NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Extending Two Drawing Frameworks to
Create LaTeX Picture Environments

JIE XIAO

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

MARCH 2005

© JIE XIAO, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04459-4
Our file Notre référence
ISBN: 0-494-04459-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Extending Two Drawing Frameworks to Create LaTeX Picture

Environments
Jie Xiao

This thesis presents the detailed review of two graphical drawing frameworks, Graphviz
and Drawlets, and the design and implementation to customize the two frameworks into
WYSIWYG tools supporting LaTeX picture environment commands. With these tools,
graphs can be drawn and manipulated on a GUI, and then saved into a TeX file directly.
Both tools support the basic drawing commands, which allow drawing graph or
connected graphs be composed of elements such as lines, vector, ellipses, rectangle, and
text. Graphviz LaTeX Tool’s layout algorithms produce either directed or undirected
graphs in a well organized formats, whereas Drawlets LaTeX Tool imposes the
constraints to the connecting lines, and still leaves the flexibility to allow drawing any
kind of graphs. Graphviz tool provides Menu and Dialog Box driven GUI, and the GUI

of Drawlets tool is Toolbar driven.

iil

Acknowledgements

I would like to thank my supervisor, Professor Peter Grogono, for the most interesting
project, which stimulates me to complete my study. Also, I would like to express my

warmest gratitude for his patience and invaluable guidance.

I thank my husband for his patience, understanding, and support during this long study,

and my son for the times not being able to stay with him.

Special thanks for my parents, their encouragement accompanied me all the time during

all my studies in all the programs.

v

Table of Contents

LIST OF FIGURES Vil
LIST OF TABLES VIII
ACRONYMS AND DEFINITIONS IX
CHAPTER 1. INTRODUCTION 1
1.1. DRAWING PICTURES IN LATEX 1
1.2. IMPORTING PICTURES IN LATEX 2
1.3. MOTIVATIONS 3
14. CONTRIBUTION OF THE THESIS 4
1.5. ORGANIZATION OF THE THESIS 5
CHAPTER 2. REVIEW OF GRAPHICAL DRAWING TOOLS 7
2.1. GRAPH VISUALIZATION TOOLS 7
2.1 1. AISEE ..ttt ettt et s e e et et e R e et e et s n e e Rt e R et e A s e st e st neantesannasrenns 8
2,12, GRAPHVIZ ..ot ssaessacae e s st e et et s beae ot as et aes et eatacesees et eaeseanaas s ser e st assesasesesssasasasas 11
2.2. TOOLS CREATING FIGURES FOR LATEX DOCUMENTS 13
2210 IPE et ettt ettt sk e a st n s ere e eee e sn e e n e e e e en e e st et et e et e saeatenas 14
2.2.2. VG ettt re vttt et an et et s se et st e st e ett s et e et e et e et et e raeareeanersnenraras 15
23. TOOLS GENERATING LATEX COMMANDS 17
2.3 1. JASTEX e ctiiitriivirtesetirceste s st e cee st e saesestaes b e sasens s et s sa e ssee e escate s masesan e e reesabe s sas e neeraetaneresnasaet 18
2320 JPICEDT oottt ettt ettt e e s et b st e s taane 19
24. EXTENDIBLE DRAWING FRAMEWORKS 22
24,1, DRAWLETS ..cotiiiiteicrreneeeeersreseceseeseeetessessresseeseesesnsaneanisntesranssaassmesonesaneraneennsrseeersncaneeserensoncs 22
242, GEF ..ttt ettt et et b s e ae e n e saa e e e n s saeene s naseaenee 23
243, GRAPHVIZ....cueoiiiieiiteiete ettt ettt et e ettt coea e e e sotse et et s nete st emt e s et e st meant st ereeans e eseennestentenes 25
244, TFIG.cu.iiciiiuieieeei ettt ettt s e ae st et s e ae et s e e st bt s e be s e e et s e e ene s e e e e e n e e n e s st s aaenasanan 27
2.5. APPLICATIONS OF DRAWING FRAMEWORKS 29
2.6. LATEX TOOL IMPLEMENTATION 30
CHAPTER 3. GRAPHVIZ LATEX TOOL 32
3L GRAPHVIZ OVERVIEW 32
3.1.1. DOTTY (LEFTY) SYSTEM COMPONENTS.......ccotemeurmemneetrtreeestnterentaenesessestsmstsesesesescussessnsnsassssssns 32
3.1.2. DOTTY DESIGNoouiuriiiererereatertraercessereasassssasssesmacossesesscassssassstrsntrtocasatsenssessinsacraressesssreasarens 38
3.2. DESIGN OF GRAPHVIZ LATEX TOOL 41
3.2.1. CUSTOMIZING DOTTY ...couiuriiurininreenrieerseestsisttetssesesessienssesessensaesesctseesenssssesestocotasstessssassessensne 41
3,22, COMMON FUNCTIONSceuetereerrerernressersnrassstotsnsasasaesesssssesesesssieneetstststesesssesentattstesssssesssssesesasne 43
3.3. IMPLEMENTATION OF GRAPHVIZ LATEX TOOL 44
34. SAMPLE DRAWING OF GRAPHVIZ LATEX TOOL 45
CHAPTER 4. DRAWLETS LATEX TOOL 48
4.1. DRAWLETS DESIGN OVERVIEW 48

4.1.1. FUNDAMENTALROLESootiiititriiitcietcitit sttt ettt smnnens
4.1.2. CLASS DIAGRAMSoovttiiiimeritieneries it sse s e ss s ceeest s s saas
4.1.3. PACKAGEDESIGN.....cocoiiiiiieiiretceinintc ettt et s

4.2. DESIGN OF DRAWLETS LATEX TOOL

4.2.1. CUSTOMIZING DRAWLETS EXAMPLE......c.cccecoteiitiriuinereiiernninccrneeseeseeresnesenne
422. CLASS DIAGRAM OF DRAWLETS LATEX TOOLcocoiniiiiiiiiiiiiiiiiicn e,

4.3. IMPLEMENTATION OF DRAWLETS LATEX TOOL

4.4, SAMPLE DRAWING OF DRAWLETS LATEX TOOL

CHAPTER 5. COMPARISON OF THE TWO LATEX TOOLS

5.1. FEATURES SUPPORTED

5.1.1. GRAPHVIZ LATEX TOOL......cciiiiriineiriirieesieteeeesceeesresnnenesessessreesseeseessenesnecs
5.1.2. DRAWLETS LATEX TOOL....ccueitiiiiieiieieteieceeciecce e seesiceeccmesaneemeenen

5.2 GRAPH LAYOUT ALGORITHMS AND CONSTRAINTS

5.2.1. GRAPHVIZ LATEX TOOL......coctiieritereeiernccne sttt sss s nenas
5.2.2. DRAWLETS LATEX TOOL.....ccooiiiioiiieit e

5.3. GRAPHICAL USER INTERFACE

5.3.1. GRAPHVIZLATEX TOOL......ooutieeierrrieeeeereenieteeieieseeesnessesesseeesveesenenessnesenneas
5.3.22. DRAWLETS LATEX TOOL.....c..cocceiiimiiierienirirecicteccsceiscsnac st sas i v s eaeees

CHAPTER 6. CONCLUDING REMARKS

6.1 CONCLUSIONS

6.2 SUGGESTIONS FOR FUTURE WORK

REFERENCES

APPENDIX A. INSTALLATION AND SETUP

APPENDIX B. LATEX PICTURE ENVIRONMENT COMMANDS

APPENDIX C-1. DEVELOPMENT OF SHELLS SPECIFIED IN GDL
APPENDIX C-2. DEVELOPMENT OF SHELLS SPECIFIED IN DOT
APPENDIX C-3. SAMPLE DRAWING OF VGJ SPECIFIED IN GML
APPENDIX D. LATEX TOOLS OUTPUTS IN TEX FORMAT

APPENDIX E-1. PSEUDO CODE FOR GRAPHVIZ TOOL

APPENDIX E-2. PSEUDO CODE FOR DRAWLETS TOOL

APPENDIX F-1. CODE FOR GRAPHVIZ TOOL (LEFTY)

APPENDIX F-2. CODE FOR DRAWLETS TOOL (JAVA)

vi

100
101
102
109
114
118
128

List of Figures

Figure 2.1-1 Visualization of Development of Shells by aiSee
Figure 2.1-2 Visualization of Development of Shells by Graphviz dot
Figure 2.2-1 Class Hierarchical Diagram for VGJ Layout Algorithms

Figure 2.3-1 JasTex Drawing Frame
Figure 2.3-2 JasTex LaTeX Code Frame

Figure 2.3-3 jPicEdt 1.3.2 User Interface and Sample Drawing
Figure 3.1-1 Sample Finite State Machine in Dotty WYSIWYG View
Figure 3.1-2 Expanded Dotty Program View ...

Figure 3.3-1 Main Structure of latex.lefty

Figure 3.4-1 Sample Lattice Diagram in Graphviz LaTeX Tool
Figure 3.4-2 Sample Lattice Diagram Generated from TeX File
Figure 4.1-1 Class Diagram for Drawlets Fundamental Roles
Figure 4.1-2 Class Hierarchical Diagram for Figure Implementers
Figure 4.1-3 Class Hierarchical Diagram for Handle Implementers
Figure 4.1-4 Class Hierarchical Diagram for Locator Implementers
Figure 4.1-5 Class Hierarchical Diagram for Tools

Figure 4.1-6 Package as Building Blocks

Figure 4.1-7 Drawlets Framework Package Diagram
Figure 4.2-1 Simplified Class Diagram of Drawlets LaTeX Tool
Figure 4.3-1 Main Structure of LatexGenerator Class
Figure 4.4-1 Sequence of Drawings in Drawlets LaTeX Tool
Figure 4.4-2 Sample Lattice Diagram in Drawlets LaTeX Tool
Figure 4.4-3 Sample Lattice Diagram Generated from TeX File

Figure 5.1-1 Different Shapes and Lines Supported by Graphviz LaTeX Tool.....................
Figure 5.1-2 Different Shapes and Lines in Graphviz Tool Generated from TeX file...........
Figure 5.1-3 Different Shapes and Lines Supported by Drawlets LaTeX Tool...........c.o......
Figure 5.1-4 Different Shapes and Lines in Drawlets Tool Generated from TeX file

Figure 5.2-1 Class Diagrams for Elements Constraint
Figure 5.3-1 GUI of Graphviz LaTeX Tool and its Supported Menus
Figure 5.3-2 Dialog Boxes Supported by Graphviz LaTeX Tool

Figure 5.3-3 Layout Effects on Sample Graph (Middle dot and Right neato)ce.oeeennes..

Figure 5.3-4 GUI of Drawlets LaTeX Tool

vii

10
12
17
18
19
21
35
36
45
46
47
49
52
53
54
55
56
58
61
64
66
67
68
70
71
73
74
79
81
82
83
83

List of Tables

Table 3.1-1 Graphviz Toolkit Components

Table 4.1-1 Drawlets Framework Packages

viil

33
57

2D
ASCII
AWK
AWT
CAD
CGD
DOT

dot
DVI
EPS
ER
ERML
FIG

GasTeX
GDL
GEF
GIF
GML
GUI
GXL
HTML
ILE
JFC
JPIC-XML
JVM
LaTeX

Acronyms and Definitions

Two-dimensional

American Standard Code for Information Interchange

Aho, Weinberger, Kernighan (Pattern Scanning Language)
Abstract Window Toolkit

Computer-Aided Design

Clan-based Graph Drawing

A common attributed graph data language for Graphviz graph
manipulation tools

Graphviz layout tool for directed graph

Device-Independent (File Name Extension)

Encapsulated PostScript

Entity Relationship

A language based on XML to convert an ER-diagram

A vector drawing format which can be used with programs such as xfig to
produce simple figures for documents

A set of LaTeX macros which allows easily drawing graphs
Graph Description Language

Graph Editing Framework

Graphic Interchange Format (File Name Extension)

Graph Modeling Language

Graphical User Interface

Graph eXchange Language (based on XML)

Hyper Text Markup Language (and File Name Extension)
Incremental Layout Engine

Java Foundation Class

An XML format specially tailored for jPicEdt

Java Virtual Machine

A macro package which sits on top of TeX and provides all the structuring

facilities to help with writing large documents

iX

lefty
Lefty

MiKTeX
ND

oS
PDF
PGML
PNG
PS
RMD
SQL
SVG
TeX

UML
VCG
VGJ

W3C

WYSIWYG
XML

A programmable editor for technical pictures in Graphviz Toolkit
A script language

An up-to-date TeX implementation for the Windows operating system
Node

Operating System

Portable Document Format

Precision Graphics Markup Language

Portable Network Graphics (graphic file standard/extension)
PostScript

File extension for Microsoft RegMaid Document

Structured Query Language

Scalable Vector Graphics (W3C)

An extremely powerful macro-based text formatter written by Donald E.
Knuth

Unified Modeling Language

Visualization of Compiler Graphs

Visualizing Graphs with Java

World Wide Web Consortium

World Wide Web

What You See Is What You Get

eXtensible Markup Language

Chapter 1. Introduction

LaTeX [1] is a document preparation system for high-quality typesetting. It is most often
used for medium-to-large technical or scientific documents, but it can be used for almost
any form of publishing. Like documents prepared by other word processors, especially
WYSIWYG editors such as MSWord, the complex graphs and images of data structures
such as binary trees, SQL diagrams, flow charts etc. can also be included in the LaTeX

documents. Documents created with LaTeX on a properly configured system can be

exported to PostScript, PDF, and HTML.

There are two ways of providing LaTeX documents with pictures:
e Dby directly programming the pictures within LaTeX,

e by importing pictures drawn with some sort of a vector based program.

1.1. Drawing Pictures in LaTeX

The picture environment allows programming pictures directly in LaTeX. However, there
are some constraints; especially, the slopes of line segments as well as the diameter of
circles are restricted to a narrow choice of values. Besides these, the LaTeX picture
commands are flexible enough to allow one to build many kind of drawings, including

text, circles, rectangles, lines and vectors, and bezier splines.

The LaTeX picture environment uses a Cartesian coordinate system to specify the size of
a picture and the position and dimensions of objects located in the picture. The positions

and dimensions of these objects are specified in the picture commands by their

coordinates. A coordinate specifies a length in multiples of the unit length. A position is a
pair of coordinates, such as (2.4,-5), specifying the point with x-coordinate = 2.4 and y-

coordinate = -5. The basic syntax for the LaTeX picture environment is

\begin{picture} (width, height) (x-offset,y-offset)
plcture commands

\end{picture}

Everything that appears in a picture is drawn by either \put or \multiput command.
Detailed descriptions of the picture environment commands are presented in Lamport [1]
or Hypertext Help with LaTeX [2] which are extracted and listed in Appendix B in this

thesis. Oswald [3] provides many interesting examples by using these commands.

1.2. Importing Pictures in LaTeX

There are several packages allowing the import of pictures in LaTeX. The package most
broadly recommended is graphicx. While LaTeX can import virtually any graphics
format, Encapsulated PostScript (EPS) is the easiest graphics format to import into
LaTeX. For example, EPS files are inserted by specifying \usepackage{graphicx} in
the document's preamble and then using the command \includegraphics{file.eps}.
Optionally, the graphic can be scaled to a specified height or width, and rotated with the
angle option. See the excellent document Reckdahl [4] for an exhaustive treatment of

including graphics in LaTeX documents.

The EPS files are used by both LaTeX and the DVI-to-PS converter. The EPS graphics

are not included in the DVI file. Since the EPS files must be present when the DVI file is

converted to PostScript, the EPS files must accompany DVI files whenever they are

moved.

To include a picture in LaTeX document, the picture should be drawn in other software
first, and then converted to EPS format, finally imported into the LaTeX file using the
above mentioned commands. There are many graphic visualization and drawing tools
available for achieving this, such as aiSee [5], Graphviz [6], Ipe [7], VGJ [8] and jfig [9],

etc., as discussed in Chapter 2.

1.3. Motivations

It is obvious that the LaTeX picture environment has some disadvantages due to the
limited commands for few shapes and bezier curves, etc. and the constraints for some
shapes. Thus, they are not very expressive, and since there are no WYSIWYG tools, it is
tedious to draw the picture by hand, such as getting all the coordinates, etc. correct. Also,

it is hard to modify an existing picture.

However, there are still reasons for using the LaTeX picture environment. For example, it
provides compact source file, there are no additional EPS graphics files to be dragged
along. The single TeX file is self-contained and light-weight, thus the documents
produced are small with respect to bytes. The example figures used by the current work
show a ratio in the range of 10.7 to 32.4 in term of file sizes between EPS and TeX. In
the worst case, they are 23 KB vs. 710 bytes. The figures created in LaTeX picture

environment are fully standard, whereas the embedding syntax is non-standard. The

significance of "fully standard" is that, although LaTeX itself is standardized, it leaves the
way in which graphics and image files are embedded to the implementer. Consequently a
LaTeX file that includes EPS or other file types is not portable. However, a LaTeX file

that just uses the picture environment is portable.

To facilitate using LaTeX picture environment for drawing figures in LaTeX documents,
it is desirable to have WYSIWYG tools available to avoid doing it manually. The
existing tools, such as JasTex [10] and jPicEdt [11] as discussed in Chapter 2, are either

not for standard LaTeX, or do not support any layout algorithms to layout the drawing.

The Current work aims to apply the existing drawing framework, and customize it to be a
WYSIWYG tool, which can generate LaTeX codes from drawing directly. The purpose
of using the existing framework, on one side, is to save development times; also it is
expected to adopt more advanced features in the framework. For example, the framework
chosen should have the ability to layout the graph automatically in order to produce better
looking and organized drawing. A windows version LaTeX-like typesetting system,

MiKTeX [12], is chosen for the testing purpose of the current work.

1.4. Contribution of the Thesis

The contributions of this thesis fall into two areas: analysis and implementations. The
analytical contribution is the thorough review through classifying the existing graphical
drawing tools into different categories, and the selection of the frameworks which will be

extended and customized into the graphical tools supporting LaTeX picture environment

commands. The other contribution is two implementations of WYSIWYG tools for
LaTeX picture environment based on different type of framework, and the comparison of
the two tools. The Graphviz LaTeX tool is built on the Bell Labs tool Graphviz. It
provides a graphical user interface for drawing and saving the graphs into LaTeX picture
format directly. Sections 3.2 through 3.4 provide a detailed description of the design and
implementation of the GraphViz Latex tool and some examples of its use. A similar tool,
the Drawlets LaTeX tool is built by extending from Drawlets framework with detailed
descriptions given in sections 4.2 to 4.4 for its design, implementation, and examples of
its usage. Both Graphviz and Drawlets LaTeX tools support the basic drawing elements
such as lines, vector, ellipses, and rectangle, etc., and provide different ways to adjust the
positions and connections between graph nodes. They both have a GUI where the

drawing is created, manipulated, and saved into TeX file.

1.5. Organization of the Thesis

There are six chapters and several appendixes in the thesis discussing and comparing the
graphical drawing tools which can generate LaTeX commands. Chapter 1 discusses the
ways to include pictures in LaTeX document and the motivations of the current work.
Chapter 2 reviews and classifies the existing graphical drawing tools and presents some
of their extended applications. Chapter 3 and Chapter 4 first reviews the framework
used, that is Graphviz and Drawlets, and then presents the detailed design and
implementation of the LaTeX Tool on customizing the framework, respectively. Chapter
5 compares the two LaTeX tools implemented regarding their features, layout algorithms

or constraints supported, and the GUL Chapter 6 concludes the current work and

provides the suggestions for future works. Installation guide, LaTeX picture environment
commands, GDL and DOT examples, Tex output from the tools, and source codes for

both Graphviz and Drawlets tools are listed in the corresponding Appendixes.

Chapter 2. Review of Graphical Drawing Tools

Technical drawing is a very important application of computers. In many professional
disciplines, engineering drawing or blue-prints are used to detail the design and exchange
information. On the other hand, technical reports and technical publications require
illustrations and other graphics formats to express complicated ideas and display data.
CAD, Drawing & Painting Tools [13] lists many excellent software packages. This
section will focus mainly on the discussion of drawing tools and frameworks related to
the current work, i.e. tools running under Windows and creating figures for LaTeX

documents.

Available drawing tools can be mainly classified into the following four categories:
e Graph visualization tools with layout algorithm
¢ Graph drawing tools creating figures for LaTeX documents
e Graph drawing tools generating LaTeX commands
e Extensible drawing frameworks for customized drawing tools
The following sections will discuss each category in detail with given examples and some

applications based on the framework will also be presented.

2.1. Graph Visualization Tools

Graph visualization is a way of representing structural information as diagrams of
abstract graphs and networks. Automatic graph drawing has many important applications
in software engineering, database and web design, networking, and in visual interfaces

for many other domains. When working with graphs and trees, visualization usually

provides for much better and faster understanding. A simple textual rendering of graphs
is often confusing or even unintelligible. A graph visualization tool does not support an
interactive drawing interface (GUI), but runs as a command line program or starts from
the Start->Programs pop up menu. It reads a textual graph specification, prepares or
layouts the graph for visualization. aiSee [5], dot and neato etc. of Graphviz [6], VCG
Tool [14] and VGIJ [8, 15] fall into this category. Both Graphviz and VGJ are also
drawing tools with supported drawing interface and will be discussed in the later sections.
This section describes aiSee and Graphviz’s layout tools for their usage and output

format, the graph specification language and the algorithms used to layout the graph.

2.1.1. aiSee

aiSee [5] is a graph visualization tool developed based on the VCG Tool (Visualization of
Compiler Graphs). It runs under Windows, Unix, and Mac OS X (with X11). aiSee
automatically calculates a customizable layout of graphs specified in Graph Description
Language (GDL), which is then displayed, and can be printed or interactively explored.
aiSee was developed to visualize the internal data structures typically found in compilers,
but now it is widely used in many different areas, such as circuit diagrams in Hardware
Design, control flow graphs in Software Development, and relationship diagrams in
Database Management. aiSee can export graphs to various formats, including SVG, PNG,
HTML (image maps), and colored PostScript (on multiple pages for large graphs) which

can be included in LaTeX document [5].

GDL is an ASCII text representation of a graph. It describes a graph in terms of nodes,
edges, subgraphs and attributes. A subgraph is described as a normal graph except that it
is specified inside another graph, meaning graph specifications can be nested. There is
always only one top-level graph. aiSee provides special operations for subgraphs such as
folding to a summary node, boxing, clustering, or wrapping. Graphs, nodes and edges
may have attributes that specify details of their appearance on the screen such as colors,

sizes, shapes etc [16].

The same example used by [17] showing the dependencies of different shell programs is
taken, and the graph is specified in GDL with a combination of aiSee features as listed in

Appendix C-1. The visualization of the graph is shown in Figure 2.1-1.

aiSee offers 14 basic hierarchical layout algorithms for directed graphs, including a
specialized version for trees; and a force-directed layout schemes (see below) for
undirected graphs. All these partitioning procedures make use of heuristic techniques.
The graph layout can be changed either by updating the source file directly or through the
application’s layout dialog window. The layout can be extensively influenced by edge,
node and graph attributes or by different layout algorithms. Sections The Effect of the
Layout Algorithms and Tree Layout in [16] show the same graph visualized by different

hierarchical layout algorithms.

Hierarchical layout algorithms consist of the following four phases: Rank Assignment,

Crossing Reduction, Coordinate Calculation, and Edge Bending.

1572

1976 |Mashey

] Formshel] Csh

2 @ System-Y

y
4 ﬁ‘_ tosh >

1986 Cken-15

[

|

v

1968 CKornshelT>

I

|

v y
1990 Bash @
I

I

v ‘ .
future sh~-POSL POSIX

Figure 2.1-1 Visualization of Development of Shells by aiSee

aiSee combines the following four ideas in its force-directed layout algorithm: Spring
forces, Magnetic forces, Gravitational forces, Simulated annealing. And the force-
directed placement algorithm consists of four phases: Initialization phase, First iteration

phase, Optional second iteration phase, and Final improvement phase.

10

The overall layout phases of aiSee include Parsing, Grouping of Nodes and Edges

(Folding Phase), Hierarchical/Force-Directed Layout Phase, and finally Drawing phase.

2.1.2. Graphviz

Graphviz [6] is open source graph visualization software for Unix or Windows. It has
several main graph layout programs which take descriptions of graphs in a simple text
language, DOT, and make diagrams in several useful formats such as images and SVG
for web pages, Postscript for inclusion in LaTeX or other documents, or display the graph

specification in an interactive graph browser.

DOT is the graph specification language used by Graphviz. It describes three kinds of
objects: graphs, nodes, and edges. The main (outermost) graph can be directed (digraph)
or undirected graph. Within a main graph, a subgraph defines a subset of nodes and
edges. An abstract grammar defining the DOT language can be found in Appendix A in
[18]. Appendix C-2 lists the graph specified in DOT for the same shell programs used in
section 2.1.1. As the graph is directed, it can be processed by Graphviz dot and the graph

visualization is shown in Figure 2.1-2.

Unlike aiSee, Graphviz uses different graph layout tools to support different layout

algorithms which are summarized as below [19, 20]; the detailed layout algorithm used

by dot and neato will be discussed in section 5.2.1.

11

<
~)
o

1982

|

1984

l

1986

l

1988

l

1990

1

future

Thompson

P

Mashey

Bourne

/

Formshell csh

vsh esh

ksh System-V
vOsh tesh
ksh-i
|
rc KomShell Perl

Bash tel

A
ksh-POSIX POSIX

Figure 2.1-2 Visualization of Development of Shells by Graphviz dot

dot makes hierarchical or layered drawings of directed graphs. A Sugiyama-style
hierarchical layout algorithm is implemented [17, 21]. The layout algorithm aims

on edges in the same direction (top to bottom, or left to right) and then attempts to

avoid edge crossings and reduce edge length.

12

e neato makes “spring model” (“symmetric”) layout of undirected graphs. It uses
the Kamada-Kawai algorithm [22], which is equivalent to statistical multi-
dimensional scaling [23, 24].

e fdp implements the Fruchterman-Reingold algorithm [42] for “symmetric” layout.
This layout is similar to neato, but including a multigrid solver that handles larger
graphs and clustered undirected graphs.

e twopi implements the radial layout as described by Graham Wills [43].

e circo implements the circular layout combining aspects of the work of Six and
Tollis [27, 28], Kauffman and Wiese [29]. It is suitable for certain diagrams of

multiple cyclic structures.

The above mentioned tools are all static layout tools, which take the input file and layout
the graph statically in one shot. Static diagrams are not completely satisfactory because in
many situations, the displayed graphs can change. Three common scenarios are: manual
editing, browsing large graphs, and visualizing dynamic graphs. Graphviz also supports
incremental layout heuristic for visualizing dynamic graphs, e.g.,, DynaDAG for

incremental layout of directed acyclic graphs drawn as hierarchies [30, 31].

2.2. Tools Creating Figures for LaTeX Documents

There are many tools which can create figures in postscript for LaTeX document, such as
daVinci, Dia, Graph Layout Toolkit, GraphEd, Graphlet, Graphviz, Ipe, Ivtools
(Unidraw), VGJ and Xfig etc. (web links are available in [13]). This section discusses Ipe

and VGJ, some of the remaining tools will be covered in section 2.1.4. For each tool, its

13

usage, the output format and the algorithms used to layout the graph if applicable are

discussed.

2.2.1. Ipe

Ipe [7] is an extendible drawing editor for Unix, Windows, and Mac OS X systems. It
allows creating figures in PDF format for inclusion into LaTeX documents as well as
stand-alone PDF documents, for instance to print transparencies or for on-line
presentations. Ipe drawings combine postscript data with LaTeX source code, that are
both stored in the same file. Users can create Ipelets (Ipe plug-ins) to add their own
functions to Ipe, extending it with editing functions or geometric objects for their desired

tasks.

Ipe allows preparing and editing drawings with a variety of basic geometry primitives
like lines, splines, polygons, circles etc. through a graphical interface, but without
providing any layout algorithm. Ipe allows adding text to the drawings, and unlike most
other drawing programs, Ipe treats these text object as LaTeX source code in the picture
environment. When the file is saved, it converts the LaTeX command to PDF or
Postscript, thus produces one pure Postscript/PDF file. The text is displayed as it will
appear in the figure. This makes it easy to enter mathematical expressions, and to reuse
the LaTeX-macros of the main document. For example, if LaTeX commands that are
defined in additional LaTeX packages are needed, they can be included by
(\usepackage) in the LaTeX preamble, which can be set in Document properties in the

Edit menu. After a text object is created or edited, the Ipe screen will display the

14

beginning of the LaTeX command. Selecting Run Latex from the File menu converts the
text object at once and creates the PDF/Postscript representation, along with the TeX file

containing the LaTeX source code of the text object.

Except for PDF/Postscript, Ipe supports one other file format, which is a pure XML
implementation. Files stored in this format can be parsed with any XML-aware
application, and you can create XML files for Ipe from your own applications. Ipe
ignores all attributes it doesn’t understand, and they will be lost if the document is saved

again from Ipe. The Ipe Manual [32] describes this format in details.

2.2.2. VGJ

VG]J [8], Visualizing Graphs with Java, is a tool for graph drawing and graph layout
under both Unix and Windows systems. Graphs can be input into VGJ in two ways:
loading a textual description in GML (Graph Modeling Language) or drawing the graph
using the graph editor. It supports three layout algorithms to layout the drawing
automatically in an organized and aesthetically pleasing way. The graph drawn can be

saved either in GML or in postscript format.

GML [33] is a textual representation language for graphs. It attempts to standardize graph
input format to allow exchanging graphs between different programs. GML supports
attaching arbitrary information to graphs, nodes and edges, and is therefore able to
emulate almost every other format. The GML text can be edited directly in VGJ by

choosing Edit Text Representation (GML) from the Edit menu. A simple graph

15

containing a box and an oval with connecting edge between them is drawn and saved in

GML format which is listed in Appendix C-3.

VGIJ graph editor contains the typical features of tools that support graph drawing, for
example, it allows drawing and editing simple graphs with rectangle, oval, circle nodes
and the connecting edges, zooming in and out the drawing in the graph window. Besides,
it provides a two-dimensional analysis of the graph for viewing graphs in different
angles, whereas the typical approach uses the single dimension, level, to arrange the

nodes.

VGIJ offers several layout algorithms as shown in Figure 2.2-1. It has about 48 classes
organized in 5 packages: algorithm, examplealg, graph, gui and util. Except for the
example random algorithm (exampleAlg2) which resides in examplealg package, the rest
algorithm classes in Figure 2.2-1 and the classes related to these algorithms are all
grouped in the algorithm package. These algorithms are discussed in VGJ User Manual
[34]. The spring algorithm is actually a “force-directed’ layout algorithm for drawing
undirected graphs in the sense to reduce edge crossings and use uniform length segments
to connect the edges. The tree algorithm presents the drawing to a minimum horizontal
spacing and width in a tree style. It also does adjust for different sized nodes. For the
directed graphs, the CGD (clan-based graph drawing) algorithm is used which has the
similar four phases as used by aiSee. The Biconnect algorithm tests the graph for

biconnectivity, or makes it biconnected by adding edges.

16

<<interface>>
GraphAlgorithm

b v e =y

edges_ : Hashtable

getEdges()

2.3. Tools Generating LaTeX Commands

Figure 2.2-1 Class Hierarchical Diagram for VGJ Layout Algorithms

Spring CADAIgorithm BiconnectGraph TreeAlgorithm ExampleAlg2
EDGES :int graph_: Graph) addEdges : boolean depth_: int
compute() compute{) compute() compute() compute()
Graph

As discussed in section 1.1.1, the LaTeX picture environment is a special environment

for inserting simple drawing commands into a LaTeX file. This environment was

obviously not intended to replace more sophisticated graphical formats such as Postscript

or PDF, but was merely intended for easily incorporating small and simple drawings with

the given primitives. Examples for LaTeX commands can be found in [3]. However, even

preparing a simple drawing takes a lot of effort to calculate and put the graph elements in

the proper positions. Some works have been done on developing the graphical drawing

editor which saves the drawing into LaTeX commands directly. JasTex [10] and jPicEdt

[11] are the two examples.

17

2.3.1. JasTex

JasTex is a Graphical tool written in Java for drawing and editing graphs in the format of
GasTeX (Graphs and Automata Simplified in TeX) [35]. GasTex is a set of LaTeX
macros which allows easily drawing graphs, automata, nets, diagrams, etc. in the LaTeX
picture environment. A drawing with GasTex basically consists of nodes and edges.
JasTex supports basic nodes like rectangle, circle, oval and edges like lines and Bezier
curves without setting any constraint and layout algorithms on the drawing. Figures 2.3-1
and 2.3-2 shows the sample drawing and the corresponding LaTeX (GasTex) commands
generated in the two frames. It is obvious that all the commands related to nodes and
edges, such as \drawrect and \drawline are GasTex specific commands and they
require having the GasTex macros installed by \usepackage{gastex}. This restricts the

JasTex to limited usage.

Figure 2.3-1 JasTex Drawing Frame

18

s,

1% Generated by Jastex

Ydocumentclass{article}
\usepackage[ugenames]{color}s delete this line if you don't use colors

“{\usepackage {gastex}
\begin{document}

Zf\begin{picture}(llQ,ng(U,—39]
“1\put(0,-39) {\frauebox (119,39} {}}

‘| \dravrect(9.68,-21.415,30.32,-34. 645)
i{vdrawcircle(60.0,-16.03,17.1)

“1\drawoval (100.0,-16.03,28.57,12.17,6.09)
“|\drawline(67.73,-15.35,85.46,-15.61)

“I\drawline (30.16,-29.37,51.06,-17.99)

?~\end{picture}
T/\end{documpntﬂ

Figure 2.3-2 JasTex LaTeX Code Frame

2.3.2. jPicEdt

jPicEdt [11] is a picture editor for LaTeX written in Java. Thus, it can run on any
platform where a JVM (Java Virtual Machine) is installed. It supports drawing every
graphical element allowed by the LaTeX picture environment commands, such as lines,
arrows, circles, boxes; and the emulated elements, for example lines of any slope, circles
of any size by using the \multiput command. It supports also drawing most of the
objects allowed by the epic/eepic packages, e.g., dashed lines filled ellipse; and every

object allowed by the pstricks.sty package including filling with colors etc. jPicEdt can

19

generate the LaTeX, eepic and PsTricks commands from the drawing directly and save

them in the corresponding format, which can be then loaded again for editing.

jPicEdt saves and loads the drawings in a special way. It writes the drawing content twice
into one file, first in a special format called JPIC-XML, which is an XML format
specially tailored for jPicEdt; then in the LaTeX format (LaTeX picture environment,
eepic or PsTricks). The purpose to adding those XML codes is to allow jPicEdt to reload
the drawing without losing even the tiniest piece of information. They are commented out
so that the file can be properly compiled by LaTeX. jPicEdt can open files in the three

LaTeX formats prepared by other software by delegating to an embedded LaTeX parser.

jPicEdit always set unit length to 1 mm at the beginning of the saved file which results in
big drawings, especially when loading a file with default unit length setting (i.e., one big
point, about 1/72 in). By default, the maximum LaTeX circle diameter in jPicEdt is set to
14 mm, which corresponds to 40 big points in the default unit length setting. If loading a
LaTeX file containing a circle with 15 points in diameter (e.g. the bigger circle in Figure
2.3-3) and saving it again, this circle will be treated as 15 mm and jPicEdt will produce 4
\put commands and 44 \multiput commands for it as listed in Appendix D, whereas its

original command is just one line \put (27.00,72.00) {\circle{15.00}}.

20

Figure 2.3-3 jPicEdt 1.3.2 User Interface and Sample Drawing

Using the mouse, all the elements can be started and ended at full or half grid axes as
shown in Figure 2.3-3. For example, in one unit square (10x10), only 5 lines can be
drawn, whereas there are 25 possible slope values allowed in LaTeX picture environment
[3]. However, the precise control over the object location can be done through the

properties panel where the user can change object shape using numerical entries.

21

jPicEdt seems a powerful graph editor for drawing LaTeX picture. Although the
restrictions on mouse drawing help to some extent, the lack of supporting any layout
algorithm makes it rely on the user to position the drawing element manually, which is

tedious and time consuming.

2.4. Extendible Drawing Frameworks

The extensible drawing framework includes either drawing tools mentioned in previous
sections which focus on defining a powerful, extendible graph editor, such as Graph
Layout Toolkit, GraphEd, Graphlet, Graphviz, Ipe, Ivtools, jfig and Xfig, or frameworks
which are reusable design for building graphical applications in some particular domains,
like Drawlets [36] and GEF {37]. A good graph drawing framework would save a lot of
work avoiding building the application from scratch and would make better research
products. This section will discuss the selected frameworks with their usages, the
algorithms supported to layout the graph if applicable, the extensibility and the way to

customize them.

2.4.1. Drawlets

Drawlets is a Java version of HotDraw [38], thus a platform independent framework for
structured drawing editors. It is an extensible framework that can be used to add drawing
functionality to a host application or to build editors for specialized two-dimensional
drawings such as schematic diagrams, blueprints, music, or program designs. The
elements of these drawings can have constraints between them which make them

connected, and they can react to commands by the user [36, 39].

22

Customization can be done in the following ways. Patterns for Drawlets [36] presents the

detailed descriptions on how to implement a figure, add new tools, and make new

handles.

Add graphical aspects to your application with and without tool palettes
Add new tools and palettes for the specific purpose

Add new types of figures and associate them to the underlying domain objects

A case study [40] used HotDraw to create a planer simulator which divided the

application development into the five tasks:

24.2.

Created a default empty application using the framework which can be
customized to draw an EllipseFigure inside the application;

Addressed a Figure’s edit and selection behavior;

Explored the capabilities of Tools in greater detail and a new Tool was created to
add planets into the simulator, also appropriate Handles were developed to allow
editing of a planets mass;

Involved creating a customized Tool which focused on creating constraints
between Figures;

Addressed animation in the simulation (not applicable for Drawlets for now).

GEF

GEF [37], the Graph Editing Framework, is a free Java library that supports the

construction of graph editing applications under different operating systems. GEF

23

supports a wide range of basic graphics primitives, such as rectangle, circle, line, polygon
and text etc. for a representation of connected graphs, and user interactions for moving,
resizing and reshaping the graph elements. It also supports several novel interactions such
as the broom alignment tool and selection-action-buttons. GEF supports grid interface
that helps people make nice looking diagrams, which in turn can be viewed in multiple
coordinated windows. GEF can save and load the diagram in XML-based file formats
following the Precision Graphics Markup Language (PGML) standard [41], which is a
2D scalable graphics language designed to meet both the simple vector graphics needs of

casual users and the precision needs of graphics artists.

GEF is designed with only a few basic concepts that are implemented in clusters of
classes. They are Editor, Fig, Layer, Mode, Cmd, and Selection which can be briefly
described as follows.

e Editor is the most central class of the system; it is just a shell that dispatches
control to various other objects that do the actual drawing and processing of input
events.

e Figis drawable object that can be shown and manipulated in the Editor.

e Layer serves both to group Figs into transparent overlays and to manage redraw

order and find the objects under a given mouse point.
¢ Mode is mode of operation for the Editor.

e Cmd is an abstract class that define a dolIt() method that performs some action in

the Editor.

e Selection is object used by the Editor when the user selects a Fig.

24

GEF can be used to build a new application starting from scratch, or it can be used to add
a graphical interface to an existing application. GEF is designed in the way that new
features can be added without modifying the framework itself. The easiest way of using
GEF is to add attributes to subclasses of GEF classes, but the classes already exist in the
existing class hierarchy, then delegation must be used, instead of subclassing. These
application specific classes have to be defined in the new project package to extend GEF

and apply GEF to the project.

2.4.3. Graphviz

Except for the layout tools discussed in section 2.1.1.2, Graphviz supports also graphical
tools to run these layout programs, such as Dotty, TclDot, Grappa, Montage and TcIDG
[42]. These tools run stand-alone, but can also be extended to create interfaces to external
databases and systems. This usually involves writing Lefty, Tcl or Tcl/Tk scripts and
Java code to customize the graph editor's behavior and to program it communicate with

external files or programs.

Dotty [43, 44] is a customizable graph editor constructed as two co-operating processes.
Its main components are a programmable graphics editor (Lefty) and the graph layout
tools (dot and neato). The Lefty program that implements Dotty starts up dot as a
separate process to compute layouts. When a new layout is required, Lefty sends the
graph to dot, the layout tool computes the layout and outputs the graph (in the graph

language notation) with coordinate and size information as graph attributes. Lefty then

25

redraws the picture using the new layout. Dotty can be customized to handle graphs for
specific applications, or programmed to communicate with other processes, i.e., as a front
end for applications that use graphs. Dotty can be controlled either through a WYSIWYG
view, or through a program view. Thus, Customizations can be done online, by typing
Lefty expressions at the program view, or by creating a Lefty script in a file and loading

it in. Examples and some general guidelines for customizing Dotty are given in [44].

TclDot is a customizable graphical interface written in Tcl. It is essentially Dotty in Tcl.
TclDot binds Libgraph functions to Tcl commands, and has internal functions for
rendering graphs in Tk canvases. Although dot is linked in as a library, communication is
still handled through graph string attributes. The base graph editor is customized by

loading scripts and extensions.

TcIDG [45] is a practical user interface toolkit that incorporates incremental graph
layouts. It was written specially for prototyping user interfaces to distributed network
management systems. TclDG is a direct descendent of TclDot and built on the next-
generation of the graph libraries. The conceptual framework of TcIDG combines graphs,
views, and canvasses. It provides a Tcl script-level interface to instances of graphs,
supported by Libgraph, and to instances of views, supported by the various Incremental
Layout Engines (ILEs). The engine interface is not tied specifically to TclDG, so the set
of layout engines can be reused in other environments or is extendible. The current

selection includes:

e DynaDag - Hierarchical directed graphs, splined edges [46];

26

e OrthoGrid - Incremental manhattan layout [47];
¢ GeoGraph - User-defined node placement and straight edges. (For graphs in
which nodes are manually placed, or in which nodes have intrinsic location

properties that dictate placement).

TclDG can be customized through the following ways:
e Scriptable and customizable in Tcl;
o Extendible via other Tcl/Tk packages;

¢ Extendible via other programs using Libgraph's file language.

Grappa [46] is a graph package written in Java. It was created to provide graphical
interaction with graphs through web browsers, integrated with other Java packages. It has
a good number of useful features built into it, but is also extensible. Grappa has classes
for graph representation and communication with layout services (via a Dot language
parser). Grappa is extendible in the sense that application dependent classes can be
defined naturally as sub-classes of Grappa object classes. Although Grappa does not
share any code with the rest of Graphviz system, it adheres to Libgraph’s model and file
language, including Dot’s conventions for graphical symbols and attributes, and so fits in

well with the other graph processing tools.

244. jfig
jfig [9] is a 2D-graphics or diagram editor written in pure Java based upon xfig, a popular

graphics editor for the X11 window system. The user interface of jfig aims to be

27

compatible with xfig. jfig runs well on Unix and Linux, but the most common reason to
use jfig is to have an xfig-compatible graphics editor on a Windows system. jfig offers all
standard drawing primitives including bezier splines, each with attributes like colors, line

and fill styles, etc. jfig uses the Java2D graphics library for high-quality rendering.

From a software point of view, jfig is not just the jfig editor but a class library for the
construction of graphics editors, which consists of four Java packages. The first package,
jfig.objects, implements the graphical objects defined by the FIG format (e.g.
rectangle, polyline, text) and also some utility classes like the FIG file parser and writer.
The second package, jfig.canvas, provides the drawing canvas including
rubberbanding, buffering, and efficient redraw. The third package, jfig.gui includes
custom user interface classes. A fourth package, jfig.commands, collects the command
objects that implement the individual drawing operations in the editor. jfig includes three
main applications built from the jfig class libraries:

e jfig graphics editor is the main application built from the jfig class library. It is a
2D graphics editor based upon xfig. It tries to be as compatible with xfig as
possible with Java. It reads and writes FIG 2.1, 3.1, and 3.2 formats, supports all
object types and attributes from xfig 3.2.3, and provides all common edit
operations.

¢ FIG viewer applet allows embedding FIG files directly into HTML pages.

o The presentation viewer and applet allow building simple PowerPoint-like
presentations (slide-shows) from multiple FIG files. It uses a simple text-format

index file which specifies the names and ordering of the external FIG files.

28

By design, the jfig editor is modular and can be extended easily. This allows creating
user-defined graphics editors based on jfig by providing additional editor commands and

even new object types.

2.5. Applications of Drawing Frameworks
There are many applications developed from different drawing frameworks. Some related

to the frameworks described in section 2.4 are discussed in this section.

ERDraw [48] is an XML-based ER-diagram drawing and translation tool developed with
Drawlets framework. It supports drawing ER-diagrams visually and translating them to
relational database schema with integrity constraints automatically. ERDraw retrieves
and outputs ER-diagram in ERML file, a language based on XML to convert an ER-
diagram into ERML format and vice versa. It supports also the verification of the validity

of an ER-diagram and ensures that only a well-formed one is exported in ERML file.

There are several products that use GEF, such as ArgoUML, Bandara and Disy Cadenza
[37]. ArgoUML [49], as an example, is a modeling tool that helps on design using UML.
ArgoUML uses GEF to edit UML diagrams. The following diagram types are supported:

Class diagram, Statechart diagram, Activity diagram, Use Case diagram, Collaboration

diagram, Deployment diagram and Sequence diagram.

Several Graphviz Dotty applications are described in [43]. They all fall into the class of

customization that Dotty is programmed to act as a front-end for another process. ciao is

29

a graphical interface to the cia and ciat+ program databases which are source code
analysis tools for large programs written in C or C++ respectively. The graphical
representations help to clarify relationships between program entities. The main
customization to Dotty of ciao was the specification of a table that provides a mapping
between node types (which correspond to cia entities) and operations appropriate for each
type. The user interface functions were then modified so that when the user tries to bring
up a menu over a graph node, the menu that appears contains exactly those operations
that are appropriate. To generate complete graphs, such as the full function-to-function
reference graph or the file-to-file inclusion graph, Dotty composes a UNIX command
pipeline. The first part of the pipeline is the appropriate cia query. The second part of the
pipeline is the cia tool that generates graphs from query output. Dotty then runs this
command and collects the output graph. ciao consists of approximately 500 lines of Lefty

code. No changes to cia had to be made in implementing ciao.

2.6. LaTeX Tool Implementation

The existing graphical tools generating LaTeX commands discussed in section 2.3 show
the limitations either on the standard LaTeX picture environment or on the lack of
supporting layout algorithms. The current work aims to develop a LaTeX tool solving

these limitations within the extensible drawing framework.

As described in section 2.1.4, there exist two types of extensible drawing frameworks.

One of each type will be selected for the current project to implement a graphical tool

30

that can generate LaTeX code directly from the drawn graph. The two implementations

will be compared in chapter 5.

Graphviz shows its efficient layout algorithms for making very readable drawings of
graphs and convenient graph drawing systems as described in the previous sections,
especially Dotty which can be customized for many applications. One class of its
customization is to handle graphs for specific applications. The LaTeX tool needs only to
save the graph drawn in Dotty as LaTeX picture commands, whereas Dotty actually can
write the graphs in attributed DOT format [18] whose objects have associated layout

coordinates. Thus, customizing Dotty to a LaTeX tool seems feasible.

Drawlets was selected to perform case studies as a software evolution benchmark [50]
and on test suite maintenance in system evolution [51, 52]. As discussed in section 2.4.1,
the old version of Drawlets, HotDraw, was used in a case study to identify the problem of
large scale reuse [40]. Although Drawlets doesn’t support any specific layout algorithm,
it provides constraints to make the drawing elements connected. Also, Drawlets’s design
pattern allows extending the layout algorithms feasible by adding an algorithm package

as discussed in section 2.2.2.

31

Chapter 3. Graphviz LaTeX Tool

Graphviz LaTeX Tool is a customized graph editor extended from Graphviz’s Dotty to
generate LaTeX codes directly from the drawing graphs. Section 3.1 will briefly review
Graphviz focused on Dotty and the remaining sections discuss our work in terms of the

design, implementation, and sample drawings of Graphviz LaTeX Tool.

3.1. Graphviz Overview

Graphviz is a set of graph drawing tools for creating and editing technical pictures. The
Graphviz toolkit contains base libraries for handling attributed graphs; a collection of
graph layout algorithms; platform-dependent front ends; and a complement of file-stream

graph processors. The main components are given in Table 3.1-1 [19, 42].

Sections 2.1.1.2 and 2.1.4.4 discussed layout tools and graphical tools respectively.
Libraries and Graph Filters are out of the scope of the project and will not be discussed in
the thesis, readers are referred to [42] for the detailed information. This section will focus

on Dotty’s system components and its design.

3.1.1. Dotty (lefty) System Components

Dotty is constructed as two co-operating processes, dot and lefty. lefty [31, 53] is a
general-purpose programmable editor for technical pictures. This editor has no hardwired
knowledge about specific picture layouts or editing operations. Each picture is described
by a program that contains functions to draw the picture and functions to perform editing

operations that are appropriate for the specific picture. Primitive user actions, like mouse

32

and keyboard events, are also bound to functions in this program. Besides the graphical

view of the picture itself (WYSIWYG interface), the editor presents a textual view of the

program that describes the picture. leffy can be used as a standalone editor, to prepare

pictures for printing, but it can also communicate with other processes. Dotty is built on

top of lefty by adding the user interface and graph editing operations as Lefty functions. It

provides menu and mouse-driven graph operations. Graph layouts are made by dot,

which runs as a separate process that communicates with lefty through pipes.

following sub-sections describe briefly each of Dotty (/efty) components.

Table 3.1-1 Graphviz Toolkit Components

The

The base library for graph tools with

Libraries Libgraph attributed graph data structures and I/O
Dynagraph Incremental layout library
dot A tool for hierarchical layout of directed
graphs
neato A tool for “spring” model layouts of
Layout Tools undirected graphs
fdp A tool for “spring” layouts, similar to neato
twopi A tool for radial layout
circo A tool for circular layout
Dotty A customizable graph editor written in Lefty
Teldot ?;ustomizable graphical interface written in
Graphical WebDot A TclDot scripted WWW service for graphs
Tools in HTML documents. '
Grappa A Java package for graphs with full Java
graph data structures
Montage Generic ActiveX diagram container
Tcldg/Dged Tcl/Tk graph editor for incremental layout
Gpr Generic graph filter
Scomap Decomposes graphs into strongly-connected
Graph Filters : components —
Colorize Computes node colors from initial seeds
Unflatten Adjusts edges to improve aspect ratio of

hierarchical layouts

33

3.1.1.1 Programming Language

lefty programs are written in a scripting language (also called Lefty) whose semantic
level is about the same as conventional scripting languages (Visual Basic, Unix shell,
Tcl/Tk). Lefty has string variables with automatic runtime conversion for arithmetic,
associative arrays, hierarchical namespaces for organizing code and data, and functions
with arguments and local variables. Its standard environment includes function libraries
for working with files and processes, and a collection of common graphical widgets such
as canvases with scroll bars, dialog boxes and file selection widgets. Lefty runs on a
variety of popular window systems because it hides the host graphics and operating
system. Lefty has a small library of C code specifically for supporting graph editors. A
disadvantage of Lefty is that the language is non-standard, but most of its features, such
as functions, scalars and associative arrays, hierarchical name spaces, windows, menus,
and text-stream 1/O are familiar to experienced programmers [43]. The specification of

Lefty language can be found in [53].

3.1.1.2 Two Views

A picture in Dotty (lefty) is shown in two ways. One view is the usual “what you see is
what you get view" (WYSIWYG). The other view is a textual view of the program that
controls the picture. Users can perform operations on either view. The WYSIWYG view

is more intuitive, while the program view is more functional.

34

The WYSIWYG view is the graphical representation of the picture which can consist of
one or more widgets, such as drawing areas, buttons, lists, text areas, and scrollable
widgets. Widgets can be manipulated using built-in functions. A global table called
widgets lists all the widget entries. Each of these entries is a table that can be used to

customize the behavior of the widget.

Dotty supports two types of WYSIWYG views: a normal view and a bird's-eye view.
Each type of view can have its own way of displaying a graph and its own set of
mappings from user actions to graph operations. Figure 3.1-1 is a finite state machine

diagram loaded in Dotty’s normal graphical view.

& DOTTY

Figure 3.1-1 Sample Finite State Machine in Dotty WYSIWYG View

The program view is a textual representation of the picture state. It displays the name and
value of each global object. The textual representation can be long, so the editor presents

an abbreviated view by default: each name, value pair is displayed on a line. Clicking on

35

a line will expand the object. Figure 3.1-2 shows the program view with ‘widgets 5’

expanded.

LEFT ext view

Figure 3.1-2 Expanded Dotty Program View

36

3.1.1.3 Inter-process Communication
lefty provides built-ins for communicating with other processes by exchanging ASCII
strings. This allows lefty to communicate with many existing tools, without having to
modify these tools at all. This capability can be used in several ways [53]:

¢ Purely for output

¢ For both input and output

¢ As an extension to the editor itself

Dotty implements a function that computes the layout in the second way. This function
sends the graph to a dot process running in the background. The dot process computes the
layout and sends the graph (with layout information inserted as graph attributes) back to
the lefty process. lefty then updates the node and edge coordinates and redraws the graph

on the screen.

3.1.1.4 Built-in Functions
Lefty built-ins can be used to perform window system and graphics operations and to
access various system resources such as files. They can be classified into following

categories, refer to [53] for the complete list:
e Widget Functions (createwidget, setwidgetattr ...)
e Graphics Functions (clear, setpick, ask ...)
¢ Bitmap Functions (createbitmap, destroybitmap ...)
¢ Input and Output Functions (openio, writeline, writegraph ...)

e Math Functions (sqrt, random, toint ...)

37

e Miscellaneous Functions (echo, strien, split ...)

3.1.1.5 Dotty Functions
Dotty customizes lefly in Lefty language to handle graphs and their components. The
program includes functions to insert and delete nodes and edges, as well as to draw these
objects according to attributes such as color, shape, and style. Overall, the Dotty’s Lefty
program implements the following operations [43]:

e Create or destroy graphs.

e Create or destroy views of graphs (a graph may have several views).

e Load or save graphs to files (or sockets and pipes)

e Insert or delete nodes, edges, and subgraphs

e Pan or zoom within a view

e Search for a node by name

e Geometrically move a node (and have all its edges follow)

¢ Edit attributes of an object

3.1.2. Dotty Design

The user interface and graph editing operations of Dotty are written as Lefty programs
that are contained in several Lefty files: dotty.lefty, dotty draw.lefty, dotty_edit.lefty,
dotty layout.lefty and dotty_ui.lefty. These scripts define a set of functions and a set of
data structures. All functions and variables are stored under a table called dotty as shown
in Figure 3.1-2. The Dotty design interface is specified in [44] and briefly summarized as

follows.

38

3.1.2.1 Design Interface

dotty defines the data structure used by Dotty as two main classes of objects, graphs and
views. protogt is a table and contains the default prototype graph. One of its fields is
graph which contains default values for graph, node, and edge attributes. protogt also
contains all the functions that operate on the graph. protovt contains the default
prototype view. Like protogt, this table contains both the data and the functions that

manage a view. Two prototype views, normal and birdseye are defined.

dotty as a main entry loads the rest Lefty files. It initializes Dotty by init function, it
contains functions operating on the graph such as creategraph, layoutgraph, findnode
and setattr etc., and also functions managing views, such as createview and
destroyview. It provides utilities functions like openio, and printorsave function to

print out a graph or save it in a file.

dotty draw defines the functions to draw the graph, such as drawgraph, drawnode and

setviewsize. It contains shape functions, like shapefunc.ellipse. Adding new shape

functions need to arrange for dot to recognize these shapes.

dotty edit defines the functions to edit the graph by manipulating the graph structure,

such as mergegraph, removenode, cut and paste.

39

dotty_layout defines functions to set communications with dot process and layout the

graph like grablserver and startlayout.

dotty_ui defines user interface functions and the related data structures for both normal
and birds-eye views. By default the left mouse button is bound to inserting or moving
nodes (leftdown, leftmove and leftup), the middle button is bound to inserting edges
between existing nodes (middledown and middleup), and the right button brings up a
menu for selecting the operations to change node and edge attributes (rightdown). There

are also node and edge specific menus defined.

3.1.2.2 Output in DOT Format
Dotty is stream-oriented program; it reads graphs, computes layouts, and writes the
graphs either as layouts in a graphics language (PostScript, GIF, etc.) or as attributed
graphs whose objects have associated layout coordinates in DOT format. Attributed DOT
Format is given in Appendix C in [18] and is summarized as follow:

e Lower-left corner is set as origins

¢ Positions are represented as integers (X, Y) specified in points (1/72 of an inch)

referring to the center of the object
e Lengths are given in inches
e bb specifies bounding box of drawing in integer points

e 1p is graph or edge label position in integer points

40

o [Edge is assigned a pos attribute as B-spline control points. Edge points are listed
from top to bottom if there is no arrow; otherwise they are listed from arrow point

with prefix ‘e’ for forward arrow and ‘s’ for backward arrow

3.2. Design of Graphviz LaTeX Tool

As discussed, Dotty is a graph editor and can write the drawing into attributed graph
format. The purpose of our tool is to save the drawing graph into LaTeX picture format,
thus the tool needs to keep all functions implemented in Dotty scripts (dotty* lefty files)

and to add some functions to transform the attributed format into LaTeX commands.

3.2.1. Customizing Dotty

Following the general guidelines given in [44], we customized the tool from Dotty by
creating a new lefty script latex.lefty. This script loads dotty.lefty, defines new functions
like savelatexfile to write the graph into LaTeX format, and override predefined
functions. Unlike Dotty, it supports both dot and neato layout processes based on the

user’s choice. A batch file (latex.bat) is used to start up the program from main function.

3.2.1.1 Saving LaTeX File
The major function of the tool is savelatexfile. After the layout is done, it processes the
attributed graph and saves it into LaTeX format by doing the followings:

e Open afile as *tex

e Write out LaTeX Prefix by using default unitlength (1/72 of an inch)

e Process graph to get and write out bb (bounding box) value

41

¢ Iterate through graph nodes to get the positions and write out nodes of different
shapes by different functions supporting Box, Circle, Ellipse, Triangle, Double
Circle, Diamond, Parallelogram, Trapezium, and Msquare, and write out node
label

o Iterate through edges, identify the arrow style (backward, forward and none
arrow) and write out edge and edge label based on different rules

e Write out graph label

e Write out LaTeX Suffix

e Close the file

3.2.1.2 Customizing do layout Function

neato is compatible with dot to the extent of accepting the same input files and command
line options and writing the drawing into the same attributed graph format. Thus, Dotty
can switch between either of the two by changing the path name of the layout server. In
dotty.lefty file, by default the layout tool is set to dof as '1server' = 'dot*. The tool is
designed to support both layout processes in the way that before performing do layout, it

prompts a dialogue box for user to select the desired layout tool, dot or neato.

3.2.1.3 Overriding Predefined Functions
Some functions and default values defined by Dotty need to be overridden, such as the
default table protogt and init function defined in dotty.lefty. The normal view name of the

graphical interface should be changed to a more meaningful name like ‘Latex

42

Generator’ in the protovt table. The new item save latex file should be added into

menus table and actions.general function.

3.2.2. Common Functions
As discussed in section 1.1.1, the LaTeX picture environment is a special environment
for inserting simple drawing commands into a LaTeX file. It only provides lines with
slope (m, n) for small integer values of m and n (maximum 6 for lines and 4 for vectors,
which are lines with arrows). So if a user draws a line of general slope, the program
should move it to a ‘latex line’. In Dotty, lines are presented by edges and sides of nodes
with shape like triangle, diamond, parallelogram and trapezium. Vectors are the edges
with arrow. The following functions are needed to meet this requirement:
¢ Change number to integer: the built-in foint function truncates the decimal part of
a number; for more accuracy, this function will increment the number if the
decimal part is greater than 0.5. It will be used to set m and n in line or vector
slope (m, n) to integer.
e Remove common divisors: this function removes the common divisors of m and
n in line or vector slope (m, n) and replaces it with the same slope (a, b).
¢ Adjust slope and its length: after removing the common divisors of the slope (m,
n), if a and b in slope (a, b) are still greater than the maximum integers allowed,
this function will iterate through the allowed integer pairs to find the closest
match, slope (c, d) by comparing b/a and d/c. It also will adjust the length of the

line or vector.

43

¢ Find minimum number: this function returns the minimum value of two numbers.
It is used to set the maximum divisor to remove the common divisors of m and n

in slope (rri, n), and to set the diameters of circles and double circles.

3.3. Implementation of Graphviz LaTeX Tool

Figure 3.3-1 outlines the major structure of latex.lefty script with the comments given by
leading #. Pseudo codes for savelatexfile function, the functions for saving different
node shapes, and the two major common functions removeCommonDivisor and

adjustSlope are listed in Appendix E-1.

load the script
load dotty.lefty;

initialize latex table
latex [];

override protogt table
latex.protogt {1;

override protovt table and set the window name
latex.protovt [name = Latex Generator}];

override init function called in maiin
latex.init ();

main function to start up the program
latex.main ();

add action 'save latex file' to general actions table
latex.protogt.actions.general [save latex file] (gt, vt, data);

customize 'do layout' action in general actions table
to allow choosing different layout tools
latex.protogt.actions.general [do layout] (gt, vt, data);

function to save latex commands to a Tex file
latex.protogt.savelatexfile (gt, name, type);

function to remove common divisors for line slope
called when processing nodes and edges in savelatexfile function
latex.removecommondivisor(x, y);

global function to return minimum number

called by removecommondivisor to choose the common divisor
min (a, b);

44

global function to change number to integer without truncating
used by removecommondivisor for its arguments or line slope
integer (a);

function to adjust slope and its length
called when processing nodes and edges in savelatexfile function
latex.adjustslope (sx, sy, 1lx, 1ly);

functions to save nodes in different shapes
latex.savenode.box (fd, gt, node);
latex.savenode.circle (fd, gt, node) ;
latex.savenode.ellipse (fd, gt, node) ;
latex.savenode.triangle (fd, gt, node) ;
latex.savenode.doublecircle (fd, gt, node) ;
latex.savenode.diamond (fd, gt, node);
latex.savenode.parallelogram (fd, gt, node);
latex.savenode. trapezium (fd, gt, node);
latex.savenode.Msquare (fd, gt, node);

override and add ‘save latex file’ to general menus table
latex.protovt.menus [{general ([save latex filelll;

entry point of the program
latex.main ();

Figure 3.3-1 Main Structure of latex.lefty

3.4. Sample drawing of Graphviz LaTeX Tool
The sample lattice diagram as in reference [54] is drawn in Graphviz LaTeX tool as
shown in Figure 3.4-1. Figure 3.4-2 is the graph visualized in DVI viewer based on the

TeX output. The corresponding LaTeX commands generated are listed in Appendix D.

45

k& Latex Generator

Figure 1: The lattice M3

Figure 3.4-1 Sample Lattice Diagram in Graphviz LaTeX Tool

46

Figure 1: The lattice M3

Figure 3.4-2 Sample Lattice Diagram Generated from TeX File

47

Chapter 4. Drawlets LaTeX Tool

Drawlets LaTeX Tool is a customized graph editor based on Drawlets framework which
generates LaTeX commands directly from drawings. Section 4.1 will briefly review the
design of Drawlets framework by presenting its fundamental roles, package and class
diagrams; and the remaining sections discuss our work on the design, implementation and
sample drawings of our LaTeX tool. The common functions removeCommonDivisor and
adjustSlope created for the Graphviz LaTeX tool are reused and just implemented in a

different language, Java, thus will not be discussed again.

4.1. Drawlets Design Overview

Interfaces are the most powerful feature of Java which allows individual object to inherit
from different useful hierarchies due to the lack of multiple inheritances in Java [55]. The
design of the Drawlets framework is captured in interfaces to describe the fundamental
roles, and various kits of abstract and concrete classes are built on top of it. This enables
separating design inheritance from implementation inheritance. See More Background on

Drawlets in [36].

4.1.1. Fundamental Roles

Drawlets has the following fundamental roles: Drawing, DrawingCanvas,
DrawingStyle, Figure, Handle, Locator and Tools. Figure 4.1-1 from the Drawlets
User’s Guide [36] presents the relationships between these roles as discussed below.

(Note: some comments are from source codes)

48

Drawing: Defines a generic Drawing which holds a SequenceofFigures (or a sequence
of Figures) that can be painted and potentially manipulated. It is expected that this will

be the fundamental unit to store and retrieve diagrams, pictures, etc.

interface
1 Movablelocator

interface
Relativelocator

o S o]
£ Bedradiy ‘ :
. interface -
2 Locator
b interface
- - — P! =21 PolygonFigqure
] interface |; Ao i
Paintable K e :
L . = interface K
7 - Fiqure ‘ interface
§ interface ;
DrawingStyle
interface
SequenceOtFiqures
interface :
i EventHandler |- interface E interface
—_— | DrawingCanvas | Drawing |
interface

Handdle

Figure 4.1-1 Class Diagram for Drawlets Fundamental Roles

DrawingCanvas: Allows a sequenceOfFigures to be manipulated. It has an active Tool

(implementer of InputEventHandler) which can be used to create or manipulate various

49

kinds of Figures. When it receives an Event, it will pass it on to either a prominent

Handle associated with Figures or its active Tool.

DrawingStyle: Defines a set of getters and setters for drawing styles. brawingStyles are

used by Figure and DrawingCanvas to define various attributes such as color and font.

Figure: Defines a generic Figure that can be drawn and potentially manipulated on a
DrawingCanvas. Figures are essentially treated as rectangles by the framework but can
visually represent any shape and they draw themselves using one or more properties of a

DrawingStyle.

Handle: Defines protocols for Handles which are event handlers that may visibly appear
on a DrawingCanvas. Handles provide direct editing behavior for Figures through
Locators. When a Figure is selected by the selection Too1l, it presents a set of Handles.

Manipulating a Handle changes some properties of its Figure or performs some actions

[56].

Locator: Defines protocols for objects that provide 2-D coordinates. It’s used by most

Figures and Handles to locate them.

Tools: Unlike other roles, Tools are the implementers of the InputEventHandler

interface. They perform operations on the figures of a drawing. Tools are responsible for

50

interpreting a user action, such as a mouse click or a keyboard press, by performing some

action on the drawing, such as moving a Figure, creating a new Figure €tc.

4.1.2. Class Diagrams

Visual Paradigm for UML [57] supports two kinds of code reverse engineering: to
reverse from codes that are generated in the code generation process, or to reverse from
existing Java source files. To better understand the architecture of Drawlets framework,
Visual Paradigm was used as reverse engineering tool to generate class models based on

the existing Drawlets Java source files, and the desired class diagrams are then created.

Among the fundamental roles discussed in the previous section, Figure, Handle,
Locator and Tools are the most important ones with many subclasses implemented.
Patterns for Drawlets [36] is based on the Appendix of a paper written by Ralph Johnson
[39], it documents Drawlets framework as a set of patterns where these roles are

described.

The most important interface in Drawlets is Figure, which is the interface of drawing
elements. Figures are responsible for rendering, hittesting, and notifying dependents
when their appearance changes. Figure 4.1-2 is the class hierarchical diagram showing
the implementers of Figure supported by Drawlets framework. It is obvious that each
kind of drawing element is an implementer of Figure. By default, Drawlets supports the
simple geometric objects like Ellipse, RectangleShape, PolygonShape, Line, and

TextLabel.

51

<<interface>>

Figure
SHAPE_PROPERTY : String :
[}
setBounds() :
()
AbstractFigure
listeriors : Vector
<<interface>> <<interface>> setBounds()
LineFigure PolygonFigure [P
seitocator() setPotygor()
' ' AbstractShape TextLabel
1]
: : string : String
S H ' sotBounds() setString()
1 L
! ' JA
')
H v
! .
' '
! ' .
' LinearShape ' FilledShape Arrow
)
-Ts lineCotor : Color : lineColor : Colar line : LineFigure
sotlocator) : etBounda) FetBounds])
? : ?
1
[}
)
1
. L]
Line !
points{] : Locator :
gotLocaton) ' PolygonShape AbstractRectangleShape
--- polygon : Polygon width : int
? setPolygon() getBounds()
ConnectingLine [l&
mustConnect : boolean
focationChanged()
? Ellipse RectangleShape RoundedRectangleShape
arcHeight : int
AdornedLine Cortains() RectangleShape{) contains{)

Adomments : Vector

addAdomment()

Figure 4.1-2 Class Hierarchical Diagram for Figure Implementers

Figures 4.1-3 shows the class hierarchical diagram for Handle implementers. Handles are

InputEventHandlers. Several types of general purpose handles are already included

with Drawlets. They provide the ability to do things ranging from resizing Figures to

52

creating Lines through the corresponding handles like subclasses of BoundsHandle and

ConnectingLinePointHandle. Handles can be attached to any part of a Figure, and

they move when the Figure moves.

ConnectedLineCreationHandle

LinePointHandle

PolygonPointHandle

BoundsHandle

$gure : UneFigure

Toure : PolygorF igre

Sgure : Figure

getFigurs(}

gutFigura()

mouseDragged()

<<interface>> BottomHandle
InputEventHandler
" —
)
1
]
)
]
: BottomLeftHandle
AbstractinputEventH <<interface>>
Handle
mouseDragged(}
‘mouseClicked()
getBounds)
A BottomRightHandle
)
]
CanvasHandle !
) mouseDragged()
HANDLE SZE:iw [- "7°"=
QutandieSize()
? LeftHandle
mouseDragged()
BoxSelectionHandle LabelEditHandle SquareCanvasHandle LocatorConnectiont{andle RightHandle
box : Rectangie m Connection : Locator
getBoundsl} getabeiBoundal) 9eBoundy) getFigurel) mouseDregged()
TopHandle
mouseDragged()

TopleftHandle

AdornedLineCreationHandle

ConnectinglinePointHandle

Figure 4.1-3 Class Hierarchical Diagram for Handle Implementers

53

TopRightHandle

Three interfaces define the functionality which Locators provide as shown in Figure 4.1-
4. First, Locator itself is able to provide its x, y, r and theta; a MovableLocator can
additionally manipulate these values; and a RelativeLocator is a Locator whose
position is based on some other position. Locators are the preferred means of specifying
position in Drawlets, when combined with LocationListeners (discussed in section 5.2.2)

they allow constraints to be applied to Figures based on location.

<<interface>>
Locator
0
B
[}
1
____________]
[l
[}
]
)
[l
<<interface>> <<interface>>
AbstractlLocator RelativeLocator MovablelLocator
0 getBase() movel)
T
A ‘
]]
] [}
])
[} [}
])
[}]
[} [}
]]
] [}
)]
)]
])
[P P, decncaa N
t ' [
] 1 [
' ' [
' 1]
i : 3
PolarCoordinate FigureRelativePoint Edgel.ocator DrawingPoint : RelativePoint
)
oint TelativeX ; double starlX ; int x:int i offeetX: int
0 getFigwel() getBase() mave(} getBase()

LineFigureRelativePoint

segment : int

getFigure()

Figure 4.1-4 Class Hierarchical Diagram for Locator Implementers

54

Tools are simply InputEventHandlers that know about their canvas and act on it
depending on the events generated. They allow users to manipulate Figures, create new
Figures, or perform operations upon a Figure or the entire DrawingCanvas. For
example, a SelectionTool can be used to manipulate handles and move Figures around.

As shown in Figures 4.1-5, there is a corresponding tool for various different types of

Figures.
<<interface>>
InputEventHandler
ya\ RectangularCreationTool
] shapeCiass : Class
[}
1 basicNewFigure()
AbstractinputEventHandler
mouseReleased()
RectangleTool
? basicNewFigurs()
CanvasTool
canvas: DrawingCanvas
mouseReleased()
? AnvySidePolvgonTool
basicNewFigure()
SelectionTool ConstructionTool
referenceFigure : Figure figure : Figure
boxSaiec) oseReeaseX) PolvaonTool
numberOfSides : int
i basicNewfFigure()
PrototypeConstructionTool LabelTool ShapeTool DrawLineTool
A
prototype : Figurs anchorX: int
basicNewFigure(} basicNewr iguwe() mouseReleased() basicNewFigure()
AdornedLineTool ConnectingLineTool LineTool EllipseTool
N
basicNewfigure() basicNewFigure() basicNewfigure() basicNewFigure()

Figure 4.1-5 Class Hierarchical Diagram for Tools

55

4.1.3. Package Design

Drawlets is not just a HotDraw rewritten in Java. It was engineered using Patterns for
Building an Unusually Adaptable Java Framework [58]. It takes advantage of many of
the features of the Java Language and the more adaptable parts of the available libraries
[36]. One general principle in building the adaptable java framework is to use Packages
as Building Blocks. The packages categorized should build cleanly on one another so that
they can be easily replaced by alternate versions without impacting other packages.
Figure 4.1-6 shows the different categories of packages defined and their inter-

relationships.

Foundation Classes

Interfaces

Figure 4.1-6 Package as Building Blocks

Following the principle above, the Drawlets framework was designed to group its

interfaces and classes into different packages as listed in Table 4.1-1, where the package

56

names are simplified by suppressing the leading com.rolemodelsoft. The same rule is

applied in Figure 4.1-7, which presents the relationships between these packages.

Table 4.1-1 Drawlets Framework Packages

Package Type Package Name Description
Interface Package | drawlet All interfaces in the framework
Foundation Class | drawlet.basics Abstract classes and simple classes

Package implements interfaces
Utilities drawlet.util Utilities interfaces and classes
Package(s) which do not rely on anything
drawlet.shapes Features for general shapes
drawlet.shapes.ellipse Features for ellipse shapes
Feature Kit drawlet.shapes.lines Features for various types of lines
Packages drawlet.shapes.polygons Features for polygon shapes
drawlet.shapes.rectangles Features for rectangular figures
drawlet.text Features for text related figures
Tool Kit drawlet.awt AWT windowing toolkit
Package(s) drawlet.jfc Swing/JFC components
drawlet.examples Example class implements
Observable
drawlet.examples.awt Examples using the AWT window
Example Packages toolkit

drawlet.examples.jfc

drawlet.examples.graphnode

Examples using the Swing/JFC
components

Example to use Drawlets without a
tool palette

57

drawlet
A
)
1
1\ —
——I drawiet.basics '
drawlet.util .
drawlet.shapes ~
_eliipse] [AY T
I drawiet.shapes drawlet.text drawlet.examples
drawlet.shapes

polygon T /I\

] drawiet.shapes drawlet.examples drawtet.examples drawiet.examples
~ drawtg.shapes .rectangle w .graphnode .awt Jfe
gl lines

|V] Vv
drawlet.awt Drawtet.jfc

l

Figure 4.1-7 Drawlets Framework Package Diagram

4.2, Design of Drawlets LaTeX Tool

As with the Graphviz LaTeX Tool, the purpose of our Drawlets LaTeX Tool is to save
the drawings as LaTeX commands directly. This requires the tool to have a graphical user
interface (GUI) which allows user drawing Figures with different shapes, such as
rectangle, circle etc., lines and texts. It should also provide ways to edit figures and save

drawings in LaTeX picture commands format to a TeX file.

4.2.1. Customizing Drawlets Example
By examining and running the simple examples provided by the Drawlets framework, it

was found that the simpleModelPanel class is sufficient to get started. Becasue JFC is a

58

superset of AWT, with many more components and services [59], the one under the
examples.jfc package was chosen as the basis class. Since no updates for the
framework are required, the Drawlets framework was built into Drawlets. jar and used

as library in the current project’s LatexGen created for the LaTeX tool.

Our project creates only one package latex.main containing one class LatexGenerator
based on simpleModelPanel. All the images under Drawlets bin folder are stored under
images folder and prawlets.jar is saved under lib folder. The class LatexGenerator
uses all the functions in simpleModelpanel with the following things created and updated:
e Create saveLatexaction inner class to generate LaTeX commands for all kinds of
Figures supported by Drawlets (except rRoundeRectangleshape), which include
RectangleShape, PolygonShape, Ellipse, AdornedLine, Lifie and TextLabel.
When the action is invoked, it iterates through Figures contained in the drawing to
get their positions and transform them to LaTeX format.
e Override two functions getToolBar() and getToolPalette() defined in
SimplePanel class with correct image paths and adding tooltips.
e Add TEX image icon to ToolBar allowing perform SaveLatexAction.
e Create function saveLatex() to store the LaTeX commands generated from
drawings with LaTeX Prefix and Suffix to a TeX file.
¢ Reuse the two common functions removeCommonDivisor () and adjustSlope ()

created for Graphviz LaTeX tool to support the limited LaTeX lines.

59

4.2.2. Class Diagram of Drawlets LaTeX Tool

A simplified class diagram (Figure 4.2-1) is drawn to present the different roles (high
level abstract classes) related to LatexGenerator and the relationships between them.
LatexGenerator extends SimplePanel having two JToolBar, one for holding the list of
actions to be performed on drawing and another for storing different tools like
SelectionTool and Figure tools to be manipulated on Figures. It implements a
SimpleDrawingCanvas which resides in a GUI specific placeholder
JDrawingCanvasComponent. It obtains the drawing through singleDrawingModel,
which is then manipulated by canvasTool and CanvasHandle through Locators on the

SimpleDrawingCanvas. The major classes are discussed further as below.

Except for those used by Drawlets example SimpleModelPanel, some other Java
packages are also used which are not included in the diagram. They are java.util (use
Vector and Enumeration etc. to iterate through Figures in a drawing model), java.lang

(Math functions) and java.io (create and output LaTeX file).

AbstractLocator: Defines protocols for objects that provide 2-D coordinates with default
implementation. It’s used by most Figures (AbstractFigure and AbstractLocator) and

Handles (CanvasHandle) to locate them.

CanvasTool: Offers a simple base for Tools attached to a DrawingCanvas
(simpleDrawingCanvas). Subclasses would typically provide a constructor that takes a

DrawingCanvas aS an argument.

60

SingleDrawingModel

SimplePanel

canvas: DrawingCanvas

initiafize(}
<
drawing : Drawing ~
getDrawing()
acts
uses LatexGenerator 1 JToolBar
2N
N LatexCode : String BOTTON :int
. . initiali
SimpleDrawing otalze() 1 >0
figures : Vector 1 1 <>
addFigure{)
- 1
contains
JDrawingCanvasComponent
FosssssssSsSSsssmm" ': canvas: DrawingCanvas
. : setCanvas()
LinearShape !
lineColor : Color : owns
' 1 1
sefLocator() : <>
)
! -
: SimpleDrawingCanvas
1 <
i 1 handles : Vector <
AbstractFigure : selects .
listeners : Vector : selDrawing()
setBounds() : sets
1]
]
_________________ .
locates
N4 \4
AbstractLocator locates | CanvasHandle CanvasTool
~ HANDLE_SIZE : it canvas: DrawingCanvas
) getHandleHeight{) mouseReleased()
manipulates

CanvasHandle: Offers a simple base for handles to be used on a canvas
(simpleDrawingCanvas). Subclasses need to provide, at a minimum, implementations
for bounds () and paint (Graphics). Typically, these types of handles wait for some

outside object to ask them to takeControl() (e.g. mouse down on top of it), then they

Figure 4.2-1 Simplified Class Diagram of Drawlets LaTeX Tool

61

do something in response to mouse events, and finally they releaseControl() (e.g

mouse up).

JDrawingCanvasComponent: A Swing component which owns and acts on a
DrawingCanvas (SimpleDrawingCanvas). JDrawingCanvasComponent is GUI specific

placeholder which allows simpleDrawingCanvas to reside in JFC applications.

SimpleDrawing: A sequence of Figures to be manipulated on SimpleDrawingCanvas.

SimpleDrawingCanvas: Implements both prawingcanvas and InputEventHandler. It
supports basic functionality necessary to provide a meaningful working version of a

DrawingCanvas which is responsible for displaying and allowing the manipulation of

Drawings.

SimplePanel: Provides a basic DrawingTool consisting of groolBar (toolBar and

toolPalette) and a JprawingCanvasComponent which holds a brawingcanvas.

SingleDrawingModel: Defines the customized operations to be manipulated on the

drawing, such as clearDrawing () and saveDrawing ().

4.3. Implementation of Drawlets LaTeX Tool
As mentioned in section 4.2.1, LatexGenerator is based on the example class

SimpleModelPanel. This section will list the pseudo codes to describe the main structure

62

of the LatexGenerator class. The pseudo codes are in simplified Java format and the
comments are added inside the codes as in Figure 4.3-1. The detailed pseudo codes for

the class are listed in Appendix E-2.

// the package that LatexGenerator created in
latex.min;

// packages used by SimpleModelPanel
import ..

class LatexGenerator extends SimplePanel {
// define parameters used

// constructors are in the same formats as for SimpleModelPanel
LatexGenerator ()} {(..}

// the component holding the canvas
getCanvasComponent () {..}

// the model manipulated
getModel () {..}

// Initialize class

initialize{() {
// add toolbar for clear, save and restore ations
toolBar.add (..)

// Class for Latex code generation
class SavelatexAction extends AbstractAction {
SaveLatexAction (name, icon, model, fileName) (};

actionPerformed(action event) {
// process each figure of the drawing, such as box, line etc.
for (first figure; next figure;) {
// set each figure’s boundary and origin;
// save in LatexCode;
}
// save LatexCode to TEX file
saveLatex (LatexFileName, LatexCode);
}
}
// add icon for SaveLatexActioin
toolBar.add (new SavelatexAction{with tooltip);

}

// override the getToolBar() with tooltips and correct pathes
JToolBar getToolBar() {..}

// override the getToolPalette() with tooltips and correct pathes
JToolBar getToolPalette() {..}

// function to store the Latex code of drawings into TEx file
savelatex(filename, latexcode) {}

removeCommonDivisor (width, height) {..}

63

adjustSlope(sx, sy, width, height) {..}

main() |
initiates a LatexGenerator();

}

Figure 4.3-1 Main Structure of LatexGenerator Class

4.4. Sample Drawing of Drawlets LaTeX Tool

A sequence of drawings is listed in Figure 4.4-1 to show the usage of Drawlets LaTeX

tool.

(a) Start the Drawlets tool (b) Left click on Box icon

64

Ezf Latex Generator

(c) Left click and drag mouse on (d) Left click on Ellipse icon
drawing area, release mouse button

aaLatex Generator

(e) Left click and drag mouse on (f) Left click on Lin icon
drawing area, release mouse button

65

f&iLatex Generator B[=I B4R Laten Generator

=

(g) Left click over Box and drag mouse (h) Left click on Select icon
onto Ellipse, release mouse button

: ”Lateu Generat

(i) Left click over Ellipse () Move Ellipse up utill the line is
straight, release mouse button

Figure 4.4-1 Sequence of Drawings in Drawlets LaTeX Tool

The sample lattice diagram as in reference [54] is drawn in Drawlets LaTeX Tool as

shown in Figure 4.4-2. Figure 4.4-3 is the graph visualized in DVI viewer based on the

66

TeX output generated. The corresponding LaTeX commands generated are listed in

Appendix D.

E‘%Latex Generator

rooclar
ortholattice

boureded distribatiee

modnbar bhourded e cdistributrve
lattice attire 4 lattine
Yis (D)

s Soree lattioe v and thelr axdoms

Figure 4.4-2 Sample Lattice Diagram in Drawlets LaTeX Tool

67

boolean algebra

(i)(m)(a)(b)
(0)(M)(d)
modular
ortholattice C
()(m)(a)
(b)(o)(M) bounded distributive
lattice
(5)(m) (=) (b)(@)
ortholattice
(3)(m)(a)(b) (o)
modular bounded distributive
lattice lattice lattice
(3)(m)(a)(M) () (m)(a)(b) (5)(m)(a)(d)

lattice

(1) (m)(2)

meet semilattice

(m)

join semilattice

()

Figure 1: Some lattice varieties and their axioms

Figure 4.4-3 Sample Lattice Diagram Generated from TeX File

68

Chapter 5. Comparison of the Two LaTeX Tools

In the previous two chapters we have covered the design and implementation of Graphviz
and Drawlets LaTeX tools. This chapter discusses the two tools by focusing on their
supported features, applied layout algorithms or constraints, graphical user interface and

language used to implement the tool.

5.1. Features Supported

Both Graphviz and Drawlets LaTeX Tools support the basic LaTeX picture commands
such as \put, \oval, \line, \vector, and \makebox, which allow saving the drawings
with simple connected lines and vectors, ellipses, rectangles, triangles and the specified
texts to a TeX file. They both supports the basic functions to create and manipulate on the
graphs, such as select, cut, copy, paste, clear (new graph) and resize the graphs. They can
save the drawings to a file and retrieve them later. Besides these common features, they

support some different functions and have certain limitations.

5.1.1. Graphviz LaTeX Tool

As shown in Figures 5.1-1 and 5.1-2, Graphviz LaTeX Tool supports also the following
shapes: circle, filled circle, double circle, ellipse, triangle, diamond, parallelogram,
trapezium and msquare, and functions like undo, save graph as to save drawing to a
different file, zoom in, zoom out and print graph. 1t allows deleting all the nodes with
same attributes or grouping them to a single node. It provides muitiple views through

copy view and clone view, especially a birdseye view which always displays the entire

graph.

69

Latex Generator

Plain Text

circle

trapeznam

\
L A\
Long Label Msquare
N /]
circle diamond oval
® (oD
triangle parallelogram filled circle

Triangle / Parallelogram / &)
7

Figure 1. Sample Graph with Different Shapes and Arrows

Figure 5.1-1 Different Shapes and Lines Supported by Graphviz LaTeX Tool

70

Plain Text

circle

0

A
box Msquare trapezium
“ ~N
/

Long Label Msquare / Trapezium

AN /]
cirde diamond oval
- ‘///f
-y Dis d Owal
_\Rs\nmon > A
e

parallelogram filled circle

/ Parallelogram / ®

(Test triangle edge)

A

Figure 1. Sample Graph with Different Shapes and Arrows

Figure 5.1-2 Different Shapes and Lines in Graphviz Tool Generated from TeX file

71

Graphviz LaTeX Tool has the following limitations which are inherited from Dotty:

5.1.2.

Triangles are in the predefined form and can be changed only by its height and
width.

Lines are used to connect nodes, i.e. edges. No individual lines can be drawn.

The mouse’s middle button is used to create edges between nodes. If there is no
middle button, no edges can be drawn.

For all circles, there are limitations from LaTeX picture commands as in
Appendix B. The maximum diameters for hollow and filled circles are 40 and 15
points, respectively. This may result in the smaller circles with edge not

connected in DVI viewer.

Drawlets LaTeX Tool

There are also extra shapes supported by Drawlets LaTeX tool: pentagon and circle.

Actually, circle can be drawn with ellipse icon by dragging it to a circle visually, and

several circles can be overlapped to produce double circle or even triple circle. Lines and

vectors are used to connect different figures, but they also can be drawn alone in any

directions. Triangles and pentagons can be draw into any form that you what by clicking

and moving left mouse button. The special function supported by the tool is to copy text

from other application and paste it to the current drawing. Figures 5.1-3 and 5.1.4 shows

these as an example.

72

i E?Latex Generator

connecting

hive wathont locator rounded sepuare

iR

dl:l ub 19. r'u 1'*

The special finction supported by the tool is to copy text

frorn ather application and paste it to the current drawing

Figure 5.1-3 Different Shapes and Lines Supported by Drawlets LaTeX Tool

73

connecting line by centers

connecting line arrow end by edge 6

rounded square

double circle @

The special function supported by the tool is to copy text

line without locator

from other application and paste it to the current drawing

Figure 5.1-4 Different Shapes and Lines in Drawlets Tool Generated from TeX file

74

The followings are the limitations of Drawlets LaTeX Tool:

e The most important one is that lines connecting figures start and end in the figure
center as shown in Figure 4.4-2. This is the way that Drawlets framework is
designed to impose the constraint on Lines. Whereas for vectors, AdornedLine is
used to connect figures by edge at the arrow end (see Section 5.2.2 for more
discussions).

e The vectors can't be saved and restored to and from temp.rmd file.

e The flexibility for drawing lines, triangles and pentagons allows extremely
irregular connections and Figures drawn, which may result in an unpleasant graph
viewed in DVI viewer: this is due to the limited slope number allowed by LaTeX;
and even the closest matched slope does not match.

¢ The limitation from the LaTeX picture command for circle size also applies for
Drawlets tool, but in a different way. When the circle size is bigger than allowed,
it’s displayed as rounded square in DVI viewer as shown in Figures 5.1-3 and 5.1-

4.

5.2. Graph Layout Algorithms and Constraints

Both tools provide a way to adjust the positions and connections between nodes
automatically. Graphviz LaTeX Tool supports the static layout algorithms tools, dot and
neato, thus changes the positions in one shot, whereas the Drawlets LaTeX Tool updates
the connections between Figures dynamically through the applied constraints. Both have

advantages and disadvantages as discussed below.

75

5.2.1. Graphviz LaTeX Tool

As mentioned in section 3.2.1.2, the Drawlets LaTeX Tool is customized to support both
dot and neato layout algorithms tools through the ‘do layout’ function. These layout
algorithms rely on a specific set of fields to record position and drawing information. For
example, each node has Np_coord attribute for the position of its center, ND_width and
ND_height attributes for the size of the bounding box of the node, in inches. They will
assign node positions, represent edges as splines, handle the special case of an
unconnected graph, plus deal with various technical features such as preventing node
overlaps [19]. With the position and size information set, the tool will then draw the
nodes and edges of the graph by representing edges as line segments (even though some

of them are drawn by dot as spline curves as in Figures 5.1-1 and 5.1-2).

In both algorithms, the first step is to call a layout-specific init_graph function. For
example, dot calls the dot_init_graph function and neato calls the neato_init_graph
function to initialize the graph for the specific algorithm. Initialization will then establish
the data structures specific to the given algorithm. Both algorithms also end with the
dotneato postprocess. The role of this function is to do some final tinkering with the
layout, still in layout coordinates, such as attaching the root graph’s label, and
normalizing the drawing so that the lower left comer of its bounding box is at the origin.
In addition to the graph, the function takes an algorithm-specific function used for setting

node sizes [19].

76

dot is a four-pass algorithm for drawing directed graphs. The first pass rank () places the
nodes in discrete ranks, an efficient way of ranking the nodes using a network simplex
algorithm. The second ordering() sets the order of nodes within ranks to avoid edge
crossings. The third position() sets the actual layout coordinates of nodes. The final

pass, make_splines (), finds the spline control points for edges [17].

neato makes a ‘spring model’ layout of undirected graphs, in which nodes are treated as
physical objects influenced by forces, some of which arise from the edges in the graph.
The layout is then derived by finding positions of the nodes which minimize the forces or
total energy within the system. The forces need not correspond to true physical forces,
and typically the solution represents some local minimum. Such layouts are sometimes
referred to as symmetric, as they tend to be the visualization of geometric symmetries
within the graph. By default, neato draws edges as line segments to further enhance the

display of symmetries [19].

The limitation with these layout algorithms is that after applying both layout algorithms,
the fields that record position and drawing information are fixed by the layout library and
cannot be altered by the application. Thus, user has no control over it at all. They may do
more than what is desired. For example, node size is dependent on node label after doing

layout and the user can’t change it.

77

5.2.2. Drawlets LaTeX Tool

As mentioned in Patterns for Drawlets [36], Drawlets allows several ways of imposing
constraints on Lines. The first way of adding functionality to Lines is used in
ConnectingLine which can be forced always to be connected at both ends. The second is
by making Lines use customized locators. These locators act as constraints on the Lines'
position, and by registering a Line to listen to a Figure and then using a
RelativeLocator provided by that Figure, changes in the Figure's position are
propagated to the Line, the line then requests the updated position from the

RelativeLocator.

By default, Drawlets uses the second way to impose the constraints on Lines. It uses
Locators to specify the positions of Figures and the RelatedLocaitonListeners to provide
the dynamic updating through the constraints applied to Lines based on the Locators.
These constraints keep the Figures and Lines connected while you move them, which

allow the drawing easy manipulated and better organized.

Locators like FigureRelativePoint and LineFigureRelativePoint associated in some
way with Figures are actually FigureHolders as shown in Figure 5.2-1. If a Figure such as
AdornedLine has a FigureHolder, it becomes a RelatedLocationListener on the held
Figure. When the location of the held Figure changes, the figure (adornedr.ine) will be
notified and updates itself accordingly through asking a LineFigurerelativePoint for its

new coordinates. This is how the connecting line between two Figures (e.g., Figure and

78

AdornedLine) works. Moving the Figure allows the connected line to follow the Figure

around.
<<interface>>
RelatedlocationListener
tocationChanged()
Ay
................ lecccccccccccccana
H : '
[}
: 1 '
TextLabel Arrow Connectinaline AdornedLine
string : String fine : LineFigure mustConnect : boolean Adomments : Vector
locationChanged(} locationChanged(} locationChanged() addAdomment()
FiaureRelativePoint LinePointHandle ConnectedLineCreationHandle
relativeX : double figure : LineFigure line : ConnectingLine
getFigure() getFigure() getFiguref)
' ' }
L i]
] ']
LineFiaureRelativePoint <<interface>>
FigureHolder
segment : int
getFigure()
getFigure()
I
....................... e i
(] ‘ '
[} [} '
[] 1 1
LocatorConnectionHandle BoundsHandle PolvaonPointHandle
connection : Locator focator : Locator figure : PolygonFigure
getFigure() getFigure() getFigure()

Figure 5.2-1 Class Diagrams for Elements Constraint

The only disadvantage of the constraint imposed on Lines is that the Figures are
connected through their centers, not their edges, which are sometimes not desirable,

especially when the Figure is not filled (hollow Figure). Since the tool supports drawing

79

individual lines, there is a workaround on the way to connect Figures on edges by not
applying the constraint (see Figures 5.1-3 and 5.1-4):

¢ First draw the Figures;

e Draw lines away from Figures, thus no FigureHolder set for it;

¢ Then move either Figures or Lines to make them connected.

5.3. Graphical User Interface

The two LaTeX tools provide a GUI for the user to create and manipulate drawings on it.
The Graphviz LaTeX tool is based on Dotty which is developed using a script language
Lefty. This language supports limited widgets and graphics functions [53]. The Drawlets
tool is built on Java which is more general than Lefty, and its powerful toolkit packages,
such as the AWT class library and Swing components in JFC, allows building a user

friendly graphical interface [59].

5.3.1. Graphviz LaTeX Tool
The tool supports no toolbars and all the operations have to be done through two menus

and dialog boxes as shown in Figures 5.3-1 and 5.3-2.

Clicking the right mouse button on the blank area displays the general purpose menu
(Left in Figure 5.3-1), which provides the functions related to the whole drawing. For
example, clicking ‘save latex file’ saves the graph in a TeX file; clicking ‘do

layout’ pops up a dialog box (Right in Figure 5.3-2) for user to select the desired layout

80

tool. Figure 5.3-3 shows the example snapshots before and after applying the ‘do

layout’ function for the two algorithms, dot and neato.

atex Generator

Figure 5.3-1 GUI of Graphviz LaTeX Tool and its Supported Menus

81

give qttr?value,« eg.~:gplof=blgje

: : 7 shape=box

Figure 5.3-2 Dialog Boxes Supported by Graphviz LaTeX Tool

A node is drawn by clicking the left mouse button on the drawing area. Ellipse is the
default node shape and it can be changed by ‘set node attr’ item on the general
purpose menu. Clicking on it pops up a dialog box (Left in Figure 5.3-2); typing

shape=box in the text field, then OK, allows drawing box directly.

Clicking the right mouse button over a node brings up a menu for nodes modification.

For example ‘set attr’ allow changing node size and its other attributes. All the

functions are described in detail in [44] and will not be discussed here.

82

Figure 5.3-3 Layout Effects on Sample Graph (Middle doz and Right neato)

5.3.2. Drawlets LaTeX Tool
Figure 5.3-4 is a snapshot of the GUI of Drawlets LaTeX Tool with some explanations on

the usage of icons. Those without e);amples are self-explanatory.

Cleay

Paste frora syster

Select

Figure 5.3-4 GUI of Drawlets LaTeX Tool

&3

It is obvious that there is a corresponding icon on the GUI for each function and Figure
supported by the tool. There is also a tooltip associated with each icon which can be

displayed by moving the mouse over it, as shown for the TEX icon in Figure 5.3-4.

Clicking on different Figure icon, then left-click on the drawing area by holding and
dragging mouse directly draws different Figure. For triangle and pentagon, they can be
drawn by clicking the icon, then keeping left-clicking and moving the mouse on the
drawing area. The size of a Figure can be changed by selecting it and dragging its editing

box.

84

Chapter 6. Concluding Remarks

Two drawing frameworks were used and customized to be the graphical drawing tools
generating LaTeX picture environment commands from the drawing directly. The
implementations of the two LaTeX tools accomplished the desired objectives and will
facilitate the usage of drawing figures in the LaTeX picture environment. The work
highlights the advantages of using the LaTeX picture environment, that is, the TeX file
produced containing the figures is self-contained, light-weight, standard, and thus
portable. The following two sections summarize the work done and present suggestions

for the future work.

6.1 Conclusions

The Graphviz LaTeX Tool is based on Graphviz’s Dotty and keeps all its functions. The
tool implemented adds some functions to transform the drawing in attributed format into
LaTeX picture environment commands and saves them in a TeX file. Unlike Dotty, it

supports both dot and neato layout algorithms tools based on the user’s choice.

The Drawlets LaTeX Tool is built on top of the Drawlets framework starting with its
example class simpleModelPanel under the examples.jfc package. The tool uses the
Drawlets framework as a library and no updates for the framework were done. The
current project implements some classes and functions to save the drawings in a TeX file

in LaTeX picture environment commands format.

85

Both LaTeX Tools support the basic LaTeX picture commands such as \put, \oval,
\line, \vector, and \makebox. They both support the basic operations to create and
manipulate drawings (like select, cut, copy, paste) and to resize graphs. They can save the
drawings to a file temporarily and retrieve them later for update. Besides these common
features, they all support some other functions or features. For example, the Graphviz
tool provides multiple views, and the Drawlets tool allows copy and paste between
different applications. There are certain limitations for the tools, also: for example, they
can not create large circles as wanted due to the constraint on the LaTeX picture

environment.

Both tools provide a way to adjust automatically the positions and connections of
drawing elements. The Graphviz LaTeX Tool supports two static layout algorithms, dot
and neato, which update drawings and produce directed and undirected graphs,
respectively, in a well organized format. But this also implies that the drawing styles are
fixed by the layout algorithms and cannot be altered as user wishes. The Drawlets LaTeX
Tool provides dynamic updating through the constraints imposed on the connecting lines,
which allow the drawing to be manipulated easily. The user has the flexibility to draw the

graphs desired.

The two LaTeX tools provide a GUI for a user to create and update drawings with the

supported functions. The Graphviz LaTeX tool supports no toolbars and all the

operations have to be done through menus and dialog boxes, whereas the GUI of the

86

Drawlets tool is more user friendly; it has tool bars containing each function and Figure

supported by the tool, together with the mouse drag event.

6.2

Suggestions for Future Work

The purpose of this project is to investigate ways to build a WYSIWYG tool for the

LaTeX picture environment within the existing drawing frameworks, but not to focus on

a fully functional tool. Apparently, there are more things that could be done to improve

the tools developed.

1.

Both tools were developed and tested under Windows system, since the two
frameworks are platform independent, the tools are supposed to be work with
some updates under Unix system etc.

Both frameworks are evolving, especially for Graphviz; its version is now 1.16
comparing 1.10 when the project started. The tools need to be updated
accordingly for the new features added. For example, it seems possible to add fip
layout process to the Graphviz tool, as both neato and fip are the tools for ‘spring’

layout algorithms.

. For Drawlets tool, try to connect node by edges and handle arrow lines in Save

and Restore functions, these may need changes on the framework.

Drawlets’s design pattern allows extending the layout algorithms feasible by
adding an algorithm package, it is up to user to use it or not.

It is desirable to add grid onto drawing interface, and this can be done through

creating a new implementation of DrawingCanvas (see Patterns for Drawlets in

[36]).

87

References
1. Leslie Lamport. LaTeX: A Document Preparation System, Addison-Wesley, 1986.

2. Hypertext Help with LaTeX
http://www-h.eng.cam.ac.uk/help/tpl/textprocessing/teTeX/latex/latex2e-html/itx-
2.html, March 26, 2005.

3. Urs Oswald. Graphics in LATEX2¢, March 10, 2003.
http://www.ursoswald.ch/LaTeXGraphics/overview/latexgraphics.pdf, March 26,
2005.

4. Keith Reckdahl. Using Imported Graphics in LATEX2g, Version 2.0, December 15,
1997. http://www.ctan.org/tex-archive/info/epslatex.pdf, March 26, 2005.

5. aiSee — Graph Visualization, http://www.absint.com/aisee/, March 26, 2005.

6. Graphviz - Graph Visualization Software, http://www.graphviz.org/, March 26, 2005.

7. Ipe Home Page, http://ipe.compgeom.org/, March 26, 2005.

8. Drawing Graphs with VGJ
http://www .eng.aubum.edu/department/cse/research/graph_drawing/ graph _drawing.h
tml, March 26, 2005.

9. jfig Home Page.
http://tech-www.informatik.uni-hamburg.de/applets/javafig/index. html, March 26,
2005.

10. JasTex, http://www.liafa jussieu.fr/~gastin/JasTeX/JasTeX.html, March 26, 2005.
11. jPicEdt for LaTeX, http://jpicedt.sourceforge.net/, March 26, 2005.

12. MiKTeX, http://www.miktex.org/, March 26, 2005.

88

13.

14.

15.

16.

17.

18.

19.

20.

21.

CAD, Drawing & Painting Tools, http://gd.tuwien.ac.at:8050/E/2/, March 26, 2005.

Visualization of Compiler Graphs

http://rw4.cs.uni-sb.de/users/sander/html/gsvcgl .html, March 26, 2005.

G. Sander. Graph Layout through the VCG Tool. Technical Report A03-94,
Universitit des Saarlandes, FB 14 Informatik, 1994.
http://rw4.cs.uni-sb.de/~sander/html/gspapers.html#graphlayout, March 26, 2005.

aiSee Graph Visualization User Documentation — Windows Version 2.00. AbsInt
Angewandte Informatik GmbH, September 1, 2000.
http://www.absint.com/aisee/manual/windows/, March 26, 2005.

Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo.
A Technique for Drawing Directed Graphs. IEEE Trans. Software Engineering,
19(3):214-230, May 1993.

Emden R. Gansner, Eleftherios Koutsofios and Stephen C. North. Drawing graphs
with dot. Technical Report, AT&T Bell Laboratories, Murray Hill NJ, February 2002.

E. R. Gansner. Drawing graphs with Graphviz, Graphviz Drawing Library Manual,
November 22, 2004. http://www.graphviz.org/cvs/doc/libguide/libguide.pdf, March
26, 2005.

Stephen C. North. Drawing graphs with NEATO, Technical Report, AT&T Bell
Laboratories, Murray Hill NJ, April 10, 2002.
http://www.graphviz.org/Documentation/neatoguide.pdf, March 26, 2005.

K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understanding of
Hierarchical System Structures. IEEE Trans. Systems, Man and Cybernetics, SMC-
11(2):109-125, February 1981.

89

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 3 1(1):7-15, April 1989.s with NEATO.

J. Kruskal and J. Seery. Designing network diagrams. In Proc. First General Conf, on
Social Graphics, pages 2250, 1980.

J. Cohen. Drawing graphs to convey proximity: an incremental arrangement method.

ACM Transactions on Computer-Human Interaction, 4(11):197-229, 1987.

Thomas M. J. Fruchterman and Edward M. Reingold. Graph Drawing by Force-
directed Placement. Software — Practice and Experience, 21(11):1129-1164,
November 1991.

G. Wills. Nicheworks - interactive visualization of very large graphs. In G.
DiBattista, editor, Symposium on Graph Drawing GD’97, volume 1353 of Lecture
Notes in Computer Science, pages 403414, 1997.

Janet Six and Ioannis Tollis. Circular drawings of biconnected graphs. In Proc.
ALENEX 99, pages 57-73, 1999,

Janet Six and Joannis Tollis. A framework for circular drawings of networks. In Proc.
Symp. Graph Drawing GD’99, volume 1731 of Lecture Notes in Computer Science,
pages 107-116. Springer-Verlag, 2000.

M. Kaufmann and R. Wiese. Maintaining the mental map for circular drawings. In M.
Goodrich, editor, Proc. Symp. Graph Drawing GD’02, volume 2528 of Lecture Notes

in Computer Science, pages 12-22.

Stephen North. Incremental Layout in DynaDAG. In Proc. Graph Drawing 95,
volume 1027 of Lecture Notes in Computer Science, pages 409-418. Springer- Verlag,
1996.

Stephen C. North and Gordon Woodhull. On-line Hierarchical Graph Drawing.
AT&T Labs — Research, Florham Park, New Jersey.

90

http://www.graphviz.org/Documentation/NWO01.pdf, March 26, 2005.

32. Otfried Cheong. The Ipe manual. November 22, 2004.
http://ipe.compgeom.org/manual.pdf, March 26, 2005.

33. Graphlet, The GML File Format, http://infosun.fmi.uni-passau.de/Graphlet/GML/,
March 26, 2005.

34. Visualizing Graphs with Java (VGJ) User Manual

http://www.eng.auburn.edu/department/cse/research/graph_drawing/manual/vgj man
ual.html, March 26, 2005.

35. GasTex: Graphs and Automata Simplified in TeX
http://www liafa.jussieu.fr/~gastin/gastex/gastex.html, March 26, 2005.

36. RoleModel Software. Drawlets Home Page.
http://www.rolemodelsoftware.com/drawlets, March 26, 2005.

37. GEF Project Home Page, http://gef.tigris.org/, March 26, 2005.

38. HotDraw Home Page
http://st-www.cs.uiuc.edu/users/brant/HotDraw/HotDraw.html, March 26, 2005.

39. Ralph E. Johnson. Documenting Frameworks Using Patterns. ACM SIGPLAN
Notices, 27(10):63-76, 1992.

40. Douglas Kirk. Identifying the problems of large scale reuse: A personal case study.
Department of Computer Science, University of Strath, GLASGOW, UK.
http://www.cis.strath.ac.uk/~efocs/home/Research-Reports/EFoCS-41-2001.pdf,
March 26, 2005.

41. Precision Graphics Markup Language (PGML). World Wide Web Consortium Note,
April 10, 1998.
http://www.w3.0org/TR/1998/NOTE-PGML-19980410, March 26, 2005.

91

42.

43.

44,

45.

46.

47.

48.

49.

50.

E.R. Gansner and S.C. North. An open graph visualization system and its applications
to software engineering. Software — Practice and Experience, 30:1203-1233, 2000.

Eleftherios Koutsofios and Steve North. Applications of Graph Visualization. In
Proceedings of Graphics Interface, pages 235-245, May 1994.

Eleftherios Koutsofios, Stephen C. North. Editing graphs with dotty. Techical Report,
96b (06-24-96).
http://www.graphviz.org/Documentation/dottyguide.pdf, March 26, 2005.

J. Ellson and S. North. TcIDG - a Tcl extension for dynamic graphs. In Proc. 4th
USENIX Tcl/Tk Workshop, pages 3748, 1996.

W. Lee, N. Barghouti, and J. Mocenigo. Grappa: A graph package in Java. Proc.
Symp. Graph Drawing, GD *97, September 1997.

Kanth Miriyala, Scot W. Hornick, and Roberto Tamassia. An Incremental Approach
to Aesthetic Graph Layout. In Proc. Sixth International Workshop on Computer-
Aided Software Engineering, pages 297 {308. IEEE Computer Society, July 1993.

Shuyun Xu, Yu Li and Shiyong Lu, "ERDraw: An XML-based ER-diagram Drawing
and Translation Tool", in Proc. of the 18th International Conference on Computers
and Their Applications (CATA'2003), pp. 143--146, Honolulu, Hawaii, USA, March,
2003.

ArgoUML Project Home Page, http://argouml.tigris.org/, March 26, 2005.

Serge Demeyer, Tom Mens and Michel Wermelinger. Towards a Software Evolution
Benchmark. Proc. Int. Workshop on Principles of Software Evolution, Vienna,
Austria, September 2001.

92

51.

52.

53.

54.

55.

56.

57.

58.

59.

M. Skoglund and P. Runeson. A Case Study on Regression Test Suite Maintenance in
System Evolution. ICSM'04 - The 20th IEEE International Conference on Software
Maintenance, pp. 438-442, 2004.

M. Skoglund and P. Runeson. A Case Study on Testware Maintenance and Change
Strategies in System Evolution. Technical Report 04-007, Department of Computer
and Systems Sciences (DSV), 2004.

Eleftherios Koutsofios. Editing Pictures with lefty. Technical Report, 96b (06-24-96).
http://www.graphviz.org/Documentation/leftyguide.pdf, March 26, 2005.

How to draw Hasse diagrams (lattice diagrams) in LaTeX
http://osl.iv.edu/~tveldhui/misc/hasse.html, March 26, 2005.

James W. Cooper. The Design Patterns Java Companion. Design Patterns Series.

Addison-Wesley, October1998.

John M. Brant. HotDraw. Master Thesis, University of Illinois at Urbana-Champaign,
1995.

Visual Paradigm for UML, http://www.visual-paradigm.com, March 26, 2005.

Ken Auer. Patterns for Building an Unusually Adaptable Java Framework.
RoleModel Software, Inc.
http://www.rolemodelsoftware.com/moreAboutUs/publications/articles/javaextend.ph

p, March 26, 2005.

Cay S. Horstmann, Gary Cornell. Core Java 2 Volume I-Fundamentals. The Sun

Microsystems Press, Java Series, 2001.

93

Appendix A. Installation and Setup

MiKTeX

1.

Install the complete package of MiKTeX by running setup-2.4.1445 under
Disk:\MiKTeX or download the latest version from web:
http://www.miktex.org/setup.html

Add Drive:\texmf\miktex\bin to system variable PATH.

Two other pieces of shareware that are needed for a complete system are
GhostScript, which is a program for PostScript documents, and GSView, which
uses GhostScript to view PS documents on your computer. GSview is a graphical
interface for GhostScript under MS-Windows, OS/2 and Unix. GhostScript is an
interpreter for the PostScript page description language used by laser printers.
Install the two by running gsv45w32 and gs81/3w32 under Disk:\gsview or
download them from:

http://www.cs.wisc.edu/~ghost/

From Windows Explorer -> Tools -> Folder Options.. -> File Types -> Change...,
set DVI file extension to allow opening DVI file by DVI viewer by default.

How does MiKTeX work? Put all of the text, including the LaTeX formatting
commands into a TeX file. The program “latex” reads this file and produces a
device independent file, a DVI file, which can be viewed or printed by a DVI
viewer. MiKTeX includes a program “dvips” to turn the DVI file into a PostScript

file. All of these programs are run from the MSDOS prompt.

94

Graphviz

1.

Install Graphviz by running graphviz-1.10 under Disk:\Graphviz or download the
latest version 1.16 from web:

http://www.graphviz.org/Download windows.php

2. Remove circle on the edge by opening file under Drive:\Program Files\ATT\
Graphviz\bin\ dotty.lefty, and set ' edgehandles' = 0.

3. Install Graphviz LaTeX tool by unzipping Latex Generator.zip under
Disk:\Graphviz, which will store the tool under Drive:\Latex Generator.

4. Start Graphviz tool using batch file “/atex” under Drive:\Latex Generator (all the
batch files are stored under it), draw the graph and save it as test.tex under the
same directory; run batch file “fest” and then open fest.dvi file generated to check
the result; run “dvips” will produce PS file.

Drawlets
1. Install JDK1.3 or JBuilder4 and add Drive:\jdk1.3\bin or Drive:\jbuilder4\jdk1.3

\bin to system variable PATH.

2. Install Drawlets LaTeX tool by unzipping LatexGen.zip under Disk:\Drawlets,

which will store the tool under Drive:\LatexGen.

Start the tool in two ways: i) run batch file “java_env” under Drive:\LatexGen (all
the batch files are stored under it) to check and set JDK path, then run “run_latex”
to start the application; ii) open LatexGen. jpx project under Drive:\LatexGen in

JBuilder and run it.

95

4. Draw the graph and save it as test.tex under the same directory; run batch file
“test” and then open test.dvi generated to check the result; run “dvips” will
produce PS file.

5. Optionally, install Drawlets framework source code by unzipping drawlet2.0.zip
under Disk:\Drawlets or download the latest version from:

http://www.rolemodelsoftware.com/drawlets/index.php

96

Appendix B. LaTeX Picture Environment Commands

Command Syntax Description
\circle \circle[*] {diameter} Produces a circle of the specified diameter. If
the *-form of the command is used, LaTeX
draws a solid circle. The maximum size of a
filled circle is 15 points, and 40 for a hollow
circle.

\frame \frame({ ... } Puts a rectangular frame around the object

specified in the argument.

\framebox \framebox(width,height)[| Puts a frame around the outside of the box
position}{...} that it creates.

\dashbox \dashbox {dash Like \framebox but has an extra argument
length}(width,height)[po | which specifies the width of each dash.
s]{... }

\line \line(x-slope,y- Draws a line of the specified length and
slope) {length} slope. x-slope and y-slope must both be

integers from -6 to +6 inclusive without
common divisor larger than one.

\linethickness | \linethickness {dimension | Declares the thickness of horizontal and
} vertical lines in a picture environment to be

dimension, which must be a positive length.

\makebox \makebox(width,height)[| Creates a box to contain the specified text.
position]{ ... }

\mbox \mbox {text} Creates a box just wide enough to hold the

text in its argument.

\multiput \multiput(x coord,y Used when you are putting the same object in
coord)(delta x,delta a regular pattern across a picture.
y){number of
copies} {object}

\oval \oval(width,height)[porti | Produces a rectangle with rounded corners.
on] The optional argument, portion, allows you

to select part of the oval.

\put \put(x-coord,y- places the object specified by the mandatory
coord) {object} argument at the given coordinates.

\setlength \setlength{len-cmd} {len} | Used to set the value of a length command

\shortstack \shortstack[position]{ Produces a stack of objects. The valid
LPR\p positions are: 1, | and c.

\unitlength \unitlength {len} Defines the units used in the Picture

Environment. The default value is 1 point
(approximately 1/72.27 inch).
\vector \vector(x-slope,y- Draws an arrow of the specified length and

slope){length}

slope with the arrow head at the opposite end
of the line from the reference point. x-slope
and y-slope must both be integers from -4 to
+4 inclusive.

97

Appendix C-1. Development of Shells Specified in GDL

graph: {
title: "shells"
splines: yes
layoutalgorithm: minbackward
layout_nearfactor: 0
layout_downfactor: 100
layout_upfactor: 100

// First the time scale

node.height: 26
node.width: 60
node.borderwidth: 0
edge.linestyle: dashed

node: { title: "1972" vertical_order: 1 horizontal_ order: 1}
node: { title: "1976" vertical_order: 2 horizontal_order: 1 }
node: { title: "1978" vertical_order: 3 }

node: { title: "1980" vertical_order: 4 }

node: { title: "1982" vertical_order: 5 horizontal_order: 1 }
node: { title: "1984" vertical_order: 6 }

node: { title: "1986" vertical_order: 7 }

node: { title: "1988" vertical_order: 8 }

node: { title: "1990" vertical_order: 9 }

node: { title: "future" vertical_order: 10 horizontal_order: 1 }
edge: source: "1972" target: "1976"

edge: source: "1976" target: "1978"

{
{
edge: { source: "1978" target: "1980"
edge: { source: "1980" target: "1982"
edge: { source: "1982" target: "1984r
edge: { source: "1984" target: "1986"
edge: { source: "1986" target: "1988"
edge: { source: "1988" target: "1990"
edge: { source: "1990" target: "future

ER e e el ad

}

// We need some invisible edge to make the graph fully connected.
// Otherwise, the horizontal_order attribute would not work.

edge: { source: "ksh-i" target: "Perl" linestyle: invisible priority: 0 }
edge: { source: "tcsh" target: "tcl" linestyle: invisible priority: 0 }
nearedge: { source: "1988" target: "rc" linestyle: invisible }

nearedge: { source: "rc" target: "Perl" linestyle: invisible }

// Now the shells themselves
// Note: the default value -1 means: no default

node.height: -1
node.width: ~1
node.borderwidth: 2
edge.linestyle: solid

node: { title: "Thompson" vertical_order: 1 horizontal_order: 2 }
node: { title: "Mashey" vertical_order: 2 horizontal_order: 3 }
node: { title: "Bourne" vertical_order: 2 horizontal_order: 2 }
node: { title: "Formshell" vertical_order: 3 }

node: { title: "csh®" vertical_order: 3 shape: triangle }

node: { title: "esh" vertical_order: 4 horizontal_order: 2 }

98

node: { title: "vsh" vertical_order: 4 }
node: { title: "ksh" vertical_order: 5 horizontal_ order: 3 shape: ellipse

source: "KornShell" target: "POSIX" }
source: "KornShell" target: "ksh-POSIX" }

}
node: { title: "System-V" vertical_order: 5 horizontal_order: 5 }
node: { title: "v9sh" vertical_order: 6 }
node: { title: "tcsh" vertical_order: 6 shape: triangle }
node: { title: "ksh-i" vertical_order: 7 shape: ellipse }
node: { title: "KornShell" vertical_order: 8 shape: ellipse }
node: { title: "Perl" vertical_order: 8 }
node: { title: "rc" vertical_ order: 8 }
node: { title: "tcl" vertical_order: 9 shape: rhomb }
node: { title: "Bash" vertical_order: 9 }
node: { title: "POSIX" vertical_order: 10 horizontal_order: 3 }
node: { title: "ksh-POSIX" vertical_order: 10 horizontal_ order: 2 shape:
ellipse }
edge: { source: "Thompson" target: "Mashey" }
edge: { source: "Thompson" target: *"Bourne" }
edge: { source: "Thompson" target: "csh" horizontal_order: 4 }
edge: { source: "Bourne" target: "ksh" }
edge: { source: "Bourne" target: "esh" }
edge: { source: “Bourne" target: "vsh" }
edge: { source: "Bourne" target: "System-V' }
edge: { source: "Bourne" target: "v9sh" }
edge: { source: "Bourne" target: "Formshell" }
edge: { source: "Bourne" target: "Bash" }
edge: { source: "csh" target: "tcsh" }
edge: { source: "csh" target: "ksh" }
edge: { source: "Formshell" target: "ksh" horizontal_order: 4 }
edge: { source: "esh" target: "ksh" }
edge: { source: "vsh" target: "ksh" }
edge: { source: "ksh" target: "ksh-i" }
edge: { source: "System-V" target: "POSIX" }
edge: { source: "v9sh" target: "rc" }
edge: { source: "ksh-i" target: "KornShell" }
edge: { source: "ksh-i" target: "Bash" }
edge: { source: "KornShell" target: "Bash" }
{
{

99

Appendix C-2. Development of Shells Specified in DOT

digraph shells {
size="7,8";
node [fontsize=24, shape = plaintext];

1972 -> 1976;
1976 -> 1978;
1978 -> 1980;
1980 -> 1982;
1982 -> 1984;
1984 -> 1986;
1986 -> 1988;
1988 -> 1990;
1990 -> future;

node [fontsize=20, shape = box];

rank=same; 1976 Mashey Bourne; }
rank=same; 1978 Formshell csh; }
rank=same; 1980 esh vsh; }

rank=same; 1982 ksh "System-v"; }
rank=same; 1984 v9sh tcsh; }

rank=same; 1986 "ksh-i"; }

rank=same; 1988 KornShell Perl rc; }
rank=same; 1990 tcl Bash; }

rank=same; "future" POSIX "ksh-POSIX"; }

R R R R N i ey

Thompson -> Mashey;
Thompson -> Bourne;
Thompson -> csh;
csh -> tesh;

Bourne -> ksh;
Bourne -> esh;
Bourne -> vsh;
Bourne -> "System-V";
Bourne -> v9sh;
v9sh -> rc;

Bourne -> Bash;
"ksh-i" -> Bash;
KornShell -> Bash;

esh -> ksh;
vsh -> ksh;
Formshell -> ksh;
csh -> ksh;

KornShell -> POSIX;
"System-V" -> POSIX;

ksh -> "ksh-ir;

"ksh-i" -> KornShell;
KornShell -> *ksh-POSIX";
Bourne -> Formshell;

edge [style=invis];

1984 -> v9sh -> tcsh ;
1988 -> rc -> KornShell;
Formshell -> csh;
KornShell -> Perl;

100

Appendix C-3. Sample Drawing of VGJ Specified in GML

graph [
directed 1
node |
id 0
label "Box"
graphics [
Image |
Type "
Location "*
]
center [
x -133.0
y 64.0
z 0.0
]
width 70.0
height 42.0
depth 23.0
1
vgi [
labelPosition "below"
shape "Rectangle"
]
1
node |[
id 1
label "Oval*
graphics [
Image [
Type "n
Location ""
1
center [
x 33.0
y 65.0
z 0.0
]
width 63.0
height 37.0
depth 20.0
]
vgi |
labelPosition "below"
shape "Oval"
]
]
edge |
linestyle "solid"
label ™"
source 0
target 1

101

Appendix D. LaTeX Tools Outputs in TeX Format

TeX output for Figure 2.3-3

$Created by jPicEdt 1.x

$Standard LaTeX format (emulated lines)
$Tue Feb 01 11:19:48 EST 2005
\unitlength 1lmm

\begin{picture} (35.00,80.00) (0, 0)

\linethickness{0.15mm}

%Polygon 0 0(0.00,0.00)(10.00,60.00)
\multiput(0.00,0.00)(0.12,0.72){83}{\1ine(0,1){0.72}}
$End Polygon

\linethickness{0.15mm}

%$Ellipse 0 0(27.50,72.50) (15.00) (15.00)
\put(34.98,72.01) {\1line(0,1) {0.98}}
\multiput(34.86,73.96)(0.13,-0.97) {1}{\1line(0,-1) {0.
\multiput(34.60,74.91) (0.13,-0.47) {2} {\1line (0, -1) {0.
\multiput(34.23,75.82)(0.13,-0.30) {3}{\1line(0,-1) {0.
\multiput(33.74,76.67)(0.12,-0.21){4}{\1line(0,-1){0.21}}
\multiput(33.14,77.45)(0.12,-0.16){5}{\1ine(0,-1){0.16}}
\multiput(32.45,78.14)(0.12,-0.12) {6}{\1ine(1,0){0.12}}
\multiput(31.67,78.74)(0.16,-0.12){5}{\1ine(1,0){0.16}}
\multiput(30.82,79.23)(0.21,-0.12){4}(\line(1,0){0.21}}
\multiput(29.91,79.60)(0.30,-0.13){3}{(\1line(1,0){0.30}}
\multiput(28.96,79.86) (0.47,-0.13) {2} {\1line(1,0) {0.47}}
\multiput(27.99,79.98)(0.97,-0.13) {1}{\1line(1,0) {0.97}}
\put(27.01,79.98) {\1line(1,0) {0.98}}
\multiput(26.04,79.86)(0.97,0.13){1}{\1line(1,0){0.
\multiput(25.09,79.60)(0.47,0.13) {2} {\1line(1,0){0.
\multiput(24.18,79.23)(0.30,0.13){3}{\1ine(1,0){0.
\multiput(23.33,78.74)(0.21,0.12) {4} {\1line(1,0){0.
\multiput (22.55,78.14)(0.16,0.12) {5}{\1ine(1,0) {0.
\multiput(21.86,77.45)(0.12,0.12){6}{\1line(1,0) {0.
\multiput(21.26,76.67)(0.12,0.16){5}{\1ine(0,1){0.
\multiput(20.77,75.82)(0.12,0.21){4}{\1ine(0,1) {0.
\multiput(20.40,74.91)(0.13,0.30) {3}{\1line(0,1){0.
\multiput(20.14,73.96)(0.13,0.47){2}{\1ine(0,1) {0.
\multiput(20.02,72.99)(0.13,0.97){1}{\1ine(0,1) {0.
\put(20.02,72.01) {\1ine(0,1) {0.98}}
\multiput(20.02,72.01)(0.13,-0.97) {1}{\1line(0,-1) (0.
\multiput(20.14,71.04)(0.13,~0.47){2}{\1line(0,-1) {0.
\multiput(20.40,70.09)(0.13,-0.30){3}{\1line(0,-1){0.
\multiput(20.77,69.18)(0.12,-0.21) {4} {\1line(0,-1) {0.
\multiput(21.26,68.33)(0.12,-0.16) {5}{\1line(0,-1){0.
\multiput(21.86,67.55)(0.12,-0.12){6}{\1line(1,0){0.
\multiput(22.55,66.86)(0.16,-0.12){5}{\1line(1,0){0.
\multiput(23.33,66.26)(0.21,-0.12) {4} {\1line(1,0){0.
\multiput(24.18,65.77)(0.30,-0.13) {3}{\1line(1,0){0.
\multiput (25.09,65.40) (0.47,-0.13) {2} {\1line(1,0) {0.
\multiput(26.04,65.14) (0.97,-0.13){1}{\1line(1,0){0.
\put (27.01,65.02) {\1line(1,0) {0.98}}
\multiput(27.99,65.02)(0.97,0.13){1}{\1ine(1,0){0.
\multiput(28.96,65.14) (0.47,0.13){2}{\1line(1,0){0.

arcStart=0.0 arcExtent=0.0

97}}
47}}
301}

97}}
47}}
3031}
21}}
16}}
121}
16}}
21}}
30}
47}}
97}}

971}
47}}
30}}
21}}
16}}
12}}
16}}
21})}
30}}
47}}
97}}

971}
47}}

\multiput(29.91,65
\multiput(30.82,65
\multiput(31.67, 66

.40) (0.30,0.
.77)(0.21,0.
.26)(0.16,0.

13){3}{\1line(1,0) {O.
12) {4} {\1ine(1,0) {O0.
12) {5} {\1line(1,0) {0.

102

3031}
2131}
16}}

\multiput(32.45,66.86)(0.12,0.12){6}{\1ine(0,1){0.12}}
\multiput(33.14,67.55)(0.12,0.16){5)}{\1ine(0,1){0.16}}
\multiput(33.74,68.33)(0.12,0.21){4}{\1ine(0,1){0.21}}
\multiput(34.23,69.18)(0.13,0.30){3}{\1ine(0,1){0.30}}
\multiput(34.60,70.09)(0.13,0.47){2}{\1line(0,1){0.47}}
\multiput(34.86,71.04)(0.13,0.97){1}{\1line(0,1){0.97}}
$End Ellipse

\linethickness{0.15mm}

$Ellipse 0 0(25.00,55.00) (10.00) (10.00) arcStart=0.0 arcExtent=0.0
\put (25.00,55.00) {\circle{10.00}}

$End Ellipse

\end{picture}

TeX output for Figure 3.4-1

\documentclass{article}
\begin{document}

\begin{picture} (172,216)

% draw node 0

\put (86,190) {\circle{36}}

\put (86,190) {\makebox(0,0){}}

% draw node 1

\put (32,118) {\circle{36}}

\put (32, 118) {\makebox(0,0) {}}

% draw node 2

\put (86,118) {\circle{36}}

\put (86, 118) {\makebox(0,0) {}}

% draw node 3

\put(140,118) {\circle{36}}

\put (140, 118) {\makebox(0,0) {}}

% draw node 4

\put (86,46) {\circle{36}}

\put (86, 46) {\makebox(0,0) {}}

% draw edges

\put (86,172) {\1line(0,-1) {36}}

\put (75,175) {\1ine(-3,-4) {32.250000}}
\put (97,175) {\1ine(3,-4) {32.250000}}
\put {(86,100) {\1line(0,-1) {36}}
\put(129,103) {\1line(-3,-4) {32.250000}}
\put{(43,103) {\line(3,~-4) {32.250000}}
\put (26,10) {Figure 1: The lattice M3}
\end{picture}

\end{document}

TeX output for Figure 4.4-1

\documentclass{article}
\begin{document}

\begin{picture} (392,513)

% draw figure 0

\put (107,485) {\1line(0,-1) (84}}
% draw figure 1

\put (107,485) {\oval(12,12)}

103

% draw figure 2

\put (107,401) {(\1ine(0,-1) {163}}

% draw figure 3

\put (107,401) {(\1line(1,-1){87}}

% draw figure 4

\put (107,401) {\oval(12,12)}

$ draw figure 5

\put (107,238) {\1line(1,-1) {87)}}

$ draw figure 6

\put (106,241) {\1ine(1,-3) {1}}

% draw figure 7

\put (107,238) {\oval(12,12)}

$ draw figure 8

\put (294,347) {\1ine(0,-1) {96}}

$ draw figure 9

\put (194, 151) {\1line(1,1) {100}}

% draw figure 10

\put (294,251) {\oval(12,12)}

$ draw figure 11

\put (107,64) {\1ine(1,1){87}}

% draw figure 12

\put (107, 64) {\oval (12,12)}

% draw figure 13

\put (194,151) {\1line(1,-1) {95}}

% draw figure 14

\put (289,56) {\oval(12,12)}

% draw figure 15

\put (194,247) {\1ine(0,-1) {96}}

% draw figure 16

\put (194,151) {\oval(12,12}}

% draw figure 17

\put(194,314) {\1ine(0,-1) {67}}

% draw figure 18

\put (194,247} {\1line(1,1) {100}}

$ draw figure 19

\put (194,247) {\oval(12,12)}

% draw figure 20

\put (194,314) {\oval(12,12)}

% draw figure 21

\put (294, 347) {\oval (12,12)}

% draw figure 22

\put (58, 496) {\makebox(0,0) {boolean algebra}}
% draw figure 23

\put (56, 478) {\makebox(0,0) { (i) (m) (a) (b) }}
$ draw figure 24

\put (57, 462) {\makebox (0, 0) { (o) (M) (d)}}
% draw figure 25

\put (58,419) {\makebox(0,0) {modular}}

% draw figure 26

\put (59, 403) {\makebox(0,0) {ortholattice}}
% draw figure 27

\put (60,387) {\makebox(0,0){(j) (m) (a)}}
% draw figure 28

\put(63,371) {\makebox(0,0) { (b) (o} (M) }}
% draw figure 29

\put (148, 326) {\makebox(0,0) {ortholattice}}
% draw figure 30

\put (148, 312) {\makebox(0,0) {(j) (m) (a) (b) (o) }}
$ draw figure 31

\put (60,248) {\makebox{0,0) {lattice}}

% draw figure 32

\put (62, 233) {\makebox (0, 0) {(j) (m) (a) (M) }}
$ draw figure 33

104

\put (59,264) {\makebox (0,0} {modular}}

% draw figure 34

\put (154, 248) {\makebox(0,0) {lattice}}

% draw figure 35

\put (154,263} {\makebox (0, 0) {bounded}}

% draw figure 36

\put (157, 234) {\makebox (0,0) {{(j) (m) (a) (b) }}

% draw figure 37

\put (197, 9) {\makebox (0, 0) {Figure 1: Some lattice varieties and their axioms}}
% draw figure 38

\put (339,373) {\makebox (0, 0) {bounded distributive}}
% draw figure 39

\put (342, 341) {\makebox{0,0) {(j) (m) (a) (b) (d) }}
% draw figure 40

\put (340, 265) {\makebox(0,0) {distributive}}

$ draw figure 41

\put (344,237) {\makebox(0,0) {(j) (m) (a) (d) }}

% draw figure 42

\put (244,147) {\makebox(0,0) {(j) (m) (a) }}

% draw figure 43 :

\put (333, 73) {\makebox(0,0) {join semilattice}}
% draw figure 44

\put (329,54) {\makebox{(0,0) { ()1}

% draw figure 45

\put (69, 78) {\makebox (0, 0) {meet semilattice}}
% draw figure 46

\put (63, 61) {\makebox(0,0) {{m)}}

% draw figure 47

\put (335,357) {\makebox(0,0) {lattice}}

% draw figure 48

\put (340, 250) {\makebox(0,0) {lattice}}

% draw figure 49

\put (244,162) {\makebox(0,0) {lattice}}

\end{picture}
\end{document}

TeX output for Figure 5.1-1

\documentclass{article}
\begin{document}

\begin{picture} (478, 586)

% draw node 10

\put (388,131) {\circle*{36}}

\put(388,131) {\makebox(0,0) {}}

$ draw node 1

\put (243,464) {\circle{39.920000}}
\put(243,464) {\circle{43.920000}}

\put (243, 464) {\makebox (0,0) {}}

% draw node 11

\put (182.160000,236) {\1line(3,1) {59.842623}}
\put (182.160000,236) {\1line(3,-1) {59.842623}}
\put (303.840000,236) {\1line(-3,1) {59.842623}}
\put (303.840000,236) {\1ine(-3,-1) {59.842623}}
\put (243, 236) {\makebox (0, 0) {Diamond}}

% draw node 2

\put (60.920000,331) {\1line(1,0) {92.160000}}
\put (60.920000,367) {\1line(1,0){92.160000}}
\put (60.920000,331) {\1ine(0,1) {36}}

105

\put (153.080000,331) {\1ine(0,1){36}}

\put (107, 349) {\makebox (0, 0) {Long Label}}

% draw node 3

\put (205.920000,311.920000) {\1line(1,0) {74.160000})
\put (205.920000,386.080000) {\1ine(1,0) {74.160000}}
\put (205.920000,311.920000) {\1ine(0,1){74.160000}}
\put (280.080000,311.920000) {\1ine(0,1) {74.160000}}
\put (215.920000,311.920000) {\1line(-1,1) {10}}
\put(270.080000,311.920000) {\1line(1,1){10}}
\put(205.920000,376.080000) {\1line(1,1) {10}}

\put (280.080000,376.080000) {\1line(-1,1){10}}

\put (243,349) {\makebox (0, 0) {(Msquare}}

% draw node 4

\put(310.120000,331) {\1line(1,0){131.760000}}

\put (415.528000,367) {\1ine(-1,0) {79.0560001}}

\put (310.120000,331) {\1ine(3,4) {27.365538}}

\put (441.880000,331) {\1line(-3,4) {27.365538}}

\put (376, 349) {\makebox(0,0) {Trapezium}}

% draw node 5

\put(385,236) {\oval(54,36)}

\put (385,236) {\makebox(0,0) {Oval}}

% draw node 15

\put (243,560) {\makebox(0,0) {Plain Text}}

% draw node 6

\put (19.970000,116.780000) {\1line(1,0) {102.060000}}
\put(19.970000,116.780000) {\1ine(6,5) {51.330176}}
\put (122.030000,116.780000) {\1line(-6,5) {51.330176}}
\put (71,131) {\makebox(0,0) {Triangle}}

% draw node 7

\put (156.960000,113) {\1line(1,0){137.664000}}

\put (329.040000,149) {\1line(-1,0){137.664000}}

\put (156.960000,113) {\1ine(1,1) {36.440471}}

\put (329.040000,149) {\1line(-1,-1){36.440471}}

\put (243, 131) {\makebox(0,0) {Parallelogram}}

% draw node 8

\put(71,46) {\oval(141.840000,36)}

\put (71,46) {\makebox(0,0) {Test triangle edge}}

% draw node 9

\put (84,236) {\circle{36}}

\put (84,236) {\makebox(0,0){}}

% draw edges

\put(243,312) {\1ine(0,-1) {56}}
\put(262.500000,284) {diamond}

\put(226,450) {\vector(-4,-3){110.666667}}
\put(210.500000,414) {box}

\put (243, 442) {\vector (0,-1) {56}}

\put (262.500000,414) {Msquare}

\put (243,542) {\1line(0,-1) {56}}

\put (260.500000,514) {double circle}

\put (264, 456) {\vector(4,-3){118.666667}}

\put (357.500000,414) {trapezium}

\put(377,331) {\1line(1,-6) {12.833333}}
\put(393,284) {oval}

\put (71, 64) {\vector(0,1) {53}}

\put(103,331) {\1line(-1,-5) {15.400000}}

\put (105, 284) {circle}

\put (74,157) {\vector(1,4) {15.250000}}

\put (93,188) {triangle)}

\put (387,149) {\vector (0,1) {69}}

\put (398.500000,188) {filled circle}

\put (243, 149) {\vector(0,1){67}}

\put (265.500000,188) {parallelogram}

\put (101.500000,10) {Figure 1. Sample Graph with Different Shapes and Arrows}

106

\end{picture}
\end{document}

TeX output for Figure 5.1-3

\documentclass{article}
\begin{document}

\begin{picture} (379, 364)

% draw figure 0

\put (58,308) {\line(1,0) {148}}

% draw figure 1

\put(26,329) {\1line(1,0){65}}
\put(26,329) {\1line(0,-1) {42}}
\put (26,287) {\1ine(1,0) {65}}
\put (91,329) {\1line(0,-1) {(42}}

$ draw figure 2

\put (201, 199) {\vector(0,1) {85}}
% draw figure 3

\put (162,331) {\1line(1,0) {89}}
\put (162,331) {\1ine(0,-~1) {47}}
\put{(162,284) {\1line(1,0) {89}}
\put{251,331) {\line(0,-1) {47}}
$ draw figure 4

\put (316.5,106.5) {\oval(69,65)}
$ draw figure 5§

\put (28,157) {\1ine(0,-1){77}}
\put (28,80) {\1line(1,0){77}}
\put (105, 80) {\line(-1,1){77}}

$ draw figure 6

\put (205.5,198.5) {\oval(103,51)}
$ draw figure 7

\put (65,181) {\1line(0,-1) {61}}

% draw figure 8

\put (189.0,99.0) {\oval(26,26)}
% draw figure 9

\put (189.0,99.0) {\oval(38,36)}
% draw figure 10

\put (316.0,107.0) {(\oval(38,36)}
% draw figure 11

\put (339,319) {\1line(-6,-5) {57}}
\put (284,271) {\1ine(2,-5) {26}}
\put (311,206) {\1ine(6,1) {42}}
\put (353,213) {\1line(2,3) {26}}
\put (379,252) {\1line(-3,5) {40}}
% draw figure 12

\put (209.0,32.5) {\makebox(0,0) {The special function supported by the tool is to
copy text}}

% draw figure 13

\put (209.0,8.5) {\makebox(0,0) {from other application and paste it to the
current drawing}}

% draw figure 14

\put(58,249) {\1line(-3,-5) {40}}
\put (18,182) {\1ine(1,0) {96}}
\put (114,182) {\1line(-5,6) {55}}
% draw figure 15

\put (141.0,345.5) {\makebox(0,0) {connecting line by centers}}
$ draw figure 16

\put (183.0,261.5) {\makebox(0,0) {connecting line arrow end by edge}}
% draw figure 17

107

\put (315.5,157.5) {\makebox (0, 0) {rounded square}}

% draw figure 18

\put (194.0,127.5) {\makebox{(0,0) {double circle}}

% draw figure 19

\put(118.0,155.5) {\makebox(0,0) {line without locator}}

\end{picture}
\end{document}

108

Appendix E-1. Pseudo Code for Graphviz Tool

Pseudo Codes for savelatexfile Function

procedure savelatexfile(gt, name, type)
define local parameters for graph, edge, node, slope etc.
graph, edge, node, bb, slope, ..;

Tex file to save latex commands
create and open a file;

add LatexCode Prefix to tex file
output (file, \documentclass{article}) ;
output (file, begin{document})} ;

process graph by iterating through nodes to obtain its boundary box bb
for i=0 to last_node do
graph.x = max(node.x);
graph.y = max(node.y);
end
graph.bb = (0, 0, graph.x, graph.y);

add bb to tex file
output (file, bb);

iterate through nodes and call different savenode functions
based on the node shape
for i=0 to last_node do

save node to tex file

savenode[node[i] .shape] (file, gt, node);

save node label with label or name

if nodel[i].label == true then
output (file, node{i].label);
else
output (file, nodel[i] .name);
end if
end

iterate through edges and save them to tex file
for i=0 to last_edge do
if edge has points, then loop through the points
if edgeli].points == true then
for j=0 to last_point do
loop through edge points by doing nothing
end

decide the two ending points for different line and vector

if edge[i].sp == true then
set the two ending points for backward vector;
else if edge[i].ep == true then

set the two ending points for forward vector;
process none arrow edge
else
set the two ending points for line;
end if
end if

decide max number for latex line and vector

if none arrow line, else vector
if edge[i] .dir == false then

109

maxmum = 6;

line = line;
else

maxnum = 4;

line = vector;
end if

define delta x and delta y, slope and adjusted newslope for edgelil]
dx, dy, slope [], newslope {1];

if dx > 0 and dy > 0 then
// remove common divisors and set new line slope
// same for the rest slope line, won’t repeat.
slope = removeCommonDivisor (dx,dy);
newslope = adjustSlope(slopel0],slopell]l,dx, dy);
line that x increases while y increases
output (file, slope line);

else if dx > 0 and dy < 0 then
process slope line and get new slope;
line that x increases while y decreases
output (file, slope line);

else if dx > 0 and dy = 0 then
output (file, upward vertical line);

else if dx < 0 and dy > 0 then
process slope line and get new slope;
line that x decreases while y increases
output(file, slope line);

else if dx < 0 and dy < 0 then
process slope line and get new slope;
line that x decreases while y decreases
output (file, slope line);

else if dx < 0 and dy = 0 then
output(file, downward vertical line);

else if dx = 0 and dy > 0 then
output (file, right horizontal line);

else if dx = 0 and dy < 0 then
output(file, left horizontal line);

else
do nothing

end if

write out edge label
output(file, edge(i].label);
end

save graph label
if graph.lp == true then

set graph lp;

output (file, graph label);
end if

// save latex Suffix
output (file, \end{picture}) ;
output (file, \end{document})

close(file);
end

Pseudo Codes for Saving Nodes in Different Shapes

function to process and save box node

110

procedure savenode.box(file, gt, node)
define the two x, y coordinates of the line
output (file, first horizontal line);
output (file, second horizontal line);
output (file, first vertical line);
output (file, second vertical line);
end

function to process and save circle node

procedure savenode.circle(file, gt, node)
output(file, circle line);

end

function to process and save ellipse node

procedure savenode.ellipse(file, gt, node)
output (file, ellipse line);

end

function to process and save triangle node

procedure savenode.triangle(file, gt, node)
define the two x, y coordinates of line, slope and newslop
maxnum = 6;

support triangle with two orientation
if node.orientation != - 90 then
set the two x, y coordinates;
process slope line and get new slope;
save three lines
output (file, horizontal line);
output (file, slope line);
output (file, slope line);
else
set the two x, y coordinates;
process slope line and get new slope;
save three lines
output(file, vertical line);
output (file, slope line);
output (file, slope line);
end if
end

function to process and save doublecircle node
procedure savenode.doublecircle(file, gt, node)
output (file, first circle line);
second circle with diameter - 4
output (file, second circle line);
end

function to process and save diamond node

procedure savenode.diamond(file, gt, node)
define the two x, y coordinates of line, slope and newslop
maxnum = 6;

set the two x, y coordinates;
process slope line and get new slope;
save four lines;

end

function to process and save parallelogram node

procedure savenode.parallelogram (file, gt, node)
same as for diamond pseudo codes

end

111

function to process and save trapezium node

procedure savenode.trapezium (file, gt, node)
same as for diamond pseudo codes

end

function to process and save Msquare node
procedure savenode.Msquare (file, gt, node)

same as for diamond pseudo codes

output the four lines with slope(l, 1) at different directions
end

Pseudo Codes for removecommondivisor Function

procedure removecommondivisor (x, y)
define temp to hold the new slop returned
temp{];

choose the small number as the maxdivisor
maxdivisor = min(x, y);

for i=0 to maxdivisor Qo
while temp[0] and temp{l] can be divided by i do
temp{0] = temp({0]/i;
templ[l] = temp(l]/i;
maxdivisor = maxdivisor/i;
end

return temp;
end

Pseudo Codes for adjustslope Function

procedure adjustslope (x, y, dx, dy)
define temp to hold the new slop returned
temp(];

define tempslope to hold the current slope processed
tempslopel(];

define sd to hold the current smallest difference between original
and new slope, initiate it as maxmum
sd = maxmum;

define a tempsd for slope difference comparison

difference between x and y is bigger than 2 times of maxnum
if y/x > 2*maxnum then

temp(0] = O;
temp[l] = 1;
temp{2] = dy;

return temp;

if y/x < i/(2*maxnum) then

temp{0] = 1;
temp{1] = 0;
temp(2] = dx;

112

return temp;
end if

iterate through allowed x coordinate
for i=0 to maxnum do
iterate through allowed y coordinate
for j=0 to maxnum do
if i=j and i>1 then
do nothing, done when i = j = 1
end if

remove common divisors for the slope (i, j)
tempslope = removeCommonDivisor (i, j);

calculate the slope difference between original and current one
tempsd = y/x - tempslope([l]/tempslope[0];

if tempsd less than the previous sd
if |tempsd| < sd then
set tempsd as new sd
sd = tempsd;
temp([0] = tempslope[0];
temp[l] = tempslopell];
adjust slope length
new length = old length * old slope / new slope
temp[2] = dx * y/x * tempslope[0]/tempslope(l];
end if
end

end

113

Appendix E-2. Pseudo Code for Drawlets Tool

Pseudo Codes for LatexGenerator Class

// the package that LatexGenerator created in
latex.min;

// packages used by SimpleModelPanel

import ...

// more java packages required to handle file output
// support Math function and iterate through Figures
import java.io.*;

import java.lang.*;

import java.util.Vector;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Arrays;

class LatexGenerator extends SimplePanel ({
// the model for this application
model;

// the temporary file name that will be saved to/restore from
TempFileName = "temp.rmd";

// file used to save latex commands
LatexFileName = "test.tex";

// latex code generated from drawing
LatexCode;

// maxmium number used to define line slope in latex
// 6 for line and 4 for vector
maxnum;

// constructors are in the same formats as for SimpleModelPanel
LatexGenerator() ({..}

// the component holding the canvas
getCanvasComponent () {..}

// the model manipulated
getModel () {..}

// Initialize class

initialize() {
class ClearAction extends AbstractAction {..}
class SaveAction extends AbstractAction {..}
class RestoreAction extends AbstractAction {..}

// add toolbar for clear, save and restore ations
toolBar.add (..)

// Class for Latex code generation
class SaveLatexAction extends AbstractAction {
SaveLatexAction (name, icon, model, fileName)
super (name, icon);
set model;

}

actionPerformed(action event) {

114

// get drawing boundary from model first

// then save in LatexCode

drawWidth, drawHeight;

LatexCode = \begin{picture} (width, height);

// define each figure’s boundary, origin, and line slope
figurewidth, figureHeight, originX, originY, slope, newslope;

// process each figure of the drawing, such as box, line etc.
for (first figure; next figure;) {

// set each figure’s boundary and origin

// from top-left to bottom-left

figurebound = figure boundary;

figureWwidth = with of figurebound;

figureHeight = height of figurebound;

originX = x coordinate of figurebound;

originY = drawHeight - y coordinate of figurebound;

if (figure is RectangleShape) {
// append four lines in Latex command format to LatexCode
LatexCode += first horizontal line;
LatexCode += second horizontal line;
LatexCode += first vertical line;
LatexCode += second vertical line;

}
else if (figure is PolygonShape) {
maxnum = 6;

// define the two ending points of a polygon side
x0, x1, y0, vi;

// draw lines between consecutive points

for(i = 0; i < number of points-1; i++){
// set the two ending points of a polygon side
x0 = x coordinate of points{i];

x1 = x coordinate of points{i+l];
y0 = drawHeight - y coordinate of points[il];
vyl = drawHeight - y coordinate of points[i+l];

//vertical line
if(x0 = x1) {
if (y0 > y1)
LatexCode += vertical line;
else
LatexCode += vertical line;
}
//horizontal line
else if (y0 == y1) {
if (x0 > x1)
LatexCode += vertical line;
else
LatexCode += vertical line;
}
else if (x0 < x1) {
if (y0 <yl)
// remove common divisors and set new line slope
// same for the rest slope line, won’t repeat.
slope = removeCommonDivisor (dx,dy);
newslope = adjustSlope(slope[0],slope([l],dx, dy);
LatexCode += slope line;
}
else {
process and output slope line with new slope;

115

}
}
else if (x0 > x1) {
if (y0 <yl) {
process and output slope line with new slope;
}
else {
process and output slope line with new slope;

}

}

}

else if (figure is Ellipse) {
LatexCode += oval line;

}

else if (figure is AdornedLine) {
maxnum = 4;

// set arrow coordinates
X, Y

// vertical line ends at origin, default width is 8
if (figurewWidth = 8) {
if(y = y coorcinate of figurebound)
LatexCode += upward vertical vector;
else
LatexCode += downward vertical vector;
}
//horizontal line ends at origin, default height is 8
else if (figureHeight = 8) {
if (x = originX)
LatexCode += left horizontal vector;
else
LatexCode += right horizontal vector;
}
// slope vectors
else if (figure contains (originX, y coordinate of
figurebound)) {
process slope vector;
// vector ends at origin
if(x = originX)
LatexCode += vector y increases while x decreases;
else
LatexCode += vector x increases while y decreases;

}
else {
process slope vector;
// vector ends at origin
if (x = originX)
LatexCode += vector x decreases while y decreases;
else
LatexCode += vector x increases while y increases;
}

}
else if (figure is Line) {
maxnum = 6;

// vertical line

if (figurewidth is 0) {
LatexCode += vertical line;

}

// horizontal line

else if (figureHeight is 0) {

116

}

// override the getToolBar() with tooltips and correct pathes

LatexCode += horizontal line;

}

// slope line that x coordinate decreases while y decreases
else if (figure contains originX and y coordinate of

figurebound)) {

process and output slope line with new slope;

}

// line that x coordinate increases while y increases

else {

process and output slope line with new slope;

}
}

else if (figure is TextLabel) {
LatexCode += text label;
}
next figure;
}
// save LatexCode to TEX file
saveLatex(LatexFileName, LatexCode);

}

}

// add icon for SavelLatexActioin
toolBar.add (new SavelatexAction(with tooltip);

JToolBar getToolBar() {..}

// override the getToolPalette()

JToolBar getToolPalette() (..}

// function to store the Latex code of drawings into TEx file

saveLatex(filename, latexcode) {

}

create a file;

// generate LatexCode Prefix

output (file, \documentclass{article});
output (file, begin{document});

// add latex code

output (file, latexcode);

// generate LatexCode Suffix

output (file, \end{picture});

output (file, \end{document});

close file;

removeCommonDivisor (width, height) (..}

adjustSlope(sx, sy, width, height) {..}

main()

}

initiates a LatexGenerator();

117

with tooltips and correct pathes

Appendix F-1. Code for Graphviz Tool (Lefty)

RS S B E EE BRI ES B S SIS LRI ES IS LS TEE T
#

Latex Generator - A customized tool from Graphviz DOTTY

#
FHEAHHAFHHAHHHARHAHBHHBHHH R HAHG R H B HHHRA R EAHE R AR ARG SRR S

#
customize DOTTY GUI
#
load ('dotty.lefty');
latex = [};
latex.protogt = |
*layoutmode' = ‘sync’';
'actionsg' = copy (dotty.protogt.actions);
new actions are added later in the file
1;
latex.protovt = |
'name' = 'Latex Generator';
'type'’ ‘normal’;

n ot

1;
#
initialization functions
#
1

atex.init = function () {
dotty.init ();
monitorfile = dotty.monitorfile;
};
#
main operations
#
latex.main = function () {
local gnvt, gt, maxnum, slope, newslope;
#echo ('starting main');

latex.init ();
gnvt = dotty.createviewandgraph (null, 'file', latex.protogt,
latex.protovt) ;
gt = gnvt.gt;
txtview ('off');
};
#
add 'save latex file' action
#
latex.protogt.actions.general|'save latex file'] = function (gt, vt, data) {
gt.savelatexfile (gt, null, 'file');
};
#
customize 'do layout' action
#
latex.protogt.actions.general{'do layout'] = function (gt, vt, data) {
choose layout first
gt.lserver = ask ('select the desired layout:', ‘choice', 'dot|neato'};
gt.layoutgraph (gt);
};
#
create latex file
#
latex.protogt.savelatexfile = function (gt, name, type) {

118

local fd, graph, gid, sgraph, nid, node, eid, edge, pointi, attr, bb, xl1,
x2, yl, y2, dx, dy, slope, newslope, line;

if (~name)
if (~(name = ask ('file name:', 'file‘, ty))
return;

fd = openio ('file', name, ‘w+'});

LaTeX format
writeline(fd, ‘'\documentclass{article}');
writeline(fd, ‘'\begin{document}');

writeline(fd, '');
#writeline(£d, ‘\setlength{\unitlength}{0.013889in} % selecting unit
length');

process graph
graph = copy (gt.graph);
for (gid in graph.graphs) ({
sgraph = graph.graphs[gid];
if (sgraph.rect)
sgraph.graphattr.bb = concat (sgraph.rect{0].x, ',"',
sgraph.rect(0].y, ',', sgraph.rect{l].x, UL
sgraph.rect([l1l].y);
if (sgraph.lp & tablesize (sgraph.lp) > 0)
sgraph.graphattr.lp = concat (sgraph.lp.x, ',°', sgraph.lp.y);
else if (sgraph.lp)
sgraph.graphattr.lp A

}

if (~graph.rect) {
graph.rect = [
0=1['x"=0; 'y' =0; 1; 1= ['x' =1; 'y' =1;];
1:
for (nid in graph.nodes) {
node = graph.nodes[nid];

if (graph.rect[1].x < node.pos.x + node.size.x / 2)
graph.rect[1].x = node.pos.x + node.size.x / 2;
if (graph.rect{l].y < node.pos.y + node.size.y / 2)
graph.rect{1l].y = node.pos.y + node.size.y / 2;
}
}
graph.graphattr.bb = concat (graph.rect{0].x, ',*,
graph.rect([0].y, ',', graph.rect[1].x, LYy,
graph.rect([1].y);
write out bb
bb = concat (graph.rect[1].x, ', '.graph.rect[1l].y);
writeline(fd, concat ('\begin{picture} (', bb, ')'));
write out nodes
for (nid in graph.nodes) {
node = graph.nodes([nid];
writeline(fd, concat('$ draw node ‘', nid));
latex.savenode[node.attr.shape] (£d, gt, node);
write out and center node label
if (node.attr.label ~= '\N')
writeline(fd, concat('\put(', node.pos.x, ‘,', node.pos.y,
') {\makebox (0,0} {', node.attr.label, ‘}1'));
else

119

writeline(fd, concat('\put(', node.pos.x, ',', node.pos.y,
') {\makebox(0,0){', node.name, '}}'));
}

write out edges
writeline(fd, '% draw edges');
for (eid in graph.edges) {
edge = graph.edges([eid];
if (edge.points) {
attr = ',
for (pointi = 0; edge.points[pointi]; pointi = pointi + 1) {
loop through edge points
}
backward arrow edge
if (edge.sp) {
#writeline(fd, concat('s,', edge.sp.x, ',', edge.sp.y, ' '));
x1l = edge.sp.x;
yl = edge.sp.y;
x2 = edge.points([pointi-1].x;
y2 = edge.points[pointi-1].y;
}
forward arrow edge
else if (edge.ep) {
#writeline(fd, concat('e,', edge.ep.x, ',', edge.ep.y, ' '));
x1l = edge.ep.x;
vyl = edge.ep.y;

x2 = edge.points(0].x;
v2 = edge.points[0].y;
}
none arrow edge
else {
x2 = edge.points[0].x;
Y2 = edge.points{0].y;
x1 = edge.points[pointi-1].x;
vyl = edge.points[pointi-1].y;
}
}
decide max number for latex slope
if (edge.attr.dir == 'none') {
maxnum = 6;
line = 'line‘;
}
else {
maxnum = 4;
line = 'vector';
}

dx = x1 - x2;
dy = yl - y2;
slope = [];

newslope = [];

minimize dx, dy with no common divisors larger than one

if (dx > 0 & dy > 0) ({
slope = latex.removecommondivisor (integer(dx), integer(dy));
newslope = latex.adjustslope (slopel[0], slopell]l, dx, dy);
writeline(fd, concat(‘\put(', x2, ',', y2, "){\', line, '(',

newslope(0], ',', newslope[l]l, '){', newslopel[2], '}}'}};

} else if (dx > 0 & dy < 0) {
slope = latex.removecommondivisor (integer(dx), integer(-dy));
newslope = latex.adjustslope (slopel0], slopelll, dx, -dy);

120

writeline(fd, concat('\put(', x2, ',', y2, '}{\', line, ' (',

newslope{0], ',', -newslope[l], '){', newslope[2], '}}'));
} else if (dx > 0 & dy == 0) {
writeline(fd, concat('\put(', x2, ',', y2, ‘){\', line, '(', 1,

‘,', integer(dy), "){', dx, '}}'});
} else if (dx < 0 & dy > 0) {
slope = latex.removecommondivisor (integer (-dx), integer(dy));
newslope = latex.adjustslope (slope[0], slopelll, -dx, dy);
writeline(fd, concat('\put(', x2, ',', y2, *){\', line, '(', -
newslope{0], ',', newslope[l], '){', newslope[2], '}}"));
} else if (dx < 0 & dy < 0) (
slope = latex.removecommondivisor (integer(-dx), integer(-dy));
newslope = latex.adjustslope (slope[0], slope[l]l, -dx, -dy);

writeline(fd, concat('\put(', x2, ',', y2, ')}{\', line, '(', -
newslope[0], ',', -newslope[l], '){', newslopel2], '}}'));
} else if (dx < 0 & Ay == 0) {
writeline(fd, concat('\put(', x2, ',', y2, '){\', line, '(', -1,

', ', integer(dy), "){', (-dx), "}}'"));
} else if (dx == 0 & dy > 0) {
writeline(fd, concat('\put(', %2, ',', y2, '){(\', line, ' (',
integer(dx), ',', 1, ")}{', dy, '}}'));:
} else if (dx == 0 & dy < 0) {
writeline(fd, concat(‘'\put(', %2, ',', v2, '}{\', line, '(',
integer(dx), ',', -1, "){', (-dy), "}}"));
} else {
don't exist, do nothing
}

write out edge label
if (edge.lp)
writeline(fd, concat ('\put(', edge.lp.x - 2.5 * strlen
(edge.attr.label), ',', edge.lp.y, '){', edge.attr.label, '}'));
}

#write out graph label
if (graph.lp & tablesize (graph.lp) > 0) {

graph.graphattr.lp = concat (graph.lp.x, ',', graph.lp.y);
writeline(fd, concat ('\put(', graph.lp.x - 2.5 * strlen
(graph.graphattr.label), ',', graph.lp.y, '){', graph.graphattr.label, '}'));

}
writeline(fd, '\end{picture}');

MiKTeX format
#writeline(fd, ‘\bye'):;

PCTeX format
writeline(fd, ‘'\end{document}'});

from save funciton, can write graph in DOTTY format to tex file
#if (~((fd = dotty.openio (name, type, 'w')) >= 0} |

~writegraph (fd, graph, 0)) {
dotty.message (0, 'cannot save graph');
return;
#}
if (~(type == 'file' & name == '-'))
closeio (fd);
}i
#
remove common divisors
#

latex.removecommondivisor = function (x, y) {

121

local temp, divisor, maxdivisor;
temp = [];

maxdivisor = min(x, vy);

temp[0] = x;

temp([l] = y;

for(divisor = 2; divisor <= maxdivisor; divisor = divisor + 1) {
while (((temp(0]/divisor - toint(temp{0]/divisor)) == 0) &
((tempil]/divisor - toint(temp(l]/divisor})) == 0)) {
temp[0] = temp[0]}/divisor;
temp[l] = temp(l]/divisor;
maxdivisor = maxdivisor/divisor;

}
}
return temp;
};
#
find minimum number
#
min = function (a, b) {
if (a <= b)
return a;
return b;
};
#
change to integer
#

integer = function {(a) {
if (a < 0) {
if ((toint(a) - a) > 0.5)
return toint{a) - 1;
else
return toint(a);
} else {
if ((a - toint(a)) > 0.5)
return toint(a) + 1;
else
return toint(a);

}I
#
adjust slope and its length
#
1

atex.adjustslope = function (sx, sy, 1lx, ly) {
local temp, slopex, slopey, sd, tempsd, tempslope;
temp = {];
tempslope = [];
sd = maxnum;

if slope is bigger than 2 times of maxnum
if (sy/sx > 2 * maxnum) {

temp[0} = O0;

temp[l] = 1;

temp[2] = ly:;

return temp;

}

if (sy/sx < 1 /(2 * maxnum)) {
temp{0] = 1;
temp{1l]} = 0;
temp[2] 1x;
return temp;

122

for(slopex = 1; slopex <= maxnum; slopex = slopex + 1) {
for (slopey = 1; slopey <= maxnum; slopey = slopey + 1) {
if ((slopex == slopey) & (slopex >1))
continue;

tempslope = latex.removecommondivisor (slopex, slopey);
tempsd = sy/sx - tempslopel[ll/tempslope({0];
if (tempsd < 0)
tempsd = - tempsd;
if (tempsd <= sd) {
sd = tempsd;
temp(0] = tempslopel0];
temp[1] tempslope(l];
temp{2] = 1x * sy/sx * tempslope[0]/tempslope(l];
#temp([2] = 1x;

1

}
3

return temp;

’

}
#
write out box node
#
1

atex.savenode.box = function (fd, gt, node) {
local x1, x2, vyl, y2;

x1 = node.pos.x - node.size.x / 2;

x2 = node.pos.x + node.size.x / 2;

¥l = node.pos.y - node.size.y / 2;

Y2 = node.pos.y + node.size.y / 2;

writeline(fd, concat('\put(', x1, *',', v1, '){\line(1,0){', node.size.
31

writeline(fd, concat('\put(', x1, *',', y2, '){\line(1,0){', node.size.
31

writeline(fd, concat('\put(', x1, *',', y1, '){\line(0,1){', node.size.
310

writeline(fd, concat('\put(', x2, ',', y1, '){\1line(0,1){', node.size.
‘11
};
#
write out circle node
#

latex.savenode.circle = function (fd, gt, node) {
local diameter;

diameter = min(node.size.x, node.size.y);

if (node.attr.style == 'filled')
writeline(fd, concat('\put(', node.pos.x, ',', node.pos.y,
") {\circle*{', diameter, '}}'));
else
writeline(fd, concat('\put(', node.pos.x, ',', node.pos.y,
"Y{\circle{', diameter, '}}')):
}:
#
write out ellipse node
#
latex.savenode.ellipse = function (fd, gt, node) {
writeline(fd, concat('\put(', node.pos.x, ',', node.pos.y, '){\oval(’,
node.size.x, ',', node.size.y, ')}'));
};

123

#
write out triangle node
#
latex.savenode.triangle = function (fd, gt, node) {
local x1, x2, yl1, y2;
maxnum = 6;
slope = [];
newslope = [};
if (node.attr.orientation ~= -90) {
x1 = node.pos.x - node.size.x/2 * 3/4;
x2 = node.pos.x + node.size.x/2 * 3/4;
vyl = node.pos.y - node.size.y / 4;
y2 = node.pos.y + node.size.y / 2;
slope = latex.removecommondivisor (integer (node.size.x/2),
integer(node.size.y));
newslope = latex.adjustslope (slope[0], slope[l], node.size.x/2 * 3/4,
node.size.y * 3/4);

writeline(fd, concat(‘\put(‘', x1, ',', y1, '){\line(1,0){', node.size.x
* 3/4, "}}"));

writeline(fd, concat('\put(', x1, ',', v1, '){\line(', newslope[0],
', ', newslopelll, '){', newslope(2], '}}'}));

writeline(fd, concat{'\put(', x2, ',', y1, ')}{\line(', -newslope[0},
',', newslope[l]l, '){', newslope(2], '}}'});
} else {

x1 = node.pos.x - node.size.x/4;
x2 = node.pos.x + node.size.x/2;
vyl = node.pos.y - node.size.y/2 * 3/4;
y2 = node.pos.y + node.size.y/2 * 3/4;

slope = latex.removecommondivisor (integer (node.size.x),
integer (node.size.y/2));

newslope = latex.adjustslope (slope[0], slopell], node.size.x * 3/4,
node.size.y/2 * 3/4);

writeline(fd, concat('\put(', x1, ',', y1, '"){\line(0,1){', node.size.y
* 3/4, '}}"));

writeline(fd, concat('\put(', xi, ',', v1, '){\line(', newslope(0],
', ', newslopelll, '){', newslope(2], '}}"'));

writeline(fd, concat{'\put(', x1, ',', y2, '}{\line(', newslope([O0],
', ', -newslopelll, "){', newslopel2], '}}'));

}

};
#
write out doublecircle node
#

latex.savenode.doublecircle = function (fd, gt, node) {
local diameter;
diameter = min(node.size.x, node.size.y);

writeline(fd, concat{'\put(', node.pos.x, ',', node.pos.y, '){\circle{',
diameter-4, '}1}'));
writeline(fd, concat('\put(', node.pos.x, ',', node.pos.y, '){\circle{',
diameter, '}}'}));
};
#
write out diamond node
#
latex.savenode.diamond = function (fd, gt, node} {
local x1, x2, y1, v2;
maxnum = 6;

124

x1l = node.pos.x - node.size.x / 2;
x2 = node.pos.x + node.size.x / 2;
vyl = node.pos.y - node.size.y / 2;
y2 = node.pos.y + node.size.y / 2;
slope = [];

newslope = [];

slope = latex.removecommondivisor (integer (node.size.x/2),
integer (node.size.y/2));

newslope = latex.adjustslope (slopel0], slope{l], node.size.x/2,
node.size.y/2);

writeline(fd, concat('\put(', x1, ',', node.pos.y, '){\line(', newslopel[0],
', ', newslope(l]l, '}{', newslopel2], '}}'));:

writeline(fd, concat('\put(', x1, ',', node.pos.y, '){\line(', newslopel[0],
', ', -newslope([l], '){', newslopel2], '}}'));

writeline(fd, concat{'\put(', x2, ',', node.pos.y, '){\line(', -
newslope[0], ',', newslopel[l], '){', newslopel2], '}}'));

writeline(fd, concat('\put(', x2, ',', node.pos.y, '){\line(',6 -
newslope([0], ',', -newslope{l]l, '){', newslopel2], '}}"));
Y
#
write out parallelogram node
#

latex.savenode.parallelogram = function (£d, gt, node) {
local x1, x2, yl, y2;
maxnum = 6;

x1l = node.pos.x - node.size.x / 2;
x2 = node.pos.x + node.size.x / 2;
¥l = node.pos.y - node.size.y / 2;
Y2 = node.pos.y + node.size.y / 2;

slope = [];

newslope = [];

slope = latex.removecommondivisor (integer (node.size.x/5),
integer{node.size.y));

newslope = latex.adjustslope (slope{0], slopelll, node.size.x/5,
node.size.y);

writeline(fd, concat{'\put(', x1, *,*, v1, '}{\line(1,0){', node.size.x *

4/5, '1}'));

writeline(fd, concat('\put(', x2, ',', v2, '){\line(-1,0){', node.size.x *

4/5, '11"));

writeline(fd, concat('\put(', x1, ',', v1, '"){\line(', newslopel[0],
newslopel[l], '){', newslopel2], '}}'});

writeline(fd, concat('\put(', x2, ',', y2, ')}{\line(', -newslope[0],

newslope({l], ') {', newslope(2], '}}'));

}:

#

write out trapezium node

#

latex.savenode. trapezium = function (fd, gt, node) {
local x1, x2, yl, v2;
maxnum = 6;
x1 = node.pos.
X2 = node.pos.
vyl = node.pos.
Y2 = node.pos.

- node.size.
+ node.size.
node.size.
+ node.size.

L
|
L
~~~~
NN NN

slope = [};

newslope = [];

slope = latex.removecommondivisor (integer(node.size.x/S),
integer (node.size.y));

125

’

2

1

’



newslope = latex.adjustslope (slope[0], slope[ll, node.size.x/5,
node.size.y);

writeline(fd, concat('\put(', x1, ',", yl, ') {\1line(1,0){', node.size.x,
"}rU));

writeline(fd, concat('\put(', x2 - node.size.x/5, ',', y2, '){\line(-
1,0){', node.size.x * 3/5, '}}'));

writeline(fd, concat('\put(', x1, ',', y1, '){\line("', newslope[0], ',',
newslope(l], '){', newslope[2], 1Y) ) ;

writeline(fd, concat('\put(', x2, ',', vyl, 'Y{\line(', -newslope(0], ',',
newslopefl], ') (', newslope[2], '}}'));:
};
#
# write out Msquare node
#

latex.savenode.Msquare = function (fd, gt, node) {
local x1, x2, vyl, y2;

x1 = node.pos.x - node.size.x / 2;

X2 = node.pos.x + node.size.x / 2;

¥l = node.pos.y - node.size.y / 2;

Y2 = node.pos.y + node.size.y / 2;

writeline(fd, concat('\put(', x1, ',', yl, ') {\1line(1,0){', node.size.x,
"}1));

writeline(fd, concat('\put(', x1, ',', y2, ‘}{\line(1,0){', node.size.x,
"))

writeline(fd, concat('\put(', x1, ',', vl, ') {\1line(0,1){', node.size.y,
"}1));

writeline(fd, concat('\put(', x2, ',', vi, ‘) {\1line(0,1) {', node.size.y,
')

writeline(fd, concat('\put(', x1 + 10, ',', yI, 'Y{\line(-1,1){10}}"));

writeline(fd, concat(‘'\put(', x2 - 10, °',°', yl, '){\line(1,1){10}}'));

writeline(fd, concat('\put(', x1, ',', Y2 - 10, '){\line(1,1){10}}"));

writeline(fd, concat('\put(', x2, v ' ¥2 - 10, "){\line(-1,1){10}}'));

}:
#

# add new menu 'save latex file'
#

1

atex.protovt.menus = [
‘general' = [

"undo";

"paste";

"do layout*;

"cancel layout";

"redraw";

= "new graph";

= "load graph";

"reload graph";

"save graph";

"save graph as";
"open view*;
"copy view";

12 = "clone view";

n o

WoOoNAAUbdWNREO

=
= o

1
o

13 = r"birdseye view";
14 = "close view";

15 = "set graph attr";
16 = "set node attr";

17 = "set edge attr";
18 = "zoom in";

19 = "zoom out";

20 = *find node";

21 = "print graph";
22 = "text view";

126



23 = "save latex file";
24 = "quit";

'node' = [

= "cut";

= "Cut";

= "copy";

= "Copy";

= "group";

= "Group";

= "delete";

= "Delete";

= "remove";

= "Remove";
"set attr";
"print attr";

== Wwo-doaU bW - o

= o
"

1

—

[

= "cut";

= "Cut";

= "copy";
"Copy";

= "delete";

= "Delete";

= "set attr";

= "print attr";

1]
Q)
Q
[¢]
1]

SOk wWwhRE o
I

1:
latex.protovt.keys = dotty.protovt.normal.keys;
latex.protovt.uifuncs = dotty.protovt.normal.uifuncs;

latex.main ();

127



Appendix F-2. Code for Drawlets Tool (Java)

package latex.main;

import com.rolemodelsoft.drawlet. *;

import com.rolemodelsoft.drawlet.basics.*;

import com.rolemodelsoft.drawlet.jfc.*;

import com.rolemodelsoft.drawlet.examples. *;

import com.rolemodelsoft.drawlet.examples.jfc.*;
import com.rolemodelsoft.drawlet.shapes.?*;

import com.rolemodelsoft.drawlet.shapes.lines.*;
import com.rolemodelsoft.drawlet.shapes.rectangles.*;
import com.rolemodelsoft.drawlet.shapes.ellipses.*;
import com.rolemodelsoft.drawlet.shapes.polygons.*;
import com.rolemodelsoft.drawlet.text.LabelTool;
import com.rolemodelsoft.drawlet.text.TextLabel;
import com.rolemodelsoft.drawlet.util.*;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.lang.*;

import java.util.Vector;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Arrays;

*

/
Latex Generator - A customized tool from Drawlets framework.

@version 1.0.1

* % k% ok b

Modification History:

khkhkhkhkhhkhkhkhkdkhhhkhrhhhrhhhhkhkhkhhkhhhhhhhkhkdhhhhkhhkhhhkhhkhdhhhrddhkdrhohhhhhhdrbhhkdhhhdhkhhkid

* Date Author Comments

K e e e e e e e e e e e e e e e e s s o e~ oy e

* 13/07/2004 Jie Xiao Creation

* 28/08/2004 Jie Xiao Add functions to handle arrow

* 18/01/2005 Jie Xiao Output Ellipse and TextLabel coordinates as
decimal

*/

public class LatexGenerator extends SimplePanel {

/**
* the model for this application.
*/

protected SingleDrawingModel model;

/**
* the temporary file name that will be saved to/restore from.
*/

protected static String TempFileName = "temp.rmd";
/**
* Latex code file name.
*/

protected static String LatexFileName = "test.tex";
/**

128



* Latex code generated from drawing.
*/
protected static String LatexCode;
/**
* Maxmium number used to define line slope in latex
* 6 for line and 4 for vector.
*/
protected static int maxnum;

/**
* Default constructor.
*/
public LatexGenerator () {
super () ;
}
/**
* @param layout the layout this application should use.
*/
public LatexGenerator(java.awt.LayoutManager layout) {
super (layout) ;
}
/**
* LatexGenerator constructor comment.
* @param layout the layout this application should use.
* @param isDoubleBuffered determines whether the application will be
* double buffered or not.
*/
public LatexGenerator{java.awt.LayoutManager layout, boolean
isDoubleBuffered) {
super (layout, isDoubleBuffered);
}
/**
* @param isDoubleBuffered determines whether the application will be
* double buffered or not.
*/
public LatexGenerator (boolean isDoubleBuffered) {
super {isDoubleBuffered) ;
}
/**
* @return Component the component holding the canvas.
*/
protected JComponent getCanvasComponent () {
canvas = new SimpleDrawingCanvas (getModel () .getDrawing()});
JComponent component = new JDrawingCanvasComponent (canvas) ;
ValueAdapter adapter = new
ValueAdapter (getModel (), "getDrawing", canvas, "setDrawing") ;
return component;

}
/**
* @return the model
*/
protected SingleDrawingModel getModel() {
if ( model == null ) {

model = new SingleDrawingModel () ;
}
return model;
}
/**
* Initialize class
*/

protected void initialize() {
super.initialize();
setSize (426, 300);

129



toolBar.addSeparator () ;

class ClearAction extends AbstractAction ({
SingleDrawingModel model;
public ClearAction(String name, Icon icon,
SingleDrawingModel model) {
super (name, icon);
this.model = model;
}
public void actionPerformed{ActionEvent e) {
model .clearDrawing() ;
}
}
class SaveAction extends AbstractAction {
SingleDrawingModel model;
String fileName;
public SaveAction(String name, Icon icon,
SingleDrawingModel model, String fileName) {
super (name, icon);
this.model = model;
this.fileName = fileName;
}
public void actionPerformed(ActionEvent e) {
model . saveDrawing (fileName) ;
}
}
class RestoreAction extends AbstractAction ({
SingleDrawingModel model;
String fileName;
public RestoreAction(String name, Icon icon,
SingleDrawingModel model, String fileName) {
super (name, icon);
this.model = model;
this.fileName = fileName;
}
public void actionPerformed(ActionEvent e) {
model . restoreDrawing (fileName) ;
}
}
toolBar.add (new ClearAction("", new ImageIcon{"images/clear.gif",
"Clear"), getModel())).setToolTipText("Clear");
toolBar.add(new SaveAction("", new ImageIcon("images/save.gif",
"Save"), getModel(),TempFileName)).setToolTipText ("Save drawing to temp.rmd");
toolBar.add (new RestoreAction("Restore",new
Imagelcon("images/restore.gif", "Restore"),
getModel (), TempFileName) ) .setToolTipText ("Restore drawing from temp.rmd");

toolBar.addSeparator();
// Class for Latex code generation
class SaveLatexAction extends AbstractAction {
SingleDrawingModel model;
String fileName;
public SaveLatexAction(String name, Icon icon,
SingleDrawingModel model, String fileName) {
super (name, icon);
this.model = model;
this.fileName = fileName;
}
public void actionPerformed(ActionEvent e) {

// translate drawing to LatexCode, get boundary
first

130



int drawWidth =
model.getDrawing () .getBounds () .width;
int drawHeight =
model .getDrawing () .getBounds () .height;
//System.out.print ("drawWidth: " +
Integer.toString{(drawWidth) + "drawHeight: " + Integer.toString(drawHeight)
+"\n");
LatexCode = "\\begin{picture} (" +
Integer.toString{(drawWidth) + "," + Integer.toString(drawHeight) + ")" + "\n";
// process each element of the drawing, such as
Box, Line, Ellipase etc.
Rectangle figurebound = new Rectangle( 0, 0, O,
0);
Figure figure;
int figureWidth;
int figureHeight;
int originX;
int originy;
int figureNum = 0;
// adjusted slope for lines
int{] slope = {0, 0};
int{] newslope = {0,0,0};
for (FigureEnumeration fe =
model.getDrawing () . figures(); fe.hasMoreElements() ;) {
figure = fe.nextElement() ;
figurebound = figure.getBounds();
//figurebound =
fe.nextElement () .getBounds () ;
figureWidth = figurebound.width;
figureHeight = figurebound.height;
originX = figurebound.x;
// set origin from top-left to bottom-left
originY = drawHeight - figurebound.y;
LatexCode += "% draw figure " + figureNum +
"\n";
// System.out.print("figurewidth: " +
Integer.toString(figureWidth) + "figureHeight: " +
Integer.toString(figureHeight) + "originX" + Integer.toString(originX) +
"originY" + Integer.toString(originY) + "\n");
if (figure instanceof RectangleShape) ({
LatexCode += "\\put(" +
Integer.toString(originX) + "," + Integer.toString(originy) + ") {\\line(1,0){"
+ Integer.toString(figurewidth) + "}}" + "\n";
LatexCode += "\\put{" +
Integer.toString(originX) + "," + Integer.toString(originY) + ") {\\line(0,-1){"
+ Integer.toString(figureHeight) + "}}" + "\n";
LatexCode += "\\put(" +
Integer.toString(originX) + "," + Integer.toString(originY - figureHeight) +
"} {\\1line(1,0){" + Integer.toString(figureWwidth) + "}}" + "\n";
LatexCode += "\\put(" +
Integer.toString(originX + figurewWidth) + "," + Integer.toString(originY) +
"} {\\1line(0,-1) {" + Integer.toString(figureHeight) + "}}" + "\n";
}
else if (figure instanceof PolygonShape) {
PolygonShape polygon = (PolygonShape)
figure;
int sideNum =
polygon.getPolygon() .npoints;
int x0, x1, y0, vi;
maxnum = 6;
//System.out.print ("number of side is:
" + Integer.toString(sideNum) + "\n");

131



// draw lines between consecutive
points for triangle and pentagon

for(int i = 0; i <
polygon.getPolygon() .npoints-1; i++) {
x0 =
polygon.getPolygon() .xpoints[i];
x1l =
polygon.getPolygon() .xpoints[i+1];
y0 = drawHeight -

polygon.getPolygon () .ypoints[i];
vyl = drawHeight -
polygon.getPolygon () .ypoints[i+1];
if(x0 == x1) {
if (y0 > yl1)
LatexCode += "\\put(" +
Integer.toString(x0) + "," + Integer.toString(y0) + "){\\line(O0,-1){" +
Integer.toString(y0-yl) + "}}" + "\n";
else
LatexCode += "\\put(" +
Integer.toString(x0) + "," + Integer.toString(y0) + ") {\\line(0,1){" +
Integer.toString(yl-y0) + "}}" + "\n";
}
else if (y0 == yl) {
if (x0 > x1)
LatexCode += "\\put(" +
Integer.toString(x0) + ", + Integer.toString(y0) + "){\\line(-1,0){" +
Integer.toString(x0-x1) + "}}" + "\n";
else
LatexCode += "\\put(" +
Integer.toString(x0) + "," + Integer.toString(y0) + "){\\line(1,0){" +
Integer.toString(xl-x0) + "}}" + "\n";
}
else if (x0 < x1) (
if (y0 <yl) |
slope =
removeCommonDivisor (x1-x0, yl-y0);
newslope =
adjustSlope(slope([0], slopell], x1-x0, yl-vy0);
LatexCode += "\\put(" +
Integer.toString(x0) + "," + Integer.toString(y0) + "){\\line(" +
Integer.toString (newslope[0]) + "," + Integer.toString(newslopefl]l) + ") {" +
Integer.toString{newslope[2]) + "}}" + "“\n";

}
else {
slope =
removeCommonDivisor (x1-x0, y0-vyl);
newslope =

adjustSlope(slopef0], slope(l], x1-x0, yO0-yl);
LatexCode += "\\put(" +
Integer.toString(x0) + "," + Integer.toString(y0) + "){\\line(" +
Integer.toString(newslope[0]) + "," + Integer.toString(-newslope[l]) + "){" +
Integer.toString(newslope{2]) + "}}" + "\n";
}
}
else if (x0 > x1) {
if (y0 <yl) {
slope =
removeCommonDivisor (x0-x1, yl-y0);
newslope =
adjustSlope(slopel[0], slopefl]l, x0-x1, yl-y0);
LatexCode += "\\put(" +
Integer.toString(x0) + "," + Integer.toString(y0) + "){\\line(" +

132



Integer.toString(-newslope[0]) + "," + Integer.toString(newslopel[l]) + "){" +
Integer.toString(newslope{2]) + "}}" + *\n";

}
else {
slope =
removeCommonDivisor (x0-x1, y0-yl);
newslope =
adjustSlope(slope[0], slopell], x0-x1, y0-yl);
LatexCode += "\\put(" +
Integer.toString(x0) + "," + Integer.toString(y0) + "){\\line(" +
Integer.toString(-newslopel[0]) + "," + Integer.toString(-newslopel[l]) + "){" +
Integer.toString(newslope[2]) + "}}" + "\n";
}

}
}
else if (figure instanceof Ellipse) {
LatexCode += "\\put(" +
Double.toString( (double)originX + (double)figurewidth/2) + *," +
Double.toString((double)originY - (double)figureHeight/2) + ") {\\oval(" +
Integer.toString(figurewidth) + "," + Integer.toString(figureHeight) + ")}" +
"\n";
//LatexCode += "\\put(" +
Integer.toString(originX + figureWidth/2) + "," + Integer.toString({originy -
figureHeight/2) + ") {\\oval(" + Integer.toString(figurewidth) + ", +
Integer.tosString(figureHeight) + ")}" + *"\n";
}
else if (figure instanceof AdornedLine) {
Arrow adornmentl = new
Arrow( (AdornedLine) figure) ;
int x = adornmentl.getLocator().x();
int y = adornmentl.getLocator().y();
maxnum = 4;
// System.out.print("x{) is: " +
Integer.toString(x) + "y() is:" + Integer.toString(y));
// System.out.print("figurewidth: " +
Integer.toString{figureWidth) + "figureHeight: * +
Integer.toString(figureHeight) + "originX" + Integer.toString(originX) +
"originY" + Integer.toString{figurebound.y) + "\n");

if (figurewidth == 8) {
// vertical line ends at origin,
default width is 8
if (y == figurebound.y)
LatexCode += "\\put(" +
Integer.toString({originX) + "," + Integer.toString(originY - figureHeight) +
") {\\vector(0,1){" + Integer.toString(figureHeight) + "}}" + "\n";
else
LatexCode += "\\put(" +
Integer.toString(originX) + "," + Integer.toString(originyY) + ") {\\vector (0, -
1) {" + Integer.toString(figureHeight) + "}}" + "\n";

}
else if (figureHeight == 8) {
// horizontal line ends at origin,
default height is 8
if(x == originX)
LatexCode += "\\put(" +
Integer.toString(originX + figureWidth) + "," + Integer.toString(originyY) +
") {\\vector(-1,0){" + Integer.toString(figurewWidth) + "}}" + "\n";
else

LatexCode += "\\put(" +
Integer.toString(originX) + "," + Integer.toString(originy) +
") {\\vector(1,0) {" + Integer.toString(figureWidth) + "}}" + "\n";

133



}
else if (figure.contains(originX,
figurebound.y)) {
slope =
removeCommonDivisor (figureWidth, figureHeight);
newslope = adjustSlope(slope(01],
slope{l], figureWidth, figureHeight);
// line ends at origin
if(x == originX)
LatexCode += "\\put(" +
Integer.toString(originX + figurewidth) + "," + Integer.toString{originy -
figureHeight) + ") {\\vector(" + Integer.toString(-newslope{0]) + "," +
Integer.toString(newslope(1l]) + *){" + Integer.toString(newslope([2]) + "}}" +
n\nn;
else
LatexCode += "\\put(" +
Integer.toString(originX) + "," + Integer.toString(origin¥Y) + ") {\\vector(" +
Integer.toString(newslope{0]) + "," + Integer.toString(-newslope([l]) + ") {" +
Integer.toString(newslope(2]) + "}}" + "\n";
}
else {
slope =
removeCommonDivisor (figurewidth, figureHeight);
newslope = adjustSlope(slope[0],
slope(l], figureWidth, figureHeight) ;
// line ends at origin

if (x == originX)
LatexCode += "\\put(" +
Integer.toString(originX + figureWidth) + "," + Integer.toString(originyY) +

) {\\vector(" + Integer.toString(-newslopel[0]) + "," + Integer.toString(-
newslope{l]) + "){" + Integer.toString(newslopel(2]) + "}}" + *\n";

else
LatexCode += "\\put(" +
Integer.toString{originX) + "," + Integer.toString(originY - figureHeight) +
") {\\vector (" + Integer.toString(newslope[0]) + "," +

Integer.toString(newslope{l]) + ") {" + Integer.toString(newslope[2]) + "}}* +
"\n";
}
}
else if (figure instanceof Line) {
// System.out.print{("figurewidth: " +
Integer.toString (figureWidth) + "figureHeight: " +
Integer.toString(figureHeight) + "originX" + Integer.toString(originX) +
"originY" + Integer.toString(originY) + "\n");
maxnum = 6;
Line line = (Line) figure;
Locator dest = line.getLocator(0);
Locator source = line.getLocator(1);
// need the locator for the two nodes
/*protected Locator getArrowLocator {
Locator loc ) {
Locator dest =
getDestinationLocator();
Locator source =
getSourcelocator () ;
Locator relative = new
DrawingPoint (dest.x () -source.x(}, dest.y()-source.y());
PolarCoordinate coord = new
PolarCoordinate( loc.r(), loc.theta() + relative.theta() );
return new DrawingPoint( dest.x()
+ coord.x(), dest.y() + coord.y() );
Y/
if (figureWidth == 0) {

134



//System.out.print("width is 0 "});

LatexCode += "\\put(" +
Integer.toString{originX) + "," + Integer.toString(originyY) + ") {\\line(0,-1){"
+ Integer.toString{figureHeight) + "}}" + "\n";

}
else if (figureHeight == 0) ({
//System.out.print (*height is 0 ");
LatexCode += "\\put(" +
Integer.toString(originX) + "," + Integer.toString(originY) + "){\\line(1,0){"
+ Integer.toString(figureWidth) + "}}" + "\n";
}

else if (figure.contains(originX,

figurebound.y)) {

// line starts from left-top to
right-bottom

//System.out.print("contains point
")

slope =
removeCommonDivisor (figureWidth, figureHeight);

newslope = adjustSlope(slopel0],

slope(l], figurewidth, figureHeight);

LatexCode += "\\put(" +
Integer.toString(originX) + "," + Integer.toString(originY) + "){\\line(" +

Integer.toString (newslope[0]) + "," + Integer.toString(-newslopell]) + ") {" +
Integer.toString(newslope{2]) + "}}"* + "\n";
}
else {
// line starts from left-bottom to
right-top
//System.out.print("doesn't contain
point ");

slope =
removeCommonDivisor (figureWidth, figureHeight);
newslope = adjustSlope(slopel0],
slope{l], figurewWidth, figureHeight);
LatexCode += "\\put(" +
Integer.toString(originX) + "," + Integer.toString(o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>