3-2 would be interpreted as:
e 2 is the number of columns
¢ 0 and 4 are the columns
e 0.1 and 0.23 are column 0 and column 4 values respectively
e 3 is the number of time occurrences
e 23,26 and 27 are the time points where the pattern occurs
A further requirement was that patterned clusters that appeared less than a certain
chosen amount of time, say k were discarded. The result is that any patterned cluster that
appears less than k times is not considered a major state.
After calculating the patterned clusters and removing the clusters with less than k
occurrences the net result is a large file. The data file supplied to us was over 500 MB.

Table 3-4 is a sample cut out of the patterned cluster file.

45

Table 3-4: Sample patterned cluster file

0 1
217335 |0.735
94826- | 95748- | 95761- 120424-
1006 | 59728 | 87235 | 94831 | 95752 | 95763 120426

0 1
217335 |0.736 -

94826- | 95748- | 95761-
1003 | 59728 | 87235 | 94831 | 95752 | 95763 95769
0 1

217335 |0.737

94826- | 95748-

1012 | 59728 | 72071 | 87235 | 94831 | 95752 95767
0 1
21733 |0.738
94828- 95761-
1028 | 69728 | 72071 | 87235 | 94826 | 94831 95763
0 4- 6
3[7335 |5.881 | 3.292
94828- 95761-
1036 | 59728 | 72071 | 87235 | 94826 | 94831 95763
0 4- 5
37335 |5881 |2214
94828- 95761-
1056 | 59728 | 72071 | 87235 | 94826 | 94831 95763
2 3 4- 5- 6
518144 10899 |3.855 |33.574 | 3.202
95748-
1089 | 45533 | 59728 | 72071 | 87235 | 94826 95752

By analyzing the data in this fashion it is possible to confirm both existing states
as well as identify new states. This appears to be an innovative way of understanding the

folding process of a protein.

3.2.1 The Need for Visually Analyzing the Patterned Cluster Data

It is quite clear that with the large amount of data contained in the patterned

cluster data file, it cannot be easily analyzed by manual study. Memorizing ten patterned

46

clusters is a difficult task, and with thousands of clusters it is virtually impossible.
.Therefore obtaining a global view of the data is very important. Furthermore the
interaction of the patterned clusters in relation to each other is hard to ascertain when
placed one after the other in a data file. The user is now left with trying to memorize
both the patterned clusters and their interaction with each other. Finally the patterned
clusters are occurrences in time with some patterns occurring before other patterns. This
lends itself to a third characteristic of data that needs to be organized by the user, i.e. that
of patterns that occur together and those that occur before and after each other. A
software tool that enables a graphic visualization of the above dataset would considerably

enhance the data analysis process.

3.2.2 Program Requirements

In order to overcome these shortcomings it was necessary to provide a
visualization tool for the patterned cluster data. In consultation with Dr. Parida and Dr.

Zhou the requirements were formulated as follows:

3.2.2.1 Global View:

Get a global picture (visual) of the data at any time point during the course of

folding.

3.2.2.2 Navigation and focus:

Help identify important patterns and patterned clusters and easily navigate

through the dataset to focus on any individual patterned cluster.

47

3.2.2.3 Relative growth rates:

The patterned cluster growth should be animated in order to be able to analyze the

relative growth of patterned clusters over time.

3.2.2.4 Detailed Query:

The columns, corresponding values and size of the patterned cluster should be

obtainable from the original dataset at any time point.

3.3 The need for a Custom Visualization Tool

Based on the above requirements we analyzed the applicability of the available
visualization tools for gene expression datasets. A careful analysis of the existing
visualization techniques discussed in Chapter 2 quickly showed they would not be
adequate in meeting the requirements set forth in section 3.2.2. Since the clustering
method used by Dr. Parida and Dr. Zhou is not hierarchical in nature the dendrogram had
to be ruled out. At first glance, the U-Matrix visualization seemed to be a possible
solution. By representing each patterned cluster as the neurons, adjacent states could be
placed beside each other. The functions to zoom-in, achieve a global view and query the
data could also easily be implemented. However animation of the patterned clusters
using the U-Matrix was not visually appealing or informative and therefore had to be
abandoned. Finally the last technique of using PCA is more of a clustering technique and
simple plotting of protein folding states in 3D does not meet the above requirements.

This led to the conclusion that it was necessary to develop a customized

interactive visualization tool to specifically address the above requirements. The next

48

chapter describes the visualization software designed and developed and some results

from its application.

49

CHAPTER 4 - PROTERAN

4.1 Terrain Metaphor

As we concluded in the last chapter, the clustering and analysis needs for the
Beta-Hairpin data is different from the usual clustering methods in bioinformatics. Thus
a new visualization technique had to be developed. The nature of placing the states on a
plane similar to the U-Matrix and the 3D visualization of PCA were both very appealing.
Recently the paper “A Gene Expression Map for Caenorhabditis Elegans” was published
in which clusters of genes were represented as mountains in a terrain [29]. The initial
genes were placed in a two-dimensional image using force-directed placement and raised
as mountains based on the density of genes in an area. This sparked the idea of using the
metaphor of a terrain to achieve the requirements as outlined in section 3.2.2.

This terrain metaphor has proven to be a successful tool in visualizing large
amounts of data. Matthew Chalmers in his paper “Using a Landscape Metaphor to
Represent a Corpus of Documents” indicated the usefulness of having a consistent
ground plane to increase data exploration [30]. By representing each mountain as a
patterned cluster that grows over time, the best of both the U-Matrix and PCA
visualizations could be combined. Since the mountains are placed along a plane and each
represents a state, this is similar to the U-Matrix. Because they are mountains and
navigation will occur in 3D the visual is similar to that of PCA’s. Most importantly since
the mountain growth can be shown over time, requirement 3.2.2.3 is successfully met.
Also by pointing and clicking on a mountain the values of that patterned cluster could be
obtained, thus solving requirement 3.2.2.4. Finally the ability to zoom in and out as well

as navigate through the terrain would solve requirements 3.2.2.1 and 3.2.2.2.

50

The final result is the program “Protein Terrain Analyzer”, or PROTERAN for

short. PROTERAN is an interactive visualization program to analyze the states of a

protein through the animation of a terrain (cf. Figure 4-1).

Panning

==k

Stois Panning |

Botiom

LefRight | Forward/Back

,rmcww -t Save Image

Top I Quit
|
|

Figure 4-1: PROTERAN: Each mountain represents a patterned cluster.

4.2 Mapping of Patterned Cluster Data into Terrain Geometry

The. first step to visualizing the patterned cluster data as a terrain is to be able to
differentiate between the patterned clusters. An important design decision was to map
patterned clusters as separate mountains and to map the size of the patterned cluster to the
height of the mountain. The next design decision was to decide on the layout for the
different mountains on the ground. Before we discuss our layout design, we need the

following definitions.

51

Since each patterned cluster can have 2-7 columns, each patterned cluster can be

defined by the number of columns.

Definition of “Pattern Type™:
The pattern type is defined by the number of columns in a patterned cluster with

the minimum number of columns being two.

With seven characteristics the result is six pattern types. Each of these six pattern

types can further be broken down into the number of column combinations.
Definition of “Column Combination”:
The column combination is a unique number that is used to identify a particular

combination of columns, generated by merging the columns together.

For example there are 21 different column combinations for type 2 patterns as

shown in Table 4-1.

52

Table 4-1: Patterns of type 2

PATTERNS OF TYPE 2
Combination | Column | Column
D ID ID
01 0 1
02 0 2
03 0 3
04 0 4
05 0 5
06 0 6
12 1 2
13 1 3
14 1 4
15 1 5
16 1 6
23 2 3
24 2 4
25 2 5
26 2 6
34 3 4
35 3 5
36 3 6
45 4 5
46 4 6
56 5 6

For each pattern type ‘t” with ‘c’ columns the number of column combinations

can be characterized by the following standard permutation formula:

! 4.1
(t—o)! *r!

Table 4-2 lists the number of column combinations for each pattern type.

53

Table 4-2: Number of permutations of each pattern type.

Pattern Type Number of Column Combinations
2 21
3 35
4 35
5 21
6 7
7 1

Thus each Patterned Cluster can now be categorized as a Pattern Type and a
Column Combination. For example, Figure 3-2 in section 3.1 can now be classified as:

Pattern Type: 2

Column Combination: 04

With the ability to breakdown the patterned clusters into pattern types and column

combinations a method of laying them out as a mountainous terrain is formulated next.

4.2.1 Patterned Cluster Layout

The layout problem can be stated as follows:
For cach patterned cluster in the dataset
1. Assign a unique position on the ground
2. Allocate an area surrounding the position for growing the mountains
representing the patterned cluster.
We first considered the use of a generic approach such as using the mass-spring
framework. The size of a patterned cluster would be the mass and the spring contents
would be based on nearness of two patterned clusters. However after extensive

consultations with users (Dr. Parida and Dr. Zhou) it was decided that proximity by type

54

and size was more desirable. Also a fixed ground position for a particular pattern type
would provide a visual consistency that was important if the visualization tool were to be
used for analysis of different data sets. Hence it was decided that a fixed layout would be
designed with built-in flexibility to accommodate different column combinations.
Accordingly the layout design was worked out in 3 steps as described below
Step 1:
The first step divides the plane into six blocks, each representing the type

of pattern such as shown in Figure 4-2 below.

Pattern 2 Pattern 3 Pattern 4

Pattern 5 Pattern 6 Pattern 7

Figure 4-2: Layout of Pattern Types on the Ground Plane

Step 2:
The second step divides these ground blocks into the required number of
column combinations. Since the pattern types do not have an equal
number of column combinations the layout was moved around in order to

get a more rectangular shape. (¢f. Figure 4-3)

35

01 02 03 01234 01235 01236 012 013 014 015 016
04 05 06 01245 01246 01256 023 024 025 026 034
12 13 14 01345 01346 01356 035 036 045 046 056
15 16 23 01456 02345 02346 123 124 125 126 134
24 25 26 02356 02456 03456 135 136 145 146 156
34 35 36 12345 12346 12356 234 235 236 245 246
45 46 56 12456 13456 23456 256 345 346 356 456

0123 | 0124 0125 0126 0134

0135 | 0136 0145 0146 0156

012345 012346 | 012356 | 0234 | 0235 0236 0245 0246

0123456 012456 013456 | 023456 | 0256 | 0345 0346 0356 0456

123456 1234 | 1235 1236 1245 1246

1256 1345 1346 1356 1456

2345 | 2346 2356 2456 3456

Figure 4-3: Layout of Column Combinations

This layout not only gives a visually more appealing view of the terrain

but also highlights pattern types 6 and 7 because of their separation from

other pattern types. This was another requirement set forth by the users,

who reasoned that pattern types 6 and 7 are less likely to occur and

therefore should be more visible than other pattern types.

56

Step 3:
A quick analysis of the patterned cluster data revealed there were
far too many patterned clusters with little variation in the data. Displaying

all of these as mountains would result in too much of visual clutter.

A final requirement was worked out of that m largest patterned clusters for each
column combination should be visualized, with m being a user defined number typically
around 10 and up to 25. This final requirement further divided each column combination
to represent these top m occurring patterned clusters. The most occurring patterned
cluster would be placed in the center and the rest in a clockwise fashion radiating

outwards. Table 4-3 depicts the outcome for Pattern Type 2 with column combination 01

and m = 10.

Table 4-3: Pattern 2 with combination 01
10™ Highest
Occurrence of
combination 01
o™ Highest | 2 Highest | 380 Highest
Occurrence of | Occurence of | Occurrence of
combination 01 combination 01 combination 01
g Highest | Highest 4™ Highest
Occurrence of | Occurrence of Occurrence of
combination 01 combination 01 combination 01
7™ Highest | 6™ Highest | 5™ Highest
Occurrence of | Occurrence of | Occurrence of
combination 01 combination 01 combination 01

57

4.2.2 Animated Terrain Evolution

After deciding on the layout of the mountains the next step was to animate the
evolution of the terrain. By animating the terrain, the growth of the patterned cluster
through time is simulated. The time proceeds from 0 to the maximum number of
experiments with each time unit representing an experiment. At time unit 0 the terrain is
completely flat. With each time unit all patterned clusters are checked to see if there was
an occurrence. If there is an occurrence, then the height of that respective patterned
cluster’s mountain is increased. If not, the height remains the same. For this algorithm
the data in the original format had to be converted so that it could be rapidly indexed by
time points. For very large data sets, this could be time consuming. But since this can be
done in a preprocessing stage, it does not in any way affect the real-time performance of

this animation.

4.2.3 Interaction Facilities

The user interface has to be simple and intuitive. Realistic terrain rendering was
given less importance than the facilities such as being able to navigate freely, visually
discriminate between patterned clusters and query any visible mountain for the
constituent data or patterned cluster. Accordingly the following rendering and interface
design decisions were made.

1. Pseudo coloring of mountains with colors appropriately chosen for
easy discrimination from both distant and zoomed-in views
2. For navigation, the “flying through terrain” metaphor was chosen.

Using the mouse/keyboard buttons it is possible to virtually fly

58

through the terrain and “land on any mountain”. Zooming into a
specific part of the terrain is automatically supported as part of the
flying through interaction. The flying through is supported both for a
static terrain (terrain at any time point) or for an evolving terrain.

3. For querying details of any patterned cluster one has just to land. This
is done by clicking on any particular mountain during the fly through.
The click immediately pops-up an information window which contains
all the details of that patterned cluster.

4. Other loading/bookkeeping operations were provided using a simple

pull-down menu.

4.3 Programming Tools
PROTERAN was created using the C programming language with Visual C++
6.0 as the development environment. The basic structure of PROTERAN was obtained

from the terrain tutorial at http://www.lighthouse3d.com/opengl/. The sample code

obtained from this site created a terrain from an image file by using the pixel values as
the heights of the mountains. Each value was stored in a dynamically allocated two
dimensional array representing the layout of the terrain. These values were triangulated
and rendered using OpenGL, the most widely used graphics application programming
interface (API) in the industry [31].

OpenGL consists of Graphics Library (GL) and Graphics Library Utilities (GLU)
functions. GL contains only primitives while the functions of GLU use the functions of

GL. OpenGL User Toolkit (GLUT) was also used in the creation of PROTERAN to

59

create windows that are platform-independent, i.e. can be run on both Windows and
Macintosh machines [32].

Finally OpenGL User Interface (GLUI), a GLUT based user interface library was
used to create the interface of PROTERAN. Since it is a wrapper to GLUT it too is

portable to any system.

4.4 PROTERAN

The following outlines the functionality of PROTERAN in its current version.

4.4.1 Opening Screen

The initial screen offers 3 options (¢f. Figure 4-4).

4.4.1.1 ‘Filter File’ Button

This button is used when original patterned cluster is input. This is processed and
the file “Filtered_File.txt” is created which contains the top 10 patterned clusters of cach
column combination. The terrain automatically loads after creating the

“Filtered_File.txt”

4.4.1.2 ‘Processed File’ Button

This button is used when a processed file is input, i.e. contains only ten patterned

clusters of each type of patterned cluster.

4.4.1.3 ‘Quit’ button

Closes PROTERAN.

60

Input Fite : - ; e e
Please Enter v File le g Hm-aww I Fiter File |
~ Prass 'Filter Fite" it this is the original dale. (A processed fie Filtersd_| File.txt will be cnud) Processed Fiig

- Prm ’Proumd File* i yau hau muy Mmd the erigingl dats -) w-é—un—-—- 17

| i) et - 1] save image
278 M8

 Antmatian B
Start (F5). ; | stop Panning . | - i Pattern? Patterns . ot
‘—‘— ! ma————————————)
_Stop (F8). 4 J> v\’\ b : Paftern3: Patternt
— " Patternd Pattern7

Leﬂ/nght F unﬁaﬂd/Back

Figure 4-4: Opening screen of PROTERAN

4.4.2 Main Screen

If options 4.4.1.1 or 4.4.1.2 are selected, the main window with a view of the

terrain with pattern 7 in front is displayed as shown in Figure 4-5.

61

Quick Viei et S ave Image
. Tep N Guit
Bottom: - || -

| step Panning |

3

Foivard/Back

Figure 4-5: Main Screen of PROTERAN

4.4.2.1 Fly Through and Landing on Mountain:

Clicking the left mouse button and dragging while in the display, changes the
user’s viewpoint. By dragging the mouse left, right, up or down the view changes
respectively. To move left, right, forwards or backwards the arrow keys are used. By

clicking and dragging the left mouse button while simultaneously pressing the arrow keys
the user can navigate “quickly”. Also by clicking on a mountain the user lands on it and

obtains the values of that patterned cluster.

62

4.4.2.2 Data Caption:

The top left corner displays information about the terrain and contains the

information of the mountain clicked by the user (¢f Figure 4-6).

Figure 4-6: Data Caption

4.4.2.2.1 Pattern:
Represents the column combination, 1345 in Figure 4-5.

4.4.2.2.2 Hill Number:

Represents which of the top 10 occurrences of the column combination the user
clicked, this value can vary between 0 and 9. A value of 0 indicates the center mountain
or the highest occurring mountain was clicked, while a value of 9 means the tenth most

occurring pattern was selected.

4.4.2.2.3 Column x:

The value of column x in the pattern.

4.4.2.2.4 Height:

Height of the mountain. Upon termination this equals the number of occurrences

in the patterned cluster.

63

4.4.2.2.5 Time:

The length of animation. The left value indicates how many time units or
experiments have been completed. The value on the right indicates the total time units or

total number of experiments.

4.4.2.2.6 FPS:

Displays the average number of times the scene is rendered to display. Faster
CPUs and optimized graphic cards have higher frame rates and result in a visually

smoother display.

4.4.2.3 Buttons:

Many buttons have been implemented to increase usability of PROTERAN (cf.

Figure 4-7). An explanation of these features follows.

Figure 4-7: Buttons used in PROTERAN

44.2.3.1 Animation

4.4.2.3.1.1 Start:

Resumes or begins evolution of the mountains. When the final time unit is
reached, the animation stops. A successive press of the ‘Start’ button will start the

animation over.

64

4.4.2.3.1.2 Stop:

Pauses the animation. Animation is restarted with a press of the ‘Start’ button.

4.4.2.3.2 Panning:

44.23.2.1 Left/Right:

By dragging the mouse over this button the user can continuously turn left or

right.

4.4.2.3.2.2 Forward/Back:

By dragging the mouse over this button the user can continuously move forward

or backwards.

4.4.2.3.2.3 Stop Panning:

Stops from turning left/right or from moving forward/back.

4.4.2.3.3 Quick View:

Enable the user quick access to specific views of the terrain.

44.2.33.1 Top & Bottom Views:

Clicking on these buttons will give a view of the top or bottom of the terrain.

4.4.2.33.2 Pattern 2-7:

These buttons will give a view directed at the pattern type clicked.

4.4.2.3.4 Miscellaneous:

4.4.2.34.1 Save Image:

65

Clicking this button will save the current image in the frame buffer as a TGA file.
The file will be saved as the name of the file inputted by the user with a number.tga

attached to the end of it.

442342 Quit:

Closes PROTERAN.

4.4.3 Other features:

The color-coding of the terrain enables the user quick identification of the

different Pattern Types (¢f Table 4-5).

Table 4-4: List of the Pattern Type Colors

Pattern Type Color
2 RED
3 GREEN
4 TURQUIOSE
5 BLUE
6 PURPLE
7 YELLOW

66

4.5 Testing and Release
PROTERAN was initially tested for small subsets of sample data provided by the
user. Subsequently the entire data was loaded and when the program was successfully

finished it was released for use by Dr. Parida and Dr. Zhou.

67

CHAPTER 5 - Conclusions and Extensions

5.1 Initial Experience with PROTERAN

At the time of writing of this thesis, PROTERAN has been in use for about two
months. While the use has not been extensive and also primarily for visualizing the B-
hairpin data set, discussions with the users has provided very encouraging feedback.
Their experience with PROTERAN is summarized below:

By placing each of the patterns in a static place Dr. Parida and Dr. Zhou were able
to easily identify the states of a protein. By landing (clicking) on the mountains they
could easily obtain the values of the respective states. In addition because the hills grow
over time they could easily see which states occur before other states. As quoted by Dr.
Zhou “This is extremely useful in identifying time sequences of the intermediate states in
protein folding. For example, in this particular beta-hairpin case, we have noticed that
some of the 2-column patterns (column 1, 4) occur before the 3-column patterns (column
0, 1, 4). The column 0 represents the native beta-strand H-bonds, while column 1
represents the radius gyration of the hydrophobic core and column 4 the fraction of
native contacts. This indicates that the hydrophobic core is largely formed before the
beta-strand hydrogen bonds are formed”.

Another advantage of using the terrain metaphor was that by just looking at the
heights of the mountain they were able to determine what the major states are.
Furthermore zoom in and out buttons enabled them to get a global view of the data as
well as the ability to focus on a specific patterned cluster. Finally the ability to “fly”

through the terrain allowed them to get different perspectives on the large dataset.

68

The following remarks by Dr. Zhou indicate the future of PROTERAN. “It
should be pointed out that the current data are from Monte Carlo simulations (REM is
essentially a Monte Carlo method even though it runs molecular dynamics in the
underlying sampling), so the time sequence is not in real time, nevertheless, we are able
to deduce some of folding process from these thermodynamic data. We expect
PROTERAN will be even more useful in analyzing the real time data from straight
molecular dynamics simulations using supercomputers, such as IBM’s Blue Gene

machine.”

5.2 Extensions

It can be seen that from the previous section that PROTERAN in its current
version appears to be quite useful. There are many extensions that could make this
system more generic and increase its potential for much wider use in the bio-informatics
domain.

1. The first of these is to acquire different types of protein data and analyze
their results using PROTERAN. This should provide us with the
necessary feedback to improve the geometry mapping algorithm as well as
make further improvements to the user interface.

2. Currently PROTERAN supports the use of up to and including 7 reaction
coordinates. Future requirements may increase this number. This increase
in the number of characteristics used will need a different layout of the

terrain. The current layout design was based on a manual placing of the

69

pattern types. We need to develop a generic automated layout technique
which future versions of PROTERAN should implement.

Finally it remains to be seen if PROTERAN can be used to visually
analyze other types of data other than proteins. Because PROTERAN
visualizes clusters of characteristics anything that can be defined by

multiple characteristics over time can utilize PROTERAN.

70

References

[1] Department of Energy. Primer On Molecular Genetics. Washington, DC: U.S.
Department of Energy, Office of Energy Research and Office of Health and
Environmental Research, 1992.

[21 Karp, Gerald. Cell and Molecular Biology: Concepts and Experiments. 2M ed.
Toronto: John Wiley & Sons, Inc., 1999.

[3]1 Wikipedia, the free encyclopedia. 2003. “Gene.” [online] Available on the WWW at

<http://en. wikipedia.org/wiki/Gene>.

[4] Shing, Leming. 2002. “DNA Microarray (Genome Chip): Monitoring the Genome on

a Chip.” www.Gene-Chips.com. [online]. Available on the WWW at <http://www.gene-

chips.com/GeneChips.htm!#What>

[5] “Affordable three-color microarray scanner” [online]. Available on the WWW at

<http://www laboratorytalk.com/news/gti/gti1 28 . him1>

[6] “DNA Microarray Methodology” [online]. Available on the WWW at

<htip://www.bio.davidson.edu/courses/genomics/chip/chipQ.himl>

2

[7] Sturn , Alexander. “Cluster Analysis for Large Scale Gene Expression Studies.’
Masters thesis. The Institute for Genomic Research, 2000.

[8] “The Quest for the Protein Chip.” The Economist. March 13, 2003. [online].
Available on the WWW at
<http://www.economist.com/science/tq/displayStory.cfm?Story_i1d=1620807>

[9] Shamir, Ron and Sharan, Roded. “Algorithmic Approaches to Clustering Gene
Expression Data.” In Current Topics in Computational Biology, edited by T. Jiang, T.

Smith, Y. Xu, M.Q. Zhang. MIT Press, 2002.

71

[10] “A tutorial on Clustering Algorithms.” [online]. Available on the WWW at

<http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial html/>

[11] Eisen, Michael B., Paul T. Spellman, Patrick O. Brown, and David Botstein. 1998.
Cluster Analysis and display of genome-wide expression patterns. PNAS USA 95
(December): 14863-14868.

[12] Schroeder, Michael and Katopodis, George. “Can hierarchical clustering improve
the efficiency of non-linear dimension reduction with spring embedding?” In
Proceedings of the ECML/PKDD Workshop on Visual Data mining, Helsinki, Finland,
2002, edited by S.J. Simoff, M. Noirhomme-Fraiture, and M.H. Bohlen. 2002.

[13] Craven, Mark. 2002. “Clustering Gene Expression Data (Part 1).” Biostatistics &
Medical Informatics at UW-Madison. [online]. Available on the WWW at

<http://www.biostat.wisc.eduw/bmi576/fall-2002/lecture15.pdf>

[14] Tamayo, P., D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovky, E.S.
Lander, and T.R. Golub. 1999. Interpreting patterns of gene expression with self-
organizing maps: Methods and application to hematopoietic differentiation. PNAS US4
96 (March): 2907-2912.

[15] Koren, Yehuda and Harel, Daveid. “A two-way visualization method for clustered
data” In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington D.C. ACM Press, 2003.

[16] “Self-Organizing Maps.” Helsinki University of Technology. [online]. Available on

the WWW at <http://www.cis.hut.fi/research/som-research/>

[17}] “Data Analysis and Clustering.” Stanford Microarray Database Help. [online].

Available on the WWW at <http://smd.stanford.eduw/help/clustering.shtml>

72

[18] Wu, Hank. 2004. “Cluster Analysis and Visualization.” [online]. Available on the

WWW at <http://gap.stat.sinica.edu.tw/Talks/Hank-ClusterVisualization.pdf>

[19] Hautaniemi, S., “Analysis and Visualization of Gene Expression Microarray Data in
Human Cancer using Self-Organizing Maps.” Machine Learning 52 (2003): 45-66.

[20] Kaski, S., Nikkild, J., Toérénen, P., Castrén, E., Wong, G. “Analysis and
Visualization of Gene Expression Data using Self-Organizing Maps.” In Proceedings of
NSIP-01, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing. 2001.
[21] Cheng, Yizong and Church, George M. “Biclustering of Expression Data.” In
Proceedings of the Eighth International Conference on Intelligent Systems for Molecular
Biology, 93-103. AAAI Press, 2000.

[22] Huang, Zhexue. “A Fast Clustering Algorithm to Cluster Very Large Categorical
Data Sets in Data Mining.” In SIGMOD Workshop on Research Issues on Data Mining
and Knowledge Discovery (SIGMOD-DMKD 1997), Tucson, Arizona, May 1997.

[23] Chueng, Y.M. “k*-Means: A new generalized k-means clustering algorithm.”
Pattern Recognition Letters 24 (2003): 2883-2893.

[24] Schroeder, M., Gilbert, D., van Helden, J., and Noy, P. 2001. Approaches to
visualization in bioinformatics: from dendrograms to Space Explorer. Information
Sciences: An International Journal 139 (November): 19-57.

[25] Gene Network Sciences, Inc. BiCluster - Microarray Data Analysis: Direct Gene-
Sample Correlations. 2001.

[26] Yang, J., Wang H., Wang, W., and Yu, P. “Enhanced Biclustering on Expression
Data.” In Proceedings of the 3 IEEE Conference on Bioinformatics and Bioengineering

(BIBE), 321-327. 2003.

73

[27] Parida, L., Zhou, R., and Feng, J. “Protein Folding Trajectory Analysis using
Patterned Clusters.” Under submission.

[28] Zhou, Ruhong, Bruce J. Berne, and Robert Germain. 2001. The free energy
landscape for § hairpin folding in explicit water. PNAS USA 98 (December): 14931-
14936.

[29] Kim, S.K., Lund, J., Kiraly, M., Duke, K., Jiang, M., Stuart, J.M., Eizinger, A.,
Wylie, B.N., and Davidson, G.S. 2001. A gene expression map for Caenorhabditis
elegans. Science 293 (September): 2087-2092.

[30] Chalmers, M. “Using a Landscape Metaphor to Represent a Corpus of Documents.”
In Proceedings of the European Conference on Spatial Information Theory 93, edited by
Frank, A., and Campari, 1., 377-390. 1993.

[31] “OpenGL. The Industry's Foundation for High Performance Graphics™ [online].

Available on the WWW at <www.OpenGL.org>

{32] Grogono, Peter. Getting Started with OpenGL. Montreal: Concordia University,

2003.

74

Appendix

APPENDIX A

Below lists some of the most commonly used similarity distances [7]:
Let x and y be n-component vectors with x and ; being the mean of each vector

respectively.

1. Pearson correlation coefficient

ZLI (x; - ;)(J’i - E

= = (A.1)
-0 Y 0 -
2. Uncentered Pearson correlation coefficient
; XiYi
;’f‘ Y — (A.2)
I -0 0=)
3. Squared Pearson correlation coefficient
2
%
: ¥ (A3)
\/Zi:l (x; — x)? \/ZH ¥ - y)2
4. Averaged dot product
1 n
D IERY (A4)
5. Covariance
Z';l (xi —-x)(y,. —y) (AS)
! (n-1
6. FEuclidian distance
2=’ (A.6)

75

7. Manhattan distance

> -yl (A7)

76

APPENDIX B
Given a set denoted as X
X=[12461215254568 67 65 98]
there are many statistics that could be obtained from this set, such as mean, standard
deviation, variance and co-variance. On the set X the mean would be defined as X bar

and would be denoted with the following formula.

v ?=1Xi
X = (B.1)

The mean is a middle point but from the following two examples it does not
reveal how much the data varies. For example both of the datasets below have a mean of
10 but dataset 1 varies a lot more then dataset 2.

[081220}and [89 11 12]

Standard deviation offers a solution to this problem and is calculated using the

Z

Dataset 1 has a standard deviation of 8.3266 while Dataset 2 has a standard

following formula:

deviation of 1.8257. Variance is also another term that is essentially the same as standard

deviation.

PEDINCES0)
(n=1)

(B.3)

Standard deviation and variance are only applicable to one dimension whereas
covariance is always applied to two dimensions. This is an important property for

analyzing multivariate data. See (A.5) for formula of covariance:

77

Note that covariance can be applied on the same set cov(X,X), this would
simplify to the variance of X. Basically covariance is a statistic representing the degree
to which two variables vary together.

For an n-dimensional data set n! different covariances can be calculated.
(n—2)1*2

All these measurements can be represented by an n x n matrix called a covariance matrix
denoted as.

C"*" = (cij, ¢ij = cov(Dim;, Dim;)) (B.4)

Two other mathematical properties Eigenvectors and Eigenvalues are involved in

PCA. Eigenvectors are vectors that when multiplied by a square matrix produce a

multiple of the original vector. It must be noted that not all square matrices have

eigenvectors and if they do then an n x n matrix will have n eigenvectors. Each

eigenvector produces a multiple of the original vector; this multiple is known as the

eigenvalue and always produces the same result no matter how much the eigenvector is

scaled. Another important property of eigenvectors is that they are orthogonal to each

other.

78

