Software Process Modeling:
Investigations Using the Rational

Unified Process

Elena Roxana Tudoroiu

A Thesis
In
The Department
Of

Computer Science and Software Engineering
Presented in Partial Fulfilment of the Requirements

For the Degree of Master of Computer Science

Concordia University
Montreal, Quebec, Canada
March 2005

© Elena Tudoroiu, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04454-3
Our file Notre référence
ISBN: 0-494-04454-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Software Process Modeling: Investigations using the Rational Unified

Process

Elena Tudoroiu

The Rational Unified Process emphasizes the adoption of many best
practices of modern software development, as a way to reduce the risk
inherent in developing software. Three important characteristics such
as use-case driven, architecture centric and iterative and incremental
approaches make it a unique process that can guide software teams in

the development of complex software systems in the fastest way.

The current approach used to model visually the Rational Unified
Process is by using mostly activity diagrams, which prove to be
deficient in expressing a unified view of roles, activities and artifacts in

the same diagram.

We propose the use of Role Activity Diagrams (RAD), and our own
extended version, XRAD, for Business Modeling, Requirements,
Analysis and Design, Implementation, Test, and Deployment
disciplines, as elements of originality of this thesis. We demonstrate
through examples that XRAD process modeling result in superior
expressive power when compared to the other diagrams that are

available in the literature.

Acknowledgements

I would like to express my sincere gratitude to Dr. Paquet for his
guidance, support and encouragement throughout the course of my
research described in this thesis. | hope that the results obtained during

this period to be a good recompense of all these conjugated efforts.

Table of Contents

CHAPTER 1 : INTRODUCTION....cciiirecrirvrernsnsnrenseasiersessassnsesssasesssesasns 1
1.1 CONTEXT AND SCOPE ...ttt ettt e vt e s e e s everiran e s e senaaniaes 1
1.2 THESIS STATEMENT ...ovviieeeetiteieeeiieisieteseseeteeeeeeresteiesaeeaeeeaeeeeseenereeanes 2
1.3 CONTRIBUTIONS ..ovteiieeee ittt eeeeiee s e atatiae s e erraaesseesssrtaaseesassernannnes 2
14 STRUCTURE OF THE DISSERTATIONutttuneeineiieieeieeeeeeeeeeunneerereneeenans 3

CHAPTER 2 : BACKGROUND........... cereenrersressesasenneressanersare 4
2.1 HISTORY oo e et 4
2.2 PROCESS MODELING DIAGRAMS.....cocttittieee et eeeeeeveaees 5

2.2.1 Activity Diagrams (AD) .co.ooioriiiiiineciec e 5
222 Business Process Modeling Notation (BPMN)................cc....... 8
223 Role Activity Diagrams (RAD)ccccooiiriiiiiiiieccen, 12
2.3 PROCESS FRAMEWORKScuiiiiiiiiiiiiieiriettsieeene e e e eieeea e s eeseeaeenees 13
231 Software Process Engineering Meta-model (SPEM)............... 13
24 SUMMARY <ottt et e e e et e e ae e e ee s 18

CHAPTER 3 : THE RATIONAL UNIFIED PROCESS ...vvveevveveeeres 20
3.1 OVERVIEW OF THE RATIONAL UNIFIED PROCESSc.ocveviiiieeeeeennnn. 20
32 CHARACTERISTICS OF THE RATIONAL UNIFIED PROCESS........ccccc..... 24

3.2.1 Use-case driven approachc..ceceecieioieiiiiicicicnicieneeieans 24
3.2.2 Architecture-centric approach...........ccoccevvviieiiiinniinecrns 25

323 Iterative and incremental approach.........ccccccoeviniiiiincninnnn. 28

33 THERUPPHASESoooiiiiiiiieierc et 31
33.1 INCEPHION ..ot 31
332 Elaborationcoooiiiiiiiiiiticee e 32
333 CONSITUCTION ...ttt e 32
334 Transition ...t 32

3.4 THE RUP CORE PROCESS DISCIPLINEScccccovininiiiiiiinicieienes 33
34.1 Business Modeling DisCiplingc.ccoeeeevivevineniennennencne. 33
34.2 Requirements DisCIPlNe.........cccoooeiiiiniiiniiiiiicciccecce 35
343 Analysis and Design Discipline..........cccoovviininiiiiinicnnnnne 37
344 Implementation Discipling........cccccocevivvnincininivcccninccneennen 39
345 Test DISCIPINEeoiviiiiiieiecec e 41
3.4.6 Deployment DiSCIPINEooveviiiiiiiinieieenieeceieeceeeen 43
347 Limitations with the existing modelccccooiniinne. 44

3.5 SUMMARY ..ottt e 46

CHAPTER 4: RAD APPLIED TO RUP ’ 47

4.1 MODELING WITH RAD ..., 47
4.1.1 Representing Roles and ACtiVItIes.......ooceecerverieenicniinieenceaen. 47
4.1.2 Representing Roles Being started — Role Instantiation............ 49
4.1.3 Representing interactions.ccceveeeeereerereirneeenereoneereereenneens 50
4.14 Representing Roles and States.........c.coooeevvrieneiiciinnenceneene 51
4.1.5 Representing Alternative Courses of ACtionc..ccccceeeennen. 52

vi

4.1.6 Representing concurrent threads of action...............c.cocoe. 56

4.1.7 Representing external EVENLscocovveevirviiiniciiencnennnenn 59
4.1.8 Modeling the materials in the processccccccvvininncinnne. 60

42 RADSAPPLIED TORUP ..o 63
4.2.1 First version RADSocoiiiiiiiiiiecc e 64
422 Second version RADS ...t 71
423 Third version RADSs (XRAD)...ccccoooiiiiniiiiiiiiiiecccee 86

4.3 SUMMARY ..ottt 98
CHAPTER S : CONCLUSION .acoiririeseesarisesssnssessenssessesasssnsssessassssassaeee 929
CHAPTER 6: FUTURE WORKuitrirtrneecennnnsnnseessnsssissncsneenss 101
CHAPTER 7 : REFERENCES..........ivinnniinsnnniscnnssecnsanencssnns 103
APPENDIX A: RUP WORKFLOWS BY DISCIPLINE.......c.ccoeeeveee 107
Al BUSINESS MODELING.......ccocoiiiimiiiiieniieinc e sneeas 107
Al.l Business Modeling Workflow ... 107
A.1.2 Business Modeling Workersccccoveieieninninniincenn, 108
A.l3 Business Modeling ACHVIHEScocuerveeieriiieniciienrescenees 109
A.1.3.1 Business Process Analyst ACHVILESccevveirverrrreriirnnninnne 109
A.1.3.2 Business Designer ACHVILIESccocvrviviiieereiiiiiieeiiiireeiieenans 111
A.1.3.3 Business-Model Reviewer ACtiVItIES.....ccoevvvireeeineenireniinnnne 111
A.1.4 Business Modeling Artifacts..........cccooeevrviecirvoienrrienie e, 112
A.1.4.1 Business Process Analyst Artifacts.......ccoccevvevueinieenierinennns 112

vii

A.1.4.2 Business Designer Artifacts.........ccocooceivieniiniiiciiininnnn. 113

A.1.4.3 Business Model Reviewer Artifacts.......c..ccoeeevveiienicnienneen 114
A.lS Business Modeling Details ..o 114
A2 REQUIREMENTS.......ootiiiitiiiteeiiieiee e e ee e e e eeeeeeeeeeeeeeeareeseeeeeseerereareaenaan 122
A2l Requirements WOrkflowcccoccoiiiiiiniiiinie 122
A.2.2 Requirements WOIKErscooveiiirimmieneriineneereeeeceienne 122
A23 Requirements aCtiVITIeSccveerreeniieeonieniienreieenec e 124
A.23.1 System Analyst ACHVILIES......ccceorriiriienieniirieeecrieeeeree e 124
A.2.3.2 Requirements Specifier ACUHVILESccooeeeveveeiiriieireeennnenn 125
A.2.3.3 User Interface Designer ACVItIES.....cvevverecrriernieereeenieennne 126
A.2.3.4 Requirements Reviewer ACHVILIEScoceeovevieeieniinreniieniene 126
A.2.3.5 Software Architect ACHVIHIES......cccoveveeriiiniiniiiecriceeinene 126
A.24 Requirements artifactscocceeveriinimriiiienenice e 126
A.2.4.1 System Analyst Artifactsc.cccoovcvemvieniiriinicineceee 127
A.2.4.2 Requirements Specifier Artifacts........cccoccvvenenievieniceneennneens 128
A.2.43 User Interface Designer Artifactscocccceeeneeeirencnenecene. 129
A.2.4.4 Requirements Reviewer Artifacts........cccooovvnrnienicninnnnn, 129
A.2.45 Software Architect Artifactsccocevvevinviniiiniiiececiee 129
A.2.5 Requirements detailS........coocoveiiiiiiiinieniiiienenieeceeeeees 130
A3 ANALYSIS AND DESIGN......ccooouiiimiiiiiiiiiiieincc e 135
A3.1 Analysis and Design Workflow ... 135
A.3.2 Analysis and Design Workers.......c.cooeveeeinieiieicniinninnennns 136

viii

A33 Analysis and Design ACtIVIHIEScovvieeeniiieniecriiiiininieeeene, 137
A.3.3.1 Software Architect ACUVILIES.....ccoorvririiiiiiiiiiiiciiieeeeee. 137
A.3.3.2 Designer ACHVILES. ..c.ouviieiiieeiiiieeniieeeiieeeaeeenneeeereeeenaieeens 138
A.3.3.3 Capsule Designer ACHVIHES......cccouevivieriiiiniioiciirececeieeene 140
A3.3.4 Database Designer ACHVIHEScoccovveerriiniiiiieniniieenieenae 140
A3.3.5 Architecture Reviewer ACHVIHES........coceevuereiieeneinieenenicene 140
A.3.3.6 Design Reviewer ACUHVIHEScoevereriiieniiieniiiic e 140
A34 Analysis and Design Artifactsccccoevviviienireieniiniinne, 141
A3.4.1 Software Architect Artifactscccevvervrivesviceeeieese e, 141
A3.4.2 Designer Artifactsccoooivirieiiienicoiinie e, 144
A3.43 Capsule Designer Artifactsccccccecveviinniecninincenn. 146
A3.4.4 Database Designer Artifactsc.coccoeviinininiiiiciinennn, 146
A3.4.5 Architecture Reviewer Artifactscocvecvenieceeniiineciennnns 146
A3.4.6 Design Reviewer Artifacts.........ccoceveinieniinienieniensceninnienne, 146
A35 Analysis and Design Detailsccccovviviiniiieviniiieee, 147
A4 IMPLEMENTATIONcocoiviiiiiiiiiiiiiiee ettt 153
A4.1 Implementation WOrkflow..........cccooimiiiininiiiiniiciine, 153
A42 Implementation WOTKETScccooemiriiniiniiiiiieccrc e 153
A43 Implementation aCtiViti€s........cccocererueveeieionrnceneseneenaenen, 155
A.43.1 Software Architect ACHIVILIES......ceeeviviiviieriririeeareerieeeiieeee, 155
A4.3.2 Implementer ACIVILIES.ccooieirvriiieieienieiiniereeeene e 155
A4.3.3 Integrator ACHVILIEScoueveiiiiiiiiiiiiiiiceiiiee e 156

A.4.3.4 Code Reviewer ACUHVILEScccccovuiiiiiiiiiiiiiiiiciiee e 157
A4.4 TImplementation artifactscccooooiiviiviinniiiii, 157
A.4.4.1 Software Architect Artifacts ... 157
A4.4.2 Implementer Artifactsccccooviiviiiiiniimiiiniciieeeees 157
A4.4.3 Integrator ArtifactS.......cococeiiiiieiinimiieiniiiiiiiic e, 158
A.4.4.4 Code Reviewer Arfifacts........cooeieiiiiniiiiiiiinieniiinirceicenee, 158
A45 Implementation detailS.........cccooiiiiiiiiiiiiiiiiiiis 158
A5 TESTING ...ooiiiiiiiiiicccc et 161
AsS1 Testing WOrkflow ..o, 161
A.5.2 Testing WOTKETS......coiiiiiiiiiiiiiicee e 162
AS53 TESUNZ ACHIVITIES ..evevvreeiiieiiireriireeieeriee st e estreseeeseeesiee e 163
A.5.33 Test Designer ACHVILIEScoovvveeriereinieriiieienee e neeen 165
A5.3.4 Tester ACHVITIES .cceeiieriiriiriiiieciieie et 166
A.5.4 Testing artifactS........ccveriiiiriieeiieeiieeee e esre e 167
A5.4.1 Test Manager Artifactscccooeeiiineeiiicnieniieeee e 167
A.5.42 Test Analyst Artifactscccccoeivveiiirieniieneenc e 168
A543 Test Designer Artifactsccoccoveiniiiniiniiiinienicnceie e 168
A.5.4.4 Tester Artifacts......oocueioiiiieiieiiiiceeee e, 169
ASS Testing detailsco.ccviiiiiiee e 170
A6 DEPLOYMENT ...oooiiiiiiiiiiiicie it 176
A.6.1 Deployment workflow ..o 176
A.6.2 Deployment WOTKErSccoviiiiiiiniiiiiiicniecceree e 177

A63 Deployment aCtiVILIESccocoovviiiiiiiiinieinr e, 178

A.6.3.1 Deployment Manager ACHIVItIESceivviiiiieiinniiiiicn 178
A.6.3.2 Course Developer ACHVILIESeveerieriirerieeeie e 179
A.6.3.3 Implementer ACHVIIES......cccoovevieiininiiniiiiiniiiiee e 179
A.6.3.4 Graphic Artist ACHVILIES ...cceeriiriieiiiniireeene e 180
A.6.3.5 Technical Writer ACUVILIES........ccovuiiiiiiiiiiiiiiiciicrne e 180
A.6.3.6 Configuration Manager ACUVItIEScccovvvrericrrreeiniernenienneenn 180
A.6.4 Deployment artifacts........ccocceeriiiiiiiiniiiiiiiiiiiiicecec 180
A.6.4.1 Deployment Manager Artifacts.......ccc.ccovcevvvienenncenennnnennn. 181
A.6.4.2 Course Developer Artifacts.........ccoovecereeniieinnenvceneeieneenns 182
A.6.4.3 Implementer Artifacts.........cccoooviiieirireiiinniteee e 182
A.6.4.4 Graphic ArtiSt ATtifacts......c.ccooeivoiiriiiniceniirrcreeeenee e 182
A.6.4.5 Technical Writer Artifactsccceeveveeoenininiicnceneeceenens 182
A.6.4.6 Configuration Manager ArtifactsS........ccccceevirieiorenienieneencens 182
A6.5 Deployment detailscocooiiiiiiiiiiiiiceeecceeeeees 182
AT ACTIVITY DIAGRAMS ..ottt 187
A.8 RADSAND XRADS....cccoiiiiiiiiiiiiiieiireetcere ettt e 193

Xi

List of Figures

Figure 1: Activity diagram for the Testing discipline.........ccccooivvinnniiiinn 7
Figure 2: Example of a BPD with Pools..........cccoccoiiiii 11
Figure 3: Levels of modeling ... 13
Figure 4: Reifying the Conceptual Model: Roles, Work Products, and
ACTIVITIES ettt sttt st st s et 14
Figure 5: Example of Class Diagram in SPEM ..., 15
Figure 6: Example of Package Diagram in SPEM.............ccoociiiininnnne. 16
Figure 7: Example of Activity Diagram in SPEM............c.ocooiinnn. 17
Figure 8: Example of use-case diagram in SPEM ... 18
Figure 9: Overview of the phases and disciplines of the Rational Unified
PrOCESS ot et 22
Figure 10: Activity diagram for the Business Modeling discipline 34
Figure 11: Activity diagram of the Requirements discipline........................... 36
Figure 12: Activity diagram of the Analysis and Design discipline 38
Figure 13: Activity diagram of the Implementation discipline....................... 40
Figure 14: Activity diagram of the Test disCIplineccoceeienveceaneenieninnn. 42
Figure 15: Activity diagram of the Deployment discipline..........c.ccccceeeenn. 43

Figure 16: Excerpt from the Activity diagram for the Business Modeling
discipline featuring roles, activities and artifacts (Figure 117 to Figure

119, page 190-192) ...coooiviiiiiiiiiieer e 45
Figure 17: Representing roles and activities (excerpt from Figure 136, page
209) et ettt ettt sttt 48
Figure 18: Representing role instantiation and role “ending” (excerpt from
Figure 1306, page 209) ..o 49
Figure 19: Representing part-interactions (excerpt from Figure 123, page 196)
.. 50
Figure 20: Representing states (excerpt from Figure 130, page 203).............. 51
Figure 21: Representing alternative threads (excerpt from Figure 133, page
200) .ttt ettt ettt enes 52
Figure 22: Representing a predicate and two alternative threads (excerpt from
Figure 130, page 203) ..ooooriiiiieecee e 53
Figure 23: Representing conditional iteration (excerpt from Figure 130, page
203) et st e as 54
Figure 24: Joining-up alternative threads (excerpt from Figure 142, page 214)
.. 55
Figure 25: Representing threads that do not recombine (excerpt from Figure
130, PAZE 203) ...t 56
Figure 26: Representing three concurrent threads (excerpt from Figure 123,
PAZE 190) ..t 57
Figure 27: Joining-up concurrent threads (excerpt from Figure 123, page 196)
.. 58

Xii

Figure 28: Another case of threads that don’t recombine (excerpt from Figure

139, PABE 212) et 59
Figure 29: Representing an external event (excerpt from Figure 130, page 203)
.. 60
Figure 30: Representing the production of artifacts during the “micro-
activities” (excerpt from Figure 127, page 200)cccoovviiviiniccnnene. 61
Figure 31: Representing the transfer of artifacts from one role to another at
interaction time (excerpt from Figure 127, page 200)cccovveeernnene. 62
Figure 32: Representing the production of an artifact during an interaction
(excerpt from Figure 127, page 200)coccovviviniinininioienieeeiineeieaens 63
Figure 33: Role Activity Diagram for the Business Modeling discipline (v. 1)
.. 65

Figure 34: Role Activity Diagram for the Requirements discipline (v. 1)....... 66
Figure 35: Role Activity Diagram for the Analysis and Design discipline (v. 1)

.. 67
Figure 36: Role Activity Diagram for the Implementation discipline (v. 1) ... 68
Figure 37: Role Activity Diagram for the Test discipline (v. 1)......ccccoceee. 69
Figure 38: Role Activity Diagram for the Deployment discipline (v. 1) 70
Figure 39: Role Activity Diagram for the Business Modeling discipline (v. 2)

.. 72

Figure 40: Role Activity Diagram for the Requirements discipline (v.2)........ 73
Figure 41: Role Activity Diagram for the Analysis and Design discipline (v. 2)

.. 75
Figure 42: Role Activity Diagram for the Implementation discipline (v. 2) ... 76
Figure 43: Role Activity Diagram for the Test discipline (v. 2)..c..cccceeeencne. 78
Figure 44: Role Activity Diagram for the Deployment discipline (v. 2) 79
Figure 45: Role Activity Diagram for the Business Modeling discipline entities

FLOW ettt 81
Figure 46: Role Activity diagram for the Business Modeling discipline entities

FIOW (CONEA.) vttt e et ae et e eeaes 82
Figure 47: Role Activity Diagram for the Business Modeling discipline entities

FLOW (COMEAL) .ottt ettt s s e ee e 83
Figure 48: Role Activity Diagram for the Business Modeling discipline entities

FlOW (CONEA.).uveeiiieeiee et et e 84

Figure 49: The flow of artifacts at interaction time between the Software
Architect, the Designer and the Design Reviewer (excerpt from Figure

134, PAZE 207) .ttt 88
Figure 50: Representing artifacts being shared between roles (excerpt from

Figure 128, page 201) c.cooivieeiiiiineeieei ettt 89
Figure 51: Representing a workflow detail as an activity performed by a single

role (excerpt from Figure 137, page 210)coceiiniiniiiiniiiieiecen, 90
Figure 52: XRAD for the Business Modeling discipline entities flow 91
Figure 53: XRAD for the Requirements discipline entities flow..................... 92
Figure 54: XRAD for the Analysis and Design discipline entities flow.......... 93

Xiii

Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:

XRAD for the Implementation discipline entities flow.................. 94
XRAD for the Test discipline entities flowcocccoooeeiiinnnnn. 95
XRAD for the Deployment discipline entities flowc......... 96
Activity diagram for the Business Modeling discipline 107
Activities by worker in the Business Modeling discipline 109
Artifacts produced in the Business Modeling discipline 112
Business Modeling detail: Assess Business Status 115
Business Modeling detail: Describe Current Business................. 116
Business Modeling detail: Identify Business Processes............... 117
Business Modeling detail: Refine Business Process Definitions. 117
Business Modeling detail: Design Business Process Realizations118
Business Modeling detail: Refine Roles and Responsibilities 119
Business Modeling detail: Explore Process Automation 120
Business Modeling detail: Develop a Domain Model.................. 121
Activity diagram for the Requirements discipline........................ 122
Activities by worker in the Requirements discipline.................... 124
Artifacts produced in the Requirements discipline....................... 127
Requirements detail: Analyze the problemcccccooeeiiie 130
Requirements detail: Understand Stakeholder Needs 131
Requirements detail: Define the system...........ccocevceiiienencnnnnne 131
Requirements detail: Manage the scope of the system................. 132
Requirements detail: Refine the system definition....................... 133
Requirements detail: Manage changing requirements 134
Activity Diagram for the Analysis and Design discipline............ 135
Activities by worker in the Analysis and Design discipline......... 137
Artifacts produced in the Analysis and Design discipline............ 141
Analysis and Design detail: Perform Architectural Synthesis 147
Analysis and Design detail: Define a candidate architecture 148
Analysis and Design detail: Analyze Behavior.........c...ccccoc.. 149
Analysis and Design detail: Design Componentscccccee....... 150
Analysis and Design detail: Design the Database......................... 151
Analysis and Design detail: Refine the architecture 152
Activity diagram for the Implementation discipline..................... 153
Activities by worker in the Implementation discipline 155
Artifacts produced in the Implementation discipline 157
Implementation detail: Structure the implementation model........ 159
Implementation detail: Plan the integrationc.ccoceeeiene 159
Implementation detail: Implement components........c.c.coeueveee. 159
Implementation detail: Integrate each subsystemc........... 160
Implementation detail: Integrate the systemccccoeeeieiene 160
Activity diagram for the Testing discipline..........ccccceovevninnnnns 161
Activities by worker in the Testing discipline..............c.cocceeeee. 163
Artifacts produced in the Testing discipline............cccccooeeirnnne. 167
Testing detail: Define Evaluation MisSS10n.........ccccooeviiivecnnennn. 170

Xiv

Figure 99: Testing detail: Verify Test approach ..., 171

Figure 100: Testing detail: Validate Build Stabilityccccociinn 172
Figure 101: Testing detail: Test and Evaluatecccccoviiiiiinninni, 173
Figure 102: Testing detail: Achieve acceptable missioncocccceceeenen. 174
Figure 103: Testing detail: Improve test assets..........ccoceevvvivieriiicnicnnenn. 175
Figure 104: Activity diagram for the Deployment discipline 176
Figure 105: Activities by worker in the Deployment discipline 178
Figure 106: Artifacts produced in the Deployment discipline 181
Figure 107: Deployment detail: Plan deployment.............cccooiniiininnen 183
Figure 108: Deployment detail: Develop support material............ccccccoeceeie. 183
Figure 109: Deployment detail: Manage Acceptance Test........cccccoveeieens 184
Figure 110: Deployment detail: Produce Deployment Unit.............ccccceeee. 184
Figure 111: Deployment detail: Beta Test Product.............ccccoceiiinnnnnnnns 185
Figure 112: Deployment detail: Package product..............cccoiiiiiinnnnnn. 185
Figure 113: Deployment detail: Provide access to download site.................. 186
Figure 114: Activity diagram for the Business Modeling discipline including
TOLES -ttt et et et 187
Figure 115: Activity diagram for the Business Modeling discipline including
TOLES (COMEA.) erieiiiiieiic ettt ettt e eearaee e 188
Figure 116: Activity diagram for the Business Modeling discipline including
FroY (1o (o0 o1 ¢ 1 TN OO 189
Figure 117: Activity diagram for the Business Modeling discipline including
roles and artifactsoooiiiiiiciii e 190
Figure 118: Activity diagram for the Business Modeling discipline including
roles and artifacts (CONtd.)......coiiiiiviiiiiii e 191
Figure 119: Activity diagram for the Business Modeling discipline including
roles and artifacts (CONtd.)........oooeeiiiiiiiiiiiii e 192
Figure 120: RAD and XRAD stencil containing the symbols and notations
USEA L.ttt 193
Figure 121: Legend with the abbreviations used for the notations on the
artifacts, in the XRAD diagrams...........cccueevveeviiecieeiiiiieeeeeeee e 194
Figure 122: Role Activity Diagram for the Business Modeling discipline (v. 1)
.. 195
Figure 123: Role Activity Diagram for the Business Modeling discipline (v. 2)
.. 196
Figure 124: Role Activity Diagram for the Business Modeling discipline
ENEILIES TIOW...oiiiiiiii e 197
Figure 125: Role Activity Diagram for the Business Modeling discipline
entities flow (COMEA.) .cvviii i 198
Figure 126: Role Activity Diagram for the Business Modeling discipline
entities FIow (CONEA.) veereeeee e, 199
Figure 127: Role Activity Diagram for the Business Modeling discipline
entities fIOW (CONTAL) conuereiieiie e 200
Figure 128: XRAD for Business Modeling discipline entities flow 201

XV

Figure 129:
Figure 130:
Figure 131:
Figure 132:

1y

Figure 133:

Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:

Role Activity Diagram for the Requirements discipline (v. 1)... 202
Role Activity Diagram for the Requirements discipline (v. 2)... 203
XRAD for the Requirements discipline entities flow................. 204
Role Activity Diagram for the Analysis and Design discipline (v.

... 205
Role Activity Diagram for the Analysis and Design discipline (v.

... 206
XRAD for the Analysis and Design discipline entities flow...... 207

Role Activity Diagram for the Implementation discipline (v. 1) 208
Role Activity Diagram for the Implementation discipline (v. 2) 209

XRAD for the Implementation discipline entities flow 210
Role Activity Diagram for the Test discipline (v. 1)....c............. 211
Role Activity Diagram for the Test discipline (v. 2).....c.ccccu...... 212
XRAD for the Test discipline entities flow...........c..cceevveeenens 213
Role Activity Diagram for the Deployment discipline (v. 1)..... 214
Role Activity Diagram for the Deployment discipline (v. 2)..... 215
XRAD for the Deployment discipline entities flow 216

Xvi

Chapter 1 : Introduction

Process modeling is applied in a vast diversity of application areas such as
business modeling, simulation, production engineering and, our focus in this
dissertation, software process modeling. Software process modeling is about the
unified representation of all process elements pertaining to a particular software
development process, including the activities of the process (e.g. programming,
unit testing, integration, risk analysis, etc.), the different roles responsible to
undertake these activities, (e.g. designer, programmer, analyst, etc), and the
various artifacts produced and consumed by these activities (e.g. program files,

design diagrams, requirements, deployment plan, etc.).

1.1 Context and Scope

This thesis dissertation is the first one in a project at the Department of Computer
Science and Software Engineering, which aims at the development of a formal
context-driven software process development model, i.e. a context-driven meta-
model enabling the representation of software development processes. It is
important to note that this particular dissertation does not claim to express
processes in a formal manner, but rather to explore the process modeling
techniques used, particularly in the RUP, in order to establish their deficiencies
and provide alternate solutions. This investigation will further the understanding
of the team in the area of process modeling through concrete observation,
enabling different critical viewpoints necessary for the development of an

effective process modeling meta-model.

Our observation is based on the Rational Unified Process, and its use of Activity
Diagrams to represent its process model. Note that in order to understand the
process itself versus its model, we made a thorough review of the entire process,

presented herein.

1.2 Thesis Statement

The process modeling techniques used to represent the RUP, mostly activity
diagrams, are deficient in that they cannot show a unified view of process roles,
activities, and artifacts in the same diagram. We investigate these deficiencies,
and propose alternate solutions to enable a better process modeling
diagramming technique enabling the unification of these three mandatory

elements of all process models in the same diagram.

1.3 Contributions

Among the main contributions in this thesis, are the following:

¢ Development of several role activity diagrams (RAD) for the Business
Modeling, Requirement, Analysis and Design, Implementation, Test and
Deployment disciplines, as an element of originality. Each RAD diagram is
developed in two different versions in order to improve their structures and
readability.

¢ Development of the business modeling artifacts flow using RAD.

¢ Development of a new version for Business Modeling, Requirement,
Analysis and Design, Implementation, Test and Deployment disciplines,
called XRAD, as a combination of the second version and the artifacts, to
become more attractive, expressive, and more compact than the original
versions.

¢ Express why the new XRAD version is an element of originality.

« Development of a document legend to abbreviate the artifacts in each

diagram to ensure readability.

e Explain the differences between the first and the second version for each
RAD.

1.4 Structure of the Dissertation

In order to achieve our purpose, we first study existing processes used for
developing software products. In Chapter 2, we will present an overview of the
area of software process modeling. In Chapter 3, we will take a close look at
RUP and to the modeling of roles, activities and artifacts developed in the core
disciplines. In Chapter 4, we will be interested to give an alternative approach to
modeling RUP, namely RAD diagrams, which prove to be superior concerning
the detail and clarity they provide in modeling RUP. In Chapters 5 and 6, we will
give our conclusions on the problem studied and present the future work in this
field.

Chapter 2 : Background

From the software engineering perspective, the term “process modeling” is
associated with the modeling of the dynamic behavior of organizations,
businesses or systems. Such systems can be thought as operating or behaving
as a number of interrelated processes. In order to understand the systems, we
build “process models” according to particular viewpoints and using particular
modeling techniques. We present in this chapter a historical overview of process
modeling, some of the techniques and notations used to represent process
models. Finally, we present SPEM, the Software Process Engineering Meta-

model, used to develop operational process models.

2.1 History

Historically, most results of software process modeling available today have their
origins in concerns for the software life cycle and the software development
process raised by the emergence of the “software crisis” in the 1960s [33]. In the
1970s it was clear that the production of computer based systems, and of
software specifically, presented problems that were not usually present in more
familiar 'manufactured’ products. As computer systems became more complex
and more pervasive, this contrast became increasingly more marked. The first
conference on the 'Software Process' was held in England in 1984 and has been
followed by many others since [35]. Various models of the software development
process have been suggested and a number of modeling techniques developed,
frequently associated with some form of computer support to provide assistance

for software developers in following such development processes.

Whilst work to model and support the software development process is clearly
important, a major development has been to apply the emerging ideas to other
processes, in particular processes underlying the operation of businesses and
other organizations. Here a link has been made with techniques ([33]-[34]) used
in such business contexts; in particular techniques and tools used for
understanding and analyzing the business operation itself and with computer
systems such as workflow, Computer Supported Cooperative Work (CSCW) and
more general groupware. These links draw in concepts such as Soft Systems,
Systems Dynamics, role based modeling, procedure mapping and more familiar
techniques such as data flow models and activity decompositions. Computer
systems are now beginning to emerge which are designed to provide support for

the running of a business according to its specific operational requirements.

2.2 Process Modeling Diagrams

Many diagramming techniques, such as Petri Nets ([22]-[24]), data flows
diagrams [25], can be used to represent process models. We present here a

selection of these techniques.

2.2.1 Activity Diagrams (AD)

Activity diagrams represent the business and operational workflows of a system
[6], [7]. An activity diagram is a dynamic diagram that shows the activity and the

events that causes the object to be in a particular state.

The purpose of an activity diagram is to focus on flows driven by internal
processing, as opposed to external events. They are prepared for each scenario
that represents a sequence of activities following one or more events occurring in
a system. The activity is triggered by one or more events and it may result in one

or more events that may trigger other activity or processes.

Events represent message flows which start from start symbol and end with
finish marker, having activities in between. The activity diagrams represent

decisions, iterations and concurrent / random behavior of the processing.

In order to identify the behavioral elements of the activity diagrams, we use
several symbols and representation rules, which we will briefly describe. The
initial activity (starting point) is represented by a solid circle and the final activity
by a bull's eye symbol. All the other activities are represented by a rectangle with
rounded edges. The logic of the process is represented by the diamond (for the
decision making) or by synchronization bars (for concurrent activities). In
between the activities we use arrows which represent the events that trigger the

activities.

In Figure 1, we can see an example of a complete diagram that uses the symbols

and rules mentioned earlier [3].

Define Esraluatl o
Iission

verify Test Approach
J

P

<
[Arcther T

Tachinigue]

Evduate ~ Acceptable
Mssion

ki

[Ancther
Il \L Test Cycle]

Figure 1: Activity diagram for the Testing discipline

Activity diagrams [6], [7] are used for documenting existing process, analyzing
new process concepts and finding reengineering opportunities. They are also

used to model the disciplines in RUP (see Chapter 3).

The activity diagrams focus on activities as is the case for flow charts supporting
compound decisions. However, they differ from the latter ones, by supporting

parallel activities and their synchronization.

The drawback of these diagrams is that they do not make explicit which objects
execute which activities, and the way that the messaging works between them.
However, it is possible in the activity diagrams to represent the different roles or
actors that are responsible for the activities in the process. Vertical columns are
made for each actor, separated by thick vertical lines, called “swim lanes”, which

contain the activities performed by a certain actor.

Another drawback of these diagrams is that they don’t support the representation
of the artifacts. In order to represent the collaboration between roles, activities
and artifacts, RUP uses other kind of representation, which is not standard (see
appendix A.1.5, page 114). This was the main reason of our research, to find an
alternative to these diagrams (see Chapter 4, RAD and XRAD diagrams).

2.2.2 Business Process Modeling Notation (BPMN)

In this section, we will briefly refer to the Business Process Modeling Notation

described in reference [10].

The Business Process Management Initiative (BPMI) has developed a standard
Business Process Modeling Notation (BPMN). The BPMN 1.0 specification was
released to the public in May 2004. The primary goal of the Business Process
Modeling Notation effort is to provide a notation that is understandable by all
business users (business analysts that create the initial drafts of the processes,
technical developers responsible for implementing the technology, and the

business people that manage and monitor these processes).

BPMN defines a Business Process Diagram (BPD), based on a flowcharting

technique, tailored for creating graphical models of business process operations.

Therefore, a Business Process Model appears as a network of graphical objects,

which designate activities and the flow controls to define their order of

performance.

In BPD diagrams, we distinguish four basic categories of element, namely flow

objects, connecting objects, swim lanes and artifacts.

There are three types of flow objects:

Events, represented by a circle, expressing something that happens
during the course of a business process. They affect the flow of the
process and usually have a cause (trigger) or an impact (result). There are
different types of events, based on when they affect the flow: Start,
Intermediate and End.

Activity, represented by a rounded corner rectangle, designating a
generic term for work. An activity can be atomic or compound. The types
of activities are: Task and Sub-Process (differentiated by a small plus sign
in the bottom center of the shape)

Gateway, represented by the diamond shape, used to control the
divergence and convergence of sequence flow. It determines the
decisions, the forking, the merging, and the joining of paths. Internal

markers indicate the type of behavior control.

The flow objects are connected together in a diagram in three different ways to

create the basic skeletal structure of business process:

Sequence flow, represented by a solid line with a solid arrowhead to
designate the order in which the activities perform.
Message flow, represented by a dashed line, with an open arrowhead,

designating the flow of messages between two separate Process

Participants (business entities and business roles), contained in separate
pools.

Association, represented by a dotted line with a line arrowhead, used to
associate data, text, and Artifacts with flow objects (inputs and outputs of

activities).

As in Activity diagrams, the BPMN notation supports the concept of swimlanes as

a mechanism to organize activities into separate visual categories to represent

different functional capabilities or responsibilities. There are two types of

swimlane objects:

Pool, representing a participant in a process, acting as a graphical
container for partitioning a set of activities from other pools. It is used
when the diagram involves two separate business entities or participants,
physically separated in the diagram. The activities in separate pools are
considered self-contained processes; therefore the sequence flow may
not cross the boundary of a pool. It is only the message flow that allows
the communication between the two participants and must connect the
two pools (or the objects between the pools).

Lane, representing a sub-partition within a pool, to organize and
categorize activities. Lanes are used to separate the activities associated
with a specific company function or role. The Sequence flow may cross
the boundaries of lanes within a pool, but Message Flow may not be used

between flow objects in lanes of the same pool.

We present here an example of a BPD that uses pools (Figure 2). It shows how

the Message Flow enables the communication between the pools (this is

something new with respect to the activity diagrams).

10

. g p |
- . H 1 . H
[¢ | Sund Dot l . : Send | N S Mechaire Reeive |
QL o Reasst Resive Appt Syl [> P'"‘f Regaes: Bedirie
Erd el ;
G o o - o A \ g Y N
o Hneus : b i G
Liccurs | :1)
| 5 «?Phl ciny &} rs:ji;%ﬁ’ ‘;’?Jj & i 100 Here 35 your medichne
0l i ar
RALGHE Cicl il) n;pr e | | 3 e ub nmciums {
i ! 1 ! i
| | i i
‘ i
8 v [ks l v} I
& - Recasmn Sond Recove
s 3 ; sce’ § | : .

txO: 4 3 Donear 4 Sand Appt - QR:‘C*;_:';?’ L Pasacepton | Tdertones Sore fdadizns Ly
© N - Rerghash , Sympdoms Fickup RECKIAST
-.‘.‘ -
[&]
k!
[»}
[

Figure 2: Example of a BPD with Pools

BPMN has the ability to add any number of artifacts to a diagram to adapt it to

the context of the business processes being modeled.

The different types of artifacts are:
e« Data objects, connected to activities through associations, represent a
mechanism which shows how data is required or produced by activities
s Group, represented by a rounded corner rectangle, drawn with a dashed
line, is used for documenting or analyzing the process.
e Annotation, used to provide additional text information for the reader of a
BPMN diagram

Artifacts add more detail about how the process is performed, in order to show
inputs and outputs of activities in the process. However, the basic structure of the
process (determined by the Activities, Gateways and Sequence Flow) is not

changed with the addition of the Artifacts in the diagram.

11

However, there is still more work to do in terms of standardization of the sets of
Artifacts to support business Modeling and this is the future work towards which
the BPMI is turned.

The diagrams we will present in the next section use many of the concepts
already mentioned in the previous sections. However, they focus on the roles,
the interaction between them and the activities these roles perform in a software

process.

2.2.3 Role Activity Diagrams (RAD)

The basic concepts of RAD were first introduced in 1983 by Holt et al [12], and
later enriched in 1995 by Ould [13]. The Ould variant of RAD is called STRIM

(Systematic Technique for Role and Interaction Modeling).

STRIM is an approach to the elicitation, modeling and analysis of organizational
processes. The method for modeling and analysis uses three languages with
which a process is described. Two of those languages are used to capture the
results of the elicitation — one that concentrates on the process — Role Activity
Diagrams (RADs) and one that concentrates on the business entities involved
(entity models). The STRIM analyst might also use a textual language, SPML
(STRIM Process Modeling Language), to describe the organization’s process in a
form that has well defined semantics in order to facilitate consistency checking

and enactment.

The STRIM method includes techniques for both qualitative and quantitative
analysis of the process, which represents an important feature when the
technique is used as part of a business process re-engineering or restructuring
activity. We can find the complete description of RAD notations and symbols in

Chapter 4 (section 1), together with examples from RUP disciplines flows.

12

2.3 Process Frameworks

2.3.1 Software Process Engineering Meta-model (SPEM)

The SPEM is used to describe a concrete software development process or a
family of related software development processes [14]. It is an object-oriented
approach which uses the UML notation. The Object management Group (OMG)

defines four-layered architecture of process modeling as presented in Figure 3.

MOF AN
MetaObject Facility | ™3
Z} AN
Process Metamodel M2 UPM, UML
. M1 €4g., RUP,
Process Model ST Method, Open
berformi 10 Process as really enacted
erforming process V0 on agiven project

Figure 3: Levels of modeling

In this figure, level MO represents the performing process (the real world
production process), level M1 represents the process model such as RUP, level
M2 represents the meta-model, such as UML, which serves as a template for

level M1. The last level, M3, represents the meta-object facility.

13

The SPEM defines only the process modeling elements necessary to describe
the software development process, without adding specific models or constraints
for any specific area. It is not concerned with the actual enactment of processes
(planning or executing project). The purpose of the SPEM is to support the
definitions of Software Development Processes which involve UML, such as
RUP. SPEM is built by extending a subset of the UML 1.4 physical meta-model.
This UML subset is called SPEM foundation [14].

The conceptual model of SPEM is based on the idea that a software
development process is a collaboration between active entities, called process
roles, that perform operations called activities, on concrete, tangible entities,

called work products, represented in Figure 4.

1 'sResponsibleFor 0.

Role WorkProduct

input output

0‘-1'

Activity

Figure 4: Reifying the Conceptual Model: Roles, Work Products, and Activities

Multiple roles interact or collaborate by exchanging work products and triggering
the execution or enactment of certain activities. The overali goal of the process is

to bring a set of work products to a well defined state.

14

Basic UML diagrams can be used to present different perspectives of a software

process model. in particular, the following UML notations are used:

Class diagrams (Figure 5) allow the representation of the following
aspects of the software process: inheritance, dependencies, simple
associations, comments to point to the guidance, relation between
ProcessPerformer, or ProcessRole and WorkProduct, structure,
decomposition and dependencies of WorkProducts. However, it is not
allowed the use of the following elements: interface, template, white

diamond, qualified associations, N-ary associations

S e A e
;2
Forer Bl R W st bt @
; Faarsictions Bloslel if_%
_ - -t ‘.L?m‘.ﬁ%
Y S —— 2 ? -7 CORBA
* : @ B UML Profile
~ -

Software Architect Faget Moslid S~

{ Land=IDL3 1

N T
" {Mind=wing}
Process Modeller \ fnterisoe Mondel
B, B, 2l
) (Bind=ErML)
Systum Dyeariics Wark Process Hroeess Mudel

Figure 5: Example of Class Diagram in SPEM

15

e Package diagrams (Figure 6) allow the representation of process, process
components, process packages and disciplines. They allow the use of

nested and non-nested forms.

@ My RUP Based

Requirements
Process
* System Analyst
D Capture a Common Based Pocabulary ()
<<Discipline>>
Requirements D Develop Vision ()

Manage Dependencies ()

S Siructure the Use Case Modal ()

<<Discipline>>
Analysis and Design -
k] deiitd
. ® My Use Case Use Case Model
<<Discipline>> Clossary Vision Model Guidelines
Implementation
* Software Architect
<<Discipline>>
TeI: " E Prioritize Use Cases ()

Figure 6: Example of Package Diagram in SPEM

16

e Activity diagrams (Figure 7) allow presenting the sequencing of the
activities with their input and output work products, as well as object flow
states. Swim lanes can be used to separate the responsibilities of different

process roles.

* Functional Analyst * Interface Designer * Technical Designer

Define Requirements

. T
D User Reqiirements

. T
Design Process Model
N
N

N

Draft User Interface«

~\A *
w F .
LS X A
B N, User Interface {draft}
User Work[Proc e.s:_‘\gé - D
S
% =T " Define Tech. Requireneats

Refine User Imerfz\itet

-
~

A
User Interfyce {refined)

Buiid Apglication

Figure 7: Example of Activity Diagram in SPEM

17

e Use-case diagrams (Figure 8) show the relationship between process

roles and the main work definition

Information System Delivery Process First Joint JRP Workshop

<cassizten
wirements

...... pi o

s -~ First Joint JRP PO D efine Owner Rea .
))) Workshop / i .
Tres J<perform>> st
<<iiciude>> , *
Preliminary e P * Drlﬁer Models Svstem
Analysts i S)'Slem\q‘\ T ylm'mger
’ L
Second Joint JRP Architect ™
Waorkshop Define User Requirements assist:
<<perform=:
. b <cassistes [T~
<<mcludc?r'>_ 7 }‘?_‘} Draft Ddllx\\\

. e e
))),' First Joint JRP * <<aprforn>> <cassist> *
Workshop \.__,
D

- . ~ .

= Technical {ime Developer Requirement User
System <<1ﬂdudp_‘1>; Architect

Architecture RN F% < o>

Draft D oper Models

Second Joiut JRP
‘Workshop

Figure 8: Example of use-case diagram in SPEM

e Sequence diagrams are used to illustrate the interaction patterns among
SPEM model element instances

e Statechart diagrams are used to illustrate the behavior of SPEM elements

2.4 Summary

In this chapter, we reviewed some process modeling techniques and
frameworks, namely activity diagrams, business process modeling notation
(BPMN), Role Activity Diagrams (RAD) and Software Process Engineering Meta-
Model (SPEM).

In the activity diagrams, we cannot explicitly show the association between the
roles, artifacts, and activities. However, we can use swimlanes to separate the

responsibilities of different roles who participate in the process.

18

BPMN defines a Business Process Diagram (BPD), based on a flowcharting
technique, tailored for creating graphical models of business process operations.
BPMN has the ability to add any number of artifacts to a diagram to adapt it to

the context of the business processes being modeled.

RADs focus on the roles, their interactions and the activities that occur during the
process. We'll see in Chapter 4 that these diagrams provide additional features
to support the business modeling compared to the activity diagrams. An object-
oriented approach, using UML, is developed in SPEM. The purpose of the SPEM
is to support the definitions of Software Development Processes which involve
UML, such as RUP.

19

Chapter 3 : The Rational Unified Process

3.1 Overview of the Rational Unified Process

In order to develop complex software systems and to develop them rapidly, we
need a process that guides the software development teams. The unified
software development process encapsulates the experience of 30 years in the
field of software development [1]. It is a generic process framework that can be
specialized. It includes the Objectory Process, The Rational Objectory Process
and the Rational Unified Process, which is the most popular of the family of

object oriented software development processes [36], [37].

The Rational Unified Process (RUP) provides a disciplined approach to software
development. It is a process product, developed and maintained by Rational
Software, a subsidiary of IBM Corporation. It comes with several out-of-the-box
roadmaps for different types of software projects [19]. The Rational Unified
Process also provides information to help the developers use other Rational tools
for software development, but it does not require the Rational tools for effective
application to an organization; integrations with other vendors' offerings are

possible.

The Rational Unified Process is aimed at providing guidance for all aspects of a
software project. It does not necessarily require you to perform any specific
activity or produce any specific artifact. It does provide information and guidelines
for you to decide what is applicable to your organization. It also provides some
guidelines that help you tailor the process if none of the out-of-the-box roadmaps

suits your project or organization. However, limited provisions are given as to

20

how one can ensure that a custom-tailored process is consistently or completely
described [19].

The Rational Unified Process emphasizes the adoption of certain best practices
of modern software development, as a way to reduce the risk inherent in

developing new software [19)]. These best practices are:

Develop iteratively

Manage requirements

Use component-based architectures
Model visually

Continuously verify quality

Identify and control risk factors
Identify and control change

These best practices are woven into the Rational Unified Process definitions of:

¢ Roles — sets of activities performed and artifacts owned

o Disciplines — focus areas of software engineering effort such as
Requirements, Analysis and Design, Implementation, and Test

¢ Activities — definitions of the way artifacts are produced and evaluated

o Artifacts — the work products used, produced or modified in the
performance of activities.

RUP is an iterative process that identifies four phases of any software
development project. Over time, the project goes through Inception, Elaboration,
Construction, and Transition phases (see Figure 9, [19]). With the possible
exceptions of the Inception phase, each phase is broken down into a number of
iterations where each iteration produces an executable which constitutes a
subset of the overall system. As a result, the system grows incrementally over
time, iteration by iteration. During each iteration, you perform activities from

several disciplines in varying levels of detail.

21

Phases

Disciplines

Business Modeling

Requirements

Analysis & Design

Implementation
Test
Deployment

Configuration
& Change Mamt

Project Management
Environment

T inital [Eb #1] [Bt #2;;‘?;!,_# ;":‘c\dﬁsf ,Const || Tray

Tterations

Figure 9: Overview of the phases and disciplines of the Rationai Unified Process

The Rational Unified Process has three important characteristics that make it a

unigue process [1]:

e use-case driven
o architecture-centric

¢ jterative and incremental

We are presenting these characteristics in detail in order to stress their

importance.

The use case driven approach focuses on the use case model as the basis for
constructing the other successive models — the analysis, design, implementation,
deployment and test models. These models are related to one another through

dependencies called traces [1].

22

The Rational Unified Process is architecture-driven. It is widely recognized that
architecture is an important part of the software development, because it gives us
a perspective of the whole system. Architecture encapsulates the most important
use cases (5-10% of the use case mass) and is developed in parallel with the

use cases through several iterations [1].

The third important aspect of the RUP is iterative and incremental approach.
The project is developed in small steps called iterations, which result in
increments, which represent a growth in the product. The Rational Unified
Process repeats over a series of cycles. Each cycle results in a new release of
the system. Each cycle is divided into four phases: inception, elaboration,
construction and transition. Each phase terminates with a milestone, which

represents the objectives pursued in the phase.

In each phase we cover more or less all the core disciplines: business modeling,
requirements, analysis and design, implementation, testing and deployment, with
emphasis on only some of them. We may go several times through the
disciplines in the same phase, i.e. there can be several iterations in the same
phase. Having more iterations allows for a better validation and verification of the
results, better distribution of feedback from the client, and a more focused risk

analysis and risk reduction [1].

Such a development process gives assurance to people working on a project
because it assesses the project feasibility early on and explores risks in early
phases. It increases the work tempo by allowing constant feedback from

customers and stakeholders.

23

3.2 Characteristics of the Rational Unified Process

3.2.1 Use-case driven approach

3.2.1.1 Capture the requirements

In the RUP, we capture only the requirements that add value to the user and the
business [1]. In order to get the use cases that reflect this, we ask ourselves the
following question: what is the system supposed to do for each user? [18]
Developers together with the users and customers capture use cases. The
developers help them express their needs concerning the system. The use cases
capture the functional requirements of the system and the nonfunctional
requirements (performance, availability, accuracy and security) specific to a use

case.

The actors represent the different users of the system, and different users are
associated with different use cases. Actors can be humans, other systems or
external hardware that interacts with the system. The use cases (the functionality
of the system) and the actors (the environment of the system) make up the use
case model. The use case model is easy to understand by users and customers,
because the use case descriptions are in English and don’t use a formal
language. For the developers, it is easy to divide the use cases and use them as

input for the analysis, design, implementation, and testing [1], [2].

3.2.1.2 Drive the development process

Each use case in the use case model will be realized as a use case realization in
the analysis model. The software development process is realized through
several iterations (see Section 3.2.3). For each iteration, we select a set of use
cases, which we realize in the analysis model. For each use case, we identify the
classes that participate in the realization of the use case and we allocate the

responsibilities of the use case to the class. In later iterations, we may reuse

24

existing classes. We also need to define the interactions between the objects of
the classes in order to perform the use case realization. UML collaboration
diagrams can be used to show the instances and links between them.

Sometimes text can accompany the diagram to make it clearer.

The analysis model “works as a first initial cut on the design model” [1]. There is
a direct mapping between the analysis model and the design model; only the
latter is more detailed in order to take into account the implementation
environment (object request broker, GUI, database management, legacy
systems or other frameworks). The design classes are refined, and the result is
that the design model will be larger and contain more classes. That's why we
need to organize them, by grouping the classes in subsystems, and identifying
interfaces between them. The design model works “as a blueprint for the
implementation” [1]. The design classes, subsystems and interfaces are
implemented as file components. The order in which components are

implemented is determined by the use cases.

3.2.2 Architecture-centric approach

In the previous section, we talked about the importance of use cases in the
development of software. In this section, we'll see another key element

necessary to control the development of software: the architecture.

3.2.2.1 Architecture in brief

The architecture gives us a clear perspective of the whole system, by presenting
different views of the models of the system. The architecture contains the most
important elements, which are high-value and high-risk. The architecture is
developed over several iterations in the inception and elaboration phases. The
result of the elaboration phase is an executable architectural baseline which

constitutes a sound architecture on which the system will be built.

25

The architecture also contains an architecture description that is an extract of the
models of the system (use case, analysis, design, deployment and
implementation models). It does not contain a view of the test model, since it is of
no use to the architecture description; however it is useful to verify the

architecture baseline [1], [2].

3.2.2.2 Top reasons for needing an architecture

Understanding the system. We need to make the system understandable to all
people involved (developers, managers, customers and other stakeholders), in
order to facilitate their participation. This is a challenge in the case of modern
systems because of the complexity of their behavior, of the technology and
environment in which they operate. They combine distributed computing,
commercial products, reusable components, or they may be divided among
geographically distributed projects, which adds to the difficulty of coordination [1].

Organizing Development. The communication overhead among developers
increases with the size of the software project organization and if the project is
geographically dispersed. In order to reduce this overhead, the architect divides

the system into subsystems with clearly defined interfaces [1].

Fostering reuse. Developers use the components which are suitable for the
problem domain and find out if they meet system requirements. Reusable
components are designed and tested to fit together, so construction takes less
time and costs less. A good architecture helps developers know where to look for
reusable elements cost effectively [1].

Evolving the system. A system should be easy to change to fit the environment
in which it operates. Developers should be able to change parts of the design
and implementation, without a dramatic impact on the system. The system

should be resilient to change and be capable of evolving gracefully [1].

26

3.2.2.3 Use cases and architecture

There is an interplay between use cases and architecture: one influences the
other. We will see how this interplay occurs, by first looking at how use cases
influence the architecture and then at how architecture influences the use cases.
The architecture is developed in iterations in the elaboration phase. We start by
deciding on a high-level design for the architecture, such as a layered
architecture. Then we fashion the architecture in a couple of builds within the first

iteration. In the first build, we work with the application general parts.

In the second build, we work with application specific aspect of the architecture.
We select the high-risk/high-value use cases, and then we capture the
requirements, we analyze, design, implement and test them. We get new
subsystems implemented as components developed to support the use cases we
picked. We may need to make changes to the components developed in the first
build. The architecture is adapted to suit the use cases. We make another build,
and so on, until we finish the iteration. If the end of the iteration corresponds to
the end of the elaboration phase, the architecture is stable. After building a stable
architecture, we can implement the complete functionality, by realizing the rest of

the use cases during the construction phase.

The use cases developed during the construction phase use customer and user
requirements as input, but are also influenced by the architecture selected in the
elaboration phase. When we capture new use cases, we use our knowledge of
the architecture already in place. We negotiate with the customer if we can
change the use cases to make implementation simpler, by aligning the uses
cases and the design with the existing architecture. By aligning the use cases
with the architecture, we create new use cases, subsystems and classes cost-

effectively from what already exists.

27

The use cases and the architecture are developed in parallel and over several
iterations. We will talk more in detail in the following section about the third

important aspect of RUP: iterative and incremental development.

3.2.3 Iterative and incremental approach

The strategy of the iterative and incremental process develops a software

product in small, manageable steps [1], [2]:

¢ Plan a little
¢ Specify, design and implement a little

¢ Integrate, test and run each iteration a little

If you are happy with a step, you take the next step. Between the steps, you get
the feedback that permits you to adjust your focus to the next step. The iterations
in the early phases are concerned with scoping the project, removing critical
risks, and baselining the architecture, whereas the iterations in the later phases

result in additive increments that eventually make up the external release.

Each iteration is a “miniproject”. It is not a complete project because it is not by
itself what the stakeholders have asked us to do. It is a “miniwaterfall’, because it
proceeds through the waterfall activities [1] — planning, requirements, analysis,
design, implementation, and test, which show development flowing one way. In
the waterfall approach, the project would have all of its developers involved when

it reached implementation, integration and testing [1].

The planners try to order the iterations to get a straight path where the early
iterations provide the knowledge base for the later iterations. The ideal case is a
sequence of iterations that always moves forward; that is, it never goes back two
or three iterations in order to patch up the model because of something learned

in a later iteration.

28

3.2.3.1 Top reasons for iterative and incremental development

Iterative and incremental development creates better software. We will see here

some of the reasons we use this approach.

Mitigate Risks. “Risk is inherent in the commitment of present resources to
future expectations [15].” In the RUP, we identify risks early in the development
(inception and elaboration phases). As a result, unidentified risks don’t show up
later and endanger the project. The difference between the waterfall model and
the iterative approach lies in the fact that the first one identifies the problems
(risks) late in the project, when it is difficult and expensive to make changes. The
waterfall model [1] goes through the disciplines just once. The implementation,
integration and testing will show big problems which will be hard to manage. In
the iterative approach, when development time reaches the construction phase,

no serious risks remain to deal with.

Get a Robust Architecture. We already saw in the previous section how the
architecture is developed, through iterations in the inception and elaboration
phases. In the inception phase, we seek a core architecture that satisfies the key
requirements, overcomes critical risks, and resolves the central development
problems. In the elaboration phase, we establish the architecture baseline that
guides further development. The investment in these phases is still small, and we

can afford the iterations that assure the architecture is robust.

Handle Changing Requirements. From the point of view of the Stakeholders, it
is better to evolve the product through a series of executable releases (or builds)
than on documentation. A build is an operational version of the part of a system
that demonstrates a subset of the system capabilities [1]. It allows Stakeholder
feedback in the early phases. The plan — budget and schedule — is not yet set in
stone so the developers can easily accommodate revisions. In the waterfall
model [1], users see an operational system late, when changes will add to the

budget and schedule. Therefore, the iterative approach helps customers see the

29

need for changes early, which will enable the developers to implement them right

away.

Achieve Continuous Integration. In the iterative approach, we achieve
continuous integration, by providing regularly, at the end of each iteration, a
build, which is a working part of the system. In this way, the Stakeholders can

also follow the progress of the project.

Attain Early Learning. The iterations helps the team understand better how the
process works. After several iterations they also get better acquainted with the
new technologies and tools. The team fine-tunes the process and tools before

other developers join them.

3.2.3.2 Risk-driven approach

“If you do not actively attack the risks in your project, they will actively attack you
[16].” This is what the experience doing the waterfall model proves. The waterfall
model masks the real risks to a project until it is too late. The mistakes from
earlier phases will be discovered late, when it's costly to undo them; they could
even create project cancellation. The iterative and incremental approach is a
better alternative to software development since it enables the identification of
risks early in the lifecycle, when it's possible to attack them in a timely and
efficient manner [2]. This approach is building on the work of Barry Boehm’s
spiral model [17].

The iterations are carried out on the basis of risks and their order of importance.
Risks are classified in many categories [18]. We can distinguish the risks related
to new technologies, risks related to architecture, risks related to building the
right system, one that supports the mission and the users, and risks related to
performance. In the elaboration phase, we establish a robust architecture which
accepts changes gracefully, so it eliminates the risk of having to redesign

everything [1].

30

There are four ways of dealing with risks: avoid it, confine it, mitigate it or monitor
it. Avoiding or confining a risk takes re-planning or rework. Mitigating a risk might
require the team to build something that exposes the risk. Monitoring a risk
involves choosing a monitoring mechanism, setting it up and executing it.
Mitigating or monitoring risks takes time, that's why a project organization can not
address all risks at the same time. From here comes the idea of prioritizing the

iterations.

3.3 The RUP Phases

A RUP project is extended over four phases: inception, elaboration, construction
and transition. Each phase ends with a major milestone, at which managers
make crucial decisions, decide on schedule, budget, and go, no-go requirements.
A major milestone is a set of objectives that need to be met in order to be able to
go to the next phase. In order to reach these objectives, the process moves
through a series of iterations and increments. The iterations follow the core
disciplines, with emphasis on only some of them. Some activities are common
for all phases, like planning an iteration, setting the evaluation criteria,

establishing a risk list, prioritizing the use cases and assessing the iterations.

3.3.1 Inception

In the inception phase, activity is concentrated in the business modeling and the
requirements disciplines, with a little work carrying over to the analysis and
design discipline. This phase seldom carries work as far as the final two
disciplines, implementation and test. The goal of the inception phase is to
establish the business case, identify and reduce the critical risks, move from a
key subset of the requirements through use-case modeling into a candidate

architecture, make an initial estimate of cost, effort and schedule.

31

3.3.2 Elaboration

in the elaboration phase, the activity is focused on the two disciplines:
requirements and analysis and design, as they underlie the creation of the
architectural core. In order to reach an executable architectural baseline, there is
necessarily some activity in the final disciplines, implementation and test. The
primary product of the elaboration phase is a stable architecture, to guide the

system through its future life.

3.3.3 Construction

In the construction phase, the requirements discipline diminishes, analysis and
design lightens, and the work focuses on the last three disciplines
(Implementation, Test and Deployment). The major milestone is initial operational
capability. Other activities also include maintaining the integrity of the
architecture. This phase employs more staff over a longer period of time than any
of the other phases. It is also generally carried out through a greater number of

iterations than the other phases.

3.3.4 Transition

In the transition phase, the percentage of work in the disciplines depends on the
feedback from acceptance or beta test. If the beta tests uncover defects in the
implementation, there will be considerable activity in implementation and test
disciplines. Main activities include: site preparation, preparation of manuals and
other documentation for product release, correction of defects. The transition
phase ends with a formal product release. However, before the team is done with
the project, the team leaders meet to discuss and record for future reference

“lessons learned”, which can be of use for the next release.

32

3.4 The RUP Core Process Disciplines

RUP has an overall of nine disciplines: six of them are the core disciplines and
the other three are the supporting disciplines. In each discipline there are
workers that collaborate together and perform activities, whose result are
artifacts. We will present briefly in this section the goals of the core disciplines as
well as the existing way of representing the disciplines and the collaborations.
The disciplines are represented using activity diagrams, and the collaborations
are represented using other types of diagrams. For a complete description of the
workers involved, artifacts produced and activities performed in each of the core

disciplines, please refer to the annexes A1 to A6.

3.4.1 Business Modeling Discipline

The main goal of business modeling is to understand the dynamics and structure
of an organization, the possible problems that exist and possibly find a solution.
In order to achieve this goal, Stakeholders and customers work very closely with
the software developers (see workflow details in appendix A.1.5, page 114) to
derive the system requirements needed to support the target organization. The
Business Modeling Discipline (see Figure 10) is represented by an activity
diagram. It shows that first we need to assess the status of the organization in
which the eventual system is to be deployed (the target organization), as defined
in Assess Business Status.

Based on the results of this assessment, we can choose which path from the
discipline we need to follow. If we determine that no business models are
necessary, we develop a domain model. In the case of business modeling, we
have several cases possible: if we determine that no changes need to be made
to the current proceés, we don’t need to describe the current process, but focus
on the target organization; if we want to improve or re-engineer an existing
process, we need to model both the old and the new business; if we want to

model a new business from scratch, we again don’t need to Describe Current

33

Business [3]. When we explode the workflow details, we get several diagrams
which show the workers, the activities they perform and the artifacts that they
produce together (see Figure 61 to Figure 68 in appendix A.1.5, page 114).

.
[Early

b | hosption] .,

L55e5s
Business Status

S
.—"x \"‘*-.
[Business o
Modding] |
nmiisiissnanle
[Domain
Je madeling
only]
Processes
t
Describe Current
Business
Refine BLISih&SS
Pracess Definitions
4 : Dev}el opa
Explore Process Doman Wxds
Automaion
Design Business
Process Rfﬂizaions
‘vf.
Refine Roles and
Respongibilities
. i
i % by
f; s

Figure 10: Activity diagram for the Business Modeling discipline

34

3.4.2 Requirements Discipline

In the Requirements discipline, developers and stakeholders are working
together in order to understand better the system requirements. The stakeholder
is involved in almost all the collaborations in the discipline (see the workflow
details in appendix A.2.5, on page 130). The goals of the developers in the
requirements discipline are: to define the boundaries of the system, to provide a
basis for planning the technical contents of iterations, to provide a basis for
estimating cost and time to develop the system and to define a user-interface for

the system, focusing on the needs and goals of the users.

In order to achieve these goals, developers need to perform effective
requirements management, at every step in the requirements discipline (see
Figure 11). During the Inception phase of a project, they Analyze the Problem
and Understand Stakeholder Needs, during the Elaboration phase, they Define
the System and Refine the System Definition, and they Manage the Scope of the
System and Manage Changing Requirements , continuously throughout the
project [3].

As for the Business Modeling, we will present the activity diagram that shows the
main workflow of the Requirements discipline (the secondary diagrams that show
the workflow details, as collaborations between workers, activities and artifacts,

are presented in appendix A.2.5, page 130).

35

[Hew System)]

[New Input]

Analyze the Understand

Froblem Rakeholder Heeds k
[Incorrect
problem] ™.

Mariage Changing
[Addressing Requirements
carrect problamj

[Cant do all
the wark]

Define the Managethe Scope [Work
System of the System in scope]

Refine the
System Definition

Figure 11: Activity diagram of the Requirements discipline

36

3.43 Analysis and Design Discipline

The purposes of analysis and design discipline are: to translate the requirements
into a specification that describes how to implement the system, to establish a
robust architecture early in the project, in order to design the system, and finally
to adjust the design to match the implementation environment, designing it for

performance, robustness, scalability and testability.

In order to achieve these goals, we follow the steps presented in the activity
diagram of the Analysis and Design discipline (see Figure 12). Some of these
steps are phase-dependant. For example, the workflow detail Perform
Architectural Synthesis is done in the Inception phase. It is concerned with
establishing whether the system as envisioned is feasible, and with assessing
potential technologies for the solution. The workflow detail Define a Candidate
Architecture is done early in the Elaboration phase. It focuses on creating an
initial architecture for the system. If the architecture already exists, the work

focuses on refining the architecture and analyzing behavior.

The workflow detail Design Components produces a set of components which
provide appropriate behavior to satisfy the requirements on the system. Parallel
to this activity, persistence issues are handled in the workflow detail Design the
Database [2], [3]. We will present the activity diagram of the Analysis and Design
discipline (the secondary diagrams that represent the workflow details are

presented in appendix A.3.5, page 147).

37

[Early
Elaboration iR [Inception

teraion] teration (Optional}]

Define a Candidate
Architectunz X Architecturd
Synthesis

Analwé Behavior

e Optional
Refinethe [Opt 1
Architecture

Design Deasign the
Co mponents Daabase

Figure 12: Activity diagram of the Analysis and Design discipline

38

3.44 Implementation Discipline

The four purposes of the implementation discipline are: to define the organization
of the code in terms of the implementation subsystems, to implement classes
and objects in terms of components (source files, binaries, executables and
others), to test the developed components as units and to integrate into an
executable system the results produced by individual implementers or teams.
The scope of test within the implementation discipline is limited to unit test of
individual components (which is the responsibility of the implementer). System

test and integration test are described in the test discipline (see next section).

In order to achieve the purposes previously mentioned, we follow the activities in
the implementation discipline (see Figure 13). The main work to Structure the
implementation model is done in the elaboration phase. Its purpose is to ensure
the implementation model is well-organized and prevents configuration
management problems and allows the product to be built up successively from
integration builds. In Plan the Integration, the work focuses on planning which
subsystems should be implemented and the order in which subsystems should

be integrated in the current iteration.

The implementers then implement the classes and objects in the design model
during the activity labeled Implement Components. During this activity they also
fix code defects and perform unit tests to verify changes. Following this activity,
the components are integrated into a subsystem (/ntegrate each Subsystem), the
result of which is a build. The build is integration tested before it is handed to the
System Integrator to integrate it to the system, in Integrate the system [2], [3]. We
will present the activity diagram of the Implementation discipline (see appendix
A.4.5, page 158, for the complementary diagrams that show the workflow
details).

39

Structure

the

lmipl ementation Macel
|

W

5

Intexgrati

[Mor e Components =
to Implement
for this Reration]

{FMore
Subsystem

tegration for
this Reration]

[Dane]

RGN

-

Plali the

QN

Imp lement
Components

{Urit Tested Components

avail able]

Integrate each

Subsystem

Figure 13: Activity diagram of the Implementation discipline

40

[Integrated Implementation
[Oul>syst ems available)

Integrd ethe
System

[More System Builds
for this terstion]

[Done]

3.4.5 Test Discipline

Testing focuses on evaluating or assessing product quality, using the following
practices [2]:
e Find and document failures in the software product: defects, problems
e Advise management on the perceived quality of the software
¢ Evaluate the assumptions made in design and requirement specifications
through concrete demonstration
o Validate that the software works as designed

e Validate that the requirements are implemented appropriately

Test activities are normally divided into verification and validation. Verification is
the work involved in checking whether the result agrees with the specification,
whereas validation is the work necessary to check whether the end resulit is what
was actually wanted [26]. In [27], validation is concerned with building the right
thing and verification with building the thing right.

These practices are achieved by the intermediate of the activities in the discipline
(see Figure 14). In Define Evaluation Mission we identify the appropriate focus of
the test effort and gain agreement with the Stakeholders on the corresponding
goals that direct the test effort. In Verify Test Approach, we demonstrate that the
various techniques outlined in the Test Strategy will facilitate the planned test
effort. Parallel to this activity we Validate Build Stability, before entering a test
cycle for a new build. We validate that this build is stable enough for detailed test

and evaluation effort to begin.

We then do the activity Test and Evaluate, which involves implementing,
executing and evaluating specific tests and the corresponding reporting of
incidents that are encountered. Parallel to this activity, we deliver a useful
evaluation result to the Stakeholders in Achieve Acceptable Mission. And finally,
we Improve Test Assets, such as Test |deas List, Test Cases, Test Data, Test

41

Scripts [3]. We will present the activity diagram of the Test discipline (see
appendix A.5.5, page 170, for the complementary diagrams that represent the

workflow details).

Define Evduation
Mission

Verify Test hp ;Jroach

[Another
Technique]

Achisve

Evauate Acoaptable
kission
Jw ¥
E]

Improwve Test Assets
§
[Another
A § Tes Cyolel

Figure 14: Activity diagram of the Test discipline

42

3.4.6 Deployment Discipline

The purpose of the Deployment discipline is to deliver the finished product over
to its users. This discipline involves the activities of: testing the software in its
final operational environment (beta test), packaging the software for delivery,
distributing the software, installing the software, training the end users and the
sales force and migrating existing software or converting databases [2]. We will
present (see Figure 15) the activity diagram of the Deployment discipline (for the
complementary diagrams of the Deployment details, see appendix A.6.5, page
182).

Fian
Deployment

HMaterid

a"" "~
<L
[Appra -.'edlg

Deployment Unit

3

[Beta Release] |

> 5

[Customer Release] st
y Beta Test

- Praduct

[Downloadable

[Custom
" Soft ware]

Insta

{Shrinkwrap
¢ Product]

Acceptance Test Product
<At Installation Sitex

Figure 15: Activity diagram of the Deployment discipline

43

3.4.7 Limitations with the existing model

The existing representation of the RUP, as we saw in the previous sections,
doesn’t allow the representation of the roles, artifacts and activities on the same
diagram. We use activity diagrams to represent the main workflow, and
complementary diagrams to represent the collaborations between workers,
activities and artifacts. The complementary diagrams are not activity diagrams.
They are a non-standard way of representing the collaborations. We need for a
more standardized way of representing RUP disciplines, the workers, the

activities they perform and the artifacts they produce.

We have tried to use only activity diagrams to represent the process disciplines,
including the dependency between the roles, activities and artifacts. When we
represent the different roles in the process, everything works fine, even if the
diagram has duplication from the role interaction (see Appendix A.7, Figure 114
to Figure 116, page 187-189). We represent each role by using swimlanes, and
role interaction, by duplicating the activity in the swimlane of each role that

performs it.

The activity diagrams don’t support the notion of artifacts. We have introduced a
way to represent them. We include a column for the INPUTS artifacts and a
column for the OUTPUTS artifacts. If an activity needs an artifact from the
INPUTS column, there is a dotted line with arrowhead from the input to the
activity. If an activity produces an artifact, there is a dotted line with an arrowhead
from the activity to the artifact in the OUTPUTS column. This notation is inspired
by the BPMN notation (see section 2.2.2, page 8), that uses associations to link a
flow object (activity, etc.) to a data object (artifact). It is slightly different from the
BPMN, because it focuses more on the inputs and outputs of activities, than on

the artifacts flow.

44

Since in RUP, there are a lot of artifacts involved, the diagram becomes at a

certain point unreadable, as we can see in the following figure:

Business Process Business Business
INPUTS Stakeholder Anatyst Designer Reviewer OUTPUTS
1 ‘ arget
Org
Y = 7 pase ¢
. P!
Suppl . -
Spedif < 2 . -~ B Use
RN / - case
a —~ 71 Realiz
- -
- -~
(Q-\}'\e/ -
—
- -~ e A
- - e
Q) | — ~ — -
D Bascribe Cutref i< o -
o *“Busmesx——,&—-,w__..___ B.
— Fing.. T T 7T T e — .
= |~ o J - 7} Vision
A ~ T~ lee’ — ~ -
(7, ™ e — - -
s ~ /'75 . ™~ e >
7 7 ~ 1~ ST
s ~ -~ P — Suppi.
e /‘7\ o Specif.
1 o~ - > y /s
’gl -
/ - - - /\‘/\~ ~) B Use
— S P ™~ — - case
- - ——
s E A N
% WL e T e > ~ -Use
feentily Dusindsg o e e]~ cose
7
Pracesses /”I%\lci- —— 7 // PR
AN T~ T - S
~ § ~ Tt~ - A
NN ~ // T s B
-~ \// Gloss.
SN | 2=,
~ N o 7/ — ~
NN, 7 ~
e R N ™~ . -
\ s B
BRI S g
__-%’ 5 Refine Husinass Ny Refioe Businsss\L
I Process Defintions Process Defintions +o
~ - £]
T Archiy
AN Doc
AN
Rav.
!Recxxe

page 2

Figure 16: Excerpt from the Activity diagram for the Business Modeling discipline
featuring roles, activities and artifacts (Figure 117 to Figure 119, page 190-192)

This diagram superimposes different views of the activities that require and
produce artifacts. Should we have decided to represent multiple views, for
different actors or activities, we would not have such complicated diagrams. We
need single view diagrams to get an overall picture of the complexity of the
process. The activity diagrams are just not optimal for the representation of
single views of a complex process. The XRAD notation (an extension of the RAD
- Role Activity Diagram — notation), which we will present in chapter four, is more

suited for the representation of a large number of artifacts, as is the case in RUP.

45

3.5 Summary

In this Chapter we presented an overview of RUP, its main characteristics and
RUP core disciplines. RUP is a use-case driven, architecture-centric and iterative
and incremental approach. It focuses on the use cases which provide value to
the users and Stakeholders. It also focuses on the architecture as the basis to
build the system. The use cases and the architecture are developed in parallel,
through iterations. Each iteration ends with a functional release of the system
(build), which enables constant Stakeholder feedback and gives assurance to
developers that they work in the right direction. It also helps address risks early in

the lifecycle.

Each iteration goes through the core disciplines, with emphasis on some of them,
depending on the phases. Each discipline is a collaboration of workers, activities
and artifacts. We have presented in this chapter the purposes of the disciplines
and the main activities. We will refer to the annexes A1 to A6 for a complete

description of the workers, artifacts and activities that are present in RUP.

46

Chapter 4 : RAD applied to RUP

In this chapter, we are proposing the Role Activity Diagrams (RAD) as a better
alternative to model the RUP, than what already exists to date. We will present
the RAD notation and symbols using examples from the diagrams that we have
developed during our research. We have developed our diagrams sequentially,
starting with limited versions, and finishing with improved and complete new
versions. By this fact, we can show that our diagrams are a good means of
modeling a process. We will present the three version diagrams, which represent
the modeling of the core RUP disciplines, by showing how we built on older

versions in order to construct better ones.

4.1 Modeling with RAD

The RAD diagrams are used to model a process. They show the roles, their
component activities and their interactions, together with external events and the
logic that determines what activities are carried out when. In this section, we will
refer to [4] and [11] in order to describe the notations and symbols used to
construct the RAD diagrams and to figures from appendix A.8 in order to give

some examples.

4.1.1 Representing Roles and Activities

Each role in the process is represented by the contents of a shaded block. In
Figure 123 (see appendix A.8, page 196), there are four roles with the names
Stakeholder, Business Process Analyst, Business Designer and Business
Reviewer. All activities and interactions take place within those four roles, as far

as this mode! of this process is concerned.

47

Within a role, there are a number of activities indicated by black boxes. The
annotation against each black box describes the activity. However, in the
previous model, there is no atomic activity performed by a single role alone. In
Figure 136 (see appendix A.8, page 209), the Integrator role carries out an
activity “Plan the Integration”.

role
Integrator

;;‘,‘ — activity

Figure 17: Representing roles and activities (excerpt from Figure 136, page 209)

48

4.1.2 Representing Roles Being started —~ Role Instantiation

One role can be instantiated, i.e. a new instance of that role can be started: this
is indicated by a square with a cross inside it. When we want to represent the

“ending” of a role instance, we use the “Stop” symbol.

Software role instantiation
Architect

o Aending” of a role

Figure 18: Representing role instantiation and role “ending” (excerpt from Figure 136,

page 209)

49

4.1.3 Representing interactions

An interaction between roles is shown as a white box in one role connected by a
horizontal line to a white box in another role. The white boxes in each role are
called “part-interactions”. An interaction can involve any number of roles and
signifies that the roles involved must synchronize. In Figure 123 (see appendix
A.8, page 196), the Business Process Analyst interacts with Business Designer,

Business Reviewer and Stakeholder to Develop Domain Model.

Stakeholder Business Process Analyst
Tt N T T TN partinteractions of Stakeholder, B P, Analyst, B Designer

and B Reviewer to "Develop Domain Mode!"

) 3

Business Designer Bysiness Reviewer

Eaﬁy lncebtion

{"_“‘t Assess Busiess.
L Staws T [T

4
e g

© Ybusiness mogsi?

glop [Comai

Figure 19: Representing part-interactions (excerpt from Figure 123, page 196)

In the original RAD diagrams, the interaction lines do not carry arrows to indicate
the “flow” of materials; they are placed appropriate annotations (see Figure 124

to Figure 127 in appendix A.8, pages 197-200).

We will propose (see section 4.3) the use of arrows to show the entities flow in
the extended version of RAD (called XRAD).

50

4.1.4 Representing Roles and States

In RAD, the state is represented by a vertical line which connects the activities
within a role. A state can represent a condition which the role can be in, and
which is necessary for an activity to occur. We represent this condition by putting

a “magnifying glass” on the state line and annotating it.

For example, in Figure 130 (see appendix A.8, page 203), we need to show the
state of the System Analyst, “Work in Scope”, because it is a pre-condition for the
activity “Refine System Definition” to be performed by the Requirements Specifier

and Ul Designer roles.

"unlabeled" states o]
"WMagnifying glass" showing the
-~ state "Work in scope”

System Analyst

“Work i
f»

- Deéfinition

Figure 20: Representing states (excerpt from Figure 130, page 203)

51

4.1.5 Representing Alternative Courses of Action

At some points in the process, what happens next might depend on some
condition or state. We represent such alternative courses of action with the
notation shown in the stencil (see Figure 120 in appendix A.8, page 193) for case
refinement. We are refining the state of the process according to different

predicates or “cases”.

For example, in Figure 133 (see appendix A.8, page 206), the software architect
takes different courses of action depending on which of the phases the process

is in at the moment: “Inception”, “Early Elaboration” or “Other”.

three alternative threads of action

Software
Architect //L/ /

(.

Figure 21: Representing aiternative threads (excerpt from Figure 133, page 206)

52

In Figure 130 (see appendix A.8, page 203), we have the predicate “New
System?” in the System Analyst Role. The System Analyst will take the thread
that corresponds to the predicate that is true. The black case refinement
corresponds to the negative answer, while the white one corresponds to the
positive. If this is a new system, the System Analyst together with Stakeholder
will “Analyze the Problem”; otherwise, he will skip this activity and go directly to
“Understand Stakeholder Needs”.

Predicate
____Stakeholder System Analyst

rresponding

"‘;t'h‘r’ead cbrresponding
1o "false’

Figure 22: Representing a predicate and two alternative threads (excerpt from Figure 130,
page 203)

It is important to note that no person or machine is doing anything to make the
decision: the process is simply going in different directions depending on the
state it is in.

53

Case refinement allows us to represent conditional iteration within a role. Let’s
consider again the Figure 130 (see appendix A.8, page 203).

Stakeholder

System Analyst

L
L.

a system

|
conditional loop !

Figure 23: Representing conditional iteration (excerpt from Figure 130, page 203)

The predicate “Incorrect Problem” in the System Analyst role allows the System
Analyst to go back and “Analyze the Problem” until it is the correct one. When the
problem is correct, it can go on with the process. We use the conditional loop that
gets out the case refinement corresponding to positive answer to the predicate
question, and going in the activity “Analyze the problem”.

54

In some situations, whichever of the alternative threads of activity is followed, we
finally want to “return” to some “main” thread of activity. In this case, we use the
“refinement closing” symbol, as illustrated in Figure 142 (see appendix A.8, page
214) with the threads joining up again when they have finished (i.e. the case
states are recombined).

Deployment Manager

) a P e
G R i
2L \,§~:%~,“ -

[ENNG N R @_, o
E'fests‘:3
de> || WP

Vs

Refinement closing

Figure 24: Joining-up alternative threads (excerpt from Figure 142, page 214)

In other situations, a process does not operate this way. The example is in Figure
130 (see appendix A.8, page 203): if the problem is correct, we continue with the

process, otherwise, a rework is necessary, we go back to “Analyze the problem”.
The two alternative threads do not recombine.

55

System Analyst

incarrect problem?
Define the system

twa threads that never
recombine

Figure 25: Representing threads that do not recombine (excerpt from Figure 130, page
203)

4.1.6 Representing concurrent threads of action

Sometimes, a role can start a number of separate threads of activity that can be
carried out concurrently. This is represented in the RAD by the symbol for “part
refinement”’. The state of the role is divided into a number of separate parts. Part
refinement can involve any number of threads of concurrent activity, depending

on how much concurrency is possible in the work of the role.

In Figure 123 (see appendix A.8, page 196), the Business Process Analyst and

the Business Designer both carry out three concurrent threads of activity.

56

three concurrent threads .
‘ Business
Stakeholder Business Process st Busin s\$gesugner Reviewer
i 1 | 1
§ : : : | \‘ : i }
L \
P AN P .
Descgribe|Curfent
[j Describe Qurrent Business Busifess|
i L L
]___ij Identify Busihess Processes =
{]
Refine Busi;leas Process 1 Reffine |Busiress — Rafind Busingss j
I Definfions L7 Précegs Defnitidns |:—5 Phoceks Defihitions
Design Busin [om! Desigr] Businesg r']
Process Realizaticn L. Priiceds Realizalionl-
l__Ly\ Refine Rle$ & Responsatilitied 4 Refibe Rolds & j :
“LJ Responsatjlities
Explofe Process r] Explofe Proces: [
Autoration L adton]ation
¢ ol i : 1 . 1
| Vo (- ! ']

Figure 26: Representing three concurrent threads (excerpt from Figure 123, page 196)

On one thread, the Business Process Analyst, together with the Business
Designer and the Stakeholder, they “Describe Current Business”. On the second
thread, he carries out three activities: “ldentify Business Processes” (with
Stakeholder), “Refine Business Process Definitions” (with Stakeholder, Business
Designer and Business Reviewer), and “Design Business Process Realization”
(with Stakeholder and Designer). On the third thread, he carries out the activity

“Explore Process Automation” (with Stakeholder and Business Designer).

We can use the same symbol as we have done for case refinement to join all
threads together once they are finished. It is what happens in the previous
example, once the Business Process Analyst and the Business Designer have

resumed the three threads.

57

Business Designer
| !

1elBusiness! 1

eds Definiins L Procebs

lofe Process |
ymation:

- :i\\Reﬁnement closing

Figure 27: Joining-up concurrent threads (excerpt from Figure 123, page 196)

In some cases, however, a process might not operate in this way. Some threads
of a part refinement may never need to recombine. For example, in Figure 139
(see appendix A.8, page 212) the Test Manger, after interacting with the Test
Analyst, Test Designer and Tester, on the second thread, he can continue
somewhere else in the process (it's not interesting for the purpose of this model);

the thread never recombines with the first one.

58

Test Manager

L i

B By

> Test Analyst, Tester

§ f‘ est > Test Analyst, Tester,
Test Designer

; 1 ve
s > Test Analyst, Tester

“Don't care” thread

f threads don' recombine

Figure 28: Another case of threads that don’t recombine (excerpt from Figure 139, page
212)

We can note the fact that the case refinement and the part refinement closings
are equivalent to the synchronization bars in the AD diagrams.

4.1.7 Representing external events

We show an event by an arrow placed on the state line and annotated with a
brief description of the event concerned. In Figure 130 (see Appendix A.8, page
203), we see that as soon as there is “new input” coming in, the other thread of

the System Analyst is activated, which is a triggering event for the activity

59

“‘Manage Changing Requirements” to be carried out together with the
Stakeholder and the Requirements Reviewer.

System Analyst

External event

',,,-:-"’/i

o [New system?

\:’éw input

Stakeholder)
hManage changing

requirements

Figure 29: Representing an external event (excerpt from Figure 130, page 203)

4.1.8 Modeling the materials in the process

There are different ways to insert the materials flow into the already existing role
model. One of them is the use of the central repository. When a role, for example
Business Process Analyst, produces an artifact, like Business Use Case Model,
this artifact can find its way into the central repository. From there, it can be
accessed by another role, Business Designer, without explicit transfer from the
role body of Business Process Analyst to the role body of Business Designer. In
this case, the artifact “Business use case model” is shared. However, if we
wanted to establish that the materials flow was coherent, we would need to show

the explicit passage of the artifact from one role to another.

60

In the original RAD diagrams, the materials required by the process are
represented as shown in Figure 124 to Figure 127 (see appendix A.8, pages 197

to 200). They appear as the “grams” passing between roles at interactions.

In order to show the production of an artifact, we draw the black box of the
activity that creates it. If an entity is needed as input to an activity, there are two
cases. The first case is when the same role produced it and later needs it. In this
case, nothing is specified in the diagram. Everything a role produced before, it

can be used later by that same role.

Let's consider Figure 127 (see appendix A.8, page 200). When the Business
Designer and the Business Model Reviewer interact to “Refine Roles and
Responsibilities”, the Business Designer does two “micro-activities”, Detail a

Business Worker and Detail a Business Entity.

Outputs “implied": Business
Warker and Organization Unit

Outputs “implied*: Business
Entity and Organization Unit

"Inputs” not-specified

Business
Designer

Business
Stakeholder ,ProceSS Analyst

Business
Reviewer

s 4 Respongabilities

¥ Businers,'En(ii'.

| 1 | I i
' I l
| . 1

two "micro-activitieg”

Figure 30: Representing the production of artifacts during the “micro-activities” (excerpt

from Figure 127, page 200)

61

He uses artifacts that were previously sent to him by the Business Process
Analyst during the interaction “Design Business Process Realizations”, and
artifacts that he produced also during the same interaction. So, that's why these

input artifacts don’t show up on the diagram.

During the activity “Detail a Business Worker”, he will produce two artifacts:
Business Worker and Organization Unit. During the activity Detail a Business
Entity, he will produce two artifacts: Business Entity and Organization Unit, as
well. We don’'t mention which artifacts are produced, because we can “guess” by
the annotation placed next to the black box, which artifact will be produced. The
second case is when a role needs an artifact produced previously by another
role; the latter has to send it to the first by an interaction (white box). We can

consider the previous example.

Artifacts are passed during an interation from the
Business Designer to the Business Reviewer

Business
Designer

Business
Reviewer

\

Detail a BUSinBSL:WtJka{

Detail a Businesf’s;Egtitf(

5 Has$/B Wolker, B Enlity, -
rg'Unit to B Reviewer

™

Figure 31: Representing the transfer of artifacts from one role to another at interaction

time (excerpt from Figure 127, page 200)

62

After having finished the two activities, the Business Designer will pass the three
artifacts produced to the Business Reviewer by the intermediate of an interaction.
The Business Reviewer, together with the Stakeholder will Review the Business

Object Model and produce a Review Record.

Interaction

Business
Stakeholder Reviewer

W

o Ly
i t ”\ - E iffj;:

Artifact produced

Figure 32: Representing the production of an artifact during an interaction (excerpt from
Figure 127, page 200)

4.2 RADs applied to RUP

As we could see in the previous section, RAD diagrams are a convenient
approach when modeling the interactions between different roles. The activity
diagrams which are presently used to represent the RUP disciplines allow the
representation of interactions, but when we add the artifacts, the diagrams
become very complicated and unreadable (see example in section 3.4.7, page
44). That is why we developed XRAD (an extension to RAD) to represent RUP

artifacts and to replace the existing activity diagrams.

We developed three versions of the model. The first two versions are RAD
diagrams. They only express the relationship between the activities and the roles

in the RUP. The first version is inspired by references [1] and [2] and the second

63

version by reference [3]. The second version is more complete and tries to
correct mistakes found in the first version. The third version, called “XRAD”, is an
extension to RAD. It builds on the second version RAD and adds to it the artifacts

involved in RUP. It introduces the use of the arrows to express the entities flow.

4.2.1 First version RADs

This first version tries to combine information coming from different diagrams and
documents. It first uses the original activity diagrams for each discipline (as they
appear in Chapter 3). Then, it uses a document from reference [2], which
describes the activities performed and the artifacts produced during a workflow
detail. Since we can associate to each worker, the activities he can perform and
the artifacts he produces ([2]: appendices), we can try to guess the actors that
collaborate during a workflow detail. That's how we obtain the RAD diagrams, for

each core discipline, involving interactions among workers.

64

4.2.1.1 Business Modeling

Business Process Analyst Business Designer

Assess BusineLs Status

business model?

i NCER

business model?

Model

Business Reviewer

AT

business model?

[} " Develdp Domain

cribé Current Business

1
| I

Process Defi

s s
(]
ldenjify Businegs Process X
E] Refine Busingss

E—l Ddsign Busi
|

Explore Prog
Avtomatian

Précass Redfization

_ Y,

[
itions L]
Refine Rolgs & r]
esponsabliiies L
ess

Figure 33: Role Activity Diagram for the Business Modeling discipline (v. 1)

The problem with this diagram is that the Business Reviewer role is idle from the
time it is instantiated and until he is involved in the activity “Refine Business
Process Definitions”. Another problem with this diagram is that we understand
that the Business Reviewer is also responsible for deciding if it is a business
model. This can not be the case, since he is only responsible for reviewing the

different models. The third problem is that the Stakeholder is not shown as being

part of the process, while he is strongly involved in many activities.

65

4.2.1.2 Requirements

Stakeholder System Analyst Reviewer
e N N o
Requirement &
Specifier
= New system?
5 New system? &
£ 'z New ingut
; ki
=
2 Analyze th proble
- Understand S'Q‘EhL'd‘LT&
Incorrect problem? Incorrect probler? Incorrect problem? Software
Architect
] { \
Defindg the system
Managqe the scopel of the|systen
-
Can't do hll work? Cant d? all work? Can't dp all work? an'ydo all work?
. .] Refine the systbm definition
: 7—1 Manage:changing requiemgnts rJ-L LIJ r
it l [
- / - J L___/ N

Figure 34: Role Activity Diagram for the Requirements discipline (v. 1)

The first problem we can notice in this diagram is that the Stakeholder is involved
in the process, at the same level as the System Analyst. Even if he plays an
important part in the different activities, he will not play the same role as a worker
in the process. We need to find another way of expressing the Stakeholder's
involvement. Another problem is that some minor roles (Requirements Specifier
and Reviewer) are idle a long time, waiting for the System Analyst to perform
some activities together. We should find a way to modify that.

66

4.2.1.3 Analysis and Design

Software
Architect Designer
Vg
Elaboration Elaboration
Inceptian inception
Perform Archit
{-
Define @ £] Architect Design ul
- Reviewer Reviewer Designer

Candidate Apchit

TN

Analyze Behawo}j Analyze Behavior % Analyze Behavior ﬁ
:
T ‘ I

.
{Optional] {Optionai] [Optronal]
Test Capsule
Des«gner Designer Destgner
. (7 ™
Design Design g sign DASI?:‘“DIN
[:}_{ ombenents __{: Y r..;.] dmporents
Ld L

1

E_] Design DB o Design O
A LJ
Refihe the
Architecture]
- &__/

- VAN 3 - N RN N
Figure 35: Role Activity Diagram for the Analysis and Design discipline (v. 1

There is no major problem with this diagram, except for the Architect Reviewer,

who is idle for some time.

67

4.2.1.4 Implementation

Software

Architect Implementor Integrator
e - A
Strugture the Plan the Integration
Impigmentation Model /__\

Implemeng Components

More Components
to Implement?

More Compdnents
to implemen(?

Integrate Each Subsystem

™1
LJ

More Subsystems

Mare Subsystems to Integrate?

to Integrate?

Builds?

o J N S

Figure 36: Role Activity Diagram for the Implementation discipline (v. 1)

The main problem with this diagram is that the Software Architect is not linked in
any way to the process. The Integrator role, as well as the Implementer, depends
on the artifacts produced by the Software Architect, in order to follow with the

process. This is a flaw that we’ll correct in the second version.

68

4.2.1.5 Test

Test Manager Test Designer
e N
i Dafine Evaluation Mission
Test Analyst Tester
e ™ 4 IR
E—(Vafidate|Build Stability| Verify Tegt Approach
-
Andther technique? ther technigue?
("
o} 0
L 1
C Achisle Acceplable Mission
"
imprav: iAssels {J"] r
nother cycle? Another cycle? Another cycle? Another cycls?
j \

o . v J \ >
Figure 37: Role Activity Diagram for the Test discipline (v. 1)

The problem with this diagram is that the Test Designer is idle for some time

(between the activities “Define Evaluation Mission” and “Test and Evaluate”).

69

4.2.1.6 Deployment

Customer Deployment Manager
~
Pian Deployment f
System L Technical Course
Tester Test Analyst Administrator Writer Developer
Manage M w (B
Acceptance Tests anage
i Acceptance Tests Develop
<At Dev Site> P si L Suppprt Mageria
Chiange
Change
Reqguests? Requgsls’l Requesls?
™ AN
Configuration
Implementor Manager
Praducp Produpe
1" Deploy Dept it
E] Ynit Unit
Custofner LI' L,
Beta 4 ")
Release ohe ; G;;::?h;c :ﬁwm ?ﬂﬂhiﬂ
rpk- is!
gret:fl;f‘ feustom(custom [Custom v : ™
T Ingtall Insm"‘(j—‘ Ins:T: {S:'?_Il’:rln Product]
Mirjag Manage Mapage 4 Package Product Prpvide :
Acceptance Test Acceptance Tests Acceptance Tests Actess to
; <At Instal Site> <At Instaf Sile> <A} Instali Site> . L Dgwnid Site
J AN / S\ J AN A

Figure 38: Role Activity Diagram for the Deployment discipline (v. 1)

The main problem in this diagram, as in the Implementation diagram (see Figure
36, on page 68), is that the Technical Writer and the Course Developer are not
linked to the process. We need to find a way to link them to the process logic

(see RAD second version of the Deployment discipline, Figure 44, on page 79).

4.2.1.7 Limitations

The limitations with the first version come mainly from the fact that we try to
guess, by looking at activities performed and the artifacts produced in each
workflow detail, which actors are responsible for doing these activities and
producing these artifacts. Sometimes, we can have some artifacts, but not the
activities by which they are produced, and sometimes the reverse. So, we can

make mistakes in the actual model because we don’t have complete information

70

about the process. These mistakes could have been corrected only after we've
got a more complete reference, i.e., [3].

There are some other mistakes that we could see directly from the diagrams
themselves, as pointed out previously, for each discipline. This proves that our
model is reliable, and we can improve it. The second version RADs are an
improved version for two reasons: they use a more complete reference for the
RUP and they correct the mistakes of the model that we detected in the first

version.

4.2.2 Second version RADs
We developed the second version by combining the activity diagrams for each

discipline with the complementary diagrams of the workflow details. In the same

time, we corrected the mistakes found in the first version.

71

4.2.2.1 Business Modeling

Stakeholder

Y

Business Process Analyst

:)

Early Inception

Business Desugner

Business Reviewer

[j Assess Busihess
Status
business model? busmess model?
‘j Develop Domain Model FIT Develop fomain Modlet Develop [Domaif Model tl
AN
Curfent
[-—-b Describe Qurrgnt Business
[j Identify Business Processes r
- {]
Refine Blsigess Process r Relfine[Business| 1 Refind Business t;
D Defimtons L Préceds Definitigns ' Procefs Defihitions
[l;]» Desian Qusiness ™ Ddsigr Businesg 1~
Process Reglization L Proceds Realizafion
lj Refine Rble} & Responsabilities befibe Rolds & l‘__j
L ?eshonsabhities
lj Explode Process [1Explode Proces: 1.
Autordation Agtonation
PR N J \ J \ /

Figure 39: Role Activity Diagram for the Business Modeling discipline (v. 2)

In this version, we introduced the Stakeholder at every level of the process. The
Stakeholder provides valuable feedback. The reason why the activities in the
Stakeholder role are not connected by the state line (in this case, they are called

“hanging”), is because the Stakeholder is only doing these activities on demand

(just like the Business Reviewer).

72

We avoided the Business Reviewer role being idle for a long time, by making him
act on demand of the Business Designer (he can do other activities meanwhile).
In the second version, the Business Process Analyst is interacting with the
Business Designer to “Explore Process Automation”, while in the first version he
is doing this activity alone. This is due to the fact that in the second version we

used another reference [3] that showed us the Business Designer is involved.

4.2.2.2 Requirements

Stakeholder System Analyst

New ifput New system?

lj Analyze this problem

[j Understand stalieholder geeds

Incorrect problem?

Software
_ Architect
Define the system TN
[j Manage the scopelof thd syste Manage the scope of the system [J-‘—L]

1l work?

Requirement

Specifier Ut Designer

Requirements

Reviewer
G Manage changing requirembnts L

i Py

\ "’// N

Figure 40: Role Activity Diagram for the Requirements discipline (v.2)

Manage changing requirements

o : J

In the second version of the Requirements discipline, we decided to make just
one key role for the process, the System Analyst. The Requirements Specifier,
the Software Architect and the Requirements Reviewer are roles that will act on

demand of the System Analyst role (for the same reason as in the preceding

73

example, to avoid these roles being idle for a long time, waiting for other roles to
perform some activities). We also introduced in the second version, the UID
(User Interface Designer) role (this role used to be part of the Analysis and
Design discipline, according to the first reference we used [2]; but in the latest

reference [3], he was part of the Requirements discipline).

The Stakeholder can not be part of the process (as shown in the first version, see
Figure 34, page 66), even if he is present at most of the levels in the process. We
make this role act on demand of the System Analyst role, by making the activities
in this role “hanging”. In the second version, we improve on the clarity of the
process model by introducing two new notations: the “Magnifying Glass” and the
“Triggering Event”. The "Magnifying Glass” underlines the state “Work in scope”,

after it was previously established that all work could be done.

This is a necessary condition for the Requirements Specifier and the Ul Designer
to “Refine the System Definition”. The System Analyst will notify the state the
process is in to the Requirements Specifier and the Ul Designer, so they can
undergo the activity. “New Input” is a triggering event for the System Analyst and
the Requirements Reviewer to start the activity “Manage Changing

Requirements”.

74

4.2.2.3 Analysis and Design

Software
Architect Designer
~
— [~
S 3 2
® 2 - [
> - Zol >3
4 T9 o ke
Gm S O @
% Perforn} Architgctu
O8tine 4 Capdidate
rchitedfure L
‘—\ Design
Reviewer
Adfalyze Behavio;j_] Analyze Bghavior C_]
i | Architecture
l Reviewer
ke Refing the Architepture ("_—x:l
Capsule
Designer
- / DB
Design Camponents ‘_H Design Components é Designer
J
Design DB l"ﬁ Design DB
L7

Figure 41: Role Activity Diagram for the Analysis and Design discipline (v. 2)

In the second version of the Analysis and Design discipline, we eliminated the Ul
Designer role (since we integrated it in the Requirements discipline) and the Test
Designer Role (which is part of the Test Discipline). The Designer and the Design
Reviewer don'’t interact directly with the Test Designer to “Design Components”;
they only need artifacts developed in the Test discipline by the Test Designer
role. We can see this by looking at the diagram containing the artifacts flow (see
Figure 53, page 92).

In the second version, there are two key roles: Software Architect and Designer,
while the other roles are acted upon request of the two principal roles (the

activities in these roles are “hanging”). The other differences between the first

75

(see Figure 35, page 67) and the second version concern updates from the latest
reference used [3]. Hence, the Software Architect does the activity “Perform

architecture synthesis” all by himself, and he is not involved in the interaction:
“Design components”.

4.2.2.4 Implementation

Software
Architect

re the Implementation Model

mentation model structured

Integrator
mtegrator Role ' ™
ntegrator that
entation modet is sfructured
Plan the Intégration Implementor Code Reviewer

L

More Components 10 lmplemgent for this lteration?

(lmple} ent Confponents
Implement Components r D

Done

Unit Tested Components avaitable

| integrate Each Subsystem

integrated Implemantation Subgystems available ¢t

pration for this Heration?

eration?

. /
Figure 42: Role Activity Diagram for the Implementation discipline (v. 2)

76

In the first version (see Figure 36, page 68), there was a flaw. The software
architect was not linked to the process in any way. We came up with a solution to
correct this. The “magnifying glass” underlines the state following the activity
performed by the Software Architect. This is considered a triggering condition to
start the Integrator role. The Software Architect will interact with the Integrator

and notify him that he can start the activities.

In the second version of the implementation discipline, we introduced a new role
(Code Reviewer) as an update of the latest reference [3] used. The Implementer,
as well as the Code Reviewer roles, are acted only on demand, because they
only participate in the “Implement Components” interaction (in the first version,
see Figure 36, page 68, the Implementer also interacts with the Integrator to
“Implement Components”, but according to the latest reference [3], it is no longer
the case, the Integrator doing this activity alone).

Other updates concern the use of the “Magnifying glass” to underline the different
states the process is at different times. For example, it is used to show some
threads are finished (“Done”), or that we have the necessary condition for some
activities to start (“Unit Tested Components Available”, “Integrated

Implementation Subsystems Available”).

77

4.2.2.5 Test

Test Manager Test Analyst Test Designer
/ e N
Define Evaluatidn Mission Define Evaluation Mission E
Tester l:L
/ ™ <
Validate Builll Stab Validate Buifd Stm#“w
Fest & Evaluat I j Tgst & Hvalugte Test & Evaivale
|
chigve Agc tef Misgion rL Aghieve Accegliablg Missign
% -L'(Improve Tes] Assefs improve Test Assets
Another Test Cycle . Another Test cycla?
| N_—
vor , Y , |
Ly erify Tes{ Apprpach L Verity Tes{ Apprgach{ .] Verify Test Approagh t'
Another technigye? l Ancther technique? ‘ Arnother technique?
_ . /o /

Figure 43: Role Activity Diagram for the Test discipline (v. 2)

In this new version, we have three key roles (Test Manager, Test Analyst and
Tester), who are responsible for the process logic. The Test designer is a role
that acts on demand of one of the other three roles. We chose to make the
activities in the Designer role “hanging”, because we don’'t want to keep the
Designer role idle, between the time he participates in the interaction “Define
Evaluation Mission” and the time he is doing the activity “Test and Evaluate”.
Instead of waiting during this time, he can do other activities. However, we can
link the output state of the activity “Test and Evaluate” to the input state of the
activity “Improve Test Assets” (i.e. link the two activities by the same state line),
because the process permits it (it is also the case in the role body of the Test
Analyst and of the Tester; however, they have to wait for the interaction “Achieve

Acceptable Mission” to take place, before they can “Improve Test Assets”).

78

We use a “hanging thread” in the role body of the Test Manager, after completion
of the two concurrent threads in which he carries the activities “Test and
Evaluate” and respectively “Achieve Acceptable Mission”. The reason we don’t
use the “Stop” symbol for this thread is because we may need to reactivate the
thread, if after the activity “Improve Test Assets” (done by Test Analyst and
Tester), we find out there is another test cycle, in which case we need to come
back and do some of the previous activities over again.

4.2.2.6 Deployment

. Deployment Manager
Project Manager ,ﬁ—-!-——»—-——*g
[J_"l Plan Deployment Technical Course
Chg ’) Writer Developer
Ctrl System
Mgar Stakeholder H
g Tester Test Analyst Administrator
/ \ 7 I TS . Give Planfto CP
Manage " Manage Give Pign t4 TW L, Give Plan
v S A [Tes! 3
E}Lmn 1 hm A Acceptance {a Devel o
Ao T <At Dev Spe> <AtOev Sife> L Suppdrt mpterial
ange Requesth? Change Raquesty? nge Requests?
N [Appfoved) Configuration
[Appfoved] {Apprbved) Implementor Manager
< Produg Prodyc
& Deplbyment ["-]._Depipyment
& Unit Unit
@
Chg Ctrl Mger ——
ota Tesy P duclﬁ]
a o
. £ g E: Graphic
Chg g 5 T B 2l 2 B é g Artist
Cte £ z z z H 3
Mger g § € € gl “Lag {—_I—)
g £ |3 .
7 N\ é . é % g 13 E ackagp Froduc
B L | oL = —)
Marjagd Ace L_im Acc Tests-—IMa Acc Tests - Manage AcciTestsl— Manage Acd Tests o
Tess <Atjnstal Site> <At Iefsial[Site> <Atinbtal Site> <At Instat ile> Provide Access ta
Insthl Site> i Pownload Site
JON o N \ _{ /

g

Figure 44: Role Activity Diagram for the Deployment discipline (v. 2)

79

In the first version (see Figure 38, page 70), the Technical Writer and the Course
Developer were not linked to the process. They were doing the activity “Develop
Support Material” parallel to the process, but we don’'t know when this activity is
initiated. By interacting with the Technical Writer and the Course Developer, the
Deployment Manager includes them (and their interaction) to the process. In this
new version of the Deployment discipline, we introduce two new roles (Project
Manager and Change Control Manager). The reference [3] we used for this
version of the model provided more information about the interaction between the
different roles involved in the Deployment discipline. As a result, the new version

is improved in terms of clarity and information detail.

We can see how important the Deployment Manager role is to the process. He is
responsible for the process logic (concurrent or alternative threads), he is
responsible for the different decisions taken (“Change Requests”) and he initiates
the interactions with other roles. The other roles are all acted upon request of the
Deployment Manager. The advantage with this diagram is that the process logic
is visible inside the Deployment Manager Role.

4.2.2.7 Limitations

The second version of the RADs we have just developed, expresses very well
the interactions between the roles, as well as the process logic. We can also
express if some roles are principal or secondary, if some activities are “hanging”,
if there are external events, etc. There is one thing which they don’t express yet:
the data flow. RUP puts a lot of emphasis on the artifacts produced during
activities and interactions. Our model can be complete, if it contains the artifacts
produced and consumed by the roles at different steps of each discipline. We
constructed a RAD for the flow of the artifacts of the Business Modeling
discipline, to see if the present notations that RAD uses for expressing entities
flow (as described in section 4.1.8, page 60) are suited to model the RUP

artifacts. We obtained the following diagram:

80

Business Modeling {entities flow} p1
Business Process

Analyst
a 5 N
Stakeholder a
f——-——_—\‘ g
>
&
N

Ij Assess Business
SETOTY

Capture a Commén Business Voc

Assess Tarjet Organization

Develop Modeling Guidelineg
{Env)

Maintai BusinessRulesfs

Sel & Adjlist Roles Business Designer Business Reviewer

Vs ™ /7 ™

Business Model? Business. Modet?

E] Dvp Domair Model] l Dvp Domkain Nodel whih Model E‘]
= - s

Maigtain Business Rules

Captgre a Cpmmon Business Voc

Pass BMG, B Rules, B
Vision, T.Q.A, B Glossary to

Designer P slRuie d‘E »
as! utes and B Gilossary [
to-Revipwer, _ ! j :

Find B W orklrs-& Entiies

(BOM)

Detjit a B Entity

Review the BOM I
lj {RR) ; L.]

N AN AN AN -/
Figure 45: Role Activity Diagram for the Business Modeling discipline entities flow

81

Business Process

Stakeholder Analyst B Designer
\ / N / i M 1?
Business Madel? Business Model?
Assess Target Org [ol
Find B Actors & Use Cases il
Set & Adjupt Goals iy
| Pass BMG, B Vision, §
> BN, [
B.UC(o} and Supp Spec to
Designer
Find B Workars and Entities
t} - Identify Bysiness Procdsses ~
Maintain B Rules
Set & Adjust Roles
Define B Architecture
Capture a Comimon B Voc
Find B Actors &|Use cases
NG J N J \ J/

Business Modeling (entities flow), p2

Figure 46: Role Activity diagram for the Business Modeling discipline entities flow (contd.)

82

. p Business Business
Stakeholder Business Process Designer Reviewer

N Analyst //——————w VO

a ™

[[] Refing Business yé; Refine Busineks i Refine Bus|ness rj
rQuess Uehniofs — Process Definltions Process Ddfinitions L

. Structure the Business Use casg Model

=

.| Pass BUcM to
E-J Designer

Detail a Business Use case

Pass B usd case,

[:j Review the Business Use case Madel
(RR)

Design Business Hrocess 1 .Design Busingss Prpcess r]
—I" Realizations — Realizations L

r

Caplufe a Commpn B Voc
Maintain| B Rules

PBefine B Ardhitecture

Pass Artifacts|1_6 Id Desiqnerr']
L

[:I Einl L
| <. {BOM, B use gase R} Ij

e JoN) N

Business Modeling {entities flow) p3

Figure 47: Role Activity Diagram for the Business Modeling discipline entities flow (contd.)

83

Business Business Business
Stakeholder Process Analyst Designer Reviewer

é § A 4 k; é N)
[L1 Refine Roles & Responsabillties iReﬁhe Roles & Respongabilities r‘j
- L

Detail a[Business Worker

fetail 4 Business Entity

Hass B Wolker, B Eniity, r
rg Unit to|B Reviewér L]

| Review the BOM —
r_J (RR} _]

[Ly Explore [Process|automation ——EXpjore Progess Automation J—]
| L L

Set &Adjust Goals

J

E}F’ass 8 Visign to B Designer [

— ~ Defind Automdlion Requirements =
(__1 (Supplisys] Spec, [Sys| Use-case M| Analysik M} I];l

o J o\ o\

Business Modeling {entities flow) pd

Figure 48: Role Activity Diagram for the Business Modeling discipline entities flow (contd.)

84

After having constructed the RAD to express the entities flow, we came up with

several arguments that show that the original RAD diagrams are not suited to

express the flow of artifacts.

They have the following limitations:

1)

For each input of an activity, we need to refer to the role that produced it
(if different from the one that needs it), and pass it through a part
interaction (white-box) to the role that needs it. If many artifacts are
involved, coming from many disciplines and roles, it would complicate the

diagram, or make it very long.

For each output, we need to show the activity that produces it (black box).
For 5 outputs, we need 5 black boxes connected by the role state. This

again makes it very long.

If an activity needs inputs that were previously produced by the same role,
they will not be specified. It is implied that anything that was produced
before can be used after by the same role. But not knowing which artifacts

are necessary for the present activity is not helpful.

We cannot express the entities flow of the discipline, because RADs don’t

allow the use of arrows going in and out the part-interactions.

85

4.2.3 Third version RADs (XRAD)

In order to make a more compact model and to include the artifacts to the
discipline, we came up with a very simple solution that makes use of arrows to
express the entities flow throughout the process. The new elements used in
XRAD representation seem to have different semantics compared to the original
RAD version. These differences occur in the way we represent the artifacts flow.
In RAD, when an artifact is produced, a black box activity illustrates it, and when
an artifact is required by an activity, it has to be passed to the role by an
interaction (white box). In XRAD, input artifacts are represented by arrows going
in an activity (or part-interaction), and the output artifacts by arrows going out of

the activity (or part-interaction).

Our approach uses the idea of a central repository, which contains all the
artifacts produced during a discipline. During an activity, a role produces an
artifact that is referred to as a number in the repository. An activity also needs
inputs, which are artifacts produced by the same role or by other roles in the
same discipline, or in other disciplines. This approach, as underlined in the
previous section, could be misleading, because we use the notion of “shared
artifacts”. However, it turns out it is clear enough, because it shows where the

artifact is coming from, who produced it, and in which discipline it was created.

There is a repository for each discipline, Business Modeling (see appendix A.1.4,
Figure 60, page 112), Requirements (see appendix A.2.4, Figure 71, page 127),
Analysis and Design (see appendix A.3.4, Figure 80, page 141), Implementation
(see appendix A.4.4, Figure 89, page 157), Test (see appendix A.5.4, Figure 97,
page 167) and Deployment (see appendix A.6.4, Figure 106, page 181).
However, if we refer to artifacts produced in the support or process disciplines
(not covered in the thesis), we refer to their abbreviation (see appendix A.8,
Figure 121, page 194). For e.g., IP is Iteration Plan from Project Management,
CR is Change Requests from the Configuration and Change Discipline, etc.

86

While we are modeling the process and the entities flow in a discipline, we may
need to refer to artifacts from other core disciplines. We do that by referring to
the discipline and attaching the number that corresponds to that artifact in that
discipline. For example, in Analysis and Design discipline, we need R7, which
corresponds to the artifact number 7 from Requirements, which is Supplementary
Specifications. An artifact can have a different status: outlined, updated, refined,
etc. All the abbreviations and notations are documented in the legend (see
appendix A.8, Figure 121, page 194). We add the artifacts used (input) and
produced (output) during the discipline.

Most activities in the discipline are collaborations between roles. Each role does
some “micro-activities” (not visible in the main workflow), the result of which are
entities needed in the process (e.g. Architecture Document, Guidelines, Plans,
Test Results, Scripts, etc). Some of the artifacts produced by one role are
needed by another role(s) involved in the interaction. We represent the artifacts
needed by a role involved in the collaboration by an arrow going in the part-
interaction of the respective role, and annotated with the appropriate numbers or
symbols (or both) corresponding to the artifacts. The artifacts produced by the
role are represented by an arrow going out the part-interaction of the role,

annotated with the respective numbers or symbols for the artifacts.

87

For example, in Figure 134 (see Appendix A.8, page 207), the Software
Architect, the Designer and the Design Reviewer interact to “Analyze Behavior”.

From Environement Artifacts fram the
Requirements Inputs Outputs

Design
. Reviewer

o Iﬁ\na!yze Behavior
N -

1.1100) 160

produced during "Perform
Architectural Synthesis"(A&D)

Figure 49: The flow of artifacts at interaction time between the Software Architect, the

Designer and the Design Reviewer (excerpt from Figure 134, page 207)

The Designer needs artifacts produced in the Requirements discipline (R2 —
Glossary, R4 — Use case Model, R7 — Supplementary Specifications), an artifact
produced in the Environment discipline (DG — Design Guidelines), and artifacts
produced by the Software Architect (in the Analysis and Design discipline, during
the Inception phase and during the “Perform Architecture Synthesis” activity) - 2

(Software Architecture Document), 4 (Design Model), 11 (Use-case Realization).

The designer updates the use-case realizations (11), creates the Analysis Model
(1), and details the Analysis Class (15). The designer also passes these three
artifacts to the Software Architect and to the Design Reviewer. The Software
Architect uses these artifacts, and the ones already mentioned for the Designer
role, updates the Design Model (4), which he passes to the Design Reviewer.
The Design Reviewer will produce two artifacts: CR (Change Request) and RR

(Review Record).

88

A collaboration is not necessarily concerned with passing artifacts from one role
to another involved in the collaboration; sometimes the collaboration involves
several roles working together to achieve some “common goal”. For example, in
Figure 128 (see Appendix A.8, page 201), the Business-Process Analyst and the
Business Designer, involved in the collaboration “Design Business Process
Realizations”, both share resources produced before (in a previous workflow
detail) by the Business Process Analyst (Business Glossary, Target Organization

Assessment, Business Rules, Business Vision, etc.).

Artifacts produced in previous
steps by Business Pr. Analyst,
now shared by Business
Designer

. Stakeholder
i

Figure 50: Representing artifacts being shared between roles (excerpt from Figure 128,

Business Process Analyst Business Designer

; J !
. W)%(Qelsigfl Busings% 3-}‘0 l S
7 r'Pr ceﬁ's Reahzaﬁ ! '

gsiqn Busines

Process Reglizations

BNMG

page 201)

89

Sometimes, the workflow detail is not a collaboration; it is done by a single role;
in this case it is represented by a black box activity. For example, in Figure 137
(see Appendix A.8, page 210), the Integrator is doing the activity “Plan the

Integration” by himself.

Artifacts produced in other
disciplines (IP : Project Activity performed by the
Mang, D11: Analysis & Integrator alone

Design)
Integrator /

‘i’féh ihe Integration

Figure 51: Representing a workflow detail as an activity performed by a single role

(excerpt from Figure 137, page 210)

The Integrator uses artifacts produced previously in the Analysis and Design
discipline, by Designer role, “Use-Case Realization” (D11), in Project
Management discipline, “Iteration Plan” (IP), and the “Implementation Model” (5)
structured by the Software Architect at the beginning of the Implementation
discipline. He produces the integration plan (3). We have developed the XRADs

for all the core disciplines. We present them here.

90

4.2.3.1 Business Modeling

Stakeholder

Business Process Analyst

~

Figure 52: XRAD for the Business Modeling discipline entities flow

91

S
&
2
2 . .
E Business Designer Business Reviewer
Assess Bushess 1.4
Status
business model? business model?
E‘:‘jDBV lop Domain Model IJ_] DevelopLomain Mo Q,l I Devemg Domai Model1 ’S\FLI RR
‘I’ 13 | 14 swe'j_"a.n 811 —
Y N\
Describe Qurrent
E:}l Describe Cprrgnt Business 1-4 L 204 qindss 1.6.9 81p(o) |
BMG “T5,6.9(0) BMG T 6(r
E}. identify Business Processes 2.]4 —51,3(b),4{u).5.6,7(0), 9{o)
amd” T
s 6,p(d)
Refine B Process 114 Srefin iness 119) Réfind Business GQFLl RR 5
Detinitions vl S~ Pfocebs Definition -ﬁi—f Plocebs Défipitions”™ 1
1
[“:]..E&ﬂmﬁm 1.6 | ' O P Basior Businej1 §H B0
Process Redlizations BMG~L..J7 "Prhcads Realizali -
Ej Refine Reles & Responsabilities 3h6.7.91d ‘ 11"11!%@9 Rolds &”-413. RR -
Bwmd ~ L 7 Responsabllities 7t
4(r
Explote Process 3.8 \H Explote Prgcess 3.8 . - §6(sys.5k)
Aufonjation /\-]}Knon atiGn "—l:F
N J J —

4.2.3.2 Requirements

akeholder
St System Analyst
4 ™
Y
Ne
-
‘j Anzlyze thi pr«:)l')le'nBMl5 i \r_]'z.ﬁ
; - >
[j Understand stafeholder heeds_[1{3.56 1,2,3(r),4(1).647). 7o)
CR. UMG'
Incorrect problem?|
Software
Architect
= . Define thg system
U AG.BM:«; 2(0).3(r).411.6(r).7.8(0}
LL}_Ma_nilgg_ @ scopg of the system 158 ,J—l 3(r).6(r) |, Manage the scope of the system 34,6 B\J—Ll AD|6ir)
<L
CR Can't do hil work? Requirement
Specifier Ul Designer
Wprk in scope /” \o "
Notify "Work|in Nattify “Work
cope” _sctoe”

Refne Systeny
Degnition

UMG, 1].3,5. 80113 2,Requirements
Reviewer
_,/ .
New inpu
IJ__} Vanage changing requirements 13,8 . ry4(0.60) Manage changing requirements _CRJP |.rt sk
UMG, AL TP,CH,D

1.4,6.8,13

e /

Figure 53: XRAD for the Requirements discipline entities flow

92

4.2.3.3 Analysis and Design

Software
Architect Designer
7 N7 ™
fed o
Q
£ 5 &
7 s o 4 P
22 | 3
ww = w
arm Jrehitecturgl Synthesis
13.5,11,RLBC,R3
infe a Candid :sjﬁ.tfhileclu(e
i =
R2,4,7 2),3,4,11| R247 /'T 11,18 .
46.AD/ 2(u)}4,11.08Y Design
Reviewer
Arfalyze [Behavior Anatyze Behavior
DG, R24.7 0G, RZ.A{IA_1 1.4.11.15 r_L] RR.CR |
1,2,4,14(u),15 4 a1 1hwasd Archn?ecture o R;L._J
Reviewer
DG,R7 Refine the Architefture DGR RR.LR
1.4 24 2 | T
Capsule
] Designer
g 0B
5 . . R4 416 Designer
R4.7.T9 14 T13| Design Components \rLL Design Gomponents . .
144 7.4p..14 4(7,10,12,14,46)R7,06 ~ ! {pg cR 14
0G.R4Z - |14 Design DB DG.RL__L1 : Design DB DG.R417
1401 1 1417 —RRC 141174
N

Figure 54: XRAD for the Analysis and Design discipline entities flow

93

4.2.3.4 Implementation

Software
Architect
~ Structyre the Implementation Model
Toa 5,02
Implententation mode! structured
plenentatio Integrator
Start(integrator Role (I
Notify [ntegrator that
Implenjentation model is sFuclured
N S ‘
3,5,iP,D1 3 .
jmplementor Gode Reviewer
Pian the Integration
implement Conjponents
imptement Components]
1,1 1.CRD14T{} tdy 5 7iy

N

11, 3
More Components to Impleme
Done

integrated Impiementation Subg

integtatt the

1*

.

.

Unit Tested Components availabid
l integrate Each Subsystem

24

Nt for this ltecation?

stion for this Reration?

Figure 55: XRAD for the Implementation discipline entities flow

94

4.2.3.5 Test

Test Manager

Test Analyst

Test Designer

N s
B Defing Evaluatign Mission Define Evaluation Mission
1P, 84,034
Tester 12 /1; 8
Ve
N,
\I Validagh Build Stability Validatg Build Stalfiity
27 It CR.16 247 3.4,
s
fest & Evaluatl Test & Gvalu: ;g‘ aluate
2,CR L 3BLRTH2TIER R 8 11,15
chipue Atceptable Misdion . chiavg Acceptabl
f - - =
27,CR | 16]—':.jrm
\,—L(‘ {mprove Tesf Assels Improve Test Assels
2 16,12 2 11,12,15 2 l;’810.11,12,15
Anothar techrique?| Another Test Gycle? Apother Test cycle?
o Veiify Test Apprpach (3-1 verify Tes| Apprpach \S—] Verify Test Approagh
9 &.CR 13 45 4.58..108 13,1238 8" 5 10,15
ique? Another technique?
Another techniqué? Another technique? q
_ . VAN 4

Figure 56: XRAD for the Test discipline entities flow

95

4.2.3.6 Deployment

Project Manager

Deployment Manager
o Snuluiiibhaa

A
’i: Plan Deploymant - Technical Course
Chg IP.SDPPAP 1P, SDP PARY 1.2 Writer Developer
Ctri System s N\ TN
Mger Stakeholder Tester Test Analyst Administrator A
N Manage Accepl Manage Acdept /~ | Manage |\
4 Manage focppt Tests Tests & AccepiTests ive Plan jo T, Give flan °CP¢]
<At Dev Gte <At Dev Site <At Dev Site L
1 Develpp
c T10 T10 ~ LPART 10.CR MSH10[13 i~ Supadrt Mpterial
Acc ‘pzj ;m» ” Chpnge Requesty?| CHangp Requests? I’ Q ;153 0.1§.i4 6 F
i / /
i —
S?‘ Apppoved) Configuration
[Apprbved] 7 ‘ImplementorA Manager
3 Prqcug roguce T
35 . Deplgyment Depbymgnt
£eg Ul \.J"LI Ugit ﬁ_%
1 EER] ia =5 “1hsdgis— 7
LOT ———
Cﬁg Ctrl Mg\er
eta Tesq P bducé;j 5
1,7"I‘ CR e’
=
- = % ‘g‘ Graphic
g g = = = Artist
ctrl - s E £ g £ (W
Mger g g 5 5 Sl hBPd | 2 ;,J-xﬂ
T 2 |
{ ™ 55 £ g a3 24,18 p,] ge t’roduc‘(_jPacka e Praduct
TI0_ Ay e 17 o ldae e Tigcl
" 1.1 ;
Accteds enting af* f(:fs's hanage b Tests™ Managd Acc Tlests UManage A Tesl:L r A%
<At hsthi Site <Allngtat Bite> <Al Instal Sitep <At Instal Bite> Blovide Access to
Dpwnload Site
N J - N / xi/ .

Figure 57: XRAD for the Deployment discipline entities flow

96

4.2.3.7 Benefits and limitations of the XRAD

This version will prove to be useful to all process actors, from the process
designers, who create the drafts of the processes, manage and monitor those
processes, to the actual developers, responsible for implementing the technology
that will perform those processes. Based on this version, the process designers
have a useful tool to easily develop simple diagrams that will look familiar to most
process actors. The introduction of the arrows to express the input and output
entities is familiar to most modelers in software engineering. The users of the
XRAD can easily recognize the basic types of elements and understand the

diagram.

The purpose of this new version is to create a simple mechanism for creating
process models, capable of handling the high complexity of processes. This
version represents an overall view of the process that could be split into many
layers. A good approach can be to represent each layer by a separate view,
illustrated by new and less complex XRAD diagram. This approach avoids the
case where the diagrams become very dense and less readable, due to the

complexity of the process represented by a single view.

There is no formal method to generate different views of the XRAD diagrams
automatically, for each iteration and for each phase and taking in consideration
the nature of the project. We could generate them manually, but we don't
propose here a formal model to generate them automatically (see Chapter 6 :
Future Work).

97

4.3 Summary

In this Chapter, we proposed the Role Activity Diagrams (RAD) as an alternative
for modeling the RUP disciplines. These diagrams are better because they allow

us to represent the roles and the artifacts.

We showed how the RAD diagrams are built, what are the different symbols they
use to express the logic of the process (the concurrency and the alternative
courses of action), the occurrence of an external event, the state the process is
in, the instantiations of roles, the activities of roles and interactions between
roles. We also showed how RAD diagrams are presently used to capture the
resource consumption and production. We saw this was not optimal, and we
proposed XRAD diagrams, which use arrows to express the entities flow

throughout the process.
We also showed how we evolved the RAD diagrams from an old version to a

new one, by using a more complete reference, which gives more detail in terms

of the roles involved in the process and the resources used and produced.

98

Chapter 5: Conclusion

We have thoroughly studied the RUP process model that is traditionally using
various forms of UML activity diagrams for its representation. We have identified
deficiencies in this representation of the process. Based on these deficiencies,
we have developed a new version of the RUP process model representation for
the business modeling, requirement, analysis and design, implementation, test,
and deployment discipline diagrams using RAD. We then have analyzed this
alternate representation and extended the RAD notation to include artifacts flow.
We have named this extension of RAD, XRAD. Then we used XRAD to
represent the above mentioned disciplines of the RUP. This version will be
particularly useful to process designers, who create the drafts of the process, but
also to actual developers who implement the process. It is a tool to create simple

diagrams that will look familiar to all process actors.

From both theoretical and practical perspectives, the following observations can

be made:

e The Rational Unified Process (RUP) can be described using role activity
diagrams (RAD).

e In our research, we proved that with the existing activity diagrams, there exist
some limits, and therefore the necessity to improve their structures. In fact,
this was the main idea that led us to develop new versions of diagrams such
as the first and second RAD versions and the XRAD version as a combination
of RAD and RUP.

99

The first and second RAD versions still have limits, but their structures reveal
real practical interest and a substantial improvement compared to the
diagrams designed in the literature using activity diagrams.

The last XRAD version eliminates almost all these limits, but still remain an
open field for future work.

The RUP methodology is an iterative process that identifies four phases of
any software development project. From our point of view, an increasing
number of iterations in each phase allows better validation and verification of
the results, better distribution of the feedback from client and a more focused
risk analysis and risk reduction. In our research, we limit this number at one
single iteration. It would be a good opportunity to orient the future work in the
direction of increasing the number of iterations explicitly in the process
description. Note that this limitation is part of the original RUP representation,
and not an additional limitation raised by our RAD and XRAD process
modeling.

Our proposed diagramming technique for the RUP allows the unified
description of the dependencies between activities, roles, and artifacts using
the same diagrams, which is not the case for the activity diagrams
traditionally used in the literature for the description of the RUP.

100

Chapter 6 : Future Work

A software development process is composed of actors, artifacts produced by
actors, and activities undertaken by actors to produce these artifacts. Process
modeling involves the modeling of all these components of the process, as well
as all the relationships between these components, thus defining a process
meta-model enabling the modeling of software processes. SPEM is the meta-
model-used to represent the RUP model. Such meta-models enable a formal
process definition enabling process enactment, validation, verification, and
improvement, which are the goals of the research project in which this thesis

stands.

Process models, as represented by activity diagrams, RAD, and, most
particularly XRAD, can be modeled as state machines or dataflow diagrams,
where all activities are data filters, consume resources, and exchange data in the
form of process artifacts. All these process artifacts are produced in different
versions, depending on which project phase or iteration they are being produced.
Some activities and artifacts are to be adapted to different situations. Some
document templates come in different versions depending on the nature of the
project in which they are used. Some activities in a process can take different
forms depending on the project’s application area or the technical maturity level

of the actors.
We can produce a formal model which can generate different views of an XRAD

(for a different role, artifact, iteration, phase, etc.). This model will be used for the

verification and enactment of the process.

101

Thus, process adaptation is generally made according to the context of
application of the process. All the different variants of activities and artifacts can
then be modeled using a multidimensional contexi-driven model. The Lucid
family of intentional programming languages [30] enables the representation of
state machines, dataflow diagrams, in a context-driven manner and using context
calculus. The GIPSY project aims at the development of compiler and execution
engine components for Lucid language variants. The development of a Lucid-
based context-driven process meta-model in the GIPSY ([28]-[32]) includes the

following tasks:

e Development of a variant of Lucid suitable for process modeling, i.e. the
declaration of process workflows and their elements.

e Development of a software component for the graphical representation of
RAD and XRAD, as well as a translator to translate such graphs into their
Lucid counterpart.

e Development of an execution engine adapted to the verification and
enactment of process models defined in this variant of Lucid.

o Development of a context-driven version control repository system enabling

the storage of versioned process artifacts.

102

Chapter 7 : References

[4]

[5]

(6]

[7]

(8]

[9]

Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Software
Development Process, the complete guide to the Unified Process from the
original designers, Rational Software Corporation, US, 1999.

Philippe Kruchten, The Rational Unified Process, an Introduction, 3" edition,
Us, 2003.

http://process-

up.ts.mah.se/RUP/RationalUnifiedProcess/process/workflow/ovu core.htm

Martyn A. Ould, Business Processes, Modelling and Analysis for Re-
Engineering and Improvement, UK, 2003.

Stefan Bergstrom, Lotta Raberg, Adopting the Rational Unified Process,
Success with the RUP, US, 2003

Maria Ericsson, Activity diagram: What it is and how to use,
http://sunset.usc.edu/classes/cs577a_2000/papers/ActivitydiagramsforRose
Architect.pdf

Ludovic Arbelet, UML n’est pas encore entré dans les moeurs, in 01
Informatique, 11/10/2002, http://www.01net.com/article/195306.html

Thierry Jacquot, Des approches modernes dérivées du RAD, in 01
Informatique, 06/02/2004, http://www.01net.com/article/232427 .html

Philippe Billard, L’individu au Coeur des projets de développement logiciel,
in 01 Informatique, http://www.01net.com/article/176821.htm|

[10] Stephen A. White, Introduction to BPMN, http://www.bpmi.org
[11] Odeh, M., Beeson, |, Green, S., and Sa, J., Modeling Processes using RAD

and UML Activity Diagrams: an Exploratory Study, ACIT Conference, Doha
Qatar, International Arab Conference on IT, Doha Qatar, Dec. 16th - 19th,
2002

103

[12] Holt A W, Ramsey H R and Grimes J D, Coordination System Technology
as the basis for a programming environment, Electrical Communication 57-
4, 1983, pp 308-314

[13] Ould M A, Business Processes — Modeling and analysis for re-engineering
and improvement, John Wiley & Sons, Chichester, 1995

[14] Software Process Engineering Metamodel, An Adopted Specification of the
Object Management Group, Inc., November 2002, version 1.0,
http://www.omg.org/docs/formal/02-11-14.pdf

[15] Peter F. Drucker, Management: Tasks, Responsabilities, Practices, New
York: Harper & Row, 1973

[16] Tom Gilb, Principles of Software Engineering Management. Harlow, UK:
Addison-Wesley, 1988

[17] Barry W. Boehm, “A Spiral Model of Software Development and
Enhancement’, IEEE Computer, May 1988

[18] Capers Jones, Assessment and Control of Software Risks, Upper Saddle
River, NJ: Prentice-Hall, 1993

[19] Gary Pollice, Using the IBM Rational Unified Process for Small Projects:
Expanding Upon eXtreme Programming, IBM Rational Software,
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/
2003/tp183.pdf

[20] Martin, Booch and Newkirk, The Process,
http://www.objectmentor.com/ressources/articles/RUPvs XP.pdf

[21] Sam Courtney, Senior Software Specialist, IBM Rational, Adopting and
implementing RUP for a maintenance development cycle, October 2004,

htip://www-
128.ibm.com/developerworks/rational/library/nov04/courtney/index.htmi

[22] Fahmy, H.M.A., Petri nets analysis using small computers: piecewise
method, Microcomputer Applications, ISMM International Conference, Los
Angeles, USA, December 14 - 16, 1989, pages 106-108.,
http://www.informatik.uni-hamburg.de/TGl/pnbib/

104

[23] Tittus, M., Petri net models in batch control, Mathematical and Computer
Modeling of Dynamical Systems, Vol. 5, No. 2, pages 113-132. 1999,
hitp://www.informatik.uni-hamburg.de/TGl/pnbib/

[24] Tiplea, F.L., On Normalization of Petri Nets, Proc. of the 11th Romanian
Symposium on Computer Science ROSYCS'98, lasi (Romania). May 1998,
http://www.informatik.uni-hamburg.de/TGl/pnbib/

[25] Scott W. Ambler, The Object Primer 3 Edition, Agile Model Driven
Development with UML 2, Cambridge University press, 2004

[26] Mentoring for WayPointer, RUP and UML,

htip://www.jaczone.com/services/mentoring/

[27] Mohamed Fayad and Marshall P. Cline, Aspects of Software Adaptability,
http://portal.acm.org/citation.cfm?id=236156.236170

[28] Joey Paquet , Aihua Wu, Towards a Framework for the General Intensional
Programming Compiler in the GIPSY, Proceedings of OOPSLA 2004,
Vancouver, Canada, October 24-28, 2004

[29] Ai Hua Wu, Joey Paquet and Peter Grogono, Design of a compiler

framework in the GIPSY system in Parallel and Distributed Computing and
Systems - PDCS 2003, Marina Del Rey, California, USA, 2003.

[30] Bo Lu, Peter Grogono and Joey Paquet, Distributed execution of intensional
multidimensional programming languages in Parallel and Distributed
Computing and Systems - PDCS 2003, Marina Del Rey, California, USA,
2003.

[31] Joey Paquet and Peter Kropf, The GIPSY Architecture In Distributed
Computing on the Web, Proceedings of the Third International Workshop,
DCW2000, Lecture Notes in Computer Science, Vol. 1830, Springer, 2000.

[32] Yi Min Ding, Bi-directional translation between dataflow graphs and Lucid
programs in the GIPSY environment, Master's Thesis, Computer Science
Department, Concordia University, Montreal, Canada, 2004.

[33] R. A Snowdon, Overview of Process Modeling,

http://www.cs.man.ac.uk/ipg/Docs/pmover.htmi

105

[34] M. Dowson and C. Fernstrdm, Towards Requirements for Enactment
Mechanisms, Software Process Technology, Third European Workshop,
EWSPT '94, Villard de Lans, France, February 1994, edited by Brian
Warboys. Springer Verlag LNCS 772, 1994

[35] Proceedings of the Software Process Workshop, Egham, Surrey, UK,
February 1984, edited by Colin Potts, IEEE Press.

[36] Terry Bollinger, Facts and Fantasies, A Review of Two Books,
hitp://www.computer.org/software/Bookshelf-samples.pdf

[37] Kendall Scott, The Unified Process Explained, Addison-Wesley, Boston,
2002

106

Appendix A : RUP Workflows by Discipline

The contents of this appendix are based mainly on two references: [2] and {3].

A.1 Business Modeling

A.1.1 Business Modeling Workflow

_ {Early T
[Iiception] o~
Assess {
Busi neTs Statuz
Pt
[Business g
Medding] |

[Comain
ARl madeling

Ictertit y Business orily]

Proozsses

Describe Current
Busipess

Refine Business
Process Definitions
H

5 Develop a
Explore Process Domari Movld
Autaemation

Deszign Business
Process Redizdions
H
H

Refine Rolzs and
Resporisibilities
]

Figure 58: Activity diagram for the Business Modeling discipline

107

A.1.2 Business Modeling Workers

Business-Process Analyst. He leads and coordinates business use-case
modeling by outlining and delimiting the organization being modeled. He
establishes the vision of the new business, captures business goals and

determines which business actors and use cases exist and how they interact.

Business Designer. He details the specification of a part of the organization by
describing one or several business use cases. He or she determines the
business workers and business entities needed to realize a business use case,
how they work together to achieve the use case realization. He defines the
responsibilities, operations, attributes, and relationships of one or several

business workers and business entities.

Business-Model Reviewer. He participates in formal reviews of the business

use-case model and business object model.

Stakeholders. They represent various parts of the organization and provide

input and review.

108

A13

Business Modeling Activities

"m\" [T “*"—"’”s\
) N >
l"’m\]’ s L s ‘
et Assess Set and Maintain N
f Target Adjust Business &
! ; O rganization Goals Rules [Tt
L Define the
Business-Pracess o, “ r . Business
Analyst P > S Architecture
-~ . /t
C apture a Find Business Structure the
Common Business Actors and Business Use-Case
“Yocabulary Use Cases lodet
\,.u': ~,
O Detaila Find Business .
i Business Workers > Business Muodel
: Use Case and Entities 4 R eviewer
Buskines< Define \) r——
P - o Automation 1 N
Designer § Mo AN ' >
j 7 l . Requirements e - A
e oy R eview the R eview the
D etail a BDE'?'I a Business Business
B;’s;:(e:rs tgr:?ﬂe;s Use-Gase Maodel. Qbject Model

Figure 59: Activities by worker in the Business Modeling discipline

A.1.3.1

Business Process Analyst Activities

Assess Target Organization. Its purpose is to describe the current status of the
organization in which the application is to be deployed, in terms of its current
process, tools, people's competencies, people's attitudes, customers,
competitors, technical trends, problems, and improvement areas, to motivate why
the target organization must be engineered and to identify stakeholders to the

business modeling effort.

Capture a Common Business Vocabulary. Its purpose is to define a common
vocabulary that can be used in all textual descriptions of the business, especially

in descriptions of business use cases.

109

Set and Adjust Goals. Its purpose is to define the boundaries of the business
modeling effort, to develop a vision of the future target organization, to gain
agreement on potential improvements and new goals of the target organization

and to describe primary objectives of the target organization.

Maintain Business Rules. Its purpose is to determine what business rules to

consider in the project and to give the business rules detailed definitions.

Find Business Actors and Use cases. Its purpose is to outline the processes in
the business, to define the boundaries of the business to be modeled, to define
who and what will interact with the business, to create diagrams of the business

use-case model, to develop a survey of the business use-case model.

Structure the Business Use case Model. Its purpose is to extract behavior in
business use cases that need to be considered as abstract business use cases.
Examples of such behavior are common behavior, optional behavior, and
behavior that is to be developed in later iterations, to find new abstract business

actors that define roles that are shared by several business actors.
Define the Business Architecture. Its purpose is to define an architecture for

the business, to define the business patterns, key mechanisms and modeling

conventions for the business.

110

A.1.3.2 Business Designer Activities

Detail a Business Use Case. lts purpose is to describe the business use case's
workflow in detail and to describe the business use case's workflow so that the

customer, users, and stakeholders can understand it.

Find Business Workers and Entities. Its purpose is to identify all "roles" and
“things" in the business and to describe how the business use-case realizations

are performed by business workers and business entities.

Detail a Business Worker. Its purpose is to detail the responsibilities of a

business worker.

Detail a Business Entity. lts purpose is to detail the definition of a business

entity.

Define Automation Requirements. Its purpose is to understand how new
technologies can be used to make the target organization more effective, to
determine level of automation in the target organization and to derive system

requirements from the business modeling artifacts.

A.1.3.3 Business-Model Reviewer Activities

Review the Business Use-case Model. Its purpose is to formally verify that the
results of business use-case modeling conform to the stakeholders' views of the

business.
Review the Business Object Model. Its purpose is to formally verify that the

results of business object modeling conform to the stakeholders' views of the

business.

111

A14

Business Modeling Artifacts

1 3 5 %'W @;’J ?"
= g0
Business Business Business Business Object
A Glossary Rules Use- Case Model Model
Business-Process
Analyst ? 4 7 §
Target- Business Business Supplementary
Crganization Vision Architecture Business
Assessment Document Specification
9 14 10
. N _
Business o Business
Use Case Business Use-Case
i Actor Realization
Business
Designer 1 1 1
Crganization Business Business
Unit Entity Workser

Figure 60: Artifacts produced in the Business Modeling discipline

A.1.41 Business Process Analyst Artifacts

Business Glossary. It defines important terms used in the business modeling

portion of the project.

Business Rules. They are declarations of policy or conditions that must be

satisfied.

Business Vision. It defines the set of goals and objectives at which the business

modeling effort is aimed.

Target-Organization Assessment. |t describes the current status of the

organization in which the system is to be deployed. The description is in terms of

112

current processes, tools, peoples' competencies, peoples' attitudes, customers,

competitors, technical trends, problems, and improvement areas.

Business Architecture Document. It provides a comprehensive overview of the
business, using a number of different architectural views to depict different

aspects of the business.

Business Use case Model. The Business Use-Case Model is a model of the
business intended functions. It is used as an essential input to identify roles and

deliverables in the organization.

Business Object Model. The business object model is an object model

describing the realization of business use cases.

Supplementary Business Specification. This document presents any
necessary definitions of the business not included in the Business Use-Case

Model or the Business Object Model.

A.1.4.2 Business Designer Artifacts

Business Use case. It defines a set of business use-case instances, where
each instance is a sequence of actions a business performs that yields an

observable result of value to a particular business actor.

Business Actor. It represents a role played in relation to the business by

someone or something in the business environment.
Business Use case Realization. Describes how a particular business use case

is realized within the business object model, in terms of collaborating objects

(instances of business workers and business entities).

113

Organization Unit. It is a collection of business workers, business entities,
relationships, business use-case realizations, diagrams, and other organization
units. It is used to structure the business object model by dividing it into smaller

parts.

Business Entity. I's a class that is passive; that is, it does not initiate
interactions on its own. A business entity object may participate in many different
business use-case realizations and usually outlives any single interaction. In
business modeling, business entities represent objects that business workers
access, inspect, manipulate, produce, and so on. Business entity objects provide
the basis for sharing among business workers participating in different business

use-case realizations.

Business Worker. It's a class that represents an abstraction of a human that
acts within the system. A business worker interacts with other business workers
and manipulates business entities while participating in business use-case

realizations.

A.14.3 Business Model Reviewer Artifacts

Review Record. It is a form document that is filled out for each review. It is
created as a control document to manage the execution of the review of project
artifacts. It is issued to the participants in the review to initiate the review
process, and is used to capture the resuits and any action items arising from the

review meeting. It forms an auditable record of the review and its conclusions.

A.1.5 Business Modeling Details

114

- puey

-]
= =
"

- == e
Business Business
Glosszry Rules

Fy

t ;
DD

9 G apture 3 Maint ain

. Zommon Business Business Rules
! E “Yocabulary

Business-Process ; \‘} l)
Analyst [— 4

Erd User

Assess Target Set and o
Qrganization Adjust Goals B:rsn:\ €sg
I ustomer ", tsten
p—

Target-Organization
Assessment

.-------\:-----,

L4)

‘ S]

] i

. Develop : Business
tBusness-Progess Businessdiodeling ne

' alyst Guidefines £ Modsling
N Guidelines

ffor Envraniment) "
- m e owm ma

Figure 61: Business Modeling detail: Assess Business Status

115

End User

Analyst

Target-
Organization

Business Moddling

Glossary Guidelines
=
Business
Rules
Business

Vision

Business-FProcess

g} Assessment gusiness -

—

Assass Target
Drganization

,,,wmw,\\.‘
l /)

L —

Find Business Set and
Actors and gdju;t
Q2 e oa
Use Cases —

t—a»

!
Target-
Qrganization
Assessment
(refined)

Business
Vision
{refined)

Busi Business Supplementary
usiness Us= Case Business
._,__\-I:Jsel:ase Id?del {outlined; Specifiogtion
T, AN ¢ -
\"\\ \ l" ’.x"f
e % v e
[,w\;} &
SR Find Business
Business Work ers and
Designer y Entities \ .
s | T
*
™~ o ~@
Business Supplementary
Business Use Case Realization Business
Ol ject todel (outlined) Specific@ion
(refined)

Figure 62: Business Modeling detail: Describe Current Business

116

Business Business Business Architecturs
Dustomer R:;I;sd \"ids":'d Document
- I\ \U ate
End User * (update dy ﬂ P) ,ﬂ {outline)
Q Mamtam o B
) Business getand Define Business
f ,} Rules Adjust Goals Architecture
Business-P " 2
usiness-Process) . -
Analyst I b '\l f I b -
e VT <>
apture a | / . . -
C ommion Business Find E(iiusomeis Actors Business
Vocabulary and Use Cases
s A

Us=e-Case Model

Busmess

§] Business

! Supplementary US‘;ILET
{outlined)

Business Busmess Target- B_uslh_ﬁ,s

Glossary . Rules Org"-mu:-mc-n Specification

Vision

Business
Madeling
Guiddines

.Assessmem

Figure 63: Business Modeling detail: Identify Business Processes

0

Business-Pracess
Analyst

Business ~
Rules Business
Vision
Target-
Qrganization
Assassment
Business -
Moddling Business

Guidelines Glossary

Q

Business
Designer

\}
o

Structure the

Business Use-C ase

fdodel

Business
Use Case Model

\\‘ /

2
et
Detail a

Business Use Case

E‘r‘u‘ivL]ser

Business Model
R eviewer

S ustomer

i

e,
}).
4

Raview the Business
Use-Case Model

Review
Record

Business g pplﬂ mertary
Use Case

{detailed)

Business
Specdification

Figure 64: Business Modeling detail: Refine Business Process Definitions

117

O LY
L R,
s R k
. i Business
Customer /

; : se Case
Find Business Use Ca
Realization

Business Warkers
Designer and Entities T~ i
Q oA T @\, |f
;’! posen \ézo
/=
a2 ’ = Busin’eisz l;)bject
OO
End User 2] — Target-
Business [|m@] Organization
Vision g Assessmernt

.) Business
E‘uglggss ﬁ-—-‘g@ Rules Business
h odding - v, - Glossary
Guidelines Supplement ary

Business Business
Use Case Model Spedificdtion

N -

f ; G apture a Maintain Define
i Common Business Business Business

Business-Process ‘focabulary Rules Aschitecture
Analyst
v

Business Busiress

Business a ; -
Bomiy e At
(refined) {refined)

Figure 65: Business Modeling detail: Design Business Process Realizations

118

Business Mo
Reviewer

Customer

s
Er
= =
Business - [T
Architecture BL&?_:',’:SSS B%.]SS'?OE;.TS
Documenrt -)
By
Business Business Supplementary Business
Modeing Use Case Business Use Case
Guidelines Specification Realization
;
I' .."\.
O v T
St
7 N l >,
£ { r‘f W’»«Mf‘).
Buer ~ D etail a Detail a
usiness Business Warker Bus iness E ntity
Designer) .
VAR < i
-"‘/ ~. —// L
@
Business arganization Business
Worker ™ Unit - Entity
" | s
End User (::}‘ ¥ '
r-—-—? AN
/
i/ R eview the
Business

del
Object Model

Figure 66: Business Modeling detail: Refine Roles and Responsibilities

119

O

U > .,

Business-Process Set and T
Anakst Adjust Goals Business
Mision
(refined}

H ' ==) §
. Business Business .
=] Rules |[EEE|UseCase Model Business

N
Supplementary @..«-"‘? vision

Business Business “ Cé @

Architecture Spedificdion

Docu ment Business

Object Model

* Supplementary
et [Eystem

o L]
> / ; ™ l Specificaions
End User J) " {sketch)

Busi Define Automation
usiness Requirements e S -’
Designer \é' -
; M,,g Systam]
Customear \é L':r‘.:oggse
~B (sketch)
Analysis
Model
(sketch)

Figure 67: Business Modeling detail: Explore Process Automation

120

QL
- End User

[>

Business- klodel

-, . -
(4 IMaintain
e Business Rules Rules -
P ! ~ R avi
: J = eviewar
— O — r e o
‘ Py e — st Sustomer
Business-Process - / T P
Analyst Capture a { -
Common Business | Business Rew_ew the
Vacabulary .;" Glossary Business
F /’ Object Model
f ¢ /’l $ Y,
! ¢ g [AY
{ ln'. & |)
i e
s)‘4’, .‘{" @ ra ‘{
Target- ! /" t&:/’ ; j
Organization = [~ 1 /_,@
Assessment Business ./ I @ -
. Medeling ¢ / « BusinessObjgct Review
Business Guidelines \\?(' J y Model ~"Business Record
Vision . {7~ (business entities only¥ Entity
,\\ J i,..' ::;;\\ l y ’/
e
4 > ¢ * rd

P
W\ﬁ\‘:- S,
s l "
Find Business Waders Detaila
and Entities Business Entity

Business
Designer

Figure 68: Business Modeling detail: Develop a Domain Model

121

A.2 Requirements

A.2.1 Requirements workflow

[Hew System] % [Existing System]

Rttt
Analyze the Unider stand
Problem S akeholder Heeds
-'I‘ [Incorrect §
problem] .~ :
[Addressing
corract problem]
[Can't do all
. the wark]
Pl e,
Defing the Mansgethe Scope [Work
System of the System in scope]

Refine the
System Definition

| [Hew Input]

Manzge Changing
Requirements

Figure 69: Activity diagram for the Requirements discipline

A.2.2 Requirements workers

122

System Analyst. He leads and coordinates requirements elicitation and use-
case modeling by outlining the system's functionality and delimiting the system;

for example, establishing what actors and use cases exist, and how they interact.

Requirements Specifier. The requirements specifier role details the
specification of a part of the system's functionality by describing the
Requirements aspect of one or several use cases and other supporting software
requirements. The requirements specifier may also be responsible for a use-case
package, and maintains the integrity of that package. It is recommended that the
requirements specifier responsible for a use-case package is also responsible for

its contained use cases and actors.

User Interface Designer. He leads and coordinates the prototyping and design
of the user interface, by: capturing requirements on the user interface, including
usability requirements and building user-interface prototypes. He involves other
stakeholders of the user interface, such as end-users, in usability reviews and
use testing sessions. He reviews and provides the appropriate feedback on the
final implementation of the user interface, as created by other developers; that is,
designers and implementers. User interface design can mean one of the two
things: (1) Visual shaping of the user interface so that it handles various usability
requirements; (2) the design of the user interface in terms of design classes (and
components such as ActiveX classes and Java Beans), that is related to other
design classes dealing with business logic, persistence, and that leads to the
final implementation of the user interface. That's why user interface design

appears in [2] as part of the Analysis & Design Discipline.

Requirements Reviewer. He plans and conducts the formal review of the use-
case model.

Software Architect. He leads and coordinates technical activities and artifacts

throughout the project. The software architect establishes the overall structure for

123

each architectural view: the decomposition of the view, the grouping of elements,
and the interfaces between these major groupings. Therefore, in contrast to the
other roles, the software architect's view is one of breadth as opposed to one of
depth.

A.2.3 Requirements activities

E—
>, 1 .,
¥ » . .

: Develo L e
[ireme Develop Elicit Stakeholder
Requirements eyl
el _ ' M
System Man g?:l:nent ion Requests
Ja) " $ oo, .
Analyst \ . “ N
—‘-“\’} D)
e Find Actors Manage Structure the

Wocabulary and Use Cases Dependencies Use-Caselodel

Q — Q)

E "»K
- P D etail a D etail the
Prioritize S oftware

Software Use Cases Requirements Use Case
Architect Specifier

Requirements

Q
Model the / A
Userlnterface [, 4 —
il et Review
Userinterface 7 Requirements Requirements
Designer Prototype the R eviewer

Userinterface
Figure 70: Activities by worker in the Requirements discipline
A.2.3.1 System Analyst Activities
Capture a Common Vocabulary. The purpose is to define a common

vocabulary that can be used in all textual descriptions of the system, especially in

use-case descriptions.

124

Develop Vision. The purpose is to gain agreement on what problems need to be
solved, to identify stakeholders to the system, to define the boundaries of the

system, to describe primary features of the system.

Develop Requirements Management Plan. The purpose is to develop a plan
for documenting requirements, their attributes and guidelines for traceability and

management of product requirements.

Elicit Stakeholder Requests. The purpose is to understand who are the
stakeholders of the project, to collect requests on what needs the system should

fulfill, to prioritize stakeholder requests.

Find Actors and Use Cases. The purpose is to outline the functionality of the
system, to define what will be handled by the system and what will be handled
outside the system, to define who and what will interact with the system, divide
the model into packages with actors and use cases, create diagrams of the use-

case model and develop a survey of the use-case model.

Manage Dependencies. We use attributes and traceability of project
requirements to assist in managing the scope of the project and manage

changing requirements.

Structure the Use Case Model. We extract behavior in use cases that need to
be considered as abstract use cases. Examples of such behavior are common
behavior, optional behavior, exceptional behavior, and behavior that will be
developed in later iterations. We also find new abstract actors that define roles

that are shared by several actors.

A.2.3.2 Requirements Specifier Activities

Detail a use case. We describe the use case's flow of events in detail, so that

the customer and the users can understand it.

125

Detail the Software Requirements. We collect, detail and organize the set
(package) of artifacts that completely describe the software requirements of the

system or subsystem.

A.23.3 User Interface Designer Activities

Model the user interface. We build a model of the user interface that supports

the reasoning about, and the enhancement of, its usability.

Prototype the user interface. We create a user-interface prototype.

A.2.3.4 Requirements Reviewer Activities

Review the Requirements. We formally verify that the results of Requirements

conform to the customer's view of the system.

A.2.3.5 Software Architect Activities

Prioritize use cases. We define input to the selection of the set of scenarios and
use cases that are to be analyzed in the current iteration. We also define the set
of scenarios and use cases that represent some significant, central functionality
or those that have a substantial architectural coverage (that exercise many
architectural elements) or that stress or illustrate a specific, delicate point of the

architecture.

A.2.4 Requirements artifacts

126

c) 2

R eqdi rements

Use Case

o

b Use-Case
Management e Glossary — ot
Plan = Requirements achkage
Specifier
Stakeholder &]
1 Requests Software
Of Requirements
E % Specificaion
Syst o= oy € '
ystem -
Aﬁalyst Vision USN?-;E!.:ISE Q 1 % 1t HJ
—. SN Boundary
3 Actor Class
i {human)
! § User- Interface N v ek -
i Designer
Supplementary] i " 13 Ve
Hoecification equirements se Case
Attributes User- Interface Storyb oard
Prototype
Figure 71: Artifacts produced in the Requirements discipline
A.2.4.1 System Analyst Artifacts

Requirements Management Plan. It describes the requirements
documentation, requirement types, and their respective requirements attributes,
specifying the information and control mechanisms to be collected and used for

measuring, reporting, and controlling changes to the product requirements.

Glossary. It defines important terms used by the project.

Stakeholder Requests. It contains any type of requests a stakeholder
(customer, end user, marketing person, and so on) might have on the system to
be developed. It may also contain references to any type of external sources to

which the system must comply.

Vision. It defines the stakeholders’ view of the product to be developed,
specified in terms of the stakeholders’ key needs and features. Containing an
outline of the envisioned core requirements, it provides the contractual basis for

the more detailed technical requirements.

127

Supplementary Specification. It captures the system requirements that are not
readily captured in the use cases of the use-case model. Such requirements
include: legal and regulatory requirements, and application standards, quality
attributes of the system to be built, including usability, reliability, performance,
and supportability requirements and other requirements such as operating

systems and environments, compatibility requirements, and design constraints.

Requirements Attributes. [t contains a repository of project requirements,
attributes and dependencies to track from a requirements management

perspective.

Use case model. It is a model of the system's intended functions and its
environment, and serves as a contract between the customer and the
developers. The use-case model is used as an essential input to activities in

analysis, design, and test.

A24.2 Requirements Specifier Artifacts

Use Case. It defines a set of use-case instances, where each instance is a
sequence of actions a system performs that yields an observable result of value

to a particular actor.

Use Case Package. It is a collection of use cases, actors, relationships,
diagrams, and other packages; it is used to structure the use-case model by

dividing it into smaller parts.

Software Requirements Specification. it captures the complete software
requirements for the system, or a portion of the system. When using use-case
modeling, this artifact consists of a package containing use cases of the use-

case model and applicable Supplementary Specifications.

128

A.2.43 User Interface Designer Artifacts

Actor. It defines a coherent set of roles that users of the system can play when
interacting with it. An actor instance can be played by either an individual or an

external system.

Boundary Class. It models the interaction between one or more actors and the

system.

User-Interface Prototype. It is a prototype of the user interface. For example,
the prototype can manifest itself as: paper sketches or pictures, bitmaps from a
drawing tool or an interactive executable prototype; for example, in Microsoft
Visual Basic®

Use-case Storyboard. It is a logical and conceptual description of how a use
case is provided by the user interface, including the interaction required between

the actor(s) and the system.

A.2.4.4 Requirements Reviewer Artifacts

Review Record. It is a form document that is filled out for each review. It is
created as a control document to manage the execution of the review of project
artifacts. It is issued to the participants in the review to initiate the review
process, and is used to capture the results and any action items arising from the

review meeting. It forms an auditable record of the review and its conclusions.

A.2.4.5 Software Architect Artifacts

Software Architecture Document. It provides a comprehensive architectural
overview of the system, using a number of different architectural views to depict
different aspects of the system. In this case, it will be a view of the use case

model with its most significant use cases, those that describe important or critical

129

functionality or that concern a requirement that needs to be developed early in

the life cycle [1].

A.2.5

Requirements details

Capture a
Common
“Yocabulary

L >

System
Analyst
Find Actors
and Use Cases
A
X o / X
Stakeholder e ®
?\ @’f‘ / o
Foa s~
Business Business

Use-Case Model Object Model

Use Case hadel
factors only}

Requirements

Kan agemant
. « Plan
Ly
i i
Develop

R equirements
fdanagement
Plan -

S e
Develop
Vision

Stateholder
Requasts

Vision

Businass
Rules

Figure 72: Requirements detail: Analyze the problem

130

=
| T | ===
Glossary Requirements U'se' Lase
» Management Modeling
kY + Plan SGuidelines
| » P
A /S Pl
e, 4 -~ Requiremerts
i o, /
> H e Attributes
4 [(refined)
Customer 7 Capture a Develop
Q Sommon sision] .,
/=1 “ocabulary 1 ya
{H / Wlanage
System N \, Dependencies ‘wisi-:n‘
Analyst »,_./ — (refined)
Elicit Stakeholder Find Actors R
Requests and Use Cases "4 i—@
o~ oy
. . . @
\ * S N Us
Stakehotder N e - Use- Case Modd
]‘ﬂ v\\\ .1\.4: NW\\.,_* *-\\\.
LEEE R E R N R R I N Y ' 4) \"
: l |
. +¥ A&7 q
' E_—_\ . == = Requirements Satl)%glifig\;v%ﬁg
: £ Review Change ¥ Change Vision Stakeholder Adtributes foutiness
Charge Contrd Request b Request Requests
' hlanager (Fromthe Confguraion & ¥
M Change lanagement Discipline)®
’
L L L L

Figure 73: Requirements detail: Understand Stakeholder Needs

:
Business vision Stakeholder Vision Requirements
Rules . Requests (refined) Supplementary Mana]gement .
. kY v Spedfications | Flan o
T ¢ S Y pd
i % '/" ’__/'— f 1 »
. o] -
L e Requirements
{:) Y - 4.%.,.,,"\ “ Attributes
S ‘ -~ yd
f : x‘ Develop Manage
ok “fision Dependencies 2
System . Requirzments
Analyst ., Y Attributes
r L S {refined)
- Find Actars
l;apturea and Use Cases
Cammon
x Yocabulary « » T = %
o I ’ ‘r N S\, . Use-Case Madel
e : Il i e, (refined)
: = j G -
- Rt
L2 \.\ ll x@
Use-Case i Use Case
Slassary z Madeling Business ;
Glaszary Glassary Guiddines C:} : Object Mod& Jse.Case Madel (outlined)
irefined) Business
Use-Case Model

Figure 74: Requirements detail: Define the system

131

“ision S'Jpplémd‘ﬁ’fy Usa-C ase Model

Specifications N Use hase
T . N,) o
- T \4 d Software Architecture
.“'” . A X [Document
| A N (use case view)
—_‘_“—‘h 7
U Prioritire Use Cases =y
R# ulrements '_“ Software

ributes

‘\,_ Architect
-

R: Ltl I? ments
o4 ributes
Q T {refine d)
- ~ _—’.’F‘
} Wt . ,_.:—*‘"
Develop Manage - e,
End User System \figian Dependencie:_
Analyst T .
~ ;4‘ “ision
- /_,/ {refined)

Change
Request

¥,

ﬂ-ﬁ.-.i"l\‘-l.---
s,
by

Customer

Staieholder

: *
' :
Stakeholder ?ﬂ;reenr:ggts ¥ :
Requests B : :
. : neueidgrge !
Reque
[] T

" Uﬁn‘g‘ea(;ztra (Fromthe contguration & #
change hianagemert Disclpline ¥
X

‘ LS B B BN BN BN BN BN BN BE BN BN OB AR B R S)

Figure 75: Requirements detail: Manage the scope of the system

132

Requi rements

g . R t A rif!:utes
5 equirements refine
ReAqt;‘rlirl?LT:;t Glossary vb%g?r? S Maag ement (9
\ Gui deline's Plan
L x5 & -
D ,~—~—"‘"” Use Case
{described)

D 3 D etil the

Detail a S otwa re

Re L\Jir.e;l;;ents Use Case Re qurements
pe cifier
S le rment
by ol SLF?B%I fl@tlof‘g’r
: (de tailed)
42
Stakeh” d er VYision pleme riary Use Case Sof tware
Requ est \A Speaflcatlons (outiined) Requi rerren ts
\“‘“-* ¥ Specificdion

S D —

o d el the Prot e the
Use- Interface User- Irterf ace

User-Interface

User Inte;face
Protat ype

D esigner

U =zer- Irterf ace % N
Guiddine s Act

N]

(bridly described) L oot o

Actor,
(characte rized)

Boun dary
Class

Figure 76: Requirements detail: Refine the system definition

133

ek B
il A
Use-Case Requirements Risk List Df—ﬂgn Teg Plzi A
Moddling Maenagement .__ N Made o o
Guidelines~. Plan T > Use Caze Modd
- '-. _L—»--"""" (restructured)
"Ar‘nx H,_*_d._
''''''' r e P >
Structure the Manage %
Use-Case Model i Requirements
b /"Pe‘p'endenies - v :lt‘lnbutﬂs
e # SN ({refined)
I

e i N Suppl & ment fision RE uirements Stakeholder Change
Use Case Madsl Use Case ﬁ%’;ﬁﬁ’;igﬂg Visio c{'trlbutes ~ Requests R:-qugst

Customer .. i /

- T «
g /) —
4 4 Rt

R

: :
il - R eview : ~, x
End UserQ R equirements Requirements i T - !
Reviewer AR e s Reukw Ciaige :

3 > eview Regrest

. . 1

l - i . Reserd | c'a‘:gﬁég',m' {From the Colfgsation & ¥
“ g L o " Clasge Matagement Dichiliie)s
Stak eholder ’

W W W W W OWOW W Om W OWE W e w

keration Man Qossary User-[nterface

Protatype

Figure 77: Requirements detail: Manage changing requirements

134

A.3 Analysis and Design

A.3.1 Analysis and Design Workflow

[Early
Elabaration [Inception
teraion] it eration {(Qptional)]

M‘H.

,
R
o
i

Perforrﬁ

Define a Candida‘te ;
Architecture L Architecturd
e Syrthesis

o
S

Reﬁneﬂw
Architecture

Design Desi gnthe
Components bdabase

Figure 78: Activity Diagram for the Analysis and Design discipline

135

A.3.2 Analysis and Design Workers

Software Architect. He leads and coordinates technical activities and artifacts
throughout the project. The software architect establishes the overall structure for
each architectural view: the decomposition of the view, the grouping of elements,
and the interfaces between these major groupings. Therefore, in contrast to the
other roles, the software architect's view is one of breadth as opposed to one of
depth.

Designer. He defines the responsibilities, operations, attributes, and
relationships of one or several classes, and determines how they will be adjusted
to the implementation environment. In addition, the designer role may have
responsibility for one or more design packages, or design subsystems, including

any classes owned by the packages or subsystems.

Capsule Designer. He ensures the system can respond to events in a timely
manner, in accordance with concurrency requirements. The primary vehicle for

solving these problems is the Artifact: Capsule.

Database Designer. He defines the tables, indexes, views, constraints, triggers,
stored procedures, tablespaces or storage parameters, and other database-
specific constructs needed to store, retrieve, and delete persistent objects. This
information is maintained in the Artifact: Data Model.

Architecture reviewer. He plans and conducts the formal reviews of the

software architecture in general.

Design Reviewer. He plans and conducts the formal reviews of the Artifact:

Design Model.

136

A.3.3 Analysis and Design Activities

L > > [

Q Assess Viability Architectural |dentity Design Identify D esign

S of Archite ctur al Anatysis Mechanisms Elements -
§ } Proof-of-Concept Capsule
} / / . ,_____i Ny “ Dasigner
(SR ! p I e (P
Softvare [— o S g \}
Architect Construct Incorpor ate D escribe Describe et
Architectural _Existing the Run-time Distribution Capsule
Proaf-of-Concept Design Elements Agchite chure De’;‘si
gn
& S .
S {7 N AN { S,
! ¥ St S l - /) -
o F UseCase Use-Case Sulsystem Class Design Test Classes
Désigﬁer Analysis Design Design Design and Padcages
) @) Q
L D atabase S Review the ik Review the
Database Design Architecture Agchitecture Design Design
Designear Reviewer Reviewer

Figure 79: Activities by worker in the Analysis and Design discipline

A.3.3.1 Software Architect Activities

Architectural Analysis. The purpose is to define a candidate architecture for the
system, based on experience gained from similar systems or in similar problem
domains. The software architect also defines the architectural patterns, key
mechanisms and modeling conventions for the system, the reuse strategy and

provides input to the planning process.
Identify Design Mechanisms. The purpose is to refine the analysis mechanisms
into design mechanisms based on the constraints imposed by the

implementation environment.

Identify Design Elements. The purpose is to analyze interactions of analysis

classes in order to identify design model elements.

137

Incorporate Existing Design Elements. The purpose is to analyze interactions
of analysis classes in order to find interfaces, design classes and design
subsystems, to refine the architecture, by incorporating reuse where possible, to
identify common solutions to commonly encountered design problems and to
include architecturally significant design model elements in the Logical View

section of the Software Architecture Document.

Describe the Run-time Architecture. The purpose is to analyze concurrency
requirements, to identify processes, identify inter-process communication
mechanisms, allocate inter-process coordination resources, identify process

lifecycles, and distribute model elements among processes.

Describe Distribution. The purpose is to describe how the functionality of the
system is distributed across physical nodes (this activity is required only for

distributed systems).

Construct Architectural Proof-of-Concept. The purpose is to synthesize at
least one solution (which may simply be conceptual) that meets the critical

architectural requirements.

Assess Viability of Architectural Proof-of-Concept. The purpose is to
evaluate the synthesized Architectural Proof-of-Concept to determine whether
the critical architectural requirements are feasible and can be met (by this or any

other solution).

A.3.3.2 Designer Activities

Use case Analysis. He identifies the classes which perform a use case’s flow of
events, distributes the use case behavior to those classes, using use-case
realizations, identifies the responsibilities, attributes and associations of the

classes and notes the usage of architectural mechanisms.

138

Use case Design. This activity is concerned with the refining of several design
elements: use-case realizations in terms of interactions, the requirements on the
operations of design classes, the requirements on the operations of subsystems

and/or their interfaces and the requirements on the operations of capsules.

Subsystem Design. This activity is concerned with defining the behaviors
specified in the subsystem’s interfaces in terms of collaborations of contained
classes, documenting the internal structure of the subsystem, defining
realizations between the subsystem’s interfaces and contained classes and
determining the dependencies upon other subsystems. We design subsystems to
be independent from other subsystems. However, if dependencies exist, we
maintain and minimize them. In a similar way, we maintain and refine the

interfaces between the subsystems [1].

Class Design. We design a class to fulfill its role in use case realization and the
non-functional requirements that apply to it. We outline the design class in terms
of the analysis classes and interfaces. We need special tools and technology to
design different types of classes. We than identify the operation on the class,
either from the corresponding analysis classes or from the use case realization —
design in which the class participates. We also identify its attributes, which take
into account the programming language, the associations and aggregations
between the design classes and the generalizations (if supported by the
programming language) [1]. We also incorporate the design mechanisms used

by the class.

Design Test Classes & Packages. The purpose is to design test-specific
functionality. It includes: ldentifying Test-Specific Classes and Packages,
Designing Interface to Automated Test Tool and Designing Test Procedure

Behavior.

139

A.3.3.3 Capsule Designer Activities

Capsule Design. This activity is concerned with elaborating and refining the
descriptions of a capsule. It includes creating an initial set of port classes that
represent the interfaces to the capsule, then finding an appropriate protocol to
bind to these ports. The Capsule is defined as a state machine, which has states
and transitions between them. The internal and external behavior of the Capsule
is tested and validated by simulating the events that will exercise the Capsule

behavior and by considering the interaction with other Capsules.

A3.3.4 Database Designer Activities

Database Design. The purpose is to ensure that persistent data is stored
consistently and efficiently and to define behavior that must be implemented in

the database.

A.3.35 Architecture Reviewer Activities

Review the Architecture. During this activity, the Reviewer uncovers any
unknown or perceived risks in the schedule or budget. He detects any
architectural design flaws (which are known to be the hardest to fix, the most
damaging in the long run), or any possible mismatch between the requirements
and the architecture: over-design, unrealistic requirements, or missing
requirements. In particular the assessment may examine some aspects often
neglected in the areas of operation, administration and maintenance. How is the
system installed? Updated? How do we transition the current databases? He
identifies reuse opportunities and evaluates one or more specific architectural

qualities: performance, reliability, modifiability, security, safety.

A.3.3.6 Design Reviewer Activities

Review the Design. The purpose is to verify that the design model fulfills the

requirements on the system, and that it serves as a good basis for its

140

implementation, to ensure that the design model is consistent with respect to the

general design guidelines and that the design guidelines fulfill their objectives.

A.3.4 Analysis and Design Artifacts

3 ! 1 §

S}
@/{@ —— | a.w?"s i :
~J o =) I | ,!‘ /
ol Deal et Softwere \‘a_ffﬂ éwﬁ 4
Software 2ploy mi A A g vsi Design C le
: t = Andysis g Fpsule
Architect Kodel Aﬂ"%’&;‘i‘;* dnddal I del Designer
e
; - LT
Architecturd Reference ot Signd Evert Protosol Capsule
Proof-of- Concept Architecture e ace an e retese P
8 g 10 L
Q @)
o > «EF . Il [
et Use-Case Design Design Database
esigner =lizati . .
g Realization Subsystem Package Designer
1 ' -
s A@. e
nAdyss E ‘ 2]
Class Class e
Oaa Modd

n

Figure 80: Artifacts produced in the Analysis and Design discipline

A.3.41 Software Architect Artifacts

Analysis Model. It is an object model describing the realization of use cases,
and which serves as an abstraction of the Design Model. The Analysis Model
contains the results of use case analysis, instances of the Analysis Class.

NB: The analysis model may be an optional mode! in the development of the
product. For very small projects, where the requirements are clear and
understandable, the analysis may be part of either the requirements capture or of
the design. For important projects, the analysis model is necessary, because it

provides the conceptual basis for the more “physical” design model [1].

141

Design Model. it is an object model describing the realization of use cases,
which serves as an abstraction of the implementation model and its source code.
The design model is used as essential input to activities in implementation and

test.

Deployment Model. It is an object model that describes the physical distribution
of the system onto nodes. Each node represents a computational resource.
Nodes have relationships that represent means of communication between them

— Internet, intranet, bus.

Software Architecture Document. The Software Architecture Document
provides a comprehensive architectural overview of the system, using a number
of different architectural views to depict different aspects of the system. In the
first edition of RUP, Analysis and Design are two separate disciplines. In each
one, a different artifact is produced, i.e. Architecture description (view of the
Analysis Model) and an Architecture description (view of the Design Model),
whose definitions are provided here. Moreover, in the Design discipline an
Architecture description is produced that contains the view of the Deployment
Model.

Architectural description (view of the Analysis Model). The architecture

description contains an architectural view of the analysis model, depicting its
architecturally significant artifacts. Architecturally significant artifacts are the
decomposition of the analysis model into analysis packages and their
dependencies, which impacts the subsystems in design and implementation (so
impacts the architecture). The key analysis classes are: entity classes that
encapsulate an important phenomenon of the problem domain, boundary classes
that encapsulate important communication interfaces, control classes that
encapsulate important sequences with large coverage, analysis classes that are

general, central and have many relations with other analysis classes, use case

142

realizations that realize important and critical functionality (involve many analysis

classes) [1].

Architecture description (view of the Design Model). It contains an architecture

view of the design model, depicting its architecturally significant artifacts
(subsystems, their interfaces dependencies; key design classes, active classes,
general and central classes, use case realization — design that realize
implementation and critical functionality that needs to be developed early in the
software’s life cycle, involve many design classes, have large coverage (across

several subsystems) [1].

Architecture description (view of the Deployment Model). It contains an

architectural view of the deployment model, which depicts its architecturally

significant artifacts — mapping of component onto nodes [1].

Reference Architecture. It is, in essence, a predefined architectural pattern, or
set of patterns, possibly partially or completely instantiated, designed and proven
for use in particular business and technical contexts, together with supporting
artifacts to enable their use. Often, these artifacts are harvested from previous

projects.

Architectural Proof-of-Concept. It is a solution, which may simply be
conceptual, to the architecturally-significant requirements that are identified early

in Inception.

Interface. It is a model element which defines a set of behaviors (a set of
operations) offered by a classifier model element (specifically, a class,
subsystem or component). A classifier may realize one or more interfaces. An
interface may be realized by one or more classifiers. Any classifiers which realize
the same interfaces may be substituted for one another in the system. Each

interface should provide an unique and well-defined set of operations.

143

Signal. It is an asynchronous communication entity which may cause a state

transition in the state machine of an object that receives it.

Event. It represents the specification of an occurrence in space and time; less

formally, an occurrence of something to which the system must respond.

Protocol. It is a common specification for a set of Capsule ports.

A3.4.2 Designer Artifacts

Use case realization. A use-case realization describes how a particular use
case is realized within the design model, in terms of collaborating objects. In the
first edition of RUP, an additional artifact is produced during the Analysis

discipline, i.e. Use case realization — Analysis, whose definition is provided here.

Use case realization — Analysis. It is a collaboration within the analysis model,

which describes how a specific use case is realized and performed in terms of
analysis classes and their interacting analysis objects. It has textual flow of

events description, class diagrams, and interaction diagrams [1].

Analysis Class. It is an abstraction of one or more classes or subsystems in
design. It handles only functional requirements. It defines interfaces in terms of
operations or conceptual signatures and it defines attributes. There are several

stereotypes on analysis classes, which we present here:

Boundary class. It is a model interaction between system and actors. They

collect the requirements on the system boundary (i.e. windows, forms, panes,

communication interfaces; terminals).

144

Entity class. It is used to model information that is long-lived and persistent, like
an individual, real life object, real life event. It can be derived from business entity

class.

Control class. It represents coordination, sequencing, transaction and control of
other objects. It is used to represent complex derivation and calculation

(business logic).

Design Class. A class is a description of a set of objects that share the same
responsibilities, relationships, operations, attributes, and semantics. It is an
abstraction of a class or other constraint in the system’s implementation. It takes
into account the language used in implementation; its relationships and methods

are preserved in implementation. It can realize and provide interfaces [1].

Design Subsystem. Design Subsystems are a means of organizing the artifacts
of the design model in more manageable pieces. They can consist of design
classes, use case realizations, interfaces and other subsystems (recursively). A
subsystem should be cohesive (contents strongly related). They should be
loosely coupled (their dependencies on all other’s interfaces should be minimal).
They can represent a separation of concerns. They can often have top
application layers, traces to analysis package or analysis classes. It can
represent large grained components in implementation.

They can represent reused software products (in middleware and systems

software layers) or legacy systems [1].
Design Package. A design package is a collection of classes, relationships, use-

case realizations, diagrams, and other packages. It is used to structure the
design model by dividing it into smaller parts.

145

A.3.4.3 Capsule Designer Artifacts

Capsule. A capsule is a specific design pattern which represents an

encapsulated thread of control in the system.

A3.4.4 Database Designer Artifacts

Data Model. The data model is a subset of the implementation model which
describes the logical and physical representation of persistent data in the system.
It also includes any behavior defined in the database, such as stored procedures,

triggers, constraints, and so forth.

A.3.4.5 Architecture Reviewer Artifacts

Review record. It is a form document that is filled out for each review. It is
created as a control document to manage the execution of the review of project
artifacts. It is issued to the participants in the review to initiate the review
process, and is used to capture the results and any action items arising from the

review meeting. It forms an auditable record of the review and its conclusions.

Change Request. Changes to development artifacts are proposed through
Change Requests (CRs). Change Requests are used to document and track
defects, enhancement requests and any other type of request for a change to the
product. The benefit of CRs is that they provide a record of decisions and, due to
their assessment process, ensure that change impacts are understood across

the project.

A.3.4.6 Design Reviewer Artifacts

Review record. (see A.3.4.5)

Change Request. (see A.3.4.5)

146

A.3.5

Analysis and Design Details

Femmsssssses msscecsmema=nay
" Romvsmer,] : e, 1
M }} : L] O l) "
- : Priaritiz e Use Cases .: Prototype the °
o Software (Fom Requirements) ¢\ F=m Usgr—lnhgrface _:
L e =+l
- i L mas s wwwwe
Glossary / -~
»
% =1
Supplementary ¢ ; %
Specifications U Iy Soft ware d
(key non-functional 5’5‘0;3'5‘3 ¢ Architecture User-interface
requirements) | vode Document [Pratotype aa
(preliminary) | (key use cases) f Architactural P
Architectyrally Significant ! : ! Procf-af- Concept Business
| Raquiremants _ f Reference [-) Case
: I Architecture | e \
\ [f \

h y /// ¥

/
O v, LA ,,
I

7
Assess Viability

Loof Architectural
f rchitectura Architectural of Architectural

toal Analysis
i:’gﬁfeﬁ ” F‘roof-oiConcept Proof- of- Concept
\ 3
i
@%V i |
=, ~J &
Design Use Case 2] !
Guidelines Realizaion Ceployment !
(initial) (stereotypical Model ==
#\ interactions) {overviea)] Vision
B8 — b i
’-n--u-n--n—-~ %f‘ === ‘
« @ | ' “d = = |
]] h":.*] E.’ :
LI — . Design Software |
' Develop Design ¥ Madel Architecture |
g Sotware Guidelines ' {overview) Decument
y frohitect (fom Emironment) s | Architectural Design (WPdated)
- W s Em e E T BREeEw P 4_IAC)VQIV‘“Q'H’ ..;

Figure 81: Analysis and Design detail: Perform Architectural Synthesis

147

eSS EsEsEaEeE N

.]
., »
Glossary : joriti j{ .
g L Pripritize Use Cases
.= M Sofware (fom Requirenents) o

ol

% ?: w a.-.-- 3 f‘d-‘itfd- LB I - . -‘
te s P AR

Supplementary Use- Case Design

Specificdions hbdel Model
., ~ Software
. -~ Architecture
- 4 e Docu ment
U ., (use-case view)
~ [,
: Architectural -
L&;”' Analysis _
Saftware
Aschitect Reference

PR R N N N S "f

' - i

' ., ¥ P b

' E:'__/) T EE Software Design Use Case Deployment

1 Develop Design » == architecture Model Realizations Wocted
Sotware Guidelines ¥ oz Document (created)

[] y ! Design me)

¢ Architect (from Envirenment) # .

Guidelines (updated) . i 7
WO MW S WO m W W Omomowm W e \\ 1 S
kA

¥

-

(D T e Use Case
N, 7 Realizations
s (preliminary)

/ 3 * < Te—
{ j Use-Case %

5
o

Submit Change Request
% Ay Role (fom Confguration&Change
]

~da

"anmaemese

htanagement) Designer /,J!' Analysis » Analysis
LI BB N N 3 - eamewmoww / : X Class
e / " : AN (architecturally
s] G signific ant)
i g ...YA /})» X

= & @

Changs “ Supplementary Use-Case
Request Gloss=ar P ety
(an use-case model) ¥ Specifications Model

Figure 82: Analysis and Design detail: Define a candidate architecture

148

: Glossary
Design e
Guidelines %

/

v

O

Supplementary
Specifications

: ~ Use Case ~
Saftware «E Realizations ..

Architecture Design
Document pioday

Use-Case
tlodel

o

Software

Idenﬁﬁr Design
Elements

Agschitect ¥
//‘

(‘}' ////---------‘
% p s d
; Use-Case o ///] @ . "
Designer &nalysis T s '
PR e » : Z 1
! ' -~ - integrator ¥
» \i 7 B- ;E : ¢ '
7 ~ B - '
- e _ "
e % Design M:Mﬂ - '
Use Case Analysis Mod E\I ' P!I;::&sit:r:n 1
Realizations Class ",) o
{updated) {detailed) T S ¢ (fom Implementation},
- B R \ AR R e
= ; T b "\‘
b B N
B- .
Analysis - % Int egration
Mo J I > Build Plan
Mod - ~—
ik’ Review Ry
Design the
Reviewer /, Design \\ -
. / $ ¥ Change
. =t Request
G D.ZSilgn = Review
WICENES Supplementary Record

Specifications

Figure 83: Analysis and Design detail: Analyze Behavior

149

PO N O Y

Use-Case JR— f} :
Ml L___, .

1
]

L]

:]
Supplementary Capsule l‘apsule '
[

[}

]

]

]

Irplementer

i

1

13

'

[

Specifications D es1gn D esignes :

- H “ ¥

,-}E E:; 'I bt F

| : rplement *

. Ei"'_"a Demign ' e _ M ¥ Componert #

Andysis , Model ', . e (fom *

Medel \ \ ~.\ “ Protoool T Inplementa‘uon) M
. . Y

oo g \t"”s.
w Design \‘ T

(L

Class .
—— l“lass -~ 3

ok \'\ Design . @..__ E) o
) Review 4
“ Interfac= j i
Designer . .. eriacs the Design Design
K N A N\~ Reviewer
N : . N p .\ —

Design TestClasses Subsystem
and Padkages Design

Desigh Review Chage
Guiddines Record Request

Test Interfacs Test Design
Specification Class Pazlkage

Figure 84: Analysis and Design detail: Design Components

150

Use-Case
hModel &
Supplementary
Specifications 8 Use Case
g‘,_,--g BT Realizations
- '" S ”‘x._\
- - f = ",
B = ! Des S
Analysis ¢ Model .
Model .
o - Q \‘D
4 .,)
i - - -
!’ E SO ' ;
{ ,lffg Class et Database
Designer Design Ratabase g Design
\ D esig Jnes J
T ¥
.~
X S If ,&
. " Daa Wodel
- < PPl N i
- - e "‘\,_._
T CER YT .-J......
3]
O ; T
f 4 - 1] Frplement '
i ., ==k Component '
.. é:"anlset y mplementer (fom hnplemertation *
De.SIgn ﬁ . fque ﬁ---:----------'
Reviewsr S/
s
Review
Record
Design Component
o Supplementary P
Suidelines Specifications

Figure 85: Analysis and Design detail: Design the Database

151

Supplemerrtvry Des: n
Sbecmcauons fsuldehne’

|
s
)
i g - E E -~ '@-‘-‘"
Desian Analysm Deploy ment
A.r%?t‘évgtrl.?r e Model Modd toche
Documsent e e v
- K kY e - N
. ! ! N - -
- ; N S \'”‘m_,_‘ \'A
) ‘/ » \ . - i,
3 . N e SRR,
) by ™ 3
[] > [[> [
Software Identify Design Identify Design Incorporate Describe Run- D es cribe
Architect Mechaniems Elements Existing Design Time Architecture Distribution
e . Elements ~ ™

e . - e

P AL B I B L A L N '
! .]
¢ % % } .
¥ Sotware Structure the ' hitect LT;;DEZZSZS .
oatwa mple me ntation kiodel Architecture

: #echitect (fnfm Implementation) ‘ '?0'3'-'""9"“ s Architect (from Pequmements) '
- w wwom s owowowmomwd (updajed) [R E A

(L

—
i Review ™ Change
Architecture the ‘V\ ‘*‘-..__ Request

Reviewer /?f Architecture

/‘/ T \\

Design

Guidelines Supplementary R|sL Llst

Specifications

Figure 86: Analysis and Design detail: Refine the architecture

152

A.4 Implementation

A.4.1

Structurz the
hpa lerines ilativn WModel

Plan the
Integrstion

Implerent
Comparents

[More Components
to Inplement

for th s fteration]

[fdre
Subsystemr
rFtegraionfor
this lteration]

[Done]

{ldore system tuilds
for this beraion)

Implementation workflow

[Unt Tested Comporents
W availakle]

nt egré{e eéoh

Cubsy=tem

[integrated lmp emertatior
' ___Subsystems availale]

Integr dethe
System

e

ot -,

e -
= "

I [Cone]

s Vv
H

.‘:‘

Figure 87: Activity diagram for the Implementation discipline

A.4.2

153

Implementation workers

Software Architect. He leads and coordinates technical activities and artifacts
throughout the project. The software architect establishes the overall structure for
each architectural view: the decomposition of the view, the grouping of elements,
and the interfaces between these major groupings. Therefore, in contrast to the
other roles, the software architect's view is one of breadth as opposed to one of
depth.

Implementer. He is responsible for developing and testing components, in
accordance with the project adopted standards, for integration into larger
subsystems. When test components, such as drivers or stubs, must be created
to support testing, the implementer is also responsible for developing and testing

the test components and corresponding subsystems.

Integrator. Implementers deliver their tested components into an integration
workspace, whereas integrators combine them to produce a build. An integrator
is also responsible for planning the integration, which takes place at the
subsystem and system levels, with each having a separate integration
workspace. Tested components are delivered from an implementer's private
development workspace into a subsystem integration workspace, whereas
integrated implementation subsystems are delivered from the subsystem

integration workspace into the system integration workspace.
Code Reviewer. The code reviewer role ensures the quality of the source code,

and plans and conducts source code reviews. The code reviewer is responsible

for any review feedback that recommends necessary rework.

154

A.4.3 Implementation activities

£
¥

S S

: Structur e the Implement Fic a Defect lm pile mie nt Perform

Sofﬁ;';é; e implementation s omponert TestComponents Unit Tests

Implementer

Architect hlo de| and Subsystems
WQ) Py : e S l > [,
iy Plan System Plan Subsystem Integrate Integrate) st P‘

ln{e*g]r‘ator Inte gration Inte gr ation Subsystem System Code R eviewer Review Code

Figure 88: Activities by worker in the Implementation discipline

A.4.3.1 Software Architect Activities

Structure the Implementation Model. The purpose is to establish the structure
in which the implementation will reside and to assign responsibilities for

Implementation Subsystems and their contents.

A.4.3.2 Implementer Activities

Implement Components. The purpose is to implement a design class in a file
component. For that, we need to outline the file components that will contain the
code that implements the design class. Then we need to generate the source
code for the design class and its relationship, operations and attributes. This can
be straightforward, because the design class uses the syntax of the programming
language. However, it is more delicate to generate code for associations and
aggregations. The operations are known as methods. They involve choosing an

algorithm and data structures and then coding the algorithm [1].

Fix a Defect. The purpose is to fix a defect.

Implement Test Components and Subsystems. The purpose is to implement

test-specific functionality.

155

Perform Unit Tests. We test the implemented components as individual units.
Two types of unit testing are possible: specification testing (“black box testing”),
which verifies the unit’'s externally observable behavior and structure testing

(“white box testing”), which verifies the unit’s internal implementation.

Specification testing. It looks at what output the component would return when

given certain input and when starting in a particular state. We cannot test all
possible combinations, but we divide the possible sets of inputs / outputs / states
into equivalence classes. It should be enough to test a component for each

combination of equivalence classes.

Performing Structure Tests. It is used to verify that the component works

internally as intended. All code must be tested. The component engineer should
test the most interesting paths through the code (i.e. most commonly followed,

critical, least known paths).

A.4.3.3 Integrator Activities

Plan System Integration. The purpose is to plan the integration of the system.

Plan Subsystem Integration. The purpose is to plan the order in which the

components contained in an implementation subsystem should be integrated.
Integrate Subsystem. The purpose is to integrate the components in an
implementation subsystem, then deliver the implementation subsystem for

system integration.

Integrate System. The purpose is to integrate the implementation subsystems

piecewise into a build.

156

A.4.34 Code Reviewer Activities

Review Code. The purpose is to verify the source code.

A.4.4 Implementation artifacts

¢

5

Companent |mple mentation

Impi.éénter ubsystem
- -
\n N } “JE
wwd Integration Build Softwers |Mmplementation
Integrator Buifd Plan Architect el

Figure 89: Artifacts produced in the Implementation discipline

A.4.4.1 Software Architect Artifacts

Implementation Model. It is a collection of components, and the implementation
subsystems that contain them. Components include both deliverable
components, such as executables, and components from which the deliverables

are produced, such as source code files.

A.4.4.2 Implementer Artifacts

Component. It represents a piece of software code (source, binary or
executable), or a file containing information (for example, a startup file or a
ReadMe file). A component can also be an aggregate of other components; for
example, an application consisting of several executables. A special type of
component is a stub, which is used to develop or test another component. It can

be used when integrating the system [1].

157

Implementation Subsystem. [t is a collection of components, interfaces and
other implementation subsystems (recursively), and is used to structure the
implementation model by dividing it into smaller parts. Implementation
subsystems are traced one-to-one to a corresponding design subsystem. The
subsystem in implementation provides the same interface as the subsystem in
design. Implementation subsystems that trace to service subsystems in design

model encapsulate components that provide the various services of the system

[1].

A.4.43 Integrator Artifacts

Integration Build Plan. It provides a detailed plan for integration within an
iteration. It describes the functionality that is expected to be implemented in the
build in terms of use cases or scenarios and which parts of the implementation

model are affected by the build in terms of subsystems and components [1].

Build. A build is an operational version of a system or part of a system that
demonstrates a subset of the capabilities to be provided in the final product. A
build comprises one or more components (often executable), each constructed
from other components, usually by a process of compilation and linking of source

code.

A.4.4.4 Code Reviewer Artifacts

Review Record. It is a form document that is filled out for each review. It is
created as a control document to manage the execution of the review of project
artifacts. It is issued to the participants in the review to initiate the review
process, and is used to capture the results and any action items arising from the

review meeting. It forms an auditable record of the review and its conclusions.

A.4.5 Implementation details

158

A
i

g 8
Design Model

\'\.

", -
., -

O

\"3‘. e Document
/ / A -

Structure the - N
Software ; S
impl tation tlodel
Architect mplementation tlode
Implementation
Mo del

Figure 90: Implementation detail: Structure the implementation model

Rerdion USE;L;—I_S&
Plan - Redizaion
.,‘\
T 4 -
) "
Zj Plan Systemn Integration
- ¥ Integration Build Plan
Integrator
&
.\
L i
~ ! €
Implementaticn
% 2a 2]

Figure 91: Implementation detail: Plan the integration

- e e e aw w wm we e w w mp

' L]
¥ —
™, L]

. e Cass Design 4 Design
M Designer (from Analysis & Design a . Class Changs Request Rediow

unl.---'n:--'-'f-‘ ;'REODFE!
-

./f _1"—‘-.’- //
o o a
e, B - —
l h E >
(“} - et -
o Implement Fiv a Defect - . Review sk
3 Component s o - _ et
f ~omp < Z99® Code Reviewer
ik ! ‘_,.—-"” Companent
Implementer B B s
.am/"’ E—"/ . ;j. ", Q
Implement Test Perform ™ 55 — e =
Components and Unit Tests - ! o 2
SubSystems . Plan Subsystem
¥ N Component Integration

Inte gré'tor

Test Test Implemertaion !
Class Component Subsystem Use Case ferdion Component Integration
Realization Flan Build Plan

Figure 92: Implementation detail: Implement components

159

o Build .

“
- - B A AR R e G W e R W W e W
[» () L .
o 1 v P ol] E x ’,5 ‘
Cornponents / Integrate | i : In‘éiénie it EE;zé e o
{rom o plemme e 120 o Subsystzm i § . Test Test Suite e
e X, Integr ator g Wom Rip (bom R Teder
_/"/ \\ W W M e R K W W W e M e W
= " g
Components H)
dfrom I pleme Ve 17y Implementation
Subsvstem

Figure 93: Implementation detail: Integrate each subsystem

Implementation
Subsystenms

dewve sy N T
~ J ! k‘i
\‘ "I‘ ‘- L LR BRI B B I L O O A
:‘ 1.. M . Y]
o v L2 L -
ol | {} 1 Iplement . Exeoute I
} L I— . Test Test Suite ” o
[Integrate v Oom®sh temmsg - Tester
lnt‘égrator System ‘.--.--.-"‘ﬂ-'-l--‘

Figure 94: Implementation detail: Integrate the system

160

A.5 Testing

A.5.1

Technique]

Testing workflow

Define Evauation
Mission

,»'ibhl e
Evauate Loceptable
Mssion
A

A
[Another
] ’\if Test Cycle]

Figure 95: Activity diagram for the Testing discipline

161

A.5.2 Testing workers

Test Manager. He has the overall responsibility for the test effort's success. The
role involves quality and test advocacy, resource planning and management, and
resolution of issues that impede the test effort. This covers: negotiating the
ongoing purpose and deliverables of the test effort, ensuring the appropriate
planning and management of the test resources, assessing the progress and
effectiveness of the test effort, advocating the appropriate level of quality by the
resolution of important defects, advocating an appropriate level of testability

focus in the software development process.

Test Analyst. He is responsible for initially identifying and subsequently defining
the required tests, monitoring the test coverage and evaluating the overall quality
experienced when testing the Target Test Items. This role also involves
specifying the required Test Data and evaluating the outcome of the testing
conducted in each test cycle. This role is responsible for: identifying the Target
Test Iltems to be evaluated by the test effort, defining the appropriate tests
required and any associated Test Data, gathering and managing the Test Data,

evaluating the outcome of each test cycle.

Test Designer. He is responsible for defining the test approach and ensuring its
successful implementation. The role involves identifying the appropriate
techniques, tools and guidelines to implement the required tests, and to give
guidance on the corresponding resources requirements for the test effort. This
role is responsible for identifying and describing appropriate test techniques,
identifying the appropriate supporting tools, defining and maintaining a Test
Automation Architecture, specifying and verifying the required Test Environment

Configurations, verifying and assessing the Test Approach.

Tester. He is responsible for the core activities of the test effort, which involves
conducting the necessary tests and logging the outcomes of that testing. This

162

covers: identifying the most appropriate implementation approach for a given
test, implementing individual tests, setting up and executing the tests, logging

outcomes and verifying test execution, analyzing and recovering from execution

errors.

A.5.3 Testing activities

poresmmiaen,

o [L >
T Agree N Obtain { ™, Assess and Improve
/ tlission e Tes tability Test Effort

Testhlanager Identiy Test
hMotivators
-
(L‘ } E//‘ I P
; /‘ Identify Targets ‘ ™, Define Test
Lo of Test g D etails
Test Analyst Identify Test
Ideas
" i g
e L
O Define Test Identify
) Approach "y Testability
D % hechankm
Define
Test Designer Test Ervironment
Configurations
0 S
] [> L
|] Implement Implement
Tester Test Test Suite

Figure 96: Activities by worker in

A.5.3.1 Test Manager Activities

Agree Mission. The purpose is to negotiate the most effective use of testing

resources for each iteration and to agree on an appropriate and achievable set of

objectives and deliverables for the iteration.

163

Commitment

Define Ass essment
and Traceability needs

Assess and
Advocate Quality

D(

Determine
Test Results

L L
Verify Changes
in Build

[

Define
Testability
Elements

~,
[>
Develop Test
Guidelines

S

Structure the Test
Implementation

D
e

Execute
Test Suite

Analyze
Test Failure

the Testing discipline

Identify Test Motivators. The purpose is to identify the specific list of things,
including both events and artifacts, that will serve to motivate testing in this

iteration.

Obtain Testability Commitment. The purpose is to promote the creation of
testable software that supports the needs of the test effort, promote and support

the use of appropriate automation techniques and tools.

Assess and Advocate Quality. The purpose is to identify and advocate the
resolution of defects that have a serious detrimental impact on software quality or
which prevent or impair the testing effort, by monitoring the progress of and
support the appropriate completion of changes that improve software quality to

the required level.

Assess and Improve Test Effort. The purpose is to make an assessment of the
productivity, effectiveness and completeness of the test effort and to make
adjustments to the test effort (both tactical and strategic) to improve

effectiveness.

A.5.3.2 Test Analyst Activities

Identify Targets of Test. The purpose is to identify the individual system

elements, both hardware and software, that need to be tested.

Identify Test Ideas. The purpose is to identify the test ideas that should be
explored to assess acceptable quality of the Target Test ltems and to identify a
sufficient number of ideas to adequately validate Target Test ltems against Test
Motivators.

Define Test Details. The purpose is to define the individual conditions necessary

to realize a test idea in a specific context, identify potential points of observation

164

and control for the related test item(s) and potential oracles to facilitate

observation points and provide consumable resources to support the test.

Define Assessment and Traceability needs. The purpose is to define the
assessment strategy for the test effort and the traceability and coverage

requirements

Determine Test Results. The purpose is to make ongoing summary evaluations
of the perceived quality of the product, determine the detailed Test Results and

propose appropriate corrective actions to resolve failures in quality.

Verify Changes in Build. This activity confirms that a Change Request has

been completed, typically by conducting subset of tests on one or more builds.

A.5.3.3 Test Designer Activities

Define Test Approach. The purpose is to identify each specific technique that
will be employed to enable the desired testing, outline the workings of each
technique including the types of testing it supports and define a candidate

architecture for the test automation system.

Define Test Environment Configurations. The purpose is to define the

requirements for the evaluation environment(s) needed to support the test effort.

identify Testability Mechanisms. The purpose is to identify the general
mechanisms of the technical solution needed to facilitate the test approach and

outline the general scope and key characteristics of those mechanisms.

Structure the Test Implementation. The purpose is to establish the structure in
which the test suite implementation will reside, assign responsibilities for test
suite implementation areas and their contents and outline the required Test

Suites.

165

Define Testability Elements. The purpose is to identify the physical elements of
the test implementation infrastructure required to enable testing under each Test
Environment Configuration and to define the software design requirements that

will need to be met to enable the software to be physically testable.

Develop Test Guidelines. The purpose is to make tactical adjustments to the
way the process is enacted and record those decisions, capture project-specific
practices discovered during the dynamic enactment of the process and develop
an understanding of the strengths and weaknesses of the "micro-process” as it

emerges.

A.5.3.4 Tester Activities

Implement Test. The purpose is to implement meaningful tests that provide the
required product validation and develop tests that operate as part of a larger test

infrastructure.

Implement Test Suite. The purpose is to arrange or assemble collections of
tests to be executed together in a valuable way and facilitate both breadth and
depth of the test effort by exercising as many required test combinations as

possible.

Execute Test Suite. The purpose is to execute the appropriate collections of
tests required to validate the product quality and capture test results that facilitate

the assessment of the product
Analyze Test Failure. The purpose is to investigate the Test Log details and

analyze the failures that occurred during test implementation and execution,

correct them and record important findings appropriately.

166

A.5.4 Testing artifacts

Ay

¥

S

= 1 &)
’ TestPlan Test Seript

* Test o
Test ldanager Evaluation Tester
Summary

Fane

(L} 3 $ 5 §

Test ld=as Test Case Wokload Test Data
Test Analyst List Analysis
Ivlodel
;) L 0 .
| am A

ik Test Test Interface TestEnvironment Test Suite Test

Test Designer Aum.maﬁon Specification GConfiguration Guidelines
Sechitecture

14&

et Test
Implementer Companent

Designer Test Class

Figure 97: Artifacts produced in the Testing discipline

A.5.4.1 Test Manager Artifacts

Test Plan. It contains the definition of the goals and objectives of testing within
the scope of the iteration (or project), the items being targeted, the approach to

be taken, the resources required and the deliverables to be produced.

Test Evaluation Summary. It organizes and presents a summary analysis of the
Test Results and key measures of test for review and assessment, typically by
key quality stakeholders. In addition, the Test Evaluation Summary may contain
a general statement of relative quality and provide recommendations for future
test effort.

167

A.5.4.2 Test Analyst Artifacts

Test Ideas List. It is an enumerated list of ideas, often partially formed, that

identify potentially useful tests to conduct.

Test Case. It contains the definition (usually formal) of a specific set of test
inputs, execution conditions, and expected results, identified for the purpose of

making an evaluation of some particular aspect of a Target Test ltem.

Workload Analysis Model. It is a model that identifies one or more workload
profiles that are deemed to accurately define a system state of interest in which
evaluation of the software and/ or it's operating environment can be undertaken.
The workload profiles represent candidate conditions to be simulated against the

Target Test Items under one or more Test Environment Configurations.

Test Data. It contains the definition (usually formal) of a collection of test input
values that are consumed during the execution of a test, and expected results

referenced for comparative purposes during the execution of a test.

Test Results. It contains a collection of summary information determined from
the analysis of one or more Test Logs and Change Requests, providing a
relatively detailed assessment of the quality of the Target Test Iltems and the

status of the test effort.

A.5.4.3 Test Designer Artifacts

Test Automation Architecture. It represents a composition of various test
automation elements and their specifications that embody the fundamental
characteristics of the test automation software system. The Test Automation

Architecture provides a comprehensive architectural overview of the test

168

automation system, using a number of different architectural views to depict

different aspects of the system.

Test Interface Specification. It is a specification for the provision of a set of
behaviors (operations) by a classifier (specifically, a Class, Subsystem or
Component) for the purposes of test access (testability). Each test Interface

should provide a unique and well-defined group of services.

Test Environment Configuration. It is a specific arrangement of hardware,
software, and the associated environment settings required to conduct accurate

tests that enable the evaluation of the Target Test Items.

Test Suite. It is a package-like artifact used to group collections of Test Scripts,
both to sequence the execution of the tests and to provide a useful and related

set of Test Log information from which Test Results can be determined.

Test Guidelines. It is a documented record of any of the following: process
control and enactment decisions, standards to be adhered to, or good-practice

guidance generally to be followed by the practitioners on a given project.

A.5.4.4 Tester Artifacts

Test Script. It consists of the step-by-step instructions that realize a test,
enabling its execution. Test Scripts may take the form of either documented
textual instructions that are executed manually or computer readable instructions

that enable automated test execution.
Test Log. It is a collection of raw output captured during a unique execution of

one or more tests, usually representing the output resulting from the execution of

a Test Suite for a single test cycle run.

169

A.5.5

Testing details

. N e e :
- s ’ Software
it Identify Test Agree V\\ D evelopment
Testldanager Motivators Idission o Plan
a »
/! =

i

Test Automation
A chite cture

wwwww 2
g S
\teration Define Test
Plan Approach
{ P /
- /
l x“"./ ’1 ’
- ¥ ;
__"-.\ N, ™ '3
\\(" \\
o Pl o
- bmmrrmt” o
- Identify Define Assessment Id entify
TestAnalyst Targets and Traceability Meeds Testldeas
of Test AN Test
* o S Guidelines
" 7 ™, (Test Keas Catalogh
5 e
S p

e
% -

S P gE: £ g{"‘ ! @
@ e g8 @
Use-Case Design Deployment Test [deas
Model tdodel dodel List

Test Designer

Figure 98: Testing detail: Define Evaluation Mission

170

Test {deas

=y :
Test Automation Test Test Plan
Apchitecture Guidelines 5 List
& y . Ky -
< N N |‘ N A
Vool T o «
4« K)
. S o ety
S P s & . ,_./) i 3 g?
Define Identify D efine Define Ca
Testability ~ Testability Test Details |estAnalyst
Elements N,

Mechanisms

TestDesigner Test Environment
Corfigurations
.f"':

.f’i/ .l
e l[A
IiIW‘ ¥
Test Enwvironment Test &utomation TastScript TestInterface Test Case Wodiload
Configur ation Architecture / Specification . Analysis
. N / e P Model
l ; -
AN f e P
4‘\'4. y’l J"(/\ e "m"
g .
Implement Implement S Obtain Testabilit
Tester Test Suite Test Testidanager =0 ment d
I' ‘\ ’
I! ",
;
’l \‘m
*
"\@ﬁ:ﬂ =
Test Suite Test Seript Test Testinterface |55yes Change
Guidelines Spediication List R equests
Figure 99: Testing detail: Verify Test approach

171

Test

<5

Implement

Zhange

Test Suite

/

Execute
Test Suite

Analyze
Test Failure

Change Test Evaluation

Test Log
\ Requ\e\sts f‘ Riﬂu ests Y Summary
~ e -,
\\}‘ // o - L ““I(\\‘
v, N " ‘mmt) k" = ,/ ",
— . L ™
Ry > N b
J g E _j./] .r‘/ ; ""-'-f»-.;"f
4 . . m— E and Advacate
D efine Detarmine Test Manager FESEss ands X
TestAnalyst TestDetails Test Results vanag Quality

Test
Results

Figure 100: Testing detail: Validate Build Stability

172

Structure the Test
Implementation

*
A N -
S - ! e ks \"\. Test D esigner

Implemznt Implement Execute Analyze D efine "‘\\

Test Test Suite TestSuite TestF ailure Testability .

* - s
- - /‘ k‘\v\\“ 1._\\\ p\ ‘ _‘_ k\ \\N‘. Elements _
e ; , - . -

T, N

—a

5 i

Testldeas TestData TestCase Workload Test Envionment Test Log Lhange Test Script TestAutomation
List w. 3 Analysis € onfiguration / Reqt:ests Architecture
Tael N Model !

¢ B
\'\ /'. \'\‘
\\."\' F “ "« D
A \_ﬂ oA .

Q

. . ™, =
A ‘,é"? ,X) e _/'(g ;
R ET | dentify Define Verify Determine Assess and improve "—"“g
Test Analyst Testldeas Test Detailk Changes Test Results Test Effart Test Wanager
in Build SN
« ,/ N, e
o N, N, gy

’:‘ 7

Test ldeas
List

Chanyge Test Shange Test Evaluation Issues
Requests Results Requests Summary List

Figure 101: Testing detail: Test and Evaluate

173

O
LJ

Test flanager

Asse

ss and Improve Assess and
Te;t Effort Advocate Quality

o ¥
Change

Requests
“
i e 2 S,
Test Evaluation Change Test Test Ideas —
Summary Requests Resuls List . \\
. vl PN S
\“x\ 4 f". \\\ T Analyze
. ys / . . TestFailure
N § L £ \A R‘-‘
\} ™y s
o v s e .
j" D etermine Identify Implement Implement
TestAnalyst rogiResutts Test ldeas Test . TestSuite
* Ry .
o ~_‘..

Test Lag

Test Log

@

Figure 102: Testing detail: Achieve acceptable mission

174

Test
Guidelines
e stApproacky

2
<

Develop
Test Guidelines

¥
.

Test Script

Define
Testability Elements

Test
Guidelines
T stideas Cakbog

& y
Identify O
Test ldeas f 3
A — — {4

: o : S -
. A ", H rd K §
Test Designer . \\' ,‘ ‘Www/ Test Anatyst
Structure the \\\ Define Define Assessment
Test Implementation S " Test Detais and Traceability Heeds
//—"' j '\\V\.\\ \ /x" . -~
J__,»-""' \\ \"‘-\ﬂ' . ’ ,_/'J’
Test Automation Test Suite Test Environment Test Evaluation Test Plan
Architecture + Configuration .~ Summary
..-""V'-—)
./'/
e o
= -~ s
(> a x
' i x} \{ o
/ ‘ — _ﬁf_f_,/f . Test
i Implement tmplement \ Guide|ines
stantom atio
Tester Test Suite Test ., (I'e)

-

Test Script

Figure 103: Testing detail: Improve test assets

175

A.6 Deployment

A.6.1 Deployment workflow

Plan
Deploy ment

[Change Requests)

Manage Accapt ance Test

= <4t Dewelapment Site>

Develoh Supo rt
Materid

Producs
Deployment Unit
(Beta Release]

Pt
. 3
[Custamer Release] R
3 Beta Test
e Product
: T E
[Custom | [Shrinkweap |[Deownlcadable
Install] Praduct] 4 Boftware]

R

Pazbage Provide Acosss to
Procuct Download Site

ldanage
Acceptance Test
<At Ihstallation Site>

)

Figure 104: Activity diagram for the Deployment discipline

176

A.6.2 Deployment workers

Deployment Manager. He plans the product's transition to the user community

and documents it in various associated documents.

Course Developer. He develops training material to teach users how to use the
product. This includes creating slides, student notes, examples, tutorials, and so

on, to enhance users' understanding of the product.

Implementer. He is responsible for developing and testing components, in
accordance with the project's adopted standards, for integration into larger
subsystems. When test components, such as drivers or stubs, must be created
to support testing, the implementer is also responsible for developing and testing

the test components and corresponding subsystems.

Graphic Artist. He creates product artwork that is included as part of the product
packaging.

Technical Writer. He produces end-user support material such as user guides,

help texts, release notes, and so on.

Configuration Manager. He provides the overall Configuration Management
(CM) infrastructure and environment to the product development team. The CM
function supports the product development activity so that developers and
integrators have appropriate workspaces to build and test their work, and so that
all artifacts are available for inclusion in the deployment unit as required. The
configuration manager also has to ensure that the CM environment facilitates
product review, and change and defect tracking activities. The configuration
manager is also responsible for writing the CM Plan and reporting progress

statistics based on change requests.

177

A.6.3 Deployment activities
- ¢ " ™, ~,
WW/ {mwww./.—' mx_,ff’ ‘ //
Develop Wanage Provide Access to :
(k] eplafment Acceptance Download Site VEHfY g11‘;zz?;zturea
Plan Test) ‘
ond =, T Y ™,
Deployment ’ o e S - f‘"r
Manager D efine Manage Release to Wiite Release
Bill of Iaterials Beta Test ~ Manufacturing Notes
O
o . S
E SN Develap o
- Implementer Installation Technical
Course Adifacts Writer
Develaper
\) , =, :‘f{f
et - s Develop
Develop Training ek Create Support Materials
Materiak Graphic Product Actwork
Artist
Figure 105: Activities by worker in the Deployment discipline
A.6.3.1 Deployment Manager Activities

Develop Deployment Plan. The end-user's willingness to use the product is the

mark of its success. The Deployment plan documents show how and when the

product is to be made available to the user community.

Manage Acceptance Test. The purpose is to ensure that the developed product

fulfills its acceptance criteria at both the development, and target installation site.

Provide Access to Download Site. The purpose is to ensure that the product is

available for purchase, and download over the internet.

Verify Manufactured Product. The purpose is to ensure that the manufactured

product is complete, and useable. This activity is sometimes referred to as the

178

first article inspection'. It serves as a quality control activity to ensure that the

retailed product has all the required attributes and artifacts.

Define Bill of Materials. The purpose is to create a complete list of artifacts that
go to make up the build/product. The list includes software configuration items,
documents and installation scripts. In the case of packaged products, the Bill of
Materials will need to identify the pieces of artwork and packaging items that
make up the final product.

Manage Beta Test. Beta testing is “pre-release" testing in which a sampling of
the intended audience tries out the product. Beta testing serves two purposes.
Firstly it gives the product a controlled "real-world" test, and secondly it provides
a preview of the next release. The Deployment Manager needs to manage the

product's beta test program to ensure that both these purposes are served.

Release to Manufacturing. The purpose is to mass produce the 'shrink wrap'

version of the product.

Write Release Notes. The purpose is to describe the major new features and
changes in the release. The Release Notes should also describe any known

bugs and limitations or workarounds to using the product.

A.6.3.2 Course Developer Activities

Develop Training Materials. He produces the material needed to train the users

of the product.

A.6.3.3 Implementer Activities

Develop Installation Artifacts. He produces all the software required to install
and uninstall the product quickly, easily and safely without affecting other

applications or system characteristics.

179

A.6.3.4 Graphic Artist Activities

Create Product Artwork. The purpose of creating product artwork is to publish it
either as hardcopy directly on the product packaging or in softcopy for the web.
Artwork should reinforce product branding standards, established by the
company's marketing group, to create the appropriate messaging for the

consumer.

A.6.3.5 Technical Writer Activities

Develop Support Materials. The purpose is to develop the end-user support

material.

A.6.3.6 Configuration Manager Activities

Create Deployment Unit. A deployment unit consists of a build (an executable
collection of components), documents (end-user support material and release
notes) and installation artifacts. The purpose of this activity is to create a
deployment unit that is sufficiently complete to be downloadable, installable and

run on a node as a group.

A.6.4 Deployment artifacts

180

De;ﬁl‘}:‘-yﬁl‘:’lém Deploy ment Bill of Release Product

Manager Plan Materials Hotes
) -~
Q s) : @
;'" Installation Course Training Z:j
tmplementer Artifacts Developer Materials ng;wy;ilcal
riter

Q1 Qg

End-User
Sup port
Material

Gréﬁ Hic Product
Manager Unit Srtist Artwork

Figure 106: Artifacts produced in the Deployment discipline

A.6.4.1 Deployment Manager Artifacts

Deployment Plan. It describes the set of tasks necessary to install and test the
developed product such that it can be effectively transitioned to the user

community.

Bill of Materials. It lists the constituent parts of a given version of a product, and
where the physical parts may be found. It describes the changes made in the

version, and refers to how the product may be installed.

Release Notes. They identify changes and known bugs in a version of a build or

deployment unit that has been made available for use.

Product. The packaging of a product for market appeal distinguishes it from a
deployment unit. A product can contain multiple deployment units, and may be
accessible as a downloadable commodity, in shrink wrap or on any digital

storage media formats.

181

A.6.4.2 Course Developer Artifacts

Training Materials. They refer to the material that is used in training programs or

courses to assist the end-users with product use, operation and/or maintenance.

A6.4.3 Implementer Artifacts

Installation Artifacts. They refer to the software and documented instructions

required to install the product.

A.6.4.4 Graphic Artist Artifacts

Product Artwork. It includes the text (print specifications) and artwork that will
be used to 'brand' the product. The Product Artwork may appear on physical

packaging or on a web site.

A.6.45 Technical Writer Artifacts

End-User Support Material. It contains the materials that assist the end-user in

learning, using, operating and maintaining the product.

A.6.4.6 Configuration Manager Artifacts
Deployment Unit. It consists of a build (an executable collection of
components), documents (end-user support material and release notes) and

installation artifacts. A deployment unit is typically associated with a single node

in the overall network of computer systems or peripherals.

A.6.5 Deployment details

182

[>

Develop teration Plan Plan Phase s and terations Develop Pmduct:'ﬁ;&emance Plan

Project (from Project Management) (fom Project Management) (from Project Management)
litanager

nn-:-‘nn-v-1--:»l;-v-a--1-v-a-via--v-v-v-v-a-pnr]n‘hhb#r\ban

Soft ware Product
Develop ment Agceptance
Plan Plary

b
o D

! Develop D efine
Deployment DeploymentPlan Bill of Materials

fdanager l

Ceployment Bill of Maerids
Plan

LR R T I R I R LR

“owow W o W

Figure 107: Deployment detail: Plan deployment

Zourse
Developer

Soft ware » fv}ahu all /"/ Deveinp —
Requirements Styleguide 2ini
S]e3qeciﬁ cation Training fdaterials

Materiaks
..V\\\ .
User-nterface ‘_ Y { 2 e
Frotatype Buitd Develop

End- User

Support Materials Support Materizl

Technical
Witer

Figure 108: Deployment detail: Develop support material

183

TS mTsessssssmscs cessmmmasmrmaeaa,
] o oy -, '
[A LI !
" i Coseomn ' R i 5
' Heuew_\(}hange Request | . Support Development 4
. Chzr;gie (fg‘lm L,cu;a:gumon an;i ., System (fom BEnvironment)y
~ Confrol ange hdanagement ==

[} ¥y Administrator I
‘ Wanager .

R W W WM W WM B W e MW

Change
Request

Deployment
Plamn .

. b\ Tk

\\'-, % r - e a . -} r - . mw s
N {"‘“"“"* ! " a ! '
. i ! e ‘ s Y [w !
Product e ' Sy s
Acceptance Manage i Determine " ¢ Becute "
Flan Acceptance Test 1 TestPesuls * ¢ Test Sute *
¥ Tests Resuls 1 (fom Test) : 1 (fom Test) :

o —] L]
) e g ¥ '

o . N 1
e G @i o
[. o :

o 1 i 1 —

Gustomer Deployment s TestAnalyst ® o« Tester °
Manager : by F
(YR i (I —

W e e e N W W e o T
-

aw

Test Envifonment
C onfiguration ™~

™.,
.,

o

Figure 109: Deployment detail: Manage Acceptance Test

; [

} Write el Dé;-éiiop
Release Implementer Installation
Deployment Mot A
Manager & _ Artifacts
| 4
T ¥ e
Relagse Build Instaﬁletion
Hotes -, (Preduction Baselinz) Artifacts
™S
\\ }
}-n- ®W AW W Ty,
[g,ﬂ-p roved] Ty ;
aploy ment x @ N
Plan 4 l P :
: » iy »
TEN Y ovigurton Deploymenttnt 3
Y Manager. - {from Corifguration 5 -F'L‘;"Yi;“e"
2 N ’ Management) n
Support Bom o e o W e TR e e
it =srial

Figure 110: Deployment detail: Produce Deployment Unit

184

& Q"-----nnu--n------‘
. =, ' v
1 ! S] '
H bt s : [& ¥
' i Create * Review Change Pequest §
- ' Deployment Unit o " eview Lhange neq
1
.L"rgi:m:f" (from Confguration " r\gg m Lo??gurauon ?]:'d :
' 9 hlan agement) " hange lianag ement 1
’ ¢ v Manager '
‘a-a-u;uau-l--ct N e e oW oW oW o T
Deploy ment Unit
Q
DEPL?%[TE‘“ Deployment Bro;::?ge:t Change
Manager Request

Figure 111: Deployment detail: Beta Test Product

PR S L

® [o,

AL

 §

'

1

:’t:anf uratign .ueplfy?ﬁaetfn Uit n Deploymert Unit Froduct
' &ﬁ%a er - (from Configuration: l ol

j o MAnBger. . Management) 4 Y o

’hph»tﬁ»-ntwnbaﬁn‘ N # Y
.
L—w——v} i’

7 T
Release to Verify Manufactured 5

tanufacturing ¥ D eployment

™, lManager

Product

T
< [»—p 2
i Product

f Create Artworl:

b Product
Graphic
Artist Artwork

Figure 112: Deployment detail: Package product

185

‘D e Yook W W N e WO M A M W
;0

x = i py

» ~ -

» Create

. Deployment Unit
» ployri
'Cﬁn‘:%ra;lron (fram Configuration
X vanag danagementy

o o w oW e W

Y

Deplayment Unit

: \:\v

Deploymert Provide Access eplo-rh ent
Plan :
to Download Site Manager

Figure 113: Deployment detail: Provide access to download site

186

A.7 Activity Diagrams

Business

Business
Reviewer

Business Proc
Designer

Analyst

Stakeholder

[Eary inception] .

-

Assans Business Asgess Business
Status

Staws

Develop a Domain

Ty

Davelop a Domain

RMexot

Davelop a Domain
Madel

Develop a Domain
Modet

tdodel

page 1

Figure 114: Activity diagram for the Business Modeling discipline including roles

187

Stakeholder

Business Proc
Analyst

Business
Designer

Business
Reviewer

Desaribe Current
Businpss

Pt SR

Husiness

[Describe Curren!

S

Describe Current
Husiness

Identify Business
Procasses

Identify Busiress
Processes

Refine Bissinegss
Process Definitions

Refine Business
Process Definitions

Refina Busiress
Process Definitions

Refine Busiress
Process Definltions

Figure 115: Activity diagram for the Business Modeling discipline including roles (contd.)

188

page 2

Business Proc Business Business
Stakeholder Analyst Designer Reviewer
3
5

Dasign Business
Prooess
Reaatizations

Design Business
Process
Realizations

R

Design Busglnass
Process
Realizations

Refine Roles and
Responsabilities

Refing Roles and
Respangabilities

Refine Roles and
Responsabilities

Explore Process
Automation

Explore Pracess

Automation

Explore Process

Automation

Py

@

189

page 3

Figure 116: Activity diagram for the Business Modeling discipline including roles (contd.)

Business Process Bisiness Business
INPUTS Stakehotder Analyst Designer Reviewer QUTPUTS

B ‘
[Earty Inceptjcn] p _. =7 Gless.
I N - v
’ - s s
] -
= Ve N
i __"_;_/_,.fﬁ’/,Rmes
=T =t s s
Assass Business Assess Busiress b e — ¥ S/
Status Stalus \:h——h“,____“_ ,‘._,_~/ . 5
1 / - V!Sl(m
~ 4 V4 e
-~ v
ST —
a. v el
Rl e ~ . AGE
=~ ~ TG
= Ve T4 Org
v Asss !
B.
Gloss. ==
arget
Gy
Assa t - —
/_\," BOM
BMG — -
T

Develop a Domain |

8 . :f(Deveiop a Domain 8
vision I~ T _Model = L N Eotity
BOM F—- —

8 S
Endity .

page 1

Figure 117: Activity diagram for the Business Modeling discipline including roles and
artifacts

190

Business Process Busingss Business

INPUTS Stakeholder Analyst Designer Reviewer OUTPUTS
1 Targat
Oy
\L - Assa t
Supgd.
Specil — . Use

2 Case
- ‘
- Regliz

N

B.Use
case {0 T
~
~

BOM

8. e
Gioss. > Use
* dentify Eua}ésk _\ !'Ecase
Pracesses =7 Model
s — e
\\ T~ A~/ - -
arget N~ 2 —
o / ST~ T~ [_J s
Aste t ~ ~ e, Gloss
N ~ L
~ ~ ~ T
N v e
- < A -
Y ey} ~ B
L N A Rules
D
_é:'ﬂ/ Refine Busiress i/ N\ Refaie Business™
- T (Promss Oefindions | Process Defiritions .
~ < £}
4 Aschi
AN Doc.
AN
AN
- Rev.
Record
page 2

Figure 118: Activity diagram for the Business Modeling discipline including roles and

artifacts (contd.)

191

INPUTS Business Business Business
Stakeholter Pracess Avalyst Desigrer Reviewer OUTPUTS
[(a] o
| Gioss, P 3 !
i Gloss. { B 8 H
~. k - o ooss |
T JUUSES
arget H —~ \']/ \!/ ‘ehn€,~ =
! o1 Ry I ~— —
Assat} Dosign Business~} .1 L-Cofign Business I8fing
Procézs PSS
—Regizaiors .t L Reakaaii
. ’ s £/ LR ESNIY “\\Aﬁ_
l case - — 12 g]
i Madel B
ol UL
Workes |7~ -~ 17
~ - b
P
i
<7 -
T~ =T
______ T+ gl Refine Roles 4 - Raftine Rotes ant cass |
o} Res;xnszmlili_@._s Respansabiiiies Real
—— — A — ~
R W N \
Ny 7= N . T
7 RS i
=<3 2 N !
‘ ~ N 2 ~
Unit PN N N
A N ~ ~J o 1
~ ~ H \ (] -
i RN NN \L/ \i Y Unt Fap
I — =N P P Sy
B L L - ~ \ - Spedt
Eniity Expora Prostrss R Explore Process Exptore Process My T
—_ Surcgnation, Autonalior.— ey Auiomation NN
=z —_ L Xy o8
e AR S
[~] N P cave
= N N Maodet
BOM | ~ N y N
} \LS ~f Rev. N
P / \/(\\ Record g ,% Anatlys
fModet
Ny N
e ™.
{B. Use 7 | Ny
F v ¥ ~
i Real \)
w0

page 3

Figure 119: Activity diagram for the Business Modeling discipline including roles and
artifacts (contd.)

192

A.8 RADs and XRADs

The RAD Notation

Designer

Naw systerr.- ?
¥
]\

n
A Role Alternative paths 1
depending on the - -
condition =
{"case refinement’)
} .
Concurrent paths N g
("part refinement”) j‘ j‘
State /
An interaction ij_Reﬁne S]:S,em[j
Slate descrption ch-Work in scope between two roles definition
An interaction [:j [j t]
between three roles
An Activity Prepare Integration Plan

The driving party %
in an interation

Start Software

o
Start another rote Architect Role

External event

e New input The XRAD Notation

Refinement
closing / Entities flow £t ;Ji,‘l £z gﬁrﬁféz
State merge \{
Stop state _L
‘Don't care’
=

Aloop

C

Figure 120: RAD and XRAD stencil containing the symbols and notations used

193

Legend for the notations used in the XBAD diagrams

AD: Software Architecture Document (use-case view)
Al Analysis Model

DM: Design Model

TP: Test Plan (from Test discipline)

Artifacts fram Environment discipline:
BMG: Business Modeling Guidelines
UMG: Use-case Madeling Guidelines
UIG: User-Interface Guidelines

DG: Design Guidelines

Artifacts from Project Management discipline:
RL: Risk List

IP: lteration Plan

SDP: Software Development Plan

PAP: Product Acceptance Plan

MS: Manual Styleguide

IL: Issues List

BC: Business Case

RR: Review Record

Artifacts from Configuration & Change Management:
CR: Change Request

The Core Disciplines:
BM: Business Modeling
R: Requirements

D: Design

i Implementation

T: Test

Status of artifacts:

o: outlined

r: refinedfrestructured
u: updated

d: detailed/described
c: characterized

i: initial

Sys: system

sk: sketch

Figure 121: Legend with the abbreviations used for the notations on the artifacts, in the
XRAD diagrams

194

Business Process Analyst

Assess Busine

\

\

p DomainiModel

Business Designer

business model?

Business Reviewer

business model?

sCribg

I

Identify Business Process

r Current Business r:l
L

1
L

Refine Businkss

Process Defipitions

Dasign Business

)

Process Reafization

Explore Prodess

Adtomation

J

efine Rolg

3 [
esponsabrzues]

1
L

Figure 122: Role Activity Diagram for the Business Modeling discipline (v. 1)

195

Stakeholder

Business Process Analyst

N N
c
L
o
&
=
= ,
L‘c& Business Designer Business Reviewer
T (—*—ﬂ\
{i Assess Business
Status
business modei? business model?
‘j Develop Domain Mode! r_l1 Develop Homain Modle! Develop [Domain Model LL)
fibe|Curfent
‘j Describe Qurrént-Business
_ j LoJ L
l—i—; identify Bushess Processes r
- {]
Ej Refine Blsiness Process || Relfine|Businesst [~ 1 Refing Business r‘—L]
efimtions L Proceds Definitidns Proceps Defifitions
E]__Qﬁﬁnﬁyﬁfﬁis ™ Ddsigr] Businesg
- Process Reglization Ld Proceds Realization
[!] Refine Rple$ & Responsabilities L Refige Roids & [l_]
» L Responsabjiities
‘i‘j Explote Process . 1Explode Proces: (3
Auton]ation Adgtontlation
N _ o J \ /

Figure 123: Role Activity Diagram for the Business Modeling discipline (v. 2)

196

Business Modeling (entities flow} p1
Business Process

Analyst
. 5 N
Stakeholder <
: ™ £
=
b
i
\A

Assess Businesgs
Status

Capture a Commpn Busjness Voc

Assess Target Organization

Develop Madeling Guilelines
{Env)

Maintaif Busin

Sel & Adjpst Roles Business Designer Business Reviewer

N /7 ™

Busingss Model? Business Model?

é Dvp Domairy Model Dvp Domgin A Dvp Domaih Modei r‘]
b

Maigtain Business Rules

Captgire a Common Business Voc

Pass BMG, B Rules, B rj
\ision, 7. A, § Glossary to B

Designer)
Pass BiRules and 8 Glossary E]
to Revigwer

Find B Workdrs & Enfities
(BOM)

Det3il a B Entity

Pass BOM|B Entityr]
to B Revi -

E:} Z;eé/l)ew the BOM [j
\. ‘ J L AN J

Figure 124: Role Activity Diagram for the Business Modeling discipline entities flow

er

197

Business Process

Stakeholder Analyst B Designer
g N 4 ([ous
Business Model? Business Model?
D Describe |Current Busi Dedcri
Assess Target Org
Find B Actors & Use Cases
Set & Adjubt Goals
Pass BMG, B Vision, H
Glossary, BUcM,
B UC{0) and Supp Spéc to
Designer
Find B Workers and Entities
t} Identify Bysiness Pracgsses
Maintgin B Rules §
Set & Agijust Roles
Define B Architecture
Capture a Common B Voc
Find B Actors &jUse cases
N J . v

Business Madeling (entities flow), p2

Figure 125: Role Activity Diagram for the Business Modeling discipline entities flow
(contd.)

198

Stakeholder
—————

Business

Business Process
Analyst

-

\

Refine Businegs

Business Business
Designer Reviewer
/——————\' ll/——-‘ﬁ

E:§

-
,i| Refine Bus

ness

B8 Dannitic

[J s
TOCE!

S L ' Process Definltions Process Ddfinitions
Structure the Busindss Use casé Model
~1 __ Pass BUcM to
E-J Designer
Detail a Businjess Use case
Pass B usd case, pupp l—j
BSpec 1o B Reviefwer L
D Review the Business Use cdse hadel D
RR)
[L\ Design Business Hrocess 1 Design Busingss Prbcess r:]
| Realizaljons LT Realizations L
Captute a Commopn B Voc
laintain| B Rules
Define B Arghitecture
Pass Artifacts[1..6 tg Desiqnerr]
L
E, Find BusinessiWorkers and Entilies [l:]
(BS)M, B use ¢ase R}
e/ AN -

Business Modeling (entities flow) p3

Figure 126: Role Activity Diagram for the Business Modeling discipline entities flow

(contd.)

199

Stakeholder
TN

Business
Process Analyst

i
=4

Refine Roles & Resy

Business

Designer

Business
Reviewer

onsabilfties

= /;\
iReﬁ ne Roles

N

. Respongabilities

0]

(1

Detail a

Betail

Review the BOM

Business Worker

Businegs Entity

Hass B'Waotker, B Enfity,

0]

rg UNit 108 Reviewer

i
b

(RR)

ore Pro

ess Automation r

[L| Explore
]

Defing

L

Process|Automation [EXP
| -]

Set &|Adjust Goals

n to B Designer

L]

Automglion Requirements

Qpass B Visig

(]

{(Supp)

[sys] Spec, {Sys] Use-case M,

Analysip M}

T

N

Business Modeling (entities flow) p4

Figure 127: Role Activity Diagram for the Business Modeling discipline entities flow

(contd.)

200

Stakeholder Business Process Analyst
[|
g
a
i
=
2 . .
E Business Designer Business Reviewer
f/ AN £ ™
Assess Blus
Status
business model?
t}[)ev blo omain Moge Develap [Domai Modef 3 ‘_L] RR
1 14.8M6 T g1 | 811 —

) Business Gér‘lj RR ~

ks Détifitions

(S

bscribe €
[j Describe Clrrént Business 14 bsiness
BMG 568001 | |BMG T 6(r
[‘_L} Identify Business Processes 2.]4 —51.3(h}.4{u) 8.6 7(0), 9{o)
emd” T
Refine Bysirtess Process 1{4 m
L} DefiniGons BME
{j Design Bbisihess 1.6 Busines:
Process Reglizations 8MG Lty [Priceds Reslizali
t} Refine Réle$ & Responsabilities 30.6.7,9,10
8MG
4(r
Explote Process 3.8] . Explofe Prgces
Au 0711 ation Aytomation
N - NG /

Figure 128: XRAD for Business Modeling discipline entities flow

201

Stakeholder

System Analyst Reviewer
I Ve ~ / N
Requirement IXI
Specifier

New input
New input

New system?
New system?
’ New indut
Analyze thl problen
Understand stakiehalder needs
Incorrect problem? Incarrect problem? incorrect problem? Software
Architect
) N e N
Defing the systm
Manage the scope|of the|systen]

|-
Can't do ll work? Can't dp all work? Can't dp all work? an'fdo all work?
Refine the system definition
| AN
9_-Manage-changing requirempnts 1 T

]
L

PR Jono N

Figure 129: Role Activity Diagram for the Requirements discipline (v. 1)

202

Stakeholder

System Analyst

New irjput e | New systam?
t} Analyze thg problerp
[j Understand stakeholder needs
Incarrect problem?
Software
\ Architect
Define thd system
Ij Manage the scope]of thef systen rL1 Manage the scope of ihe system t]
Can't do §lt work?
Requirement
Specifier Ul Designer
Hlotify “work in tify "Viork o
cope Requirements
Refine Systerh Reviewer
Definition
-L \ .L > Ne input
t} Manage changing requirempnts =a Manage changing requirements
\. /

Figure 130: Role Activity Diagram for the Requirements discipline (v. 2)

203

Stakeholder

Analyze the problem

System Analyst

input

8M3,5

Lo | New system?

0

[i'] Understand stakeholder heeds
C

2.6
1
13,5, 1.2,3(1).4(0).6(r).7
Tupe

Incorrect problem?]

Software
_| Architect
X Define thg system
uwe,ama,g, T 30.400.61).7 800)
Man he scopd of the systen] 1'5'64J—| 3(r).6(r) Manage the scope of the system 346 AB\‘—H AD| 6(r}
cR . “L_J
Can't do it work? Requirement
Specifier Ul Designer
Whrk in scope /™ F" ~,
otify “Worklin Naity "Work
cope” Ly scepe’
- Refjne Syster
Defnition .
UMG 1|.3,5. 800113 sl Aid), 1318 11(ch,32, Requirements
L gid)107 UIG, 13,1 Reviewer
) a4l)
~—— Npw inpy|
E] Manage changing requirements 1.3.8 N6 Manage changing requirements CR.IP RR
UMG, RL.TR.CR.D 146813 [—
./
o /

Figure 131: XRAD for the Requirements discipline entities flow

204

Software

Architect Designer
- -
E!aboralionw Elaboratian
Inception Incaption
Perform Archit
Synihesi
T
Befre g] Architect Design ul
Candidajo Afchit] Reviewer Reviewer Designer
S T
\ "
Analyze Behaviar L Analyze Benavior lAnalyze Behavior
.| - L(J
9 Optional
[Optional] [Optional] N [Optional]
Test Capsule DB
Designer Designer Designer
[e B
! Désign 8 pasign
Design Design
[—1 ombonents 1 Component r__\c mporfents Cdmponefts
| |- | |- -
Ej Design DB 1 | Dosign DB r_:)
— LTJ L.
Refihe the
Eg\ Architecture r
| N
\ o\ / =/ - AN NN

Figure 132: Role Activity Diagram for the Analysis and Design discipline (v. 1)

205

Software

Architect Designer
™/

=4

5 = 2

s 8 :

g8 8 z8
[R q 8
= ww

Perforn} Architg
Syflthesis
{
Cgiine g Capdidate
THrchitedure] L
N Design
Reviewer
TN
Atjaly3e Behavior
] Analyze Behavior ﬂ
L Architecture
Reviewar
Refing the Architeplure t]
L_.___/

Design Components

L+

Design Components

Capsule
Designer

0B
Designer

Design DB

Design DB

|
A

L+

N

Figure 133: Role Activity Diagram for the Analysis and Design discipline (v. 2)

206

Software

Architect Designer
a N\ ™
§ ¢ g
g '5_ N g
2 A >3
= S e
a8 £ 8@
A N~
RY.4,7i1 Perform Archi I Synthesis
6,0IG(iHAD 2(u)3..5. 11 RLJBC,R3)
Defire a Candi \re;‘:m(eclure
LJ
R24.7 2(u),3,4,11] R247 1115)
an0.be] 21}8.11.0 Design
Reviewer
Atlalyze Behavior knalyze Behavior
DG, R24.7 og R4t L 141135) L greR
L I
1.2,4,11(u),15] 4 et 1110159 Amh'fecmreocm
Reviewer
OG,R7? »fme\u e Architepture DG R7,éL\rL| . RR.LR
2{u) “Ld
Capsule
Designer
- = DB
Design Components Besign Pomponent».[\ri 10.44.16_ Designer
Ap.14 47.10,12,14.46)R7.06 ~ ' |pg cH 1.4 11
Design DB OG.R7 1 Design DB DG R4
1417 RR,C 144 14

N,

Figure 134: XRAD for the Analysis and Design discipline entities flow

207

Software
Architect

impldgmentation Model

\

Implementor

Integrator

Implement Components

Plan the Integration

More Compdanents
to implement?

Integratel Each Subsystem

More Components
to implement?

More Subsystems
to Integrate?

integrete the

More Subsystem

to Integrate?

More
System
Builds?-

-/ N

Figure 135: Role Activity Diagram for the Implementation discipline (v. 1)

208

Software
Architect

ST

integrator Rofe

Nolify |ntegrator that

Structyre the Implementation Model

implementation modet structured

Integrator

l/

Integrated Implementation Subs

implementation model is sfructured

lntegl‘al : the J

Plan the Integration implementor Code Reviewer
Implerhent Couéonems
Implement Components ‘ ™ ‘ D
|

ydems available ch

More Components to Implern

Done

1 Integrate Each Subsystem

More Subsystem inte

More Systgm Bujids for this |

.

Unit Tested Components availah

N

ant for this Heration?

le

pration for this iteration?

eration?

./

Figure 136: Role Activity Diagram for the Implementation discipline (v. 2)

209

Software
Architect

Structdre the Implementation Model

~,

D4

502
chimplementation model structured Integrator
[X] start|lntegrator Role ' N

Notify {ntegrator that
implemeantation model is sfructured

B,5.1P,D1 .
lmp[ementor Code Reviewer
Pian the integration
Implement Confponents

Implement Components N
J

1,011,1P 3 1.CR,D14,T

12744 1\5;5?

Mare Components to iImplement for this lleration?

\ Done

- Unit Tested Components availabid

Integrate Each Subsystem

More Subsystem Integriation for this fteration?

More Systgm Bujlds for this ltefation?

.

Figure 137: XRAD for the Implementation discipline entities flow

210

Test Manager
.

Test Designer

[j Validale,
-

Builg Stabilily,

e Acceptabl

! Achie
9 k

Another cycle?

./

s
Define Evalualion Mission
Test Analyst Tester
f \
E%I N
Verify Tegt Approach
Angther technique?] Anather technigue?|
4% V“I
Test 8! Evaluate i1 r
L L
4\")
improve TestUAssels 1 ~
Another cycle? Another cycle? Another gycle?

-

N

-

Figure 138: Role Activity Diagram for the Test discipline (v. 1)

211

Test Manager

Test Analyst

Define Evaluatic

o
4

Pes

n Misision

Define Evaluation Mission

Test Designer

y sn,abimf.<

Tester

Validalg Buil Validate Buijd Staility
Tesl & Evaluat T4st & Hvaluate

RE

H

L
hi ptable Misgion Athieve icceptiables Mi r
Ty
Improve Tes} Assels improve Test Assgts

aluate

Another Test

Cycle

Another Test cycie?

Verify Test Apprpach (\,—L} Verity Tes| Apprdach (—?—1 Verify Test Approa¢h {j
Anather techniqye? Another technique? Anather technique?
- N A

Figure 139: Role Activity Diagram for the Test discipline (v. 2)

212

Test Manager

Test Analyst

p

Defing Evaluatign Mission

Define Evaluation Mission

Test Designer

ki

1.124; 1.8

aluate \li

1P, SDP gLy 1.1P.R4.03, 1342
Tester
-~
A\
Validath Buily Stability Validate Build Stagjlity
2.7 L CR,16 24,7 3.41}1.16.i4
Fes! & Evaluats Tdst & Gvalujte
316, LR SH2.7ER
C ble Misgion }Jchievg A Miss
Logmpesg e Bl =
2,7CR 16 23§,CR 316

Another lechdique?|

Almpmveles Assefs

Improvg Test Ass

2

8 13,15

11,1215

Angther Test cycla?

2 8,1011,12,15

2 16,12 2
Another Test Qycle?
Al Verify Tes{ Apprpach L Verify Tes| Apprpach | 1o Verify Test Approadh o
9 ILCR 13 45 454.10hs 11,12,15 8 =g 1045
ique? Another technique?
Another techniqu?? Another lachnique? ! q
AN NG .

Figure 140: XRAD for the Test discipline entities flow

213

Customer

Plan Deployment

Deployment Manager
SN

EJ(]

Manage
Acceptance Tests
<At Dey Site>

Tester

Test Analyst

hange
Requests?

C
Relea
Beta
Release
Beta Test [Custol
Product Ingtall

{Custom

instail} '_L

Manage w [

Acceptance Tests :
< ilg>
Change

Requests?

Managew (

Acceptance Tests]
<At Dev Site>

Change
Requests?

[Cus
Ins

System [[] Technical Course
Administrator Writer Developer
\ s,
N
Devebp

Suppprt Magerial,

'__._.._ .

Mgnage

Acceptance Test§ Acceplance Tests

jt ttal Site> <At Insta| Site>
/ .

~

ce Tests
Site>

. AL
Configuration
Implementor Manager
Produge Pradupe
Deployper Depi t
E"(Unit Unit
i I
Graphic Downldadable
[Sheink- Artist ftwarg|
wrappad
{Custom Product] {
InstaIP
L, . N
rj Package Product Prpvige
Access (@
Downld Site 1

- S N S /

Figure 141: Role Activity Diagram for the Deployment discipline (v. 1)

214

Deployment Manager
Project Manager ploy Mg

’/’"W,m
\ <
[j l Plan Deployment Technical Course
Chg | Writer Devejoper
Ctri ———————— / N
System
Mger Stakeholder
g p Tester [Test Analyst Admmlstrator J
i Give Planjto CP
Manage Manage Manage Manage Give Pign ¢ TW (4 G
[—:!., d Accep EMTBS Acceptancq Tests Acceptance gs l Dévelpp
Tled g <Af Dev Sita> <At Dev Site> <Al Dev 5 Suppqrt Mhterial
jef Site> B
ange Requesty? Change Raquesia?) | Crignge Reguests?
- SN S/
|Appgoved] Configuration
{Appioved] [Approved] Implementor Manager
: s
= — Produq
L S 2 papkyy
i
g 9:1 % Unit
Chg Ctrl Mger
ota Tes P-oducl‘—‘_l:} \
.
g Graphic
= = = =] Artist
Chg g g g 3 =
ctrl H g 2 4 £
Mger g £ £ € g
£ -t o —
4 E] z % 2 Frodud
s} o S 3
< o r‘
[j:-,‘.m agel Ace | I Marfagd Acc Testh—IManahe Acc Tests '~/ Manage Acc[Tests\-! Manage Acd Tests L N
Tesjs <Al Instal Site> <At irfslal[Site> <At Inptal Site> <At Instal Bite> rovide Access o
\nsthl Site> Dowitoad Site
NN AN AN J \f

Figure 142: Role Activity Diagram for the Deployment discipline (v. 2)

215

Deployment Manager
Project Manager "B_!. Sunandhd _sg
ST

ps
E‘:’, _Plan Deployment Technical Course
Chg \P SOPIPAP IP SDP,PAF Writer Developer
Ctrl Mo System - TN
Mger Stakeholder Tester Test Analyst Administrator
4 Manage Accegt Manage Accgpt /7 Manage)
Manage Reeppt Tests Tests AccaptTests o |o Twe-L Give Blan o CP L
! <At Dev Sjte <At Dov Site (T At Dev Sito L
%.E:\! Develpp
c H 110 7 Tio ~ LPAR A10{13,4 - Supndrt Mptecial L
Ace Tesls (d
av]Site> ange Requesth? Chiangs Requests? :[J 8 msrjo134] &
| PG N
th- fun Configuration
{Appfoved| [Approved] implementor Manager
ay Tuce
| t Depbymént
T L
e s T hsdaia 7
Chg Ctrl Mger 1\ _
P bducl\;i]
CR
N
kN 7
= k)
_ = 3 g 2 Graphic
3 8 = = = g S| Artist
chg |} 5| 48
Ctrl - £ £ £ g 2832
& 8 € € 31 2K g
Mger 8 % £ g o I i W B B e
= Ed ke
Q e a 3 2,478" Y pad ade t’mduct backabe Product
R 0 Ti0_ by —LJ 17 FhaTie 1 FRPTLE T19.C Y
A Manage A pe Tests Ldanas,e Ac Tests Managg Acc Tests M Aed T ‘/L‘ o !
ce fegfs - <Atingtal Site> <Al Ingta Site> <At It Siteb anage Acd Tests .
. <AL thsthi Site> i <At Instat Sife> Plovide Access to
— Dpwnilcad Site:
ARG o S . / [

.

Figure 143: XRAD for the Deployment discipline entities flow

216

