NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Simplification and Refinement of Point Cloud Models

ZHANG, HAI NING

A Thesis
in
The Department
of
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

December 2004

©ZHANG, HAI NING, 2004

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04460-8
Our file Notre référence
ISBN: 0-494-04460-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Simplification and Refinement of Point Cloud Models

ZHANG, HAI NING

Point cloud models (PCMs) are 3D point datasets from 3D acquisition device. They are densely
sampled from the surfaces of objects. Each point in the PCM consists only of 3D coordinates,
sometimes also of normal vector without information of structures, or connectivity. The size of a
PCM may be up to several millions. Research reported in this thesis focuses on developing a two-
stage technique: to simplify a very dense PCM into compact PCMs according to required
compact rate, and on reverse, to refine the compact PCMs at least as dense as or denser than the

original.

In stage one, a PCM (only including 3D coordinates), will be simplified into a compact one
with an octree and principle component analysis (PCA). From the result of PCA, features of the
local surface defined by points in a leaf node can be detected. For a specific feature in a leaf node
of the octree, corresponding simplification algorithm is applied to resample points from original
one. The points in compact PCM also have information of normal vector and feature. On stage
two, a dense PCM is obtained by refining the compact PCM from stage one with the refinement
schemes. Finally, in order to check the results of simplification and refinement, we make two
comparisons. The first is between compact PCM and the original PCM in order to determine if it
is good or bad for a compact PCM to represent the original PCM. The second comparison
happens between refined and original PCMs in order to verify how many features are lost during
the two stages, and for survived features, how different they are from the ones in the original

PCM. For both comparisons, a normalized result is reported.
iii

Acknowledgement

Finally, the thesis is almost finished, and I am enjoying the good fortune of having got
academic and non-academic, physical and spiritual help and attention from many people. Here is

just the official place to show my appreciation.

My supervisor Professor S.P. Mudur: In last two years, he helped me enter the amazing area
of Computer Graphics. Even more, he devoted his precious time to help me in this research.
Without his inspiring suggestions, encouragement, and financial support, it was impossible for

me to complete this work.

Mr. Hao Zhou, Mr. Sushil Bhakar: From the two doctoral students of my supervisor, helped

me a lot with many technical issues about point cloud models.

CyberWare: A 3D-scanning device company made available point cloud models on its

website. I got all models from their website for my experiments.

Finally, I deeply appreciate the encouragement and support from my family. My wife
HAIKUN always gives me love and encouragement. My parents in China always express their

pride in me and my work, whenever I called them.

iv

Table of Contents

Chapter 1 INtrOQUCHION........occeveeeteiectetre et ee e e ettt aeere s e e enesnesesaeesesessensesesssssasenns 1
1.1 Introduction of Point Cloud Models (PCMS)........cccecerueriermrieerrrereeriereneereessseeessecsesereensesennes 1
1.1.1 Reverse Engineering (RE)cc.covevioeerevinenerinenteienieeeie e steesteaeese e s snesse e s s ssnenesnens 1
1.1.2 Typical RE APPLCAtIONS.....c.covovemreerreeerereerereieereeisenieeeesnssesesesssessesessssesesessenssssssesessases 1
1.1.3 Point Cloud Models (PCMS)......ccccveeeereruerruenuenciirerenenessesessesessessesssssssssssensssenssssssesens 2
1.2 Statement Of PUIPOSES.........cocvereeiriineecreerinieessstesenteressesssssessesssesesessssesessssssesssssesesssesessses 4
1.2.1 Challenges and Our IA€ascccoceeereiererierireciceeenece et es e erssresnesesees 4
1.2.2 Several Approaches to Represent Data in PCMS.........ccocoeeueveeeiiieceiereeeeeereeeeeieeenae 5
1.2.3 OVerview of the Idea.........c.cociiiiicineireerieeeeecccetsieietee et sts s s s s s s nnanes 6
1.3 Structure 0f the TRESISccvceeieiiiiicitetrertre ettt se st e s s s s st s st seees 7
1.4 Models Used in EXPETIMENLScccevrrruerererrereeisinsenrerenessesessesessesessesssssssssesessssesessssssssessoss 8
1.5 Definition Of TEIMS.....c.covviiiiiriuiiiiireieerctte s e et st st sss e sssesstssasesessessnesesssnssassens 11
1.5.1 Multi-resolution 0n PCMScccooiicvinnnnrinrcninesieieenssisne e essssesesesssesssesesesens 11
1.5.2 Features on SUTTACEScociivieiiieincemeereeneeenietste e et s sssessssasesessnssssesesesns 11
1.5.3 Subdivision Surfaces and Schemes..........c.cccoevcceeroirireerrrninnnnnseresseeten e seersesens 12
1.5.4 Principal Component ANALYSIS..........c.ceeeevurreeereirenieieeeieeeereeeressesnesessersssseseesesssssssosones 13
Chapter 2 Survey on Research and Technology Related to PCMs...........coooveveuieieinermenencerenirenne 14
2.1 Surface ReCONSIIUCHIONcuvvimiciccceieeeteinineee et e e snenessae e enese s s s essnnbesene 15
2.2 Rendering and Visualization 0f PCMES...........c.cveiereieicieieceecreceerete e essecaesessesesresnens 17
2.2.1 Concept of Surfel for PCMS........coueivieeeiiirecieiceteceeete e enesnensesessessessesesesneses 18
222 SPIALLING ...ttt e et eseee e tese e ss e ener s e rrebees b e s s e teanesrssasesaenseressaens 18
2.2.3 Point Set SUMACESciiririrreeiccceccecrie ettt s e se e s sasees 19

2.2.4 Visualization from StAtISTIC VIEWeievieeveirecveerrerereressesseesssessssessessssessssssssesssssssssessssses 19

2.2.5 Other Miscellaneous Methodsc.cccoveeeceiinnecennneneneeneeseessee e nese e 19
2.3 Up Sampling and Down Sampling 0f PCMScoeeeureeriencieietcrceeeeeeee e 19
Chapter 3 Octree and Related AIZOTIthImscccoveevieieiiieineecreeceeeeter e e 25
3L INTOAUCHION. ...ttt st s s s esss s et b s asns 25
3.2 Definitions and Data SHUCIULE............ccccetreeirrerrrernstereeseesiesscsnesensssssesesesessssssenesesessesses 25
3.2.1 OCHIEE fOr PCMS ...ttt sestesssssesesese s sasssase s s s s s senenes 27
3.2.2 Index Code for Nodes and Directions..........c.cecveveererneseernrseesiesesesesenensessnscssesesesesesens 27
3.3 Subdividing @ NOGE......oceeurueuecieiirireetesecnte et ssa e sess et sr s es e sesssene s 28
3.4 Transversal of Octree with Action Parameter............cccoceeureereeererererererereeerereneneseeeeseesesenns 30
3.5 Neighborhood of Each Leaf NOdecccoeeveeurereriereinteeeestee et seeesesess e se s snone 30
3.5.1 Find Face Neighbors for a Leaf NOde..........cceoeeeereeveeeeieercrcreeceeeeereeeevesesvesnene 30
3.5.2 Definition of Index 0f @ NOGEceeeecrceiennirrrctrree sttt renenas 31
3.5.3 Find Complete Index for the Face Neighbors........c.cccveeeeeeecrerereeeeeeeeieerenereeseesenas 31
3.5.4 Find Edge Neighbors for a Leaf NOdEe..........cocvuvuereveririveeietrieniereneereeseesess s essesenens 33
3.6 Chapter SUMINALYcccoureirerireerernererieteesesetenesssssessssastssssssssssesesssssessesssesssesessessessessons 37
Chapter 4 Process of SIMPHfICALIONcccocevviuivenirinineereiieretccesseeeeesee st se e ssnens 38
4.1 OVerview Of the Idea.........c.cueeiccuienirirereicetreceee st aes st 38
4.2 Features 0N SUIMACEScovvireviereireeeccnenisinncrresrestese et sssnssesese s se e s s s s ssssss st ssssncn 38
4.3 Principal Component Analysis (PCA)ccoeuvuevereereeeeceeerereeeeescacrestescese e eresessesesaoneen 40
A.3.1 DALA SEl...vrieiiicieic ettt ettt sttt e st bt s et r s s nenn 41
4.3.2 SUBLTACT MEANceeierieeniinicicnretetetstne st et se e s sae s e s st sesessesessese s s ssessensenen 41
4.3.3 Calculate Covariance ValUe............cococeeeeeeeieerierreririsireiiesesssseessnssesssssssssesssssessesesens 41
4.3.4 Calculate Covariance MAatriXcccooceureeiererernenintrensiesesesesesnssesesesssesesssssesessssanens 42

4.3.5 Calculate Eigenvectors and Eigenvaluescccccovvereeeeeeerererereeeseneeeeeeesiecen v 42

4.4 Algorithms of SIMPHFICAtIONc..cveeerereeeeee e rce et e e s e ree e vanenees 43
4.4.1 How Many Points in Each Leaf NOdEccvevveerveecererrtrrrreeceesecnsese e issesesaee 43
4.4.2 Penalty Functions for Detecting Featuresocoeeeeurvererrrerrienececieereereeseseesesceenenens 44
4.4.3 Simplification Of Flat ATEas..........cccvvererretirrierceeerientenrirtreseetetseeesassessnssnesssssessesesane 45
4.4.4 Simplification of CIease ATEaScccecevrerrrveverrerernnriesisessesesssssestesessesssssessesessesssessenses 45
4.4.5 Simplification Of COINEr ATEaS.........ccccveereeerreereereeeeiereeeieeeeseeteseneereseseesessesessensssneneas 46
4.4.6 Deal with of Special Leaf NOAESc.cocceireerevererecirereninrenneserieseeessesessesssesesessesenenens 48
4.4.7 Set Normal Vectors for Compact Modelcoeoeerrerriecrieeeeieeeeieceeeeee e 48

4.5 EXPeriment RESUIScoccociiiiieirir e erte st st e st e e e e seerasseesserassssssesssssesssonsennnas 51
4.5.1 Simplification According to Compact Rate.........cceveerruecrececrecteeerereecrereeeereneeie s 51
4.5.2 EXPeriment RESUILScccvueeirerersiereniintercetrenreeeteaessesessessesessessesassessessesssnenesnesnensenees 52

4.6 Chapter SUIMIMATYc.cecerirerieeeieririeserrieassesresessssessssessesassasessssassessesesssssensesensosssessessesessonss 55

Chapter 5 Refinement of Compact MOdELS...........ccoceeiecnrneneenrserrenereenseseesessessesessiesessesenesesenes 56

ST INEOAUCHION. ...ttt ettt ee e e e ss s sa e s st be st sae e st b e s e ssese s ensssasanes 56

5.2 SubdiviSion SUITACES........cceruemeieeireecteteteieeeese e srsssssessessstese s sese s rsesesesesesensesens 56
5.2.1 A BLHEF REVIEW ...cuneiciiieciniereiersctsenessesssesesestsss et ssssese st ssssessssesesessssesassasessnsesenes 56
5.2.2 Classification Comparison of Subdivision Surfaces............ccoceeeeuerrereeenreernrervenvenene 58
5.2.3 Loop’s Subdivision SChEeMEcccceeeeroreeerereeeerieecese ettt ere e sse e s e 60
5.2.4 Piecewise Smooth Subdivision SUrfacescoeeieeiiiernenicnsinnecrieeeereeeeees e 62

5.3 Refinement Scheme for PCMS.......c.ccioiiiiiiricrieenieeieeetesiieseeeseteeeseseaesessssessesessssesnesnas 64
5.3.1 Point Neighborhood AIZOTithimc.cceevieinicinirienncereneesteeste et s 64
5.3.2 Offset for REfINEMENLccoueieerieiriicntrieccieirec ettt sssesestese et ssasnssassanas 68

5.4 EXperiment RESUISc.cocueuieeeeeice ettt eeeeec et ssse e essessasesaesssssesnessessesassnesnsensossesns 69

5.5 Chapter SUMMATYccccoverireeirereereteeeeieestesesseseetesessetesaestesessessessessssessssesansessesassensesarens 71

Chapter 6 Comparison of Original, Compact, and Refined Models........cccceervenmvenerererrerecrnreennns 72
6.1 Comparing Compact PCMs with the Original One...........ccocoveeververienrcnennereeenerereenennn. 72
6.1.1 Theoretical Basis.........cccoceuiuiieuicreriienricnneeeteesiceetsneeseseseteseest e e seseesessssnsesens 72
6.1.2 Definition 0f Bias.......cccocviiririemenecncreteeeeeecneteesesesesesesaessaesssesesssssssssesasessesssasassas 73
6.1.3 A Normalized output for the Whole Compact Model.............cccoeurveeveirrecrrverecrenrnnee., 73
6.1.4 Dynamic Capacity of Representation in Our Algorithm................ccoovverevveerevveriennnnnns 74

6.2 Compare Refined Models with Original Ones..........c.ccceeeruerivereeireciereceesecreeseererseneeneesenennes 75
60.2.1 FEUIE LOSS......couiuiiiiiiiiiiinctercctreecttesete et seeset e e stessssssssesesesnesasesassassasansasans 76
0.2.2 FEAtUIE ACCUIACYceeveverrereereeereeersesesseseasnssessssessssestssesessessessssesessessesensnsssessensessssens 76
6.2.3 Scales Used in Comparison between Refined and Original PCMs.............cucoveveuenenene 78

6.3 EXperiment RESULILScovieerririieiirictrectreseetete st e s e ve st e ae et eneseesenenesaensesaosenne 80
6.3.1 Compare Compact PCMs with the Originalccecvcereeeieeieereernenceereeeernesrecnesseses 80
6.3.2 Compare Refined PCMs with the Original...........ccccoveveevenneviceivenennneeneeereseeeennns 81

6.4 Chapter SUMIMATYc.coeieeurenirieeererestresssesessessesssseseesesesensessesessesesessessasesessssssssnsensasensan 83
Chapter 7 Conclusion and FUuture Workcoceueeveceeiereceeeeieieeeeeeeesereeresescsesesessesessessessensane 85
7.1 Contributions of This RESEAICHcccereeeieeieriiirriseneninesesteestersssts e eseenesssessessesesens 85
7.2 Future Improvements in Asymmetric Use of Compaction Rate............c.ccoceervreererrvnerenenene 86
7.3 Improving Octree Related AIZOTIthms...........cccoveeveeecreeieeteceeerecvereeeceeeee e aesenees 86
7.4 Improving Accuracy of TWO Stage ProCeSSESccveveererereerecierertecieeeseerenesseneseeneresnessesesnes 86
BIDHOZIAPNY ...ttt r et a oot es st es e e s ensesesssnessone s et enennssssntons 88

viii

List of Figures

Figure 1: Dual stages of simplification and refinement............ccccevuererreveeerecrnevereereecrereeenes 5
Figure 2: Features on the SUTfacecccovrvenierriiemnenicninineesenistsesses e seesssessssssesessesens 12
Figure 3: Example of Subdivision Surface: the control mesh (Left) and the refined result. 13
Figure 4: Overview of processing techniques 0f PCMScccceveereireccereseeeenieeeeseserennns 15
Figure 5: (a) A root node; (b) At the first step, it is divided into 8 children, and at the second

step is divided into 8 further; (c) Expressed in tree-like structure of (b)...................... 26

Figure 6: Node number and directions (a) Node number in decimal and binary (b) Direction

definition according to node number in binaryccoeeveeceeiirererereeeeeeeeeresesesereenes 28
Figure 7: The picture of Jointball model and its octree hierarchycccoveveveveerrrucennnee. 29
Figure 8: Definition of edge dir€CtionS.........ccccerereeeerrieseiereeeeeeetereeeere et esees e essene e enene 33
Figure 9: Ideally flat area and the flat area with a little curvature..............occeeuevvreeevceneennene 39
Figure 10: Use 6, 5, or 4 points to define @ Crease..........o.uveeeeeeeeeerereerenresrenereniissesessssessens 39
Figure 11: A corner leaf node with €igen-SyStemc.ccvcveererereeeevrnirnreeeeeeeeerceesseneseseens 47

Figure 12: (a) Normal vector tells us the inside and outside of the model (b) In some areas
of compact models, normal vector has to be used to separate disjoint parts.................. 48
Figure 13: Selection of normal direction for points in ellipse-circled area. For C’- continuity
area, the right direction forms a smaller angle between two normal vectors.................. 50
Figure 14: Venus and Club models after setting normal vectors. Normal vectors shown
longer at crease and COIMET ArEASoeceeeererereccrrerereeeeseseseesesesesesesnsesessesesessssessens 51
Figure 15: Pictures of each PCMs after simplificationcccceceeeeeeevrernernivvnneveneeninesnenens 54
Figure 16: Approximating schemes. Left two: main stencils of Loop Scheme. Rest Three:

Main stencils for Catmall-Clark SChEIMIES. ..ccvveovvireireeeeereeeeeeereeseeeerereeesessssessessssesssseans 59

ix

Figure 17: Interpolating schemes. Left one: stencil of Kobbelt .Right three: Butterfly 60
Figure 18: Loop's Subdivision Scheme...........cccocrivuriirieennernenetentnceereeeereeesetseseennennas 61
Figure 19: Rules of point insertion in Piecewise Smooth Surfaces according to Loop
SCREIMES ...ttt ettt e st s sn e e e s s e s e aannas 63
Figure 20: Rules to compute new position of old vertices according to Loop schemes in
piecewise SMOOth SUITACES.........ccceriririeieiieirtirirecscec ettt e erenennes 64

Figure 21: Discarded point (one end of dash segment). Left: too small angle; right: too great

ANGIC ...ttt ettt ettt e a e e r e et saessesa b e be e beserseaserennersenten 66
Figure 22: Corner always has at least 2 crease neighbors (illustrated in 2D)....................... 66
Figure 23: Virtual triangle fan from point neighborhoodccccevvereevvvverereeecriicirenene, 67

Figure 24: A local surface in Club’s top. Without offset, refinement will leave holes,

T1IUSrated DY CITCIESoovrviuierreteiireceeescet ettt se e e e se s s s s e neneenen 69
Figure 25: Pictures of refinement RESUILS......c..cccoueetrereeetrernreriecectecee s e 71
Figure 26: A point from compact PCM and points from the original, it represents 74
Figure 27: Approach to calculate crease anglecoeereeereecreseeiereeeeernereererneneseesessesseneas 77
Figure 28: Approach to evaluate solid angle with gridsccccovveeeereevrerereerceeriecenrenenne. 78
Figure 29: Results of Subdivision Surfaces with approximating schemes 79

List of Tables

Table 1: 3D point cloud models used in this research. Pictures for models are also from

CyberWare's WebSite [61]......ceeererermereeeineieieeeserisee ettt n s e s e ss s sessnes 10
Table 2: Complete Octree Face Neighbor Index Tablec.ooevveveeeeeeeviirccreeceeeerenas 32
Table 3: Octree Face Neighbor Presence Table...........occovevvevreicieernreeerrceeeeeeeeve s 33
Table 4: Octree Edge Neighbor IndeX Tableccoeeevereeeieiereimerireeeeneeeeeeeeescsnensenesssene 35
Table 5: Octree Edge Neighbor Action Tableccoeeeeeeieeeeereeeercecieeeeeeecscerenseeseseens 37
Table 6: Feature penalty based on €igen-SyStemcceeereemereeeeveeeeenercseeresenecenesesesons 44
Table 7: Feature Statistic from PCAcccoooveereeieteteeecceeccevetese e sese s sessasans 52
Table 8: Simplification Results (outputs: compaction rate and consumed time).................. 53
Table 9: Classification for Schemes of Subdivision SUrfacescoceeevvereererererrrererererennnens 59
Table 10: Results of refinement for Club model...........cccoeeeerrreeererererererereeeee s 70
Table 11: Results of refinement for Hip Bone Model..........cceeueereiereerererccieesesseenene 70
Table 12: Results of comparison for compact PCMSoocvvveueireencceeceereneeneeeeseseens 81

Table 13: Comparison of refined PCMs with density in range of 60-80% of the Original .. 82
Table 14: Comparison of refined PCMs with density near or more than 100% of the

OFIINAL ...ttt ss bt se e e s s sae e bt snensneanen 83

xi

Chapter 1

Introduction

1.1 Introduction of Point Cloud Models (PCMs)

Recent advances in 3D scanning technology have enabled sampling a tremendous number of
points, called point cloud model (PCM) with 3D-coordinates (x, y z) from a given object. In the
last around 20 years, much work has been done on point cloud models. In recent years, this has

been becoming a very hot area of research in Computer Graphics.

1.1.1 Reverse Engineering (RE)

Reverse engineering (RE) used to be a nefarious term. It formerly meant making a copy of a
product, or the outright stealing of ideas from competitors. In current usage, however, RE has
taken on a more positive character and now simply refers to the process of creating a descriptive
data set from a physical object. More precisely, it usually starts with acquisition of digital point
surfaces sampled data from physical/master model and then developing surfaces on this point

data set for other engineering purposes [68].

1.1.2 Typical RE Applications

This has come about over the last fifteen or more years due to the intense parallel development
of many different types of three dimensional digitizing devices, and the powerful reverse
engineering software that allows the data they produce to be manipulated into a useful form.

These applications can be categorized as follows:
1

» Creating data to refurbish or manufacture a part for which there is no CAD data, or for which
the data has become obsolete or lost.

> Comparing a fabricated part to its CAD description or to a standard item.

» Creating 3D data from a model or sculpture for animation in games and movies.

» Creating 3D data from an individual, model or sculpture for creating, scaling or reproducing
artwork.

> Generating data to create dental or surgical prosthetics, tissue-engineered body parts, or for
surgical planning.

» Architectural and construction documentation and measurement.

Generally, there are two parts to any reverse engineering application: scanning and data
manipulation. Scanning, also called digitizing, is the process of gathering the requisite data from
an object using devices. It also allows several different scans of an object to be melded together
so that the data describing the object can be defined completely from all sides and directions.
What comes out of each of these data collection devices is a description of the physical object in
three-dimensional space called a point cloud Model (PCM). Manipulation is the process of
dealing with given PCM according to application requirement — constructing mesh surface from
PCMs, merging several PCMs together to building new PCMs, resampling PCMs for rendering,
editing PCMs directly for artwork, compressing and refining PCMs for storage and network

transmission, etc.

1.1.3 Point Cloud Models (PCMs)

Point cloud models typically define numerous points on the surface of the object in terms of x,

y, and z coordinates. For each triple (x, y, z), it is a surface coordinate of the original object.

2

However, some scanners, such as those based on X-rays, can see inside an object. In that case, the

point cloud also defines interior locations of the object, and may also describe its density.

For use by graphics systems, sometimes, besides geometric information, several attributes
associated with object surfaces, such as color, normal vector, and local sampling density, can also

be obtained from 3D scanners.

There is usually far too much data in the data set collected from the scanner or digitizer, and
some of which might be unwanted noise. Also the data set is typically densely sampled. It is
unstructured, lacking connectivity information, and is increasingly becoming very large. Without
further processing, the data is not in a form that can be used by downstream applications such as
CAD/CAM software or in rapid prototyping. Reverse engineering sofiware is used to edit the
point cloud data, establish the interconnectedness of the points in the cloud, and translate it into
useful formats such as surface models. The models used in this research are not representative.
The practical sizes of PCMs are much larger than them. Interested readers can refer to Digital
Michelangelo project at Stanford University Computer Graphics Lab [60] and CyberWare [61]

for more details.

In this thesis, the PCMs used for experiments include only surface information without inside

data. In order to make our idea more clear, we only consider coordinates information.

1.2 Statement of Purposes

1.2.1 Challenges and Our Ideas

As mentioned before, Point Cloud Models are usually densely sampled points on the surfaces
of the object. It has been proved that using points, as a universal representation is an easy-
accepted concept because graphics content has been becoming abundant more and more with
extreme geometric complexity. On the other hand, the implementation of effective geometry and
graphics processing techniques was never simple, and progressing of computing power is always
running after the challenge from computer graphics, especially, for practical applications of

PCMs on modeling, shape editing, and visualizing.

Furthermore, to save these extreme large models directly in computer system is storage

consuming and not suitable to transmit over the network system.

According to these challenges, we propose to build a system to simplify and refine PCMs in

double ways (Figure 1).

Input: A scanned Simplification (Output: A Compact
Dense Model Process Model with normals
and features

Stage One
Input: A Compact Refinement Output: A
Model with normals Process Refined Dense
and features Model

Stage Two

Figure 1: Dual stages of simplification and refinement

In stage one, the output; a compact model can be used for multi-purposes: rendering and
visualization, and model-editing. It is easy to transmit over network system and economic for
storage. The density of compact model can be changed according to different requirement. Also,
the normal and local surface features are associated with each sample point in compact models. In
stage two, the input is the compact model from stage one, and after refinement process according

to given density requirement, a refined model is output.

1.2.2 Several Approaches to Represent Data in PCMs

Current point-based representations of data include: bounding balls hierarchy [17], octree

hierarchy [57, 016], and progressive implicit surface representations [09, 045].

In this thesis, we prefer to use octree for the hierarchy structure. Apparently, octree is easier to
subdivide and it can cover volumetric space more compactly than bounding ball (sphere or

ellipsoid).

1.2.3 Overview of the Idea

At stage one of compression, we use the octree to voxelize an input model to build up a
hierarchy structure, then Principal Component Analysis (PCA) is applied to each leaf node of the
octree. According to the results of PCA, eigenvalues and eigenvectors for a given leaf node, the
local surface feature of that node can be decided: flat, creased, or cornered. For the flat area, the
eigenvector associated to the smallest eigenvalue must be the normal vector. With neighborhood

algorithm of octree, we can decide the normal vector for crease and corner areas as well.

Based on the feature information, we resample the given model from the input data set
according to given compact rate. In brief, larger the first eigenvalue, more points are kept in that
leaf node. We assigned the normal vector of the leaf node to the re-sampled points in that node.
The result of stage on is a compact PCM consisting of resampled points. Each point in a compact

has 3D coordinates, feature, and normal vector.

At stage two of refinement, the compact model is input and several parameters for refinement
should be set: density or percentage of refinement. Also, we use octree to voxelize the compact
model and the criteria of stopping subdivide leaf node is that each leaf node should contain at
least 6 points. Based on the points in each leaf node, a neighborhood of points is constructed.
Then refinement schemes are applied to the neighborhoods. We then delete the octree structure,
and built a new octree with the same parameters. The only difference is that we use a small offset
to make sure that the new octree is different from the old one. The refinement process can be

applied recursively until the density command is satisfied.

Finally, in order to verify assess of our ideas, we make two comparisons: the compact PCM

with the original PCM and the refined PCM with the very original PCM.

1.3 Structure of the Thesis

This thesis includes 7 chapters, and a bibliography. Generally, this thesis is arranged according

to the process of experiments.

In chapter 1, we introduce the point cloud model and our objectives in this research. Definition

of terms globally for the thesis is also been provided.

In Chapter 2, we survey related research and techniques, which precede and is parallel with the
experiments, which we conducted. The survey is related to the experiments, including several
aspects, such as rendering and visualization of PCMs, editing of PCMs, up sampling and down
sampling of PCMs. As for up sampling and down sampling, it is an exhaustive survey and

includes all papers, currently published.

Chapter 3 to chapter 6 describes the experiments and algorithms in this research. These
chapters share the same structure. At the very beginning, the purpose of the experiment or
algorithm will be given followed by a related brief survey. Then come the theoretical part,

including the programming issues. The final section is the summary of the chapter.

Chapter 3 mainly focuses on octree, including definition, data structure, and algorithms,

because it is the essential part of all our experiments.

How to get a compact model from the original one is discussed in chapter 4
7

In Chapter 5 works on how to get a refined model from the compact one. At the beginning of
this chapter, subdivision surface is introduced because the refinement schemes are borrowed form

subdivision surfaces.

Chapter 6 makes two comparisons: comparing the refined and compact PCMs with the original
respectively. The first comparison is to find how well a compact PCM to represent its original.
The second PCM is based on features and includes two parts: one is to evaluate how many
features are lost during processes, and another is for retained features to evaluate how much

difference they are comparing with the corresponding ones in the original PCM.

Chapter 7 includes concluding remarks and future work.

Bibliography includes all the books, papers, notes, and websites, which I have referred for

experiments and programming.

1.4 Models Used in Experiments

All the models, used in this research, are downloaded from CyberWare
(http://www.cyberware.com/samples), a company focusing on 3D scanning systems and software.
On this website, there are a lot of free samples of point cloud models. These models are scanned

from desktop 3D scanner, so they are a little small compared to models from Stanford.

File format of point cloud models used in this work has to be mentioned. The original point
cloud models are saved in PLY file format, which is defined by Stanford Graphics Lab for

PLYVIEWER software [61]. In experiments, they have been translated into models, which only

contain 3D-coordinates information line for line, with format translators. The command-line

translators can be obtained from CyberWare website.

Models Pictures Number of points
Rabbit 67,038
Igea Artifact 134,345
(Venus)
Dinosaur Sculpture 56,194
Ball Joint 139,306
Golf Club
209,779
Isis 187,689
Hip Bone 530,168
40,178
Rocker Arm

Table 1: 3D point cloud models used in this research. Pictures for models are also from

CyberWare's website [61]
10

1.5 Definition of Terms

In Section 1.2.3, we defined point cloud models (PCMs), other terms we need in this

research are defined in the following subsections.

1.5.1 Multi-resolution on PCMs

For polygonal meshes the up sampling and down sampling operations are applied to switch
between different levels, where “resolution” refers to both vertex density and amount of
geometric details. In the case of point cloud models, both concepts of resolution have to be
treated separately, since a point-sampled surface representing a low geometric detail still has to
provide a sufficiently high sampling density. Hence, hierarchies of different resolution for point

cloud models are only to increase the efficiency of filtering operations.

1.5.2 Features on Surfaces

For a local surface area of an object, we can assign one of the following features to describe it:
flat, crease or edge, boundary, or corner. Such classification is meaningless when the local area is
much larger. We can consider crease as the joint of two pieces of smooth surface, and the corner
is two or more crease meet there. Boundary is defined as the boundary of a piece of surface. In
our experiment, we only use close models, so there is no boundary features in models. Usually,
corner and crease areas need more vertices or points to describe in either mesh or point cloud

models. Please see chapter 3 for more details.

11

Figure 2: Features on the surface '

1.5.3 Subdivision Surfaces and Schemes

Subdivision surface defines a smooth curve or surface as the limit of a sequence of
successive refinements. For instance, Figure 3 shows an initial control mesh, and the one after

several refinement steps.

! Pictures in Figure 2 and 3 are from http://grail.cs.washington.edu/projects/subdivision/, and text in Figure 2 is added

by us.

12

Figure 3: Example of Subdivision Surface: the control mesh (Left) and the refined result.

The method used to refine the mesh is called subdivision scheme, which define the stencil and
formulas to insert new vertices and compute new position of old vertices. More details will be

provided in chapter 6.

1.5.4 Principal Component Analysis

Principal Component Analysis (PCA) is a tool having been used successfully to analyze
empirical data in a variety of fields. Principal component analysis (PCA) is a classical statistical

method.

13

Chapter 2
Survey on Research and Technology Related to PCMs

In this Chapter, we present an overview of research and technology in this area. In particular,

we provide a comprehensive survey of for up sampling and down sampling.

The point-sample surface could be in two forms: image range data from laser range scanners,
and point cloud models. Image range data consists of regularly spaced samples in a two
dimensional domain, with a depth value associated with each sample point. These are sometimes
referred to also as depth images. Point Cloud Models is irregularly spaced and sampled density

may vary considerably over the complete surface of the model.

A rendering process of point sampled surfaces will result in an image, usually a color shaded
picture of the 3D model. However, geometry recovery processes will give us many different
kinds of models: 3D triangle models, boundary representation of the model in terms of vertices,

edges and faces (B- Rep Model), etc.

14

Simplification/
Refinement

Image Range Data

Sutface
Reconstruction

Meshes

Solid Models

Surface Point
Sample Data

=

Feature Extraction

Color Shaded Images

Rendenng

New Point Sample
Models

Editing/
Blendng Models

Figure 4: Overview of processing techniques of PCMs

2.1 Surface Reconstruction

Surface Reconstruction is the procedure of constructing a mesh from a given point cloud model.

A lot work has been done in this area. Here, only representative papers are surveyed.

> A general way for all applications: In 1992, Hoppe et al [47] introduced a general

algorithm that solves this problem for all applications, rather than giving different algorithms

for different applications. The algorithm has two stages. Define a function /' where f(x, y, z)

estimates the distance from the point (x, y, z) to the unknown surface M. The domain of f'is

restricted to only a relevant region in 3D space. We will use the zero set Z(f) of f; i.e. the set

{(x, ¥, z) : fix, y, z) = 0}, as our approximation of M. To define the function, we calculate a

tangent plane Tp(x;) to M’ at x;. Also we assign an orientation, i.e., a normal vector n;, to each

tangent plane. We also choose a point s; on each tangent plane to be the center of the plane.

15

Finally we define f{p) to be the dot product of (p - 5;) and ;. Finding a consistent way to
assign orientations to the tangent planes is a nontrivial problem--this paper uses a graph

optimization technique to solve the problem. It uses contouring algorithm [47] to

approximate Z(f) by a simplicial surface. This paper uses a modified version of the marching
cubes algorithm, which samples f at the vertices of a cube, breaks the cube into tetrahedra,
and finds the intersection with the zero set inside those tetrahedra. Only cubes intersecting
the zero set are visited.

Radical Basis Function: In 2001, Carr et al [65] suggest to use Radical basis Functions
(RBF) constructing compact functional description of surface data, making interpolation and
extrapolation easy. With RBF, Derivatives (and hence gradients and normals) can be
computed analytically. Also, level sets without self-intersection can be extracted. RBFs
make mesh simplification and remeshing easier.

Reconstructing by parameterization: In 2001, Floater et al [66] present a way to
triangulate a point cloud model, which is assumed to be sampled from a single surface patch.
A surface patch is any set that is homeomorphic to a disc in the plane. Now, the basic idea is
to Map the points on the boundary of the point cloud to the boundary of some convex
polygon D in the plane (a meshless parameterization), then triangulate the parameter domain
(for example, use the Delaunay triangulation), and map back to the point cloud to obtain a
triangulation of the point cloud.

Regular Triangulation: In 1995, Bajaji et al [62] propose a method dealing with connected,
orientable manifolds of unrestricted topological type, given a sufficiently dense and uniform
sampling of the objects surface. It is capable of reconstructing both the model and a scalar

field over its surface. It uses regular triangulations, power diagrams and weighted alpha-

16

shapes for efficiency of computation and theoretical soundness. It generates a representation
of the surface and the field based on barycentric Bernstein-Bézier polynomial implicit
patches, which are guaranteed to be smooth and single-sheeted.

> Voronoi diagram and Delaunay Triangulation: In 1998, Amenta et al [44] present a
simple new algorithm for surface reconstruction based on Voronoi diagrams and Delaunay
triangulations. Their algorithm computes a piecewise-linear surface, vertex set exactly equal
to the sample points, with a provable guarantee: if the original surface was sampled
sufficiently densely, then the reconstructed surface lies within a small error tolerance of the
original. "Sufficiently densely" is defined locally as proportional to the distance to the medial
axis, which incorporates both curvature and proximity to "other" parts of the surface. Dey et
al [62] propose an algorithm call concone, also use Voronoi diagram for surface construction.
In addition, they can detect under sampling area and features on the surface [62]. Also, they

suggest a hole-free algorithm based on the concept of concone [63].

2.2 Rendering and Visualization of PCMs

PCMs themselves usually are modeled as a set of point primitives: instead of having just a set
of points, we may instead have a set of tangential disks, spheres, quadratic surfaces, or higher-
degree polynomial patches. Using point primitives instead of just points helps fill in spaces

between points, as well as efficiently rendering small regions of triangle meshes.

17

2.2.1 Concept of Surfel for PCMs

In 2000, Pfister et al [40] gave out the concept of Surfel (surface element). Surfels are a
powerful paradigm to efficiently rendering complex geometric objects at interactive frame rates.

Surfels are point primitives without explicit connectivity, unlike classical surface discretizations.

For a given Surfel, its attributes consist of depth, texture color, normal, and others. This

concept is accepted by researchers popularly for rendering PCMs.

Also, Pfister et al [40] suggest a rendering pipeline. In preprocessing stage, an input model is
voxelized into a layered depth cube (LDC). During rendering, the LDC is traversed top to bottom.

For each block, view-frustum culling is applied.

2,2.2 Splatting

QSplat: OSplat [17] is a multi-resolution point rendering system. QSplat uses a hierarchy of
bounding spheres for visibility culling, level-of detail control, and rendering. Each node (sphere)
of the tree contains the sphere center and radius, a normal the width of the normal cone, and
optionally a color. The hierarchy is constructed as a pre-process, and is written to disk. For

display, when the bounding sphere hierarchy is recursed, invisible nodes are culled.

Currently, for high quality and efficient point-based rendering, a splatting approach is
doubtless the best choice since such approaches are supported by modern GPUs [58]. However, if
the input model is under-sampled, QSplat will produce visual artifacts on the silhouette and high
curvature areas because from the geometric point of view, a surfel set describing a continuous

texture function is a simple set of oriented overlapping disks.
18

2.2.3 Point Set Surfaces

Alexa et al [04] [45] advocate using point sets directly to represent shapes. They use moving
least squares to up sample and down sample input models according to screen resolution, and

also use a bounding sphere hierarchy to arrange point set for culling and view dependence.

2.2.4 Visualization from Statistic view

Kalaiah et al [08] propose to render PCMs from the statistic aspect. Their method is
appropriate when the input model contains details heavily or the precision needs are high. Firstly,
an input model is voxelized with octree. Then the hierarchy of Principal Component Analysis
(PCA) is constructed form the octree. Finally, the PCA hierarchy is shown with spatial PCA

ellipsoids. With scaling of the intercepts of ellipsoids, they can get a hole-free representation.

2.2.5 Other Miscellaneous Methods

In addition, several other ideas are given to render and visualize the PCMs. Bhakar et al [16] also
construct hierarchy on the input model by voxelization, and for each voxel, only one sample are
kept. Their idea is suitable for global rendering. Guennehaud et al [02] apply improved
subdivision surface schemes (interpolating) to neighborhoods on PCMs. they focus on resolve the

problems when we rendering an under sampling model with splating.

2.3 Up Sampling and Down Sampling of PCMs

In the paper [48], an efficient and general multi-resolution framework is proposed for
compression of point-based models. They build multi-resolution hierarchy by recursively

19

computing coarser approximations of the point set, exploiting similarities of each attributes by
finding a specific order of the samples which minimize entropy (least-squares planes as a local
approximation of the surface). To that end, they employ a matching algorithm with finds
neighborhoods with high correlation based on distance measures for all attributes we want to
compress. Next they compute the hierarchy of details coefficients that describes how to
successively reconstruct the original model from the lowest resolution point set. They eventually

end up with a set of quantized detail coefficients

Gu et al [50] decompose arbitrary surfaces into completely regular structures called Geometry
Images, ranged in a 2D array. Their approach enables the encoding of additional appearance
attributes using the same implicit surface parameterization. They propose to remesh an arbitrary
surface onto a completely regular structure called a geometry image. It captures geometry as a
simple 2D array of quantized points. Surface signals like normals and colors are stored in similar
2D arrays using the same implicit surface parameterization—texture coordinates are absent. To
create a geémetry image, we cut an arbitrary mesh along a network of edge paths, and
parameterize the resulting single chart onto a square. For up scaling and down scaling, traditional
algorithms for 2D images can be applied directly to the 2D array. Geometry Images require a

certain mesh topology and a global parameterization, which is very hard to achieve.

Gumbhold et al [06] propose methods of detecting features from point clouds and reconstruct
them. They first construct neighbor graph on the input point cloud model with k nearest neighbors
and Riemannian Graph. Then the point neighborhoods are constructed for Covariance Analysis,
or Principal Components Analysis (PCA). According the eigenvalues obtained from the PCA,

(for details, interested readers can refer to chapter 3), features can be detected on local surfaces.

20

However, the constructing Riemanneian Graph and point neighborhoods are heavily time

consuming.

Linsen [13] introduces efficient algorithms for simplification and refinement. For
simplification, he associates an information content measure with every input point and
subsequently removes points featuring the lowest entropy. His information measure allows for
local curvature and RGB color changes. The algorithm is simple and procedures visually
appealing results, but gives no guarantees on the density of the output point set. Therefore,
extremely non-uniformly distributed input point sets will necessarily result in simplified point
sets of insufficient density. Also, even high dense input point clouds may be simplified to
prohibitively unevenly distributed point sets. In either case, resampling of the input PCM may be
necessary to support any effective further processing. For refinement, content information is still
used to make sure a new inserted point with highest information content, and the new inserted

point is moved along the surface normal by applying the smoothing operator.

Moenning et al [55] use their Fast Marching farthest point sampling method [56] to represent a
new coarse-to-fine point cloud simplification algorithm directly applied on input point cloud
models. The algorithm is efficient on time and memory. The result of the algorithm is a model, in

which points distributed evenly or uniformly.

Alexa et al [04] uniformly reduce redundancy of a PCM by estimating a point’s contribution to
moving least squares (MLS) representation of the underlying surface. They require that the input
model has normal information for each point in the set. This method has two shortages like in [55]

and [33]. The point in the result is distributed uniformly without considering the features and

21

there is no guarantee of the absence of insufficiently dense output point sets. For up sampling,
they also use MLS from the compact models they get in the simplification stage, so both stages

are time-consuming,

Based on [04], in 2003, Alexa et al [45] propose the concept of Progressive Point Set Surfaces

(PPSS). Given a reference or input point set R, which define a reference surface Sz. The R is

reduced by removing points to form a base point setP° <R , defining a surface that is deferent
from Sz. The base point set F, is refined by inserting additional pints yielding the set P, the

refinement operator first inserts points independent of the referent set R. Then the inserted points

are displaced so that the difference between the surfaces decreases. This process is repeated to

generate a sequence of point set P., with increasing size and decreasing difference from the

reference surface.

Pauly et al [10] extract features from input point cloud models. Firstly, k-nearest
neighborhoods are constructed on an input PCM, and principal component analysis (PCA) is
applied to each neighborhood. They can keep sharp feature very well by examining the variation-

scale curve to determine the critical neighborhood size.

Guennebaud et al [02] present a new way to refine an input PCM for rendering. Comparing to
OSplat [17], when an under-sampling model, their method can produce more smooth result than
OSplat on the silhouette and in high curvature area. The creativity is that algorithm of
interpolating subdivision surface schemes are borrowed for up sampling. Firstly, they construct
neighborhood by improved k-nearest neighborhood algorithm. The improvement is to discard bad

points in the neighborhood to construct polygon fan for refinement. Then on the neighborhood, a
22

new inserted point is defined by a polygon. They interpolate all the original points. However, they
can only guarantee C° smoothness for the global surface because their interpolating scheme is

only based on 1-neighborhood.

Nehab and Shilane [57] present an algorithm to simplify an input model. The idea is to
voxelize the model and output one sample for each voxel. The sample for each voxel is chosen
according to a probability that decays as its distance to the center of the voxel increases. Finally, a
minimum distance between two points is defined to remove some points, which are too close to
others. Because there is only one sample per voxel, this is not suitable to keep details and features
for multi-resolution. Therefore, this method is only proper for rending models which far from

viewer.

Bhakar et al [16] introduce an efficient way to rendering PCMs, randomly resampling
according to feature information and silhouettes. Firstly, they apply octree onto the input PCM in
order to voxelize the PCM. For each voxel, Principal Component Analysis is applied for feature
detection. Feature of local surface in that voxel decides the number of points needed for rendering.
The greater the first eigenvalue is, the more points should be kept in that voxel. If a voxel is fallen
into silhouette, more points also should be kept. The samples are randomly selected from the

original model.

In this important paper, Pauly et al [03] introduce, analyze and compare a number of surface
simplification methods for point cloud models. First of all, they also use Covariance Analysis (or
Principal Component Analysis) and moving least squares (MLS) to estimate features (or

geometric properties) on the input model. For clustering simplification, a 3D BSP tree is created

23

to split the input models into parts from the model’s centroid. Then the leaves in BSP tree are
down sampled according to feature information. Also, they transplant an iterative mesh
simplification algorithm—quadric error metrics (QEM), to k-nearest neighborhood on PCMs.
QEM works by contracting edges in original mesh. For the particle simulation method, they use

density to control the number of samples; for lower sampled density, more samples are placed.

24

Chapter 3
Octree and Related Algorithms

3.1 Introduction

An octree is a hierarchy tree data-structure based on a cell with eight children. Each cell of an
octree represents a cube in physical space. Each child represents one octant of its parent. For

different purpose, the data structure and algorithm to implement the octree will vary.

3.2 Definitions and Data Structure

Several things should be defined to build the octree: the root node (or cell), which usually is a

cubic box, and the scheme to subdivide a node into eight. Here, some terms have to be made clear.

25

@ —

[enRcmaars

L EE =)

©

Figure 5: (a) A root node; (b) At the first step, it is divided into 8 children, and at the second

step is divided into 8 further; (c) Expressed in tree-like structure of (b)

Root Node? is the original box when an octree is built. All the child nodes in the octree are in

the root node.

Child nodes are defined by subdividing the parent node into eight according to certain scheme.

2 Node is also called octant in some text.

26

Leaf node is the node, which has no child node.

Centriod is used to define the center of the node.

Node Size is used to define the size of the node.

3.2.1 Octree for PCMs

We have to know, in advance, how the point cloud models are managed and manipulated
before we focus on octree algorithm. In this research, the point cloud model we are using is very
simple, only a set of points with 3D coordinates. Therefore, a point list is enough to hold such a
PCM. For our purposes, we add more properties to this vector. Firstly, we have to know the
maximum and minimum coordinate value in X, Y, and Z directions respectively. This is the

critical information to construct the cubic box of octree root.

When a point cloud of object is loaded and a point list is constructed, this point list will be
attached to the root node of an octree. The cubic box of the root node is defined by the maximum
span among X, Y, and Z direction. When a node is subdivided, the point list attached to the node

is also subdivided into eight sub lists according to the eight new bounding boxes.

3.2.2 Index Code for Nodes and Directions

For the convenience of algorithms, we give each node a number in decimal and binary.
According to the node number in binary, we can also define the eight directions in an octree. This

definition is based on a parent node and its eight children node at a certain level.

27

100 101 X0
E F 5
1XX back
0
000 1
001
A B XX0 XX1
left right
7 0XX
110 111 front
6 H X1X
down
010 011
2
C p 3
(a) ®

Figure 6: Node number and directions (a) Node number in decimal and binary (b)

Direction definition according to node number in binary

3.3 Subdividing a Node

Ideally, a parent-level octree node has eight children, as shown Figure 6. However, it is not

valid in an application of PCMs. We have several rules to subdivide octree node for point cloud

model.

Point Number Criterion: If the point number in a node is near to the criteria, this node is

considered as leaf-node, and will not be subdivide any more. In our experiments, point number

criterion is 20.

28

Bounding Box: The bounding box (cubic box) of a node is divided into eight sub bounding boxes,

which together occupy the volume space defined by parent node and share with the same size.

Sub-bounding Boxes: The sub bounding boxes define the boundary to subdivide the point list in

the parent-level node.

Discarded Node: After obtaining the eight sub-bounding boxes, and we can use them to build
point list for each corresponding child node, if the point list of a child node is empty, this child

node will be discard.

According to these rules, it is apparent now that after several steps of subdivision, the hierarchy
of octree will get fit to the shape of the given point cloud model. Furthermore, the point set in
each leaf node defines a local surface patch. If the leaf node is small enough, we can ensure that
the surface property in that node is simplex instead of complex. We will have more analysis in the

next chapter.

Figure 7: The picture of Jointball model and its octree hierarchy

29

3.4 Transversal of Octree with Action Parameter

In the hierarchy of an octree, very often, we are required to access each leaf node; so
transversal algorithm is critical. Transversal algorithm itself is a simple recursive loop. However,
for each recursion, we may have different purpose, so a parameter of action should be given for

corresponding computation when recursion loop arrive a target node.

3.5 Neighborhood of Each Leaf Node

For a leaf node, it has at most 26 direct neighbors: 6 face neighbors, 12 edge neighbors, and 8
vertex neighbors. However, considering the local surface of the PCM, vertex neighbors are
meaningless to us. Therefore, only face neighbors and edge neighbors are considered to construct

leaf node neighborhood.

3.5.1 Find Face Neighbors for a Leaf Node

Each node of an octree has either at most eight or no children. Each of the children represents
one of the nodes of the 3D objects. A 3-bit binary vector (as shown in Figure 6(a)) index is
defined for each of the octants. When a bounding box is subdivided, its sub-bounding boxes are
also indexed the same with a 3-bit vector and this three bits are appended to the index of the
parent node. Each bounding box has six faces, hence has at most six neighboring blocks, which
share a face with it. Each of these six directions can be represented by a 3-bit string D 2 (0XX;
1XX; X0X; X1X; XX0; XX1) as shown in Figure 6(b). Direction vectors 0XX, 1XX, X0X, X1X,

XXO0, and XX1 represent directions front, back, up, down, left and right respectively.

30

3.5.2 Definition of Index of a Node

Let aa,a,...a, be the index of an octant P found by the above indexing method

where a; € (000;001;010;011;101;110;111)for1<i<m. In this section, we consider the

case of face neighbors. For example the node 4 (000) in Figure 6(a) has a face shared with node
B (001) and it is in right (XX1) direction, hence node A4 has a neighbor node present in the same
block (the parent node, the same in the following) as A4 is. Now consider for the left (XXO0)
direction, there is no node in that direction for the node 4 in the same block. We can define the

octree face neighbor presence table as shown in Table 3, where a True entry indicates absence of

the neighbor in the same block. We can define a function77(g;, D) from the table. 17(a;, D) is

False if there is a face neighbor of node a,a,4a;...a,, in the parent block a,a,a,...a,,_, .

3.5.3 Find Complete Index for the Face Neighbors

Now if the neighbor is present in the same parent block (indexed by g,a,4,...q,, then finding
its index is trivial. Nodes in the same block have same index except for the last three bits. We can
change a,, of the index to get neighbor index. For example, node A(000) and its neighbors in right
(XX1), down (X1X) and back (1XX) directions are in the same octant. Consider node 4(001),
neighbors of this node in right, down, and back directions are 001, 101, and 100 respectively.

Consider node 4(001) from Figure, and neighbors of this node in right down and back directions

are 001, 010, and 100 respectively. Similarly we can find the indices of neighbors of other nodes.

31

If for a node O(a,a,a,...a,,), the neighbor is present in the same octant, we can find the index

of it simply by changinga,, . Neighbor of node B in right (XX1) direction is not present in the

same block as B is. If it is present then it is in the right neighbor of parent block. If we add
another block as shown in Figure 6(a) to the right side of it then octant 000 of the second block

will come adjacent to the octant 001 of first block. Hence we can say that, right neighbor of
octant 001 is octant 000 of a different block. Neighbor of a node with @, = 001in right (XX1)
direction is in a different octant, if it exists it is the octant 000 of its parent. From Table 2 and 3

we observer that the neighbor of node with a,, = 001 in XXO0 direction is also the same. Hence

we can say that left and right neighbors of Q have their last three bits (a,,) same. We can define

24 complete octree neighbor index table by copying the entries of partial octree neighbor index
(Table 2) table from XX0 column to XX1 column and vice versa. Similarly we copy up (X0X)

and front (0XX) entries to down (X1X) and back (1XX) entries respectively and vice versa. We
define a function from the following table. Where n; = ¢(a;, D) and », is the corresponding binary
bits of the neighbor in direction D. Function 77is used to check the presence of neighbor in same

block as the node is.

7 J0XX | 1XX | X0X | X1X | XX0 | XX1
000100 | 100 | 010 | 010 | 001 | 001
0011101 j101 |0O11 | 011 {000 | 000
010§110 | 110 {000 [000 |O11 |OI11
011 J 111 | 111 001 |001 | 010 | 010
100 1000 [000 | 110 |110 |101 | 101
1011001 001 [111 [111 | 100 | 100
1101010 {010 100 | 100 |{111 | 111
111 f 011 |01t | 101 [101 | 101 | 101

Table 2: Complete Octree Face Neighbor Index Table

32

4, 5 0XX | IXX 0| X0X | X1X | XX0 | XX1

000 True | False | True | False | True | False
001 True | False | True | False | False | True
010 True | False | False | True | True | False

011 True | False | False | True | False | True
100 False | True True | False | True | False
101 False | True True | False | False | True
110 False | True False | True | True | False
111 False | True False | True | False | True

Table 3: Octree Face Neighbor Presence Table

3.5.4 Find Edge Neighbors for a Leaf Node

Also, we have to define the edge directions to express the edges in an octant, as shown in
Figure 8. For example, the edge with the direction 00X, means that the two end points share the

same binary index bits “00-*,

E 100 101
4 F 5 XPX
10X
A 000 1 X00 %0
0 001 00X
1X1
1X0 ox1
0Xo0
110 m X
6
"u
X10 X11
010 011 01X
c2 3D

Figure 8: Definition of edge directions

33

Let a,a,a,...a, be the index of a node found by the indexing method discussed, where

a; €(000,001,010,011,101,110,111) for1 <i <m. The 12 edges of a bounding box are indexed

as shown in the Figure 8. Here we present an algorithm for finding the edge neighbor of an
octree node. The basic approach is same as earlier methods. We first try to find the index of the
neighbor node from the given index of a node and direction; then we visit the node. Consider a
3D block as shown in Figure 8. There are eight octants indexed by 000, 001, 010, 011, 101, 110
and 111. Consider octant 4 (000), it shares a common edge with node F (101). From Figure 8,
we can see that the edge common in node 4 and F is indexed 1X1. Hence the neighbor of node A
(000) along the edge 1X1 and the node A have same parent, in other words they are the octants of
the same 3D block. Similarly node D and G shares edge X11 and 11X respectively with node A.
Hence node F, D and G are the edge neighbors of node 4 and they are present in the same 3D
block. Similarly for every other octant there are three octants in the same 3D block, which shares
an edge. Hence each node has three of its edge neighbors in the same 3D block. These neighbors

can be found just by changing the last three bits of the given index.

Now consider neighbors, which are not present in the same block, node A has its neighbor in
0X1 direction in a different block. If we add a new block to the block shown in Figure 8, at front
side then the node 101 of the newly added block will become the edge neighbor of node A in 0X1
direction. If we attach the block at left then the node 101 of newly added block will be the edge
neighbor of node A in 1X0 direction. Here we can see that for node A both of its edge neighbors
in 0X1 and 1X0 directions are octant 101 of their parent blocks. Similarly we can show that for
any node its edge neighbors in 0X1 and 1X0 directions have the same last three bits. We can see

that directions 0X1 and 1X0 are diagonally opposite to each other.

34

Node A has its neighbor in 10X direction in a different node. If we attach a new block on top of
the block shown in Figure 8, node 110 of the newly added block will become the edge neighbor
on node A in 10X direction. Direction 01X is diagonally opposite to 10X. We can see that node
110 of a block added at the front side is the edge neighbor of node A in 01X direction. It can be
shown that for diagonally opposite edge directions, the neighbors have the same last three bits.
Edge neighbor of node 4 in direction 00X is present in a different block. If we add a block to the
existing block along 0XX edge direction then node 110 of the newly added block becomes the
neighbor of 4 in 00X direction. Similarly we can find the neighbors of A in 0X0, X00 directions
and diagonally opposite directions. We can find the neighbor index for all of the nodes as we

have done for node A. Following table shows how the bits are changed for getting the
corresponding bits of edge neighbor index. We define a functionn; =€Q(a;, D) from the table
where n; €(000; 001; 010; 011; 101; 110; 111). Ifa;is a bit trio of the index of given node, #; is

the corresponding bit trio of neighbor node. For diagonally opposite directions, the exactly same

entry can be found in the table for reasons discussed above.

Q | X00 | X01 | X10 | X11 | 0X0 | 0X1|1X0|1X1|00X | 01X | 10X | 11X
000011 | 011 {011 |OI1 |101 {101 |101 {101 | 110 | 110 | 110 [110
001 | 010 [010 | 010 | 010 | 100 | 100 | 100 | 100 | 111 | 111 | 111 | 111
010001 {001 {001 |0O1 | 111 |[111 [111 |111 [100 {100 |100 | 100
011 /000 {000 | 000 | 000 | 110 | 110 | 110 | 101 | 101 {101 | 101 [101
100 | 111 [111 | 111 | 111 | 001 | 001 | 001 | 001 | 010 | 010 | 010 | 010
101 | 110 [110 | 110 | 110 | 000 | 000 | 000 | 000 | 011 | O11 | 011 | 011
110 | 101 | 101 | 101 | 101 | 011 [011 | O11 [O11 | 000 | 000 | 000 | 000
111] 100 | 100 | 100 | 100 | 010 | 010 [010 | 010 | 001 | 001 | 001 | 001

Table 4: Octree Edge Neighbor Index Table

As there are 12 edges of each octant, there are at most 12 edge neighbors for each node. As

shown above only three of them are in the same 3D block hence other nine are in different blocks.

35

Again we consider node A4, edge neighbor of this node along edge 10X is not in the block as it is.
If it exists it is in a block above the block containing A. Similarly for direction X01 edge neighbor

of node A is in a block above the block containing 4. The index of these neighbor nodes can be

found by first changing the least significant three bits a,, by ((a,,, D) . Now we consider the rest

of the bits @,a,a,...a,,.

Now consider the case of node 000, the neighbor in direction 00X is not present in the same
block. It is not even present in a block, which is a face neighbor of the parent block. The block

containing the neighbor is present in a block, which is again an edge neighbor of the parent block

in the same direction. In this case we changea,,, and continue with finding the edge neighbor of

the parent block a,a,a,...a,, in the same direction.

So here we have three different cases first one is when the neighbor is present in the same 3D
block. Second one is when the neighbor node is present in a block, which is a face neighbor of the
parent block of the given octant. The third case is when the neighbor is present in a block, which
is the edge neighbor of the parent block of the given octant. We define a table, which indicates
what action should be taken for finding the edge neighbor index. For the first case we put an entry
'S" which indicates the neighbor is present in the same block as the given octant. We put the

direction of the face neighbor for the second case. For the third case we put 'C. We define a

function ®(a;, D), which gives the entries of the table.

36

® X00 |X01 | X10 [X1l |0X0 | 0X1 |1X0 | 1X1 | 00X | 01X | 10X | 11X
000 | C X0X | XX0 | S C 0XX | XX0 | S C OXX | X0X | S
001 | X0OX | C S XX1]0XX | C S XX11iC 0XX X0X 1 S
010 | XX0 | S C X1X | C 0OXX | XX0 | S 0XX | C S X1X
011 ;S XX1 [XIX | C 0XX | C S XX110XX | C S X1X
100 | C X0X [XX0 | S XX0 S C IXX | X0X | S C 1XX
101 | X0X | C S XX1]S XX1 | 1XX | C X0X [S C 1XX
110 | XX0 | S C XX1 | XX0 | S C IXX | S X1X [1XX | C
11118 XX1 | X1X | C S XX1 |1XX | C S X1X [1XX | C

Table 5S: Octree Edge Neighbor Action Table

3.6 Chapter Summary

In this chapter, we have presented the octree and related algorithms, which is used in
experiments. Related definitions are given at the beginning: octree, index, and all kinds of nodes.
Then, subdivision and transversal algorithm are discussed. Finally, the algorithm about how to
construct neighborhood for a leaf node is explained. Data structures and algorithms expressed in

this chapter are essential for our experiments.

37

Chapter 4

Process of Simplification

4.1 Overview of the ldea

As mentioned in chapter 3, we use the octree to divide a surface in an input PCM into small
patches. These small patches represent local surfaces of the PCM. As long as the input PCM is
dense enough, and the size of leaf node in the octree is small enough, the point set in a leaf node

can describe a simplex feature on the surface.

The process of simplification can be expressed in several stages. At the beginning, the input
PCM is subdivided in the octree. On each leaf node of octree, Principal Component Analysis
(PCA) on an each leaf node is applied for constructing an eigen-system. Based on the eigen-
system in leaf node, feature for the local surface can be detected. According to different features,

we use different algorithms for simplification.

4.2 Features on Surfaces

Traditionally, when we describe a local area on a surface, we put it into one of the following
categories: flat, crease or edge, corner, boundary [06]. From another view, a complex surface
can be considered as a compound of flat patches. In the interior area of each patch, it is flat area;
along the joint of two flat areas, it is the crease or edge; and when two or more creases bump into
each other, a corner is formed. Boundary is to describe non-closeness of a model. In this thesis,

all the models we used are closed. Theoretically, if we only focus on a local area of a surface,

38

which are small enough, we can ensure that the feature in such area is simplex, i.e., the feature in

such area is flat, crease, or corner, instead of a compound of them.

For a flat area, if it is ideally flat, it is enough to represent it by a plane defined by one point
with the normal; and if it has a little curve there, one or two more points should be add for it (see

Figure 9). Keeping more points than that is meaningless for simplification.

_ /e | o

Figure 9: Ideally flat area and the flat area with a little curvature

For a crease area, as mentioned above, a simplex crease can be decomposed as two semi-planes
merging together along the crease direction. Therefore, we can use two planes to define the
simplex crease, so 6 points are enough to express the crease and more compactly, 5 or even 4

points (sharing 2 points between 2 planes).

Figure 10: Use 6, 5, or 4 points to define a crease

39

As for a corner area, it is like a pyramid, so we can just use a tetrahedron to define it simply
without considering how many creases meet there; and one vertex of the tetrahedron is the top

point of the corner.

4.3 Principal Component Analysis (PCA)

The basic idea of PCA is to describe the variation of a set of multivariate data in terms of
uncorrelated (linearly independent) variables, each of which is a particular linear combination of
the original variables. The new variables are derived in decreasing order of importance, so that,
for example, the first principal component accounts for as much as possible of the variation in the
original data. The objective of this analysis is usually to see whether the first few components
account for most of the variation in the data. If so, it is argued that they can be used to summarize
the data with little loss of information, thus providing a reduction in the dimensionality of the
data, which may be useful in simplify later analysis. PCA summarizes the variation in a
correlated multi-property into a set of uncorrelated components, each of which is a particular
linear combination of the original Variables. Principal Component Analysis (PCA) involved a
mathematical procedure that transforms a number of correlated variables into a number of
uncorrelated variables called principal components. The first principal component accounts for as
much of the variability in the data as possible, and each succeeding components accounts for as
much of the remaining variability as possible. Mathematically, PCA is called eigen-analysis. The
eigenvector corresponding to the largest eigenvalue is the direction of the first principal

component.

40

4.3.1 Data Set

In our experiments, the data set of input is a cluster of points

P={p,(xy,5:2¢) - . (%,,¥,,2,)} contained in a leaf node of the octree.

4.3.2 Subtract Mean

For PCA to work properly, you have to subtract the mean from each of the data dimensions.
The mean subtracted is the average across each dimension. So, all the x values have (the mean of
the x values of all the data points) subtracted, and all the y values have subtracted from them, and

all the z values have subtracted from them. This produces a data set whose mean is zero. As a

T
result, we get the mean vector [, y,z]

4.3.3 Calculate Covariance Value

Covariance is such a measure. Covariance is always measured' between 2 dimensions.
Therefore, given a 3-dimensional data set (x, y, z), we could measure the covariance between the
x and y dimensions, the x and z dimensions, and the y and z dimensions. Measuring the covariance
between x and x, or y and y, or z and z would give us the variance of the x, y and z dimensions

respectively. The formula to calculate covariance can be defined as,

31 =00 -)]

cov(x,y) =42

n

30— 0z ~ D]

cov(x,z) ==

n

41

S0, -z - 2)]

cov(y,z) ==

n

In addition, cov(y, z) = cov(z, y) ,cov(y, x) = cov(x, y), and cov(x,z) = cov(z, x)

4.3.4 Calculate Covariance Matrix

In 3D, the covariance matrix consists of covariance values between any two dimensions, so we

have the following definition of covariance matrix,

cov(x,x) cov(x,y) cov(x,z)

C=|cov(y,x) cov(y,y) cov(y,z)
cov(z,x) cov(z,y) cov(z,z)

4.3.5 Calculate Eigenvectors and Eigenvalues

In popular way used in most texts, we denote the eigenvalues as A, 4,4, , where 4, <4, < 4,

and eigenvectors as €;,€,,€,, where €),€, and e, are corresponding to A, 4, and A, respectively.
Eigenvalues are used to measure the amount of the variation described by each principal

component (PC).Eigenvectors provide the vectors for the uncorrelated PC. Eigen-System consists

of {hos A1 Ao} , and {es-€15€,} . Here, for convenience of algorithms, all the eigenvalues and

eigenvectors are normalized. That means the mode of the eigenvectors is 1. For eigenvalues, we

2’0 A’l= Al
Ao+ A+ A, Ay + 2+ 2,

have formula to calculate new eigenvalues A, =

42

and A, = ———2—— In the following, when elements in an eigen-system are mentioned, they
Ay + 4+ 4,

refer to normalized ones.

Because the covariance matrix is symmetric, we can use Jacobi Transformation [05] to find

eigenvalues and eigenvectors for such a matrix.

4.4 Algorithms of Simplification

4.4.1 How Many Points in Each Leaf Node

Our purpose of using the octree is to voxelize a point cloud model, and in each leaf node
(voxel), the feature of local surface should be simplex instead of complex. If keeping too many
points in a leaf node, it is not to a certainty that the local surface in a leaf node is simplex. On the
other hand, if the number of points is not enough, the principal component analysis will get
meaningless, because it based on statistic theory. Based on the experiments, we found that

keeping around 20 points is suitable for most of models.

However, it is inevitable, in the final octree, that there are a few special leaf nodes, which
contain points much fewer than 20, and are the necessary result of octree subdivision. If the point
number in a leaf node is fewer than 13, the eigen-analysis is getting meaningless or collapsing.

We also have algorithm for such areas in the following.

43

4.4.2 Penalty Functions for Detecting Features

After applying PCA to each leaf node of the octree, we get an eigen-system for each leaf node.
The eigen-system consists of a three eigenvalues {4, 4,4,}, 0< 4, <A, <A, <land three
eigenvectors {¢,,e,,e,} , wheree,, e, ande, are corresponding to A, A, and A, respectively.

Through experiments, we establish a system to detect simplex feature in a leaf node.

Features | Eigenvalues | Eigenvectors Picture for Illustration

Flat Area 4, £0.09 | e is the normal vector A

Crease A, 2040, | e, s the direction of crease

Area

% 5025
4

Cormner A, 2027 One of eigenvector is the

direction of the corner

Table 6: Feature penalty based on eigen-system

44

4.4.3 Simplification of Flat Areas

As mentioned in Table 6, for a leaf node, if the first eigenvalue is less than 0.09, it will be
classified as flat area. If the first eigenvalue is extremely small, i.e. near zero, we can say the leaf
node is extremely flat, so in this area, only point is enough to express the local surface. However,
if the eigenvalue is near 0.09, it means that the local surface in this area is not very flat. To keep
such feature, we’d better to keep more points in such area. In order to form the compact model, in
experiments, if the first eigenvalue is greater than 0.03, we keep two points in this flat area; and if

first eigenvalue is greater than 0.075, three points are kept.

The normal vector is set the same as the first eigenvector. The flat feature coded as 0 is also

attached to each points in compact model.

4.4.4 Simplification of Crease Areas

Just as mentioned in 4.2, a crease is defined as the merge of two smooth areas. For a local
surface area with simplex feature, we can simplify it as merging of two planes with C’ continuity
along the crease. Therefore, we can subdivide point set a crease node into two sets, which are

held by two planes respectively.

Firstly, from the point set in the crease leaf node, we select 3 points VisV2:Vs randomly to form
a triangle to define plane S. The interior angles of the triangle should greater than 30°. Then,
nearest to the three selected points, we select three more points to verify if this plane defines the

half of the crease. If the three later selected points are contained in the plane, we can ensure that

45

this plane is good, otherwise, the plane S will be discarded and we have to find a new plane just

as at the beginning.

After the plane is decided, we can match each point left. If it is contained in the plane, this

point is on the half of the crease defined by the plane; otherwise, it is in another half of the crease.

After the point set is classified into two P; (containingv;, V,,Vv,) and P,, we keepV;,V,, V, in the
compact model. Also, three new points v,,V,,V, are selected randomly from P, to represent

another half of the crease. If the interior angles of triangle defined by v,, Vs, v, are greater than 30°,

we keep them the compact model, otherwise, we have to discard them and reselect three new

points until the criterion are satisfied.

4.4.5 Simplification of Corner Areas

As we mentioned in Table 6, there is one of three eigenvectors, which represent the direction of
the corner. By observation, we find that on the reverse direction of the corner, there is no point, as

shown in the grey area of Figure 9.

46

Figure 11: A corner leaf node with eigen-system

After we find the direction of the corner, supposed e, using the coordinate system defined by
three eigenvectors and the center of leaf node, we get new positions in such system for each point,

and e, is the positive direction of y-axis. We set the fop point of the corner as the average of three

points with maximum values along thee,. The purpose of choosing average is to cut down the

effect of a possible noisy point.

In the new coordinate system, we also find 7 points, which has minimum y-coordinate value.
From the 7 points, we choose three to form a triangle, which defines a plane. The interior angles

of the triangle should no less than 30° and the angle between the normal of the plane and
e, should be no greater than 45°. In experiments, we can always find such triangle for the corner

leaf node. The three vertices of the triangle and the top point of the corner is the result of
simplification, i.e., we keep 4 points for a corner leaf node. We mark the top point as corner-

feature and other three as crease-feature.

47

4.4.6 Deal with of Special Leaf Nodes

For a special area, we use different strategy according to its neighborhood condition. If it is the
neighbor of the flat area, we just chose one point from it for compact model. If it is the neighbor

of a crease or corner, we merge it to the crease or corner area.

4.4.7 Set Normal Vectors for Compact Model

Information of normal vectors is critical to track the shape and orientation of surfaces. For
compact model, it is more important because in some area, the density of points is less than the

size of the model, so having normal vectors seems to be the only efficient way to orientate the

surface.

*
'. l‘ “
k. ; et
\~. : L, A
THm ey iw . L FEsEpeEREY .

“dcntk,’""ﬂ-«axi‘.'.“

Y I T T s
(a))]

Figure 12: (a) Normal vector tells us the inside and outside of the model (b) In some areas

of compact models, normal vector has to be used to separate disjoint parts.

Set Normal for Flat Areas: Just as shown in Table 6, the normal vector for flat area share the

same or reverse direction of the first eigenvector.

48

Set Normal for Crease Areas: We have mentioned that a simplex crease is dealt with as
merging of two planes, which can be defined by our algorithm. Therefore, normal vectors of
crease-featured points in compact model are the normal (or just with reverse direction) of the

plane they belong to.

Set Normal for Corner Areas: For a corner leaf node, one top-point and 3 other points are
kept. Apparently, the normal of the top point can be set as corner direction. For other three points,
we don’t set normal. However, we have enough information to track the shape and orientation of
the surface because all neighbors of corner area have normal vectors. When we want to Starting
from the leaf node with the normal near to the positive z-axis, we can construct octree-leaf-node

neighborhood.

Set the first exact normal vector. In the octree, it is trivial to find the leaf node with
maximum z-coordinate value. Apparently, the normal for this leaf node is near or the same with
positive z-axis. For such leaf node, we set one of the eigenvector as the normal, which has the

smallest angle with positive z-axis direction among the three eigenvectors.

For flat areas, currently the exact direction of the normal vector cannot be decided, and the
same problem exists for crease areas. We can use octree-leaf-node neighborhood algorithm to
resolve this problem. In the whole octree, we have set the first normal vector for a leaf node with
extreme z- coordinate. As shown in Figure 13, the right direction of normal should have a smaller

angle with the known one. In experiments, we use dot product to evaluate the angle.

49

After setting normal the first neighborhood, we can construct neighborhood for each leaf node
in this neighborhood, and set normal direction. This is a recursive process. Until we cannot find a

leaf node with uncertain normal direction, the recursion will continue.

Area with given Normal

kN Areawith
uncertain
normal
direction
Figure 13: Selection of normal direction for points in ellipse-circled area. For C’- continuity

area, the right direction forms a smaller angle between two normal vectors.

The normal information may not be very accurate, but it is enough for us to orientate

operations on compact models.

50

Figure 14: Venus and Club models after setting normal vectors. Normal vectors shown

longer at crease and corner areas

4.5 Experiment Results

4.5.1 Simplification According to Compact Rate

As mentioned in theoretical parts, typically one point is kept for a flat leaf node, 4-6 points for
a crease leaf one, and 4 for a corner one. In order to implement compact more flexible, several
strategies are used. For low compact rate, i. e., given compact is greater than 50%, we usually,
only simplify flat leaf node, and leave other leaf node unchanged. If compact rate is more than
20% and less than 50%, we used typical way to do simplification. If compact rate is less than
20%, simplification mainly depends on merging simplified flat leaf node together, and keeping 4
points in a crease leaf node. For even higher compact rate, we have to keep one point in a corner,

and merge flat areas with crease and corner area, which are the neighbors of flat areas.

In addition, dynamic simplification is implemented because compact rate has to be
approximated as accurately as possible. In above, we just implement roughly according to

experiences from experiments. Moreover, different PCMs have different features on their
51

surfaces. For examples, the model of CLUB has more flat areas than others, and VENUS has

more slim creases on her hair. Therefore, dynamic simplification is necessary to implement

accurate compact rate. Usually, we use different strategies according the compact rate domain set

above. After simplification, if the compact rate is much higher than the given one, that means

more points should be kept in simplified areas, and simplification algorithms will be applied on

original PCMs again with keeping one more point for each simplified leaf node. After around 100

leaf nodes are simplified, compact rate will be checked again. If compact rate is much less than

given one, we do reverse.

4.5.2 Experiment Results

Model Name Flat Crease Corner Special Total Leaf | Running Time3
Nodes Nodes Nodes Nodes Nodes

Rabbit 3482 1861 2 211 5556 0: 0:11:262

Igea Artifact 7275 3657 4 451 11387 0: 0:23:473

(Venus)

Dinosaur 934 2747 3 141 3825 0:0:19:474

Sculpture

Ball Joint 3717 4079 5 239 8040 0:0:30: 180

Golf Club 12393 2084 5 600 15082 0: 0: 49: 565

Isis 8618 3626 4 356 12604 0:0:35:180

Hip Bone 19132 15047 19 1279 35477 0:1:36:180

RocketArm 1582 1067 2 104 2755 0:0:7:436

Table 7: Feature Statistic from PCA

3 All algorithms are tested on PC with P4 1.6 CPU, and 256M Memory. Running Time Formate, hours: minutes:

Seconds: MilliSecond.

52

PCA on most PCMs work well, except on Dinosaur and Rabbit. From last Table 7, we can find
that both of them only have several thousand leaf nodes, even they have the real size greater than
Club and Jointball. In addition, for Dinosaur, from the picture, we can know that there are
tremendous creases on this sculpture models, ribs, head bones, toes, so more points should be
sampled from scanning for this model. Comparing to Dinosaur model, Club model was sampled

densely during scanning, while it has smaller size, so we can capture very slim features (Figure

15).
Model Name Rabbit Igea Artifact | Dinosaur Sculpture | Ball Joint
(Venus)
Given Rate 80% | 81.55% 78.52% 80.23% 80.12%
0::020: 089 [0::0:40: 452 | 0::0: 15: 326 0::0:35: 756
Given Rate 60% | 59.33% 63.12% 62.13% 58.96%
0::030:125) 0::0:45:162 | 0::0:17:274 0::0:39: 879
Given Rate 40% | 42.56% 41.23% 35.27% 40.25%
0::037:45210::0:47:333 | 0::0:21: 104 0::0:42:274
Given Rate 20% | X 19.85% X 21.35%
0::0:52: 745 0::0:47:352
Given Rate 10% | X 11.79% X 10.23%
0::0:59:102 0::0: 50: 221
Total Points 67,038 134,345 56,194 139,306
Model Name Golf Club Isis Hip Bone RockerArm
Given Rate 80% | 79.23% 83.47% 82.57% 80.12%
0:0:46:257 | 0:0:42:121 | 0:1: 05: 105 0:0:4:221
Given Rate 60% | 60.56% 57.33% 58.54% 57.45%
0:0:49:575] 0:0:44:267 | 0:1:20: 288 0:0:5:225
Given Rate 40% | 38.42% 42.12% 42.13% 41.86%
0:0:52:346 | 0: 0:47:512 | 0: 1:56: 237 0: 0: 6: 999
Given Rate 20% | 22.22% 23.75% 23.15% 45.21%
0:0:48:762 | 0:0:49: 108 | 0: 2: 25: 264 0:0:8:110
Given Rate 10% | 11.76% 12.73% 11.54% 12.33%
0:1:05:277) 0:0:52:254 | 0:2:55:285 0:0:9:117
Total Points 209,779 187,689 530,168 40,178

Table 8: Simplification Results (outputs: compaction rate and consumed time)

For Rabbit and Dinosaur models, higher compact rates were not tested on them, because even

at compact rate around 40%, PCA result is difficult to be classified according to Table 6 already.
53

According to Sequence: Lower Part of Isis (20%), Hip Bone (60%), RocketArm (40%), Dinosaur
(80%), Hip Bone (20%), Golf Club (10%), Venus (15%), Jointball (60%), and Rabbit (60%)

Rendered with only OpenGL glVertex3d () command.

Figure 15: Pictures of each PCMs after simplification

54

4.6 Chapter Summary

In this chapter, the simplification algorithms for PCMs based on octree and PCA is
presented in details. Basically, we have obtained the results, which we expect from theoretical
analysis. The experiment results on Dinosaur and Rabbit models are very unpleasing because they
have a lot of creases and corners on these models, especially on Dinosaur Model, but their density
is not high enough according to their dimension and features. Therefore, in the refinement stage,
we have no experiment result on PCMs of Dinosaur and Rabbit. In addition, our algorithms did
not consider the noise in the PCMs. In short, density is critical for PCA. For example, we can see

that the small features on the Club PCMs can be captured because it is dense enough.

55

Chapter 5
Refinement of Compact Models

5.1 Introduction

In last chapter, we have obtained compact PCM with feature and normal vector tagged on
each point. In this chapter, we will try to refine the compact PCM backwards. The density of
refined PCM can be assigned in advance. In addition, we can get PCMs as dense as or denser than
the original PCMs. The strategies used for refinement compact PCMs are adapted from
subdivision surfaces. Pauly et al [54] just pointed out theoretically that subdivision schemes
possibly work well to refine PCMs, Guennebaud et al [02] use interpolating subdivision schemes
to refine down sampling PCMs for rendering, but interpolating schemes need large stencil for
compute new points and if the original models are with noise, interpolating schemes are not good
to smooth noise out.

Our schemes are adapted from Loop’s [24], which is an approximating schemes working on
triangle meshes originally and is very popular in subdivision surfaces. First of all, we should
introduce what is subdivision surface, and following that, Loop’s schemes will be discussed in
details. We also need neighborhood algorithm to select a group of points for subdivision stencil.

Finally, programming and the result will be listed.

5.2 Subdivision Surfaces

5.2.1 A Brief Review

In 1974, Chaikin presented ‘An algorithm for high speed curve generation’ in a speech at

Utah University. This algorithm generates a smooth curve that is approximately the shape of a
56

given control polygon. The algorithm works with corner cutting of the control polygon to form a
new smoother control polygon. For each clipping of the old of point from control polygon, two
new points are found in new control polygon. By repeated application of the corner cutting, the
finer control polygon will converge to a smooth curve. Chaikin’s rules for comer cutting are
simple. On each segment of the control polygon, two new points are found at a distance of 1/4
and 1/3 between the end points. The ratio 1/4 and 1/3 are for each of performing corner cutting on
digital computer. In fact, Chaikin’s algorithm is the refinement algorithm for quadratic B-splines.

In 1978, Doo and Sabin, and Catmull and Clark published their papers describing their
subdivision surface respectively. Doo-Sabin’s scheme is the generalization of biquadratic B-
spline refinement on arbitrary mesh. Also, it is first time, Doo-Sabin showed the idea of using
matrix to analyzing subdivision schemes. This idea is thoroughly exploited by Denis Zorin [18].
Catmull-Clark’s scheme is the generalization of uniform bicubic B-spline refinement mentioned
above. In 1986, Loop [24] presented his new subdivision scheme in his Master thesis, but the
control mesh is triangulated. His scheme is based on linear combination of shifts of a 3-direction
box spline.

To that time, it was the first development phase of subdivision surfaces. Until 1995 when
Reif [23] gave the analysis of C’-continuity of subdivision, a lot of questions of continuity at
extraordinary vertices are unknown. Since then, there were a lot of new practical schemes
appeared, and more work of analysis of subdivision schemes was done.

In 1995, Habib et al. [21], and Peters et al. [22] suggested mid-edge schemes with a little
difference respectively. This scheme can be called simplest subdivision scheme, because its mask
of refinement is just to find the middle point for each edge.

In 1996, Kobbelt showed his interpolating subdivision scheme, which is the extension of

tensor product of four-point scheme, and just named as Kobbelt [25].
57

In 1990, DYN et al [26] devised a new interpolating scheme—Butterfly scheme, but the
final surface is not-C’-continuous extraordinary points of valance k=3 or k>7. In 1996, Zorin et al
[27] gave a modified Butterfly scheme, which guarantees that the scheme produces a C’-
continuous surface for arbitrary mesh.

In 1996, and 1997, two papers [18, 028] analyzing subdivision surfaces appeared. These are
some milestone papers for development of subdivision surface because they heavily used math
tools to analyze known subdivision schemes. Key features of convergence, smoothness, etc are
anatomized thoroughly first time.

Most of time, stationary subdivision schemes can be expressed in matrices, which are a
better way to for mathematical analysis. It is not difficult to understand this comparing that we

can express B-spline refinement in matrices.

5.2.2 Classification Comparison of Subdivision Surfaces

A lot of subdivision schemes are mentioned above, but only representative ones are listed in

the Table.

58

Scheme Approximating | Interpolating | Quadrilateral | Triangle | C' | C* | Primal | Dual
Midedge | * * * *
Doo-Sabin | * * | * *
Catmull- | * * R
Clark
Loop * * x | *
Butterfly * * * *
Kobbelt * * * *

Notes:

1. Approximating and interpolating with respect to the original control mesh point position.

2. Quadrilateral and triangle based on the basic primitive of control mesh.

3. Primal or dual type depending on the splitting rule (faces splitting or edge splitting).

4. Some schemes are difficult to put into a certain category, so they don’t appear in the form
Classification of Subdivision Schemes

Table 9: Classification for Schemes of Subdivision Surfaces

By observation, we can find that the stencil of approximating subdivision schemes is smaller
than interpolating one, because the latter has to make keep tracking on the original points and
make out a smooth result (see Figure 15 and 16). Generally, approximating schemes only need a

I-neighborhood stencil, and interpolating ones need a larger neighborhood to cover the stencil.

Figure 16: Approximating schemes. Left two: main stencils of Loop Scheme. Rest Three:
Main stencils for Catmall-Clark schemes.

59

el

.

Si~
r

Si~

%
£ 1
2 2 &
%
.2 A
I3 1 i
Mosk for ima'iorsodd vertices with .
regular neighbors St
e Sz
! s s 1
16 I3 I3 16

Figure 17: Interpolating schemes. Left One: stencil of Kobbelt .Right three: Butterfly

Usually, Loop and Catmull-Clark subdivision produce more pleasing surfaces, as these
schemes reduce to C” splines on a regular mesh. These two schemes appear to the best choices for

most applications, which do not require exact interpolation of the initial mesh.

5.2.3 Loop’s Subdivision Scheme

The Loop scheme is a simple approximating vertex insertion scheme for triangular meshes
proposed by Charles Loop [24]. C'-continuity of this scheme for valences up to 100, including
the boundary case, was proved by Schweitzer [28]. The proof for all valences can be found in
[38]. The scheme is based on the three-directional box splines, which produces C*-continuous
surfaces on the regular meshes. The Loop scheme produces surfaces that are C>-continuous
everywhere except at extraordinary vertices, where they are C’-continuous mesh, for example, by

triangulating each polygonal face.

60

0 |

3
3 3 Interior
4
&
— (! @ i
1) Crease and boundary i 3 y
2 2 8 4 8
a. Masks for odd vertices b. Masks for even vertices

Figure 18: Loop's Subdivision Scheme

Stencils of Loop’s scheme are in Figure 17. There are two types of stencils. One is for odd
vertices, which will be inserted newly, and another is even vertices, which have existed already,

but we need to calculate the new positions of them. In formula, the scheme can be expressed as,

P =(p, +3* p, + p, +3* P,)/8-- for new inserted interior point;

P’ =(p, + p,)/2 --for new inserted crease or boundary point;
' k-1
P =1—k*ﬁ*P+Zﬁ*pi -- for old interior point;
i=0

P = %P +(p, + p,)/8--for old crease or edge point.

2
And, there are two approaches to choose . One is f = —l-(g— (% +%cos —ﬂ)z) from
n n

3
Loop, and other one is § = é—,n >3,and f = 1—36-,n =3 from Warren [69].
n

61

The rules for computing tangent vectors for the Loop scheme are especially simple. To

k-1 .
compute a pair of tangent vectors at an interior vertex, use ¢ = Zcos— P s
i=0

k-1 .
and¢, = Z sin 7 p;, - These formulas can be applied to control points at any subdivision level.
i=0

5.2.4 Piecewise Smooth Subdivision Surfaces

However, in application, stationary schemes are not practical. There are several reasons.
Firstly, some of schemes are devised on closed or work well if don’t consider interpolating
boundary points. Secondly, in application, most of models are piecewise smooth instead of
smooth on the whole surface. Also, some schemes need more calculation but are suitable for a
certain problem. Therefore, there are more extensive problems relating to subdivision surfaces are
discussed. In 1994, Hoppe et al [30] discussed how to improve subdivision schemes on piecewise
smooth surface. In 1999, BIERMANN et al [31] suggested improved Loop’s and Catmull-Clark’s
schemes for piecewise smooth surfaces.

Piecewise smooth surfaces [30] are the surfaces, which can be constructed from surfaces
with piecewise smooth boundary joint together. If the resulting surface is C’ -continuous at the
common boundary of two pieces, this common boundary is a crease. However, if we still want to
keep C'-continuity at the crease, subdivision rules have to be changed for such areas, especially
for approximating schemes.

In piecewise smooth surfaces, for the interior smooth areas, there is no change for the rules
and stencil of both schemes. Also, the same rules are kept for creases or boundaries.

For areas around corner or crease, the weight is changed for each vertex in the stencil.

62

st
[~

® Hew inserted vertex

%Y B Crease vertex

s
it
Bl

|

-

#al
(|

¢ Hormal wvertex

e

1

]

Figure 19: Rules of point insertion in Piecewise Smooth Surfaces according to Loop
schemes

In Figure 19, first one defines how to insert a new point between two crease points. The
second defines how to insert a new point for smooth area. The third defines how to insert a new

point for a crease or corner point neighbor. The y is defined in the following,

1
7(0) = 5 %cos 6 . For a vertex with degree k, the § following is chosen,

9=

=R

, for convex corners where is the angle between the crease edges meeting at the

corner;

0= ; = Uy, for smooth crease vertices;

P T—-a
= _k , for concave corner vertices.

63

B Crease vertex

*

'y

L TR

e il
|

® Normal vertex

Figure 20: Rules to compute new position of old vertices according to Loop schemes in

piecewise smooth surfaces

In implementation, on a completely closed mesh, we have to put tags on vertices to tell the

program where the crease is, and where the corner is.

5.3 Refinement Scheme for PCMs

As for the refinement, we firstly construct point neighborhood with the help of Octree. In
experiment, we still use octree to subdivide compact models, and for each leaf node, the number
of point should be in the range of (4, 12), because, if less than 4, it is impossible to construct
triangle-mesh-liked neighborhood. If greater than 12, a neighborhood with high valance will be
built, but it is proved by Reif [23] that the higher valance, the more difficult to keep smoothness.
After constructing neighborhood, we form a virtual triangle fan with the centroid of neighborhood
as center, and apply improved refinement schemes on the virtual triangle fan, which will be

discussed in 5.4.2.

5.3.1 Point Neighborhood Algorithm

A neighborhood usually is defined by a centroid, or a center point, and the radius. In our
refinement process, the radius, in practice, has been defined by the size of the leaf node. The

following are the facts, which have to be considered during neighborhood construction.

64

Discard point from other side of surface. Because in a non-dense, especially very slim
model, for a leaf node, it is very possible to hold points from disjoint parts of the surfaces (see
Figure 12(b)). With normal information, we got from simplification process; it is easy to remove
these unwanted points.

Choose Centroid of the Neighborhood. We choose the centroid in a straightforward way.

- 1
The average of point set in a leaf node can be defined as p = —Z P, > and the centroid pc is

i=1
select from the point set in the leaf node, which meeting the requirement of
P. —; <= min(pi—;),i =1..n
Map Point Set into 2D. With the centroid and its normal (we have got it in Chapter 4), a
specific plane P(pc,;) is defined, which roughly represents the tangent plane of the surface at

that area. So we can map the point set onto this plane and, in 2-dimension, get a new point set.
This map is one-to-one.

Form the neighborhood in 2D. Now we can get a sorted the point set in 2D according to
the angle of two neighbored points. If the angle is less than 10° or greater than 160°, this point
should be discarded, because it forms a triangle with very sharp corners (Figure 21). Here, there
is a special condition, that is, if the centroid is a corner-featured point, when choosing points to
form a neighborhood, crease points have higher priority because the angle 6, between two creases
forming the comer, has to be found (see Section 5.3). If unable to find two crease points in the
same leaf node, more points should be borrowed from other leaf node neighbors to find two
nearest crease points. After we get the 2D point neighborhood, we can get the 3D point

neighborhood by map the 2D neighborhood reversely.

65

Figure 21: Discarded point (one end of dash segment). Left: too small angle; right: too great

angle
»
e a 35 ™ .
LR
. o .Q a®a |o
* o B o ®
» . .
. ale
o e O Creame Pomt
B ComerPoint

Figure 22: Corner always has at least 2 crease neighbors (illustrated in 2D)

Bad Neighborhood: If a neighborhood contains less than 4 points, it is impossible to form a
virtual triangle fan. Therefore, such neighborhood should be discarded. If a neighborhood
contains more points than 12, it is also not good for smoothness. In experiment, we have not

bumped into such neighborhoods. For a leaf node with a bad neighborhood, it will be merged to

66

one of its neighbors, which contains the least points. Then we can construct new neighborhood on
the two leaf nodes.

Stencils for Refinement: If we virtually connect points in the neighborhood to the centroid,
and also connect all the points except centroid one after another according to the sorted sequence,

we got in Section 5.4.1, we can get a triangle fan shown in Figure 23.

Figure 23: Virtual triangle fan from point neighborhood

Because Loop Scheme works on 1-neighborhood, it is enough to apply subdivision scheme
on it. Here, we should have some modification or specification in order to make the Loop scheme
work on point neighborhood well. Firstly, we should put tag on the points in the compact model
to explicitly mark out boundaries for each smooth piece of surface. Fortunately, PCMs used in
experiment is not very large, we can mark out non-smooth creases and corners manually after
simplification. Apparently, we can apply interior smooth stencils directly on the virtual triangle
Jan, and the edge and vertex rules for smooth crease vertex also works well. The only problem is
on the edge rule of crease and corner neighbors. It is straightforward to calculate 8. For a

neighborhood with the corner-featured centroid, according to Section 5.3.1, there must be two

67

crease points in the neighborhood. In the point neighborhood with corner point centroid, the angle

can be defined in the following; the first crease neighbor p,, the second crease neighbor p,, and
the corner point P,,,, ., form the angle Zp, P, D, . Here, we also assume that all the corners

in PCMs are convex.

5.3.2 Offset for Refinement

In the refinement, if we always use the exact bounding cubic box according to the size of the
PCMs, gaps will be left among leaf nodes because we always voxelize the PCM almost in the
same way even though the leaf node is small enough. Therefore, we have to use an offset to
define a different bounding cubic box in the second round of refinement. In order to make the gap
from last refinement round falls into the center of the leaf node, the offset is kept in the domain of
[NeighborhoodSize/3, NeighborhoodSize/2]. The size of neighborhood is the same with the size

of leaf node.

68

Figure 24: A local surface in Club’s top. Without offset, refinement will leave holes,

illustrated by circles

5.4 Experiment Results

In experiments, we almost tried to refine compact models from any level to any level. In
order to avoid holes on the refinement results, we apply at least two rounds of refinement
schemes on each model with an offset (Appendix A). In fact, most of the following results are
two or three rounds refinement. The first round refinement almost happens on all leaf nodes, and

two and three rounds mainly focus on making the flat area denser.

69

Compact Model | Refined Model | Time Consumed | Size of Neighborhood
11.76% 48.42% 0: 0:56:211 0.23940cm
22.22% 75.34% 0: 0: 46:878 0.15932cm
60.56% 103.75% 0: 0: 39:878 0.05615cm
80.37% 123.43% 0: 0: 42: 563 0.03523cm

Actual Size: 12.2004cm * 8.7345¢cm*5.9604cm

Table 10: Results of refinement for Club model

Compact Refined Time Consumed | Size of Final
Model Model Neighborhood
12.73 56.39% 0: 0: 26: 597 2.4198cm
23.75% 78.56% 0: 0: 32: 505 1.2099cm
42.13% 79.26% 0:0:38:61 0.903cm
58.54% 123.01% 0:0:45:851 0.287cm
82.57% 125.33% 0:0:36:851 0.240cm

Actual Size: 14.101*13.904*15.488

Table 11: Results of refinement for Hip Bone Model

70

By Sequence: Venus (25.54%), Rocker Arm (35.87%), Hip Bone (55.39%), Balljoint (54.28%),
Hip Bone (120.17%), and Golf Club (123.43%). The ratio is comparing with the point number of

original models. All pictures are rendered only with OpenGL command glVertex3d();

Figure 25: Pictures of refinement Results

5.5 Chapter Summary

In this chapter, we mainly explain the experiments of refinement of compact models, which
are got from simplification process of Chapter 4. The refinement schemes are borrowed from
subdivision schemes on triangle mesh: Loop schemes. Comparing to the work of Guennebaud et
al [02], our refinement schemes are more simple and fast. In addition, approximating schemes can

cover noise from original PCMs, or errors from simplification process.

71

Chapter 6
Comparison of Original, Compact, and Refined Models

In the simplification and refinement processes, we just obtained compact and refined PCMs
as the results. However, we have to find some approaches to evaluate these outputs. In this
chapter, regenerated PCMs (simplified or refined) will be compared with the original ones in
order to find how much is lost and how much is retained on the surfaces described by PCMs
during the processes.

The algorithms in this research are heavily based on geometry information of PCMs, and the
results of refinement and simplification are not orientated directly to rendering, so it is not good
idea to purely use rendered pictures of refined and simplified PCMs for comparison. The only

reliable way is finding geometry difference between processed PCMs and the original ones.

6.1 Comparing Compact PCMs with the Original One

6.1.1 Theoretical Basis

In the simplification stage, the compact PCMs are obtained by resampling points from the
original one. Therefore, the compact PCM shares the same dimension and coordinate-system with
the original one. In addition, the compact PCM means that one point in a good compact PCM
should be able to represent a cluster of points from the original model. For PCMs, the only
information is 3D coordinates, so checking capacity of representation through 3D coordinates is a
reasonable way.

In StudioTools [66], the most basic comparison function is introduced, that is, to compute

the distance between two point cloud models, which share some similarity. Given two

72

PCMs S, ={p,;},0<i<n,and S, ={p,;},0<i <m (m and n is the size of the two PCMs,
respectively, and suppose that n<m). At first, we have to decide that given one point from S, how

many points from S; correspond to it in average. This is decided by the capacity of

representation, num=— . If points in S; are distributed evenly, given a point p,,(0 <t <n)
" .

from S, a set of points P ={p,,},0 <i <|| num|| can be found from S;. Such a set of points is

closest to the given point p,,,0 <t <n from S, for comparison.

6.1.2 Definition of Bias
According to a point p,,,0<t<n in compact model, after a cluster of points

P={p,;},0<i | num|| (|num| means the modulus of num) in original model is found, the

(lrarm|

value to evaluate goodness of representation can be defined asé = ﬁ Z[pi—p | The
num|| ‘3

formula means how the p,,,0 <t <n is close to the average of P ={p,,},0 <i <|| num||. For

the whole compact model, we can get an average bias as output for p.

6.1.3 A Normalized output for the Whole Compact Model

In Section 6.1.2, a bias value is defined, and an accumulation for the whole compact PCM
can also be made out. The value, however, is not normalized, so just based on that value we can
not make sure how well or bad the compact PCM is. Therefore, normalizing the output is

necessary.

73

B A Point From Compact PCM
» * Points Representedby m
® Ths Average Of Represented Points
Figure 26: A point from compact PCM and points from the original, it represents
Firstly, the bias for each point in compact model should be normalized. In Figure 26, we
illustrated a point p;,,0<¢<n from compact PCM S, and a corresponding point set
P={p,;},0 <i <| num ||represented by from the original PCM.S, . The average of P is P, and

a point p, , from P, which is farthest to the P can be found. If the value of | P - Pr| is scaled to

one (the unit wvalue), the normalized bias E of P should be

[Inaarml}
! | pi— p'| because the bias of p' must fall into the domain of

U)

| num||*| p—p, | =

[0,/ p-p []-

= 1 n =2
Based on ¢, the bias for the whole comparison can be defined as & = —Z &, , and n is the

i=1

number of points in compact models.

6.1.4 Dynamic Capacity of Representation in Our Algorithm

According to our simplification algorithm, more points are kept for creases and corners, so
in simplification process, a point of flat area in compact PCM represents more points than the
points of crease and corners. Specifically, in crease area, a point of compact PCM represents 3—

7 points, and in corner area, a point represents around 5 points. However, for flat area, the

74

number depends on the compact rate. According to the capacity of representation, we can find a
cluster of points in original model, which has the nearest distance to the corresponding point in
compact model.

As for implementation, the octree is used to subdivision the original model, so that when we
want to find a cluster of points corresponding to a point in compact model, we just find in an

octree leaf node or its neighborhood instead of the whole model.

6.2 Compare Refined Models with Original Ones

For the refined result, the method for compact model is unsuitable, because, refinement
means that output is dense, and sometimeé even denser than the original model.

The comparison is carried out on two levels. The first is to evaluate how many features have
been lost and the second is based on kept features in refined PCM, evaluating how much
difference there is between the corresponding features in both PCMs.

If a refined model almost has the same density of the original one, we can also apply PCA
on each local surface as we did in simplification process to find local features. The comparison is
divided into several steps: Construct Octree on the Original PCM. We can use the same work
done in simplification process; Construct the Same Octree on the Refined PCM. This can be got
without much difficulty after making the refined model shares the same dimension and
coordinate-system. Ideally and also proved in experiments, if the simplification and refinement
algorithms are good enough, in the same structure and size of octree, for a leaf node with the

same index, there is the same feature inside.

75

6.2.1 Feature Loss

The first step is to find how many features in refined PCM we have lost with the original
PCM as a standard. This is a statistic on difference of numbers of flat, crease, and corner leaf
nodes respectively. Please see the Section 6.3.1 for the experiment results. Generally, if there are
too many feature losing, we will not evaluate feature accuracy again because that will get

meaningless on some degree.

6.2.2 Feature Accuracy

The second step is to do more accurate evaluation for kept features. For flat area, the two
first-eigenvalues are compared. The first eigenvalue represent the flatness in the flat leaf node.
More great the first eigenvalue, more possibly, this area will become a corner or crease. we keep

the difference DF (absolute value) of the first eigenvalue for a flat leaf node, and for the whole

1 n
PCM an least square root value Dy = n—\}iDpz (" means the number of flat nodes in the
r V=l

whole PCM) can be evaluated. Because the first eigenvalue is normalized already, so the

difference or bias DF between two first eigenvalues is also normalized, so doesD—_p. In crease
areas, as mentioned in simplification process, a simplex crease can be defined by two crossed
planes, and the crease can be described numerically with the angle between the two semi-planes.
The value of crease angle can be evaluate according to the way in Figure 27, which shows a
cross-section of a crease by cutting the crease with a plane, which is perpendicular to both semi-
planes of the crease. In the cross-section, the normals of the two planes and the cross-section
lines of the crease forms a quadrilateral with two right angles, so the sum of rest two angles A
and B is 7, denoting A is the angle between two normals and B is the crease angle. For

comparison, in two corresponding crease leaf nodes from refined and original PCMs respectively,
76

we evaluate the difference or bias DC of two crease angles. If considering the crease angle from

Dc
the original PCM Ac is correct, the bias can be normalized asA_ . Also, like what is done for flat
C

leaf nodes, for all the creases in the whole model a normalized bias in least squared root

2
— 1 |&((De) .
D, =— Z A_c ("¢ is the number of crease leaf nodes in the whole PCM) can be
n, i=1 i
evaluated.

A +B =180

Figure 27: Approach to calculate crease angle

Because a corner is a pyramid-like shape, it can be described with the solid angle. However,
it is unnecessary to calculate the exact values of solid angles in refined leaf node and original one.
As shown in Figure 28 (Left: Find the tangent plane and map the point set on to the plane, Right:
rasterizing the area into grids, the 2D point set occupies), a solid angle is defined by the cross area
of a unit sphere with the corner top as the center and a corner. If we map the solid angle onto the
plane, which is the tangent plane of the unit sphere at the center of the corner, we will get an area
in 2D (shadowed area in the Figure 26). Afier rasterizing the 2D area, we can evaluate the 2D

area with number of grids, which is corresponding to the value of solid angle. As for evaluating

77

D

the difference of solid angles, we can just base on the difference or bias ~® of the grid number.

If considering the crease angle from the original PCM Ay is correct, the bias can be normalized

D
as—= . Also, like what is done for flat leaf nodes and crease leaf nodes, for all the corners in the

R
b 2
((—5)) (nR is the
4z),

JEN— 1 n
whole model, a normalized bias in least squared root D, =— 2
ng \3

number of comner leaf nodes in the whole PCM) can be evaluated.

Figure 28: Approach to evaluate solid angle with grids

In order to evaluate the total difference or bias about features between the two models, a
formula is defined as P *1_):+PC *E+PR *—'; , where P. , P, and P, denote the

percentage of flat leaf nodes, crease leaf nodes, corner leaf node in the whole octree, respectively.

6.2.3 Scales Used in Comparison between Refined and Original PCMs

As mentioned above, we use the two octree hierarchies to voxelize refined and original
PCMs at the beginning of comparison. The two octree hierarchies share with the same structure
and size. That means the both PCMs should share the same coordinates and dimension. The first

requirement is guaranteed definitively, but the second cannot be directly. From the knowledge of

78

subdivision surfaces, the result of approximating schemes will have a little shrink comparing to
the control polygon (see Figure 29 for details). Our approximating scheme has the same effect on

the final results.

Figure 29: Results of Subdivision Surfaces with approximating schemes*

Therefore, for comparison, we have to scale the refined PCM to the same dimension of the
original one. For accuracy, we use different scales in x, y, and z directions. It is not difficult to get

the scale for one dimension. For example in x-direction, if denoting size of the original and

refined PCMs in x-direction as X, and X, respectively, the scale applied on refined PCM in x-

X,
direction is .
X

* The picture is from [20] in pp. 85

79

6.3 Experiment Results

6.3.1 Compare Compact PCMs with the Original

In Table 12, the experiment results of comparing compact PCMs with the original are listed for
Golf Club and Hip Bone. For each model, the first column is PCMs used for comparison with
various densities, the second to the final one are average capacity of representation for a flat

point, a crease point, corner point, respectively.

When only a little simplification is applied on flat areas, the compact PCMs can still represent
the original very well with a slight bias. When the compact rate comes to some degree— around
40%, the error in the result increases dramatically, because we have touched corners and creases.
When with a compact rate higher than 40% or so, the error mainly comes from flat area, because
we implement higher compact rate by merging flat leaf node together, and a flat point has to

represent much more points.

The up limitation of the compact rate with current algorithm is around 10%. From experiments,

the up limitation of error is 40% of the original one.

80

Part I: Comparing Resuits of Golf Club PCMs

Model Flat Areas Creases Corner Final Report
79.23% 4 1 1 0.52%
60.56% 8 1 1 0.98%
38.42% 20 7 6 10.73%
22.22% 42 8 6 18.66%
11.76% 74 9 6 33.85%

Part II: Comparing Results of Hipbone PCMs

Model Flat Area Creases Corner Final
Report
82.57% 4 1 1 0.65%
58.54% 7 1 1 0.87%
42.13% 22 6 7 13.25%
23.15% 44 9 7 17.74%
11.54% 78 10 7 36.19%

Table 12: Results of comparison for compact PCMs

6.3.2 Compare Refined PCMs with the Original

In Table 12, some experiments are listed. The accumulation of errors for leaf nodes are in
real number, and for creases in radian, for corners in grids measured with centimeter unit.

In Part I of the Table 12, the density of refined PCMs used for comparison is in the range of
65 to 85%. The results are to some degree in mess because of the density is not enough and cause
the errors in principle component analysis. After constructing the octree on refined PCMs with

the same depth-level of the original one, the point number in each leaf node less than 20. In Part

81

II, the comparison results are much better than in Part I because the refined PCMs are dense

enough for principal component analysis. For all the models, there is only light or no feature

losing. This is an expected result because during simplification, even though higher compact rate

required, we keep points in crease and corner areas as many as possible.

Model Missed Errors of Errors of Errors of Normalized
Features Flatness Creases Corners Report

Hipbone 18 creases | 54.2016 463.569 1032 23.25%

(65.33%) 4 corners

Isis (74.28%) | 20 creases | 23.5485 76.245 507 32.7452%
2 corners

Golf Club 5 creases 20.1546 32.1584 204 18.1639%

(87.43%) 2 corners

Venus 13 creases | 17.8526 45.1485 388 22.15362%

(77.45%) 4 corners

Rocker Arm 10 creases | 6.4573 18.4526 297 29.8549%

(78.37%) 1 corners

Balljoint 15 creases | 12.3645 60.1284. 482 31.2312%

(72.12%) 4 corner

Table 13: Comparison of refined PCMs with density in range of 60-80% of the Original

82

Model Missed Errors of | Errors of | Errors of | Normalized
Features | Flatness Creases Corners Report

Hipbone (125.33%) 6 creases | 26.21 111.6 852 7.31%
0 corners

Isis (120.28%) O creases | 11.80 26.90 204 4.06%
0 corners

Golf Club (123.43%) |2 creases | 16.97 15.46 636 6.99%
0 corners

Venus (98.90%) 10 crease | 9.963 27.13 204 9.22%
0 corners

Rocker Arm O creases |2.163 7.912 214 3.64%

(105.37%) 0 corners

Balljoint (103.25%) | 2 crease 5.088 30.26 317 8.25%
1 corners

Table 14: Comparison of refined PCMs with density near or more than 100% of the

6.4 Chapter Summary

Original

In this chapter, we explained the strategies for comparing compact and refined PCMs with

the original one as the measure of bias. For compact and refined PCMs, different methods are

used because of their different distribution of the points.

As for comparison between refined and original PCMs, the PCA is applied on both of them.

As mentioned in Chapter of simplification process, the PCA works well only when the model is

dense enough. Therefore, when the refined model is 80% of the original or lower, the result of

comparison is very bad or meaningless. In the future, we may find a better way to compare low-

83

level refined model with the original one, because sometimes, only low-level refined PCMs are

required.

84

Chapter 7

Conclusion and Future Work

7.1 Contributions of This Research

The main contributions of this research are the following:

L.

Considerable amount of work has taken place in the area of point cloud models and
their representations. Because of their vast sizes and the discrete nature of the
geometric data in these models, simplification and refinement techniques are of very
great importance. They also have their own unique problems as compared to similar
techniques for surface models with topological information such as polygon models.
As part of this research, we have carried out an exhaustive survey of techniques for
simplification and refinement of point cloud models, classified them, and identified
the advantages and disadvantages of each of the method. Specifically, problems in
the current approaches have been discussed. This survey may serve as a starting point
for others interested in the same problem.

The other major contribution is the development and implementation of a new
feature-based method that detects flat, crease, and corner regions, resamples a dense
point cloud model for simplification, and successfully implements Loop’s
subdivision schemes to refine the point cloud model with piecewise smoothness. This
method required the integration of a number of well established algorithms: Octree,
Principal Component Analysis, and Subdivision Surfaces. The results from this
implementation are also provided showing that reasonable compaction and

refinement of point cloud models can be achieved using this method.

85

7.2 Future Improvements in Asymmetric Use of Compaction Rate

During simplification, we have successfully detected features and kept them in compact
models achieving high compaction rates up to 10%. Because the same compact rates are applied
to corners and creases as for flat regions, we biased more towards flat areas. Also, based on such
strategy, currently the maximum compact rate is around 10% for most of the models. Trying for
higher compaction rates would result in losing edge and corner features. In the future, asymmetric
strategies among flat areas, creases, and corners should be developed for higher compact rate, for

example, up to 5% or even better.

7.3 Improving Octree Related Algorithms

As for the octree algorithms, in experiments, a positive offset has been used to increase the
dimension of the initial bounding box of octree to avoid special leaf nodes. More careful studies

must be done to arrive at new strategies that decrease the number of special leaf nodes.

7.4 Improving Accuracy of Two Stage Processes

In comparison between compact and original PCMs, especially for higher compact rate,
most bias is from flat areas because the high compact rate is implemented mainly by simplifying
flat areas. And such a way will not work well if a model has more creases and corners instead of
flat areas. That requires more research.

In comparison between refined and original PCM, more bias is given to creases and corners
even though higher refinements results are pleasing. The main reason is the way our algorithm of
refining point neighborhood has been devised. It can be seen in the experiments that with current
algorithm, sometimes, it is difficult to refine local surface areas around corners because at least
two crease points have to be found for constructing point neighborhood. In addition, the

86

algorithm supposes the corner is always convex. Finding a more practical algorithm for the corner

is necessary for better results.

87

Bibliography

[01] P. Bhattacharya, Efficient Neighbor Finding Algorithms in Quadtree and Octree, Master's Thesis,

Indian Institute of Technology, Nov, 2001.

[02] G. Guennebaud and L. Barthe and M. Paulin, Real-Time Point Cloud Refinement, Eurographics

Symposium on Point-Based Graphics (2004)

[03] Mark Pauly, Markus Gross, and Leif P. Kobbelt, Efficient Simplification of Point-Sampled

Surfaces

[04] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and Claudio T.

Silva, Point Set Surfaces, IEEE Visualization 2001

[05] William H. Press, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University

Press 1992, ISBN: 0521431085

[06] Stafen Gumbhold, Xinlong Wang, and Rob Macleod, Feature Extraction From Point Clouds,
Proceedings, 10th International Meshing Roundtable, Sandia National Laboratories, pp.293-305,

October 7-10 2001

[07] G. Guennebaud, L. Barthe, and M. Paulin, Real-time point cloud refinement, Eurographics

Symposium on Point-Based Graphics (2004)

[08] Aravind Kalaiah, and amitabh Varshney, Statistical Point Geometry, Eurographics Symposium on

Geometry Processing (2003)

[09] Marc Alexa et al., Point Set Surfaces, IEEE Transactions on Visualization and Computer Graphics,

Vol. 9, No. 1, January-March 2003

[10] Mark Pauly, Richard Keiser, and Markus Gross, Multi-scale Feature Extraction on Point-Sampled

Surfaces, Eurographics 2003

[11] Leif P. Kobbelt, Mario Botsch et al., Feature sensitive Surface Extraction from Volume data, ACM

SIGGRAPH 2001

[12] P. Cignoni, C. Rocchini, and R. Scopigno, Metro: Measuring error on simplified surfaces, The

Eurographics Association 1998

[13] Lars Linsen, Point Cloud Representation, Technical Report No. 2001-3, Fakultit fir Informatik,

Universitit Karlsruhe, 2001.

[14] Carsten Moenning, and Neil A. Dodgson, Fast Marching farthest point sampling for implicit

surfaces and point clouds, Technical Report, Cambridge University

[15] Michael Garland, and Paul S. Heckbert, Surface simplification using Quadric Error Metrics,

SIGGRAPH 97

[16] Sushil Bhakar, Liang Luo, and S.P. Mudur, View Dependent Stochastic Sampling for Efficient

Rendering of Point Sampled Surfaces, WSCG 2004

[17] Szymon Rusinkiewicz, and Marc Levoy, QSplat: A multiresolution Point Rendering System for

Large Meshes, ACM 2000

[18] Denis N. Zorin, Stationary Subdivision and Multiresolution Surface Representations, Thesis,

California Institute of Technology, 1997

[19] Online Notes of Geometry Modeling, http://graphics.idav.ucdavis.edu/education, University of

California, Davis
[20] SIGGRAPH course 2000, Subdivision of modeling and animation

[21] A. Habib, and J. Warren, Edge and vertex insertion for a class of C1 subdivision surfaces, CAGD 16

(4) (1999) 223-247, previously available as a TR, Rice University, August 1997.

[22] J. Peters, and U. Reif, The simplest subdivision scheme for smoothing polyhedra, ACM Transactions
on Graphics 16 (4) (1997) 420-431.

[23] REIF, U. A Unified Approach to Subdivision Algorithms near Extraordinary Points. Computer Aided

Geo. Des. 12 (1995), 153-174.

89

[24] LOOP, C. Smooth Subdivision Surfaces Based on Triangles. Master’s thesis, University of Utah,

Department of Mathematics, 1987.

[25] KOBBELT, L. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology. In

Proceedings of Eurographics 96, Computer Graphics Forum, 409-420, 1996.

[26] DYN, N., LEVIN, D., and GREGORY, J. A Butterfly Subdivision Scheme for Surface Interpolation

with Tension Control. ACM Trans. Gr. 9, 2 (April 1990), 160-169.

[27] ZORIN, D., SCHRODER, P., and SWELDENS, W. Interpolating Subdivision for Meshes with

Arbitrary Topology. Computer Graphics Proceedings (SIGGRAPH 96) (1996), 189-192.

[28] SCHWEITZER, J. E. Analysis and Application of Subdivision Surfaces. PhD thesis, University of

Washington, Seattle, 1996.

[29] KOBBELT, L. ‘/5 Subdivision. Computer Graphics Proceedings, Annual Conference Series, 2000.

[30] HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN, H., MCDONALD, J.,
SCHWEITZER, J., and STUETZLE, W. Piecewise Smooth Surface Reconstruction. In Computer

Graphics Proceedings, Annual Conference Series, 295-302, 1994,

[31] BIERMANN, H., LEVIN, A., and ZORIN, D. Piecewise smooth subdivision surfaces with normal

control. Tech. Rep. TR1999-781, NYU, 1999.
[32] ZHANG, H., and WANG, G. Honeycomb subdivision, Journal of Software, 2002 Vol.13, No.4

[33] Tony DeRose, Michael Kass and Tien Truong, Subdivision Surfaces in Character Animation,

SIGGRAPH '98

[34] ZORIN, D., SCHRODER, P. and SWELDENS, W. Interpolating Subdivision for Meshes with

Arbitrary Topology. Computer Graphics Proceedings (SIGGRAPH 96) (1996), 189-192.

[35] Denis Zorin and Peter Schroder. A unified Framework for Primal/Dual Quadrilateral Subdivision

Schemes. Compu. Aided Des. 2000.
90

[36] Luiz Velho, and Denis Zorin. 4-8 Subdivision. Computer Aided Design. 2001.

[37] Denis Zorin, Peter Schroder, and Wim Sweldens. Interpolating Subdivision for Meshes with

Arbitrary Topology.

[38] Adi Levin, Combined subdivision schemes for the design of surfaces satisfying boundary conditions,

Computer Aided Geometric Design, Volume 16

[39] M. Levoy and T. Whitted. The use of points as a display primitive. Technical Report 85-022,

Computer Science Department, UNC, Chapel Hill, January 1985

[40] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, Surfels: Surface Elements as Rendering

Primitives, SIGGRPH 2000, Computer Graphics Proceedings

[41] P. Hebert, D. Laurendeau, and D. Poussart. Scene reconstruction and description: Geometric
primitive extraction from multiple view scattered data. In IEEE Computer Vision and Pattern

Recognition 1993, pages 286-292, 1993.

[42] M. Rutishauser, M. Stricker, and M. Trobina. Merging range images of arbitrarily shaped objects.

In IEEE Computer Vision and Pattern Recognition 1994, pages 573-580, 1994.

[43] P. Besl and N. McKay. A method for registration of 3-d shapes. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 14(2):239-256, February 1992.

[44] N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi-based surface reconstruction algorithm.

Proceedings of SIGGRAPH 98, pages 415422, July 1998.

[45] Shachar Fleishman,Marc Alexa,Daniel Cohen-Or,Cl’audio, and T. Silva, Progressive Point Set

Surfaces, ACM Transactions on Graphics, Vol. 22, No. 4, October 2003,

[46] D. Levin, Mesh-Independent Surface Interpolation, Geometric Modeling for Scientific Visualization

2003

91

[47] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Surface Reconstruction from

Unorganized Points Computer Graphics (SIGGRAPH) Volume 26, Pages 19-26, 1992

[48] M. Waschbiisch, M. Gross, F. Eberhard, E. Lamboray and S. Wiirmlin, Progressive Compression

of Point-Sampled Models, Eurographics Symposium on Point-Based Graphics (2004)

[49] T. K. Dey and J. Hudson. PMR: point to mesh rendering, a feature-based approach. Proc. IEEE

Visualization 2002, (2002), 155--162.
[50] Gu X., Gortler S.J., and Hoppe H. Geometry images. In proc. SIGGRAPH 02 (2002), pp.355—361
[51] Hoppe H., Progressive meshes. In Proc. SIGGRAPH 96 (1996), pp.99—108

[52] Botsch M., Wiratanaya A., and Kobbelt L., Efficient high quality rendering of point sampling

geometry. In Proc. Eurographics workshop on Rendering (2002), pp.53-64

[53] Mark Pauly, Markus Gross, and Leif P. Kobbelt, Multiresolution Modeling of Point-Sampled

Geometry. ETH Zurich Technical Report, 2002

[54] T. K. Dey, J. Giesen and J. Hudson. Decimating Samples for Mesh Simplification, In Proc. 13th

Canada Conference on Computational Geometry. Waterloo, Canada, 2001, p-85-88.

[55] C. Moenning and N. A. Dodgson, A new point cloud simplification algorithm, 3rd IASTED
International Conference on Visualization, Imaging, and Image Processing (VIIP 2003) 8-10 Sep 2003,

Benalmadena, Spain

[56] C. Moenning and N. A. Dodgson, Fast Marching farthest point sampling for implicit surfaces and

point clouds. Computer Laboratory technical Report No. 565, University of Cambridge, UK, 2003

[57] Diego Nehab and Philip Shilane, Stratified Point Sampling of 3D Models, Eurographics Symposium

on Point-Based Graphics (2004)

[58] Botsch M., and Kobbelt L., High-Quality Point-Based Rendering on Modern GPUs, in 11th Pacific

Conference on Computer Graphics and Applications (2003), pp. 335-343

92

[59] Facundo Mémoli and Guillermo Sapiro, Comparing Point Clouds, Eurographics Symposium on

Geometry Processing (2004)

[60] http://graphics.stanford.edu/

[61] CyberWare, http://www.cyberware.com, http://www.cyberware.com/samples/index.html

[62] C. Bajaj, F. Bernardini, and G. Xu. Automatic reconstruction of surfaces and scalar fields from 3D
scans. Computer Graphics Proceedings, Annual Conference Series. Proceedings of SIGGRAPH °95

(1995), pp. 109-118.

[62] N. Amenta, S. Choi, T. K. Dey and N. Leekha. A simple algorithm for homeomorphic surface

reconstruction. Proc. 16th Sympos. Comput. Geom., 2000, 213--222.

[63] T. K. Dey and J. Giesen. Detecting undersampling in surface reconstruction. Proc. 17th

Ann.Sympos.Comput. Geom., (2001), 257--263.

[64] T. K. Dey and S. Goswami. Tight Cocone: A water-tight surface reconstructor. Journal of Computing

and Information Science in Engineering, Vol. 3 (2003), 302--307.

[65] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R.
Evans, Reconstruction and Representation of 3D Objects with Radial Basis Functions, Computer

Graphics (SIGGRAPH “01) 2001, pp. 67-76

[66] M. S. Floater and M. Reimers, Meshless Parameterization and Surface Reconstruction, Computer-

Aided Geometric Design (2001), Volume 18, pp. 77-92

[67] http://www.alias.com/eng/support/studiotools/documentation

[68] http://www.acm.uiuc.edu/sigmil/RevEng/

[69] Warren, J. Subdivision Methods for Geometric Designng, Unpublished manuscript, November 1995.

93

