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Abstract

On the Numerical Evaluation of Optimal Variance
Components Estimators in Crossed Classification Credibility

Xiaotong Wang

Credibility theory is a set of quantitative tools which allows insurers to perform
prospective experience rating on a risk or group of risks in a heterogeneous portfolio.
Credibility theory promotes a mechanism for the implementation of risk management
strategies by differentiating between good and poor risks. It is used in the setting of
rates for classification systems. Furthermore, application of credibility theory would
also help to improve the ability of insurance companies to modify their price structure

with the changing economic environment.

Dannenburg [7] introduced a crossed classification credibility (CCC) model applicable
to contracts that could be affected by many risk factors, that can not be modeled
as nested or hierarchical relationships. In practice, the main problem in crossed
classification credibility is the estimation of structure parameters. In a two-way CCC
model, these parameters are the collective mean m, the time variance s, and the

variance components b, 5 and p(12).

Dannenburg has already proposed estimators of these structure parameters. However,
they have no known optimality property except unbiasedness. Goulet [24] proposed
minimum variance unbiased (optimal) estimators for the mean and variance compo-

nents.

1ii



This thesis focuses on the implementation of the variance components estimators
calculation. Analysis of algorithms and numerical evaluation procedures are studied
to achieve computing efficiency. Through a simulation study, optimality of these

estimators is then assessed in comparison to estimators proposed by Dannenburg [7].
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Chapter 1

Introduction to Credibility Theory

1.1 What is Credibility Theory

Credibility theory is a set of quantitative tools which allows an insurer to perform
prospective experience rating on a risk or group of risks [29]. Therefore, credibility
theory is an effective solution for determining insurance premiums for contracts in a

heterogeneous portfolio.

In order to establish a base premium, the insurer’s first concern is to ascertain that
the premium is sufficiently large to fulfill its obligations. When this is established,

the insurer can then distribute the premium fairly among its insureds.

According to the classical manual rating system, the premium is distributed to re-
flect the expected experience of the entire rating class and implicitly assumes that
the risks are homogeneous. However, no classification system is perfect, and there

always remains some heterogeneity in the risk levels after all the underwriting criteria



are accounted for. Consequently, some policyholders will be better risks than that
assumed in the underlying manual rate. Of course, a policyholder who takes steps to
reduce loss should be rewarded. Conversely, a rate increase should be applied to a

poor risk.

To resolve the risk heterogeneity problem, an experience rating system is used to
assign to each individual risk an appropriate premium rate. The correct premium for
any period depends exclusively on the (unknown) claims distribution of the individ-
ual risk for the same period [5]. However, these systems have a somewhat limited
scope in insurance because they require the accumulation of a significant volume of
experience. For example, experience rating does not apply to traditional individual
life insurance (we only die once) and homeowners insurance. Therefore, experience
rating is especially suited to certain types of insurance, such as workers compensation,

automobile insurance and reinsurance.

The question arises: should insurance companies charge the insured the collective net
premium, or should they construct a tariff system based solely on the individual claims
experience? There are arguments against using either of these extremes. Charging
the collective premium m seems unfair for most risks. Such a tariff system tends to
chase away “good” risks and attract “bad” risks. On the other hand, charging the
pure risk premium is against the aim of insurance, since the risk is not spread over a

group of similar policies, and every insured pays for his own claims. As a compromise



between hypothesis and observation, one might charge:

P=zX+(1-2)m, (1.1)

where P is the individual premium; X is the mean from the individual experience; m
is the collective mean; 0 < z < 1 is the credibility factor assigned to the observation
and 1 — z refers to the complement of credibility. If the body of observed data is
large and not likely to vary much from one period to another, then z will be closer to
1. In this case, the policyholder’s own experience has more credibility. On the other
hand, if the observation consists of limited data, then z will be closer to zero and
more weight will be given to other information. Credibility theory provides the tools

to calculate z as well as the global premium m.

Credibility theory is used to set the rates for insurance classification systems. Outside
the usual domain of application mentioned above, credibility theory has also been
developed and successfully applied in cases, such as valuation methods of pension
fund assets, which involve a blend of initial cost and current market value, as well
as dividend interest and éxpense rates, the latter of which are treated as a blend of

initial assumption and recent results [28].

Generally, credibility theory tells us that it is optimal to give only partial weight to
past experience and give the remaining weight to an estimator produced from other

information.



1.2 Previous Work on Credibility Theory

Credibility theory is based on the basic economic theory of risk and statistical esti-
mation. Because it concerns itself models with the adaptive response of insurance
price systems to dynamic environments, this theory covers most fields of actuarial
science. Credibility theory is split into two branches: limited fluctuation credibility

and greatest accuracy credibility.

Limited fluctuation credibility theory was developed around the time of the First
World War in connection with premium adjustment systems in workmen’s compen-
sation insurance. The first concept (full credibility) appeared in a paper by A.H.
Mowbray [32] in the first volume of the Proceedings of the Casualty Actuarial Soci-
ety. In 1918, Whitney posited that the objective of credibility theory is the calculation
of the balance between established class experience and risk experience. This inau-
gurated the development of partial credibility. Whitney’s method was the first step

towards greatest accuracy credibility, based on the homogeneity of the portfolio.

After three decades dominated by limited fluctuation studies, the post World War
II era saw the revival of Whitneys theory of random effect. Combined with suitable

elements of statistical decision theory, Whitney’s ideas rapidly developed into a huge



body of models and methods — the greatest accuracy approach — which originated
from a series of papers by Arthur L. Bailey [1, 2]. The experience rating problem was
now seen as a matter of estimating the random variable p(©) with some function g(+)
of the individual data X1, ..., X7, the objective being to minimize the mean squared
error E[(u(0) — 9(X1, Xo, ..., X7))?]. This is what is now referred to as the Bayesian
premium. Drawing upon this theorem, Biihlmann [3] became interested in the idea of
approximating a posterior mean by a linear function of the prior mean and the mean

of the claims data.

In the 1970’s, with the rapid development of credibility theory, Biihlmann and Straub
[4] generalized Biihlmann’s classical model by assigning weights to the observations
and by introducing estimators to the structure parameters. In fact, however, the
greatest accuracy resolution to the credibility problem had essentially already been
set out two decades earlier by Bailey [1, 2]. Like many other scientific works ahead
of their time, however, they did not receive wide recognition. This theory came prior
to and, therefore, could not benefit from modern statistical decision theory. In the
following years, the Biihlmann-Straub model, the hierarchical model of Jewell [27]

and the linear regression model of Hachemeister [26] were generated.

If the 1970’s mark the period when credibility research focused on model generation,
it was during the 1980’s that the estimation of structure parameters became the focus.

This decade saw, for example, the formulation of optimal parameter estimation by



De Vylder and Goovaerts [14, 12], robust parameter estimation by Kiinsch [30] and
Gisler, Reinhard [20]. Important papers produced during the 1980’s include De Vylder

[9, 10, 11], Norberg [35], Gisler [19] and Dubey, Gisler [17].

A more recent innovation in credibility theory is the variance components model
introduced by Dannenburg in 1995 [7] to describe his crossed classification credibility

model.

1.3 Problems

In many cases, contracts in an insurance porfolio can not be grouped in a hierarchical
model. If risks in an automobile portfolio are categorized by sex and age of insureds,
neither of these two factors can be listed at a prior level. These two risk factors are not
nested in general. Certain risk characteristics are specific for sex or age, but others
for interaction between them. In order to cope with this kind of data structrure, a
so—called crossed classification credibility model was introduced by Dannenburg in

1995 [7].

In the crossed classification credibility model, Dannenburg uses the variance compo-
nents model to present the insured’s claim ratio. The risk can be written as a sum
of uncorrelated random variables, each representing the contribution of a risk factor

or of an interaction between risk factors to the variance of the risk. For example, the



claim ratio in a two-way crossed classification model can be written as follows:

Xijp =m+ = + =% 4 =09 4 =029 (1.2)
where Egl),Ef) ,582), and ES? %) are the so—called random effects and assumed to

be mutually independent random variables; 51(1)7 E§-2) represent the variability due to

(12)

risk factor 1 and 2 respectively; Z;; " represents the variability due to the interaction

between the two risk factors; ESE %) represents the variability in the insured’s claims

over time. Expected values of all the random variables are zero. Variances of the

random variables are as follows:

Var[Egl)] =),
Var[=!?)] = 6@,
Var[Z(7] = b12),

52

—{123
th%n=w”.
(4]

Provided that the sum of the four variances 6,5 502 and s?/w;;; makes up the
total variance of the contract’s experience, they are called the variance components.

Indeed, independent of the random effects

2
Var[ X, = b® + 5@ 4 p02) 4 * (1.3)
Wijt

In practice, the main problem in crossed classification credibility is the estimation of

the structure parameters. In a two-way crossed classification credibility model, these

7



2 and the variance com-

parameters are the collective mean m, the time variance s
ponents b, b2 and b(1?), Estimators of these structure parameters can be found in
Dannenburg [7]. However, they have no known optimality property other than unbi-
asedness. Goulet [24] uses minimum variance to optimize estimators of the structure

parameters in a two-way CCC model. Numerical tests have also been proposed in

the latter paper.

However, calculation of the optimal variance components estimators requires consid-
erable computation. The matrix present in all estimators (see section 2.2) grows very
rapidly when the number of categories for every risk factor increases. It grows in
the order of (IJ)%. Another problem with optimal variance components estimators
is application of the fixed point estimation method. Computation of such a fixed
point is an iterative process repeated until successive values of a calculation are close
to each other. This process requires a great deal of computing resources. Moreover,

each iteration involves the construction of a large matrix and its inversion.

In order to prove the optimal theory, Goulet [24] implemented Dannenburg’s estima-
tors, optimal estimators and generalized ANOVA in APL. However, due to limitation
of the programming language, only simulations of few repetitions (300) and small
portfolios were made in optimal estimators. These simulations are thus too small to
generate significant results. Languages S, S plus and R have also been applied to

implement the simulation. However, these programs have proven ineffective for large



scale calculations as well.

A simulation using C/C++ has been attempted. However, this work led to a dead
end because the calculations proved too complicated, and appropriate methodologies
and libraries could not be found. Therefore, the task taken up in this study of im-
plementing this simulation is very important as a mean to demonstrate the optimal

property of variance components estimators.

1.4 Thesis Outline

The objective of this thesis is to implement the calculation of variance components
estimators in C, to look for an effective optimal algorithm and to develop tools in
order to increase computing speed, and to derive data for further studies in the CCC

model.

This study will begin by introducing the two way crossed classification credibility
model that will be the basis of simulation in variance components estimators. Esti-
mators of structure parameters proposed by Dannenburg will then been presented.
Finally, Goulet’s optimal estimation of the variance components [24] and optimal

properties will be introduced by comparing Dannenburg’s and optimal theories.

Chapter 3 analyzes existing problems, and provides an effective solving method. By



integrating successfully C language and Matlab C library, the simulation allocates
and frees memory efficiently, so that the program will not only continue running in
spite of a large number of iterative calculations, but will also improve the running
speed significantly. The implementation procedure will be introduced in this chapter.
Some algorithms analysis, and structural description of the simulation will also be
presented. Furthermore, the process of integrating the application with R will be

discussed in this chapter.

In Chapter 4, a flow chart and implementation strategies of the simulation study will
be introduced. During the process of implementation, all kinds of difficulties arose.

This chapter highlights the resolving strategies employed to overcome main problems.

The results of the simulation study for different portfolios will be given in Chapter 5.
Graphs for small, moderate, and large values of parameters will be presented in order
to display the solutions and trends clearly. By comparing Dannenburg’s estimation
with Goulet’s optimal estimation, the optimal property of Goulet’s optimal estimators

in variance components will be proven.

Finally, the last chapter will present the study’s conclusions, and suggestions for

future research.
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Chapter 2

Two-Way CCC Model and
Optimal Parameter Estimation

Credibility theory is an experience rating technique used to determine insurance pre-

miums for contracts in a more or less heterogeneous portfolio.

Biihlmann’s classical model introduced in 1967 is the first and simplest credibility
model. It is simple because it requires that the past claims experience of a policyholder
comprise independent and identically distributed components with respect to each
past year. However, Biihlmann’s model does not allow for variations in exposure
or size. In 1970, the Bilhlmann-Straub model [4] was generated from the classical
credibility model by adding weights to observations. Since then, the model has been
widely used in reinsurance or auto insurance. Indeed, it became the cornerstone of
greatest accuracy credibility theory. After that, many models were developed based
on Bithlmann’s model, including Hachemeister’s [26] regressioﬁ model, Jewell’s [27]

linear hierarchical model, Norberg’s [34] nested classification model, etc.

11



In 1995, the crossed classification credibility model was introduced. Consider auto-
mobile insurance, where an insurance contract is affected by many risk factors. These
risk factors can not be modeled as nested or hierarchical relationships. One risk fac-
tor has no prior level over the others. Furthermore, risk factors interact with each
other. For example, the risks of an automobile portfolio can be classified by the sex
and by the age of the insured: a young man may share driving characteristics with a
young woman, and a young woman with an older woman. In order to deal with this
kind of classification structure, Dannenburg [7] introduced the variance components

approach into credibility theory.

Variance components models come from the statistical theory of linear models. In
a variance components model, a random variable is written as a sum of uncorre-
lated random variables, each representing the contribution of a risk factor or of an
interaction between risk factors to the variance of this variable [7]. Therefore, every
component of the structure is called a variance component. See Searle et al. [37] for

an excellent treatment of the subject.

2.1 A Two-Way Crossed Classification Credibility
Model

We introduce in this section the two way CCC model that will be used in our simu-

lation study.

12



Credibility theory lays emphasis on predicting future claims. Assuming a two-way
crossed classification structure, Dannenburg wrote the claim amount X;j; as:

Xip =m+=0 + 2 4 =02 4 5029

Here, 51(1) represents the first risk factor; E§2) represents the second risk factor and

=(12)

E;;7 1s the risk characteristic specific to the interaction between the two risk fac-

)

tors. Random variable Z; ;™ represents time variability. The expected value of every

random variable = is zero and the variances are:
Var[EM] = p®),

Var[2%) = 5@,

Var[E(}”) = p12),

2
Var[g02) = 2
[ 17t ] wz’jt

Under the proceeding assumptions, the credibility estimator for XijT,;+1 in the un-

balanced two-way crossed classification model is expressed as:

~

Xij,Tij+1 m + 2(12)(Xijw - m) + (]. — 21(]12))(é51) -+ é;Q)) . (21)

A(l) and 2% are called credibility estimators for u( and = ) respectively. They are

obtained from the following equations:

(1 1 1 =(2)
20— 00X, - m) ()Z (12“‘1( 7

=1 %%
22 _ @)y oy 2182)41)
=27 (Xejw —m) — 2 Z TSk -
k=1 %%j

13



These equations are based on the credibility factors

Jap_ b
4 b2 + s2 Jwyjx
Z(l) = b(l)
L b b2 /50

T b 02 /200

and the weighted averages

ijt
Xz]u) = E Xz]t
=1 VijT
J 12
X Zi(l )
izw (12) w
=1 %y
12
I Z]((;j )
Xz_]w = § (12)ijw )
k=1 ZE]
where
J
(12) (12)
Ziy | ij
Jj=1
I
(12) _ (12)
i=1

Tij
Wiye = E Wit -
t=1

The proof of this result can be found in [7]. In practical application, computation
of these credibility estimators requires estimations of the structure parameters. In a
two-way CCC model, these parameters are the collective mean m, the time variance

s* and the variance components b 5() and 512,

14



2.2 Estimation of the Structure Parameters in the
CCC Model

Estimation of structure parameters is a crucial step in the application of a credibility
model. In this section, structure parameters estimators introduced by Dannenburg

will be presented.

An unbiased estimator of m is the weighted mean of the observations:

1 J
= Z 32 X (2.2)

An unbiased estimator for s? is as follows:

J Ty

1
§? = wije( Xije — Xijw)2 . (2.3)
Zle 25:1(7117' - 1) ; j=1 ;

Dannenburg proposed estimators of parameters (), 5(2) and b2 based on the follow-

ing expectations:

J I (2)
9 Wijs
—(b(1)+b(12))[1 _ _L[ J } ]
;; gt Ly

15



and

E [ZI: i 2 (Koo = Xuwa) = S0 = 1)/wsss) =

=1 j:l wEZE
b(l)[l ZI {wizzﬁ b(2)[1~ZJ [wmr] b(”){l—zl ZJ [wimﬁ_
1 Wsry — (Wrry Y Wxsy
i= j=1 i=1 j=1
Defining

im1 o1 WiEr Wiy
J I
1 Wiy 2 (I - 1) a2
Xy = = : Kijw — Xwjw)” — S
2 7 j;(z=1 ijE( J wj ) ws;x )
X Zl:i Wijn (X X )2 (IJ—l) ~2
= 2 ww - s
’ im1 =1 Wrx v Y Wsry

and

Ws
i=1 j=1 X%
J 1 2
1 Wijs
ag = 1—— E E
J - Wyyn

2
_ . Wizy

s =1 21: <w222>
g = 1- Z <

then estimators for b, b® and 512 are obtained by solving the following linear

system of equations:

X1 0 ay ap b(l)
Xy =1 a 0 a b2
X3 a3 Qa4 as b(12)

16



These estimators have no known optimality properties other than unbiasedness. Fur-
thermore, these variance components estimators have a strong tendency to yield neg-

ative estimates.

2.3 Optimal Estimation of the Variance Compo-
nents

The most frequently desirable properties for estimators are unbiasedness and mini-
mum variance. Since Dannenburg’s estimators already have the unbiasedness prop-
erty, minimum variance becomes the first consideration in the optimization of the

estimation.

In 1992, De Vylder and Goovaerts [13] obtained the minimum variance estimators
of the structure parameters in the Bithlmann credibility model under an assumption
of zero excess for some of the involved random variables. However, a supplementary
restrictive assumption regarding the third central moment is needed in order to prove
optimality of the estimators. In 1998, Goulet [23] used the variance components

approach to circumvent the supplementary condition.

Goulet’s optimal estimation of the variance components operates under the assump-

tion that all random effects have no excess. The coefficient of excess of any non-

17



degenerated random variable with a finite fourth-order moment is defined as

E[(X - EX)" ~
E?[(X — EX)?]

We say that X has zero excess if its coefficient of excess equals zero. Normally

distributed random variables have zero excess.

The following covariance relations are needed in the sequel. Proof of the theorem can

be found in Goulet [3].

Theorem 1. In a two-way CCC model,

p(12)
12
COV(Xijw, Xklw) = O-i(jk:l) = ikb(l) + 5]lb(2) + (Si ',klzj(ﬁ )
C X, 05, 00 g

OV(Xizu)y lczw) = O = ikm-*_ Sik )
Cov(Xo X ) = o® =522 L g

OV( zZjw zlw) = 04 = jlm—*_ Sjl )

with

J_,12) (12)
(1) _ if kj
Sik - Z (12) _(12)

j=1 %% %%

I 02 (02

@ _ “ij il
Sjl - (12) z(12) :
i=1 %% “%y

The Kronecker symbol d;; equals 1 when ¢ = j and 0 otherwise.

The following theorems present optimal estimators of parameters 512 () @) Proofs

are found in Goulet [24].
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Theorem 2. Estimation of 5(12)
If all random variables = have zero excess in a two-way CCC model, then the minimum

variance estimator of structure parameter 5(!2) among all estimators of the form

Yo (X — Xuw)? (2.4)

i ki>ij
with expected value b(1?) is
b1 = X'diag(A)X | (2.5)
where
G C™—B 2.6
gt P (26)
and
2 2 12
B = [Ugij) - 2051'1191) + Ulisz]i(lg;lle ) (2.7)
12 12 12 12),2
Cc = [(O-i(jg]')b — Ui(qu) - Ul(clgl)z + Ul(clp;) ]IJ(IQJ—I)XIJ Do) (2.8)
X = [Xijw —Xklw]IJﬁlszlle . (2.9)

In the expression for C, subscripts 4, 7,k and [ refer to the lines of the matrix and

subscripts g, h,p and ¢, the columns. Notation kl > ij is defined as follows, for

k>i=1,...,land j=1,... J:

=1, .. fk >4
kl > i) & : N X Z,f >Z,’
>3, ifk=1.
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Theorem 3. Estimation of b()
If all random variables = have no excess in a two-way CCC model, then the minimum

variance estimator of structure parameter b!) among all estimators of the form

DD Xiw — Xiw)’ (2.10)

i k>i
with expected value b is
b = X'diag(A)X | (2.11)
where
A by C'B 2.12
gt B (2.12)
and
1 1
B = [0 200 + ol
2
C = [(Ui(;) - 01-(;) - J,(C;) + O'I(C;)) ]1(1271)X1 1)
X = [X'izw - szw]l(lflle .
2

In the expression for C, subscripts ¢ and k refer to the lines of the matrix and sub-

scripts ¢ and p, the columns.

Theorem 4. Estimation of b()
If all random variables = have no excess in a two-way CCC model, then the minimum

variance estimator of the structure parameter b() among all estimators of the form

YN (X eju — Xaw)? (2.13)

iy
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with expected value @) is

b® = X'diag(4)X , (2.14)
where
A b C~'B 2.15
=wci” P (215)
and
B = [01(72') - 2%(‘12) + ‘71(12)]_”“2” x1
2
Cc = [(U](i) - 0](-2) — Ul(lf) + 0'1((]2)) ]1(1271) x LU=
X = [Xz]' - lew] J(JZ_l)Xl .

In the expression for C, subscripts j and [ refer to the lines of the matrix and sub-

scripts h and ¢, the columns.
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Chapter 3

Simulation Study

3.1 Previous Work and Existing Problems

Goulet [24] has implemented the optimal estimation of variance components for small
portfolios of data in which every simulation consists of 300 runs on portfolios with
I'=4,]J=4,and T = 5. As seen previously, the estimators of variance components
are defined as solutions to a fixed-point problem. On this simulation, each iteration
involves the construction of a large matrix and its inversion. Therefore, calculation
of the optimal variance components estimators is very computer intensive, especially

for large portfolios.

On the other hand, numerical tests of mean and standard deviation on b 5(2) p(12)
require a large number of repetitions. For the repetitive number 5,000, for example,
much computing resources will be required both in terms of storage and time. It is

due to the inexpedient time delay in yielding solutions that it is difficult to perform
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the simulation on large portfolios.

The main purpose of this thesis is to implement the estimators of variance com-
ponents in such a way as to make computation for larger porfolios, of at least for
I =10,J =10, and T = 5, feasible. This implementation will then be used to con-
duct a simulation study. It is therefore important to use an effective programming
language to implement the calculation, to apply optimal algorithms and to look for

tools to increase computation speed.

3.2 Structure of Matrix C and Attributes

The variance-covariance matrix C in estimators of b1, 52 (12 and their inversion
hinder the speed of execution. From the optimal estimation of 512 (1) and 5® in a
two-way crossed classification credibility model, we know that the estimation of 5(12)

is obtained by using equations (2.5)——(2.9) and Theorem 1.

Equation (2.8) shows that the size of matrix C increases by the order of (IJ)®. For
small numbers of categories, say I = 3 and J = 3, matrix C in b2 already contains
(HJ(IJ=1)/2] x [IJ(IJ —1)/2] = 36 x 36 = 1,296 elements. If I = 10 and J = 10,

the size of matrix C increases to 4,950 x 4,950 = 24,502, 500 elements.

Matrix C' is a variance-covariance matrix. Since the variance-covariance of column i

with column j is the same as the variance-covariance of column j with column 7, the
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variance-covariance matrix C' is symmetrical.

0_(12) .

_ (12) (12) (12)y2
(ohvg) = (Tijoh - + Okipg)

(12
C(ijk)l) %ijpg ~ Tkigh klpq
= [COV(Xijw, Xghw) - COV(Xz‘jw; quw) - COV(Xklw’ Xghw) + COV(Xklw’ quw)]2

= [COV(XghwaXijw) — Cov(Xpqu, Xijuw) — Cov{Xghw, Xkiw) + Cov(Xpqu, Xklw)]2

_ (.(12) _ _(12) (12) | _(12)y2
= (U ghij — Tghkl — Opgij + qukl)
_ (12)

- C(ghpq)(ijkl)

Furthermore, we should also note that matrix C' has none of the following features:
sparse, scalar, singular, diagonal, lower triangular, upper triangular, permutation,
indefinite symmetric, banded symmetric. Many algorithms which work on these ma-

trices can not be applied in this simulation.

Matrix C is, however, positive definite [24]. The positive definite character of matrix

C can also be checked by the Matlab “chol” function.

Therefore, the variance-covariance matrix C is a symmetric positive definite matrix.

3.3 Simulation of Variance Components

The simulation process is composed of four parts.

24



3.3.1 Structure of the Simulation on Variance Components

The following structure describes the whole procedure of calculating means and stan-
dard deviations for N estimators of three variance components b(!) ) (12 Solu-
tions are obtained by using a fixed-point algorithm. I is the first risk factor; J is the
second factor; T is time when the insured’s claims occur; m is the collective mean; s
is the time variance. Before computing every group of solutions, loss ratios X;; need
to be simulated; wy;;, which is the weight assigned to Xj;;, needs to be simulated as

well; s? represents the estimation of the time variance. Tolerance is set at 107°.

Repeat N times

Input I, J, T, m, 872 ,b~(1) ,b"(2) ,b~(12) ;
Simulate data---weight wijt;

Simulate data---loss ratios Xijt;

Compute structural parameter s2;

Repeat

B~ (12)= g12(b~(12),b~(1),b"(2));
B~ (1)= g1(B~(12) ,b" (1) ,b"(2));

B~ (2)= g2(B~(12),B~(1),b~(2));
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until [(B7(12)-b"(12))/b"(12) |<=1e-6
and [(B"(1)-b~(1))/b~(1) [<=1e-6
and | (B7(2)-b"(2))/b~(2) [<=1e-6

OQutput and Record a new set of solutions on b~ (1) ,b"(2) ,b~(12).

Calculate mean of N times b~ (1) ;
Calculate standard deviation of N times b~(1);
Calculate mean of N times b~(2);
Calculate standard deviation of N times b~ (2);
Calculate mean of N times b~ (12);

Calculate standard deviation of N times b~ (12).

3.3.2 Model of »(12)

Figure 3.1 describes the structure of the variance component b(12). It represents the
relationship between input and output from bottom to top for different variables and
matrices. It shows b b3 612 s2 ijt and Xijt working as input parameters for
function (12 All the equations can be found in section 2.2, estimation of 512). This

hierarchical diagram provides a clear representation of the relationship between these

26



equations.

3.3.3 Model of b

Figure 3.2 describes the structure of variance component b(!) and the relationship
between different variables and matrice. b1, b®) 512 52 wijt and Xijt work as
input parameters for function ). These equations can be found in section 2.2,

estimation of b1,

3.3.4 Model of b

Figure 3.3 shows the structure of variance component b® and the relationship be-
tween different variables and matrice. b, 53 b2 52 wijt and Xijt work as input

parameters for function b®. These equations can be found in section 2.2, estimation

of b3,

3.4 Properties of Fixed-Point Algorithm

Iteration is a fundamental technique in numerical computing and other algorithms
in computer science. Iteration techniques are used to find the roots of equations,
solutions to linear and nonlinear systems of equations, and solutions to differential

equations.

The fixed point iteration method is applied in estimation of optimal variance compo-
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b\ = X'diag(A)X

X diag(A) X'
(12) _

X = {Xijw - Xklw]u (IJ-1)/2x1 A= B’bc—lBC ‘B

g = T,

Wige = Zt=1 Wijt
B B’ p(12)

12 12)

B=lo z(m) -2 ’L(]kl +Ukzk2]JAI;;12x1
¢ 2
12 12 12 12
- [ z(]glz 1(]1)3 - Ul(clgf)t + O-IE:lptg) ]I_‘I(IZJ_’QX”(I%)-
(12)
Tkl
(12)
o = 0ub™ + 8, + 8y Loy
(12) e (1) (2) (12)
zij (Sijzllf'L:] b b b
L12) __wynb(D 0 otherwise
zg - wijgb(12)+s2
Wijn b(12) 32

T
Wijs = D1y Wije

Figure 3.1: Model of Structural Parameter 512
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) = X'diag(A)X

|

[

|

X diag(A) '
X = [Xiz’w - szw]f(]—l)/?xl A= Blbc('l_)lBC__lB
Xizw = Z;’ 1 %Xijw
”w Zt o wut
wijn = Zt=1 Wit
B B p)
1 1 1
b= [O-z(i) - 201'(k) + Ul(ck)h_l =1y
C
C = [( 1(;) Ui(;) (1)+Ukp ] g1 by, gI 1)
o
Tk
) (1)
zk = 0 b(l) +b(2)Sik
(1) 3 y 12 12
< b =112 =k g _ f])z,(c)
OB 0 otherwise ik T Lag=1 (1208
“ T D) 4p12) I
B p(2)
12 J 12
zz(Z )= Zj:l Zi(j : wijET
»(12) || Wign = Do) Wijt 52
ij
(12) _  wypb?
gy w:zjlim)+sz p(12

Figure 3.2: Model of Structural Parameter 5
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|

b = X' diag(4)X
| |
X diag(A) X'
X = [Xgjw — lew]J(J—1)/2x1 A=_" o-1p
I oz B'C-1B
Xejw = Zi 1 zg; MW
Xijw = Vit 5t Xt
Wijs = Zt:l Wiji
B B p2)
B = [ (2) 20'(2) + gy )] J(I-1) g
2
C
2 2 2
C= [(U]('k) ](q) Ul(k) +O’lq ) ]JgJ Dy 20)
2)
(2) _ 5 2 (2)
o = 5]1W + b(l)Sﬂ
ZJ('Z) Su=1ifj=1 @) _ 2% 212
A2 _ 25 b ]O otherwise S Z ;]12) ?{2)
J (12)b(2) +b(12) I
p(1) p(2)
z(zljz) = Zle zi(ju) Wij;
T
(12) || Wiz = D Wist 52
ij
12 512
2 = (12

Figure 3.3: Model of Structural Parameter b(
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nents which includes many iterations. In every iteration, the generation of 5(12) (1)

and b® involves the calculation of matrix C.

Before introducing properties of fixed point algorithm, it is useful to define fixed point

and relative theorems [6].

Definition 1. Fixed Point

The fixed point of a function g(z) is a number P such that P = g(P).

Definition 2. Fixed Point Iteration

The iteration P, = g(P,—1) for n =0, 1, ... is called a fixed point iteration.

Theorem 5. Converging sequence
Assume that g(z) is a continuous function and that [P,]°7, is a sequence generated
by fixed point iteration. If

lim P, = P,

n—oo

then P is a fixed point of g(z).

The following two theorems establish conditions for the existence of a fixed point and
the convergence of the fixed-point iteration process to a fixed point.

Theorem 6. The First Fixed Point Theorem

If we assume that g € Cfa,b], i.e. g(z) is continuous on [a,b], then we have the

following results:

(i) If the range of the mapping Y = g(z) satisfies Y € [a,d] for all z € [a,b], then ¢
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has a fixed point in [a, b];

(ii) Furthermore, suppose that g (z) is defined over (a, b) and that a positive constant
K < 1 exists with |¢'(z)| < K for all z € (a,b), then ¢ has a unique fixed point P in
[a,b].

Theorem 7. The Second Fixed Point Theorem

Assuming that the following hypotheses hold true,

(a) P is a fixed point of a function g;

(b) g,9 € Cla,b;

(¢) K is a positive constant;

(d) Py € (a,b); and

(e) g(z) € [a,b] for all z € [a, ],

then we have the following conclusions.

(i). If |g ()| < K < 1 for all z € [a, b], then the iteration P, = 9(Pn_1) will converge
to the unique fixed point P € (a,b). In this case, P is said to be an attractive fixed

point.

(if). If |g'(z)| > 1 for all z € [a,d], then the iteration P, = g(P,;) will not converge

to P. In this case, P is said to be a repelling fixed point and the iteration exhibits
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local divergence.

In the estimation of the variance components, the three variance components optimal
pseudo-estimators form the multidimensional fixed point of a system of equations of

the type

pi12)  — g12(bM) | 5@ p(I2)y
b = gl(b(l),b@),b(m))

b = g6, 6%, 61)

The convergence of the iterative procedure can be accelerated by Gauss Siedel’s
method [43]. The Gauss Siedel method always uses the most up to date iterate
for any particular variable. In order to calculate b{" , we use b(12). However, since
iterate b{'* has already been calculated and is more accurate, we use ' instead of
512 b¥ would, thus, be calculated by using b'? and b"). Using the Gauss Siedel

method, the iterative scheme will be

b = gia (b, 0%, 51)
b = g (6,612, b(19)

b2 = go (b1, 4@ {12y .

This kind of process will be repeated until a preestablished stopping criterion is
satisfied.
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Functions g2, g1, and g, are not simple. Figure 3.2, 3.3 and 3.4 describe the steps
needed to obtain the values of estimators b92), b&l) and bS?). Here, g1 is given as an

example to describe the procedure.

As we know from chapter 2,

b1? = X'diag (B,—C(f)l—Bc—lB>X (3.1)
B = [U%)—20§;§z)+0£}§2]ﬂ%—_11x1 (3.2)
C = [0 = olim = otin + o) s n 1oy (3.3)
X = [Xijw = Xl =, (3.4)

If1=2J=3K=2L=3; 0y equals 1 when ¢ = j and 0 otherwise; d;; x; equals 1

when ¢ = k, j = | and 0 otherwise, Byig; will be obtained by

12 12 12
Boion = ‘7§11)1 - 2‘7§11)2 + ‘7§21)2
o) @) b2 W @) b2
= 011b" + 0110 + 511,11'(1—2) = 2(6116" 4 0120 + 511,12@)
211 211
. p(12)
+01100) + Ga2b® + 512,12—(12)
212
p(12) p(12)
= 00+ 0@ 4 s — 20 4 6O 5P —
211 212
p(12) p(12)
_ (2)
= 267+ wy15(12) + w95 b(12)
w5512 452 w1asb(12) +52

This procedure is repeated until we get all elements of matrix B:
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Co101 will be obtained by

12 12 (12 12) 2
Coror = (‘7§11)1 Ugu)z 121)1 + §21)2)
W 2) b2 M (2) b2
= [0126™ + 6116®) + 61111~ 1) — (6110" + 6120 + G112 (12))
211 211
p(12) p(12)
— (81160 + 6516 + 81911 —= ) + (010" 4 6020®) + 8191 (12))]2
Z12 212
12 (12) 2
_ W@ s By e v
,12) L (12)
11 12
2
p(12) p(12)
_ 2
- <2b( ) + wy;5:b(12) + wyoxb(12) ’
wy15b(12) 442 w1y b(12) 452

This procedure is repeated until we get all elements of matrix C:

Coio1 - Cous
C =
Ciso1 ... Cisis

From theorem 7, proof of uniqueness of a fixed point requires the calculation of the
partial derivatives of equation (3.1). This function has a very complex structure and
is thus very difficult to work with. As a result, we were not able to prove existence

and uniqueness of the fixed point analytically.

In numerical tests, the iterative procedure always converges to a unique fixed-point
independent of the starting values. Furthermore, coordinates of the fixed-point are

always non negative. In this experiment, optimal estimators are present and positive.

According to Gauss Siedel’s method, every consecutive function has to wait for the
solution of the previous function as the input parameter. Hence, the three functions

for b£12), b,(kl), b£2) can not be implemented by using parallel computing.
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3.5 Problem Analysis and Resolving Method

This simulation is implemented by using C language, Matlab C Math library, and R
math library on Linux platform in order to allocate and free memory dynamically,

and increase execution speed.

3.5.1 Solving a System of Linear Equations

Generation of matrix A involves the inversion of matrix C. Calculation of the matrix
C inversion, which is O(N?®), increases dramatically with the size of the matrix. It
thus requires a lot of arithmetic which results in slower simulation. Inverting a matrix
quickly and stably is usually not simple. Many optimal algorithms (including Gauss-
Jordan Elimination algorithm) used to calculate C ™!, have been tried and applied in
this program. However, there is no obvious improvement in running speed. Further-
more, in the vast majority of practical computational problems, it is unnecessary and
inadvisable to actually compute the inversion of a matrix. Therefore, it is for these

reasons that we have taken structure of matrix A into consideration.

From the expression of matrix A, we see

p12)

I A 2 |
=mogt B

A

Instead of computing the C~!, we can combine the C~! and B together. If we consider
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C~'B as an object, and assign vector M as their solution, we have:

M = C'B

CM = B

Compared with Gauss-Jordan and LU decomposition algorithms, Gauss-Jordan is
three times slower than LU decomposition, which is the best alternative technique
for solving a single linear set. Therefore, LU decomposition has been applied in this

simulation.

Suppose we are able to write matrix C as a product of two matrices.

LU =C, (3.5)

where L is the lower triangular and U is the upper triangular. For the case of 3 x 3

matrix C, equation (3.5) would be written:

an 0 0 Bu Bz bis €11 Ci2 Ci13
o g 0 0 Bao Poz | = | co1 coo o3
Q31 Q32 (033 0 0 ﬁ33 C31 C32 (33

We can use decomposition to solve this linear set

CM = (LU)M = L(UM) = B . (3.6)

First by solving the vector Y using

LY =B, (3.7)
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and then solving

UM=Y . (3.8)

Therefore, we can use forward substitution to solve the equation (3.7) as follows:

by
= - 3.9
n - (3.9)
1 i—1
T —\0; — i1Yil, .=2, ,...,N 10
Y o [b ]z:;ajyj] 1 3 (3.10)

while we can use backsubstitution to solve (3.8):

my = 2% (3.11)
BN
1 N
n”:-—m—E:%%LizN—LN—%ﬂl (3.12)
P =i+l

LU Decomposition’s application simplifies computing of matrix A. Calculation of the

inversion of matrix C is replaced by solving linear equations (see equation 3.6).

3.5.2 Cholesky Decomposition Method

We saw earlier that matrix C is symmetrical and positive definite. Cholesky de-
composition is the best way to solve the system of linear equations proper to these

matrices.

Cholesky decomposition is approximately 2 times faster than alternative methods for
solving linear equations [36]. Instead of seeking arbitrary lower and upper triangular

factors L and U, Cholesky decomposition constructs a lower triangular matrix L
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whose transpose LT can itself serve as the upper triangular. C can be then replaced
by

L-LT

I
Q

(3.13)

where

T _

from which we obtain

1
i—1 2
Ly= <Cii -~ ZLfk> : (3.14)
k=1

and

i—1
1
Lﬁ=F<cij—ZLiijk>, j=i+1i+2,.., N, (3.15)
1 k=1

By applying the two equations above in the order ¢ = 1,2,..., N, we will see that
L's which occur on the right-hand side are already determined by the time they
are needed. Also, only components ¢;; with j > ¢ are referenced. It is practicable
to employ L to overwrite the subdiagonal part of C, preserving the input upper
triangular values of C. Only one extra vector of length N is needed to store the
diagonal part of L. The operations count is N3/6 executions of the inner loop with
N square roots. It is approximately 2 times better than the LU decomposition of
C. Therefore, executation speed of this simulation is improved by using Cholesky

algorithm.
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3.5.3 Application of Standard Subroutine Packages

Normally, for a set of linear algebraic equations, when N is too large, the accumulated
roundoff errors in the solution process can affect the true solution, and the set of m’s
are inaccurate. Much of the sophistication of complicated “linear equation-solving
packages” is devoted to the correction of such pathologies. Basically, linear sets with
N as large as 20 or 50 can be routinely solved with single precision without using
sophisticated methods. With double precision, this number can be extended to N as
large as several hundred, after which point the limiting factor is generally machine
time, not accuracy [36]. Because N of equation (3.6) will increase the closer it comes
to 5,000, we have no alternative but to use sophisticated program packages to resolve

the linear equation problem.

Sophisticated packages have a number of advantages. They are designed for very
large systems of equations. Therefore, they go to great effort to minimize not only
the number of operations, but also the required storage. Routines for various tasks are
usually provided in several versions, conrresponding to several possible simplifications
in the form of the input coeflicient matrices: symmetric, triangular, banded, positive
definite, etc. Provided with these different routines, executions of a large matrix with

these forms can be accelerated efliciently.

Many standard packages are available for large linear systems including the following:
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Matlab, Linpack, Lapack, ScaLAPACK, PLapack, Blas, Atlas, NAG, GSL, ESSL,

IMSL, CMTM, etc.

Through a comparison of a few libraries, we find that Lapack is the new replacement
for Eispack and Linpack, the latter of which are based on the vector operation kernels
of the level 1 Blas. Lapack is a large, multi-author, Fortran library for numerical
linear algebra and is designed to exploit the level 3 Blas at most. It provides matrix
factorizations, such as, LU, Cholesky and QR, etc. Lapack was originally intended
for use on supercomputers and other high-end machines. It uses block algorithms,
which operate on several columns of a matrix at a time in the innermost loops. These
block operations can be optimized for each architecture to account for the memory
hierarchy, and so provide a transportable way to achieve high efficiency on diverse
modern machines. Lapack also provides a more extensive set of capabilities than its

predecessors [44].

Therefore, Lapack Cholesky routines have become the first choice to accelerate exe-
cution. Indeed, any library which integrates with the Lapack Cholesky routines can

make execution of this simulation faster.

3.5.4 Algorithm of Lapack Cholesky Routines

In this section, we introduce a basic version and a block version of Cholesky algorithm
[33] implemented by Lapack routines spotf2 and spotrf so as to demonstrate the
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advantages of block Cholesky algorithm. As the name suggests, the block version of
Cholesky algorithm operates on blocks, or submatrices of the original matrix and is
therefore rich in matrix-matrix operations. Since these operations (level 3 Blas) are

faster, block algorithm are usually more efficient.

Algorithm 3.1 (Gaxpy version of Cholesky algorithm). This algorithm com-
putes a lower triangular L € R™" such that A = LL”, and L overwrites the lower
triangular of A:
forj=1:n

// Compute A(j, )

LAy = Ay — AvgAL
// Test for non-positive-definiteness and compute L(3, )
if 4;; <=0

then stop

else

2. Aj; — /A

endif

// Compute elements j + 1 : n of column j

if ( < n) then

T

3. Aj-l—l:n,j — Aj+1:n,j - Aj+1:n,1:j—1A],1;j_1

4. Ajiimg — Ajring/Aj
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endif

end

Algorithm 3.2 (Block version of Cholesky algorithm).
// matrix A is partitioned in blocks of size nb.
forj=1:(n/nb+1)

s=(j—1).nb+ 1 // start of block to factorize

e = min(j.nb,n) // end of block to factorize

w=-e+1// start position for update

// Update the current diagonal block

if j > 1 then

L Asese — Asese = Asets-14%L 1141
endif

// Factorize the current diagonal block
2. Agese — G, with GGT = Age see

if 1 < j <=n/nb then

// Update the current block column

3. Au:n,s:e — Au:n,s:e - Au:n,l:s—lAg?e,l;s_l
endif

if j <=n/nb then

4. Au:n,s:e — Au:n,s:e/AT

s:e,ste
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endif

end

This block version algorithm is also called the block left-looking version of Cholesky
algorithm. In this version, A is factorized one block column at a time. For each j,

step 3 is a rank s — 1 update that accesses the previously factorized block columns.

3.5.5 Integration with Matlab C Math Library

With respect to the structure of matrix C', Lapack Cholesky algorithm is applied to

resolve problems of calcualtion on linear equations in order to speed up execution.

Matlab C Math Library [40] is based on the Matlab language and constitutes the
mathematical core of Matlab. It is a collection of more than 400 mathematical optimal
routines written in C. The mathematical routines in the Matlab C Math Library are C
callable versions of features of the Matlab language. Programs written in any language
capable of calling C functions can, thus, call these routines to perform mathematical

computations.

In the simulation established in this study, we integrated Matlab C Math Library
with a C program. To employ Matlab C Math Library in a C program, it is necessary

to include matlab.h in the code.

However, before running a stand-alone application, we have to locate shared libraries,
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and tell the system where the API and C shared libraries reside. The following

statements set this path.

% setenv LD_LIBRARY_PATH [matlab]/extern/lib/[arch]: $ LD_LIBRARY_PATH

where, [matlab] is the Matlab root directory, and [arch] is the architecture.

Matlab C Math Library requires the following command to compile a C program on

Linux:

% mbuild -setup filename.c

3.5.6 Application of Back Slash

In Matlab, midivide(A, B) and the equivalent A \ B perform matrix left division
(back slash). A and B must be matrices that have the same number of rows. If A is
a square matrix, then A\ B is roughly the same as A~ B, but it is computed in a
different way. If A is an n x n matrix and B is a column vector with n elements, or
a matrix with several such columns, then X = A\ B is the solution to the equation
AX = B computed by Gaussian elimination with partial pivoting. A warning message

is displayed if A is badly scaled or close to singular.

Algorithm Description:

The specific algorithm used for solving the simultaneous linear equations denoted by
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X = A\ B depends upon the structure of the coefficient matrix A. To determine the
structure of A and in order to select the appropriate algorithm, Matlab follows this

procedure:

1. If Ais sparse and diagonal, X is computed by dividing by the diagonal elements

of A.

2. If A is sparse, square, and banded, then a banded solver is used.

3. If A is an upper or lower triangular matrix, then X is quickly computed with
a backsubstitution algorithm for upper triangualar matrices, or a forward sub-

stitution algorithm for lower triangular matrices.

4. If A is a permutation of a triangular matrix, then X is computed with a per-

muted backsubstitution algorithm.

5. If A is symmetric, or Hermitian, and has real positive diagonal elements, then
a Cholesky factorization is attempted. If A is found to be positive definite, the
Cholesky factorization attempt is successful and requires less than half the time
of a general factorization. Nonpositive definite matrices are usually detected

almost immediately, so this check also requires little time.

If successful, the Cholesky factorization for full A is

A=R xR.
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where I is upper triangular. The solution X is computed by solving two trian-
gular systems:

X =R\ (R \B)

Computations are performed using the Lapack routines given the following ta-

ble.

Real Complex

A and B double | DLANGE, DPOTRF, | ZLANGE,ZPOTRF,
DPOTRS, DPOCON | ZPOTRS,ZPOCON

A or B single SLANGE, SPOTRF, | CLANGE,CPOTRF,
SPOTRS, SDPOCON | CPOTRS, CPOCON

6. If A is Hessenberg, but not sparse, it is reduced to an upper triangular matrix

and that system is solved via substitution.

7. If Ais square and does not satisfy criteria 1 through 6, then a general triangular

factorization is computed by Gaussian elimination with partial pivoting.

8. If Aisnot square, then Householder reflections are used to compute an orthogonal-

triangular factorization.

According to this algorithm, in this simulation, because matrix C is a symmetric
positive definite, a Cholesky factorization algorithm is applied to solve these linear
equations, which requires less time to execute. Solving this problem depends on

Lapack routines.
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3.5.7 Memory Allocation

Application of fixed-point algorithm and a great deal of matrix operations require us
to consider how to use limited memory to carry out calculations for unknown large

porfolios of input data.

C language is a very popular language for computing. Application of pointers instead
of arrays used in R programming provides dynamic memory allocation. The use of
arrays in which memory is allocated at a definite time and can not be recycled, is the
reason why simulation in R can not be used for the calculation of large portfolios.
Memory for a dynamic matrix or vector in C is allocated when needed, and is freed
when not needed. Therefore, C is the language selected to implement the simulation

in this study.

3.5.8 Application of R Math Library

From the structure of the program, we can see that data weights w;;; and loss ratios
Xijt must be generated randomly before continuing to calculate structural parameters.
The statistical environment R features all needed random number generators. The R
Math Library [18] has entry points for C code and can be used in C program easily.

The R Math library is used to generate random uniform and normal variables.

The interface to R’s internal random number generation routines is:
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double unif rand();
double norm rand();
or double rnorm(double mu, double sigma);

Uniform or normal pseudo-random variables are generated on these given routines.

The C code behind R’s functions can be accessed by including the header file Rmath.h

in a C file and linked against ‘-1Rmath’.

#define MATHLIB_STANDALONE

#include <Rmath.h>

3.6 Accuracy of Solution

We check our results against those obtained by Goulet [24] for the same portfolios in
R. We obtained the same solutions. We also tested every function in this simulation
and have made sure that the codes themselves are correct. We are confident that the

solutions are accurate.

3.7 Speed Test

If we assume =10, J=10, T=5, bV=1.0, 4@ =1.0, b(10=1.0, s2=6.450058, then we

obtained the following solutions in 9 minutes on Linux.

[credsim@confsys /srcl./3_opt_B2
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RepeatTime=7, Final b_12= 8.86160772448163669424
RepeatTime=7, Final b_1= 5.87119735197586045672

RepeatTime=7, Final b_2= 4.05814014651073495799

The same solution is obtained in R in 22 minutes on Linux with Pentium 2 at 200 MHz.
Because the R code uses function “solve()” which integrates Linpack to calculate
C~'B, execution is slower than using Matlab backslash which uses Lapack library.

Therefore, execution speed in C is thus less than half of the speed in the R program.

3.8 Integration with R

R [46] is a language and environment that is used for statistical computing and
graphics. R provides a wide variety of statistical and graphic techniques, and is highly
extensible. S language [38] is often the vehicle of choice for research in statistical

methodology, and R provides an Open Source route to participation in that activity.

R is designed around a true computer language, and it allows users to add additional
functionality by defining new functions. For computationally intensive tasks, C, C++,
and Fortran code can be linked and called at run time. Estimation of the variance
components has been implemented in R. Because of the restriction of R language
itself, it is difficult to obtain simulation solutions for large porfolios. At the outset

of this research, it was assumed that estimation of the variance components which

o0



includes intensive computational tasks could be implemented in C, and integrated C

codes with R code in order to carry out statistical analysis.

Research on integrating C with R was processed during this simulation study. R
provides a standard interface “.C( )” to compiled C code that has been linked into R.
Under Linux, in order to load a C function into R, for example convolve.c, a shared

library must be created by

R CMD SHLIB convolve.c [...]

optionally using the -o flag to set the name of the library, which here will default to

convolve.so or convolve.sl as appropriate. Then, it can be loaded by

dyn.load ("PATHTOCONVOLVE/convolve")

Where PATHTOCONVOLVE is the path name to the convolve library file. Shared li-

braries can be generated automatically as part of the installation of an R package.

Below is an example [18] of a C function convolve.c:

void convolve(double *a, int *na, double *b, int *nb, double *ab)

int i, j, nab=*%na+¥nb-1;
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for (i=0;i<nab;i++)
ab[i]=0.0;

for (i=0;i<*na;i++)
for (j=0;j<*nb;j++)

ab[i+jl+=alil*b[j];

The detailed operation of loading convolve.c under Linux is as follows:

[credsim@confsys “/src]$ R CMD SHLIB convolve.c
make: ‘convolve.so’ is up to date.
[credsim@confsys ~/src]$ locate convolve
/home/credsim/src/convolve.o
/home/credsim/src/convolve.c
/home/credsim/src/convolve.so

[credsim@confsys ~/srcl$ R

[Previously saved workspace restored]

> dyn.load("/b2/home/credsim/src/convolve.so")
> testa <~ c(1:10)

> testb <~ c(1:10)

> conv <- function(a,b) {
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+ .C("convolve",
+ as.double(a),
+ as.integer(length(a)),
+ as.double(b),
+ as.integer(length(b)),

+ ab=double(length(a)+length(b)-1)) $ab

> conv(testa, testb)
(1] 1 4 10 20 35 56 84 120 165 220 264 296 315 320 310

284 241 180 100

The experiment demonstrates that a C function without libraries included could be
loaded into R following the above steps. However, although a C function with libraries
can be created as a shared library, it can not be loaded dynamically into R by using

dyn.load( ). Therefore, the operations are as follows:

[credsim@confsys ~/src]$ R CMD SHLIB main.c

gcc -I/usr/1ib/R/include -I/usr/local/include -D__NO_MATH_INLINES
-mieee-fp -fPIC -02 -g -march=i386 -mcpu=i686 -c¢ main.c -o main.o
gcc -shared -L/usr/local/lib -o main.so main.o

[credsim@confsys ~/srcl$ R
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[Previously saved workspace restored]
> dyn.load("main.so")
Error in dyn.load(x, as.logical(local), as.logical(now))
unable to load shared library "/home/credsim/src/main.so":

/home/credsim/src/main.so: undefined symbol: rnorm

Here, rnorm is the normal derivate generation function in libRmath. This means
libRmath is not loaded in R dynamically. Alternatively, if the R math library is
dropped from this simulation, and only Matlab C library is included in the C code,

the operation is as follows:

[credsim@confsys ~/src]$ R CMD SHLIB main.c
gcc -I/usr/lib/R/include -I/usr/local/include -D__NO_MATH_INLINES
-mieee-fp -fPIC -02 -g -march=i386 -mcpu=i686 -c main.c -o main.o
gcc -shared -L/usr/local/lib -o main.so main.o
[credsim@confsys ~/srcl$ R
[Previously saved workspace restored]
> dyn.load("main.so")
Error in dyn.load(x, as.logical(local), as.logical(now))
unable to load shared library "/home/credsim/src/main.so":

/home/credsim/src/main.so: undefined symbol: mclCleanupProtectedItems

o4



The routine mc1CleanupProtectedItems is found in libmatlb.so. This means Mat-

lab C library isn’t loaded in R.

In this simulation, a C program includes static 1ibRmath and Matlab C library.
However, R integrates with C codes dynamically. Experiments have shown that R is
difficult to connect with C codes which include libraries. Even if the Matlab C library
is replaced by Lapack, Atlas or other linear algebra libraries, R still can not connect

with a C code which includes 1ibRmath.

In R manual released in 2003 [41], it is stated:

The linear algebra routines in R can make use of enhanced Blas rou-
tines. Optimized versions of Lapack are available, but no provision is
made for using them with R as the likely performance gains are thought

to be small.

This simulation study applies Lapack Cholesky routines for a symmetric positive
definite coefficient matrix to accelerate execution, and does not make use of Blas. By
the same token, R itself contains a large number of Blas, Linpack and Eispack linear
algebra functions which are included in the header file R_ext/Linpack.h, but it does
not contain Lapack routines. Therefore, it is difficult to realize the C implementation

of both speed acceleration and R integration.
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However, in the R manual released in 2004 November [42], provision is made for using
an external Lapack library. This Lapack is written in Fortran, rather than in C. R
provides a set of macros to cover up the platform-specific differences. In theory, it
is possible to apply R_ext/Lapack.h routines in a C code which, however, can not
be integrated with R directly. We have tried to create a R package which includes
a R code and a C code with R_ext/Lapack.h. Problems that arise still can not be
resolved. Although efforts were made in this study to integrate a C code (libraries

included) with R, we could not implement it finally.

Therefore, we would recommend that further research on integrating R and C with
libraries will be done in the future. In order to bypass this problem, in this simulation,
part of the R code is translated into C code. The solutions obtained from this

simulation study are presented in Chapter 5.
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Chapter 4

Software Implementation

The main focus in the previous chapters has been on the theory and methods for the
implementation of the simulation study on optimal variance components estimators
in the CCC model. This chapter includes problem description, input and output
analysis, the process of implementing the software for this numerical evaluation, and

implementation strategies.

4.1 Problem Description

The application is used to implement a simulation study on optimal variance com-
ponents estimators 612, 51 b® in a two-way crossed classification credibility model,
which are finally applied to credibility estimator of the future insurance premium.
Simulation of data requires inputs of I, J, T, m, s%, b2, () and ®. Variance
components estimation requires starting values of 4%, 5™ p@ . The simulation

study requires the number of runs nr. First, the implementation simulates random
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observations (loss ratios) X_ijt and natural weight w_ijt, which are used for com-
puting estimation values of b-12, b_1, b_2. After nr times iteratives, nr groups
of estimation results of b_12, b_1, b_2 will be stored in three vectors vi2, vi,
v2. Finally, outputs of mean and standard deviation of nr groups of b_12, b_1,
b_2 are calculated and stored in a solution file. Tolerance of fixed point iteration is
(B = 5012)) /b12)] < 1076 and | (b — bM)/bD)| < 106 and |(b2) — b@) /3| < 1075,

The process diagram is presented in Figure 4.1.

All the values of input parameters are set at the beginning of this application and

will be modified as needed depending on the sizes of future portfolios of data.

4.2 Input Parameters

Input parameters of this application include:

1. Ip — first risk factor 1

2. Jp — second risk factor J
3. Tp — time period T

4. m — collective mean m

5. 8.2 — time variance s2

6. b_12 — assumed starting value b(12)

7. b_1 — assumed starting value bV
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8. b_2 — assumed starting value b

4.3 Output Requirement

The output of the application includes the file output and screen output. All the

solutions are saved in the file stdout . txt or any output file. The solution file includes:

1. mbl — mean of nr times b_1 ;

2. sbl — standard deviation of nr times b_1;
3. mb2 — mean of nr times b_2 ;

4. sb2 — standard deviation of nr times b_2;
5. mb12 — mean of nr times b_12 ;

6. sb12 — standard deviation of nr times b_12;

4.4 Simulation of Portfolios

Simulation of natural weights is composed of two steps [24]. In order to avoid large
fluctuations in the size of contracts from one year to the next, an average weight w;; is
first created from a uniform distribution on [2, 10] for every contract; then simulation

of annual contract weights is taken from a uniform distribution on [0.5w;;, 1.5@].

Estimators b£12), b?) ) b® are optimal under a zero-excess assumption for random ef-

fects. The simplest way to simulate loss ratios is to simulate random effects from
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normal distributions:

(1]

[~ N(0,H0),

2

—~(2) 2)
27 ~ N(0,6@)),

=12) (12)
=02 N(0,b12),

E5T) ~ N(0, 8 fwiz,).

Then, loss ratios X;;; are obtained by summing up the random effects and the collec-

tive mean.

4.5 Flow Chart of the Simulation Study on Vari-
ance Components Estimators

Figure 4.1 shows the application’s flow chart. It begins with inputing data I_p,
Jp, Tp,m 8.2, b.12 b_1, b2, nr. If iterations are more than nr, the loop stops
and calculates the mean and standard deviation of b_.12,b_1,b.2. Otherwise, repeat
the following process: simulate a new group of loss ratios X_ijt (see section 4.4);
calculate a new group of weights w_ijt (see section 4.4); simulate structural parameter
s2 (see equation 2.3); calculate new estimation of b_12,b_1,b_2 by using fixed point

algorithm and store new results.

The process of calculation on estimation of b_12,b_1,b_2 by using fixed point algo-

rithm is as follows:
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while (|(d12-b_12)/b_12|>=1e-6 or |(dl-b_1)/b_1|>=1e-6

or |(d2-b_2)/b_2|>=1e-6)

{
b_12=d12;
b_1=d1;
b_2=d2;
B_12(b_1, b_2, b_12);
B_1(b_1, b_2, di12);
B_2(d1, b_2, d12);

}

4.6 Implementation Strategies

4.6.1 Application of Multiple Level Pointer

Based on the problem description of section 4.1, the simulation study requires a
number of runs nr, and an estimation of variance components based on data Xijt
and wgj;. In order to obtain accurate and stable results, we must select the value of
nr at least 1000 for large data portfolio I = 10 and J = 10. Estimation of variance
components requires not only large portfolios of data but also a fixed point iteration.

Due to the complicated loop, the simulation from Goulet was only implemented on a
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Input data(I_p,Jp,Tp,m,s2,b.12,b.1,b_2,nr)

No

ir<ar
\@

Simulate loss ratios—X_ijt

l

Simulate weight—w_ijt

l

Calculate structural parameter—s2

l

New estimation of b_12,b_1,b_2 by using fixed-point algorithm

l

Store new results to vector v12,v1,v2

l

ir++

|

Calculate mean and standard deviation of b_1

l

Calculate mean and standard deviation of b_2

l

Calculate mean and standard deviation of b_12

End

Figure 4.1: Simulation Flow Chart
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small number of runs of 300 by using APL, S, and R language.

The main difficulty of this implementation is that it is restricted by memory. In C,
pointers are one of the most versatile features and make it easier to allocate memory at
run time using malloc. The application of pointers postpones the decision on size and
the allocation time of the memory block, and, then, when that memory is no longer
needed, it can be freed up for other uses. When memory is allocated, the allocating
function returns a pointer. On an ANSI compliant compiler, malloc returns a void
pointer. Because this application includes not only a one dimensional array but also
multi-dimensional arrays, for example matrix C' and matrix oy, and even three
dimensional arrays X;; and w;j, it increases the difficulty of the implementation.

Therefore, we have to apply multiple level pointers in this application.

The method of dynamically allocating two-dimension array pointers is to create an
array of pointers of type double and then allocate space for each row and point these

pointers at each row. For example:

int nrows=200; ncols=200; row;

double **rowptr;

rowptr=malloc(nrows*sizeof (double *));

if (rowptr==NULL)
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printf("Failure to allocate room for row pointers.");

exit(0);

for (row=0; row<nrows; row++)

{
rowptr [row]=malloc(ncols * sizeof(double));
if (rowptr([row]==NULL)
{
printf("Failure to allocate memory for row[%d]\n", row);
exit(0);
by
b

In the above code, rowptr is a pointer to a row of pointers of type double. It points

to the first element of a vector of pointers of type double.

Pointers should be set and freed at appropriate points. In the implementation, the

structure of setting and freeing pointers is as follows:

If (n < number of runs)
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allocate memory for a 3D array X_ijt;
allocate memory for a 3D array w_ijt;
allocate memory for a 2D array X_ij.;
allocate memory for a 2D array w_ij.;
calculate X_ij.;

calculate w_ij.;

allocate memory for a vector X_12;
calculate X_12;

Free 3D memory X_ijt;

Free 3D memory w_ijt;

While( condition is satisfied )

B_12( );
{ allocate memory for a 2D array A_12;
Matrix_A_12( );
{ allocate memory for a 2D array C_12;
allocate memory for a vector B_12;
allocate memory for a 2D array Sigma_ijkl_12;

Calculate Sigma_ijkl_12

65



{allocate memory for a 2D array z_ij_12;

Free 2D memory z_ij_12;

Matrix_B_12( );
Matrix_C_12( );
calculate A_12;

Free 2D memory Sigma_ijkl_12;

calculate B_12;
Free 2D memory C_12;

Free vector B_12;

Free 2D memory A_12;

B_1();

{ allocate memory for a vector X_1i;
alocate memory for a 2D array z_ij_12;
calculate X_1;
allocate memory for a 2D array A_1;
Matrix_A_1( );

{ allocate memory for a 2D array C_1;
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allocate memory for a vector B_1;

allocate memory for a 2D array Sigma_ik_1;
Matrix_B_1( );

Matrix_C_1( );

calculate A_1;

Free 2D memory Sigma_ik_1;

calculate B_1;
Free 2D memory C_1;

Free vector B_1;

Free 2D memory A_1;

Free vector X_1;

B_2( );

{ allocate memory for a vector X_2;
allocate memory for a 2D array A_2;
Matrix_A_2( );

{ allocate memory for a 2D array C_2;
allocate memory for a vector B_2;

allocate memory for a 2D array Sigma_jl_2;
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Matrix_B_2( );

Matrix_C_2( );

calculate A_2;

Free 2D memory Sigma_jl_2;

calculate B_2;
Free 2D memory C_2;

Free vector B_2;

Free a vector X_2;

Free 2D memory A_2;

Free 2D memory z_ij_12;

Free 2D memory X_ij.;

Free 2D memory w_ij.;

Free a vector X_12;
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4.6.2 Transformation of Data Structures

In this application, Matlab C library is used. The data structure used in Matlab is
different from the C data structure. All the matrices used in Matlab C library must be
defined by mxArray. Matrices constructed in C can not be used in Matlab C library.
Therefore, before applying Matlab functions, all the data has to be transformed into
a data structure which can be used by Matlab C library. If given a n X n pointer

variable A, the transformation process is as follows:

double **A;

double *X;

mxArray *matO=mxCreateDoubleMatrix(n,n,mxREAL);
X=vector(n*n) ;

TransMatrix(A,n,X);

memcpy (mxGetPr (mat0) ,X,n*n*sizeof (double));

4.6.3 Elimination of Redundant Calculations

In the computation of b b and *?) many functions are repeated many times.

Eliminating redundant calculation will increase the program running speed.

)

In the calculation of b{!? , X 1s expressed as:

X = [Xijuw — Xklw]IJUQJ—l)X1 )
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where,

T w
ijt
KXijw = —— Xijt

=1 Wiss

T
Wijn = g Wijt -
t=1

If the numbers of risk categories I and J are fixed, simulation data X,;; and wyje will
not be changed during the iterative process of the fixed-point estimation of 4%, X
will not change either. Therefore, the function of X in Figure 3.1 is calculated once

before iterative circulation.
Another case is the computation of matrices B and C. They are expressed as:
_ [,(12) (12) (12)
B = oy — 2004 + opwi) masn
2

= (1D _ 02 () (12))2
Cc = [(Uijgh — Uiqu - Uklgh + aklpq) ]I.](Ié]—QXIJ 121-1 ,

(12) .
and Okl 18

p(12)
#H )
ij

ol = 0ub® 4 6, + 6,

The value of zl(]1 2 will be changed in every new iterative process with new b(1?) input

value. If the value of matrices B and C are obtained by calling function oi(jl,f,) in every

o calculation, the total calling times in one iterative process are (IJ)*(IJ —1)* +

3/21J(IJ — 1).

In order to reduce redundant calculations of Ui(jl,fl), we calculate and store all values

of the afjl,fl) in a IJ x IJ matrix. The only thing left to do in the calculation of
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matrices B and C' is to withdraw the value of Jgjl,fl) directly from the matrix. This will
reduce computing times to (IJ)*, which is obviously smaller than (IJ)*(1J — 1)* +

3/21J(1J - 1).

This method is similarly applied to calculation of matrices BY, (V) and B®) C®,
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Chapter 5

Results of the Simulation Study

5.1 Results and Comparison with Dannenburg’s
Estimators

The main goal of the simulation study consists in comparing the performance of the
optimal variance components estimators with those proposed by Dannenburg, both in
terms of bias and variance. The following subsections present the results of a number

of simulations with different input parameters.

Note that all simulations were carried out with m =5, s =5, and T = 5. Column
Parameter represents the input value of b)) 53 and (2); column Estimation shows
there are two groups of results, Dannenburg’s results and Optimal estimation results;
column Average represents the mean of N runs of 5, 5@ and 512): column Std. Dev.
presents the standard deviations of N runs of ¥, ) and 5(12): column Coef.of Var.
represents coefficient of variation (which is obtained by dividing standard deviation

by mean); the last column Negative represents the number of negative estimates of
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b, b2 and 602, Simulation of Dannenburg’s estimators is provided by Goulet.

5.1.1 Simulation Results for I = J =4

Results of two simulations — Dannenburg’s solutions and optimal estimation’s solu-
tions for small portfolio I = 4, J = 4, using 1000 iterations are summarized in Tables

5.1—5.3. Results from / =4, .J = 4, using 5000 iterations are summarized in Tables

5.4—5.6.
Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b = 0.5 | Dannenburg’s | 0.5227 0.6509 1.2452 186
Optimal 0.5702 0.6459 1.1328 0
b® =0.2 | Dannenburg’s | 0.2073 0.3793 1.8300 321
Optimal 0.2345 0.3429 1.4623 0
b2 = 0.7 | Dannenburg’s | 0.7102 0.4383 0.6171
Optimal 0.6087 0.3886 0.6384

Table 5.1: Comparison of Dannenburg & Optimal variance components estimators

for small values parameters, I = J = 4, 1000 runs.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b =2 Dannenburg’s | 2.0226 2.4613 1.2169 184
Optimal 2.2100 2.4514 1.1092 0
b® =15 | Dannenburg’s | 1.4703 1.8620 1.2664 212
Optimal 1.4870 1.8164 1.2215 0
b2 =3 | Dannenburg’s | 2.9299 1.5276 0.5214
Optimal 2.7547 1.3788 0.5005

Table 5.2: Comparison of Dannenburg & Optimal variance components estimators
for moderate values parameters, I = J = 4, 1000 runs.
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Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b =10 | Dannenburg’s | 10.7268 | 13.7443 1.2813 192
Optimal 11.2197 | 13.0408 1.1623 0
b =15 | Dannenburg’s | 16.1401 | 17.9104 1.1097 145
Optimal 14.4622 | 15.7705 1.0905
b2 =20 | Dannenburg’s | 20.0371 | 10.9447 0.5462
Optimal 18.5996 8.5992 0.4623

Table 5.3: Comparison of Dannenburg & Optimal variance components estimators

for large values parameters, I = J = 4, 1000 runs.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b = 0.5 | Dannenburg’s | 0.4938 0.5991 1.2132 945
Optimal 0.5327 0.5955 1.1179 0
b = 0.2 | Dannenburg’s | 0.2025 0.3769 1.8612 1648
Optimal 0.2489 0.3276 1.3162 0
b12) = 0.7 | Dannenburg’s | 0.7021 0.4309 0.6137 76
Optimal 0.6192 0.3776 0.6098 0

Table 5.4: Comparison of Dannenburg & Optimal variance components estimators

for small values parameters, I = J = 4, 5000 runs.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b =2 Dannenburg’s | 1.9952 2.3413 1.1735 857
Optimal 2.0714 2.2864 1.1038 0
b = 1.5 | Dannenburg’s | 1.5339 1.9837 1.2932 1089
Optimal 1.5795 1.7793 1.1265 0
b2 =3 | Dannenburg’s | 2.9888 1.5591 0.5216 16
Optimal 2.8132 1.3649 0.4852 0

Table 5.5: Comparison of Dannenburg & Optimal variance components estimators
for moderate values parameters, I = J = 4, 5000 runs.
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Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b =10 Dannenburg’s | 10.1854 13.3027 1.3061 1090
Optimal 10.5528 12.1769 1.1539 0
b =15 | Dannenburg’s | 14.8404 | 16.9111 1.1395 800
Optimal 15.2494 15.7148 1.0305 0
b2 =20 | Dannenburg’s | 19.9136 | 9.8576 0.4950 18
Optimal 19.0231 | 8.5927 0.4517 0

Table 5.6: Comparison of Dannenburg & Optimal variance components estimators
for large values parameters, I = J = 4, 5000 runs.
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5.1.2 Simulation Results for / = J =6

Results of the two simulations for larger portfolios (I = 6, J = 6), 1000 runs and 5000

runs are summarized in Tables 5.7—5.9 and 5.10—5.12, respectively.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b = 0.5 | Dannenburg’s | 0.5152 0.4227 0.8205 50
Optimal 0.5009 0.4364 0.8712 0
b =0.2 | Dannenburg’s | 0.1914 0.2327 1.2158 210
Optimal 0.2126 0.2316 1.0894 0
b12) = 0.7 | Dannenburg’s | 0.7030 0.2572 0.3659
Optimal 0.6732 0.2509 0.3727

Table 5.7: Comparison of Dannenburg & Optimal variance components estimators

for small values parameters, I = J = 6, 1000 runs.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b1 =2 Dannenburg’s | 2.0903 1.8021 0.8621 54
Optimal 1.9910 1.6743 0.8409 0
b = 1.5 | Dannenburg’s | 1.4793 1.3412 0.9067 85
Optimal 1.5179 1.3245 0.8726
b(02) =3 | Dannenburg’s | 3.0331 0.9434 0.3110
Optimal 2.9521 0.8747 0.2963

Table 5.8: Comparison of Dannenburg & Optimal variance components estimators
for moderate values parameters, I = J = 6, 1000 runs.
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Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b1 =10 | Dannenburg’s | 9.9695 8.8406 0.8868 77
Optimal 10.0032 8.7394 0.8737 0
b =15 | Dannenburg’s | 15.2329 | 12.4135 0.8149 32
Optimal 15.1179 | 11.8842 0.7861
b2 =20 | Dannenburg’s | 19.9885 | 6.1145 0.3059
Optimal 19.7804 5.5162 0.2789

Table 5.9: Comparison of Dannenburg & Optimal variance components estimators

for large values parameters, I = J = 6, 1000 runs.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b = 0.5 | Dannenburg’s | 0.4992 0.4236 0.8485 272
Optimal 0.5125 0.4302 0.8394 0
b =0.2 | Dannenburg’s | 0.2021 0.2303 1.1395 881
Optimal 0.2159 0.2227 1.0315
b(2) = 0.7 | Dannenburg’s | 0.6986 0.2554 0.3656
Optimal 0.6696 0.2493 0.3723

Table 5.10: Comparison of Dannenburg & Optimal variance components estimators

for small values parameters, I = J = 6, 5000 runs.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b =2 Dannenburg’s | 1.9911 1.6308 0.8191 268
Optimal 2.0248 1.6571 0.8184 0
b® = 1.5 | Dannenburg’s | 1.5053 1.3373 0.8884 415
Optimal 1.5296 1.2886 0.8424
b(12) =3 | Dannenburg’s | 2.9809 0.9424 0.3162
Optimal 2.9567 0.8844 0.2991

Table 5.11: Comparison of Dannenburg & Optimal variance components estimators
for moderate values parameters, I = J = 6, 5000 runs.
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Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b =10 Dannenburg’s | 9.8907 8.6326 0.8728 413
Optimal 10.1469 8.6795 0.8554 0
b =15 Dannenburg’s | 15.0191 11.9356 0.7947 205
Optimal 15.1839 | 11.6267 0.7657
b(12) = 20 | Dannenburg’s | 20.1642 | 6.0224 0.2987
Optimal 19.8836 5.5951 0.2814

Table 5.12: Comparison of Dannenburg & Optimal variance components estimators
for large values parameters, I = J = 6, 5000 runs.
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5.1.3 Simulation Results for I = J = 8§

Results of the two simulations for portfolios with I = 8, J = 8, 1000 runs are presented

in Tables 5.13—5.15.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b =0.5 | Dannenburg’s | 0.5247 0.3461 0.6597 12
Optimal 0.5149 0.3477 0.6753 0
b =0.2 | Dannenburg’s | 0.2014 0.1685 0.8369 80
Optimal 0.1989 0.1617 0.8130 0
b12) = 0.7 | Dannenburg’s | 0.6992 0.1840 0.2632
Optimal 0.6842 0.1850 0.2704

Table 5.13: Comparison of Dannenburg & Optimal variance components estimators

for small values parameters, I = J = 8, 1000 runs.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b =2 Dannenburg’s | 2.0717 1.3093 0.6320 7
Optimal 2.0468 1.3461 0.6577 0
b =15 | Dannenburg’s | 1.5564 1.0660 0.6849 25
Optimal 1.4800 0.9956 0.6727 0
b2 =3 | Dannenburg’s | 2.9876 0.6741 0.2256
Optimal 2.9891 0.6480 0.2168

Table 5.14: Comparison of Dannenburg & Optimal variance components estimators
for moderate values parameters, I = J = 8, 1000 runs.
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Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b =10 Dannenburg’s | 9.9008 6.7497 0.6817 15
Optimal 10.2293 | 6.9703 0.6814 0
b2} =15 | Dannenburg’s | 14.9519 | 9.5413 0.6381 11
Optimal 14.8991 | 9.2592 0.6215
b2 = 20 | Dannenburg’s | 19.8063 | 4.2700 0.2156
Optimal 20.0765 | 4.0773 0.2031

Table 5.15: Comparison of Dannenburg & Optimal variance components estimators
for large values parameters, I = J = 8, 1000 runs.
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5.1.4 Simulation Results for [ = J = 10

The results of portfolios with I = J = 10, 1000 runs are presented in Tables 5.16—

5.18.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative

b = 0.5 | Dannenburg’s | 0.5069 0.2895 0.5711 2
Optimal 0.4888 0.2743 0.5612 0

b =0.2 | Dannenburg’s | 0.2076 0.1421 0.6846 27
Optimal 0.1967 0.1413 0.7184

b(12) = 0.7 | Dannenburg’s | 0.6952 0.1404 0.2019
Optimal 0.6887 0.1540 0.2236

Table 5.16: Comparison of Dannenburg & Optimal variance components estimators
for large values parameters, I = J = 10, 1000 runs.

Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b1 =20 | Dannenburg’s | 2.0287 1.0866 0.5356 1
Optimal 1.9446 1.0753 0.5530 0
b? = 1.5 | Dannenburg’s | 1.5062 0.9075 0.6025 2
Optimal 1.4804 0.8823 0.5960 0
b2 = 3.0 | Dannenburg’s | 3.0142 0.5202 0.1726 0
Optimal 2.9950 0.5263 0.1757 0

Table 5.17: Comparison of Dannenburg & Optimal variance components estimators
for large values parameters, I = J = 10, 1000 runs.

5.2 Graphical Comparison of Standard Deviations

Graphs are used to compare two kinds of results (Optimal and Dannenburg’s). The

following graphs are based on the data: T =5, m = 5, s> = 5, 1000 runs. The X axis
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Parameter | Estimator Average | Std. Dev. | Coef. of Var. | Negative
b =10 Dannenburg’s | 10.1898 5.7772 0.5670 5
Optimal 9.6724 5.5526 0.5741 0
b2 =15 | Dannenburg’s | 14.8041 | 8.2300 0.5559 0
Optimal 14.8712 8.2359 0.5538 0
b(12) = 20 | Dannenburg’s | 19.9223 3.3213 0.1667 0
Optimal 20.0901 3.2366 0.1611 0

Table 5.18: Comparison of Dannenburg & Optimal variance components estimators
for large values parameters, I = J = 10, 1000 runs.
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Figure 5.1: Graphs of Small Values Parameters_ b(!)

represents I and J. I, J are 4, 6, 8, 10 respectively. The Y axis represents standard
deviation. Due to similar results between the two simulations, some points overlap a

little bit. The detailed results can be found in the above section.

The first group of graphs present comparisons of small values parameters, b(!) =

0.5,6(2) = 0.2,6(12) = 0.7.

See Figure 5.1—5.3: Graphs of Small Values Parameters
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The second group of graphs present comparisons of moderate values parameters,

b =2 b? =15 02 = 3.

See Figure 5.4—5.6: Graphs of Moderate Values Parameters

The third group of graphs present comparisons about large values parameters, b(!) =

10, 4@ = 15,512 = 20.

See Figure 5.7—5.9: Graphs of Large Values Parameters

5.3 Conclusions

From the results of the numerical test, optimal estimators are reasonably unbiased.

For I = J =4, T = 5, runs 1000 or runs 5000, optimal standard deviations are
obviously smaller than Dannenburg’s standard deviations. Coefficients of Variation

in the optimal model are apparently smaller than those in Dannenburg’s model.

For I = J = 6, T = 5, runs are 1000, standard deviation of b=0.5 is a little
larger than Dannenburg’s. When runs are 5000, standard deviations of 5, 512 in
the optimal model are smaller than those in Dannenburg’s model; optimal standard

deviation of b(!) is a little bit larger than that in Dannenburg’s model. One optimal

coefficient of variation is a little larger than Dannenburg’s.

With I, J increasing to 8, runs 1000, optimal standard deviation of () is a little bit
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larger than that in Dannenburg’s model. Some optimal coefficients of variation are

larger than Dannenburg’s.

When I, J equal 10, runs 1000, most optimal standard deviations are smaller than
Dannenburg’s standard deviations. Some optimal coefficients of variation are smaller

than Dannenburg’s.

Solutions show that in some cases, optimal means are closer to real parameters than
Dannenburg’s means. The numbers of negative value from Dannenburg’s estimators

decreases as I, J increases.

The results of the numerical test demonstrate that most optimal estimators have
smaller variances so that the premium calculation from the CCC model yields a
more accurate value than Dannenburg’s estimators, although, in some cases, a small

number of optimal solutions are a little larger than those in Dannenburg’s model.
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Conclusions and Future Work

The purpose of this thesis was to design and implement a numerical evaluation of op-
timal variance components estimators (), 5 b12) in a two-way crossed classification
credibility model by using an appropriate programming language, and effective tools
and libraries so as to implement a simulation software package capable of performing
computation faster and more efficiently. This goal was achieved by analyzing existing
problems encountered in realizing the simulation study of the variance components
estimators, using computing language C in the simulation, combining the Matlab C
library and the R math library, applying fast calculation algorithms, allocating lim-
ited memory spaces, increasing computing speed and implementing the simulation’s

requirement efficiently.

As a theoretical foundation of this simulation study, a two-way crossed classification
credibility model was described in detail. From the credibility equation, it is easy
to see that estimations of structural parameters are very important in order to yield
the closest estimation solutions to the insureds’ risk premiums. This is reason why

research of credibility theory has focused on the estimation and optimality of struc-
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ture parameters since the 1980s. In Dannenburg’s crossed classification credibility
model, he applied the variance components model in the credibility model to realize
the estimation of the structure parameters s2, b(i#2%) and to develop tests concern-
ing the values of these parameters. However, Dannenburg’s estimation has no known
optimality property except unbiasedness. In chapter 2, under the assumptions that
all random effects have no excess and projections onto translated linear subspaces of
the Hilbert space, Goulet applied the minimum variance method in variance compo-
nents estimators to optimize the estimations. The variance components estimators
in Dannenburg have a strong tendency to yield negative estimates. Goulet uses the
fixed-point method to calculate optimal pseudo-estimators. The iterative procedure
always converges to a unique and non-negative fixed-point independent of the start-
ing values. Meanwhile, the convergence of the iterative procedure is accelerated by

Siedel’s method.

The simulation study of optimal variance components for small portfolios of data
has been implemented before. However, calculation of the optimal variance compo-
nents estimators for large portfolios is slow and computationally intensive. Although
many tools and several programming languages have been used to ease mathemati-
cal calculation so that the developing time is reduced to a minimum, they are still

ineffective.

In chapter 3, the problems were analyzed in detail and resolved. Language C was used
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in this simulation since it is a low level and hence powerful language for computing;
moreover, the standard version is portable. Application of pointers resolved the
problem of memory allocation. All the matrices and vectors used on pointer variables
are allocated memory when required, which are freed later for reuse. The simulation
was done on the Linux system so that it could be integrated with other codes running

on Linux.

Fixed-point algorithm and large matrix inversion are computationally taxing, and,
therefore, increase execution time. Since the inversion of matrix C is required three
times in the program, each calculating C~' B, which is equivalent to the computing
value of a group of linear equations. Application of LU decomposition algorithm eases
computation by resolving the value of linear equations. Lapack Chelosky algorithm
was used to accelerate the speed of execution on linear equations since Matrix C is
symmetric positive definite. Function backslash of Matlab C library applies the La-
pack Chelosky algorithm and plays an important role in increasing software processing
speed. According to our speed tests, for risk factors =10, J=10, T=5, execution
time decreased to 9 minutes from 22 minutes. Tests demonstrate that the algorithm
and functions used in this simulation are optimal. Accuracy tests demonstrate that
solutions obtained from the simulation are validated with the solutions from Goulet’s

codes.

Chapter 4 describes the software implementation of evaluating estimators of the opti-
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mal variance components in a two-way crossed classification credibility model. A flow
chart was given to show the entire process of this program. In this flow chart, input
parameters and output requirements are clearly described. Implementation strategies
analyses were introduced in order to clearly explain the implementation difficulties

and problem-solving method.

Chapter 5 presents the results of means and standard deviations of different size
parameters b 42 p12) o large portfolios. Compared with Dannenburg’s structure
parameters estimation, numerical tests prove that Goulet’s optimal estimators have
smaller variances. Minimum variance unbiased estimation method optimizes variance
components estimators which brings the expectation of future insurance premiums

closer to accurate values.

Although the simulation improved the execution speed for a large portfolio dramat-
ically, the execution time is still considerable. For example, =10, J=10, T=5,
b = 1.0, b® = 1.0, b1? = 1.0, m=5.0, s> = 5.0, runs=5000, one iterative process
takes 9 minutes. Total time for execution is 5,000 x 9=45,000 mins=750 hours=31
days. This means that we have to wait for one month to obtain this group of so-
lutions. So far, numerical tests indicate that running speed is different on different
systems. It is thus necessary either to continue looking for more effective algorithms
and matrix calculation software, or to try to execute on a faster computer system in
order to reduce computation time.
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From the point of view of mathematics, realization of optimal estimation depends on
fixed point computation. Although the calculation tends to converge to a unique fixed
point independent of the starting values, the number of iterations can not be known
until termination of the calculation. This kind of unknown iterative runs waste a lot
of computer resources and time. It is thus worth doing further research on whether
fixed point estimation algorithm could be replaced by other more efficient computing
algorithms. Certainly, more efficient optimal parameter estimation methods in the

crossed classification credibility model are waiting to be developed.

At the outset of this research, the application employed in the present simulation is
required to integrate with a R code. However, this simulation study demonstrates a C
program with libraries is difficult to connect with R. In theory, it is possible to apply
libraries which have been already used and integrated with R in a C code. We have
tried to create a package which includes C code with R_ext/Lapack.h and installed
this package in R so as to implement the integration. However, we could not resolve
the problems that arose during this experiment. Further research on integrating C

with R should, therefore, be carried out in the future.

93



Bibliography

[1]

2]

[3]

[4]

[6]

[7]

Bailey, A.L. (1945), “A Generalized Theory of Credibility”. Proceedings of the
Casualty Actuarial Society 32: 13-20.

Bailey, A.L. (1950), “Credibility Procedures, Laplace’s Generalization of Bayes’
Rule and the Combination of Collateral Knowledge with Observed Data”. Pro-
ceedings of the Casualty Actuarial Society 37: 7-23.

Bithlmann, H. (1967), “Experience Rating and Credibility”. ASTIN Bulletin 4,
199-207.

Bithlmann, H. and Straub, E. (1970), “Glaubgwiirdigkeit fiir Schadensitze”.
Bulletin of the Swiss Association of Actuaries 70, 111-133. English translation
by C.E.Brooks.

Bihlmann, H. (1969), “Experience Rating and Credibility”. ASTIN Bulletin,5,
157-165.

Burden, R.L. and Faires, J.D. (1993), Numerical Analysis, fifth edition, PWS-
Kent, Pub.Co. Boston.

Dannenburg, D. (1995), “Crossed Classification Credibility Models”. Transac-
tions of the 25th International Congress of Actuaries 4, 1-35.

De Vylder, I. and Goovaerts, M.J. (1991), “Estimation of the Heterogeneity Pa-
rameter in the Biihlmann-Straub Credibility Theory Model”. Insurance: Math-
ematics and Economics 10:233-238.

De Vylder, F. (1978), “Parameter Estimation in Credibility Theory”. ASTIN
Bulletin 10: 99-112.

De Vylder, F. (1981), “Practical Credibility Theory with Emphasis on Parameter
Estimation”. ASTIN Bulletin 12:115-131.

De Vylder, F. (1984), “Practical Model in Credibility Theory, Including Parame-
ter Estimation”. Premium Calculation in Insurance. NATO ASI Series: 133-150.

94



[12]

[13]

14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

De Vylder, F. and Goovaerts, M.J. (1992), “A Summary of New Results on Op-
timal Parameter Estimation under Zero-excess Assumptions”. Insurance: Math-
ematics and Economics 11: 153-161. North-Holland.

De Vylder, F. and Goovaerts, M.J. (1992), “Optimal Parameter Estimation un-
der Zero-excess Assumptions in a Classical Model”. Insurance: Mathematics and
Economics 11: 1-6. North-Holland.

De Vylder, F. and Goovaerts, M.J. (1991), “Estimation of the Heterogeneity Pa-
rameter in the Biithlmann-Straub Credibility Theory Model”. Insurance: Math-
ematics and Economics 10:233-238.

Dongarra, J.J., DuCroz, J., Hammarling, S., Hanson, R. (1988), “An Extended
Set of Fortran Basic Linear Algebra Subprograms”, ACM Transactions on Math-
ematical Software, Vol.14, No.1, 1-32.

Dongarra, J.J., Duff, I., DuCroz, J., Hammarling, S. (1990), “A set of Level 3 Ba-
sic Linear Algebra Subprograms”, ACM Transactions on Mathematical Software,
Vol.16, No.1, 1-32.

Dubey, A. and Gisler, A. (1981), “On Parameter Estimation in Credibility”.
Bulletin of the Swiss Association of Actuaries 81: 187-211.

Friedrich Leisch. (2004), “Writing R Extension”. The R Manuals, ver-
sion 1.9.1, edited by the R Development Core Team. http://cran.r-
project.org/manuals.html.

Gisler, A. (1980), “Optimal Trimming of Data in the Credibility Model”. Bulletin
of the Swiss Association of Actuaries 80: 313-325.

Gisler, A. and Reinhard, P. (1993), “Robust Credibility”. ASTIN Bulletin23:
117-143.

Goovaerts M.J., Kaas R., Van Heerwaarden A.E., Bauwelinckx T.(1990), Effec-
twe Actuarial Methods, Elsevier Science Pub.B.V. Netherlands.

Goovaerts, M.J. and Hoogstad, W.J. (1987), Credibility Theory. Surveys of Ac-
tuarial Studies, No.4.Rotterdam, Holland: Nationale-Nederlanden N.V.

Goulet Vincent. (1998), “Principles and Application of Credibility Theory”.
Journal of Actuarial Practice. Volume 6, No.1 and 2.

Goulet Vincent. (2001), “Optimal Parameter Estimation in Crossed Classifica-
tion Credibility Theory”. Concordia University, Montreal, Canada.

Goulet Vincent. (1998), “A Note on Optiaml Parameter Estimation under Zero-
excess Assumptions”. Insurance: Mathematics and Economics 23:111-117.

95



[26] Hachemeister, C.A. (1975), “Credibility for Regression Models with Applica-
tion to Trend”. Credibility, Theory and Applications, Proceedings of the Berkeley
Actuarial Research Conference on Credibility. New York, N.Y.:Academic Press:
129-163.

[27] Jewell, W.S. (1975), “The Use of Collateral Data in Credibility Theory: A Hier-
archical Model”. Giornale dell’Istituto Italiano degli Attuari 38: 1-16.

[28] Kahn, P.M. (1974), “Credibility Theory and Application”. Proceedings of the
Berkeley Actuarial Research Conference on Credibility, September, 19-21.

[29] Klugman Stuart A., Panjer Harry H., Willmot Gordon E. (1998), Loss Model-
From Data to Decision, John Wiley and Sons, INC.

[30] Kiinsch, H.R. (1992), “Robust Methods for Credibility”. ASTIN Bulletin 22:
33-49.

[31] Lawson, C., Hanson, R., Kincaid, D., Krogh, F. (1979), “Basic Linear Algebra
Subprograms for Fortran Usage”. ACM Transactions on Mathematical Software,
Vol.5, 308-325.

[32] Mowbray, A.H. (1914), “How Extensive a Payroll Exposure is Necessary to Give
a Dependable Pure Premium?”. Proceedings of the Casualty Actuarial Society 1,
25-30.

[33] Natacha Bereux. (2003), “A Cholesky Algorithm for Some Complex Symmetric”.

[34] Norberg, R. (1986), “Hierarchical Credibility: Analysis of a Random Effects
linear Model with Nested Classification”. Scandinavian Actuarial Journal: 204-
222.

[35] Norberg, R. (1980), “Empirical Bayes Credibility”. Scandinavian Actuarial Jour-
nal: 177-194.

[36] Press. William H. (1992), Numerical recipes in C: the art of scientific computing,
2nd edition, Cambridge [England] ; New York, NY, USA : Cambridge University
Press.

[37] Searle, S.R., Casella, G. and McCulloch, C.E. (1992), Variance Components.
New York, N.Y.:Wiley.

[38] Venables, W.N. and Ripley, B.D. (2000), S programming. Springer.

[39] Whitney, A.-W. (1918), “The Theory of Experience Rating”. Proceeding of the
Casualty Actuarial Society 4: 275-293.

[40] The MathWorks, Inc. (2000), Matlab C Math Libray User’s Guide, version 2.1.

[41] The R Development Core Team. (2003), “R Installation and Administration”.
The R Manuals, version 1.6.2.

96



[42] The R Development Core Team. (2004), “R Installation and Administration”.
The R Manuals, version 2.0.1.

[43]) http://www.cms.livjm.ac.uk/etchells/notes/ma200/jacobil.pdf
[44] http://www.netlib.org/lapack
[45] http://www.mathworks.com/products/matlab

[46] http://www.r-project.org/

97



