Extendable and Composable Units for Multi-Agent Coordination
(ECUMAC)

Trong Khiem Tran

A Thesis
in

The Department of Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 05

© Trong Khiem Tran, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04453-5
Our file Notre référence
ISBN: 0-494-04453-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Extendable and Composable Units for Multi-Agent Coordination

(ECUMAC)

Trong Khiem Tran

As multi-agent systems evolve, coordination among agents becomes crucial in the
execution of tasks to ensure the correctness of such system. Much effort is spent
in ensuring the correctness in the interaction of the agents. Such efforts usually
result in very complex designs which increase the maintenance cost or the cost for
further development. In this thesis we propose a model to leverage the effort spent
in maintenance and extension by promoting modularity of the system for
improved understandability and reusability to save effort. The model, called
ECUMAUC, is based on the concept that a set of coordination requirements can be
realized by a set of “small coordination achievement” called the coordination
units. A coordination unit is a skeleton description of a coordination pattern which
the application developer can further refine to suit the specific nature of the
application. ECUMAC defines a model of these coordination units so that they
are extendable and composable to support modularity and code reuse. Two types
of coordination units have been identified: static coordination unit and dynamic
coordination unit. The static coordination unit allows the definition of
coordination structures which require a fixed pattern of interaction. On the other
hand, the dynamic coordination unit relies on the spontaneous reaction of the

agents to occurrence of certain state of the system.

i1

TABLE OF CONTENTS

1. INTRODUCTION 1
2. AGENT COORDINATION PROBLEM 3

2.1 DDEPENDENCY ...uvtiiiieeiiiereiirinreeeseritereseeesiarressesssassessessssssessasssssessassessesssssnssssassseseessaseseesessnssssassns 4
2.2 FOLLOW UP ..ottt et e vt e e et e bt s e tta e ete e e assa e e eatsaa s tbeeansseaanseeasbeeeansneessseenn 5
2.3 MUTUAL EXCLUSIONuttiiiiiiiiitteeitt s ettasistreaeseseesssaessassasassseessanessssaaassseesasesssansaesssseeansenesnnnesssneens 6
24 A DEFINITION FOR COORDINATED AGENT SYSTEM .itvviitiiiiriiieitiiiirieeeererereraesaessssnenenresesesenasaanenas 6

3. EXISTING COORDINATION MODELS 8

3.1 MESSAGE PASSING ...utueiiiieeeeeeeeeee ettt ae e aeeeeeeee e et e e ese s aasaeseeaeraseasasesserersesrn i aareesaeasserresrersnnnnnnsnns
32 ASSOCIATIVE BROADCAST ...ovvveveeeeene.
33 TUPLE SPACE

4. ECUMAC

4.1 COORDINATION UNITS .. ittiiieeiiitite e e eetieeeeseteeeeeeseitreeseesnraeeeasssseesaeassereassenssnsessaessnreeassassneasens
4.2 STATIC COORDINATION UNIT
4.2.1 Group FOFMALIONc..ccccoiviviiiiiieiii ettt ettt st s e s
4.3 DYNAMIC COORDINATION UNIT 1uuiiviiiiiiiiieiiieiieiiiiieirarrreresereeseisssssasasersrenesssssesssesessossessssssssssaree 19

4.3.1 Predicate group fOrMAIONccocovviouirieiiriiirinei e s 21

5. COMPOSING A SYSTEM WITH COORDINATION UNITS 25

5.1 BEHAVIORAL DEFINITION OF A COORDINATION UNIToioiiiiiiiintieinin e st
5.1.1 Static coordin@tion Unit...........c.cccoeccrceiciinieoinicinnnneanen.

5.1.11 Static coordination model

5.1.1.2 Coordination pattern mapping to static coordination unit....

5.1.1.2.1 CONSLISUS ...t

51122 VOUTIE 1ottt a s s e sa s b bbbt st e e er b

5.1.2 Dynamic cOOFAdiRALION URIL..............ccoovioviiiiiiiiiiiiii s

5.1.2.1 Dynamic coordination unit modelocociiiiniiininci
5.122 Coordination pattern mapping to dynamic coordination unit.....
5.1.2.2.1 Mutual eXClUSION....ccccreirierireiir e

5.1.2.2.2 Safe progessionc.cccceovrnee

5.2 COMPOSITION OF COORDINATION UNITS ...

5.2.1 Sequential composition

5.2.2 Parallel COMPOSILIONc..cooveviviiiiiieiiiiii ettt ettt s st reesaae s

5.2.3 Composition by containment

6. ECUMAC DESIGN 51

6.1 USE CASES ..ttt sttt st ettt st e et e e e sieee e s eme s me e s e ereene e et neemeseaeeoneseesemraraaseeneenesenneanes
O.1.1 StALIC COOFAINALIONoocvivevieiieeieeireeseesasesaaae st assesteseesaeaeseeseesaeesean b aneeneeneesmeensenseannanns
6.1.1.1 Roles of agents in static coordination
6.1.1.2 LSt O PHITHEIVES 1...evieiieiiies ittt ittt e raesar et e saesr s e eraess e s ass et s sateatasaesseeseseeesenrearsesenseas
6.1.2 Dynamic COOFPAIRAIIONcccocommiriiieiiiieeii et ettt
6.1.2.1 Role of agents in dynamic coordination
6.1.2.2 PrIMILIVES 1ISE. . oureiirieieiee ettt ettt s er et e s ee e e s es s et es s sarneseesannnee e s nmeneeaesannens
6.2 CLASS DIAGRAM DESIGNetotiiiiiariiterienicnireetiesea s aeeses e ae e et ses s ses oo s sreeneeaes s eseenaninnes
6.2.1 Static COOFAINALIONocuvvirieiireenireerieriieeeenet e ee ettt ser et et sareeneesnneens
6.2.1.1 Static coordination class description
6.2.1.1.1 CoordinationHandler............ooeioeiiniinniceneninne
6.2.1.1.2 CoordinationResponsecocvvvcoviisiiiiiciiiiiinn
6.2.1.1.3 GroupAction
62114 Coordinatorcceceeeeeee
6.2.1.1.5 CoordinationObserver
6.2.1.1.6 StartingCONAILIONooviiiiiiiiii e

v

62.1.1.7 CoordiNAtIONMANAZET ...c..ooveorieriiiierirtireiei et ettt et crsete et et st easesne e neneen 63
6.2.2 Dynamic Coordination
6.2.2.1 Class dESCIIPHON ...ttt et et e e enean
6.2.2.1.1 MONIOTINZODIECE. ...ttt e
62212 MonitoredObject..............
62213 MonitoredStateManager..
6.22.14 MonitoringManager
622.1.5 PredicateEventListener
6.3 SCENARIODS ..ottt bbb bbb bbb
0.3.1 StALIC COOFAINAEION ..ottt sttt st e se e sae st e besreesaasseeseennas
6.3.1.1 JoinCoordinationGroup
6.3.12 INitiateCOOTAINAtION.ottt ettt ettt eb e es
63.13 CancelCoordination. ...t e
6.3.14 WaitForCoordinationResult
6.3.1.5 PollForCoordinationReSUIL...........cciiiieiioiirce ittt et
0.3.2 Dynamic COOFAINAEION.c.cccocccooiaiiiieiee it s st s beeaeeabeere s ares
6.3.2.1 SetupMonitoredPredicate
6322 St PTEdiCAtE TIIZOT ..ottt et e
6323 Synchronous Predicate event trigZeringcoccoevierirmrerierinireiiecinseretneecreneeee e eeenes
6324 Asynchronous Predicate event triggering

7. AUTOMATED E-COMMERCE MODELING 81

7.1 COORDINATION REQUIREMENT FOR ECOMMERCE APPLICATION
7.2 MAPPING TO THE COORDINATION FRAMEWORKcccvvviieiiiieeeniinrneeeenns
7.2.1 Identify the COOFAINALION UNILSc..oocoeiiiiiiiieeice sttt st a et eaens
7.2.2 Define the COOTAINATION URELScc.oocviiaciiiiieesi ettt ste ettt st se et erans
7.22.1 Product monitoring as a dynamic coordination unit ...
7222 Atomic transaction as a static coordination unit............ccceeoeeveienireeinenn,
7.2.3 Connect the cOOFAINAION URILSccccvveviiieeiiiiieieceies vttt reeeen s
7.3 EXTENSION TO THE APPLICATION.oviiiitiiaitieeeieresrteasstteeestseesstestneeeaseeeseeeaeassseasseesensesssnsesssnn

8. CONCLUSION AND FUTURE WORK 92
9. REFERENCES 94

List of Figures

FIGURE 1 MUTUAL EXCLUSION PROTOCOL WITH ASSOCIATIVE BROADCAST
FIGURE 2 SEQUENCE OF ACTIONS FROM GROUP PERSPECTIVE......ccvuviveiiiriieeienriereeniiirereesienineesesiinrassesssnsneses
FIGURE 3 SEQUENCE OF ACTIONS FROM A INDIVIDUAL AGENT’S PERSPECTIVEccovovviinieneereeeeie e eeesereeenes 28
FIGURE 4 GENERIC COORDINATION UNIT ...ccoiiiiiiinriieieieieee e e e eesesenininrene s

FIGURE 5 CONSENSUS MAPPING TO COORDINATION UNIT
FIGURE 6 VOTING MAPPING TO COORDINATION UNIT..uuiieiiiiuiriieiiiieiesieiieesesntesessssiasesssessossesessssonneessesmsnereens

FIGURE 10 SAFE PROGESSION MAPPING TO DYNAMIC COORDINATION UNIT ...c.ccviiiiieieeitieeeecre e eseeesiie s 41
FIGURE 11 SEQUENTIAL STATIC COORDINATION UNIT ..eovviitiiitiiiieentesieeeeeieeeeaateeessessessresssssssssaoseesseeeeneseenens 43
FIGURE 12 SEQUENCING A DYNAMIC COORDINATION UNIT WITH RESPECT TO A STATIC COORDINATION UNIT
... 44
FIGURE 13 COMPOSITION IN PARALLEL OF TWO STATIC COORDINATION UNIToovvvieieiiiiieieeeeeeeeeee e 45
FIGURE 14 PARALLEL COMPOSITION OF A STATIC AND A DYNAMIC COORDINATION UNIT.....coovveerneererereeneens 46
FIGURE 15 CONTAINMENT OF A DYNAMIC COORDINATION UNIT BY A DYNAMIC COORDINATION UNIT.......... 47

FIGURE 16 CONTAINMENT OF A STATIC COORDINATION UNIT BY A DYNAMIC COORDINATION UNIT
FIGURE 17 CONTAINMENT OF A DYNAMIC COORDINATION UNIT BY A STATIC COORDINATION UNIT...............
FIGURE 18 CONTAINMENT OF A STATIC COORDINATION UNIT BY A STATIC COORDINATION UNITcocvvvennnen..
FIGURE 19 STATIC COORDINATION CLASS DIAGRAMuotiiiieiiiiiieireeeeeeeeteeeeieseseeeeesereeseasesseseessssessessessnseeen
FIGURE 20 DYNAMIC COORDINATION CLASS DIAGRAMiuvviviiiicinrirtesiestntetesenereerareeereesasesseessssesssesssasssssessn
FIGURE 21 JOINCOORDINATIONGROUP SEQUENCE DIAGRAMcocovvvirieeeeireeeeireseeeeeeeseeeeessessareessssessassssssnsnen
FIGURE 22 INITIATECOORDINATION SEQUENCE DIAGRAMceitiiieeieeetteseeee e eeeeee e eeeeeeereesenesseeasesssesennns
FIGURE 23 SETUPMONITOREDPREDICATE SEQUENCE DIAGRAMoeiiiuitivieeeeieeeeeeeeeeeereseeeeeeeeeeeeessesseneens
FIGURE 24 SETPREDICATETRIGGER SEQUENCE DIAGRAMoioivtiiietrterereeeeeeaereeseeeaeeeeessseesseesesseseesssesesvanns
FIGURE 25 SYNCHRONOUS PREDICATE EVENT TRIGGERING SEQUENCE DIAGRAMc..veeovoveeirieeeereeereeeesennens
FIGURE 26 ASYNCHRONOUS PREDICATE EVENT TRIGGERING SEQUENCE DIAGRAMccoovveeeenrennnn..
FIGURE 27 PRODUCT MONITORING MAPPING TO A DYNAMIC COORDINATION UNIT (FIRST LAYER)
FIGURE 28 PRODUCT MONITORING MAPPING TO A DYNAMIC COORDINATION UNIT (SECOND LAYER)
FIGURE 29 ATOMIC TRANSACTION MAPPING TO A STATIC COORDINATION UNIT «.eeeeveerereeseeeereereenns
FIGURE 30 CONTAINMENT OF THE ATOMIC TRANSACTION UNIT BY THE PRODUCT MONITORING UNIT
FIGURE 31 GROUP PURCHASE COMPOSITIONccuvttiiteieeitieeieeeeeeieeeestseeessesseeeseseseesaeeessasenesssesssssssssssnessesessenss

Vi

1. Introduction

As multi-agent systems evolve, coordination among agents becomes crucial in the
execution of a task to ensure the correctness of the system or to improve efficiency of the
system by avoiding duplicated work. Research has been conducted to define coordination
models which allow agent-system developers to specify the coordination behavior of the
agents within the system. However, these models provide only low-level primitives
which do not provide enough separation of concern between the computational parts from
the coordination parts. As a result, the application’s computation is mingled with
coordination primitives which reduces the reusability of the components.

In this thesis, ECUMAC (Extendable composable unit model) is presented as a model to
accomplish the coordination requirements of the multi-agent systems while promoting the
modularity of the design of such systems thus enhancing software understandability and
supporting code reusability. ECUMAC is a coordination framework providing generic
coordination constructs from which developers can extend the design to implement
coordination among agents. To achieve this goal, the model proposes the use of the

concept of extendable and composable units.

The thesis is organized as follows. chapter 2 defines the agent coordination problem.
Chapter 3 discusses the limitations of the current approaches to coordination. Chapter 4
presents ECUMAC. Chapter 5 shows how the coordinations units in the model can be
composed. A design is proposed for the implementation of ECUMAC in chapter 6. In
chapter 7, an example of how to model an automated e-commerce application using
ECUMAC is given. Finally, chapter 8 provides the highlights of the model and draws a

roadmap for future research on the topic.

2. Agent Coordination Problem

The meaning of the word coordination has been overloaded in many contexts. In Jini’s
framework -[25] , coordination means the ability for agents to communicate in spite of
differences in terms of their interfaces. In the tuple space model, as presented in -[14] -
[23] -[36] -[37] -[38] -[39] -[40] -[41] and -[42] , the focus of coordination has shifted
from compatibility issue to synchronization problem. In this thesis, only the
synchronization issue is addressed. This section briefly discusses the context of
coordination and gives a working definition of a coordinated multi-agent system, first to
limit the scope of the presentation and second to set up a vocabulary set for the later
discussion.

An agent is assigned many tasks to be performed. The agent has the ability to plan the
tasks to be performed. However, one agent’s task is related to another agent’s task.
Therefore one agent’s execution is constrained by another agent’s execution. There are
three types of relationships among the tasks:

- Dependency

- Follow up

- Mutual exclusion
The next three subsections describe these three types of relaitionships and the final

subsection gives a definition of a coordinated system based on these three properties.

2.1 Dependency

Tasks can be dependent on one another. For example, in a data mining application, the
data analysis step is dependent on the data collection step. Hence the requirement for
dependent tasks is that the order of execution of the tasks must be maintained to respect
the dependency, i.e. a task cannot be started until all its dependencies have been fulfilled.
In this example, data collection must be completed before the analysis step.

A task is a unit of work performed by an agent. A task can be in one of three states:
pending, executing, or completed. When a task has not yet acquired all its dependencies,
it cannot proceed to the execution. If the dependent task is executing then all the
dependencies have been accomplished. The completion of a task will make a transition of
the state of the entire system from executing to completed, thus possibly triggering the
execution of another task. In more complex task structures, a finer-grained analysis of the
tasks may reveal that to start execution of a task, not all dependencies are required. The
first few steps of the task can be executed with only a preliminary set of dependencies
satisfied. In such a case, the task should be decomposed into subtasks which are then
considered as tasks themselves and the ordering requirement can be applied to the
subtasks. By exposing the subtasks, the complexity of the overall task structure increases

due to the additional dependencies within the group of subtasks.

In a multi-agent system, due to the dependencies among various tasks, agent executions
are themselves dependent on each other. Therefore agents need to coordinate their actions

so that the relative ordering of their tasks are respected.

2.2 Follow up

Another relationship among the task is “follow up”, meaning that if one task has been
performed then the system must ensure that the companion tasks will also be performed.
Consider the example of the data mining application. The analysis of each batch of data
collected must be analyzed. Thus there is a follow up relationship between the data
collection task and the data analysis task. The distinction between the dependency
relationship and the follow up is that the dependency relationship describes what must
have happened before the current task is executed whereas the follow up describes what
must happen after the current task has executed.

There are two variants of this relationship: atomic and non-atomic. In the atomic form of
the relationship, when one task is performed, then the companion task must be performed
before any other tasks within the agents. In other words, at no point in time should the
agent be able to see a state where task one has completed and task two is incomplete. In
contrast, the non-atomic form of the relationship only ensures that the corresponding task
will eventually be executed but offers no guarantees that there is no interleaving of other
tasks between the completion of the first task and the completion of its companion task.

The follow up property does not necessarily relates tasks from the same agents and thus

the agents involved must coordinate their actions so that they are aware of each other’s

task engagement.

2.3 Mutual Exclusion

Multi-agent systems are often faced with the problem of mutually exclusive tasks. For
example in an automated restaurant reservation application, the agent acting on behalf of
the client is assigned a task to make a reservation at one restaurant. In order to
accomplish its tasks, it must negotiate with customer services agents from each restaurant
to find out the best deal. Hence the client agent is now engaged into multiple negotiation
tasks. However, exactly one reservation is to be made. Thus the reservation tasks at the
various restaurants are mutually exclusives. This example illustrates mutual exclusion
between a set of tasks within the same agent.

There are cases where the mutually exclusive tasks could be from different agents.
Consider for example, a team of agents performing a collective search on the Internet. In
order to avoid redundant work let us assume that each site is to be processed by exactly
one agent. The searching tasks at each site are mutually exclusive yet they are to be
executed by different agents. In both cases, agents in the system must coordinate their

actions to ensure that no two mutually exclusive tasks are executed.

2.4 A definition for coordinated agent system

Given the description of the three forms of coordination, a definition can be given for a

coordinated system. A coordinated agent system is one in which all agent tasks can be

modeled using the three forms of coordination of dependency, follow up and mutual
exclusion as specified in the requirements of the application. The next chapter addresses
the limitations of the current approach to agent coordination and the remaining chapters
is dedicated to present ECUMAC, the proposed model, as a solution to support the
modeling of the coordination requirements as well as the design of a system based on the

model.

3. Existing coordination models

This section reviews three representative models of coordination from the literature and
discusses their respective limitations. The three models are message passing, associative
broadcasts and tuple space. The reader should note that some of these models provide
mechanism to address both synchronization and compatibility issues. However our

discussion will be focused on the former aspect only.

3.1 Message passing

Message passing provides the basic send and receive functions implemented with or
without blocking. Coordination via message passing is achieved through causality: the
event of a receipt of a message is caused by the sending of that message. Hence message
pattern can be developed to ensure that the dependency among the tasks by having a
blocking receive call to suspend the execution of a task until a particular message is

received. The follow up can be accomplished by using handshake protocols, with or

without blocking depending on atomicity requirements. The mutual exclusion property
can be ensured by a series of message exchanges among agents so that proper
serialization is accomplished whenever choices arise.

The difficulty of expressing agent coordination using message passing is due to the lack
of synchrony-guarantee. Two messages can be sent at the same time yet arrive at
destinations at different times. Hence in order to ensure correctness of the system,
complex protocols need to be implemented to meet the synchrony requirements. The
Foundation for Intelligent Physical Agents (FIPA) [47] has developed an agent
communication language (ACL) and a set of specifications for the most commonly used
protocols such as voting, auction, etc. However, FIPA does not suggest means to reuse
these protocols once they are implemented. In FIPA specification, the possibility of
interference among the protocols are not defined and such interference are

implementation dependent.

3.2 Associative broadcast

Associative broadcast, as described in [7] and -[8] , is an interesting extension of message
passing where messages are not sent directly to individual agents but are broadcast to all
agents and each agent must set filters to catch the right messages to be processed.
Coordination is then achieved via setting up the filters. Dependency between agents can
be implemented as static or dynamic creation of a filter that will catch the message from
the dependencies. The follow up construct can be implemented as a pair of broadcast and

receive filter. To implement a mutual exclusion relation among a group of tasks, a

protocol must be followed by the agents to determine which task will be performed
exclusively and ensure other agent tasks will not overlap. Figure 1 shows a protocol to
ensure mutual exclusion between agents Al, A2 and A3. At system startup, there is an
agent holding the lock. Suppose the agent Al attempts to enter a critical section and thus
must broadcast a message to acquire the lock of the section and wait for a response. The
agent currently holding the critical section will have set a filter to receive the lock request
messages. When the lock holder exits the critical section, it will send the lock to the next
agent in the requests queue. When agent Al receives the lock, it can safely enter the
critical section. The advantage of using this model over message passing is the

indirectness of communication. The sender does not need to know the receiver.

-1 &
-4 &

acquire lock

acquire lock
> wait for tock L]
| \
1
1
L

release lock___—

.-.__.__..._______._____I

-

Figure 1 Mutual exclusion protocol with Associative Broadcast

10

Although this model relieves the sender from knowing to which agents messages are to
be sent, the burden is now shifted to the receiver which must decide which messages are
to be received. Design correctness depends on proper insertion of filters and could be
prone to error. Since associative broadcast is an extension of message passing, it still
suffers from the asynchrony in message delivery and thus results in an unpredictability of
sequence of behavior. Thus, to achieve coordination, the application developer is still
constrained to design complex protocols to ensure the right sequence of actions. These
protocols cannot be easily reused or extended due to the potential interference with other

messages in the application.

3.3 Tuple space

Message passing and associative broadcast both suffer from high coupling between the
computation and coordination parts thus lead to complex and hard to develop reusable
protocols. The tuple space model has the solution to this problem. The model is based on
a shared memory model with basic access primitives in, out and read. The out primitive
puts a tuple in the tuple space. The in primitives destructively retrieves a tuple from the
shared space. The read primitives also retrieve data contained in a tuple but leave the
tuple in the tuple space. The model ensures atomicity of the access functions. Details on
tuple space based framework can be found in -[23] -[34] and -[42]

Dependency among agent tasks can be implemented by having one agent producing a
tuple in the space using the “out” primitive and the other agents consuming the tuple

using the “read” or “in” primitive depending on whether multiple destination of

11

dependency exists. Follow up can be achieved by having one agent constantly performing
the “read” or “in” operation to wait for the specific tuple and the producing agent
“out”ing the corresponding tuple. The mutual exclusion among tasks can be implemented
as a “out™/”’in” pair. When one agent produces an “out”, only one agent will get the tuple
and only that agent will execute its task. Hence tuples can serve as locking mechanism in
the tuple space to ensure mutal exclusion.

Although this communication model is simpler, the tuple space is inherently a centralized
shared memory and thus it is a bottleneck for information exchange at runtime. In
addition, even though the tuple space primitives are simple, the message exchange still
requires implantation of some protocols.

Considering the effort involved in designing these protocols in either of these models, it
would be interesting to explore if we can create certain patterns or units and be able to
reuse these patterns with only small modifications. In this thesis, ECUMAC is presented
as a model to design coordination patterns in the form of units which can be refined and
composed to accomplish application level coordination. Using ECUMAC as building
block, one can design the coordination unit for a distributed application. Then, if we were
to consider the distributed application consisting of two separate parts, computational part
and coordination part, the designers of a distributed system will have much less work to

do for the coordination part.

12

4. ECUMAC

The goal of ECUMAC is to decouple the computational part from the coordination parts
so that both can be reused and can serve as building block for future development. In
order to fulfill this goal, coordination is broken into coordination units. The coordination
requirements of each of these units are accomplished by groups of software agents
interacting with each other. This section presents the different types of coordination units

and the role of the group formation among the coordination units.

4.1 Coordination Units

A coordination unit is a pattern that describes the coordination structure information. An
example of coordination unit is a leader election. The voting activity involved requires
coordination among agents. The system must ensure that the voting procedure follows the
specified rules. Hence the coordination unit specifies the constraints that the agents must
respect in order to reach coordination. Given a coordination unit, an application

developer only has to provide the computational part to complement it.

13

A coordination unit can be described by what the coordination unit ensures in the
functioning of the system. A set of coordination units can be seen as a guard that keeps
the system within the boundary of valid states.

From the three coordination properties of dependency, follow up and mutual exclusion,
two types of coordination can be identified: static coordination and dynamic
coordination. Static coordination handles cases where the sequence of agent actions is
decided at the design time. The existence of a coordination unit has a clear beginning and
end. For example, during election of a leader, all voters must follow the rules of
proposing a candidate then cast their votes which are then counted. In such a protocol, all
the participants have a prescribed sequence of action to follow. This type of protocol is a
special case of static coordination. Dynamic coordination handles the case where agent
actions need not be executed in a predetermined sequence but some reaction has to take
place when the system reaches a certain special state that we call a triggering state. The
reactions of the agents are not mutually related. The only ordering imposed is that the
reaction happens after the occurrence of the triggering event. In contrast to the static
coordination, the dynamic coordination does not have a definite beginning and end. The
reactions are triggered as many times as the triggering state occurs. For example, when
the price of a stock increases beyond a certain threshold, it will trigger reactions in the
agents that monitor the stocks and their reactions may be completely unrelated to each
other. Coordination is reached by adjusting their actions according to the current state of
the system to maintain a desirable state. Corresponding to the two types of coordination,
there are two types of coordination units: static coordination unit and dynamic

coordination unit.

14

4.2 Static Coordination Unit

A static coordination unit describes a coordination in which the sequence of agent’s
action can be statically defined. Hence, any agents participating in a static coordination
must comply with the prescribed sequence of actions. A static coordination unit can be
specified by the following parameters:

- Termination condition

- Agent local inputs

- Group computation

The termination condition determines what the coordination unit ensures about the
system’s state upon completion of the static coordination unit and during the execution of
the coordination unit for dynamic coordination. The termination condition can be
specified as a Boolean expression on the state of the system. The agent’s local input
specifies the interface for agents to provide input to the coordination and when such
inputs are expected in the lifetime of the coordination unit. The group computation
describes what is going to be done once knowledge has been gathered from all individual
agents in the group and what is going to be produced at each round of an iterative
computation. It can be noted that each local input is associated with a group computation.
Consider the example of a leader election protocol. This can be modeled as a static
coordination unit. The termination condition that the unit must provide is that upon
completion, all agents participating in the coordination must agree as to who is the newly

clected leader. The input would consist of a list of candidates and a vote for the preferred

15

candidate. The global computation consists of first combining the lists of candidates into
one common list and second to compute the votes and returning the elected candidate

who gets the highest number of votes.

4.2.1 Group Formation

The notion of a static coordination unit is based on the concept of a group. The
termination condition of a coordination unit results from the accomplishment of members
of a group of agents. Hence, in order to specify the behavior of a static coordination unit,
a developer must specify how the group is formed in the first place. In this section, a
formal description of how groups can be formed is provided for a static coordination unit.
A coordination unit is characterized by the corresponding group of coordinating agents
being in a certain state of coordination. Any coordination unit can be abstracted to be in
one of the following states: waiting, ready to start, started, completed. A coordination
unit is in the waiting state if one agent has created a group but not all required
participants have joined the group yet. The ready state is a state in which all required
participants have joined the group and the starting conditions have been met. In the
started state, actions from all participating agents have been triggered. When the
execution of the coordination unit has completed, then the state transits to completed.

Let A denote the set of all agents in the system and S be the set of all coordination unit
states. A coordination unit ¢ can now formally be defined as a set of agents A; and a state
s in Ss. Formally,

c= (As, 8), where A; C A, s € S; and S;={waiting, ready, started, completed}.

16

The state of an agent system can be abstracted by the collection of the individual state of
the agents. Since agents are forming groups to execute coordination units, the system can
then be represented by the state of coordination untis. Let CS denotes the set of all
possible static coordination units in the system and C; denote the set of coordination units
currently in the system. Then the state of a multi-agent system consisting solely of static
coordination units is simply described by Ci.
The model provides the following primitives to support the group formation process:

- createCoordinationGroup(coordinationUnit)

- joinCoordinationGroup(agent, coordinationUnit)

- initiateCoordination(coordinationUnit)
The createCoordinationGroup primitive creates a coordination group to execute the
coordination unit coordinationUnit. This coordination unit will have no agents and will
be in the waiting state. The joinCoordinationGroup primitive adds agent to the set of
participants in the coordination unit coordinationUnit. The initiateCoordination primitive
sets the state of the coordinationUnit to ready. This will trigger the participants’ reaction.
In what follows, the state machine model is used to describe the state transitions of the
system using guarded command notation as described in [46] . A guarded command has
the following form:

Precondition on the system’s state - Resulting state

If the precondition is true, then the state of system will transit to a state where the
resulting state is true. The system is modeled using these guarded commands only. At

each iteration, one of the commands whose precondition is true is selected and executed

17

atomically meaning either the entire command is executed or the command is not
executed at all.

'At system startup, the set of coordination units in the system is empty as no agents has
yet created a coordination group.

C=0

Upon call to createCoordinationGroup, a new group is created with an empty
coordination unit. The precondition for creating a coordination group is that no other
group with the same coordination unit already exists in the system.
createCoordinationGroup(coordinationUnit)

VceCs: ¢ # coordinationUnit-> coordinationUnit.s = waiting;

C; = Cs U{coordinationUnit}

The next primitive, joinCoordinationGroup with its two parameters i.e., the agent and the
coordination unit, adds the joining agent to the group. The precondition for the execution
of this primitive is that the group must already exist in the current coordination unit sets
C, and the group is still in the waiting state.

joinCoordinationGroup(agent, coordinationUnif)

JeeC; c=coordinationUnit and c.s = waiting>c.A; = ¢.A; U {agent}

The third primitive, initiateCoordination, changes the state of the coordination from
waiting to ready. The precondition is that the coordination unit must exist and the unit
must be in the waiting state.

JceC; ¢ = coordinationUnit and c.s = waiting > ¢.s = ready

18

It can be noted that when the initiateCoordination primitive is executed, the group state
changed from the waiting state to the ready state rather than the started state. The reason
is that the group is made up of multiple agents and thus not all agents will receive the
initiation signal at the same time. Therefore there is a delay between the execution of the
initiateCoordination primitive and the actual start of the execution of the coordination
unit. Hence the transition from ready to started takes place when all participants have

acknowledged receipt of the initiation signal.

4.3 Dynamic Coordination Unit

A dynamic coordination unit responds to unscheduled occurrence of system state. This
may arise in an open system or due to runtime race. Such response need not follow any
particular sequence of agent actions but must take place afier the system has reached a
particular state. Hence the dynamic coordination unit can be described by the following
parameters:

- System state constraint

- Triggering condition

- Response

The triggering condition is a Boolean expression to be evaluated based on the global state
of the system. When the predicate becomes true, it will trigger the response from the
monitoring agent. The response is the reaction of the agents in the system to the
occurrence of the predicate. Consider again the example of the buyer agent in a synthetic

market. The buyer agent needs to monitor the prices of the products which are controlled

19

by seller agents. In this context, the triggering predicate would be when any of the prices
posted by the sellers is below the client’s set threshold price. The response of the buyer
agent would be to conduct the purchase of the product on behalf of the client.

Unlike the static coordination unit which has a definite beginning and end, the dynamic
coordination unit is a long term relation between agents. The association of the triggering
predicate with the corresponding response will remain until an agent explicitly cancels
the relation. The system state constraint describes the type of relationship that the
coordination unit will enforce. The dimensions describing the relationship are
multiplicity and synchrony. The multiplicity is the number of times the response will be
triggered and the synchrony states whether the response is executed synchronously with
the occurrence of the predicate or asynchronously. With the synchronous execution, the
response is triggered and completed before any action that could cause changes to the
triggering condition. For instance, when a bank system that a user account is accessed
simultaneously via two different ATM machines, it should immediately halt one of the
transactions before the other transaction completes. On the other hand, the asynchronous
reaction does not provide guarantee that at the time the response is executed the
triggering predicate is still true. For example, in a synthetic robot soccer game, when a
player detects that its team has lost control of the ball, that player needs to switch to
defensive mode. However, in the mean time, other players are not suspended from taking

action to regain possession of ball until that player has completed its plan update.

As mentioned earlier, the concept of coordination unit allows the separation of concern

between the computational part from the coordination part. With the two types of

20

coordination units, an application developer can customize the behavior of each
coordination units and compose them in various ways to define a coordination structure

that fits the application’s requirements.

4.3.1 Predicate group formation

Similar to the case of static coordination, a dynamic coordination unit is also based on the
concept of a group. The dynamic coordination unit relates the event triggered by the
change of state of a group of agent to a corresponding agent’s action. There are two roles
to be played by different agents in a dynamic coordination unit. The first role is that of a
monitored agent. A monitored agent allows its state to be monitored by other agents. The
collection of concurrent agent’s states form a global state of the system as described in
[44] . The second role is that of a monitoring agent whose responsibility is to observe a
subset of the global state variables and react correspondingly to the occurrence of certain
conditions of interest. These conditions are called predicate. In this section, an approach
for the formation of monitored agents group and monitoring agents group will be
presented.
Given the dual role of the relationship, the dynamic coordination unit can result in one of
the following states:

- Created

- Reporting

- Responding
In the created state, the group of monitored agents has been created but no monitor has

yet registered in observing the group. When a monitoring agent registers with the group,

21

the coordination unit state transits to reporting. In the reporting state, the monitored
agents within the group starts reporting their state to the monitor. Finally when the
predicate has occurred then the coordination unit enters the responding state. It should be
noted however that the responding state overlaps with the reporting state because while
the monitoring agents are responding, the monitored state continues to report. Thus, it is
possible that the predicate occurs more than once. Each occurrence of the predicate will
fire a distinct instance of the response which will be queued and executed sequentially. A
predicate is said to have occurred when the system transits from a state where the
predicate is false to a state where the predicate is true.

A dynamic coordination unit can be characterized by a set of monitored agents, a set of
monitoring agent and a dynamic coordination unit state. Let A denotes the set of all
agents, and Sy denotes the set possible states of a dynamic coordination unit. Then a
dynamic coordination unit ¢ can formally be defined as follows:

¢ = (Amd, Amg, S)

where Ang € A, Amg A, se Sq and Sq = {Created, Reporting, Responding}

(Amq is the set of monitored agents and A, is the set of monitoring agent)

Recall from the description of the group formation of the static coordination unit, a multi-
agent system consisting only of static coordination unit is defined by the set Cs that
contains all the static coordination units. Similarly the state of a system consisting of only
dynamic coordination units can be described by a set of dynamic coordination
coordination units C4. Let CD denote the set of all possible dynamic coordination units
then

CdQCD

22

Our model provides the following primitives to support the group formation process:

- createCoordinationGroup(coordinationUnit)

- joinCoordinationGroupAsMonitoredAgent(agent, coordinationUnit)

- joinCoordinationGroupAsMonitor(agent, coordinationUnit)
The createCoordinationGroup primitive creates a dynamic coordination unit. The
JoinCoordinationGroupAsMonitoredAgent primitive allows an agent to join a created
dynamic coordination unit by playing the role of a monitored agent, meaning that it will
allow its state for monitoring. The joinCoordinationGroupAsMonitor allows an agent to
join a created dynamic coordination unit by playing the role of a monitoring agent. The
monitoring agent will be responsible for responding to occurrences of the triggering
condition.
At system startup, the set of coordination units in the system is empty as no agents has
yet created a coordination group:
Ci=9
Upon call to createCoordinationGroup, a new coordinationUnit is created and added to
Cq. The original state of the newly created coordination unit is set to created and the two
agent sets Apg and Apg ate both empty. The precondition of this primitive is that no such
coordination unit already exists in Cq.
createCoordinationGroup(coordinationUnit)
VceCy: c#coordinationUnit = coordinationUnit. Ay = &

coordinationUnit.Amg = OJ;
coordinationUnit.s = created,

Cyq{coordinationUnit}

23

The next primitive, joinCoordinationGroupAsMonitoredAgent, with its two parameters
the agent and the coordinationUnit, adds the joining agent to the group in the monitored
agent set (Amg). The precondition for the execution of this primitive is that the group
must already exist in Cy.

joinCoordinationGroupAsMonitor(agent, coordinationUnit)

JceCy ¢ = coordinationUnit <> ¢.Amd = C.Apna\U{agent};

The third primitive, joinCoordinationGroupAsMonitor with parameters the agent and the
coordinationUnit, adds the joining agent to the group in the monitoring agent set (Amg). If
the joining agent is the first monitor to join then the group state will transit from created
but not yet observed to reporting. The precondition for the execution of this primitive is
that the coordination unit must already exist in Cg,
joinCoordinationGroupAsMonitor(agent, coordinationUnif)

dceCq4 ¢ = coordinationUnit > if(c.Amg = @) then c.s = reporting;

C.Amg= C.Amg U {agent};

Since a multi-agent system (MAS) consists of a collection of several groups executing
static coordination units and a collection of groups executing dynamic coordination units,
it can be expressed formally as follows:

MAS = (C,, Cy)

wixere Cs represents the list of static coordination group and Cy represents the list of

dynamic coordination group.

24

5. Composing a system with
coordination units

In the previous chapter, a description of the two types of coordination was provided with
an indication of how each one can be used to fulfill the coordination requirements in
terms of the three properties of dependencies, follow up, and mutual exclusion. Since the
goal of these coordination units is to promote reuse of the coordination code, these units
must have a model for composing them in order to generate new system properties. In
this chapter, the reusability and extensibility issues of the coordination units is discussed.
One of the challenges posed by a coordinated system is due to the extensiveness of
communication among the agents in order to reach coordination thus yielding a very high
coupling among the agents in the system. Thus, a simple modification in the code might
cause a ripple effect on the entire system and lead to mysterious errors which are very
difficult to debug or even to detect. In order to overcome this challenge, the coordination
units provide a way to localized the effect of the communications while providing a

mechanism to retain the necessary coupling among the agents.

25

This chapter is divided into two sections. Section 5.1 discusses how the coordination
units are executed and how a developer can define the behavior of a coordination unit.
The discussion gives details for both the static and dynamic version of the coordination
units. Section 5.2 will turn the focus to the interaction and interference among the

coordination units.

5.1 Behavioral definition of a coordination
unit

As mentioned earlier, a coordination unit is a skeleton containing coordination pattern
information where application developer can fill in the computational part to accomplish
the required task. Details on how to define these coordination units is specific to the type
of coordination units. The following sub-sections give a treatment for each of the

coordination unit,

51.1 Static coordination unit

In many coordination problems involving predetermined sequence of action, two
perspectives are observed: the perspective of the agents as individuals and the perspective
of all agents as a group. In each perspective, there is a recurring sequence of actions that
can be observed: gathering information, processing the information, and publishing the
information. Hence defining the static coordination unit consists of defining the interface
between the agents and the group. This section presents a model to define the static

coordination unit and provides an analysis of the application of the model to define

26

coordination units that solves common coordination problems such as consensus, voting,

etc.

5.1.1.1 Static coordination model
From the observation made earlier, the coordination unit can be modeled as a sequence of

information gathering, computation, and state update. Figure 2 illustrates the sequence of
actions from a group perspective. The group first gathers information from the agents,
then performs the computation that needed data from all agents in the group and finally

broadcast the result to the group.

Information gxgents
gathering Group tate
computation update

A\ 4

Figure 2 Sequence of actions from group perspective

Figure 3 illustrates the sequence of actions from an individual agent’s perspective. The
individual agent first retrieves information from the group, then performs computation
that needed synchronized data from the group and finally submits the next batch of data

to the group for the next round, if any.

27

Agent Post data
computation for next
round

Information
gathering

v

v

Figure 3 Sequence of actions from a individual agent’s perspective

A general static coordination unit looks like Figure 4. Individual agents gather
information then perform local computations, then post data to the group from which the
group carry out the group computation and finally update the agents about the collective
result and the cycle repeats again if necessary.

In order to define a coordination unit, a developer needs to specify the data interface so
that the data produced by the agent computation matches the data gathered by the group
and vice versa.

In the following section, examples of coordination problems illustrate how a developer

can map the coordination requirements to this model of a coordination unit.

28

Agent
Information computation
gathering Post Data
—_—> —>
Group
computation
Agent
Information ~COmputation Informatipn
gathering Post Data gathering
—_—> >
Agent
Information computation
gathering Post Dal
—> —

-
.

Agent

Information Ccomputation
gathering Post Data
Agénts
te
update
gent
computation
Post Data
————>>
Agent
Information computation
athering Post Data

Figure 4 Generic coordination unit

29

5.1.1.2 Coordination pattern mapping to static coordination unit
In order to overcome the problem of agent coordination, patterns of recurring

coordination structure have been developed to solve specific problem. Among these
patterns, two are most commonly used: consensus and voting. Below, we demonstrate

how an application developer can map these patterns to a coordination unit.

5.1.1.2.1 Consensus
Very often, agents are faced with the problem of collectively picking a value for a shared

state variable. The difficulty is how to make all agents in the group agree on the same
value chosen and doing so distributively. One solution of achieving this is to have one
agent dedicated for making the final decision. The problem with such a solution is that if
the decision maker agent fails an election protocol would be required to replace the lost
agent. Another problem is the asymmetry imposed by the solution, one agent has to be
the decision maker but no criteria are relevant to select such an agent.

The coordination unit model has the solution to this problem. Figure 5 shows a mapping
to accomplish the consensus requirement. The agents that want to reach a collective
agreement on the value to be selected join a group that executes the consensus
coordination unit. Once all agents have joined the group, determined by the starting
condition of the coordination unit, execution starts and each agent performs their local
computation and post a value to the group. The group then gathers the data and performs
a selection, in this example a random selection was used for illustration purposes. Further

refinement can be provided to suit the application. When the group selection is made, all

30

agents in the group get updated about the selected value. The individual agents then
receive collectively the selected value. This coordination unit ensures that at the end of its
execution, all agents will have agreed on the value selected.

Although the decision making process is centralized, the behavior of the agents remains
distributed because the central synchronization is only localized to a group. The rest of
the system still executes concurrently. In addition, the group promotes the symmetry in
terms of the roles of the agents. No agent needs to handle the central synchronization as it

is done implicitly by the group coordinator which is an external entity.

31

Agent value Agent

selection Select a computation
None needed Post value Selected value
—_— RN common , 5
value at
random
Agent value Agent
selection computation
None needed Post value Selected value e
—> > —_> —>
Agent value Agent
selection computation
None needed Post val lected value
—_— —> _— —>

Figure 5 Consensus mapping te coordination unit

32

5.1.1.2.2 Veting
Another common pattern of coordination in agent-systems is voting. Agents are

confronted with problems like electing a leader, selecting an alternative that will
maximize the group’s utility function. Hence each agents must have an input to say how
much they value each leader or what their utility function is with respect to a set of
alternatives to be chosen. Thus in addition to the agreement on the final selection, there is

a maximizing function that needs to be computed.

Figure 6 illustrates a coordination unit handling a voting protocol using combined list
computation and the maximum number of vote as group computations. In the first phase,
the agents post a list of candidates. The group then combines all the list of candidates and
builds a complete list of candidates based on all the proposals. The combined list is then
fed back to the agents who will then compute a vote to express their utility function on
the set of candidates. They cast a vote. Then the group computes the candidate with the
maximum number of votes and return it to the agents. By the end of the execution, the
voting coordination unit ensures that all agents agree on the same candidate being elected

and the candidate is representative of all the individual agent’s utility function.

33

Agent

computes Post Compute
None needed Sandidate n.m:&&mﬂo Compute . . vote
list combined Candidate list vote
> > . . —_—> —>
candidate list
Agénts
te
Agent update
computes Post Compute
i i te
None needeq Sandidate candidate Vo
list Candidate list vote
—_—> > > >
Agent
computes Post Compute
None needed S2ndidate candidate vote
list andidate list vote
—> ——> —>

Figure 6 Voting mapping to coordination unit

Select

candidate

with max

number of Agénts
vote ate

34

update

From the two examples presented, it can be observed that the patterns of message
exchange are similar yet depending on the coordination requirements, the basic patterns
can be repeated. The consensus protocol was modeled using one phase of message
exchange where the agents are involved only once. Whereas the voting protocol involves
two phases of the information exchange where the group computation produces

intermediary which is fed back to the agents before they produce the next round of input.

5.1.2 Dynamic coordination unit

The pattern of execution of a dynamic coordination unit is unique: when the triggering
predicate of the unit occurs, the response must take place. However, the predicate being
monitored and the type of response may vary. In this section, we present a description of

the structure of the dynamic coordination unit and an example of a mapping.

5.1.2.1 Dynamic coordination unit model
As mentioned earlier, a coordination unit is accomplished by two roles: the monitored

agents and the monitoring agents. A monitored agent is responsible for reporting any
changes in its own state and a monitoring agent is responsible for reacting when the
monitored predicate has occurred. Hence, in this process there is an intermediary
component called the predicate detector which triggers an event when the predicate
occurs. Figure 7 illustrates the general dynamic coordination unit model. Unlike in the
case of a static coordination unit, not all monitored agents are required to report state

changes at the same time. That is the predicate evaluator does not wait for all reports to

35

start processing but process them as each of them arrives. Hence in this figure, the solid
lines represent actual communication in the current predicate evaluation and the dashed
lines represent communication in the former or potential predicate evaluation. In this
example, monitored agent 1 reports its relevant state change. The predicate evaluator
evaluates the predicate and if the predicate is found to be true then the evaluator notifies

the monitoring agents registered with this predicate so that they can take corresponding

action.
Monitored
Agent | Predicate
detector
Report state evag.lat:,s
hange precicate Monitoring
agent
Monitored If predicate executes
Agent 2 is true Trigger response
____________ _ Tesponses
...... - e
Monitored

Afent 3 L

Figure 7 Dynamic coordination model

In order to define a dynamic coordination unit, the developer needs to define what state
from the monitored agent to be reported and when to report, how to evaluate the predicate

and what response is to be taken when the predicate has occurred. Once these entities are

36

specified, the relationship will hold until all registered monitoring agents have cancelled

their registration.

5.1.2.2 Coordination pattern mapping to dynamic coordination unit
A coordination unit establishes a relationship among agents in the system. In current

systems, many such relationships exist. One such relationship is the race condition
prevention. For example, a distributed database must prevent two agents from accessing
the same data simultaneously where one of them is a write, since it might cause
inconsistency in the data. This example can be generalized as mutual exclusion. Another
type of relationship is called safe progression. This relationship ensures that the safe
condition happens before taking an action. This relationship is commonly used in military
strategies to safely occupy territory. In what follows, a mapping of the mutual exclusion

and safe progression relationship are presented.

5.1.2.2.1 Mutual exclusion
In an agent system, agents are not always in communication with each other. There are

activities which cannot be executed concurrently. Such activities are mutually exclusives.
Hence without proper coordination, an agent might not be aware that another agent is
currently executing the mutually exclusive activity and consequently start the activity
itself and causes corruption in the system. The property of mutual exclusion is to prevent
such consequences from happening. In this section, a formalization of the mutual
exclusion requirement will be given and an illustration of how the mapping to a dynamic

coordination unit can solve the problem.

37

Let us define the following notations to be used in the specification of the requirements
for the mutual exclusion property.

A: a finite set of agents on which the mutual exclusion property is to be enforced

ai: is an agent with identity i

ai.isInState(exclusiveTask) denotes a state of ai where ai is executing exclusiveTask

The mutual exclusion property can be formally defined as follows:

VaiVaj € A: ai # aj — — (ai.isInState(exclusiveTask) A ai.isInState(exclusiveTask))
Hence in order to be notified for a mutual exclusion violation, the above predicate needs
to be negated to yield:

Jaidaj € A: ai # aj A ai.isInState(exclusiveTask) A ai.isInState(exclusiveTask)

Hence the mutual exclusion is simply a disjunction of conjunctions of local agent state on
a finite set. Consider the case where the group has 3 agents. The predicate would be:
(al.isInState(exclusiveTask) A a2.isInState(exclusiveTask)) v

(al.isInState(exclusiveTask) A a3.isInState(exclusiveTask)) v

(al.isInState(exclusiveTask) A a3.isInState(exclusiveTask))

The mapping to a dynamic coordination unit can be done as shown in Figure 8.

38

Monitored

Agent | Predicate
detector
evaluates

predicate Monitoring
agent
ai.isInState¢exclusive If 3aidaj € A: suspends one
Monitored 7,5k) when it vhanges ai # aj agent from
(ai.isInState(exclusiveTask) n Triecer .
Agent 2 ai.isnState(exclusiveTask)) geer exlusiveTask
. response .
» e
Monitored

Afent 3

Figure 8 Mutual exclusion mapping to dynamic coordination unit

Each agent must report to the predicate evaluator whenever the state
ai.isInState(exclusiveTask) changes to become true. The predicate evaluator then
evaluates the truth value of the global predicate Jaidaj ¢ A: ai # aj A
(ai.isInState(exclusiveTask) A ai.isInState(exclusiveTask)). If the predicate is true then it will
trigger the response from the monitor. Once triggered, the monitor then suspends execution of
one of the agent to save the mutual exclusion property. It should be noted that the response is
executed synchronously with the triggering event. This means that the cancellation of the second

access will occur before the its transaction is completed, hence the transaction will never be

committed.

5.1.2.2.2 Safe progession

39

Safe progression, as the name implies, is based on the concepts of safety and progression.
Agents in a safe progession are to achieve a goal yet they must bound to safety criteria.
Consider the military scenario depicted in Figure 9. The goal of the friend troops is to
move toward the target by passing in between the enemy bases. Yet, the safety criteria
requires that the troop does not move forward until the enemy bases are both under the
allies control. The scenario shows two scout planes S1 and S2 that will be reporting to the

friend troops the states of the enemy bases.

Enemy base 1 Ennemy base 2

Figure 9 Military Safe Progression

Using the dynamic coordination unit model, we can model this relationship. The safety
criteria can be broken up into small portions to be monitored by individual agents
independently. These agents will report the change of their local state to the monitoring
agent. When the predicates are concurrently true then the monitoring agent takes action to
progess toward the goal.

In the particular example of the military scenario, the predicate to be monitored is:

40

EnemyBasel.state = alliedControlled and EnemyBase2.state = alliedControlled.
The response is to advance toward the target. Figure 10 shows the mapping of this
progression to the dynamic coordination unit. It can be noted that unlike the mutual

exclusion requirement, the response in a safe progession need not be synchronous with

the triggering event.

Si .
Predicate
detector
evaluates .
predicate Friend troops

advance to
. If target
enemyBastistate enemyBase| .state=alliedControlled g
S2 and .
enemyBase2.state=alliedControlled Trigger
o respons;e,j

Figure 10 Safe progession mapping to dynamic coordination unit

5.2 Composition of coordination units

In section 5.1 we described how individual coordination units can be instantiated. However, an
agent system requires multiple coordination units to work together to fulfill all the coordination
requirements of the underlying application domain. The coordination units can be composed in 3
ways:

- sequentially

- in parallel

41

- by containment

Section 5.2 discusses each of these three types of composition.

5.2.1 Sequential composition

The most basic type of composition of the coordination units is sequentially. This results in
ordering one construct after another with respect to one agent. Let us first consider the case of a
static coordination. As described in section 4.2 the static coordination unit can be in one of the
four states: waiting, ready, started, and completed. The static coordination unit is divided into two
phases: group preparation and execution. The waiting and ready states of the coordination unit
correspond to the group preparation phase. The started and completed states correspond to
execution phase. The execution of a static coordination unit is performed as if it is atomic. There
is no interference with other coordination units. Hence, when the same agent is involved in two
static coordination units, the execution of the two units is serialized by sequencing one after the
other. Figure 11 illustrates a sequence of static coordination unit. The agent is involved in two
static coordination units SCU1 and SCU2. The sequencing has restricted the execution phase of
SCU2 to be followed after the execution phase of SCU1. If multiple agents participate in at least
two common coordination units then conflict might arise due to potential cyclic dependency.
Hence the requirement to the application developer is to make sure that if a sequence of

coordination unit is to be enforced then there must not be a cyclic dependency.

42

Agent

SCr1 |
[Preparation |
: L] sem
: o [Preparation
lfxecution P '
i Execution

Figure 11 Sequential static coordination unit

Consider now the case of the dynamic coordination units. The dynamic coordination unit
can also be divided into the same two phases: preparation and execution. The preparation
phase consists of created state, whereas the execution phase consists of reporting and
responding states. Since the execution of a dynamic coordination unit depends on
unpredictable occurrence of predicates, it is not possible to statically order two dynamic
coordination units. However, it is possible to partially order a dynamic coordination unit
with respect to a static coordination unit. Figure 12 shows an ordering of a dynamic
coordination unit DCU?2 after the execution of a static coordination unit SCU1 hence the
execution of DCU2 will happen after SCU1. However, there is no guarantee that when
DCU2 starts execution, the state will be as if SCU1 has just completed because of the
potential delay between monitoring phase and the execution phase. This delay is

attributed to the message transit time.

43

Agent

SCU1

{Preparation

[Execution

DCU2

preparation

PP Vo U U iUl VR AR U ol Vg Vg

Xecution

Figure 12 Sequencing a dynamic coordination unit with respect to a static coordination unit

5.2.2 Parallel composition

So far, the description of the coordination units have ensured consistency among agents, in the
sense that agents in the system satisfy the properties of dependencies, follow up, and mutual
exclusion. However, in most cases, an agent is called upon to play multiple roles or to service
multiple requests concurrently, each of which requires coordination with other agents. Such
agent may be involved in more than one coordination unit. Composition in parallel allows the
agent to participate in multiple coordination units simultaneously. A composition in parallel
consists of preparing the coordination units involved without specifying the dependencies among

them. The result would be to let the runtime system serialize the executions of the coordination

units. Figure 13 shows two possible serializations of the parallel execution of two static

coordination units SCU1 and SCU2.

Agent Agent

SCU1 SCu1

{Preparation

|Preparation

SCU2

{Preparation

SCu2

[Preparation

lExecution

lljxecution

o e et e -]

Execution Iﬁxecution

Figure 13 Composition in parallel of two static coordination unit

Figure 14 illustrates a possible serialization of a dynamic coordination unit DCU2 and a static

coordination unit SCU1 composed in paraliel. In both cases, the serialization ensures that the

executions of the coordination unit are performed atomically or as if atomic.

45

Agent Agent

soin sCm

Preparation [Preparation

SDIN SDIN

[Preparation

|Preparation

. .-

Execution

Execution

g g g g gy

l%xecution fxecution

Figure 14 Parallel composition of a static and a dynamic coordination unit

5.2.3 Composition by containment

The third type of composition is containment. This concept stems from the field of
functional programming: A coordination unit may call for help from other coordination
units to fulfill its task. Hence a coordination unit is started within another. There are 4
possible cases:

- case 1: a dynamic coordination unit starting another dynamic coordination unit

- case 2: a dynamic coordination unit starting a static coordination unit

- case 3: a static coordination unit starting a dynamic coordination unit

- case 4: a static coordination unit starting a static coordination unit
Case 1 is illustrated by Figure 15. During the execution phase of the dynamic

coordination unit DCU1, it creates an internal dynamic coordination unit DCU?2. It can be

46

noted that the execution of DCU2 can be within the execution of DCU1 or occur after the
execution of DCU1 depending on the occurrence of the associated triggering event. Only

the preparation phase of DCU2 is guaranteed to be completed inside the execution of

DCUL.
Agent
Agent
DCU1 | | :
‘ DCU1 E
[Preparation | : X :
E [Preparation | :
Execution : - |
E Execution |
DCu2 | | :
preparation E DCL2 E
' preparation '
Execution E \‘\ T =

’,
e mp-----
4
1
4

'-l::_xecution

Figure 15 Containment of a dynamic coordination unit by a dynamic coordination unit

Figure 16 shows a dynamic coordination unit DCU1 containing a static coordination unit
SCU2. SCU2 is initiated during the execution of DCU1 and must complete its execution

with the execution phase of DCUL.

47

Agent

DCU1

Preparation

Execution

SCu2

preparation

Execution

o e . . = e e o

Figure 16 Containment of a static coordination unit by a dynamic coordination unit

Figure 17 illustrates a static coordination unit SCU1 containing a dynamic coordination
unit DCU2. DCU2 is initiated during the execution of SCU1. DCU2 may or may not
complete its execution within the execution phase of SCUI.

Figure 18 illustrates a static coordination unit SCU1 containing a static coordination unit
SCU2. SCU2 is initiated during the execution of SCUl. SCU2 must complete its

execution within the execution phase of SCU1.

48

Agent

SCU1

[Preparation

[Execution

DCU2

ipreparation

Execution

Figure 17 Containment of a dynamic coordination unit by a static coordination unit

Agent

SCU1

[Preparation

[Execution

SCU2

preparation

Execution

e m e a o - - o m me e o]

Figure 18 Containment of a static coordination unit by a static coordination unit

49

Agent
SCU1 :
Preparation | :
[Execution | 1
DCU2 :
preparation E

.-

’

Composition by containment is useful for on demand monitoring and on demand
coordination. Consider a hierarchy of agents performing election. A set of agents is
divided into small groups of agents. Each group elects a leader to represent them at the
higher level of the hierarchy. Hence, when each leader is to cast its vote, it will first
consult its group members. Containment of a static coordination unit by a static
coordination unit pattern can be applied to resolve this problem. This problem would not

have been possible to resolve with any other composition techniques.

50

6. ECUMAC Design

The previous chapters have laid out the various constructs of the Extendable and
Composable Unit for Multi-agents Coordination (ECUMAC) model. This chapter
proposes a design to implement the model. The design is based on the JADE [45] agent
platform and the Java programming language. JADE is based on the behavioral model of
an agent and the underlying method of communication is message passing. This chapter
is divided into the following sections: use cases, class diagram design, and scenarios

description.

6.1 Use cases

6.1.1 Static coordination

This section describes the use cases pertaining to the usage of the static coordination

units. The discussion starts with an introduction to the roles of the various agents within a

51

static coordination unit and proceeds with describing the primitives that a developer can

use to define a coordinated agent system.

6.1.1.1 Roles of agents in static coordination
The model does not mention any roles in the static coordination unit. However, in order

to make the unit fit with the rest of the system, we identify three roles that an agent may
have:

Initiator

Participant

Observer

The initiator is the one that senses the need to coordinate through its own local state and
initiates a coordination protocol. For each coordination protocol, there is only one
initiator. A participant is the one that responds to the coordination call and provides input
to the group actions. An observer is only interested in the result of the coordination and
does not have any data to feed in the coordination. However some of its future states
would be dependent on the result of the coordination. Note that an agent can play more
than one of these roles. For instance an agent can be the initiator, a participant, and an
observer of the coordination. It can also be noted also that the role only exists as long as

the coordination is in progress.

6.1.1.2 List of Primitives
The following is a list of primitives that the application developer can use to create and

manipulate a static coordination unit:

52

1- CoordinationObserver joinCoordinationGroup(GroupName, CoordinationResponse)

This function allows an agent to join a coordination group. If the requested group does
not exist then a new group is created with the requested group name. The coordination
response represents the computational part of the agent during the execution of the
coordination unit. The primitive returnins a CoordinationObserve which contains a
coordination ID to allow the calling agent to follow up on the status of the coordination
unit. The agent can join the group as an observer or as a participant. By joining the group
with a null CoordinationResponse, the agent joins the group as a mere observer, meaning
that the agent can only wait and get the result of the coordination but cannot provide
input to the coordination unit. It can be noted that the addition of the notion of an
observer member does affect the atomicity assumption of the model as the result is only
made available to the observers when all the coordination unit execution has completed,
i.e. no partial result is available. If the agent joins with an instantiated

CoordinationResponse, then the agent joins as a participant.

2- CoordinationObserver initiateCoordination(GroupName, startingCondition,
GroupAction)

This function notifies all the group members that the coordination has been instantiated.
The rationale for this primitive is that when agents join a group, they are only registered
with a lookup service that it is in the group. The coordination unit is not yet allocated
resources to start execution. Only after the initiator, who detains the definition of the
groupAction (or group computation phase), has called the initiateCoordination primitive
that the system knows what group action to fill in for the coordination unit and only then

the system allocates resources to the coordination unit. At this point, the state of the

53

coordination unit has transited from waiting to initiated, meaning that the group action of
the coordination unit has been installed. What is left is to wait for sufficient agents to join
the group or for certain condition to be met for the coordination to start. Thus the starting
condition argument of this primitive is evaluated to tell when the coordination unit is
ready to start. When the starting condition has been met then the coordination unit is

closed to any further registration and a start message to sent to all participants.

3- cancelCoordination(CoordinationID)
This primitive abort all operation done so far on the coordination unit. The agents restore

their original state as they were at start of the coordination.

4- waitForCoordinationResult(CoordinationObserver)
This primitive allows the agent to block waiting for the static coordination unit to
complete before resuming the current work. This primitive is used to order the execution

of the various coordination unit as described in the sequential composition section.

5- pollForCoordinationResult(CoordinationQObserver)
This primitive allows the agent to check up on the result of the coordination unit. If the

coordination unit has not completed then the primitive does not block and returns null.

6.1.2 Dynamic Coordination

This section describes the use cases pertaining to dynamic coordination units. The

discussion starts with the introduction to the roles of the various agents within a dynamic

54

coordination unit and follows with a description of the different primitives that a

developer can use to define a coordinated agent system.

6.1.2.1 Role of agents in dynamic coordination
There are two roles in a dynamic coordination units:

monitored agent
monitoring agent
The monitored agent exposes its state so that the monitors can observe and react to
occurrences of certain joined states. In this class of coordination, there is no clear event
indicating the end of a role. The roles are maintained to ensure the continuous

coordination of all the agents.

6.1.2.2 Primitives list
The following is a list of primitives that the user can use to create and manipulate a

dynamic coordination unit:

1- setPredicateTrigger(GroupName, PredicateEventListener, is_sync_flag)

This primitives allows the monitoring agent to register a response to the occurrence of a
predicate. The registration will be made with the monitored agents associated with the
GroupName. The PredicateEventListener contains the predicate detections mechanism as
well as the reaction of the monitor. The is_sync flag is used to determine whether the
reaction is to be executed synchronously with the occurrence of the predicate. If the flag
is set to true, then the agent whose report has triggered the reaction will be not allowed to

proceed until the reaction has completed.

55

2- setupMonitoredPredicate(GroupName, MonitoringObject, MonitoredObject] })

This primitive is to be used by the monitored agent to specify which part of its state to be
monitored. The result is that the set of local variables is registered with the lookup service
as being monitored under the GroupName. The MonitoringObject is responsible for

monitoring the local MonitoredObject and reporting when necessary.

6.2 Class diagram Design

This section provides a class view of the design. A description of each of the main classes
is given along with a description of the interrelations among them. The section is divided

into two parts: static coordination and dynamic coordination.

6.2.1 Static Coordination

Figure 19 illustrates a class diagram for the implementation of the static coordination.
There are three main components to manage the coordination units within the agent and
in the whole system: (a) CoordinatedAgent, (b) CoordinationManager and (c)
LookupService. The CoordinatedAgent is a placeholder for application agents to extend.
It encapsulates primitives for specifying coordination units and implements the
managements of the coordination units. The CoordinationManager is the component

within the CoordinatedAgent that manages the message passing related to the

56

coordination units. The LookupService provides a mean for agent to explore existence of

other agent in the system.

@

aCootdinaﬁonObserver (h)

I —

t e —
CoordinatedAgent] _ ! |
— CoordinationManager
-7 (b)
)CoordinationHandler |
T o o e |
! . o
I b e
. \ ; i
] '1 :
: ‘CmrdinationResponse |
P © S 4|
|
] L !
! t i
: (CoordinationCriteria :
e T T e -
1
iLookupService
©
Coordinator
®
ICoordinationHandler|]' !
-— —— .
e i, (i)
@) [Groupaction StartingCondition
l - 3
VotingHandler] [SchedulingHandler VotingG Acts [SchedtdingGmupAcﬁon

RserDefinedVotingHandler

UserDefinedSchedulingHandler,

‘CoordinationResponse

T

[UserDefinedCoondinationResponse

Figure 19 Static coordination class diagram

57

6.2.1.1 Static coordination class description
The following provides a detailed description of each of the classes.

6.2.1.1.1 CoordinationHandler
The role of the CoordinationHandler(d) is to perform the local computation which will

contribute to the group coordination. This class is an abstract class which the application
developer must extend to implement the application specific action. The developer does
so by overwriting the abstract method doLocalAction:

abstract Object doLocalAction(Object argumentList)
throws DataTypeMismatchException

This method takes as parameter a list of arguments which is of type Object. The list
contains abstract objects received from the coordinator. This is the place where the
developer needs specify the interface between the group and the agent. The data passed to
the function must be cast into the proper format to be used in the computation. Once the
local computation is completed, the function returns an object which will be sent back to
the coordinator. The CoordinationHandler hierarchy in Figure 19 (see d) shows how the
developer can refine the requirement to move from the abstract concept toward the
application specific handler. For instance, the VotingHandler can be a generalization of
the voting coordination units and thus can perform the data conversion. However, each
agent has its own policy for casting a vote, thus the VotingHandler is further extended to

specify these specific policies.

6.2.1.1.2 CoordinationResponse
The role of the CoordinationResponse(see Figure 19 e) class is to decide whether or not

to join in the coordination based on the current state of the agent and create a

58

CoordinationHandler if the agent decides to participate. This is an abstract class that
represents an agent response to a coordination invitation. The developer must extend this
class to implement the decision making about when to join the coordination and create a
corresponding CoordinationHandler. Since the decision is based on the state of the agent,
the CoordinationResponse must have some reference to state objects of the agent. The
class contains an abstract method doParticipate which the developer must override to
give specific details as to whether or not to join the coordination group when asked.
abstract CoordinationHandler doParticipate(Coordinated Agent initiator)

The method takes as parameter a CoordinatedAgent who has initiated the coordination.
This parameter may influence the decision of the agent to participate or not in the
coordination. The function must return a CoordinationHandler if the agent is going to
participate in the coordination and NULL otherwise. Note that for the case where the
agent is only interested in the result of the coordination and not in participating in the

coordination then this function will always return NULL.

6.2.1.1.3 GroupAction
A GroupAction has the role of performing the actions of the coordination that requires

input from all participants. This class (f in Figure 19) is an abstract class which the
developer must extend to implement the specific group actions. In the extension, the
developer must override the abstract methods doGroupAction and isComplete..

abstract Object doGroupAction(Object ArgumentList)
throws DataTypeMismatchException

This method takes as parameter a list of arguments as a generic Object. The list contains

abstract objects received from the coordinated agents. The function returns an object

59

which will be broadcast to the participants. Since a coordination may involve more than
one phase, the doGroupAction must set a flag telling the coordinator when the
coordination is complete.

boolean isComplete()

This method is meant to be used by the coordinator to check whether the coordination
action has been completed. The application developer must override this function with
the specifics of the actual instance of the coordination unit.

It can be noted that the number the doLocalAction from the CoordinationHandler and
doGroupAction must agree on the number of computation phases and the data being
passed at each phase. This is the way the developer specifies the specific behaviors of the

various static coordination untis.

6.2.1.1.4 Coordinator
The Coordinator gathers the input from the participants, execute the group action and

scatter the result to registered agents. This is an actual agent. The coordinator has two
behaviors: initialization and execution. During the initialization, the coordinator sends
invitation to all registered agent to join the group and then waits to receive join request
from the participants. When the starting conditions are met, the initialization behavior
terminates and the execution starts. The execution behavior is a repeated behavior with
the following steps:

- gather input from coordinated agents

- invoke the doGroupAction in the GroupAction

- scatter the result returned by doGroupAction to all participants

60

The above three steps are repeated until the GroupAction completes in which case it
will scatter a terminate message
It can be noted that the Coordinator, as shown in Figure 19g, is hidden from the
application developer. This is an internal construct to manage the messages exchange

between the agents and the group.

6.2.1.1.5 CoordinationObserver
A CoordinationObserver (Figure 19 h) has the role to provide the CoordinatedAgent

with status of a coordination. When a CoordinatedAgent has registered for a coordination
or has initiated a coordination, it is returned a CoordiationObserver to follow up on the
progress of the coordination. A coordination can be in one of 4 states: not intiated,
initiated, started, completed. Once a coordination has completed, the registered agents
can get the results via the CoordinationObserver. A coordination result is stored until
another coordination unit with the same group name is initiated.
The CoordinationObserver provides the following methods:

- CoordinationState getCoordinationState()

This method returns the state in which the coordination unit is. The return state is one
of the coordination state mentioned above.

- Object syncGetCoordinationResult()

This method is provided to synchronously retrieve the result of the coordination. If

the state of the coordination is “completed” then the last result is returned. Otherwise,

if the coordination is in any of the other state, the CoordinatedAgent is blocked until

the coordination completes and then the result is returned.

61

- Object asyncGetCoordinationResult()

This method is provided to asynchronously poll the result of the coordination. If the
state of the coordination is “completed” then the last result is returned. Otherwise, if the
coordination is in any of the other state a NULL pointer is returned. This function does
not block the calling agent.

- void subscribeReaction(Observer, isRepeat)

This method allows a user to subscribe a reaction for each time a coordination unit
complete its execution. If the user wants a reaction without having to poll or block for the
coordination then it can use the subsribeReaction to set a reaction for the incoming result.
The reaction can be set to execute once or to be repeated each time the coordination

completes.

6.2.1.1.6 StartingCondition
The role of the StartingCondition (Figure 19i) is to determine when the first execution of

the GroupAction of a coordination can be started. The rationale for this class is due to the
fact that there is a delay between the initiation of the coordination unit and the response
from the agents. Thus the coordination can only start when all agents joining satisfy a
certain condition called the StartingCondition. That condition is application specific;
hence this class is an abstract class that the application developer must extend to specify
when the GroupAction within a coordination can be started. The following abstract
method is to be overridden by the developer.

boolean isReady(CoordinatedAgentList, ElapsedTime)

62

This method takes as parameter a list of CoordinatedAgent that have registered to
participate in the coordination and returns a Boolean value telling whether the group is
ready to start. The decision can be a function of elapsed time since the initiation, a
function of the number of participants or a combination of both. Hence the ElapsedTime

is also included in the list of parameters.

6.2.1.1.7 CoordinationManager
The role of the CoordinationManager is to do the book keeping of the communication

between the CoordinationHandler and the corresponding Coordinator. This class
provides the application programmer interface (API) to the user to register with as well as
to initiate coordination units. The following methods are provided:

- CoordinationObserver initiateCoordination(GroupName, startingCondition,
GroupAction)

This method is to be called when an agent senses a need for coordination. This
method will create a coordinator for the coordination and invite all agents registered to
join the group.

- CoordinationObserver joinCoordinationGroup(GroupName,
CoordinationResponse)

This method registers the calling agent with the group so that the agent is notified the

next time a coordination is initiated on the group.

63

6.2.2 Dynamic Coordination

Figure 20 illustrates a class diagram for the implementation of the dynamic coordination.
There are three main components to manage the coordination units within the agent and
in the system: (a) CoordinatedAgent, (b) MonitoredStateManager and
(c)MonitoringManager. The CoordinatedAgent can play both the roles of monitored
agent and a monitoring agent. Hence each CoordinatedAgent contains a

MonitoredState Manager to manage the internal objects being monitored and the
MonitoringManager to manage the predicate being monitored and their corresponding

reactions.

Observable

T

Observer

A

©
nitoredObject @ MonitoringObject UserDefinedMonitoringObject
[: q o
FAN AR
‘ |
[{
e b]
{ |
ICoordinatedAgent MonitoredStateManager
@ ©
UserDefinedMonitoredObject
1
asubsysieme
LookupSearvice
1 UserDefinedPredicateEventlListener
CoordinatedAgent ® [Moniton‘ngManager PredicateEventlistener
- ——— ®
1 1
l
t
|
I
|
b e e e e o e o o A e s e o —— —————— ——
AV AV
Observable Observer

Figure 20 Dynamic coordination class diagram

65

6.2.2.1 Class description

This section gives a detail description of the classes composing a dynamic coordination

unit.

6.2.2.1.1 MonitoringObject
The role of a MonitoringObject (Figure 20d) is to receive notification of changes in the

MonitoredObject and to evaluate whether the change needs to be reported and report to
the monitor if necessary. This class is placeholder for the developer to extend to
implement the specific reporting policies. The MonitoringObject contains a list of
MonitoredObject.

The following is an abstract method that the developer must override.

boolean mustReport()

This method uses the list of MonitoredObject to evaluate whether the current local state
should be reported to the monitor. This method is called when there is a change with any

of the MonitoredObject in the list.

6.2.2.1.2 MonitoredObject
The role of MonitoredObject (Figure 20e) is to report changes in the state of the object to

the MonitoringObject. This is an abstract class that the application developer must extend
to expose part of the state of the agent to be monitored. This class is an extension of the
Observable class thus it has a method to subscribe MonitoringObject as observers. A rule

to define the MonitoredObject is to notify about all changes to the state of the object but

66

this is open to the user. A guideline is to have “set” methods for each of the state

variables and the notification can be appended to those “set” methods.

6.2.2.1.3 MonitoredStateManager |
The role of MonitoredStateManager (Figure 20c) is to keep track of the different local

predicates being monitored and perform registration of the monitor with the
corresponding MonitoringObject

This class acts like a glue layer between the agent and the local Monitoring system. It
provides an interface to set up a local monitoring, It provides the following method.
setupMonitoredPredicate(GroupName, MonitoringObject, MonitoredObject|])

This method is called when the user wishes to expose part of the agent’s state to be
monitored in the form of a local predicate. The method registers the MonitoringObject to
the MonitoredObject and creates an entry with the MonitoringObject indexed by

GroupName.

6.2.2.1.4 MonitoringManager
The MonitoringManager’s role (Figure 20b) is to keep track of the different global

predicates being monitored and their corresponding PredicateEventListener. This class
acts like a glue layer between the agent and the external Monitoring system. It provides
an interface to set up a monitor for a global predicate with the following method.
setPredicateTrigger(GroupName, PredicateEventListener, is_sync flag)

This method is called when the user wants to monitor for a global predicate involving

multiple agents. This method will register the monitor with the corresponding monitored

67

agents and create an entry with the PredicateEventListener and the is_sync_flag indexed
by GroupName identifying the group being monitored. The is_sync flag indicates

whether the reaction is to be taken atomically with the occurrence of the predicate or not.

6.2.2.1.5 PredicateEventListener
The role of PredicateEventListener (Figure 20b) is to react to occurrence of the global

predicate being monitored. This class is an abstract class that the developer must extend
to define what action should be taken when the global predicate becomes true.

The following abstract method is the mean to specify the reaction by the application.
abstract void reactToTrue()

This method does not take any parameter and returns void. The developer must
implement the application specific reaction to take place when the global predicate

becomes true.

6.3 Scenarios

This section illustrates the roles of the various classes by means of several sequence
diagrams to show the interaction among the classes. The following notation is being used

for distinguishing the type of communications:

68

-——————% Function call
——> Message passing
----------- > Return value

The section is divided into two parts: static coordination description and dynamic

coordination description.

6.3.1 Static coordination

This section describes the interaction of the various classes to realize the functionality
specified for each of the supported primitives of the static coordination unit:
- CoordinationObserver joinCoordinationGroup(GroupName,
CoordinationResponse)
- CoordinationObserver initiateCoordination(GroupName, startingCondition,
GroupAction)
- cancelCoordination(CoordinationID)
- waitForCoordinationResult(CoordinationObserver)

- pollForCoordinationResult(CoordinationObserver)

6.3.1.1 JoinCoordinationGroup
Figure 21 shows a sequence diagram for the joinCoordinationGroup. A

CoordinatedAgent joins a coordination group by calling the joinGroup method from the

69

CoordinationManager with parameters a GroupName and a CoordinationResponse. The
CoordinationManager creates a CoordinationObserver for the corresponding
GroupName and then forward the GroupName to the LookupService for publication.
Upon receipt of the request to join the group, the LookupService checks whether the
group already exists. If the group already exists then the agent ID is added to the group.
Otherwise, a new group is created with the given name and the agent is added to the
newly created group. Finally when the CoordinationManager has received
acknowledgement from the LookupService, the CoordinationObserver for the static

coordination unit is returned to the CoordinatedAgent.

CoordinatedAgent CoordinatedResponse | | CoordinationManager rdination LookupService

create

T
|
|

&~

joinGroup(GroupName, ICoordinationResponse)

A

create

request to join (GroupName)
]
CoordinationObserver

|
1
3
|
1
i
t
i
|
]
|
]
|
t
—f —————
t
|
|
|
I
|
|
I
|
|
1
i
|
|
i
—r—
e N e e

1
t
i
|
|
|

Figure 21 JoinCoordinationGroup sequence diagram

6.3.1.2 InitiateCoordination
Figure 22 shows a sequence diagram of the InitiateCoordination primitive. In this

scenario, it is assumed that a group has already been created, and the coordinated agents

70

A and B are currently members of the group. Let B play the role of initiator and A play
the role of a participant. Then the sequence is as follows.

1- CoordinatedAgent B initiates coordination by calling the initiateCoordination method
in CoordinationManager with parameters a GroupName, StartingCondition and
GroupAction.

2- The CoordinationManager sends a lookup request given a GoupName to the
LookupService to get the list of agents currently registered in the group.

3- The LookupService does the match making between the GroupName and if a match is
found then the list of all CoordinatedAgent belonging to the group is sent back to the
initiator

4- Upon receipt of the list of CoordinatedAgent, agent B then creates a Coordinator with
the list of CoordinatedAgent and add the newly created Coordinator to the
CoordinationManager for later book keeping.

5- The Coordinator then notifies all registered agents about the initiation of the
coordination

6- CoordinatedAgent A who is a participant in the coordination unit receives the
notification of the coordination initiation and passes the message to the
CoordinationManager

7- The CoordinationManager updates the status of the CoordinationObserver to
initiated, and call upon the CoordinationResponse to decide whether or not to participate

in the coordination.

71

8- If the CoordinationResponse decides to participate in the coordination then a
CoordinationHandler is created and returned to the CoordinationManager and the
manager can then send a join coordination message to the Coordinator

9- Otherwise, if the CoordinationResponse decides not to participate in the coordination
but wishes to know about the result, then nothing is returned to the
CoordinationManager, the manager then sends a register for result message to the

Coordinator for receipt of the coordination result when the later completes.

72

oot oot [comana | [susoacinston| [aomotcin | [osmases|

initlateCoordination(GroupName, StartingCondition, GroupAction) _

_oox:vﬁm..o._iz.-_.:ov

list of group members

notifies(GroupName)

request to join (CoordinationHandler)

updateStatus(initiated)

no_u!_.eo.vn.o

retumn CoordinationHandler

create

Figure 22 InitiateCoordination sequence diagram

73

disable()
V registerAgent(agentiD,CoordinationHandler)
check(}
satisfied
T ||||||||||
request data(GroupName, agrumentt lat)
dol ocalAction(ArgumentLis!
return result
T llllllllllllllllllllllllll
send data retumed from CoordinationHandler
noﬁ.dcvio.."?a::_o::x_-c
BH:S
A iaCampietet |
true
T ||||||||||||||||||||||
send completed message
updateStatus(completed)
I — ¢}

enable()

delete

10- In either case, the CoordinationManager after sending the reply will disable the
CoordinationResponse. The rationale for this is that a group is formed to execute one
instance of coordination. Hence if at some point another agent, who has not yet received
the invitation, happens to initiate the same coordination unit once again, then by disabling
the coordination response, the system guarantees that only one instance of the
coordination unit is executed at a time.

11- The Coordinator receives the response from the agent and then registers the agent
according to whether they are a participant or an observer

12- When the StartingCondition for the coordination is met, the coordinator starts the
coordination action and ignore any further incoming registration messages except for
observers.

13- If StartingCondition is can no longer become true then the coordination will be
aborted in which case an abort message is sent to all registered agents so their
CoardinationManager can reset the status of the coordination waiting.

14- Otherwise the Coordinator sends “request for information” to all participants

15- Participant’s CoordinationManager receives request and forward to the
corresponding CoordinationHandler

16- The CoordinationHandler computes the required information and sends it back to the
Coordinator

17- The Coordinator waits for information from all agents to come and then execute the
GroupAction

18- The Coordinator then broadcast the result of the group action to all participants

repeat 14-18 until all GroupAction have completed.

74

19- Upon completion of all GroupAction, the Coordinator then broadcasts a complete
message to all registered agents

20- The receiving CoordinationManager will then notify all behaviors waiting on this
coordination, set the status of the CoordinationObserver to complete with the

corresponding timestamp and re-enable the CoordinationResponse

6.3.1.3 CancelCoordination
After the call to initiateCoordination, the initiator can call for a cancellation of the

coordination using the coordination ID to terminate the coordination unit execution.
Upon such call, a cancel message is going to be sent to the Coordinator. The
Coordinator then broadcasts an abort message to all registered agents. Upon receipt of
the message the CoordinationManager reset the corresponding CoordinationHandler and

reset the status of the coordination in the CoordinationObserver to waiting.

6.3.1.4 WaitForCoordinationResult
At any point in time after the CoordinatedAgent has joined the coordination group, the

CoordinatedAgent can use the CoordinationObserver to call waitForCoordinationResult
to wait for receipt of the result of the coordination. This primitive registers the behavior
making the call to be blocked on the CoordinationObserver with the
CoordinationManager. That behavior will remain blocked until the coordination has

completed, in which case the result is returned.

75

6.3.1.5 PollForCoordinationResult
This primitive is similar to the WaitForCoordinationResult except that the calling

behavior is not blocked.

6.3.2 Dynamic coordination

This section describes the interaction of the various classes to realize the functionality
specified for each of the supported primitives of the dynamic coordination unit:

- setupMonitoredPredicate(GroupName, MonitoringObject, MonitoredObject|])

- setPredicate Trigger(GroupName, PredicateEventListener, is_sync_flag)
In addition, two scenarios show the mechanism that supports the synchronous and

asynchronous trigger of the reaction.

6.3.2.1 SetupMonitoredPredicate
Figure 23 shows the sequence diagram to realize the SetupMonitoredPredicate primitive.

A CoordinatedAgent calls setupMonitoredPredicate from the MonitoredStateManager by
passing a GroupName, a MonitoringObject and a set of MonitoredObject.

The CoordinatedAgent then subsribes the MonitoringObject to each of the
MonitoredObject’s.

An entry is then created in the MonitoredStateManager to keep track of the local data
being monitored within the agent.

The MonitoredStateManager then sends a group registration to the LookupService given

a GroupName so that other agents can start monitoring.

76

|
|

CoordinatedAgent MonitoredStateM MonitoringObi

create

[}
[}
I
'
L
1
+
)

-t

setMonitoredPredicate(GroupName, MonitoringObject. MonitoredObject]])

PONORUEDEDN JIV g

subscribe(MonitoringObject)

]
addEntry(GroupName, MonitoringObject)

registerGroup(GroupNarme)

. X

P DU SR, S

e =W e

Figure 23 SetupMonitoredPredicate sequence diagram

6.3.2.2 SetPredicateTrigger
Figure 24 shows the sequence diagram to realize the SetPredicate Trigger primitive.

A CoordinatedAgent playing the role of the monitor call setGlobalPredicateMonitoring
from the MonitoringManager by specifying a GroupName, PredicateEventListener to
react when the predicate becomes true and a flag indicating whether the reaction is
synchronous or asynchronous.

The MonitoringManager then sends the global predicate to the LookupService

The LookupService searches for all agents belonging to the monitored group then sends
the list of such agents to the MonitoringManager

The MonitoringManager then sends a monitoring request to each agents in the group

The MonitoredStateManager receiving the monitoring request will match with the
corresponding MonitoringObject and registers the monitor with the MonitoringObject

and set the corresponding synchrony flag.

77

E
|
5
|
|

e ——

istarMonitor{monitoriD)

]
1
t
1
]
]
]
1
t
]
1
1
i
I
i
]
I
-r
]
1
1
I
|
)
)
]
1
)
|
|
|
I
|
]
1

Figure 24 SetPredicateTrigger sequence diagram

6.3.2.3 Synchronous Predicate event triggering
Figure 25 shows the sequence diagram to realize the Synchronous Predicate event

triggering.
A CoordinatedAgent updates the state of one of the MonitoredObject

The MonitoredObject reports changes to the MonitoringObject

78

; MonitoringManager PredicateEventiistener
MenitoredAgent MonitoredObject MonitoringObject

reactToTrue()

me

| setState(new value) : ! i i
L.—..————-———ﬂ 1
i ' update() : .: .:
! O ——1
' I 1 1 1
: : - ; 5
'; ! l detectNeedToReport() :

] 1
1) } 1 1
i | block report(new value set) : E
| - A i
| 1l 1 I
! 1 |)
1 ' | |
! ' ! !
! 5 dejlectGlobaledica\e(new valuo.@)
| ! ' »
! ! .
! ! i
H retum ! retum detection completed E

%r _______________________________________ 4
] 1

Figure 25 Synchronous Predicate event triggering sequence diagram

The MonitoringObject detects necessity to report to monitor and report to the monitor
and block waiting for the response from the monitor

The MonitoringManager receives the report and dispatch to the corresponding
PredicateEventListener

The PredicateEventListener detects the global predicate.

If the global predicate has occurred then the reaction is triggered

Upon completion, the MonitoringManager send a completion message of to the
monitored agent

When the completion messages from all the monitors have been received then the

CoordinatedAgent can resume execution

79

6.3.2.4 Asynchronous Predicate event triggering
Figure 26 shows the sequence diagram to realize the Synchronous Predicate event

triggering.

A CoordinatedAgent updates the state of one of the MonitoredObject

The MonitoredObject reports changes to the MonitoringObject

The MonitoringObject detects necessity to report to monitor and report to the monitor
and resume execution

The MonitoringManager receives the report and dispatches it to the corresponding
PredicateEventListener

The PredicateEventListener detects the global predicate.

If the global predicate has occurred then the reaction is triggered

CoordinatedAgent . .
MonitoredObiect MonitoringObject MonitoringManager PredicateEventiistener
MonitoredAgent

I setState(new value) | i ! !

_ 1 {

! ' update) | : !

{ M ' i

| | ' ! |

i i : detectNeedT oReM) E

|: i :' report(new value set) :I .:

N 1 T A 1

H 1 1 | I

E : i ! E

| | : ! '

! : ' detectGlobalPredicate(new vaiues)

] 1 1 Pl

| H ! '

; ' | h

1 , t i reactToTrue()
i | ! !

! 1] !

; : : :

! 4] |

1]

Figure 26 Asynchronous Predicate event triggering sequence diagram

80

7. Automated
E-Commerce Modeling

This chapter shows how a developer can use the proposed framework to design
applications involving coordination. The example of an automated e-commerce
application is used to illustrates the concept. The chapter starts with an analysis of the
coordination requirements in the example e-commerce application. The second part
provides a mapping of the requirement to the constructs in our framework. Finally, an
extension of the designed application is shown to illustrate the reusability and the

flexibility of the proposed ECUMAC framework.

7.1 Coordination requirement for ecommerce
application

Agents in an ecommerce application plays two main role: buyer and seller. Agents

represent their corresponding users. Then depending on the tasks assigned by the user,

81

the agent can be playing either one of the two roles. In order to appreciate the need for
coordination requirement, consider the following cases of coordination failure:

(1) A buyer does not take an action when there is a seller who is selling the product
satisfying the buyer’s product specification. (right opportunity wrong action).

(2) A buyer commits a buying action when there is no product item satisfying the buyer’s
product specification being sold. This happens when more than one buyer attempts to buy
the same product from the same seller who has only one item to sell. Both of them will
commit the transaction but only one of them will get the product. (right action wrong
opportunity).

These two coordination failures translate into the requirement of awareness of the buyers
about the market’s current situation and the right action being taken in the right time
interval. By symmetry the same can be said about the sellers.

This section shows how the proposed ECUMAC platform can be used to model a
synthetic market activity. A human buyer can specify a set of tasks to be fulfilled by the
corresponding buyer agent. A task consists of buying a set of products. The product in the
shopping list must satisfy the conditions, as specified by the buyer user, simultaneously.
That is either all products in the list are bought or none of them is bought. These products
can be tickets for a flight trip. A user, based in Nunavut, may request to book flights for a
trip starting from Nunavut going to Montreal then to Toronto and finally back to
Nunavut. Knowing that flights to Nunavut are very rare and comes every six months, the
user cannot afford to wait for the next available flight. Either the whole trip is booked or
no trip is booked at all. The final system should address this issue with user involvement

only at the specification time.

82

7.2 Mapping to the coordination framework

In order to map the coordination requirements to the proposed model, the following steps
should be followed.

- Identify the coordination units

- Define the coordination units

- Connect the coordination units

7.21 Identify the coordination units

The reason for the problem of right opportunity wrong action is that the buyer does not
know about the sellers and in particular their joint states. The remedy is to make the
buyer monitor all sellers who sell the products of interest. In this way, the buyer is
informed of any changes the seller might make to its product’s availability and can
consequently react correspondingly. This pattern of interaction resembles the dynamic
coordination unit model. Hence, this requirement for product monitoring necessitates a
dynamic coordination unit.

The second problem has to do with timing. The seller and buyers can negotiate the price
and terms, but when the seller has committed to one buyer then all other negotiations
with the seller about that specific product item must be stopped. Hence to correct the
right action wrong opportunity problem, one can use the static coordination model to

develop an atomic transaction where only one buyer and one seller will commit to each

83

transaction and there is no agent which is half-committed to a transaction. Such half-
commitment must be aborted to bring the agent back to a state where the commitment

process has never started.

7.2.2 Define the coordination units

The previous section has identified two coordination units that will satisfy the
coordination requirements of this example application named: product monitoring and
auction. The product monitoring is a dynamic coordination unit and auction is a static
coordination unit. In this section, the specific each of these units will be mapped to the

corresponding coordination unit model.

7.2.2.1 Product monitoring as a dynamic coordination unit
To accomplish the product monitoring task, there are two layers of subtasks the buyer

agent needs to do: monitor each product from different vendors and monitor the joint
status of the different products. For example, suppose that the buyer agent B needs to buy
product X and Y. X is sold by seller S1 and S2, and Y is sold by S3 and S4. The first
layer for B consists of two subtasks. Subtask 1 is to monitor the product advertisement of
X from sellers S1 and S2 and subtask 2 is to monitor the product advertisement of Y from
sellers S3 and S4. Let say that subtask 1 or 2 succeeds when one of the sellers advertise
the product that matches the buyer user specification. Hence the second layer consists of
monitoring the status of subtasks 1 and 2 to detect when the two subtasks succeed jointly

and then perform the transaction on both products. Consequently, to accomplish its

84

market monitoring tasks, a buyer agent needs helper agents to perform the subtasks in the
first layer.

Figure 27 shows the mapping to the first layer. The buyer helper agent monitors the
product advertisement from the different sellers. When one ad matches the buyer user
specification then the buyer helper agent reports to the main buyer agent. Figure 28
shows the mapping to the second layer. The buyer helper reports to the main buyer. The
buyer agent then detects whether the joint state where all the user specification have been
matched has been reached. If so then the buyer agent goes forward in making the

transactions.

Sellers agent
updates Detect if
product ad product ad

matches user

specification

Report new of the product
roduct ad Buyer helper
Sellers agent _ agent report
updates If predicate to buyer
product ad istrue ITigger
__________________ response

Sellers agent /"
updates L7

productad .-

85

Figure 27 Product monitoring mapping to a dynamic coordination unit (first layer)

Buyer helper

computes
matching ads Detect if all
ads matches
all user
specifications
Buyer helper Buyer n.lake
computes If predicate transactions
matching ads istrue lrigger to buy
l _ response .
................. > >
Buyer helper i
computes o7

matchinf ads .-

Figure 28 Product monitoring mapping to a dynamic coordination unit (second layer)

7.2.2.2 Atomic transaction as a static coordination unit
Joint state monitoring alone is not enough to ensure that the buyer agent buys all the

products in the shopping list at once. Consider the case where the buyer agent has just
been notified that all products requested matches the advertisement of 3 vendors, the
buyer agent then sends to request to buy these products. However, due to the concurrency
of the processing of these requests, one of the product might be bought by another agent.
Thus only two out of three products can be bought. As in the description of the scenario
of user planning the trip, the consequence might be very severe. Hence there is a need to
make the transaction atomic. This can be achieved via a static coordination unit.

Figure 29 shows one round of the mapping of the atomic transactions to a static

coordination unit.

86

Upon receipt of the buyer request, the seller agent processes the request to see if the
quantities are available. If so, then the seller posts an offer to the group, otherwise it posts
a reject message. The group then checks to see if all the input received are offers. If they
all are, then the group commit to the sellers. Otherwise, the group sends an abort
message. Once the result from the group is received, the sellers commit or abort the
transaction correspondingly. It can be noted that the coordination unit is initiated by the
buyer who provides the group action yet the buyer is not a participant of the coordination

unit, it is only an observer.

87

seller agent Seller

Buyer request Process request commit/abort
to buy Post offer/reject Group checks
—_> > receipt of all —_— > —>
offer .
Commi
/abort
seller agent Seller
Buyer request Process request commit/abort
to buy Post offer/reject ..
_—> > > > —>
seller agent Seller
Buyer request Process request commit/abort
to buy Post offgf/reject -
—_—> —> —> >

Figure 29 Atomic transaction mapping to a static coordination unit

88

7.2.3 Connect the coordination units

Now that the individual coordination units have been defined, this section illustrates how
to connect them together. In this example, it can be observed that the atomic transaction
must be initiated and completed within the reaction of the product monitoring unit. Hence
the two units can be combined via the containment composition. Figure 30 shows the
containment of the atomic transaction unit by the product monitoring unit in the reaction

section.

Product Monitoring

Predicate detection Reaction

Atomic transaction

Figure 30 Containment of the atomic transaction unit by the product monitoring unit

7.3 Extension to the application

This section illustrates the easiness to extend the current system to accommodate new
features. There are two levels at which an application can be extended: computational
level and coordination level. This section discusses examples of extending a current

application by adding new features requiring changes at each these two levels.

89

Consider the following extensions to the above synthetic market application. A new
feature is needed to support the buyer user in setting up a backup plan in case the
shopping list cannot be matched for a certain period of time. A backup plan could be to
relax the constraints to tolerate only a subset of the shopping list yet only in some
specified combination. This new feature can be achieved via a computation extension. In
Figure 29, the group action consists of checking whether all offers have been received. It
will send an abort message if any of the messages received is a reject message. To
accommodate the new feature, the only need is to replace the current group computation
by a new version that is more tolerant. The new version will have additional checks to see
if any of the acceptable combinations of offers have been received. Only if all the
combinations fail then the abort message is sent. Effort is minimized in making such a
change because that computation is totally independent on the state of the coordination.

Consider further that the system is now to support group purchase. That is a group of
agents gather together to purchase some good so that the quantity transacted will be
greater and the price will be lower. To support this feature, a coordination structure
change is required. An addition of static coordination unit is needed to first of all elect a
representative for the group during the purchase. The scenario is as follows. The first
buyer agent who wants to perform a group purchase creates a group for that purpose and
joins that group. Later on other agents will also join that group. When one of the agents
in the group decides to start the purchase, that agent initiates the coordination unit by
setting the voting handler as the group action. At the end of the coordination, all members
know who the representative is for the group and that representative can start the

monitoring and proceeds as before. However, prior to do any commitment, the members

90

of the group must be consulted again. To do that, the representative sends to the members
of the group purchase the sellers offers. Then it creates another static coordination unit
the consultation. That coordination unit takes as input from the participant an acceptance
or refusal to commit to the purchase. If any one of the agent refuses then the transaction
is aborted. Figure 31 shows the re-composition of the coordination units to support the
group purchase feature. The atomic transaction is replaced by a similar coordination unit

which contains the additional coordination unit for the members’ consultation.

Product Monitoring

Predicate detection Reaction
Atomic transaction for group
purchase

Members’ consultation

Figure 31 Group purchase composition

91

8. Conclusion and Future Work

Developers of multi agent system have always been faced with the problem of
coordinating agents. The problem stems from the fact that the agents are running
concurrently yet they are related to each other. Much effort is spent to ensure that such
relations hold at all time during the execution of the system. Such effort usually results in
very complex systems and the complexity increases the maintenance cost or the cost for
further development. The coordination support through ECUMAC, the model proposed
in this thesis, has the solution to leverage the effort spent in maintenance and extension.
The model is based on the concept that a coordination requirement set can be realized by
a set of small coordination primitives called the coordination units. These units can be
classified into two categories: the static coordination units and the dynamic coordination
units. With these two abstractions, applications can refine the details and compose the
units to define multi-agent systems. As the needs change, the computation or structure of
the coordination units can be replaced to satisfy the new sets of requirements. A sample
case study is used to illustrate the ease with which the application developer can use the

proposed model.

92

Considering the support provided by ECUMAC through the modularity of the
components and through the composition model, a conclusion can be drawn that the
proposed solution has promises to support the large scale development of multi-agent
systems. However, ECUMAC is only a first step to support such large scale
developments. Further research in the following areas will represent major
complementary to the proposed framework:

- Coordination units’ library. Since the coordination units can be extended and
refined, it can also be abstracted from a collection of specific units to represents
classes of coordination thus forming a hierarchy of units. Later if an application
needs coordination constructs for a particular class of coordination, a lookup in
the library will gives the possible option to reuse the existing code and then refine
it to fit the application needs.

- Visual integrated development environment. The fact that the coordination units
are composable suggests that there is a possibility to build a graphical user
interface where the user can build a system with simple drag-and-drops of the

coordination units. With such tools, development can significantly be reduced.

93

9. References

[1] Sonia Bergamaschi, Gionata Gelati, Francesco Guerra and Maurizio Vincini,
“Experiencing AUML for the WINK Multi-Agent System”, Proceeding AIIA
and TABOO Workshop: From Object to Agents, 2003.

[2]H. Van Dyke Parunak, James Odell, “Representing Social Structures in
UML”, Autonomous Agents, 2001.

[3] O. Komienko, S. Kornienko and P. Levi, “Collective decision making using
natural self-organization in distributed systems”, CIMCA, 2001: 461-471.

[4] Panzarasa, P. and Jennings, N. R. and Norman, T. J. “Formalising
collaborative decision making and practical reasoning in multi-agent
systems”. Journal of Logic and Computation, (2001): 55-117.

[5]1 Onn Shehory, Sarit Kraus, “Methods for task allocation via agent coalition
formation”. ACM. Artificial Intelligence. Volume 101, 1998: 165-200.

[6] K. Schelfthout, T. Coninx, A. Helleboogh, T. Holvoet, E. Steegmans, and D.
Weyns, “Agent Implementation Patterns”, Proceedings of the OOPSLA 2002
Workshop on Agent-Oriented Methodologies. 2002: 119-130

[7] B.Bayerdorffer, “Associative Broadcast and the Communication Semantics of
Naming in Concurrent Systems”, PhD. dissertation, Dept.of Computer
Sciences, Univ. of Texas at Austin. Dec. 1993

[8] James C. Browne, Kevin Kane and Hongxia Tian, “An Associative Broadcast
Based Coordination Model for Distributed Processes”, ACM, Lecture Notes
In Computer Science. Vol. 2315. 2002: 96-110

[9] Sandra C. Hayden, Christina Carrick, Qiang Yang, “A Catalog of Agnet
Coordination Patterns”, ACM. International Conference on Autonomous
Agents, 1999: 412-413

[10] C. Castelpietra, L. Iocchi, D. Nardi, M. Piaggio, A. Scalzo, A. Sgorbissa,
“Coordination among Heterogeneous, Robotic Soccer Players”, In Proc. of
International Conference on Intelligent Robots and Systems, 2000

[11] Nicholas Carriero, “Coordination Languages and their Significance”, ACM
Communication. Vol 35. February 1992: 97-107

94

[12] Henry Muccini, Fabio Mancinelli, “Eliciting Coordination Policies from
Requirements”, ACM. Symposium on Applied Computing. 2003: 387-393

[13] P. Ciancarini, F. Franze and C. Mascolo, “A Coordination Model to Specify
Systems Including Mobile Agents”, IEEE. International Workshop on
Software Specifications & Design, 1998: 96-106

[14] David Gelemter, “Generative Communication in Linda”, ACM. ACM
Transactions on Programming L.anguages and Systems. Vol 7. 1985: 80-112

[15] Peiyi Tang, Yoichi Muraoka, “On-Demand Coordination of First-Order
Multiparty Interactions”, Proceedings of the 11th IASTED International
Conference on Parallel and Distributed Computing and Systems. November
1999

[16] Andrea Omicini, “On the Semantics of Tuple-based Coordination Models”,
ACM. Symposium on Applied Computing. 1999: 175-182

[17] Victor R. Lesser, “Reflections on the Nature of Multi-Agent Coordination and
Its Implication for an Agent Architecture”, Autonomous Agents and Multi-
Agent Systems. Volume . 1998: 89-111

[18] Dwight Deugo, Michael Weiss and Elizabeth Kendall, “Reusable Patterns for
Agent Coordination”, Chapter 14 in Omicini, A., Zambonelli, F., Klusch, M.,
and Tolksdorf, R. (eds.), “Coordination of Internet Agents: Models,
Technologies, and Applications”, Springer 2001

[19] Edmund H. Durfee, “Scaling Up Agent Coordination Strategies”, IEEE.
Computer. Volume 34. 2001: 39-46

[20] Nicholas V. Findler and Raphael M. Malyankar, “Social Structures and the
Problem of Coordination in Intelligent Agent Societies”, IMACS. Agent-
Based Simulation, Planning and Control in IMACS. 2000: 122-127

[21]J.A. Giampapa and K. Sycara, “Team-Oriented Agent Coordination in the
RETSINA Multi-Agent System”, tech. report CMU-RI-TR-02-34, Robotics
Institute, Carnegie Mellon University, December, 2002,

[22] Paul Valckenaers et al., “The Design of Multi-Agent Coordination And
Control Systems Using Stigmergy”, Proceedings of the IWES'01 Conference,
March 2001

[23] Andrea Omicini and Franco Zambonelli, “TuCSoN: a Coordination Model for
Mobile Information Agents”, 1st International Workshop on Innovative
Internet Information Systems, June 1998

[24] Mirko Viroli, “Comparing Semantic Frameworks for Coordination: On the
Conformance Issue for Coordination Media”, ACM. Symposium on Applied
Computing. 2003: 394-401

[25] M. Pinto, L. Fuentes, M. E. Fayad and J. M. Troya, “Separation of
Coordination in a Dynamic Aspect Oriented Framework”, ACM. Aspect-
oriented software development. 2002: 134 -140

[26] Jason I. Hong, “An Overview of the Jini Coordination Framework”,
University of California 2000

[27] Martin Beer et al, “Negotiation in Multi-Agent Systems”, Knowledge
Engineering Review. volume 14. 1999: 285-289

95

[28] Gruia-Catalin Roman and Jamie Payton, “Agent Coordination Paradigms in
Mobile UNITY”, Technical Report, Washington University, Department of
Computer Science and Engineering, St. Louis, Missouri. 2003

[29] Robert Tolksdorf, “Models of Coordination”, Springer-Verlag . Proceedings
of the First International Workshop on Engineering Societies in the Agent
World: Revised Papers. 2000: 78-92

[30] Gal A. Kaminka et al., “Gamebots: A Flexible Test Bed for Multiagent Team
Research”, Communications of the ACM. 2002: 43-45

[31] Thuc Vu et al., “MONAD: A Flexible Architecture for Multi-Agent Control”,
ACM. International Conference on Autonomous Agents. 2003: 449-456

[32] Gal A. Kaminka et al., “Monitoring Teams by Overhearing: a Multi-Agent
Plan Recognition Approach”, Journal of Artificial Intelligence Research.
volume 17. 2002: 83-135

{33] Kyungkoo Jun et al., “A subscription-based Monitoring Model for Distributed
Object Systems”, Department of Computer Science, Purdue University 1998

[34] Brett Browning, Gal A. Kaminka and M. Veloso, “Principled Monitoring of
Distributed Agents for Detection of Coordination Failure”, the Seventh
International Symposium on Distributed Autonomous Robotic Systems. June
2002

[35] Amy L. Murphy, Gian Pietro Picco and Gruia-Catalin Roman, “LIME: A
Coordination Middleware Supporting Mobility of Hosts and Agents”,
Technical report. University of Rochester and Washington University in St.
Louis, 2003

[36] Philipp Obreiter and Guntram Graf, “Towards Scalability in Tuple Space”,
ACM. Symposium on Applied Computing. 2002: 344-350

[371 A. L. T. Rowstron, A. M. Wood, “BONITA: A Set of tuple space primitives
for distributed coordination”, IEEE. Proceedings of the 30th Annual Hawaii
International Conference on System Sciences. 1997:379-388

[38] Antony Ian Taylor Rowstron, “Bulk Primitives in Linda Run-Time Systems”,
PhD. Thesis. Department of Computer Science, University of York. 1996

[39] Antony Rowstron, Andrew Douglas and Alan Wood, “COPY-COLECT: A
new primitive for the Linda model” Technical Report. Department of
Computer Science, University of York. 1996

[40] Antony Rowstron and Stuart Wray, “A Run Time System for WCL”,
Springer-Verlag. Workshop on Internet Programming Languages. 1998: 78-
96

[41] A. L. T Rowstron and A.M. Wood, “Solving the Linda multiple rd problem
using the copy-collect primitive”, Elsevier North-Holland. Science of
Computer Programming. 1998: 335-358

[42] Antony Rowstron and Alan Wood, “Solving the Linda multiple rd problem”,
Springer-Verlag. Proceedings of the First International Conference on
Coordination Languages and Models. 1996: 357-367

[43] P. Wyckoff, “T Spaces”, IBM Systems Journal. 1998

[44] Vijay K. Garg, “Elements of Distributed Computing”, Wiley-Interscience,
2002

[45] Java Agent Development Framework, http:/jade.tilab.com

96

[46] Edsger W. Dikjstra, “Guarded commands, nondeterminacy and formal
derivation of programs”, ACM Press, 1975: 453-457
[47] Foundation for Intelligent Physical Agens, http.//www.fipa.org

97

