An Agilized Roadmap for User-Centered

Requirements and Prototype Derivation

Muhammad Faraz Anwar

A Thesis
In
The Department
of

Computer Science

Presented 1n Partial Fulfillment of the Requirements
for the Degree of Master Of Computer Science at
Concordia University

Montreal, Quebec, Canada

March 2005

©Muhammad Faraz Anwar, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04440-3
Our file Notre référence
ISBN: 0-494-04440-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

An Agilized Roadmap for User-Centered Requirements and Prototype Derivation

Muhammad Faraz Anwar

In interactive software system engineering, the user-interface requirement is a crucial
phase. Practitioners are always looking for better guidelines and roadmaps for
requirements engineering that not only ensure the usability in future system, but are also
easy to master and use. This is one of the major challenges of the current HCI methods
for user requirements. Agile methodologies are known for their ease of use, flexibility,
and fast, iterative approach. The ideas from agile methodologies along with user-centered
requirements engineering practices give a great motivation for a unified approach for
user-interface requirements engineering. In this thesis, we propose a roadmap for user-
centered requirements engineering that has agile characteristics. This roadmap, we
believe, will be helpful in acquiring usability requirements and will be easy to follow.
The major artifacts in this roadmap are Scenarios. A Prototype Derivation Process
presented in this thesis complements the SUCRE framework, which was developed in our
research group for scenario based requirements engineering. This process serves
important milestones in the roadmap for quick requirements verification. The prototype
thus} created is in the form of storyboard and could be used for evaluation by end-users or
developers. Therefore, the major contributions of this thesis are an Agilized Roadmap for
User-Centered Requirements and process for Prototype Derivation from scenarios that

are created as the major artifacts of the roadmap.

1ii

ACKNOWDGEMENTS

I am thankful to Almighty God for making me able to work on and complete this thesis.
After that, I would like to express my sincere acknowledgements to several people whose

role, direct or indirect, during the research for this dissertation was valuable.

My thesis supervisor, Dr. Ahmed Seffah, has been a guide, a coach, and a friend
throughout this time. I am grateful for the great learning opportunities he provided me in
terms of discussions and teaching assistantships. Many thanks to Dr. T. Radhakrishnan,

Dr. O. Ormandjieva of thesis examining committee for feedback on this thesis.

I am also thankful to all the members of our Human-Centered Software Engineering
group at Concordia University. Their assistance was available whenever needed. We

made a warm and friendly team and a great learning environment.

And now thanks to those who made great indirect contributions to this research: Ejaz
bhai, Surayya baj and family; they have been great comforters for me during all my time
in Canada. Thanks to my new friends in Montreal, and above all, many thanks to my
parents and family in Pakistan and love to Hamna and Bilal, being eager to meet them

after finishing this thesis kept me working incessantly.

iv

TABLE OF CONTENTS

LIST OF FIGUREScoooiirnrenriisssssnnisssssssessssonsssssssessssssssssossssssssssssssssses X

LIST OF TABLESuuiiiriierinnrencicnsssiessscssssssrssssossssessssssssssssssssssnsessssenss xii

Chapter 1

INtroduction........ceceereeecneiscneecssnnenscnneecssneessones sessesseesssssessssnsenssssnsesssnasasssnen 1
1.1 ReSEArCh ODbDJECHVES.....ccveeiiriieeieeeeerrerrreeeieeiestaeseeest s beeseeessesessassassssassssassssasssens 5
1.2 Research MethodOIOYcocucaveeriieiiiieeeseeeteeeree et ee et sier e e 6
1.3 Thesis Organizationc.ceccecvecerereereeseeniesreessessressessessessessesssessssssesssesssessssessessssenes 8
1.4 Basic Definitions and Terminologies.........coccevereerevereeinineerieeneneneneneeneieeeeenes 10

Chapter 2

An Analysis of Agile and User-Centered Requirements Engineering... 13

2.1 TOEOAUCLION.......veueeeereercretetecete ettt et es s e s s e sessessasaesessnessensesasesanonas 13
2.2 Agile Software Development..........cc.ocuvirririrviriniieeneertecseeeeeetetesresas e s sseenes 15
2.2.1 Highlights of Agile Development Philosophyccoceecveenvenvcncieninnnnrennnen, 16
2.2.2 Focus on Major Agile Methodsc.ccvevieiereinriceeeeeecer e 19
2.3 User-Centered Design PhiloSOPhY........ccoecieierueecienienenenenieennenieeieseenaesssesssesenees 24
2.3.1 Highlights of the User-Centered Design Philosophy....c.cocceveeeueeenincrenienenae 24
2.3.2 Focus on Major UCD Methods........c.ccovieienirnieneinienieieeeentesiceaeeee e 26
2.4 Discussion: Commonalities and Differences.........coococeeviinivevensieennicencennnrensinennns 30

2.5 Brief Introduction to the Treatment of Requirements in UCD and Agile Methods 33

2.5.1 Requirements Engineering in User-Centered Design.........cccccceeveevrvrereennencens 33

2.5.2 Requirements Engineering in Agile Methodologies........cococveerirciinnecnennene 36

2.6 An Overview of SUCRE FramewWork ...oouv e eveeeeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeevensenenenemanennes 38
2.7 CONCIUSIONS et ettt ettt ettt et e e e eeeeeseeeassosaststsaerssesorastassssssssssneaesenesessean 41
Chapter 3

An Agilized Roadmap for User-Centered Requirements Engineering . 42

3.1 Introduction to ROAAMADcc.eeerieiiriiiieeieeeeete ettt s 42
3.1.1 Motivations for the Roadmapcocovevvermnecineicieiieeciniecenceicecre e 42
3.1.2 Benefits of Roadmap Approach...........oceevevieeinvenicniineeeeeneenteeseesee e 43
3.1.3 Roadmap versus process and methodologyccecevcerienrecvieiinienniiiiniecens 43

3.2 The Proposed Roadmapccccoceeeieiiiiniinieninneiciniteiceecsecnieenenetenessvesisesseenne 44
3.2.1 Notation used in the Roadmap.........ccccevieiiiiiiiiiiniiiniiniinicieciene e 44
3.2.2 Structure of the Roadmapc.cccoveeeuiieriinieeireiirtenrereeeneeeer et 45
3.2.3 Description of milestones in the Roadmapcccccceceeceeveeecrencncirnenninnecenenne. 47

3.3 Development of the roadmap.......cceeveveeeineriiniereennenieeenecerescrtereneecresreeneene 54

3.4 Discussions about the roadmap........ccccceveeerveennnne. eeterteenereneeres st e st e e raeseraeenraenaees 59
3.4.1 When to Use the 10admap?........c.cecveererienenirneniniineeccenceene s eeesnenene s 59
3.4.2 Agile Aspects in the Roadmap.......c.cccooeiiieiiiniiniinieieceeececeeeeen 59
3.4.3 Scenarios as the Major Artifacts of the Roadmapc..ccoceeeeveienvncniennncnne. 61
3.4.4 Basis and Validity of the Roadmapccoeeevveereinireeeeeeeeceereeeceees 65

3.5 CONCIUSIONS ...ttt ettt et e st et e e s e e st e s e e eeseaan 67

Chapter 4
Scenarios and their Representation as Use-Case Mapsccoceeeruecersercnnne 68
4.1 INEEOAUCHION. c..eeeutetiereeeeeneteiettet ettt e et e et e b st e s et sabe s e et e sae st e s e s bessnessnenesane 68

vi

4.2 Use-Case Maps as Scenario Representationcocovevveeriecininncinnnininninnennnees 70

4.2.1 The Basic NOLAtIONc.cecererrirerrieerieseneeenereireeeesteee et nesneseeseseeennenees 71
4.2.2 Advantages 0f UCMS......c.coieviiiririnieieceeneeteeet et ceestenesne e see e 73
4.3 Use-Case Maps in SUCRE frameworkcc.ceeevereericneenenieneenenieeneceeeceeneeenees 75
4.3.1 Advantages of SUCRE frameworkccceveeeevcnivinnniiiniiiicicccecnneene 79
4.4 CONCIUSIONS.....cueeuireiererierierirerieiteteeesestestessesaeee e esseseesnesaesesaessesasesesetessnesesanesnenee 81
Chapter 5
Prototype Derivation from Scenarioseeeeeneecsersensecsecssnecssnscssensne 82
5.1 Motivations for a Prototype Derivation Process........ccceeuvrreriericcenniencnnnncineneenne 82
5.2 Prototyping in the Agilized Roadmap.........ccceeveereevienrinenriinenricnccieeceenrerveeeeeeens 84
5.3 Prototyping in SUCRE Frameworkc..cocoovevevienenirnenienieiceecreeeeeesveeseeeneenns 85
5.4 Process of Prototype Derivation from PUCMS........ccccevviiieieriecciienreenneesnnesneenes 87
5.5 Extension to Presentation Units (PUS).....cc.ccceerveireieniercnieienieinieennneeeesieeesnnneeenne 89
5.5.1 Rationale for extension of PU Symbols.........ccccecevirveeevrvrrneniininnvccniecennens 89
5.5.2 Some Presentation Units for PUCMScccocorinuivirieninntenienreeeeesenieseseeenens 91
5.6 Prototype EIEMENLS ...ccveeuiiieieiieceeeeeeeseectiere et essesse s s sves s sseesaesasesvesnseesnassnens 92
5.6.1 Development for PE Symbols.......ccccevevmininneenncnenineccnceeeeeeeeeeeneneees 92
5.6.2 Some PE Symbols for Prototypingccceceeveeveevcrnenienreenemneneeiieeeneeeseeeeens 94
5.7 Mapping Matrix - A tool for Deriving Prototypes using UCMSccccecvvevrrevennenne 97
5.7.1 The proposed PU-t0-PE Mapping MatriX........cccoceveriereeciericiieriieeesiieeeenenesnnns 97
5.8 Concluding Remarks about the Mapping MatriX.......c.cccecueeveruiemnecrcrncrnienenrennene 101
Chapter 6
Illustration of the Prototype Derivation Process.........ccceceveeeccrennnnnenee 102

vii

6.1 INEEOAUCTION ettt et e et etee e e e e e steeaeeseseessresssesaeasesbasaassensaessesnsrasrannas 102

6.2 An introduction to dashboards and GPS.......c.ccccoviriniiiniinieeeecceee 103
6.2.1 Scenarios related to dashboards and GPS.........cccoccovivmnieninnnccecene 104
6.3 Step 1 — Scenario ElCIAtion.......ccceeeeeiierereeineneeseni e cese et eeesn e ses 105
6.3.1 Background of the SCenario.........ccueereeceeeirnrieniriertenre e ste st seesraeerenne 105
6.3.2 TRHE SCENATIOeevveererrieeeiieireiieeeteteteeeenrte sttt seeesesene st et eseseeasessnesesssnens 105
6.3.3 Capturing Tasks/Actions from Scenario...........ccccceeveeereerereeeneencnenneesecnenne 106
6.4 Step 2 — Scenario SPECIfICALION ...cvveverirceerierieeriirrerreeesteretesereteeeesenesraesseesenanes 108
0.4.1 USE-CaSE MAPS ...eouveerenrieieeeeieiertetesree et st saeseestesaeesbe st e s basssesseenseesaenns 108
6.5 Step 3 — Scenario ANALYSISccvvereeeiiereerieeeiteeerrererteeseeesesnersseessesrnesneessesssesnses 112
6.5.1 Applying Mapping MatriXccccevereruereenerrirniereeriieenteneeeseseseeeeeseessesseenee 113
6.5.2 Storyboard ProtOtYPeeccveeueeeierirnirierieeseesteniesniecetenrs st esseessassesssasssesanenns 115
6.5.3 Explanation of the Storyboardcccceoevieiiiivniniiiinecceceentceeeene 118
6.6 The storyboard and Ul requirements in SCENATIOc.ovveverureerecenverenrcrveneerecacn. 119
6.7 Conclusion of HIUSIIAtIONcoeeeverrierecieeierierietecee et saesre s enee 120
Chapter 7
Conclusions and Suggested Future Researchc.eeicnuerccneeeennnnee 121
7.1 MajOr CONLEDULIONS......cccveeiererirerierereeirerenresseesterreessieseestersassssessesosesnsessesesssnenss 123
7.2 Suggested Future Researchi..........ooovvveeieeeieciercieecceeeeeenetesee e eeee s 125
RELEIENMCES ...cuaaeeeeeeeeriiiiiiiiiitieeeatittennirissscstsessssssssssssessssssssssssssssssssssssessans 127
Appendix A
Forms and Templates for the Roadmap............cueueeereervneenrnnenn sesenes 134
A.1 Vision DOCUMENLooeviiiiiiieiirieiieeeiestecee sttt set e et s e s e e e e ssee e 135

A2 Forms for Field Studyooovieeieeeeieieceeeeeeee ettt 136

A.2.1 Identifying Users and StakehOIderscceeeeverereniieninnienensiniee e 136
A.2.2 USer CharacteriStiCsceveeveeeerrermerereeretereneeseicsseseeesentenesiesaeseesensessesaeas 139
A.2.3 Social environment 0f USE.........couevveruerrircreencceeeeeete e 140
A.2.4 USErs’ ANECAOLESooeieiieriiiiiieeientereeteeteteecetee e st nessseseeesrene e esaee e 142
A3 USADIHLY GOALS....cieieeiieeitieieeeteete ettt ettt e 144
A4 StatiNg SCENATIOSceoverieterietenreetrteritenteetesstereessesseseesssessesseessesasesaeesstessenassanne 146
ALS TASK ANALYSIS ..cuuiieiirierieiinieteeie ettt ettt ettt teste s st e s te st esessessessasesaeesasenne 147
A.6 Study of Similar SYSIEMS......cceeiciiiiiieieeiieeierteeeeertecree e eneessereseeeseressaeassveessvens 150
A.7 Physical EnvIrOnmentc..coeeeerererieirieniniceeceectreecseseeieseneseesesnesaeessnenes 151
Appendix B
List of Suggested Presentation Units (PUS)....ccccuueecercvcinssercsirecscnnssannns 153
B.1 A Note about Presentation Units........ccccocevieeereineneeniriineneneneneeeeneneeseeesnenes 154
B.2 Presentation UNItScccoceurieericniecnieiiciesec et ssesteeerees et e eeseenees 154
Appendix C
List of Suggested Prototype Elements (PES) c....ccoveueeruennrrcennrenennncnnanes 159
C.1 A Note about Prototype Elements..........coceeeereenienenienieneeneneerieeeeneenieeeeeseeenne 160
C.2 Prototype EICmENtScooovieviieriiiniiereeienencirveseeresee e sree e seesereeeeeeseesssnesssnans 160

X

Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 6.1:
Figure 6.2:
Figure 6.3:

Figure 6.4:

LIST OF FIGURES

Evolution of SUCRE frameworkcccoceeverenierenirvieinereeresicreneeeeseennens 38
Structure of the roadmapc.oceeeeeeieeireeee et 46
First version of the roadmap.........ccceveeeiiieereenieniereerteeee e ere s erae e 55
Second version of the roadmapc.ccoccevvevereininericcnrireccec e 56
Third version of the 10admapcccceveriierieriieineeeceeteteeee et 58
Typical steps in SCENArio CrEAtioNccoceeverreeererreeiesreereerrerersreenreseeesesseene 63
Integration of UCD practices in RUP (Anderson et al.).........ccccocurniineeennnnne 66
Simple UCM for ATM I0ZIN....c..cooirvieiiirieiereneeeeeetestesieneteseere e sae e 71
Decomposition of ATM Console into two components...........c.ceevevuesveeeueens 72
AN Unbound UCM ...ttt sree e esress st essestasbeseeens 72
Simple UCMs for ATM and Web-Application [ogin.......ccccccoveeeerenieeeneene. 74
SUCRE framework (Alsumait, 2004)ccccoeereivervieninnieerreeeeeeeenresraeeennes 75
Dialog symbols for CUCMs (Alsumait, 2004)cccccevvemiercernerneercienneenans 76
Presentation Units (PUs) suggested by (Alsumait et al., 2003) 78
Prototyping in SUCRE framework (Alsumait, 2004).ccccceververrenveennnenne 85
Process of Prototype Derivation from Scenarios through UCMs 88
Initial car-dashboard widget hierarchycccooevevieninceecnenrninnieieeeee 93
GPS in acar dashboard............ccccoirvrerineninecrneee et 103
Conceptual Use-Case Map fOr SCeNarioocveevevreeeenerrersersversenesseessnnenns 109
Physical Use-Case Map for Scenariocccceceveeuenerecnncenecrcncnnenseeneeneene 110
Application of Mapping MatriXcccevveerieerieniensenienesseereesrersressresaeseennes 112

Figure 6.5: Suggested Prototype Elements (PEs) for Presentation Units (PUs).............
Figure 6.6: Screens of ProtOtyPe......oevevieiiieiiiinieietecteeeeteeee et

Figure 6.7 Final Storyboardcccoveviriiniiniiniiiircrcniiecsteeecceein

X1

LIST OF TABLES

Table 2.1: Extreme Programming — Major concepts and practices........cocvveevueereecrvenennn. 20
Table 2.2: Crystal Methods — Major concepts and practiCesc.ceverererivereevesvenvenreennen 21
Table 2.3: DSDM — Major concepts and practiCes......c.ceevuerrveerreeenieserieereeseesressserseenas 22
Table 2.4: Scrum — Major concepts and PractiCesceuvrererrerereerersreesieneseercresersesssasenes 23
Table 2.5: Scenario-based design — Major concepts and practices..........coceevereveeeceervennen. 27
Table 2.6: Contextual Design — Major concepts and practices........cccevverrersrerrrerreerruesreenns 28
Table 2.7: Usage-Centered Design — Major concepts and practicescoceevereeeeerveneen. 29

Table 2.8 Summary of Commonalities and Differences in agile and UCD philosophies 32

Table 3.1: Symbols used in roadmap..........coevveeverereiirieeiecriereerert et seesreeesraeserrae e 45
Table 3.2: Agile aspects in roadmap.........ccccocveeveirerentenenenere ettt 60
Table 5.1: Examples of Presentation Units..........cccceeeieeviecnineieereeieseseesreseneeeesaesenens 91
Table 5.2: Examples of Prototype Elements.........cc.cceieeveninnininenincieneeenceeeeeceenneen 96
Table 5.3: The Mapping MatriX.......cccoieeirerieeiienirinireneeetireseeseesseessnessessssssssesesaesns 100
Table 6.1: Analysis Of SCENATIOccrvvcviiriireiirieeeert et e e a e e e s sene s 107
Table 6.2: Applying Mapping Matrix t0 PUCMccooivmivncenceneceeeeeene 113

Xii

Chapter 1

Introduction

User-centered requirements engineering is a significant field in software engineering. It is
primarily users’ requirements that the software aims to fulfill. Requirements engineering
is the topic of study for many researchers (Carroll et al., 1998, Maguire, 1998, Orr, 2004,
Paetsch et al., 2003). In this thesis, we discuss the area of requirements engineering as
practiced in User-centered software engineering community. We develop methods to
efficiently elicit and specify users’ requirements and to represent them in terms of

scenarios and using scenarios to develop prototypes.

One common aspect in almost all interactive software systems is that they should support
human experiences while providing task- and context-aware interaction. Designing such
interactive systems is no trivial task; therefore, trial-and-error is not sufficient and there
has to be a well-defined method for requirements engineering. Practitioners and
researchers of requirements engineering work together to devise methods to ensure that
product has good quality and satisfies the purpose it was meant for. The method must

also be usable by software engineers.

Requirements are collected from the domain the software is to be used in. Besides all the
current methods that exist, one thing that should be of principal concern in requirements

engineering methods is the focus on end-users. Orr argues that “the requirements

engineer’s job is to help the users discover what they really need” (Orr, 2004). Since the
product is made for human users, its success depends upon how well humans can use the
system. The focus of requirements engineering and design in User-Centered Design and
User-Centered Requirements Engineering is user and not the functionality (Lauesen,

1997).

There are two levels of human interaction involved in user-centered requirements
engineering methods. First, the requirements engineers use these methods to interact with
end-users to collect domain knowledge, and secondly, since the methods are used by
human software engineers, the process itself must also be easy for humans to be
followed. This is where agile software methodologies come into play. Agile development
is a well-established idea practiced by many people in software engineering community
(e.g. (Kutschera and Schafer, 2002, Fowler, 2000, Beck et al., 1998)). Its methodologies,
for example Extreme Programming, advocate the involvement of users during the
software development and flexibility in the process to adapt with human work
psychology. Agile aspects in user-centered requirements engineering process, we believe,

can give a solid and comfortable ground for user-centered requirements engineers.

Current agile methodologies, however, focus only on the development phase. Team
collaboration, iterations, short deliveries etc. are all practical in implementation phase in
the agile domain. Therefore, we have to adopt the agile philosophy and its key concepts
in the initial requirements engineering phase so as so facilitate the requirements gathering

process and to enrich it with ideas from agile philosophy. We have proposed in this thesis

a roadmap for user-interface requirements engineering where we have taken ideas from

agile methodologies. This roadmap serves as a link between UCD and agile worlds.

Scenario elicitation is a key step in the agilized usability requirements engineering
roadmap presented in this thesis. Scenario elicitation and analysis is itself a complex task
and need to be explained so that the roadmap could be followed well. For this, we
advocate the use of SUCRE framework (Alsumait, 2004). SUCRE is an extensive

framework for defining and representing scenarios on conceptual and physical level.

Using this framework, we have devised a method to transform scenarios into prototypes.
This is a tool in the form of a matrix that suggests prototype elements (figures that
constitute a paper prototype) on the basis of symbols used in Physical Use-Case Maps (a
term introduced in SUCRE framework that we use as a precondition for deriving
prototypes). The prototype created using UI symbols suggested by the mapping matrix is

closer to real UI and summarizes Ul elements in terms of tasks they perform.

Prototype derivation is an important piece in requirements engineering puzzle and
provides a great support in the roadmap we present. The prototype thus created could be
used in storyboarding and helps verify the design at early stages in development lifecycle.
Requirements can be verified by users through prototypes which are easy to understand
by everyone involved in the process due to the standardized symbols proposed by our
proposed mapping matrix. The SUCRE framework mentioned the prototype derivation

from UCMs but did not give a clear-cut method to do so. The framework is thus

complemented with a tool based on the concepts proposed in the framework and

therefore completes a Scenario-to-prototype path.

The two major contributions of this thesis are the agilized requirements engineering
roadmap and a tool for prototype derivation from scenarios. These two ideas are linked
with the SUCRE framework. They make up an important contribution in scenario-based

usability requirement engineering.

1.1 Research Objectives

There are two main objectives of this research. The first objective is to find a common
ground in User-Centered Design and agile philosophy. We strongly believe that UCD is
an important facet of software engineering and must not be ignored even in the initial
stages of software lifecycle. Requirements engineering is a vital pre-phase of UCD which
helps makes sure that before starting user-centered design, the requirements must be
collected in a way which is also user-centered. We observed that agile philosophy is a
growing interest in software engineering circles and gives good ideas that we can
incorporate into the user-centered requirements engineering. Therefore, we propose a

unified roadmap with the best of UCD and agile methodologies.

The second objective is to support the major milestone of roadmap, namely Scenario
Elicitation, such that prototype derivation is possible from scenarios. This objective also
complements the SUCRE framework with a prototype derivation process. SUCRE
(Scenario-based User-Centered Requirements Engineering) is a requirements engineering
framework that has its foundations in scenarios and Use-Case Maps. In this framework,
prototype derivation is a logical sequence after making Conceptual and Physical Use-
Case Maps. With our second objective achieved, an important artifact in the SUCRE

framework will be made possible.

1.2 Research Methodology

We started our research with doing a literature study of UCD and agile philosophies. We
explored several methods proposed under these two notions and tried to find common
grounds in them. We also covered papers over requirements engineering and its role in

UCD and agile methodologies.

We then made a roadmap which lays out milestones for gathering user-interface
requirements and has concepts of agile philosophy working behind the scene. We name

this road map as An Agilized Roadmap for User-Centered Requirements.

We focused on Scenario Elicitation milestone in this roadmap and studied papers and
other material about scenarios. We investigated the role of scenarios in requirements
engineering, different modes of representation of scenarios and found Use-Case Maps
(Buhr, 1998) as most fitting for our need. We studied SUCRE framework (Alsumait,
2004) which is developed in our research group at Department of Computer Science,
Concordia University. The SUCRE framework recommends expounding scenarios in two
tiers of abstraction: Conceptual and Physical. Physical UCMs follow the Conceptual
UCMs in order of creation and have decreasing levels of abstraction. Physical UCMs are
closer to user-interface setting but still is too abstract to be worked on. The logical

consequence of physical UCMs is prototypes which are much closer to real user-

interfaces. We thus formulate a tool for suggesting elements of prototype on the basis of

elements of physical UCMs.

This two-step approach (roadmap and tool) enables us to see a big picture of
requirements engineering process and gives us practical ideas about conducting

requirement engineering.

1.3 Thesis Organization

This thesis is organized into seven chapters including this one. The organization of the

chapters is as follows:

Chapter 1: Introduction gives introduction of the thesis and how we came up with the

ideas presented in this thesis. It also outlines the research objectives and methodology.

Chapter 2: An Analysis of Agile and User-Centered Requirements Engineering. This
chapter includes the result of our literature study on the subjects of User-Centered Design
and agile methodologies. We first introduce highlights of the philosophies and then
present some methods that are used in industry and hold the flag of their respective
philosophies. A discussion about the common and dissimilar points in these notions

followed the introduction of methods.

Chapter 3: An Agilized Roadmap for User-Centered Requirements Engineering. In this
chapter we introduce the roadmap we developed iteratively based on the ideas of UCD
and agile philosophies. After the roadmap, there is description of milestones of the

roadmap and discussion about its benefit and agile characteristics.

Chapter 4: Scenarios and their Representation as Use-Case Maps. Here we have detailed

discussion about scenarios and their use in requirements engineering. We also present

Use-Case maps which are a way to represent scenarios. Later on, we introduce the user-
interface extension to UCMs and how this enrichment could be used to represent

scenarios related to user-interfaces.

Chapter 5: Prototype Derivation from Scenarios. The process of deriving prototypes from
scenarios is presented in this chapter. We first discuss about prototyping in the roadmap
(presented in chapter 3) and in SUCRE framework. Then we explain how the prototype
derivation works based on scenarios. Later on, we introduce necessary extensions to the
notation for Physical UCMs and the set of symbols that is to be used in prototypes. We
then present the Mapping Matrix, a tool to suggest prototype elements from presentation

units (of physical UCMs).

Chapter 6: Illustration of the Prototype Derivation Process. In this chapter, we illustrate
the process of prototype derivation from scenario. We present a simple scenario and after
analyzing it carefully, we apply the prototype derivation process (defined in chapter 5) to

get a storyboard prototype.

Chapter 7: Conclusions and Suggested Future Research. In this last chapter, the whole
thesis is summarized and major contributions of the research are highlighted. Suggestions

for future research are later mentioned in the last subsection.

1.4 Basic Definitions and Terminologies

Following terms and phrases appear frequently in the text of this thesis with their
respective meanings in mind. The meanings stated here will help in better understanding

of the thesis.

Agilized — Having characteristics of agile software development. Typical characteristics
of agile software development are less involvement of deliverables, fast and frequent

deliveries, iterative, customer collaboration etc.

Presentation Unit — Icons representing parts of user-interface in physical use-case maps
(PUCM). The responsibilities (actions) that user performs to accomplish task in a
scenario are denoted by a cross over a Presentation Unit meaning that those actions will

be performed on certain parts of user-interface represented by that PU.
Process — A process is a specification of sequence of steps that, when followed, result in
achieving a particular goal or producing a product. In our thesis, for example, we propose

a process for deriving prototypes from scenarios.

Prototypes — Artifacts representing a product under development with varying degree of

abstraction (also called ‘fidelity’) to show certain features of the product. Traditionally,

10

three types of prototypes are identified as: low-fidelity (e.g. using paper-pencil), mid-

fidelity (e.g. storyboards) and high-fidelity (e.g. a working web-interface).

Prototype Elements — Graphical elements of a storyboard prototype screen. The
Prototype Elements (or PEs) represent widgets of an interface in their simple forms i.e.
not showing detail of the behavior of the widget. Users can understand the screen layout
and what actions could be performed on the screen using the widgets that are represented

by PEs.

Roadmap — A detailed plan to guide progress toward a goal (Merriam-Webster, 1982). It
is an explicit formal specification of how .to represent the objects, concepts and other
process entities that are assumed to exist in user-centered requirements

and the relationships that hold among them.

Scenarios — Stories in simple natural language (primarily English) which tells about a
typical user of a system who is performing some tasks using a system under typical

context of the environment.

Storyboard — A sequential series of sketches/pictures that show the flow of a story. In

terms of scenario-based usability requirements engineering, the story is a scenario and the

storyboard is a series of pictures depicting user-interface screens.

11

SUCRE — Acronym for Scenario-based User-Centered Requirements Engineering. It is a
requirements engineering framework that is based on scenarios as major artifacts. The
framework uses Use-Case Maps to represent scenarios. It was proposed by Alsumait

(Alsumait, 2004) at Concordia University, Montreal, Canada.

Use-Case Maps — A notation to represent behavior of systems in a high-level way. Each
‘map’ corresponds to ‘use cases’ which relate to a particular function of a system. The

notation was invented by Buhr (Buhr, 1998) at Carleton University, Ottawa, Canada.

User-centered requirements engineering — An approach involving potential users of a
system under development for gathering requirements. This is in contrast to conventional
requirement engineering approaches where the focus is on functions/features and users

are involved at later stages or not involved at all.

12

Chapter 2

An Analysis of Agile and User-Centered

Requirements Engineering

2.1 Introduction

There are numerous methodologies and processes that govern the software development.
Every process has its own features and some overlapping characteristics with other
processes. This overlapping is due to the fact that there are some philosophies behind
them. Most of the methodologies we see today are based on a certain way of thinking

which dictates the key concepts and practices of those methods.

In software development, there are two prominent philosophies that consider human/user
involvement: User-Centered Design and Agile Software development. Both of these
philosophies give a particular way of thinking about software engineering. Although
these are two different philosophies, but we can draw some parallels between them and

try to find a method that has best of both worlds.

13

In this chapter, we will shed light on the two philosophies and present some of the
methods that these two philosophies govern. This practice will help us to understand the
philosophies in detail and how the methods are affected by a way of thinking. We will
later discuss the treatment of requirements in these two philosophies, which is our main
goal in this chapter. A brief introduction to some requirements engineering methods will

then be given.

14

2.2 Agile Software Development

The Software Development Process has undergone numerous revolutions since its
inception. One of these revolutions is emergence of the philosophy of Agile Software
Development. This philosophy is based on the notion that software development teams
are focusing more on creating useless documentation and on the process itself rather than
focusing on the product. The result is more delayed or failed projects. Agile philosophy
and its supporting methodologies make sure that the development process is free from
less fruitful rituals found in earlier processes. It gives new ideas for improving the

communication between the team members and avoiding loopholes in development.

Agile philosophy took its current form with the emergence of agile manifesto in 2001
(Beck et al., 2001). A group of practitioners came together to discuss new processes that
were not heavyweight or documentation-oriented. What they came up with was a set of

- following values:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaberation over contract negotiation

Responding te change over following a plan

15

This philosophy and related methodologies have created lots of interest in professionals
and academia. Abrahamson and others (Abrahamson et al., 2002) have discussed major
agile methods with respect to Process, Roles and Responsibilities, Practices, Adoption
and Experiences, Scope of use, and finally Current Research. As a result of this
approach, they have presented a definition and classification of agile methods, and

different methods are compared with each other with respect to these aspects.

The most important work that was needed to be done, and was attempted by many
researchers, is the adoption of agile values in conventional software engineering
practices. Kutschera and Schafer (Kutschera and Schafer, 2002) have presented a way to
adopt agile methods in dynamic environments. Paetsch and others (Paetsch et al., 2003)
have analyzed the role of agile methods in requirements engineering. In this thesis, we
also have presented a roadmap for requirements engineering that confirms with agile

values.

2.2.1 Highlights of Agile Development Philosophy

By definition, agile means: marked by ready ability to move with quick easy grace
and/or having a quick resourceful and adaptable character (Merriam-Webster, 1982).
The agile software development philosophy perfectly agrees with this definition. The
philosophy advocates that the development process must always be ready to welcome
change and yet must move with quick pace. The fruit of this thinking is more satisfied

customers, developers with friendly rapport, and above all, good working software.

16

Most of the literature about this philosophy is produced by practitioners and consultants.
As a result, this literature focuses on methodologies. Methodologies impose a disciplined
process over software development with the aim of making development predictable and
efficient (Fowler, 2000). However, the Agile Manifesto (Beck et al., 2001) gives a solid
philosophical ground for methodologies. According to the manifesto, Agile Software

Development is based on four values:

1) Individuals and interactions over processes and tools

Agile philosophy has a people-first orientation for software development (Abrahamson et
al., 2002). That is, people are more important than processes. The software development
process must suit the individuals who are developing the software. Some processes are
better adapted by a group of developers in one culture but does not so in another culture
or environment. According to Cockburn (Cockburn, 2000), people should not be treated
as components that program. Rather, people are thinking and communicating beings
suited for face-to-face communication. Therefore, one important breakthrough in agile
methodologies is the importance of working with programmers’ instincts though verbal

communication (two-person teams in Extreme Programming, scrums in Scrum etc).

2) Working software over comprehensive documentation

Customers are always concerned with working software and have little interest in long
documentations. Therefore, agile philosophy emphasizes on short but quick deliveries of
working software. This does not mean that it discourages any kind of documentation,

rather, the documentation should be done but only late in the process and when needed.

17

The lack of documentation is the indication of two built-in characteristics of agile
methods: (1) Agile methods are adaptive rather than predictive; i.e. they welcome change
and also can change themselves according to the situation. (2) Agile methods are people-
oriented rather than process-oriented; role of process is to support people (teams) in work

(Fowler, 2000).

3) Customer collaboration over contract negotiation

Although contracts are important from business point-of-view, they should not become a
barrier against the communication between two parties. Agile philosophy ensures that the
development team and client should collaborate with each other, especially over the
requirements and do not freeze the requirements in the beginning of the project (this is

particularly good for clients with changing requirements).

4) Responding to change over following a plan

Requirements change during the course of project. This fact has been taken graciously by
agile philosophy and provided this important value in its manifesto. One way to control
unpredictability due to changing requirements is ‘iterations’. The length of iteration
matters and dictates how often this change will be accommodated into design. XP and

Scrum, including other methods, advise about the iteration length (Fowler, 2000).

18

2.2.2 Focus on Major Agile Methods

In this section, we will focus on some of the major agile methods that are used in industry
and have been most commonly studied. This will exemplify the highlights of the agile

philosophy put forth in previous subsection.

Following agile methods are discussed in this section:
e Extreme Programming
¢ (Crystal Methods
e Dynamic system development method

e Scrum

1) Extreme Programming (XP)

Extreme Programming is the most popular agile methodology. It is based on four values
namely: communication, simplicity, feedback and courage. Based on these values, about
a dozen practices are suggested. These practices are not new; they are tested, tried but
forgotten. XP offers a lifecycle process with phases: Exploration, Planning, Iterations to
release, Production and finally death phase (when there is nothing more to implement). It
is aimed for small and medium sized teams. Stress is put on team work and empowering

developer to make decisions. (Wells, 2004, Abrahamson et al., 2002, Fowler, 2000).

Following table (Table 2.1) summarizes the key concepts in XP and names and

descriptions of major practices (Abrahamson et al., 2002).

19

Key Concepts

Respond to changing customer requirements
Groupware-style development

Communication, simplicity, feedback and courage

Major Practices

Description

Planning game

Programmer decides effort, customer decides

time for releases

Small releases

At least once every 2 to 3 months

Metaphor A shared story guiding the development

Simple design Design is simplest possible for implementation
Refactoring Code is reviewed removed to discrepancies

Pair Programming Programmers are always paired in a team of

two.

Collective ownership

Anyone can change any part of code anytime

Continuous integration

A new piece of code is integrated into existing

code as soon as it is ready.

40-hour week

Programmers work for no more than 40-hours

per week.

On-site customer

A representative of customer is always present

on programming site.

Coding standards

Coding rules and conventions exist and must be

followed by all programmers.

Table 2.1: Extreme Programming — Major concepts and practices

20

2) Crystal Methods

Crystal is a family of number of methods, plus the principles of tailoring these methods
according to need. Among the four color-coded (Clear, Yellow, Orange, Red) ranges of
methods, an appropriate method is chosen based on size and criticality of the project.
Clear methods allow multiple teams to work in parallel; but these teams should be located
in shared office-space. Life-critical projects are not suitable to be developed with Crystal

methods. (Abrahamson et al., 2002)

The table 2.2 highlights key concepts and major practices of Crystal methodologies.

Key Concepts
Tailored process for every project
Strong, face-to-face and short-path communication

Less deliverables

Major Practices Description

Annotated usage scenarios Scenarios are created and annotated.
Regression testing frameworks Supports regression testing.

Peer code review Programmers review code for each other
User involvement User is involved in development.

Table 2.2: Crystal Methods — Major concepts and practices

3) Dynamic system development method
According to Abrahamson and others (Abrahamson et al., 2002) “The fundamental idea

behind DSDM is that instead of fixing the amount of functionality in a product, and then

21

adjusting time and resources to reach that functionality, it is preferred to fix time and
resources, and then adjust the amount of functionality accordingly.” A key concept of
DSDM is “timebox” and each iteration must end in that timebox. Different phases of the
DSDM are: Re-Project, Feasibility study, business study, Functional model iteration,
Design and built iteration, Implementation, and lastly, Post-project phase. The team size

for DSDM varies between two and six members. (Abrahamson et al., 2002)

Key concepts and major practices in DSDM are listed in Table 2.3 below.

Key Concepts

Timeboxing (for timing of process)
MoSCoW (for prioritizing tasks)
Active user involvement
Empowered team to make decisions

All changes are reversible

Major Practices Description
Iterative and incremental development Several iterations before final release
Testing throughout lifecycle Every part of code is tested frequently

Table 2.3: DSDM — Major concepts and practices

4) Scrum
Scrum does not define any specific technique for implementation but gives a framework
for flexibility, adaptability and productivity. It focuses on the changing values of

variables that impact software quality and development process. These variables include

22

requirements, time-frames, resources and technology. A Scrum process includes three
phases: Pre-game, Development, and Post-game. In the development phase, the system is
implemented in Sprints, which are short iterations of development. The requirements are
stored in a backlog list. A daily meeting is an important part of the development process,

each meeting is known as Scrum. (Abrahamson et al., 2002)

Following table (Table 2.4) points out key concepts and major practices in Scrum.

Key Concepts
Focus on team-work

Daily communication of status

Major Practices Description
Sprints Short deliveries
Scrums Daily meetings

Table 2.4: Scrum — Major concepts and practices

23

2.3 User-Centered Design Philosophy

In any process of Software Engineering, design is an important phase. In this phase we
consider the possible solutions of the problem, which was analyzed in analysis phase, and
how to derive those solutions. During the design of the software, if we consider user as
the focus of every activity, it can somewhat guarantee that the end product will be liked
by users. User-Centered Design approach advocates the same idea that since users are the
ultimate goals of software, their role should be incorporated into the design process right

from the beginning to the end.

To support this idea of user-centered design and to give solid guidelines that can fulfill
this purpose, different researchers have devised several methods (e.g. (Constantine and
Lockwood, 2002)). These methods are based on a few key-concepts and advice some
practices that will help in achieving a user-centered design. These key concepts also give
interesting insights into how ideas from other Software Engineering practices and other

fields like psychology could be adopted for a User-Centered Design.

2.3.1 Highlights of the User-Centered Design Philosophy

The philosophy of User-Centered Design and HCI has roots in disciplines of psychology,
sociology, industrial design, graphic design and others. This amalgamation of paradigms

has made UCD an interesting field. In software engineering, this is taken on purely

24

engineering approach and several methods are derived from this philosophy that makes

the software development closer to user needs.

According to Xavier Ferre (Ferre, 2003), the iterative approach in UCD philosophy is
crucial. It is impossible to make a correct design in first attempt due to the complexity of
human behavior. Iterations, therefore, play a key role in defining user needs and refining

them to render them useful.

The most obvious highlight of this philosophy is active user involvement. Unless the user
is involved from the start of the software development process, it is difficult to make a
system that is completely user-satisfying. The UCD philosophy enjoins the development
team to contact user on each and every step of the process, get their feedback, inform

them of the status of the progress, and above all, evaluate short deliveries with them.

One important concept in UCD philosophy is proper understanding of user and tasks
(Ferre, 2003). Understating users is quite obvious, but for tasks, the UCD philosophy
says that these are also important to understand. The viewpoint to look at tasks, in case of
UCD, is different. In conventional methods, tasks are looked upon as features to
implement. In UCD, tasks are set of actions that a user has to perform to achieve a goal.
The viewpoint, thus, has shifted from system/software to user/human. This important
shift in paradigm has enabled developers and designers to put themselves in user’s shoes
and see what user will have to do for hitting that goal. They thus design systems that are

close to user’s expectations from the system.

25

Users are humans. Humans are affected by their environment, so do users. The UCD
philosophy also emphasizes the need to study user’s environment and take decisions
accordingly. Context is defined as the surroundings of users while they are using the
system. Contextual inquiry is thus deemed important in UCD philosophy. Users’ detatled
sketch includes their education, exposure to similar systems, social status etc. make
another important factor in their behavior with the system. UCD thus underlines the

importance of understating the users themselves.

2.3.2 Focus on Major UCD Methods

User-Centered Design is a topic of research of a great many software engineering
scholars and practitioners. They study topics from conventional software engineering, as
well as different other fields, plus, come up with ideas of their own and formulate new

methods that contribute in one way or the other to the vast area of User-Centered Design.

Here in this section, we will consider following three major UCD methods to give an idea
of how their key-concepts and major practices can make the process and thus the product

closer to the needs of end-users.
e Scenario-based design

¢ Contextual design

e Usage-centered design

26

The reason we have chosen these three methods is their relevance with our requirement
engineering scope of study. Contextual design is one of the major methods for collecting
requirements. Scenario-based design and Usage-centered design deals with Scenarios and

Use-cases which are relevant to coming chapters in this thesis.

1) Scenario-Based Design

Scenarios are short stories telling about the use of system by the users. The Scenario-
based design puts scenarios in focus and derives solution based on requirements gathered
from them. In scenario-based design, descriptions of how people accomplish tasks are a
primary working design representation (Carroll, 2000). Collecting scenarios involves
users in telling stories about their use of the system. To collect and elicit scenarios,
pictures, videos, and storyboards are used. Table 2.5 summarizes key concepts and major

practice in scenario-based design.

Key Concepts
Scenario

Video, pictures, storyboards

Major Practices Description

User Involvement Involve users to make and refine scenarios

Table 2.5: Scenario-based design — Major concepts and practices

27

2) Contextual Design

In this method of User-Centered Design, users are studied in their own environment
while using the system. The designer goes to the field and observes how user interacts
with the current system, what are different factors that affect user’s behavior and affect
system performance. Usability engineers take notes while observing and conduct user
interviews. The impact of this method is reengineered task organization and task
sequence models, in contrast to the implementation architecture in traditional systems

analysis (Mayhew, 1999).

Highlights of Contextual Design are stated in Table 2.6 below:

Key Concepts
Users and their work in context

Data-gathering and Data-interpretation

| Major Practices Description
Contextual Inquiry A type of interview to gather field data from
users.
Field Studies Visiting places where system is used.

Validate the information gathered from

Concept Validation Contextual Inquiry

Table 2.6: Contextual Design — Major concepts and practices

28

3) Usage-Centered Design

In Usage-Centered design, the focus shifts to usage, rather than user. The process is
driven by models based on usage of system. This systematic process uses abstract models
to design small and simple system that fully supports all the tasks users need to

accomplish (Constantine and Lockwood, 2002).

The following table lists key concepts and major practices of Usage-Centered design

(Constantine and Lockwood, 2002).

Key Concepts

Streamlined process driven by simple models:
Role-models

Task-models

Content-model

User-roles

Major Practices Description

Exploratory modeling Identifying questions or areas of ambiguity.

Design-by-modeling Making three models to drive the design:
Role model, Task Model and Content Model

Card-based modeling Simple inventory of roles users can play

Table 2.7: Usage-Centered Design — Major concepts and practices

29

2.4 Discussion: Commonalities and Differences

As we have seen in preceding section, UCD and agile software development are two
different philosophies, developed by different people at different times. Yet, they have
many aspects in common. In this section, we will shed some light on the commonalities
and differences between these two philosophies. The summary of the following

discussion is presented in Table 2.8.

Two values of agile manifesto are: (1) Individuals and Interactions over processes &
tools. (2) Customer collaboration over contract negotiation. These values are in harmony
with the UCD concepts of putting the emphasis on individuals (users and stakeholders).
Stakeholders are people who have any interest in the software. The end-users are one of
these stakeholders. In agile, any stakeholder (called Customers) is given same importance

and is encouraged to interact with the development team.

On the other hand in UCD, the end-user is the primary concern of the usability team since
it is the end-user who is going to interact with the user-interface of the software. In the
context of agile methodologies, Individuals also refer to development team members with

different skill-sets.

During discussion about the role of overlapping lifecycle phases, Mayhew (Mayhew,
1999) points out that optimal implementation of the lifecycle requires full participation
of all teams. In traditional software engineering, however, people of different skill-sets

work on their own part of lifecycle, and communication is done through documents.

30

Instead, if all people work together in each phase of the project, they can input their
expert advice and raise their concern at the right time. This idea of collaboration in

Usability lifecycle resonates perfectly with these agile values.

The other two values of agile philosophy are: (1) Working software over comprehensive
documentation, and (2) Responding to change over following a plan. These values are not
very common in UCD circles. In UCD, emphasis is put on getting the user-goals and
requirements in written form. Style-guides are suggested to be made/updated after every
major phase (Mayhew, 1999). Prototypes are encouraged to be made and evaluated long

before the actual product is produced.

In agile methodologies, a working, deliverable version of software is always desirable
and documentation is delayed to be done as late as possible. Change tolerance is also
projected in UCD, but responding very quickly to change sacrificing the process is not
advocated. Rather, this change management is incorporated into the UCD process in the

form of short, frequent iterations and user evaluations.

Requirement fixing is discouraged in both philosophies. Customers (users in UCD terms)
are encouraged to collaborate with the development team. During this collaboration,
users sometimes realize that what they termed as necessary in the system are not too
necessary and vice versa. At this point, the development team adjusts the requirements
and other plans to accommodate these changes. Change in environment can also

sometimes make change necessary.

31

Both philosophies stress customer satisfaction and have a people-first orientation for

software development. This causes their corresponding methods to have tendency to

come together and provide efficient methods for software development.

Another aspect that is common in both philosophies is the iterative approach of lifecycle.

Due to the complexity of human behavior, it is impossible in UCD to create a design that

is correct in the first attempt. In agile, similarly, iterations are a way to manage changes

and refining the product.

We can summarize the above discussion in a table (table 2.8). It juxtaposes the two

philosophies in terms how one aspect in UCD is considered in agile philosophy.

Customer collaboration

Stakeholder satisfaction

Developer as focus in process

Documentation as late as possible

Quick delivery of working software

Process should be flexible enough to
accommodate different projects

Change should be reflected in next
delivery

Choice of which task to perform first

User involvement

End-user satisfaction

End-users are focus in process, not developers

Documentation after every major phase

Frequent evaluation of prototypes

Process should be tailored for different
organizations

Change should be accommodated in next
design iteration

Choice of which technique to perform tasks

Table 2.8 Summary of Commonalities and Differences in agile and UCD philosophies

32

2.5 Brief Introduction to the Treatment of Requirements in

UCD and Agile Methods

In this section, we will take a brief look at how the “requirements engineering” is treated
in the two philosophies of UCD and agile. These two philosophies are the basis of our

roadmap and play an important role in our understanding of the problem.

2.5.1 Requirements Engineering in User-Centered Design

Requirements engineering is an important phase in User-Centered Design. Unless it is
clear what users want, it is impossible to make a system that can satisfy users.
Requirements engineering, by definition, is a software engineering process with goals to
identify, analyze, document and validate the requirements of a system (Paetsch et al.,

2003).

Requirement engineering is often divided in several phases. Each of these phases plays a
role in building up requirements which are vague in the beginning. These phases are
usually characterized as Elicitation, Analysis, Design and Validation. According to (Cox,

2000), common phases of requirement engineering process are:

e Project Inception

¢ Requirement Elicitation

33

e Requirement Analysis
e Requirement Discovery
e Specification

e Interface Design

e Validation

Project Inception and Requirement Elicitation can be grouped in Elicitation, Requirement
Analysis and Discovery can be grouped into Analysis, Specification and Interface Design
can be grouped into Design phase, and Validation is itself a phase. Requirement
Discovery is inventing new requirements from existing ones. We can validate the .user

requirements using the prototypes.

An important facet of requirement analysis and elicitation is context analysis. Context
analysis is going to field with users and see how they use the current system. This
practice gives useful insights into future system’s functional and non-functional
requirements. In automotive industry, for example, developing functionality from scratch
is a rare practice (Weber and Weisbrod, 2003). Studying already present systems and
analyzing context are crucial steps in requirement engineering. The study of user context

in requirements engineering is also highlighted in process diagram by UPA (UPA, 2002).

The context in which system is to be used is identified by (Jokela et al., 2003) in terms of:

34

e Characteristics of intended users
o Tasks users need to perform

¢ Environment in which the users are to use the system.

International Standards Organization established the ISO 13407 standard for User-
Centered Design process in 1999. This document is based on the definition of usability in
ISO 9241-11 and tries to formulate a process that can fit into conventional software

engineering processes as well.

Jokela and others (Jokela et al., 2003) discusses the ISO 13407 in detail. According to
them, ISO 13407 shows limited guidance for designing usability. What it emphasizes is
guidance for user and environment/context of use. It also has limited guidance for user
goals and measures and the focus is on theoretical aspects of usability, rather than

detailed coverage of methods and techniques.

ISO 13407 describes UCD from four different aspects, which are: Rationale, Principles,
Planning and Activities of UCD. In Rationale, it explains the benefits of UCD such as
reduced cost, increased satisfaction and productivity of users. Principles that usability is
based on, according to ISO 13407 are active user involvement, appropriate allocation of
functions between user and technology and multi-disciplinary design. Planning tries to fit
the usability with the conventional software engineering process (Jokela et al., 2003).
Another aspect of usability according to ISO 13407 is the activities of UCD. These

activities include:

35

¢ Understanding the context of use
e Specifying user and organizational environment
e Producing design solution

¢ Evaluating design against requirements

Of these activities, the first two: Understanding context and specifying user are especially
relevant to requirement engineering process. Based on this notion, we tried to incorporate

these activities in our own roadmap (presented in chapter 3).
2.5.2 Requirements Engineering in Agile Methodologies

The heart of agile methodologies lies in changing requirements. The agile philosophy
advocates that the requirements should never be frozen; instead, it always welcomes
change and adjusts the software according to new requirements. There are different

approaches to address the requirement management in different agile methods.

The traditional requirement engineering approaches and agile methods agree on the
importance of stakeholder involvement. The requirements are discussed in face-to-face
meetings with customers rather than through formal documents; the reason is that agile
philosophy is more people-oriented than process-oriented. The customers (or customer
representatives) are encouraged to be present on the development site during all phases of
development. This customer is often assumed to have all the knowledge and authority in

the project, which is rarely the case (Paetsch et al., 2003).

36

The common requirements engineering phases of elicitation, analysis and validation are
present in all agile processes but with different names and do not have crisp boundaries.

Techniques used are also different.

In agile methodologies, creating complete and consistent requirements documents is not
considered feasible or cost effective (Paetsch et al., 2003). This makes agile methods
more adaptive to change rather than being predictive of user requirements. This is
considered a good quality in agile terms but certain traditional approaches discourage this

idea because it makes the software development process very unpredictable.

In Extreme programming, customer reviews all the requirements and sets priority for
implementation. It enables software to be developed without disruption despite of vague
or constantly changing requirements. There is no artifact, however, to store requirements
besides user stories. In Scrum, the requirements that are currently known are saved in
Product Backlog list. The Sprints in the Scrum method involves requirement phase along
with other phases (there are several sprints in a Scrum method lifecycle). In Crystal
Orange, a requirements document is required; requirements to be implemented are
decided before every increment starts. Feature Driven Design does not explicitly address

the issue of gathering and managing requirements (Abrahamson et al., 2002).

37

2.6 An Overview of SUCRE Framework

The Scenario-based User-Centered Requirements Engineering (SUCRE) is a requirement
engineering framework based on Scenarios. This framework was developed by Alsumait
(Alsumait, 2004) in our research group at department of Computer Science, Concordia
University. This framework is evolved from ACUDUC which in turn is derived from

RESPECT framework (Figure 2.1). A brief introduction of ACUDUC and RESPECT is

given in following paragraphs.

RESPECT .| ACUDUC SUCRE

A
A 4

Figure 2.1: Evolution of SUCRE framework

The RESPECT (REquirements SPECification in Telematics) (Maguire, 1998) gives a
framework for requirements engineering. The requirements are achieved with this
framework in four phases: Phase I — User context and early design, Phase II — Prototype
and user test, and Phase III — User requirements documentation. This framework is
exceptionally good in proposing templates and forms that could be used in achieving the

milestones of the framework.

38

The ACUDUC (Approach Centered on Usability and Driven by Use Cases) framework
which combines use-cases with RESPECT, is proposed by Seffah and his team (Seffah et

al., 2001). It discusses the following key activities in requirements engineering:

e Summarizing the system
e Gathering context of use.
¢ Functional requirement, including Ul widgets

e Reviewing and Validating

These activities are defined and validated through industrial projects. Our roadmap

includes these steps as its foundation.

Finally, an important work for Usability Requirements is done by Seffah and Alsumait
(Alsumait et al., 2003). They have showed that Use-Case Maps (UCMs) work well for
user-interface requirement engineering by extending the basic notation of UCMs and
fragmenting the UCM design process into two steps, namely, the Conceptual Use-Case
maps and Physical Use-Case maps. This extension of UCMs: CUCMs together with
PUCMSs, make up the SUCRE framework (Alsumait, 2004). This framework presents an

approach for UI Requirements Engineering through Scenarios and UCMs.

The role of scenarios in requirements engineering is also studied by several researchers
(Carrol, 1999, Carroll, 2000, Achour, 1998, Pohl et al., , Sutcliffe et al., 1998, Bai et al.,

2002). According to them, scenarios have the potential to play important role in

39

requirements engineering. Some have proposed a scenario-based model e.g. (Sutcliffe
and Ryan, 1998). Scenarios are beneficial in re-use of knowledge in requirements
engineering because scenarios store a wealth of domain knowledge in them that can be

understood by people of every level of expertise in development team and stakeholders.

40

2.7 Conclusions

The two prominent philosophies in software engineering that emphasize user
involvement during development are agile and User-Centered Design. Four values that
the agile philosophy is based on are: Individuals and interactions over processes and
tools, Working sofiware over comprehensive documentation, Customer collaboration
over contract negotiation, Responding to change over following a plan. Agile methods
are mainly devoted towards the implementation phase of software development lifecycle.
User-centered design, on the other hand, involves users/human right from the beginning
of software development lifecycle. Its methods include interacting with users frequently
to get their requirements. There are several differences and commonalities in these two
philosophies. Regarding treatment of requirements, UCD puts more emphasis on
requirements engineering than agile philosophy. Agile philosophy believes in
incorporating changing requirements during the implementation. There are several
methods for User-centered requirements engineering, SUCRE is one of them. SUCRE is
an evolution of ACUDUC framework which incorporates use-cases into the RESPECT
framework. SUCRE framework is based on scenarios and employs use-case maps to

represent these scenarios.

41

Chapter 3

An Agilized Roadmap for User-Centered

Requirements Engineering

3.1 Introduction to Roadmap

3.1.1 Motivations for the Roadmap

As studied in previous chapter, agile philosophy has given birth to many methods for
software engineering which share common characteristics. These methods are mainly
concerned with implementation and are not focused on requirements engineering (Orr,
2004). Agile methods, however, handle the change during process very well besides
being flexible for developers to practice. This has motivated us to combine the notion of
agile philosophy with user-centered design to come up with an “Agilized Roadmap for
User-Centered Requirements Engineering”. By ‘agilized’, we mean having characteristics

of agile methods.

UCD and Agile methodologies also make good partners. Teams who have tried to
incorporate these ideas have found this practice fruitful. For example, (Patton, 2002) has
discovered that after having experience in agile methods and taking UCD training, when

he used the mix of these methods into a team in different company, not only the team

42

members had no difficulty in understanding the new vocabulary, but also they readily

understood who their users and their goals are.

3.1.2 Benefits of Roadmap Approach

A roadmap is a specification of the major milestones. It is an explicit specification of how
to represent the objects, concepts and other process entities that are assumed to exist in
user-centered requirements and the relationships that hold among them. An agilized

roadmap incorporates agile aspects in the roadmap.

A roadmap is not a development tool but an approach for people who establish processes
in organizations. Throughout our research in making this roadmap, we have considered
the example of Daimler-Chrysler (Vehicle Company). With the description of roadmap
milestones, we have presented several forms and templates that could be helpful
achieving those milestones. Our roadmap, however, could be useful for any organization

wishing to adopt a user-centered requirements engineering framework.

3.1.3 Roadmap versus process and methodology

The notions of roadmap, process and methodology are different but sometimes
confusing. A roadmap gives major milestones that guide to the road of a higher goal: to
reach the destination. It does not provide exact steps that have to be taken to reach the

destination. In this chapter, we define milestones for requirement engineering for user-

43

interfaces and call it a roadmap. A process, on the other hand, outlines a particular way of
doing something involving sequence of steps that, when performed, result in desired
product or artifact. The prototype generation, as defined in chapter 5 of our thesis, is a
process and not a roadmap because it mentions steps that must be taken to generate

prototype.

A methodology, however, is a set of practical ideas and processes in a field of knowledge
(Merriam-Webster, 1998). That is, a methodology is collection of processes and
philosophy behind them. Agile software development is thus termed as a methodology

because it has a philosophy and many methods governed by that philosophy.

3.2 The Proposed Roadmap

3.2.1 Notation used in the Roadmap

The roadmap presented in figure 3.1 is composed of milestones connected with each
other. These milestones have associated with them artifacts or documents which are
results of achieving those milestones. The notation used to represent the milestones, their

connections and related documents is given as follows:

44

start of the

First milestone. Marks

Set Vision
' roadmap.

A milestone in roadmap.
Field Study

Evaluation A document created as a result of

Report

achieving associated milestone.

A unique milestone representing

Prototype

Generation application of process to derive prototype

(which is proposed in this thesis).

An arrow marks moving to a new

milestone after completing the first in

A\

normal flow of the roadmap.

A dashed arrow marks moving to a
______________ > previous milestone. It is used to represent

backtracking in the roadmap.

Table 3.1: Symbols used in roadmap
3.2.2 Structure of the Roadmap

The Roadmap for Ul-requirements engineering is presented in figure 3.1 below. We

borrowed the aspects from agile development into this roadmap because of the belief that

45

agile provides the best practices for team-work and fast-delivery. On the other hand,

UCD practices put rightful stress on user involvement and contextual inquiry.

| Conduct Field A DS;?L’;’;&‘*
Study
Document A Users Profile

& Context
Information

Soals _{sabiiity
Goals

1 y
— Simple Paper
Task Definition Elicit Scenarios Prototyping &
& Analysis i
Evaluation

Tasks ? M E\sgﬁ)ti?n
v l
< Prototype . i
Generation / E

A 4
g:gg t;(:a?rr\g Study Competitive List C;%r;ztircaal:\ts n
& Evaluation Products Environment

Evaluation A Review Constraints
Report Report List

Formally State Ul Storyboarding with

Requirements tools
Evaluation
Report

User-Interface
Requirements
Document

Figure 3.1: Structure of the roadmap

The roadmap is centered on Scenarios, which are supported in UCD, as well as in Agile
(user stories). The scenarios are used to develop prototypes as well. The roadmap is

supported by a prototype derivation process explained in chapter 5.

46

3.2.3 Description of milestones in the Roadmap

For the sake of clarity, we are taking here an example of requirement engineering team at
Daimler-Chrysler (referred as RE-team henceforth), that is working on establishing user
requirements for development of their vehicle systems. This approach will enhance the
understanding and help visualizing of the explanation of the milestones. In appendix A
of this thesis, we present several forms and templates derived from RESPECT framework
(Maguire, 1998). These forms and templates are modified to be used by RE-team in

vehicle industry.

1) Set Vision

A system’s vision is an overview of a product in context of its users and environment. In
other words, it gives the users’ vision of the product as perceived by developers. It
provides the structural blueprint for the product and how the end user will interact with

and navigate through the system (Anderson et al., 2001).

In this step of Usability Requirements Engineering cycle, the RE-team will brainstorm
ideas about their future product and how this product could be proved useful for its
prospective users.
The output of this milestone is a Vision Document. A vision document includes the core
requirements, key features and main constraints. (John et al., 2003)
According to (Seffah et al., 2001), a vision document should answer following questions:
1. What is the purpose of the system?
2. Why is this system necessary?

47

3. Who will use the system?

4. What will the users accomplish with the system?
5. Where the system be used?

6. How will users learn to use the system?

7. How will the system be installed?

8. How will the system be maintained?

In appendix A, we attach a sample vision document that could serve as a template for the

RE-team.

2) Conduct Field study

This is the most important step in user-centered requirements engineering lifecycle. RE-
team members will personally see people using system (e.g. driving cars) and observe
their behavior while doing so. They will interview people about what they feel about
using the system, what extra they want, listen to their anecdotes when they were using

system alone or with other people etc.

All the information collected by this study will help RE-team to understand and classify

users and observe how they use the system. Finding out scenarios of use, task definition

& analysis and most of the future steps of the cycle depend on this major milestone.

48

This step of field study is based on the practice of Contextual Inquiry. This is discussed
excellently in the book by Beyer (Beyer and Holtzblatt, 1998). The context of use
description should (Jokela et al., 2003)

(a) specify the range of intended users

(b) be derived from suitable sources

(c) be confirmed by users

(d) be adequately documented

(e) be made available to design team

During field study, some constraints in physical environment are also observed. The
detailed constraints in physical environment that are to be taken care of are listed at a
later stage when it is clear that which constraints to consider and which to ignore.

Appendix A contains several forms helpful in Field Study.

3) Determine Usability Goals

Usability Goals are measurable criteria to judge different usability factors of a system.
These usability factors are characteristics of a system that directly or indirectly affect its
users. Examples of these factors are Learnability, Memorability, error recovery &
performance etc.

RE-team will focus on key features from Vision document one-by-one and determine
usability goals for each feature. Sometimes, it is premature to write concrete goals but
mentioning them sparingly is always helpful and it could be reviewed later on during the

cycle.

49

According to the document How to develop usability goals (1996, stcsig.org, 1996),
Usability goals written in good form have three identifiable components:

Performance What should the user be able to do?

Conditions Under what conditions should the user be able to do it?

Criteria How well must it be done?

A template for writing usability goals is provided in appendix A.

4) Paper Prototyping

Paper prototyping is a simple form of prototyping where user interface is sketched on
paper with minimal details. It is a low-cost and effective way to illustrate ideas and to
verify them with users and colleagues. After conducting user meeting and setting
usability goals, RE-team will elaborate these ideas on paper to brainstorm for future

steps.

5) Elicit Scenarios

From the information collected during field study, the RE-team will extract scenarios of
use for the system. A ‘Scenario’ is a short story (2-4 sentences) where users are sketched
performing some interaction with the system. It is purely in natural language and contains
little or no technical jargon. Scenarios help in extracting tasks from field study data and

describing new tasks that user will perform on the target product.

A typical task that might be encountered by RE-team will look like this:

50

In a hot summer day, when winds are blowing like blasts of furnace, passengers ask
driver to turn on the car air conditioner to cool down the atmosphere. Driver winds up

all window glasses and turns on the air conditioner.

In chapter 4, we discuss a use-case maps based approach for scenario representation and

elicitation.

Appendix A includes a guideline to writing well-formatted scenarios.

6) Prototype Generation

In Chapter 5 of this thesis, we provide a process to transform scenarios collected in
previous step into paper prototype based storyboard. The process is based on Use-Case
Maps based representation of scenarios. The prototype thus created can be ranked as mid-

fidelity prototype.

7) Task Definition & Analysis

Having written scenarios, it is easier to extract tasks that user will perform with the
system. Task definition and analysis involves identifying tasks and breaking them down
into subtasks until they are decomposed to a set of simple actions.

This practice has many benefits including predicting time to complete task and user’s
cognitive load etc. There are several techniques for carrying out task analysis (GOMS

being popular).

51

8) Storyboarding

Storyboarding is more sophisticated form of paper-prototyping where the user interface is
elaborated with more detail. Different states of widgets are shown and how interaction
should be done (Greenberg, 1998). In chapter 6 of this thesis, we present a scenario-based
approach to develop storyboards. This approach suggests designers which widgets to put

on storyboard.

9) Study competing products and previous versions
This activity provides an insight into market trends and similar systems that are being
used currently. It includes competing products of different companies and also past

editions of products of same company.

10) List constraints in physical environment

People are affected by physical conditions around them, so does their behavior using the
system. RE-team should take into consideration the environment where the system

(e.g. vehicle) will be used. Is it too hot, cold or dry, humid? Will the vehicle be used on
unusual terrains like mountains or desert? Contextual inquiry is an effective method for
this purpose. The constraints in Physical Environment are observed in the second step of
the roadmap but are listed here because by this stage, RE-team can be well aware of the
constraints to take-care of and which constraints could be ignored. At this step those

constraints are only listed.

52

11) Storyboarding using tools
Storyboard sketches could be drawn using software tools. Examples of such tools are

DENIM (Landay et al., 2000) and SILK (Landay and Myers, 1995).

12) Formally state user-interface requirements

This is the last milestone in the roadmap we have proposed. RE-team combines
information gathered during all activities and formally state the requirements for user
interface. User-interface requirements can be stated using LOTOS or linear textual form

as outlined by Alsumait (Alsumait, 2004).

53

3.3 Development of the roadmap

The roadmap presented in figure 3.1 is developed with iterative approach and comes to
the current form with gradual improvement. As discussed in section 3.4.4, the roadmap is
based on proven methods and frameworks. In the development of the roadmap, we
decided that the roadmap should have following milestones reached:

1) The idea of the system being built should be clear

2) The users of the system should be well-studied along with context in which users work
3) Users’ task should be understood

4) Requirements should be verifiable

The points mentioned above are in line with the UCD concepts. Based on these questions,
we created first version of the roadmap (figure 3.2). In this roadmap, users’ requirements
are recorded in scenarios. Scenarios are similar to story-cards used in Extreme
Programming (the most common method of agile methodology). The first version of the
roadmap is linear and lacks the change management (a characteristic of agile methods). It
also has evaluations by users in the later stages which is not recommended in UCD
practices. For the next version of the roadmap, following characteristics were required:

1) User’s evaluation after major milestones

2) Backtracking to do perform activities in previous milestones if user is not satisfied.

3) The roadmap must be limited to requirement engineering phase. Design was out of

scope of the roadmap.

54

The second version of the roadmap (figure 3.3) was developed with these characteristics

in focus.

Document |
Standards &
~ Guidelines

. Conduet
- Usability |
_ Testing

Develop Hi-Fi
_ Prototype

Walkihrough

Definition &
. Analysis

~Obsérveand
Imagine Scenharios
e ': oste :

 List constraints
~ inPhysical
_environment

- Look at Competitive -
~ products and previous
versions of same product

~ Conductfelg-
 study and meet
_ potential users

- Determine
. ué‘/abiiity‘ .
~ goals for
__product

Figure 3.2: First version of the roadmap

55

In this version of the roadmap, users’ evaluation of requirements has been made more
frequent and in case of unsatisfied user, backtracking is recommended. This frequent
evaluation is also advocated in agile methodology in terms of frequent releases (since this

roadmap is for requirements engineering, the releases are those of requirements).

Brainstorm.
design

~ Heuristic
_ Evaluation

Develop and
 Evaluate Lo-
- Fi Prototype

- Observe and
Imagine Scenarios:
- ofUse

= Tasks

 List constraints Definition &
in Physical - Analysis
_environment

. Look at Competitive
- products and previous
- versions
Develop and
Evaluate Lo-
- Fi Prototype
Determine Conduct field-
 Set Vision. usability study and meet
~ ofthe .~ goals . users
-~ product - L L :

Figure 3.3: Second version of the roadmap

High-fidelity prototyping is left out since it involves extensive design decisions and the

roadmap’s scope is reduced to requirements engineering.

56

There are two points observed in this version (version 2) of the roadmap which are not
fitting with UCD concepts. The usability goals are set before meeting users of the system,
and secondly, scenario elicitation and task analysis is not done right after meeting users.
Scenarios, as discussed in section 3.4.3, are examples of user’s interaction with the
system, therefore should be created soon after meeting users. Tasks are identified from
scenarios as well. Agile methodology also highlights the importance of deliverables; in
the next version of the roadmap, we propose two major deliverables created with first and
last milestones; other documents and templates are also attached to milestones which
support information exchange between the team and which help moving to next
milestone. Therefore we decided following changes for the next version of the roadmap:
1) Field study (meeting users and observing context of use) should be conducted before
setting usability goals

2) Scenario elicitation and task analysis should be done soon after primary information
gathered in field study is verified with users with the help of low-fidelity prototyping

3) Documents that should be created with achievement of milestones should be shown

next to the milestones in the roadmap

Third version of the roadmap is presented in figure 3.4. The milestones are represented as

rectangles and each has document associated with it. The rectangle in grey shows the

beginning of the roadmap (first milestone).

57

Conduct User Determine
i Usability
meetings

Goals _
] Users Profile Uéabllllty
& Context oals
Information

Y

-~ | Vision
Document

A 4
Develop &

Task Definition Elicit Scenarios |« Evaluate Lo-Fi
& Analysis
Prototype

4 . Evaluation
Tasks @ﬂ Report

A A 4

Develop & Evaluate Study Competitive List Const‘ramts n
. > Physical
Lo-Fi Prototype Products .
Environment

Evaluation 1 Review Constraints
Report Report List
[
Formally State Develop &

User-interface [« Evaluate Lo-Fi
Requirements Prototype

User-Interface Evaluation
Report

Requirements
Document

Figure 3.4: Third version of the roadmap

For the fourth version of the roadmap, we focussed on “Elicit Scenarios” milestone and
devised a process to derive storyboard prototypes (chapter 5). We included that process
as one of the milestones in the roadmap and decided to do mid-fidelity prototyping
(storyboard is an example) in second and third prototyping milestone. Fourth and final

version of the roadmap is presented in figure 3.1 in section 3.2.2.

58

3.4 Discussions about the roadmap

3.4.1 When to Use the roadmap?

This roadmap focuses on the requirements specification phase of the software
development process. It is recommended that this roadmap to be followed alongside the
normal development process and should be started with the start of the project. The key
point is to begin collecting Usability Requirements right from the inception phase of
software lifecycle and continue considering user as the impetus of the software till the
end of the cycle. Anderson (Anderson et al., 2001) discusses the integration of usability

techniques into software development in detail.
3.4.2 Agile Aspects in the Roadmap

As we discussed in previous chapter, there are several characteristics common between
agile and UCD philosophies. Our roadmap reflects those similarities and shows how the

milestones involved confirm to the agile concepts and practices.

Extreme programming (XP in short) uses sfory-cards for elicitation (Abrahamson et al.,
2002). This is supported by our scenario-based approach where scenarios themselves are
short stories. The scenarios can be written on story cards before analysis and shared by
everyone. Similarly, XP is based on small, frequent releases. In our roadmap, whose
scope is just requirements engineering, supports small releases of requirements (in terms

of prototypes to evaluate). Other common ideas are face-to-face communication and on-

59

site customer which are supported by the steps of Field study, frequent prototype

evaluations in roadmap (Paetsch et al., 2003).

Agile methods advocate less deliverables, iterations, and the idea of decide as late as
possible and deliver as fast as possible (Abrahamson et al., 2002). The roadmap satisfies

these ideas and gives ground for XP practitioners to follow a usability requirements

gathering roadmap like this.

Story-Cards Scenarios: stories of usage
Frequent releases Frequent prototyping
Face-to-face communication & Vision development & Prototype evaluations

Accessible customer

Iterations Backtracking to previous steps for refinement

Less deliverables Vision — Document and User-Interface
Requirements Document only major
documents. Small evaluation reports are for

internal communication.

Table 3.2: Agile aspects in roadmap

60

Prototyping, which occurs frequently in the roadmap, is also related with the agile
methodologies. Orr (Orr, 2004) argues that agile practitioners should use prototypes as
one of their design tools. He explains that prototyping improves the requirements
definition process and is “the best way to get users engaged” in defining their
requirements. The table 3.1 summarizes the agile concepts that are manifested in the

roadmap.

3.4.3 Scenarios as the Major Artifacts of the Roadmap

The roadmap as we have seen in figure 3.1 has main artifact, namely, Scenarios. The data
that is collected in field study is translated into scenarios at the “Elicit Scenarios”
milestone of the roadmap. The scenarios thus produced are used primarily to make

prototypes that are evaluated by users as well as developers.

Merriam-Webster dictionary defines scenario as “an account or synopsis of a possible
course of action or events” (Merriam-Webster, 1982). In computer science, scenario is
used with essentially the same meaning, with the addition of the fact that this course of
actions or events is performed on a software system. It states, when user is working with
the system, what will be one possible series of events initiated both from user’s and from
system’s side (system’s response). All this information is helpful in requirements

engineering.

61

Scenarios are an effective means of communication between developers and users as well
as stakeholders (Sutcliffe et al., 1998). When users tell their stories in natural language, a
member from development team have to listen carefully and paraphrase the user’s
narration into an effective scenario. Analyst then checks the final scenario with the
domain expert and uses it as a communication means between the development teams.
Customers also find it easy to refer to concrete scenarios rather than abstract and complex

models (Pohl et al., 1998).

When designing the user-interface of system, scenarios can guide through different steps
of user interaction. In words of Suttcliffe (Sutcliffé et al., 1998), “scenarios may be seen
as pathways through system usage”. As pathways guides where to turn and where to
proceed, the scenarios guide the Ul designers to visualize the user’s workflow in very
concrete terms and design better and effective interfaces. A scenario expresses an

example of behavior of system and users (Achour, 1998).

According to Pohl (Pohl et al., 1998), computer industry is interested in using scenarios
and use cases. There are several management benefits in using scenarios as well.
Scenarios help in division of labor due to their concrete nature in stating the functional
requirements. Knowledge re-use in scenarios is beneficial in requirements engineering,
but reusing scenario-based knowledge is somewhat difficult because scenarios are
instances i.e. specific examples of system usage. Another characteristic of scenarios is

that they are complex artifacts that need to be managed. (Sutcliffe et al., 1998)

62

Scenario-based approach could be used at every phase of system development with
certain modifications. The scenario-based approach bunch mainly in four phases of:
requirement elicitation, requirement analysis, human-machine interface design and
validation (Cox, 2000). Majority of these phases are related to the field of requirements

engineering which is also the focus of our thesis.

A typical scenario-based approach to requirements engineering involves elicitation,
specification and analysis. Cox (Cox, 2000) maintains that scenarios can be made fit to
any requirements engineering model. There are, however, some steps that must be taken

to fit scenarios into requirements process.

Stakeholders .
Contextual Inquiry
End-Users
Domain Guidelines
Ooals Prototypes

Analysis

Figure 3.5: Typical steps in scenario creation

63

As seen in the figure 3.5, eliciting scenarios involves contextual inquiry, which is a vital
practice in user-centefed design, we can relate how scenario-based design in requirements
engineering can overlap the User-Centered Design process. Specification of scenarios is a
knowledge-extensive job and needs input from domain experts (Pohl et al., 1998).
Attached to every scenario is a goal (Achour, 1998) and must be kept in front when
writing scenarios. Achour (Achour, 1998) gives important guidelines on writing textual
scenarios. Carroll (Carroll, 1999, Carrol, 1999) points out that there are some
characteristic elements of a scenario: a setting, agents or actors, a plot;. (typical elements
of every story). Existence of prototypes is important for scenario analysis and validation.
Pohl (Pohl et al., 1998) argues that “without prototyping, the value of scenarios would
drop almost to zero, and vice versa” and that “scenarios and prototypes complement each
other in a symbiotic manner”. In our thesis, we propose a connection between scenarios

and prototypes via use case maps.

These steps on scenario creation are in line with the roadmap. Before Scenario elicitation
begins, data is collected from users and their context. Specification is done with the help
of domain experts and guidelines. In our roadmap, the spéciﬁcation is supported by
SUCRE framework (Alsumait, 2004). To analyze the scenarios for requirements, the
roadmap has a milestone of Prototype Generation. The process for prototype derivation is
discussed in greater detail in chapter 5. Scenarios thus play the pivotal role in the

roadmap.

64

3.4.4 Basis and Validity of the Roadmap

The roadmap presented in following section is based on the study of several proven
methods and frameworks which integrate Usability into software engineering processes.
These works deal with different aspects and levels of integration, for example, functional

requirements, validation etc.

Anderson (Anderson et al., 2001) explains a process of putting User-Centered Design
practices in Rational Unified Process (RUP). Figure 3.6 summarizes the steps of
requirements definition during software development. These steps provide a ground for
our roadmap. We defined our roadmap with same logical ordering of steps as in figure
3.6; i.e. Creating a vision of the project, conducting field study and user modeling,
analyzing workflow (scenarios and task modeling) and making a product vision in terms
of prototypes. Anderson and others (Anderson et al., 2001) used this idea in integration of

User-Centered Design practices into RUP and tested on real projects.

The ACUDUC (Seffah et al., 2001) and RESPECT (Maguire, 1998) frameworks
discussed in section 2.6 also provide the basis of the roadmap. Another major inspiration
for the roadmap was the process for “designing the user experience” defined by Usability

Professionals Association (UPA, 2002).

65

Inception phase

>

Elaboration phase

Figure 3.6: Integration of UCD practices in RUP (Anderson et al.)

Besides having all these frameworks and methodologies, there is still a need for a
roadmap that unifies all the ideas and complements it with even more fresh concepts like
that of agile methodology. The roadmap also supports the Scenario-based and User-
Centered Requirements Engineering (SUCRE) framework by Alsumait (Alsumait, 2004).
This roadmap was primarily prepared with needs of Daimler-Chrysler (Vehicle
Company) in mind. In future, we recommend the testing of this roadmap in Daimler-
Chrysler environment. We have helpful forms and templates for several steps of roadmap
adopted from RESPECT framework for a vehicle industry. This will support the future

validation of roadmap in Daimler-Chrysler Company.

66

3.5 Conclusions

Agile philosophy has many methods associated with it. These methods primarily address
the implementation phase and do not have requirement methods especially for user-
interfaces. The user-centered design, however, can benefit from many ideas from agile
methods. An important contribution for user-centered requirements engineering is to
make a user-interface requirements roadmap that incorporates useful concepts of agile
philosophy with user-centered design methods. The roadmap presented in this chapter
helps in requirements gathering for user-interfaces and has agile aspects in it. It is based
on the SUCRE framework for scenario-based requirements engineering. The main
artifact of the roadmap is scenario which is supported with a scenario specification

process in next chapter.

67

Chapter 4

Scenarios and their Representation as

Use-Case Maps

4.1 Introduction

In the previous chapter we presented a roadmap for usability requirements engineering.
That roadmap is driven by a major artifact, namely, Scenario. Here, we will discuss in

detail how the scenarios could be represented.

Representing scenarios is important for their deeper analysis. There should be three
characteristics in a representation in order to be deemed good. Firstly, the notation should
be easy to understand by developers as well as users/stakeholders. Secondly, it should
enable the requirements to be validated through scenarios. Thirdly, it should be easier to
derive prototypes from scenario representation. We found that Use-Case Maps have all

these characteristics.

Use-Case Maps (or UCMs in short) were proposed by Buhr (Buhr, 1998) as a means of

representing scenarios in understandable and standardized form. These UCMs are proved

68

helpful in explaining behavior of many different types of systems including real-time,

distributed as well as user-interfaces of systems.

User-interfaces are the most important part of software from user’s perspective. Use-Case
Maps as we will see in section 4.2 are an important way to represent scenarios. However,
to extract requirements that are particular to user-interface, there need to be provision in
UCMs for capturing those requirements. The Ul extension to UCMs (in SUCRE

framework) caters this need.

In this chapter, we will discuss the representation of Scenarios as Use-Case Maps in

detail. Later on, we will explore how UI extension of UCMs in SUCRE framework

enables to get user-interface related requirements.

69

4.2 Use-Case Maps as Scenario Representation

Use-Case Maps were first developed by R.J.A. Buhr of Carleton University Ottawa, and
its official supporting website started in 1998 (Amyot, 1998). Since that time, UCMs are

used in various software engineering fields.

Use-Case Maps represent causal relationships between responsibilities which may be
bound to different components. These components could be software (plug-ins, classes,
databases) or non-software (actors, user, etc) as well as of user-interface (Amyot, 2000).
In our context, the components are user-interface related and users who use that user-

interface.

To elaborate, responsibilities are actions that user performs. Responsibilities could
represent ‘tasks’, in a broad sense, that coiﬂd be composed of several smaller actions (e.g.
the task of entering PIN is composed of several actions of keystrokes on keypad). These
responsibilities are building blocks of user’s interaction with the system. User performs
these responsibilities in a particular sequence and the system responds to these actions.
The end-result is a completed task. The sequence in which these responsibilities are
performed is also important. If this sequence is changed, the overall result of the scenario

will be changed. Also important are the components on which actions are done.

70

A UCM is an apt tool for communicating all the aspects of a scenario. The structure of
UCMs allows the representation of all the aspects of a scenario, namely, the actors, the
flow of actions and its start/conclusion. With the layering of UCMs, complex scenarios
can be broken down into sub-scenarios (containing sub-tasks) which help in
simplification for understanding. This portrayal of scenario helps in achieving further

goals related to usability requirements engineering tasks including prototyping.

4.2.1 The Basic Notation

The basic notation of UCMs is simple. Components are represented with rectangles. The
flow of scenario is represented with lines that pass through component rectangles. The
responsibilities that must be performed on the components are represented with labeled

crosses over the line. Figure 4.1 shows a simple use-case map for logging-in to ATM.

slot Keypad

- Ins: Insert card
ins pmn -
® p 3¢ .} | Pin: Enter PIN
T =~} | code and press
enter.

Figure 4.1: Simple UCM for ATM login

If several components are part of a bigger component, the small components could be
grouped together in a larger rectangle (figure 4.2). This is called decomposition in UCM
terms (Buhr, 1998). One kind of UCMs is Unbound UCMs which are drawn informally at

very early stages of analysis (Figure 4.3). The characteristic of Unbound UCMs is that no

71

components are shown, just the line and crosses show the sequence of actions involved in
scenario (Buhr, 1998). If a scenario is complex and contain a sub-task, a UCM can be
layered. A stub could be used to simplify the main UCM and showing the sub-task as a

plug-in. This plug-in is shown as a diamond in UCM notation.

ATM Console
ins PIN
ins PIN
o —>¢ e |

Figure 4.2: Decomposition of ATM Console into two components

With the help of this notation, one can express from the simplest to the most complex
scenarios. Unbound UCMs are great for preliminary brainstorming when components of
a system are not known, or are not relevant. We can keep the scenario flow and
responsibilities intact while changing different components to reuse the UCM for

different system environments.

ins PIN
o—o—¥— —X% w}

Figure 4.3: An Unbound UCM

()]

72

4.2.2 Advantages of UCMs

Use-Case Maps is a rich notation to represent use-cases and scenarios. It is not a behavior
specification technique, as noted by its inventor Buhr (Buhr, 1998), but a way to easily

show the flow of scenarios through lines and boxes.

UCMs help visualizing the behavior of a system, discussing it with domain experts,
sharing with developing team, and brainstorming the future design of the system. It helps
to see the big picture of the system rather than focusing on details. Due to its simple
notation, it is easily understandable by developers as well as the technical and non-

technical stakeholders.

The composition of UCMs holds the scenario path as a part of representation. The lines
that show the path passes through the components but is still independent of them (Buhr,
1998). That is, the responsibilities across the path of the scenario are performed on
different components of the systems, but in case of different architectural entities, these
responsibilities would be performed on other components. This makes the scenario path
independent of system components (Amyot, 2000). An example of this is a UCMs of
personal-identification-number (PIN) verification in ATM and Online banking website
(Figure 4.4). Although the path and responsibilities involved are same, but components
that do the actual verification could be different in case of ATM or Online Banking web-

application.

73

Card# textbox PIN textbox

slot Keypad
ins pin ins PIN
O ¢ |d—¢ —] o—x¢ . o

Figure 4.4: Simple UCMs for ATM and Web-Application login

Being a visual notation, UCMs show paths of scenarios that cross through components. If
a scenario contains alternate paths, the paths are also shown with the help of AND/OR
forks and joins. This notation helps in observing a behavior pattern of a scenario at an
early stage of analysis. This could lead to pruning of inefficient or unwanted paths of

interactions resulting in a better design.

This novel notation is useful for capturing functional requirements (Amyot, 2000). Buhr
maintains that this notation is intended to be useful in requirements specification, design,
testing, maintenance, adaptation, and evolution (Buhr, 1998). Recent studies show their

usefulness in non-functional requirements as well (Alsumait et al., 2003).

Use Case Maps are now subject of many research groups. Research is being done for
using UCMs in reactive and distributed systems, telecommunication, graphical user-
interface, banking and business, agents, web-applications and networking (Amyot, 2000).
Several studies try to combine UCMs with UML and denoting UCMs in XML form
(Alsumait, 2004). Miga tries to derive Message Sequence Charts (MSCs) from UCMs
(Miga et al., 2001). In their paper, Seffah and team (Seffah et al., 2003) present a UI-User

Requirements (UIUR) model which includes UCMs at its core.

74

4.3 Use-Case Maps in SUCRE framework

UCMs have proved to be very effective in communicating scenarios. Many people are
doing research to adapt UCMs in different fields and it is currently applicable to a wide

range of areas. It is also a topic of several research projects (Amyot, 2000, Amyot, 1998).

Users and Customers Needs and Inputs
[Informal descriptions of early user-requirements}

i

Scenarios Capturing and Analysis

1. Scenario ldentification and Elicitation
2. Narrative Descriptions of Scenarios
3. Linguistic Clean-up and Filtering of Scenarios

Original UCM
Notation

Use Case Maps Modeling

Extensions

l 1. Conceptual Use Case Maps (CUCM)

UCM-UI Notation

2. Physical Use Case Maps (PUCM)

3. User Interface Prototyping

A 4 A 4

Usability Prediction
from CUCM and
PUCM

CUCM and PUCM Formal

Formal Validation Specifications

Figure 4.5: SUCRE framework (Alsumait, 2004)

75

As introduced briefly in section 2.6, an important work for UCMs in the field of user-
interface design is done by Seffah, Radhakrishnan and Alsumait (Alsumait et al., 2003).
They have extended the original UCMs so that there are now two tiers of use-case maps,
namely, Conceptual and Physical (CUCMs and PUCMs respectively). Figure 4.5 gives

structure of the SUCRE framework

The Conceptual Use-Case Maps (or CUCMSs) capture the scenario in abstract way. They
just outline the main tasks that are to be performed and the system’s dialog with the user

(system asking user some question and user responding to it). Since basic UCM notation

\N© (= ©)

A dialogis repeated n A dialog is repeated as
times many time needed
(@) (b)

= ©1/ R/

Proactive message is
passed

(©) (d)

Dialog is optional

A form-filling dialog A menu dialog
() ®

Figure 4.6: Dialog symbols for CUCMs (Alsumait, 2004)
76

lacks system-user dialog notation, they have added a new set of symbols to represent
different types of dialogs (Alsumait et al., 2003). Figure 4.6 shows dialog notation used

in CUCMs

The second layer of UCMs introduced by Asmaa (Alsumait et al., 2003) is Physical Use-
Case Maps (or PUCMSs). These PUCMs elaborate the scenario over symbols of parts of
real system i.e. the PUCMs contain Presentation Units (PUs in short). These PUs are
rectangles with icons that represent some real component of systems (e.g. menus, buttons,
etc). The path of scenario is still shown in wiggly lines with crosses representing
responsibilities, but here, these crosses appear inside PUs denoting that this responsibility
has to be performed in a part of UI that is denoted by this PU. There is one important
point that we want to make here: PUCMs are not equivalent or substitute for Prototypes.
The prototypes are designer’s proposal of user interface. It includes real-like elements of
original interface and depending on its level of detail, user can interact with the

prototype. PUCMSs however show only the flow of this interaction.

The PUs suggested by Alsumait (Alsumait et al., 2003) to represent some parts of

presentation are listed in Figure 4.7.

77

. PU for a question and answer
PU for menu window. window

E=

PU for a form-filling PU for spreadsheet/ table
window.

e i:

window.

PU for message window. PU for multimedia window.

Figure 4.7: Presentation Units (PUs) suggested by (Alsumait et al., 2003)

This extension of UCMs, CUCMs together with PUCMs, make up the SUCRE
framework (Alsumait, 2004). This framework presents an approach for UI Requirements
Engineering through Scenarios and UCMs. In chapter 6, we present an example of

representing a scenario in UCM notation.

78

4.3.1 Advantages of SUCRE framework

The advantages of using SUCRE framework are numerous in user-interface development.
User-interfaces are complex entities. Behind their physical/tangible components, a
conceptual model plays an important role. Placing components on an interface without
having a clear conceptual model may result in inefficient interface. The conceptual model
helps designers first understand the purpose of the interface. This includes the tasks to be

performed and other constraints.

Once the conceptual model is made, it could be verified with usability engineers and
users. After finalizing the conceptual model, a physical model helps the designer to
decide which groups of elements could be placed on an interface and in what order. This
is important as a middle layer from a conceptual model to a prototype. In the physical

model, the same flow of scenario path through components is stated and verified.

SUCRE framework’s two-tiered approach is meant to accomplish the above-mentioned
advantages of conceptual and physical modeling. The CUCMs show the conceptual
model behind a user-interface. This conceptual model is then translated into a physical
model through PUCMs. The notation for both CUCM and PUCM enable designer to
express their ideas in flexible way, while keeping in mind the basic UCM notation on

which CUCM and PUCM are based.

79

CUCMs and PUCMs give a great deal of flexibility to design user-interfaces. We
strongly believe that this notation can be further enriched to encompass all aspects of
user-interfaces. In the next chapter, we propose enrichment to this notation and propose a

way to formulate prototypes through this two-tiered UCM technique.

80

4.4 Conclusions

Scenarios are the main artifacts created in the roadmap discussed in chapter 2. After the
creation of scenarios, the next step is to represent them in such a way that further
processing could be done on them and, where possible, the processing could be
automated. This need was fulfilled well by Use-Case Maps (UCMs) by Buhr (Buhr,
1998). The reason for choosing UCMSs for representation of scenario is the presence of
three characteristics in UCMs: the notation is easy to understand by developers as well as
users/stakeholders, secondly, it enables the requirements to be validated, and thirdly, it is
easier to derive prototypes from scenario representation. The basic notation of UCMs is
extended by Alsumait (Alsumait, 2004) in SUCRE framework to enable the UCMs to
represent user-interface-related scenarios. With the new extension of UCMs, there are
now two tiers of Use-Case Maps, namely, Conceptual and Physical (CUCMs and PUCMs
respectively). Two new sets of notation are proposed in the SUCRE framework to draw
CUCMs and PUCMs. In this thesis, we extend the PUCM notation set to include more

types of presentation units in user-interfaces. This extension is proposed in next chapter.

81

Chapter 5

Prototype Derivation from Scenarios

5.1 Motivations for a Prototype Derivation Process

Prototypes are great tools to expound users’ requirements and to verify analysts’
understanding of user-needs. These are a means of showing an idea behind a design in an
inexpensive way (Z.Guan and Lugqi, 2003). They give an early flavor of product and what
it will be like. At requirements gathering phase, when user-centered design team has just
conducted field study and collected usage-stories, scenarios are made that summarize and
filter all usage stories; prototypes are then made that contain designer’s proposed
interface and how user will be using the system. Prototypes are also helpful for a more
formal requirement that must describe user interface if a subcontractor is to deliver a

system (Lauesen, 1997).

There are some limitations in conventional prototyping. Paper-prototyping is an intuitive
process and depends completely on designer’s imagination and knowledge of user
behavior. Prototype designers are well-versed in the field of design and representation but
not always so in usability requirements engineering. If the designers are to build
prototype from requirements, it is possible that they will build nice representation but that

might not necessarily reflect the requirements. Another limitation in conventional

82

prototyping is lack of standardization. A paper prototype can very well fill the space with
different kinds of symbols or pictures, but when it comes to understanding those symbols,
different people (including end-users and developers) can understand different meanings.
This is due to the fact that the symbols used in prototype did not follow a set standard. A

designer’s perception of a simple menu could be understood as a push-button by user.

To help designers decide which elements to put in paper prototypes, we propose in this
paper a process based on PUCMs that are derived from scenarios (PUCMs are discussed
in chapter 4 in detail). The Presentation Units (PUs), that are building blocks of PUCMs,

are abstract symbols that are generic for a larger range of user-interface components.

To make a prototype that really reflects requirements, it is better to completely automate
the prototype generation. It involves a software tool that will let the designer draw
conceptual and physical use-case maps and that tool will intelligently read the use-case
map and generate a prototype. This kind of software requires extensive programming
besides the research and is not feasible due to limited time available. Instead, we provide
a tool in the form of a matrix (or table) that can suggest the parts of prototype based on

the physical use-case maps.

83

5.2 Prototyping in the Agilized Roadmap

The agilized roadmap presented in chapter 3 (figure 3.1) for usability requirements
engineering has important milestones related to prototyping. Prototyping is done after
every major acquirements of information from user or their context to verify that
information. This is especially important after the scenario elicitation and task analysis
where major features in the user-interface have to be explored. At this stage, a mid-
fidelity prototype in the form of storyboard is helpful in visualizing the flow of future

interface.

The prototype derivation process discussed in this chapter is meant to help the designers
decide which elements to draw on the prototype. The milestone in roadmap of scenario
elicitation (Elicit Scenarios) creates detailed scenarios and their representation in use-
case map notation. These scenarios are input for the prototype derivation process which
results in storyboards. Storyboards can be discussed with users and stakeholders, as well

as in development team.

84

5.3 Prototyping in SUCRE Framework

SUCRE was developed by Alsumait (Alsumait, 2004) as a scenario-based framework to

support usability requirements engineering. It is based on Use-Case Maps as a tool for

representing scenarios.

Users and Customers Needs and Inputs
[Informal descriptions of early user-requirements]

l

Scenarios Capturing and Analysis

1. Scenario ldentification and Elicitation
2. Narrative Descriptions of Scenarios

3. Linguistic Clean-up and Filtering of Scenarios

Original UCM
Notation

Extensions

Use Case Maps Modeling

—

1. Conceptual Use Case Maps (CUCM)

UCM-UI Notation

2. Physical UskekCa_s’e Maps (PUCM)

1 E:‘

e Prototyping

A 4

Usability Prediction

CUCM and PUCM from CUCM and

Formal Validation PUCM

Formal

Specifications

Figure 5.1: Prototyping in SUCRE framework (Alsumait, 2004). The prototyping

step is circled.

&5

The framework proposes a two-tier approach to represent Ul-based scenarios. These two
tiers, known as CUCMs and PUCMs are explained in detail in previous chapter. After
representing the scenario in UCM, the framework applies different techniques to extract
and validate requirements. The derivation of prototypes from UCMs is mentioned in the

framework (figure 5.1), but no process is outlined to achieve this goal.

As seen in figure 5.1, the user-interface prototyping step follows the CUCM and PUCM.
This makes prototyping an important step of the framework. To complement the
framework with a process that can serve in prototype derivation, we provide a way to

derive prototypes from use-case maps in next section.

86

5.4 Process of Prototype Derivation from PUCMs

The derivation process itself is not very complex (figure 5.2). Starting from a scenario,
the usability requirements engineer will make use-case maps of the scenarios created.
According to the SUCRE framework (Alsumait, 2004), the UCMs are developed based
on two models.; Conceptual and Physical. The result is Conceptual and then Physical
UCMs. Taking PUCMs as input and having user’s intended actions handy, the tool for
mapping PUCM parts to prototype elements (Mapping Matrix) is then employed to
suggest the prototype elements from the collection (in Appendix C) and a prototype is

made.

For applying the translation, the task that is supposed to be performed on prototype
screen must be known. Since there could be a choice of prototyping elements for a PU,
knowing an intended action will help decide the accurate element(s) that should go on the
prototype. Being aware of intended actions on user-interface also makes sure that both
the analyst and designer are conscious about the user’s needs and task details; this, in

turn, will ensure informed decisions about the user-interface.

Before presenting the Mapping Matrix tool, we first extend the Presentation Unit (PU)
notation suggested by (Alsumait, 2004) to include most common user-tasks. We then
present UI symbols to be placed in prototypes. These symbols are generic and represent

the typical components of different kinds of user-interfaces.

87

|

Use Case Maps
(CUCMs and PUCMs)

Intended
Actions

SN S

Mapping Matrix

Storyboard Prototype

Figure 5.2: Process of Prototype Derivation from Scenarios through UCMs

Application of %J

88

5.5 Extension to Presentation Units (PUs)

The original set of PUs proposed in SUCRE framework (Alsumait, 2004) is given in
figure 4.7. This notation is limited and was designed only for the purpose of explaining
the framework. Here in this paper, we will try to extend this notation by designing new,
more intuitive icons for already present PUs and also proposing new ones. Each PU is

given a fixed name and they will be referred to by those names.

5.5.1 Rationale for extension of PU Symbols

The symbols we propose here for representing presentation units in PUCM reflect the
actions that can be performed on the actual Ul elements they encompass. While these
PUs give a hint of actions that could be done on presentation units, their function is only
to give an idea about the placement of actual user-interface element on the screen and its

size proportion related to other elements.

The set of PUs proposed originally in SUCRE framework (figure 4.7) were given, as
mentioned before, for explanation of the framework and were enough for that purpose.
But for development of a tool for prototype derivation, we need a set of PUs that covers
most of the presentation and interaction aspects in user-interfaces. Following interaction

tasks or presentation parts were not supported in the original set of PUs (figure 4.7):

89

1) Viewing or editing textual, graphical or mixed contents

2) Indicators of system status or quick feedback

3) Value changing parts of a user-interface (important in vehicles)
4) Ul parts that require constant system-user interaction

5) Audio/sound/voice based interaction

6) Interaction in the form of navigation

To support these fundamental presentation parts of user-interface, we created more
presentation units and designed symbols to represent those presentation units. We
included some of the original PUs without changing (e.g. Form PU) and modified some
to make new PUs that could cover similar aspect of interaction (e.g. “Menu window” of
original notation has been changed to “Tools collection PU” to include fixed/docking

toolbars as well).

The resulting set of PUs (appendix B) covers most interaction tasks and presentation
parts. In the tool for prototype derivation, each of these PUs stand for one or more PEs
(Prototype Elements, discussed in section 5.6). Extension of PU collection is an

important contribution to SUCRE framework.

90

5.5.2 Some Presentation Units for PUCMs

Following table 5.1 shows some of the PUs that we propose for PUs. The complete

collection of our suggested PUs is given in appendix B.

Name, Description & Example PU Symbol

1. Tools Collection PU

Description: User can choose from a ?ljf’

collection of tools, utilities or links.

Example: Toolbars, Menus, Navigation

links in web pages.

2. Linear View PU

Description: User can view or edit linear A
BE=3
data as text, graphic or tables.

Example: Text docs, graphic, web pages,

grids, trees.

3. Form PU —_
o— o—
Description: User can fill in form of any o— o=

type. Example: Registration forms, login

forms, property sheets.

Table 5.1: Examples of Presentation Units

91

5.6 Prototype Elements

Prototypes are made up of several elements that represent the actual Ul components. So
far, these prototype elements were designed directly on paper and were not standardized.
Standardizing the prototyping elements prevents many useless discussions on detailed
design issues (Lauesen, 1997). In this paper, we propose several prototype elements that

cover most of the user-tasks.

5.6.1 Development for PE Symbols

The symbols for Prototyping Elements (PEs) are made with the idea in mind that
prototypes should look as neat as possible, but yet, simple to make. The symbols cover
most of the tasks that are to be performed on a UL. However, they are not the same as real
user-interface elementél. The real user-interface elements tend to give look-and-feel of
tangible objects and cover every aspect of user-interaction. Each of these prototype
elements corresponds to a particular PU symbol (section 5.5). These symbols could be
drawn with hand on a paper prototype, or in case of software tool could be placed (as an
image) on screen and re-sized. The position should correspond to that of PU of PUCM
the prototype is derived from. The unique ID (in the form of PEx.y, where x is category
number and y is an element in that category) identifies the PE in the Mapping Matrix we

propose in next section.

92

For creating set of PEs, we studied user-interfaces of common desktop and web
applications. We also received a document from Daimler-Chrysler that they shared with
us for studying vehicle user-interfaces. By discussing these user-interfaces, we developed
hierarchy of widgets (figure 5.3) based on interactions tasks that could be performed on

widgets:

sWidget
olnformative
=Visual
eAnalog Gauge (indicator)
eNumeric Gauge (indicator)
eIndicator (indicator)
eProgress Bar (indicator)
=Audio (((.))
sMechanical
sArtificial
olnteractive
»Push/Pull

ePedal (constant interaction)
+Button (one touch)
sMulti-Button (1 touch)
sLatch (?)
sHandle (1 touch)
=Rotate
oKnob (Val changer)
e Wheel (constant interaction)
oSwitch (1 touch)
eArm
*Move
eSlider (Val changer)
eRoller (like spin tool)
eStick (Val changer)
=Other
eKnob-Button (1 touch)
eInsertion Point (1 touch)
oMulti-Purpose
=Display
eMonochrome
*Colour

Figure 5.3: Initial car-dashboard widget hierarchy

93

When studying other user-interfaces (software applications), we found that some of this

hierarchy applies to those widgets as well (e.g. Interactive ->Move -> Slider which is true

for slider widgets in software applications as well). Furthermore, this hierarchy was also

applicable on the PUs we created for PUCM (e.g. Audio Notification PU maps to Audio-

> Mechanical and Audio -> Artificial in the hierarchy). Hence we created symbols of

widgets for prototype (Prototype Elements in appendix C) according to the hierarchy and

associated them with PUs for mapping in the tool (Mapping Matrix).

5.6.2 Some PE Symbols for Prototyping

Table 5.2 presents some examples of PEs. The complete set of our proposed PEs is

presented in appendix C.

1. Tools Collection PE

PEl1.1 Navigational Path (series of
hyperlinks)

Description: Typically used in web-
applications to show the navigational path
followed. Each word is link and could be

clicked to go to corresponding page.

Link1 -> Link2 -> Link3

94

PE1.2 Navigational hyperlinks

Description: Typically used in web-
applications to show the structure of
navigation. Each word is link and could

be clicked to go to corresponding page.

| Menu Name Menu Name

Menu Item
Menu ltem

PE1.3 Menu items in Menu bar.
Description: Different features (or tools)
are grouped and each group is accessible

under its common name.

PE1.4 Toolbar for collection of any tools.

Description: A set of common tools are
represented with a picture and displayed
for easy access. Selecting a picture (by
clicking or pointing) enables that tool or

feature.

Link1

Sublink1

Sublink2

Link?2

Sublink1

2. Linear View PE

PE2.1 Enhanced text editor

Description: Complex component that
allows entering and editing, as well as

changing the attributes of the text.

AT Al e

Editing area...

95

PE2.2 Simple text-editor
Description: Enables entering and editing
text. Changing attributes of text is not

possible.

Editing area...

PE2.3 Grid view and editor
Description: Enables entering and editing

text in a grid/table.

Text

3. Form PE

PE3.1 Form with different types of
fields

Description: Enables entering and editing
values in a form containing multiple types

of fields. There are buttons to submit the

—Form

(& Option1

¥ Check1

(& Option1 M Check1

OK I Cancel |
information and to clear the form.
PE3.2 Form to select from mutually
exclusive options.
Description: Enables changing value of an @ Option
{s: Option1
attribute. User can choose one option.
PE3.3 Form to select multiple options.
Description: User can choose multiple [/ Check1
options. ¥ Check1

Table 5.2: Examples of Prototype Elements

96

5.7 Mapping Matrix - A tool for Deriving Prototypes using

UCMs

Given the sets of Presentation Units and Prototype Elements, we will now present a tool
in the form of a simple matrix that will help decide which PE should go for a given PU.
We introduce a layer between these two notations namely “Intended action”. Since there
could be more than one PEs for a PU (due to PU’s abstract nature), we have observed that
an action is always intended to be performed on PU. This action is usually obvious from
“responsibility” name in PUCMs. Depending on intended actions, we will help decide a

suitable PE.

5.7.1 The proposed PU-to-PE Mapping Matrix

The proposed tool for prototype derivation is presented in table 5.3. For the sake of
simplicity, we will refer to PUs by names whereas PEs by reference # (PEx.y form, where
x is category number and y is an element in that category). The extended set of PUs with

pictures is presented in appendix B. The complete set of PEs is presented in appendix C.

97

1) Tobls Collection PU

Presentation Units (PU) | Intended Actior

1. Hyperlink rto other

PEL1 PE1.2

pages
ii. Select from a set of | PE1.3, PE1.4
tools

2) Linear View PU 1. Edit text area PE2.1, PE2.2
ii. Edit grid PE2.3
iii. Edit graphics PE2.4
iv. view mixed (web) PE2.5

3) Form PU i. Fill form (different { PE3.1
types of fields)
ii. Select one from many | PE3.2
options
iii. Select multiple from | PE3.3
options

4) System Dialog PU i. Answer system’s | PE4.1
question
ii. Take decision PE4.2
iii. Acknowledge | PE4.3
information by system

5) Indicator PU i. View internal system | PES.1

info (desktop app)

ii. View analog info

PE5.2, PES.3, PE5 4

98

i11.View numeric info PES.5

iv.View Boolean info PE5.6

v. View progress. PES5.7, PES.8
6) Value Changer PU i. Change numeric values | PE6.1, PE6.2

ii. from selection PE6.3

iii.short-range continuous | PE6.4

iv. long-range continuous | PE6.5, PE6.6

v. short-range discrete
vi. long-range discrete

v. back n forth

PE6.7, PE6.8, PE6.9
PE6.10

PE6.11

7) Constant Interaction PU

i. Keep/change direction

ii. Keep/change speed

PE7.1,PE7.2, PE7.3

PE7.4, PE7.5

8) One-touch Interaction

PU

i. Toggle

ii. Turn / move up or

PES.1, PES.2

PES8.3, PE8.4, PE8.5, PES8.6,

down PES.7, PES.8, PE8.9
iii. Insert, get-back PES8.10
iv. Hyperlink PES.11
9) Audio notification PU i. Input voice command | PE9.1
it. System alerts PE9.2
iii. System warns PE9.3
iv. Danger PE9.4
v. Feedback PE9.5, PE9.6

99

10) Navigable View PU 1. View textual artifact PE10.1
ii. View geographical | PE10.2
artifact

11) Live View PU i. View back PE11.1
ii. View sides PE11.2
iii. View anywhere PE11.3

12) Multimedia PU i. Watch and listen PE12.1
ii. Watch, listen and | PE12.2

interact

Table 5.3: The Mapping Matrix

100

5.8 Concluding Remarks about the Mapping Matrix

The Mapping Matrix (table 5.3) is a tool to suggest Prototype Elements given the
PUCMs. The PEs referred to in the matrix are given with detail in appendix C. These PEs
cover most of the elements found in usual user-interfaces. However, the matrix could be
expanded by adding more PEs for different new interfaces. Here, for example, the PEs
related to common GUI and vehicles are given. The symbols were designed using simple
graphical software, but for more sophisticated use, we suggest that these symbols be

drawn by skilled artist in order to reveal necessary details of the gadget.

If new kinds of user-interfaces are to be supported, adding new PEs would be sufficient.
The reason is that we have tried to generalize the Presentation Units (PUs of PUCMs) so
as to cover most of the interaction possible by human with machines. Carefully designed
PEs connected with the PUs through ‘intended action” would be added to their respective
columns in the table which could thus be used to suggest new PEs with a different

interaction style suitable to the new kind of user-interface.
Another possible innovation would be to implement a software tool that would suggest

PEs given the PUCMs. The matrix would then be implemented as the knowledge base of

the software so that it can apply the matrix on PUCMs.

101

Chapter 6

Illustration of the Prototype Derivation

Process

6.1 Introduction

We have learned in previous chapters how a scenario that is made by observing users
working in their environment can be represented in terms of Use-Case Maps (or UCMs in
short). These UCMs if made following the SUCRE framework (Alsumait, 2004) are
based on conceptual and physical models. From the physical UCMs, or PUCMs, we can
make prototypes which are useful tools to illustrate the UI that is not developed yet and to
verify the requirements as understood by developers. The process of derivation of
prototype from scenario is presented in previous chapter. In this chapter, we illustrate

how the process of derivation of prototypes from scenario helps in deriving prototype.

We present some scenarios that developers could create after a field study and then take
one as a sample scenario to illustrate the process. The scenario is borrowed from vehicle
industry and is very practical in today’s modern systems in vehicles. The scenario is
written in plain English language as most of the scenarios are first written. This approach
is a characteristic of User-Centered Design and it is much used practice of contextual

inquiry.

102

6.2 An introduction to dashboards and GPS

Dashboards are essentially the control panels of vehicles (figure 6.1). Drivers have to
interact with the widgets on the dashboard to control the vehicle. Dashboards are focus of
research in car industry and many new interactive systems are being explored to enhance

user-interface of vehicle dashboards (Marcus et al., 2003).

Global Positioning Systems (GPS) are satellite-based systems for tracking position of
objects on earth. They are winning popularity in car industry for way-finding and related
services (circled part in figure 6.1). The main purpose of these GPS will be to guide the
user on the roads, given the destination location. However, there is no limit on its use

once we start thinking out-of-the-box, for example, finding a utility on a highway etc.

"~ 61 GPS in a car dashboard (courtesy

http:/ftiger.towson.edu/users/nsharm1/)

103

6.2.1 Scenarios related to dashboards and GPS

There could be several scenarios related to dashboard and GPS in vehicles. Here we state
three such scenarios. For illustrating the complete process of prototype derivation, we

will take another scenario (section 6.3.2).

Scenario 1: Mrs. Z was driving her children to mountain for a ski-trip one day in winter.
Since weather was cold, children insisted on having a hot-chocolate and she too was
feeling tired and wanted to have a cup of coffee. They did not know where to buy these
because they were in the middle of highway. Mrs. Z decided to use the GPS in her car.
She turned on the GPS and chose to search for utilities on highway. She found a coffee
shop after 5 minutes drive. She noted that which exit she will need to take and turned the

GPS off and drove till the coffee shop.

Scenario 2: Dr. Q was stuck in a maze of streets in a suburb he was visiting to see his
aunt. He did not know which street to take to get to the highway and the street signs we
broken due to last week’s storm. He decided to use his GPS to know, first of all, where he

is exactly and then which streets to take to get to the highway.

Scenario 3: Sergeant D was patrolling in his police car and was feeling terribly bored. He
turns the radio on, seeks his favorite channel, adjusts volume and starts enjoying the

football match commentary.

104

6.3 Step 1 — Scenario Elicitation

We will illustrate the process of scenario creation in terms of figure 3.5. The first step in

scenario creation is Elicitation. We do this in several steps as detailed below.

6.3.1 Background of the Scenario

The scenario we take for illustration is related to GPS like we discussed in section 6.2.
The character used in this scenario, Sameer, is a young montrealer living in downtown.
One of his friends lives in Longueuil. He wants to visit his friend but has no idea how to
get there. Luckily he has GPS computer in his car and he decides to use it. The scenario
starts when Sameer sits in the car and ends when he reaches his friend. There could be
other associated scenarios related with this one, but for the sake of simplicity we consider

the simplest case.

6.3.2 The Scenario

On starting his car, Sameer turns on the GPS. He chooses to enter the street
address of his friend that he asked on phone last night. He wants to give the system the
Jull address but can't read the street number correctly, so he decides to give the postal-
code only (which is unique throughout Canada). Sameer tells postal code to the system.
GPS shows a map with road directions. He views the map in detail and sets the GPS to
be always available; that is, the system tells him the road directions while he drives the

car. Sameer reaches his friend’s house safely and in time.

105

6.3.3 Capturing Tasks/Actions from Scenario

A scenario can be broken down for capturing tasks and actions that need to be performed.
This practice will help in making better UCMs. We will analyze this scenario on the basis
of task that the user is performing, where it starts and where it ends and the

responsibilities (actions) user must perform to complete the task.

The ‘responsibilities’ are atomic actions in the UCM terminology. These actions are
taken from the scenario itself. Some actions are obvious from the scenario while the

others are implied and not so obvious.

Task:

To find way to reach friend’s house.

Start of Scenario:

Starting the car

End of Scenario:

Reaching friend’s house

106

Responsibilities:

\ 1 stai‘f GPS ‘ Saméer turns on the GPS s”cre‘én. .

2. choose to add address chooses to enter the street address of his friend...
3. Enter address either enter the full address or only the postal-code...

3.1: enter full address

3.2: enter postal-code

4: view map views the map in detail...
5: set ‘guide-mode’ sets the GPS to ‘guide-mode’...
6: follow map map remains on his screen while he drives*

Table 6.1: Analysis of Scenario

* Note the responsibility # 6 which is not written verbatim in the scenario but is

understood by reading the scenario carefully.

107

6.4 Step 2 — Scenario Specification

The second step in making scenarios according to figure 3.5 is Scenario specification. We
will specify the scenarios in terms of UCMs as described in SUCRE framework in

section 4.3.

6.4.1 Use-Case Maps

For the scenario given above we will make Use-Case Maps (Conceptual and Physical) to

specify the scenario in more manageable and accurate diagrams.

The Conceptual Use-Case Map will show the responsibilities that are to be performed on
different components to accomplish the task. The line shows the path taken and the

crosses over the line shows the responsibilities over the components.
The Physical Use-Case Map will show how these responsibilities are performed on a

system presentation level, rather than abstract (or conceptual) components as seen in

CUCMs.

108

1) Conceptual Use-Case Map or CUCM

GP GP

1l

GPS:GPS Screen
AF: Address Form
rl: start GPS |

MV

r6 5 r4

N NN\
'\ A NIEA

r2: choose to enter |
address

r3.1: enter full
address

r3.2:enter postal-
code

r4: view map

r5: set ‘guide-
mode’

r6: follow map

Figure 6.2: Conceptual Use-Case Map for Scenario

The Conceptual Use-Case Map (CUCM) in figure 6.2 shows how the task is
accomplished by performing different responsibilities. Each responsibility is marked with

a cross on the line in an abstract component which represents some part of the interface.

The filled circle at one end of the line shows the beginning of the scenario. As the line
progresses, the responsibilities are performed and the line ends with a vertical bar which

tells of the end of the scenario. The first responsibility (r1: Start GPS) is done on the GPS

109

itself (GPS component) when the screen is blank. Second responsibility (r2: choose to

enter address) is also performed on GPS which is just started. After second responsibility

is performed, the user is shown an ‘address form' (AF component). User has then a

choice to perform one of two actions as third responsibility (r3.1 or r3.2). After doing

that, further responsibilities (r4, r5, r6) are done on a ‘map view’ (MV component).

2) Physical Use-Case Map or PUCM

1 S 0 ot P ol
) —
0= 00—
O~ Q=
o— o~
p $’ 32 % k=
v
310 s
T AN N TA
B P>
Y

Figure 6.3: Physical Use-Case Map for Scenario

rl: start GPS

12: choose to
add address

r3.1: enter
full address

r3.2: enter
postal-code

r4: view map
rS: set ‘guide
mode’

r6: follow
map

110

In the Physical Use-Cape Map (PUCM) in figure 6.3, the scenario is represented with
lesser abstraction (closer to the user-interface layout). The flow of the scenario is still

represented with thick line starting with a filled circle and ending in vertical bar.

The responsibilities are also performed in components but these components are now
placed on a rectangle depicting the screen. Real-like widgets are still not present on this
PUCM, rather, the ‘presentation units’ or PUs (rectangles with an icon on top-right
corner) show parts of the screen. The PUs shown in figure 6.3 are drawn from the set of

extended PUs proposed in this thesis presented in Appendix B.

The cross-marks depicting responsibilities now in PUs showing that associated action

will be performed on that presentation unit of the Ul. All the responsibilities remain the

same as of CUCM of figure 6.2 and table 6.1.

111

6.5 Step 3 — Scenario Analysis

The third step in figure 3.5 is Scenario Analysis. As discussed in the figure, the analysis
of the scenario could be performed with the help of a prototype. Therefore in this section,
we make a storyboard prototype with the help of prototype derivation tool Mapping
Matrix presented in table 5.1 in chapter 5. The mapping matrix, as discussed in section
5.7, takes input the names of Presentation Units that are found in PUCM and the intended
actions from responsibilities (as in table 6.1) and suggests the Prototype Elements. This is
done manually (by looking up the table for corresponding PUs in the table). The process

of looking up of can be seen as in figure 6.4:

PUCM Responsibilities

(figure 6.1) List
(table 6.1)
Pus‘l Intended Actions
Lookup in
Mapping Matrix
(table 5.3)

|

Suggested PEs

Prototype Screens
(figure 6.4)

Linking screens

Storyboard

Figure 6.4: Application of Mapping Matrix

112

6.5.1 Applying Mapping Matrix

After making the Physical Use-Case Map, we can now refer to the Mapping Matrix of

section 5.7 (as described in figure 6.4) and see which symbols we should put on Paper

Prototype.

One-touch interaction PU turn on (toggle) the GPS | PES.1 or PE8.2
screen |

Tools Collection PU select from a set of tools PE1.3 and/or PE1.4

Form PU fill form PE3.1

Navigable View PU view geographical artifact PE10.2

Table 6.2: Applying Mapping Matrix to PUCM

The result of applying Mapping Matrix is given in table 6.2. Based on PUs of PUCM in
figure 6.3, we checked the intended actions to be performed on the PU. Taking the PU
and the intended action over it, we mapped on Prototype elements. For each PU and its

corresponding intended action, we found at least one PE (figure 6.5).

113

o {*—J Ll £
v
> [-
Max m Q
EE —Form
B & |
> |
(@ Option1 7 Checkt
@ Option1 ~ Check1
75 | MenuName _[ffens e
["]:> x::: :::: l
0 wl &
%@T‘\\ |
> &

Figure 6.5: Suggested Prototype Elements (PEs) for Presentation Units (PUs)

Based on the result of applying Mapping Matrix (table 6.6), we will make a Paper
Prototype using the suggested Prototype Elements (PEs). The position of the PEs on the

screen is governed by the position of the corresponding PU in PUCM.

114

6.5.2 Storyboard Prototype

Following are the screens of suggested prototype (figure 6.6). These pictures are separate

and are not connected with the cause-effect relationship.

1)

2)

_
|

| Menu Name

] Menu Name l

Menu item
Menu Item

U@ Welcome

Figure continues on next page

115

3)

4

D)

] Menu Name

Menu tem
Menu Item

I Menu Name]

— Form
|
|
(¢ Optiont M Check1
(¢ Option1 N Check1
OK l Cancel |
Reset N @
\Y% E
Max S 2
0 = =

| Menu Name

Menu Item
Menu Item

[Menu Name I

@ Thanks

Figure 6.6: Screens of Prototype

116

These pictures when connected with each other with arrows, labeled with the actions that

leads from first to next picture gives the storyboard as in figure 6.7 below.

— TumMONGPS—

A
| Menu Name Menu Name __—I
Menu tem
Menu iterm

Welcome
———~Choose to enter address —~-—————

A 4

IMenuName MenuName |
Menu Item
Menu item
—Form
| o Enter address ~—1
® Option1 M Check1
(& Option1 & Checkt _Rf_s_d_l IN_, @
OK I Cancel I

l—»»«—;View Map-—— e

Menu ltem

W‘I—‘ | Dl @ & |

Menu Item

Figure 6.7 Final Storyboard

117

6.5.3 Explanation of the Storyboard

The storyboard in figure 6.7 could be explained with the following set of actions derived
from the scenario. The actions at this stage are no more abstract and stated in terms of

user-interface (or prototype) elements.
The storyboard starts with the picture of GPS in Off (or idle) state. When it is turned On
using the switch, a welcome message is given to the user and user can chose from a menu

an action to perform.

When user selects to enter an address, they are presented a form where they can enter the

address. When the user presses OK button in the form, a map is shown.

User can navigate through the map and choose actions using the set of tools (a toolbar)

below the map.

When the user finishes viewing the map (on arriving at the destination) the map goes

from the screen and a “Thank You’ greeting is given to the user.

118

6.6 The storyboard and Ul requirements in scenario

The storyboard fulfills the user-interface requirements in the scenario. As seen in table
6.1, the Ul needs to have components (or widgets) that let the user:

1) Turn the GPS on

2) Choose from options on starting the GPS

3) Lets the user enter the address

4) Lets the user view the map

5) In the end remove the map from screen

All these requirements are fulfilled in the storyboard (figure 6.7). It also lets the user see

the sequence of the screens to have an idea of the flow of scenarios.

119

6.7 Conclusion of Illustration

In this chapter, we illustrated the process of deriving prototype starting from a scenario.
We first stated the scenario in plain English language and then captured major elements
of the scenario. Then we represented the scenario in physical and conceptual UCMs as
discussed in SUCRE framework. Later, we used the prototype derivation process

proposed in chapter 5 to create a storyboard prototype.

Stating the scenarios and deriving prototypes from them is a major milestone in roadmap

(figure 3.2) and is an important complementing part in SUCRE framework.

120

Chapter 7

Conclusions and Suggested Future Research

In this thesis, we proposed a roadmap for usability requirements engineering with
includes artifacts and activities from agile methods. This roadmap is geared towards
producing usability requirements using methods that are centered on users and their work
context. Verification of gathered requirements is done using prototype derivation and
evaluation. In this proposed roadmap, requirements are mainly represented in terms of
scenarios that are represented as use case maps. The proposed roadmap use SUCRE, a
framework proposed by the Human-Centered Software Engineering Group, for scenario

specification and analysis.

Representation of scenarios using use-case maps has an added advantage. Using the
conceptual and physical models of Use-Case Maps as presented in SUCRE framework,
we proposed a process to derive prototypes from scenarios. This process helps designers
create storyboard prototypes by suggesting standard user-interface objects. The derivation
process uses a tool (in the form of a table) named Mapping Matrix which maps symbols
(Presentation Units) in SUCRE framework’s physical use-case maps to user-interface
symbols on prototypes (Prototyping Elements). These two sets of symbols are created
and named (Presentation Units of SUCRE are enhanced and extended) especially for this

tool and they cover most of the interaction tasks.

121

The agilized roadmap for user-centered requirements and the process for prototype
derivation through scenarios are interlinked. The scenario creation and analysis (which
are major milestones in roadmap) through SUCRE framework is complemented with the
prototypes which help evaluate the requirements. The roadmap and prototype derivation

process are the major results of the research made for this dissertation.

122

7.1 Major Contributions

This thesis investigates a user requirements engineering approach that intimately
combines user-centered design and agile philosophies. These philosophies are proposed
by different people at different times, yet there are some points where we find synergy in

these ideas. The major contributions of our research are outlined below.

- A roadmap for User-centered requirements engineering which incorporates agile
aspects. This roadmap, detailed in chapter 3, describes the major milestones to gather and
evaluate user requirements using prototypes and scenarios. With ideas from agile
philosophy incorporated in the roadmap, it ensures the process of requirements
engineering is fast, iterative, involves users at every major milestone and involves less

documentation.

- Categorization of interaction tasks so that similar tasks could be represented with a
symbol in physical use-case maps. This categorization could be used in the development
of style-guides for widgets. We used this categorization for development of collection of

Presentation Units and Prototype Elements presented in appendices B and C respectively.

- A process to derive prototypes from scenarios. The process of derivation takes scenarios

as starting point and through use-case maps and Mapping Matrix tool, generates a

123

storyboard prototype. This process supplements SUCRE framework which suggests

prototyping after detailed description of use-case maps modeling.

These contributions, we believe, will help the requirements engineering community to
effectively gather requirements from users and their environment and verify those
requirements using prototypes. These contributions also encourage future research as

discussed in next section.

124

7.2 Suggested Future Research

Our research could be followed up and advanced to achieve more innovative results. We

suggest the following agenda for improvements, refinement, and validation:

- Validation of the Roadmap. The roadmap presented in this thesis (figure 3.2) should be
validated in an industrial environment. The steps of roadmap should be followed by
analysis team and potential users of the product should be involved from the beginning.
The helping forms and templates provided in appendix A would be beneficial especially
in vehicle industry. In our research group at Concordia University, the project sponsored
by Daimler-Chrysler V(Vehicle Company) could prove to be the most suitable test
benchmark for the roadmap. The forms and templates of appendix A are tailored for
requirements engineering in a vehicle company like Daimler-Chrysler. Applying the

roadmap could surface some suggestions to improve the roadmap.

- Software Tool Support for Prototype Derivation. The process for prototype derivation
from scenarios should be supported by a software tool. This tool should implement the
Mapping Matrix (table 5.1) as its knowledge base and let the users draw the Physical and
Conceptual UCMs. This tool would have the Presentation Units (PUs) and Prototype
Elements (PEs), from appendices B and C respectively, integrated and suggest users PEs

based on the Mapping Matrix.

125

- Extend PEs collection for different kinds of interfaces. The Mapping Matrix maps one
or many PEs for a given PU. Some PEs are typically used in only one type of interface
(e.g. desktop or web applications, vehicle dashboards, etc). If the system under
development requires different (or even multi-) interfaces, the prototypes must reflect
elements of that interface. To achieve this, the PEs collection will have to be extended
with new elements. Interaction tasks should be analyzed for those interfaces and new PEs

should be drawn.

126

References

Abrahamson, P., Salo, O., Ronkainnen, J. and Warsta, J. (2002) Agile software
development methods - Review and analysis, ESPOO 2002, VTT Publications,
pp.107.

Achour, C. B. (1998) Writing and correcting textual scenarios for system design In
Proceedings of the Ninth International Workshop on Database and Expert
Systems Applications, 26-28 Aug. 1998, Vienna, Austria, pp. 166 - 170.

Alsumait, A. (2004) User Interface Requirements Engineering: A Scenario-Based
Framework, PhD. Thesis in Dept. of Computer Science and Software
Engineering, Concordia University, Montreal.

Alsumait, A., Seffah, A. and Radhakrishnan, T. (2003) Use Case Maps: A Visual
Notation for Scenario-Based User Requirements In Proceedings of the 10th
International Conference on Human - Computer Interaction, June 22 - 27, Crete,
Greece.

Amyot, D. (1998), Use Case Maps web page, accessed: May 2004, available at:

http://www.usecasemaps.org, September 30, 2001

Amyot, D. (2000) Use Case Map; as a Feature Description Notation In Proceedings of
the FIREworks Feature Constructs Workshop, May 2000, Glasgow, Scotland,
UK, pp. 18.

Anderson, J., Fleek, F., Garrity, K. and Drake, F. (2001) 'Integrating usability techniques

into software development', IEEE Software, vol. 18, issue. 1, pp. 46-53.

127

Bai, X., Tsai, W. T., Paul, R., Feng, K. and Yu, L. (2002) Scenario-based modeling and
its applications In Proceedings of the Proceedings of the Seventh International
Workshop on Object-Oriented Real-Time Dependable Systems, 7-9 Jan. 2002, pp.
253 - 260.

Beck, K., Anderson, A., Beattie, R., Bryant, D., DeArment, M., Fowler, M., Fronczak,
M., Garzaniti, R., Gore, D., Hacker, B., Hendrickson, C., Jeffries, R., Joppie, D.,
Kim, D., Kowalsky, P., Mueller, D., Murasky, T., Nutter, R., Pantea, A. and
Thomas, D. (1998) 'Chrysler goes to "Extremes"', Distributed Computing, issue.
Oct. 1998, pp. 24-28.

Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.
C., Mellor, S., Schwaber, K., Sutherland, J. and Thomas, D. (2001), Agile

Manifesto, accessed: March 2004, available at: http://www.agilemanifesto.org/

Beyer, H. and Holtzblatt, K. (1998) Contextual Design, Morgan Kaufmann Publishers,
Inc., San Francisco, CA.

Buhr, R. J. A. (1998) 'Use Case Maps as Architectural Entities for Complex Systems',
IEEE Transactions on Software Engineering, vol. 24, issue. 12, pp. 1131-1155.

Carrol, J. M. (1999) Five reasons for scenario-based design In Proceedings of the 32nd
Annual Hawaii International Conference System Sciences, 1999. HICSS-32, 5-8
Jan. 1999, pp. 11.

Carroll, J. M. (1999) Five reasons for scenario-based design In Proceedings of the 32nd
Annual Hawaii International Conference System Sciences 1999 - HICSS-32, 5-8

Jan. 1999, Maui, Hawaii, vol. 3, pp. 11.

128

Carroll, J. M. (2000) Making Use: Scenario-based design of Human-Computer
Interactions In Proceedings of the Designing interactive systems: processes,
practices, methods, and techniques, December 2000, New York, NY, USA, ACM
Press New York, USA, pp. 4.

Carroll, J. M., Rosson, M. B., Chin, G. J. and Koenemann, J. (1998) 'Requirements
development in scenario-based design', IEEE Transactions on Software
Engineering, vol. 24, issue. 12, pp. 1156 - 1170.

Cockburn, A. (2000) Characterizing People as Non-Linear, First-Order Components in
Software Development In Proceedings of the 4th International Multi-Conference
on Systems, Cybernetics and Informatics, June 2000, Orlando, Florida, pp. 19.

Constantine, L. L. and Lockwood, L., A.D. (2002) 'Usage-Centered Engineering for Web
Applications', IEEE Software, vol. 19, issue. 2, pp. 42 - 50.

Cox, K. (2000) Fitting scenarios to the requirements process In Proceedings of the 11th
International Workshop on Database and Expert Systems Applications 2000
(DEXA'00), 4-8 Sept. 2000, Greenwich, London, U.K., IEEE Computer Society
Press, 2000, pp. 995 - 999.

Ferre, X. (2003) Integration of Usability Techniques into the Software Development
Process In Proceedings of the International Conference on Software Engineering -
ICSE 2003, May 3-10, 2003, Portland, Oregon, USA, pp. 28-35.

Fowler, M. (2000), The New Methodology, accessed: March 2004, available at:

www.martinfowler.com/articles/newMethodology.html, April 2003

Greenberg, S. (1998), Prototyping for Design and Evaluation, accessed: August 2004,

available at: http://www.cpsc.ucalgary.ca/~saul/681/1998/prototyping/survey.html

129

How to develop Usability Goals (1996),accessed: 2004 available at:

http://www stcsig.org/usability/resources/toolkit/use gls.doc

John, B. E., Bass, L. and Adams, R. J. (2003) Communication across the HCI/SE divide:
ISO 13407 and the Rational Unified Process In Proceedings of the HCI
International, June 2003, Crete, Greece, pp. 5.

Jokela, T., livari, N., Matero, J. and Karukka, M. (2003) The Standard of User Centered
Design and the Standard definition of Usability: Analyzing ISO 13407 against
1SO 9241-11 In Proceedings of the Latin American conference on Human-
computer interaction, Rio de Janeiro, Brazil, ACM Press New York, NY, USA,
pp- 53 - 60.

Kutschera, P. and Schafer, S. (2002), Applying Agile methods in rapidly changing
environments, accessed: 2004, available at:

http://ieckstein.com/papers/Agile%20Methods%20-

%20Steffen%20Schaefer%20&%20Peter%20Kutschera.pdf, July-23-2002

Landay, J. A., Lin, J., Newman, M. W. and Hong, J. I. (2000) DENIM: finding a tighter
fit between tools and practice for Web site design In Proceedings of the SIGCHI
conference on Human factors in computing systems, The Hague, The
Netherlands, ACM Press New York, NY, USA, pp. 510 - 517.

Landay, J. A. and Myers, B. A. (1995) Interactive sketching for the early stages of user
interface design In Proceedings of the SIGCHI conference on Human factors in
computing systems, Denver, Colorado, United States, ACM Press/Addison-

Wesley Publishing Co. New York, NY, USA, pp. 43 - 50.

130

Lauesen, S. (1997) Adding Usability to Software Engineering In Proceedings of the IFIP
TC13 Interantional Conference on Human-Computer Interaction, INTERACT '97,
14th-18th July 1997, Sydney, Australia, Chapman & Hall 1997.

Maguire, M. C. (1998), RESPECT 5.3: User-Centred Requirements Handbook,
accessed: 31st March 2004, available at:

http://www.ejeisa.com/nectar/respect/5.3/contents.htm, 29 June 1998

Marcus, A., Boechm-Davis, D. A., Green, P. A., Hada, H. and Wheatley, D. (2003) The
next revolution: vehicle user-interfaces and the global rider/driver experience In
Proceedings of the Conference on Human Factors in Computing Systems, Ft.
Lauderdale, Florida, USA, ACM Press New York, NY, USA, pp. 708 - 709.

Mayhew, D. J. (1999) The Usability Engineering Lifecycle: A practitioner's handbook for
User Interface Design, Morgan Kaufmann Publishers, Inc., San Francisco,
California.

Merriam-Webster (1982), Merriam-Webster Online Dictionary, accessed: 2004, available

at: www.m-w.com

Miga, A., Amyot, D., Bordeleau, F., Cameron, D. and Woodside, M. (2001) Deriving
Message Sequence Charts from Use Case Maps Scenario Specifications In
Proceedings of the 6th Mitel Conference on Innovation in Applications &
Technology (MICON2001), June 2001, Ottawa, Canada, August 2001, Springer-
Verlag London, UK, pp. 268 - 287.

Orr, K. (2004) 'Agile requirements: opportunity or oxymoron?' IEEE Sofiware, vol. 21,

issue. 3, pp. 71 - 73.

131

Paetsch, F., Eberlein, D. A. and Maurer, D. F. (2003) Requirements Engineering and
Agile Software Development In Proceedings of the Twelfth IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’03), 9-11 June 2003, IEEE Computer Society, pp. 308 -
313.

Patton, J. (2002) Hitting the Target: Adding Interaction Design to Agile Sofiware
Development In Proceedings of the Conference on Object Oriented Programming
Systems Languages and Applications - OOPSLA 2002 Practitioners Reports,
November 2002, Seattle, Washington, ACM Press New York, NY, USA, pp. 1 -
ff.

Pohl, K., Weidenhaupt, K., Jarke, M. and Haumer, P. (1998) 'Scenarios in system
development: current practice', IEEE Software, vol. 15, issue. 2, pp. 34 - 45.

Seffah, A., Alsumait, A., Radhakrishnan, T., Kotzé, P. and Poll, J. A. v. d. (2003)
Combining UCMs and formal methods for representing and checking the validity
of scenarios as user reqﬁirements In Proceedings of the Proceedings of the
Annual research conference of the South African institute of computer scientists
and information technologists on Enablement through technology, September
2003, South Africa, South African Institute for Computer Scientists and
Information Technologists Republic of South Africa, pp. 59 - 68.

Seffah, A., Djouab, R. and Antunes, H. (2001) Comparing and reconciling Usability-
Centered and Use Case-Driven Requirements Engineering Process In
Proceedings of the 2nd Australasian conference on User interface, Queensland,

Australia, IEEE Computer Society Washington, DC, USA, pp. 132 - 139.

132

Sutcliffe, A. G., Maiden, N. A. M., Minocha, S. and Manuel, D. (1998) 'Supporting
scenario-based requirements engineering', /[EEE Transactions on Sofiware
Engineering, vol. 24, issue. 12, pp. 1072 - 1088.

Sutcliffe, A. G. and Ryan, M. (1998) Experience with SCRAM, a Scenario Requirements
Analysis Method In Proceedings of the Proceedings of the Third International
Conference on Requirements Engineering, 1998., 6-10 April 1998, Colorado
Springs, pp. 164 - 171.

UPA (2002), Usability Professionals Association website, accessed: March 2004,

available at: http://www.usabilityprofessionals.org

. Weber, M. and Weisbrod, J. (2003) 'Requirements Engineering in Automotive

Development: Experiences and Challenges', IEEE Software, vol. 20, issue. 1, pp.

16 - 24.
Wells, D. (2004), Extreme Programming: A gentle introduction, accessed: March 2004,

available at: http://www.extremeprogramming.org/, February 28, 2004

Z.Guan, J. and Luqi (2003) 4 Software Prototyping Framework and Methods for
Supporting Human’s Sofiware Development Activities In Proceedings of the

International Conference on Software Engineering - ICSE’03, May 3-11, 2003,

Portland, Oregon, pp. 114-121.

133

Appendix A

Forms and Templates for the Roadmap

134

A.1 Vision Document

Tentative table of contents for Vision Document

1. Introduction
1.1 Purpose
1.2 Scope
2. Users of System
2.1 Highlights of user characteristics
2.2 Major tasks users accomplish
3. Environment of use
3.1 Context-of-use highlights
3.2 User-Support
4. Process
4.1 Process/Standards to follow

4.2 Client involvement

Each topic should typically take 2 to 4 lines of elaboration.

Any diagrams deemed useful should be included.

135

A.2 Forms for Field Study

A.2.1 Identifying Users and Stakeholders

While conducting field study, look for different ‘kinds’ of users. While you will
encounter a variety of user groups, you might find some stakeholders also. Stakeholders
are people who do not use the product directly but are involved as a middle-man between

product developers and real users, e.g. Car-dealers, company manager, etc.

Form FS1.1 will help filtering different groups of users. (This form and other subsequent

forms are designed for DC-team especially, so examples will assume users of vehicles.)

User...

Is a Driver? v
Sits beside driver?
Sits on backseat?

A stakeholder? If Yes, Describe:

Male? v

Female?

136

Age <5 yrs?
Age 5-18 yrs? \

Age 18-70 yrs?

Age 70+ yrs?
Experience of system? If Yes, Describe: |
Exposure to related technology? If Yes, Level: Driving \
trucks

N
Has mental disability? If Yes, Describe: l

Has physical disability? If Yes, Describe:

Any other constraints? If Yes, Describe:

Form FS.1.1

For every person met during field study, fill up this table and on the basis of the data,
make user groups. For example, Drivers aged 70+ yrs with no physical disability, User
who sits on back seat and age less than 5 yrs, Drivers aged 18-70 yrs with physical

disability, etc.

137

Once common characteristics are identified on the basis of data on FS1.1, name the

groups and fill the following form (Maguire, 1998):

Group Name ' Role in System or Use of System

Typical Driver | Will drive car, use most of the widgets himself most of

the time. Have no apparent difficulty in operating v

widgets and understanding information.

Senior Driver Will drive the car. Need proper concentration without
distraction. Might have difficulty in using some \

widgets.

Child passenger | Will not drive car, will sit on back in special seat for

added safety. v

Car Dealer Will help people buy new/used cars. Will have detailed
information about features but will not use personally

(otherwise shift to other user-group).

Form FS1.2

Give a distinct name to each user group and explain in short their role in the system or
how they will use the product. For those groups that user requirements will be described
for, check under the expand column. For example,

Group: Senior Driver

Role: Will drive the car but not too often, might face problem in using some widgets...

Expand: checked

138

Group: car-dealer
Role: Will help users select cars of their needs, sell the car to users.

Expand: unchecked
A.2.2 User Characteristics

In this table, note down characteristics of different user-groups. Give an identification

number to each characteristic to that it could be referred to later. Use one form for each

group.

Size df group:

Age range:

Gender distribution:

Educational level:

Physical limitations:

Language & culture:

139

Experience with similar

systems:

Frequency of use:

Likely concerns:

Form FS1.3

A.2.3 Social environment of use

A system is rarely used in seclusion from society. Social environment impacts a great
deal on users using the system. Vehicles are driven by humans but also used by other
passengers, so the overall social environment inside the vehicle and outside of it is

important.

During field study, DC-team will observe how people and social behavior affect use of

vehicles. To do this, following form will be helpful in collecting all relevant information.

To fill the form, first note down all the characteristics of social behavior then turn-by-

turn, analyze what user requirements are important regarding that characteristic.

140

Characteristics

User Requirem

1ents

Ref. #

Communication with

outside world:

Performance

Monitoring:

Performance Feedback:

Group usage:

Assistance availability:

Interruptions from
inside:

Interruptions from
outside:

Stressful conditions:
Safety (from

accidents):

141

Security (from crime):

Privacy:

Entertainment:

Emotional attachment:

Duration of use;

Traffic/road

signs/signals:

Form FS1.4

A.2.4 Users’ Anecdotes

In this part, DC-team will record anecdotes that users tell about their driving experience.
Anecdotes are short stories of some real events that happen to a person. Its very common

among friends and family members when they are sharing their day to day interactions

142

with people and systems. These short stories will provide valuable information for

gathering scenarios.

In the following form, write the short story told by users, record the people involved in

the story (like driver’s kids or policeman) and note the group users belong to:

Event Date: January 2003 (write approximated)
Event Time: Afternoon (write approximated)
Story:

One day in last year winter, I was taking my grandfather for regular medical checkup to
hospital. He was sitting beside me while I was parking my car just in front of another
car. When [shifted to reverse gear and started reversing, I couldn’t feel I was so close
to the car on back due to snow on back screen; I hit that car and was embarrassed,
although it not too hard a hit. I wish I had a device in my car that could tell me how far

away I m from an object behind.

Actors involved: User-group of actors:

Driver Adult Driver

Grandfather Senior Passenger
Form FS1.5

143

A.3 Usability Goals

Proposed Template for writing Usability Goals

Serial #:

Title

Description

Priority

Specific user group name (if any)
Measurement method (if any)
Usability factor(s) involved
Conditions (if any)

Benchmark tests(s).

Comments/Notes/Rationale.

Example:

Serial #: 2

Title: Door mirror adjustment

Description: User should be able to adjust the orientation of door mitror in 5 seconds
without lowering the door glass.

Priority: Medium

User group: Driver

144

Measurement method: null

Usability factor(s) involved:

Conditions: Must not necessary to lower window.

Benchmark test: User will sit in driving position and use mirror adjuster (to be
designed) to adjust the mirror as needed. Time will be noted and it should be no more
than S seconds.

Notes/Rationale: In winter when a little wind entering through door glass is
uncomfortable, user might need to adjust the door mirror which is an essential task for
safe driving. The adjuster (a widget) should be in reach of the driver while driving and

must be usable enough to let the driver adjust mirror without distraction.

145

A.4 Stating Scenarios

Scenarios can be stated formally in the following format:

Serial #:

Ref. of Usability Goal:
Other References:
Scenario Description:

Usability Aim:

Example:

Serial #: 4

Ref. of Usability Goal: UG-2

Other References: FS1.5.3 (User Anecdote)

Scenario Description:

On a hot summer day, children sitting on back-seats ask their father who was driving the
car that the car is too hot and want him to turn on the car air conditioner. Driver winds
up all windows and turns on the air conditioner. After a few minutes the car temperature
became confortable.

Usability Aim: 80% of users should wind up windows before turning on a/c. The widget

to start a/c should be not more than an arm’s distance for driver.

146

A.5 Task Analysis

Task definition and analysis involves identifying tasks and breaking them down into
subtasks until they are decomposed to a set of simple actions. Following scheme could be

used to do task analysis:

Identify tasks from the scenarios noted on previous step and list them down.

Sort and list main tasks that need to be performed and the Goal to achieve by performing
these tasks (see Usability Goals step). Call this list of main tasks, Level-1

Focus on each task in Level-1 one by one and decompose this task into subtasks (i.e.
things to do to perform task of level 1). Call this Level-2

Repeat step 3 on subtasks of Level 2 in place of Level-1 until you cannot further break
down tasks. These atomic subtasks are called Actions.

Describe each actions and time consumed in performing these actions.

Example:

Following is a major task that is common while driving vehicles.

Level 1
Task 1: Taking a Left-turn
Goal: User must be able to turn on right/left side roads (90-degree turn) safely and

quickly.

147

Level 2
Subtask 1.1: Change lane(s) towards leftmost lane.

Subtask 1.2: Turn left on the turning.

Level 3

Subtask 1.1.1: Turn-on the indicator of left side

Subtask 1.1.2: If vehicle is not too near, change lane(s) until reach leftmost lane.
Subtask 1.2.1: Turn-on the indicator of left side.

Subtask 1.2.2: Turn.

Level 4
1.1.1.1: Locate indicator widget (2 secs.)

1.1.1.2: Press/flip widget (<1 secs.)

1.1.2.1: Locate rear view mirror (or other widget) (<1 secs.)

1.1.2.2: See if another vehicle is near in left lane (3 secs.)

1.1.2.3: Make a decision whether to move (unknown time, depends on traffic)
1.1.2.4: If decide to move in 1.2.2.3 then turn steering wheel until car is in next lane.

Else, repeat from action 1.2.2.2

1.2.1.1: Locate indicator widget (2 secs.)

1.2.1.2: Press/flip widget (<1 secs.)

148

1.2.2.1: Stop at turning point to see if another vehicle/person is coming. (5 secs.)
1.2.2.2: If No, turn steering wheel until car is turn 90-degree around the turning point.

Else, wait until 1.2.2.1 is No. (unknown time, depends on traffic)

149

A.6 Study of Similar Systems

The aim of this step is to consider similar systems (may include competitive products)

and to see what to include and, more importaritly, what should not be included.

In the following form, we take each usability goal and see corresponding features in other

systems. (Maguire)

Ref. | Goal Product Good Features Bad Features

Name/Company

1 Doors must be | XYZ car A light blinks with
closed before car sound if any door
starts moving is opened.

2 Locking and | ABC car There is no
unlocking doors central widget
should be easy and to lock/unlock
quick doors near

driver’s seat.

Form SS1.1

150

A.7 Physical Environment

Following form helps in considering different aspects of environment relevant to vehicle

usage and identifying user needs. This table should be filled for every relevant user-group

separately. (Maguire, 1998)

Product name: Jeep

User group: Drivers

Ref#

Physical Environment Characteristics

Usability Requirements

1

Typical location of use
Roads and hilly, rocky, wet, sandy

places (All Terrain Vehicle)

(waterfalls, desert winds...) or noise

of other vehicles on road.

2 Thermal conditions outside vehicle Outside temperatures should not
All weathers and atmospheres damage the vehicle and have a drastic
affect on internal environment
3 Thermal conditions inside vehicle Internal temperature should be
Milder than outside weather comfortable enough.
4 Auditory condition Outside sound should not penetrate
Noise of natural phenomena | too much inside. Internal sounds

should be audible even if it is noisy

outside.

151

5 Light outside vehicle Headlights should be powerful enough
Natural light or darkness. Electric | to light up the path. Could be
light if driving on road. supplemented with extra lights.

6 Light inside vehicle Internal lights should enable seeing all
Small lamps that consume less power | widgets clearly and things inside

vehicle.

7 Vibration or instability User should feel enough comfortable
Lots of vibration and instability due to | be able to operate widgets or drive
varying terrains without difficulty.

8 Space and seating arrangement Seating should be comfortable and
Limited space. Seats wide but not too | adjustable for drivers of different
comfortable heights.

9 Health and Safety Safety belts, air bags are necessary.
Danger of loosing balance, rolling | There should be some communication
over, being stuck in mud or sand. device that can be used if needed in

emergency.

10 Others

Form PN1.1

152

Appendix B

List of Suggested Presentation Units (PUs)

153

B.1 A Note about Presentation Units

The Presentation Units were introduced in SUCRE framework. In this framework, these
PUs were presented to explain the concept of PUCMs, therefore, those PUs did not cover
all aspects of presentation. In this thesis, we attempt to cover all aspects of presentation
and interaction, therefore the PUs presented here complement the original PUs presented

in SUCRE framework

B.2 Presentation Units

1. Tools Collection PU

Description: User can choose from a

collection of tools, utilities or links.

Example: Toolbars, Menus, Navigation

links in web pages.

154

2. Linear View PU

Description: User can view or edit linear

data as text, graphic or tables. ——
. E==E
Example: Text docs, graphic, web pages,
grids, trees.
3. Form PU
— 1
Description: User can fill in form of any E: g—
o—- o—

type
Example: Registration forms, login forms,

property sheets.

4. System Dialog PU

Description: User can respond to system’s
short messages.

Example: Error message, task-completed

message, restart-now-or-later message.

B

155

5. Indicator PU

Description: User can view little bits of
information given by system.

Example: system status, process progress,

door open

/
A

§,
—

6. Value Changer PU
Description: User can change values of
different attributes of system.

Example: Volume, speed, brightness.

+Val &

7. Constant Interaction PU

Description: User can interact with system
constantly for longer periods of time.
Example: Steering direction, controlling

speed, game control.

156

8. One-touch Interaction PU
Description: User can perform task with a
brief touch.

Example: Switching lights, clicking,

pressing buttons.

9. Audio Notification PU

Description: User is being notified by
some sounds regarding certain events.
Example: time-over, error, collision-

avoidance.

10. Navigable View PU

Description: User can view and navigate
and zoom.

Example: PDF docs, Maps, Virtual

Environments.

157

11. Live View PU

Description: User can view live events
from different angles.

Example: rear-view cams, view-finding,

mirrors.

{

12. Multimedia PU

Description: User can watch, listen and/or
interact with multimedia contents
Example: Video/audio playing, sound

recording.

N

158

Appendix C

List of Suggested Prototype Elements (PEs)

159

C.1 A Note about Prototype Elements

In this thesis, we present elements that should be arranged on prototypes. The prototype
generation process is based on Presentation Units that are listed in Appendix B. These
elements cover most of the interface components in common desktop and web-
applications, as well as, widgets found in vehicle. We argue that this list can be expanded
to include other elements corresponding to some other kinds of applications too. In that
case, the matrix presented in chapter 5 of this thesis will be extended and new prototypes

of innovative systems could be generated.

C.2 Prototype Elements

1. Tools Collection PE

PE1.1 Navigational Path (series of
hyperlinks)
Description: Typically used in web-

applications to show the navigational path

Link]l -> Link2 -> Link3

followed. Each word is link and could be

clicked to go to corresponding page.

160

PE1.2 Navigational hyperlinks

Description: Typically used in web-
applications to show the structure of
navigation. Each word is link and could

be clicked to go to corresponding page.

Link1

Sublink1

Sublink?2

Link2

Sublink1

PE1.3 Menu items in Menu bar.
Description: Different features (or tools)
are grouped and each group is accessible

under its common name.

Menu ltem
Menu item

PE1.4 Toolbar for collection of any
tools.

Description: A set of common tools are
represented with a picture and displayed
for easy access. Selecting a picture (by
clicking or pointing) enables that tool or

feature.

0 @ d

161

2. Linear View PE

PE2.1 Enhanced text editor
Description: Complex component that
allows entering and editing, as well as

changing the attributes of the text.

AT A o D 8

Editing area...

o™

PE2.2 Simple text-editor
Description: Enables entering and editing
text. Changing attributes of text is not

possible.

Editing area...

PE2.3 Grid view and editor
Description: Enables entering and editing

text in a grid/table.

Text

PE2.4 Graphical editor
Description: Enables drawing and editing

graphical shapes.

......

162

PE2.5 Webpage
Description: Enables viewing contents of
World-Wide Web. Editing the contents is

not possible.

oo O ®

3. Form PE

PE3.1 Form with different types of
fields

Description: Enables entering and editing
values in a form containing multiple types

of fields. There are always buttons to

—Form

|
|

@ Option1 M Check1

(& Optiont W Check1

attribute. Different options are listed and

user can choose only one.

ok | Cancel |
submit the information and to clear the
form.
PE3.2 Form to select from mutually
exclusive options.

{s: Option1
Description: Enables changing value of an & Option1

163

PE3.3 Form to select multiple options.
Description: Enables changing value of an

attribute. Different options are listed and

¥/ Check1
user can choose multiple options. ¥ Check1
4. System-Dialog PE

PE4.1 Question Dialog
Description: System asks user a

Question
question. User can respond in Yes

Yes I No

or No.
PE4.2 Information Dialog
Description: Systefn informs user
of some event. User presses OK
button to acknowledge the o | hep |

information or press Help button
to know more about the

information.

164

PEA4.3 Decision Dialog

Description: System asks user to Decision

take a decision to take an action.

OK

I Cancel I

User can signal to go ahead or

cancel the action.

5. Indicator PE

PES.1 Internal information in status
bar.

Description: System indicates an action
being performed. No action is required on

user’s part.

Printing. ..

PES.2 Widget for analog data
Description: Indicates changing analog

data.

165

PES.3 Widget for analog data
Description: Indicates changing analog

data.

PES.4 Widget for analog data
Description: Indicates changing analog
data. The date is composite of two

variables.

PES.S Widget for numeric data.
Description: Indicates changing numeric
data. Need special displays (like Liquid

Crystal) to show.

PES.6 Widget for Boolean data

Description: Indicates Boolean data. The
two figures below shows the two states;
one on left is “0 (zero)”/”Off”... and the

one on right is “1”/°On”...

™~ 7 N
\\ ! //

~ ~
- ~
7/ N

. A

166

PES.7 Widget for Progress

Description: Indicates progress of an
action system is performing. The level of
colored/shaded bar inside the rectangle
shows the progress made so far and the
remaining rectangle indicates the
time/amount of task yet to be performed.
A number in the middle show the same
information in term of percentage. The
colored/shaded bar moves from left to

right.

PES.8 Widget for progress

Description: Shows the progress of an
action, as explained above. The difference
is the colored bar moves from down to top

of the rectangle.

167

6. Value Changer PE

PE6.1 Change value using keypad
Description: Allows changing value of an
attribute of an object using

keyboard/keypad.

25

PE6.2 Change value by rolling spin
buttons

Description: Allows changing value of an
attribute of an object by going through
many provided values. The value shown
in the rectangle is the one most likely to
be selected or the close in range of the

value likely to be selected.

PE6.3 Change value by selecting from
list.

Description: Allows changing value by
selecting from a list. The values in the list

are sorted by some logical order.

April

168

PE6.4 Change value by sliding along a
line

Description: Allows changing value by
sliding a handle along a line. The line is
marked to shows possible steps in the
change. The more marks on the line, the

more different values can be selected.

PE6.5 Change value by turning a knob
Description: Allows changing value by
turning a knob. The marks around the
knob show discrete values that could be
selected. Turning the knob gives haptic

feedback of discrete values.

PE6.6 Change value by turning a knob

Description: Allows changing value by
turning a knob. The values are continuous
and there is no feedback of discontinuity

when the knob is turned.

169

PE6.7 Change value by turning a knob

Description: Allows changing value by
turning a ring on an arm/lever. The ring
integrated in the arm but its function is
independent and different (but related)
from the function of arm. Turning the ring

gives haptic feedback of discrete values.

PE6.8 Change value by turning a knob

Description: Allows changing value by
turning a knob. The marks around the
knob show discrete values that could be
selected. The range of values to be
selected from is short so very few values
could be selected Turning the knob gives

haptic feedback of discrete values.

PE6.9 Change value by turning arm
up/down

Description: Allows change value by
pushing the lever/arm up or down. The
possible states are usually limited to 3 or

4, which includes the Off/idle state.

170

PE6.10 Change one value up/down

Description: Allows changing values one
by one by pressing the up and down
buttons. This kind of gadget is suitable
when scanning through a range of values.
Pressing an up or down button for more

than 2 seconds changes the value faster.

PE6.11 Change values back n forth

Description: Allows going back and forth
in a range of values. The first and last
values in the range are likely to be
reached by wuser, so the buttons of
reaching first and last values directly are

especially given.

1 <1 Track

>

7. Constant Interaction PE

PE7.1 Turn by turning a wheel

Description: Allows wuser to change
direction of an object. The turn of the
wheel will make corresponding change in

the direction of the object.

171

PE7.2 Turn by moving a stick
Description: Allows wuser to change
direction of an object by moving a stick in

different directions.

PE7.3 Turn by pressing left, right, up,
down buttons

Description: Allows changing direction by
pressing buttons in one of four directions.
Pressing adjacent buttons simultaneously

changing the direction diagonally.

PE7.4 Increase / decrease using foot

Description: Lets user increase or
decrease speed (or other value) by
applying pressure by foot on a pedal.
Releasing pressure lifts the pedal back to
up and decreases the speed (or other
value). The neutral condition is the pedal
lifted up when no pressure is applied over

it.

172

PE7.5 Increase / decrease using
keyboard arrow-keys

Description: Lets user increase or
decrease a value by pressing up and down
arrow keys. This can also be used to move

ahead/backward in some cases.

8. One-touch Interaction PE

PES8.1 Toggle by turning up/down
Description: Lets user change Boolean
value, like On/Off etc. Pulling the small

lever up or down toggles the value.

PES.2 Toggle by pressing same button

Description: Lets user change Boolean
value, like On/Off etc. Pushing the button
once toggles the value. Button can have a

light to show the current state.

173

PES.3 Press button edges to change

Description: Lets user change values by
pressing up or down edge of a rectangular
button. The values are changes one by

one.

PES8.4 Turn/move two ways
Description: Allows turn or move two
ways by pressing wither edge of a two-

way (three state) button.

PES8.5 Turn/more four ways
Description: Allows turning or moving

four-ways using a four-way button.

PES8.6 Pull / Push arm
Description: Change state of an object (or
change value) by pulling arm gradually

down.

174

PES.7 Pull / Push arm
Description: Change state of an object (or
change value) by pulling arm in three

different directions.

PES8.8 Pull / Push arm
Description: Change state of an object (or
change value) by pulling arm gradually up

or down.

PES.9 Pull / Push arm
Description: Change state of an object (or
change value) by pulling arm towards or

away.

175

PES8.10 Insert in a slot

Description: Allows user to insert an
object, like CD or cassette, into a slot. The
object needs to be pushed once into the

slot and the slot accepts the object.

PES.11 Click on hyperlink

Description: Lets user jump to a certain
page but clicking once on a text using a
pointing device like mouse. The text itself

serves as a link.

Hyperlink

&

9. Audio Notification PE

PE9.1 Give a voice command
Description: User can give voice-

command to the system.

PE9.2 An alert
Description: User is alerted of an event

with a brief sound.

176

PE9.3 A warning
Description: User is warned of some

problem with repeated beeps.

et "'::-ll'
== Beep..beep

b

PE9.4 Danger
Description: User is alerted of a serious

event with a loud sound.

PEY.S Feedback

Description: User is given feedback of the
result of an action performed by system
(possibly triggered by user). This brief

sound is different from that of an alert.

-
—_— Click:-}

PE9.6 Greeting
Description: User is greeted at the start or
end of the system or upon completion of a

complex task.

E@ Welcome

177

10. Navigable View PE

PE10.1 Navigate in Textual artifact

Description: Lets user navigate in a
textual artifact. This includes going back
and forth between pages and zooming-in

and —out on the artifact.

n P KAdP M5

of

Text

Text

Pic

PE10.2 Navigate in geographical
artifact

Description: Lets user navigate in a
geographical artifact, like a map or floor
plan. This allows viewing in
North/South/East/West ~ directions and

zooming-in and —out on the artifact.

Rese

Max

11. Live View PE

PE11.1 Rear view
Description: Lets user view objects that

are behind.

178

PE11.2 Side view
Description: Lets user view objects that

are behind sideways.

PE11.3 View anywhere

Description: Lets user view object that are

in proximity, in any direction. It is a

screen projecting view through a camera /% / /

which could be controlled (turned or

zoomed). < @ Q -

12. Multimedia PE

PE12.1 Watch and listen a video

Description: Lets user view video

along with associated audio. The ‘% /
video/audio can be controlled / /

(stopped, paused, resumed,

forwarded, muted etc.) b n ,:I:: % ‘_,_-I:,

179

PE12.2 Watch listen and
interact with video

Description: Lets user
experience video/audio. User
can also interact with the video
directly on the screen (using

touch-screen technologies).

180

