Implementing Film Grammar With 3D Graphics

Aimin Zheng

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

April 2005

© Aimin Zheng, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10302-7
Our file Notre référence
ISBN: 0-494-10302-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Implementing Film Grammar With 3D Graphics

Aimin Zheng

In film conversation shots, there are constraints that specify the players’ positions as they
are projected on the screen. How to project the two players on the appropriate position on
the screen is the main problem focused on this thesis.

Some important rules of film grammar for two players are stated in this paper and an
algorithm based on camera control to achieve desired projected position on screen for
players are provided. The results of the algorithm for lots of shots in two players
conversation satisfy all the constraints related with camera placement for two players in
film grammar.

Translating film grammar into mathematic requirement for 3D graphics and building
the corresponding equations are showed in this paper. And a creative and effective way to
solve these equations is stated. This algorithm provides a feasible way to control the
camera in graphics environment. And several cinematographic shots are implemented by

this algorithm, and also a sequence of shots is applied into a film scene.

i

Acknowledgement

I want to express my gratitude to my supervisor Prof. Peter Grogono for his constant help
during my thesis work. First, he introduced this wonderful research topic to me. Second,
he provided me lots of helpful suggestions when I program for this thesis. Next, I would
thank him for his creative ideas to resolve the problems during algorithm design. Last, for
his structure advices and lots of revisions and comments to my thesis. He helped me a lot.

And I would like to say: Thank you, Dr. Grogono.

I would also like to thank my family, for their patience and endless support during my
study in this program at Concordia University. Without their supporting and encouraging

me, I wouldn’t finish this thesis.

Contents

List of Figures

List of Tables
Chapter 1 INOAUCHIONooiiiiii ittt s e 1
1.1 Graphics and FIlm GIrammarccooiiiiii e s 1
1.2 Problem deSCIIPLIONevvevriiecciireeteee et sttt st e et esaenseneseesneaneseesenas 2
1.3 Contribution of thesis.....ceevereereerirceeneeenenns ettt s et 2
Chapter 2 Related WOTK ... e s 4
Chapter 3 Background ... e e 6
3.1 CINEIMA ZIAMITIAT1iiiiteiiteieeitie e e ree e st e essiesesh e e et e re e e are e sa st e sar e e st e eeateeeereareaanesemeeeabeaesreaennrees 6
3.1.1 Camera Placementcooiiiiiiiiiiiiii e 7
3,111 Line Of INEETEST ...eeieiiiit ettt s st e 7
3.1.1.2 The Triangle Principle......ccooooviiiiiiiiiiiiiii s 7
3.1.1.3 Importance of the Headsccovcviiiiiiiiiicci e s 9
3.1.1.4 Five basic variations of the triangle prinCiple ..o 9
3.1.1.4 Camera Placementocevvuerieriiiiiiiiie ettt e e 14
3.1.1.5 Camera Movement and DiStanceccooerveiiiirieimereie e e 15
3.1.2 Heuristics and conStraints............ccocoiiiiiiiiiiiinrien et 15
3.1.3 Idioms Related With Dialogue Between Two Players.............cccccooiiniiinnineennn, 16
3.1.3.1 Both Players Sit Facing Each Other.........cccocoiiiiiii e, 16
3.1.3.2 One Player Sits While the Other Stands...........ccccoooiiiiii 18
3.1.3.3 Player A Moves Towards Player B.......coooeiiiiriiiiii e 18
3.2 Computer Graphics — OPeNGLLcooiiiiriiiii ittt sttt e 20
321 ADP0OUt OPENGL.....coociiiiiiiiiii e e 20
3.2.2 Model View and Projection ..ot 22
3.2.2.1 Coordinate System and transformationcoccvvverreceeniene e 22
3.2.2.2 Model View Transformationcocovierie it e 24
3.2.2.3 Projection Transformationcccocieieiiiitininienee e 26
3.2.2.4 Viewport Transformationocooiiiiiiiiiicie et eee e 28
3.2.2.5 OpenGL Function glulLoOKAL() ...vevveeeiiii e 29
Chapter 4 DESIZI c.oovieiiiiii e e e e 34
4.1 Camera MOdUle dESTZN.......oicviiiiiii ettt s 34
4.1.1 Camera COMPONEIILScceeuiiiiiiieaitea e iteesteeeteeeteserastresteesteesbeeseeateesreesaesnseeseeaaas 34
4.1.2 Cinematic camera position algorithm designcc....c..ooo i 37
4.2 Design of an Animated CONVErSALIONcevteriiiiriiiierireeiieeeeteasiesstreesseeessaaneeeannassssessssenans 47
4.2.1 Project COMPORMENTS.cccccuiiiiriiiiiiiit ettt ree et ae st e e seeaeaie e e ansaasseeeennees 47
4.2.2 Film scenes to be animated..............cccccoeiiiiiiiiiiiiii e 48
Chap 5 IMPIEMENTATION.viviiiitiiii i e sttt e r b sr e 49

5.1 User interface Implementationc..ocouii i 49

5.2 Camera algorithm Implementation ..o 54
5.2.1 DAta SEEUCLUIE.ooeieeiiiiiiiiie ittt ettt e e e et e e reeemee et 54

5.2.2 Algorithms Implementationc.c.ccoooiiiiiiiiiiiiic e 57

5.2.2.1 Camera MOVEMENLcccuviruiiiiiiieneteeeieeenttt et a et e si s eeree e s raeesbeanreenreens 57

5.2.2.2 ColliSiON dELECLION ..eevieuieririiiiriei ettt ettt ene e 61

5.2.2.3 Get an ideal camera position according to user input parameters..........c.......... 62

5.3 Program implementation.ccoueeruriiuereieeriiit et e siat et e e see e e saeee e e e ebeaabesseneeaeesneesbesane 63
5.3.1 Human being implementationcccoci it 63

5.3.1.1 Sit dOWN ANIMATION «..evinivieiriieiie ettt ettt e e e eaee e e e smeeeneeeneesenean 66

5.3.1.2 Stand QnIMAIONcecoueeirieinie i eeeeeeeeieeatesestbee s e e e aaeeeseeesabesasaeemseeseeaaneeansean 66

5.3.1.3 WalK animation ...c..coecieiiriiiiinee e stese et s e e et st s b e 66

5.3.2 Furniture (table and chair) implementation.....................ccccoooiiiiiiie e, 66

5.3.3 Room and ornament picture implementationcccccocoviiiinicninnnenenn 67

5.4 Film scenes animation ImMpPlemMENtatIONcevvueriieeiertieniiereiteeeneeeesieessee e s s e steseeeneaeennes 67
Chapter 6 RESUIS ..o oottt st es e s st seeebesan st sresbesncan 72
6.1 Film scenes animation TESULLSceieiiiriiiinree ittt sttt 72
6.1.1 Conversation when both people sit dOWncc..oooiiiiiiiii 72

6.1.2 Conversation when one sits down, another stands upccccervriiinnicencnn. 74

6.1.3 Red moves toward BIUe ..ottt 76

6.1.3.1 Three-shot aNIMALIONccovieeiiiriirie ettt 76

6.1.3.2 Four-shot animationccecoieriieiireennienir ettt eeere s e e e 78

6.2 Cinematic camera position algorithm results ... e 79
Chapter 7 Conclusion and future WOrks........coooiiiiiiiiiii e e 84
T T CONCIUSIONS ettt ettt e et e e e et ettt e s s b e e ammee e e ese e e embe e seeesabeeanneaanneaneeane 84

T2 FFULUTE WOTK .ottt te ettt st e et e et e bt e e e s b e e e st et e eee e e emee e smeeaams e e neaaneeanneeans 86
RETEIEICES ..ottt ettt ettt st et b e e e e ebtea et et e st s sa bt ehe e as e e eeeeeeeeemeeaeemeesaeanessensesneeeas 87
WED DASEA TETCTEIICES . .. ettt ettt et st e e ab e bb e abe st aes e enne s esneenren 89

Vi

List of Figures

FIGURE 3.1 TWO TRIANGULAR FORMATIONS ON EACH SIDE OF THE LINE OF INTEREST. ..cccuvtruraniinerireenneeenies 8
FIGURE 3.2 EXTERNAL REVERSE ANGLES. ... cittiiiai ettt ettt e ee e e e st ce e e e e bt ce e e e e nmebeaeee sareee e e e sainneneas 10
FIGURE 3.3 INTERNAL REVERSE ANGLES. 1..ci ittt e ettt ettt et et n e e eeeene e s emenene e 11
FIGURE 3.4 SUBJECTIVE CAMERA ANGLES. .. .utitiiiiiiii ittt ettt ettt e et n e e e 11
FIGURE 3.5 PARALLEL POSITIONS.ttiteeiutieeiatttieetieeeee s teeeesaseaeesstraeeassseaeansnaeessaneesassseensaeensmbaeneteeesnraesenanens 12
FIGURE 3.6 RIGHT ANGLE POSITIONSciititieittttiinireeeasateeeesseeeesnreeasasnbeeesneneessateeaaeneseasteaesabeeasenesaamernesnnnee 12
FIGURE 3.7 THE RIGHT ANGLE CAMERA POSITIONS CAN ALSO BE BEHIND THE PLAYERS ...c..cocovveeeinieinneenne 13
FIGURE 3.8 ADVANCE ON A CAMERA COMMON VISUAL AXIS. 1oiuitiiiiiire i iitieeesinie e siie s aniee e eesneaeeeneaessaneesenes 13
FIGURE 3.9: CAMERA PLACEMENT IS SPECIFIED RELATIVE TO THE “LINE OF INTEREST” ...ceveririrccirireaninenennns 14
FIGURE 3.10 FILMING A CONVERSATION BETWEEN TWO PLAYERSecoviiesivieaieererinireneeeaeessnessesebeessneesienas 17
FIGURE 3.11 ATHREE-SHOT IDIOM OF ONE PLAYER APPROACHING ANOTHERccctvtiiniieiinceceoiiienieeenninee e 19
FIGURE 3.12 A FOUR-SHOT IDIOM OF ONE PLAYER APPROACHING ANOTHERccoctiiiiiiiieiniiiiaeeeeeieeee e 20
FIGURE 3.13 DEMONSTRATION OF MODELING COORDINATES BEING TRANSFORMED TO ..cc.uvvvininrerreiaeinerenane 23
DEVICE COORDINATES FOR A THREE-DIMENSIONAL SCENEcoiviicieaoitieiieieeotiesiaesieesossesssessseeassssssessssesssnesses 23
FIGURE 4.1 CAMERA COMPONENTScotitittiiiittitietaes e e iaaaietaesteeseesetaeeteeeeeesaastbrteesaaanrteeeeenntbeeeeeesmnnreseaeanan 35
FIGURE 4.2 BOUNDING BOX FOR OBJECTS INSIDE A ROOM ...cceeiitiiiiiiieessiiieieeaineeraeeeesnneeesnreesanseeeseaenesnsnesesss 36
FIGURE 4.3 BOUNDING BOX FOR AROOM ...ttt aeie ettt ee e e ettt e e e e ettt a s aanbeteae e sent e e e e snnneeeaeanaes 37
FIGURE 4.4 TRIANGLE FORMED BY TWO PLAYERS AND THE CAMERAcccooiiiiiiiiiiiiiiiiiiteennieceee e e 39
FIGURE 4.5 PERSPECTIVE PROJECTION FRUSTUM OF TWO PLAYERS AND CAMERA ...ccooiiiiiriinieasienienneneeeenes 40
FIGURE 4.6 PROGRAM COMPONENTScitteiiitteeaueneeesssteraeeaesieaassaeesssneseasasseaessseessnsneessseeesanseessnnmasssnseessn 47
FIGURE 5.1 PROGRAM INTERFACEeeiiiitieiuitrasaittieesaancaseessneeaaiseesasasaeasaaseeasssessasassassasaansssenansanessssenes 50
FIGURE 5.2 CROSS PRODUCT OF UP AND MODEL — EYE OR EYE — MODELitiiiaiiiioitiaeeasaaniraeeasasaineneesesaaanenennes 57
FIGURE 5.3 CROSS PRODUCT OF UP AND MODEL = EYE «1vceteeecerrereuereessneneeasmseseesnasesssssssammsssemsnseeasisreesnsnsesnonnnees 59
FIGURE 5.4 CAMERA ROTATE AROUND UP VECTORcccttiitiittiiiieieitieeeeasinteeenieeasiniessseeeeasseneasnsseeesnneeassnnenenan 60
FIGURE 5.5 ANIMATED ROOM SCENEcutiiiiiiiteiiiieee et enieeeste e s et e e s sneeeastt e satneeeesaneeanneseeenneeessenneeeaan 63
FIGURE 5.6 A SHOT - CAMERA LOOKS AT REDeieiititeeestitietseitieeestieessastneasaesasassssesasssasssseasarsresanssresanseeeens 68
FIGURE 5.7 A SHOT - CAMERA LOOKS AT BLUE 1..v0eeutttevtteestreesnsaesennennnessseanensssssasssesesssnesssesssssensmsssessssnesses 69
FIGURE 5.8 SHOT 1| OF THREE-SHOTS IDIOM. ..cuttiiitieiitieetiteitee it atte sttt essaeseneaenassnteeertaeseeesenessabeanseesnsesenses 70
FIGURE 5.9 TWO FILM SHOTS OF FOUR-SHOTS IDIOM. SHOT 1 AND SHOT 3....eiiiiiiiiieeir e 71
FIGURE 5.10 TWO SHOTS FOR TWO PLAYERS. ONE IS STANDING WHILE ANOTHER IS SITTINGcccvveeeiririaenns 71
FIGURE 6.1 SCENE 1 SHOT 1 ~FACING RED teovieoiiioiieiiie e eteeeteetesreeeraseteeeteeseeeaeesaeaseeeaeeuseenesetsasaeeneeenneans 73
Figure 6.2 Scene 1 shot 2 — facing Red oo 73
FIGURE 6.3 SCENE 1 SHOT 3— LOOK AT BLUE +etettttteeeeiairieeseteaeesisieeeaanseaeaaaiaaasostsaessssessasanesanssanansseeeaennness 74
Figure 6.4 Scene 1 shot 4 — 100K @t BLUE.....ciiiioiriiiiie ettt eee 75
FIGURE 6.5 SCENE 2 SHOT 1, FACING RED ooviitieeitiresieeinteeetnesinaeesibtesatasesataesaasatsseesssatseasssaeeanesssseaaieean 74
Figure 6.65cene 2 shot 2 facing REd...cccoiviiiiiriiiii et 75
FIGURE 6.7 SCENE 2 SHOT 3,FACING BLUE t1esettttteituiteeeteittiesastateesinasiaseeiitsseaaseeessmeeasessseesnseeesenneeasennenasans 75

vil

Figure 6.8 Scene 2 shot 4, facing BLUEG....cooiiiiiiiiicce s 76

FIGURE 6.9 SCENE 2 SHOT 5, LOOK AT RED toeoeioieeee st e sir et ete et et st sne e e s sas s saaeannssananae 75
Figure 6.10 Scene 2 shot 6, 100K @f........ccooiiiiiiiciiniiiiiiie b 76
FIGURE 6.11 SCENE 3 SHOT 1. LOOK AT RED, AND RED GOES AWAY FROM SCREEN ... 77
FIGURE 6.12 SCENE 3 SHOT 2. RED ENTERS INTO SCREEN FROM RIGHTccccoiiiiiiiiiiiiiiicii e 77
FIGURE 6.13 SCENE 3 SHOT 3. CAMERA MOVES FORWARD CLOSER TO BOTH.......ccooiiiiiiiiiiiiircinie e 78
FIGURE 6.14 SCENE 4, SHOT 1 1ottt ettt e e e 79
Figure 6.15 Scene 4, ShOL 2......ooiiiic e 80
FIGURE 6. 16 SCENE 4 SHOT 3 oottt ittt ettt et sttt et e e e s e st e ee e 79
Figure 6.17 Scene 4 ShOt ...t e e 80
FIG. 6.18 SHOT L. K =128, ANGLE =90 ...ttt 81
Fig. 6.19 Shot 2 k=2.7, angle = 270.....c.oiiieiiiiiiice e s 82
FIG. 6.20 SHOT 3. K=1.7, ANGLE = 264 ettt 81
Fig. 6.21 Shot 4. k=2.3, angle = 00........ocei i e 82
F1G. 6.22 SHOTS. K=2. 1, ANGLE = 81 e 81
Fig. 6.23 Shot 6. k=2.1, angle = 81......ccccccrniiiiiic e 82
FiG. 6.24 SHOT 7. K=1.0 ,ANGLE =210 oot e e s 82
Fig. 6.25 Shot 8. k = 0.7, angle = 260..........ccooiiiiiiiiiiee e s 83
FIG. 6.26 SHOT 9. K=0.4, ANGLE = 190 i e 82
Fig. 6.27 Shot 10. k = 1.75, angle = 275. .. .o s 83
FIG. 6.28 SHOT I1. K= L.O5,ANGLE = 84.5 oot e 82
Fig. 6.29 Shot 12. k=3.5 ang1e = 90....ccciiiiiree ettt ettt ettt e 83
Fig. 6.30 Shot 13. k=1.0 angle = 90......oor e e 84

Vil

List of Tables

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.
TABLE 5.

PARAMETERS FOR CAMERA POSITION CALCULATING IN SCENE 1oiiiiiiiiiiiiiiiiieeiee e 73
PARAMETERS FOR CAMERA POSITION CALCULATING IN SCENE 2.....cuviviiinieriairiereeeeenneseneeeeennees 76
PARAMETERS FOR CAMERA POSITION CALCULATING IN SCENE 3....iiiiiiiiiiiiiiicis e 77
PARAMETERS FOR CAMERA POSITION CALCULATING IN SCENE 3. .coiiiiiiirireesireiere e e s eees 78
PARAMETERS FOR CAMERA POSITION CALCULATING SOME SEPARATE SHOTScccivieiieeieie e 80

Chapter 1 Introduction

1.1 Graphics and Film Grammar

Computer graphics is the field of visual computing, which utilizes computers both to
generate visual images synthetically and to integrate or alter visual and spatial
information sampled from the real world. Advances in computer technology have led to
widespread use of computer graphics, especially in the entertainment industry. Within the
computer graphics field, camera control and movements have long been studied in many
different contexts; for animation; for exploration/manipulation, or for presentation.

Film is a form of art expression used primarily for story telling. “Film language was
born when film makers became aware of the difference between the loose joining
together of small images in various state of motion, and the idea that these series of
images could be related to one another” [Arijon 76]. Film directors have implicitly
established a set of rules and conventions that encode proper ways to tell stories in an
accurate and explicit mode.

In the trend of current computer animation and games, camera manipulation become
more and more important since program designers wish both players and viewers to be
able to feel the atmosphere deeply while playing the role or watching the presentation.
Good camera techniques can enhance the viewer’s experience. A cinema grammar is a set

of rules and conventions to tell story clearly. Since the film industry has designed cinema

grammar to direct camera control in film-making, how to apply film language into
camera control in computer graphics has attracted much attention in computer graphics
research in recent years. The research described in this thesis shows that controlling the
camera in a cinematographic way can always show the viewers the most salient scenes in
an interactive graphics environment without bothering the viewers with the need to issue

camera control commands.

1.2 Problem description

In film conversation shots, there are constraints that specify the players’ positions as they
are projected on the screen. How to project the two players on the appropriate position on
the screen is the main problem we fill focus on this thesis. In order to get the desired
visual effect, we must place the camera position according to the rules of film grammar.
In this thesis, we provide algorithms for computing appropriate camera positions. The
results of each algorithm must satisfy all the constraints related with camera placement in
film grammar. Film grammar rules for two players will be introduced in this thesis, and
we will also implement some film scenes based on camera control provided by the

algorithm.

1.3 Contribution of thesis

This thesis describes the construction of a camera framework, and concentrates on
methods for satisfying multiple constraints on the camera position in filming two players
conversation. This camera framework is applied to obtain some visual etfects satisfying
film grammar in several film scenes.

In this thesis, some important rules of film grammar are stated and algorithms are
provided to achieve the desired projected positions on the screen for players. We show
how to translate the film grammar into mathematical requirements for 3D graphics and
how to derive the corresponding equations. We also find a creative and effective way to
solve these equations. We show that the algorithms provide a feasible way to control the
camera in graphics environment and complete several cinematographic shots, and to
apply a sequence of shots into a film scene. The algorithms we provide in this thesis is

useful for game program developer or film makers to do story boarding.

Chapter 2 Related Work

The subject of using film grammar to control camera positions and scene structure has
received relatively little attention in computer graphics and Al communities. Some
related works are listed below.

Drucker [Drucker 95] suggested a method of encapsulating camera tasks into well
defined units called “camera modules”. In this paper, the problem of setting up the
optimal camera position for individual shots and subject to constraints was suggested. A
camera module which can film a conversation between two virtual actors was described.
Some camera placement constraints related with two players conversation film were also
listed. But no algorithm for camera placement was suggested.

Christianson er al. [Christianson 98] described several principles of cinematography
and showed how they can be formalized into a declarative language, called the
Declarative Camera Control Language (DCCL). And they applied the DCCL within the
context of a simple interactive video game. By encoding 16 idioms from a film textbook,
he argued that DCCL represents cinematic knowledge at the same level of abstraction as
expert film directors. These idioms produce compelling animations. A set of possible
cameras is fully specified by the shot descriptions in DCCL and the geometry of the
scene. The final selection from among this set of different shots is made according to how
well each shot covers the scene.

Lin et al. [Lin 04] proposed a mechanism of camera control in 3D computer games.

The system can automatically direct the camera based on some cinematic heuristics.
Because a game can usually be decomposed into several specific scenes which often
occur in motion pictures, they used a sequence of shots similar to cinematic heuristics to
describe the camera behavior in a scene. The control mechanism collects and analyses
information from the game content and automatically directs the camera to capture event
scenes. They encapsulated cinematic camera techniques into camera modules and used a
finite-state machine model to encode the procedure of shooting a scene into a description
of shots. Therefore, the system can also assist designers to add effects of cinematic
camera control by providing camera modules and descriptions of shots. The concept of
frame-coherence is integrated into their system for smooth camera movement . With all
these features, this camera control module can automatically generate shots and arrange
these shots to provide a cinematic effect suitable for game playing.

Bares et al. [Bares 97] developed UCAM (User-Customized Automated Montage), a
real-time camera planner that employs cinematographic user models to render customized
visualizations of dynamic 3D environments. Bares developed a user-sensitive realtime
camera planner, User-Customized Automated Montage (UCAM). UCAM creates
customized camera control to plan camera positions, view directions, and camera
movement through its cinematographic user model. In the meantime, users can adjust the
camera control by their visualization preference based on this cinematographic user

model.

Chapter 3 Background

In this chapter, we will introduce background of cinema grammar and OpenGL graphics
principle.

Arijon [Arijon76] provides straightforward descriptions for filming any of a large
number of situations. These form a perfect basis for deriving a large class of camera
primitives. This class of primitives consists of projection constraints that involve the
placement of the camera based on the projection of an object onto the screen.

OpenGL graphics produces a series of coordinate transformations: model view
transformation, projection transformation, and viewport transformation. These
transformations are combined together to make an OpenGL scene on the screen. And
OpenGL provides function gluLookAt () for users to control the camera. Arijon
provides us cinematic grammar to control camera in filming, while OpenGL provides us
a function to control camera in computer graphics, so we can apply these cinematic

camera rules to computer graphics camera control.

3.1 Cinema grammar

A film can be considered to be a sequence of frames, and it is often helpful to think of a
film as having structure. At the highest level, a film is a sequence of scenes, each of
which captures some specific situation or action. And each scene in the film is composed

of one or more shots. A single shot covers the small portion of a movie between when a

camera 1s turned on and when it is turned off. Typically, a film is comprised by a large
number of individual shots with each shot’s duration lasting from a second or two in

length to perhaps tens of seconds [Christianson 96].

3.1.1 Camera Placement

3.1.1.1 Line of Interest

All dialogue scenes have two central players. The line of interest is an imaginary vector
connecting two interacting players. It is directed along the line of an actor’s motion, or
oriented in the direction that the actor is facing. The line of interest between two central
players in a scene is based on the direction of the looks exchanged between them [Arijon

76].

3.1.1.2 The Triangle Principle

We can observe a line of interest from three extreme positions without crossing to
the other side of the line (see triangle in Figure 3.1, note the symbol represents a human
figure-the flat side indicates the face of the figure). These three extreme positions form
a triangular figure with its base parallel to the line of interest [Arijon 76]. The
importance of this triangle is that each performer (X or Y) is framed on the same side of

the screen in each shot with player X on the left side and player Y on the right.

Players’ face -,

The Line of

interest

Figure 3.1 Two triangular formations on each side of the line of interest.
Two triangular formations can be employed one on each side of the line of
interest. One of them has to be chosen, excluding the position on the other.

From Figure 3.1, we know that two triangular camera formations can be set, one on
the other side of a line of interest which is symmetric to the triangle in Figure 3.1 along
the line of interest.

But we cannot successfully cut from a camera position in one pattern to another on
the other triangular arrangement. If we do that, we will only confuse our audience,
because using two camera positions located on different triangular formations will not
present a steady emplacement of the players on the same areas of the screen.

According to Arijon, a cardinal rule for the triangular camera principle is to select
one side of the line of interest and stick to it. This is one of the most respected rules in

film language.

3.1.1.3 Importance of the Heads

It is usually quite simple to draw the line of interest flowing between two players when
they are standing face to face, or sitting facing each other. But when the actors are lying
down with their bodies parallel or extended in opposite directions, it seems more difficult.
However, if we remember only that the central points of two persons talking to each other
are their heads, then it is quite simple.

In film grammar, the positions of the bodies do not really count, it is the heads that
matter. They attract our attention immediately, regardless of the positions of the bodies,
because the head is the source of human speech and the eyes are the most powerful
direction pointers that a human being has to attract or direct interest. Even when one actor
has his back to the other, or they are back to back, a line of interest passes between their
heads. In all film scenes, the line of interest must flow along the line between the heads

of the two central performers.

3.1.1.4 Five basic variations of the triangle principle

There are five variants of the triangle principle: 1) external reverse angles, 2) internal

reverse angles, 3) parallel positions, 4) right angle positions and 5) common visual axis. 1

will examine each of them separately.
The two sites on the base of the triangular camera locations (parallel to the line of
interest of the scene), provide the three variations with which a linear disposition of the

players can be covered. The cameras placed on those two viewpoints can be pivoted on

their axis, obtaining three well differentiated positions. Each one of those positions is
applied in pairs. Both camera angles on the base of the geometric figure assume identical
positioning in their relation to the players covered.

External Reverse Angles.

The Lineof o4 |
interest

v

Figure 3.2 External reverse angles.
The cameras in the two positions parallel to the line of interest are directed
inward towards the players.

In this first variant, both camera positions on the base of the triangle are behind the
backs of the two central players, angled in, close to the line of interest between the

performers and covering them both (Fig. 3.2).

Internal Reverse Angles. In the second variant, the cameras are between the two players,
pivoted outwards from the triangular figure, and close to the line of interest thought not
representing the viewpoints of the performers (Fig. 3.3). In either case the rapport is not

that of a head-on confrontation, though quite close to it in effect.

10

>

v

Y
The Line of
interest

Figure 3.3 Internal reverse angles.
In this variant the two camera positions parallel to the line of interest point outwards,
covering each player individually.

Fig. 3.4 is a form of internal reverse with the cameras back to back to represent the

subjective viewpoint of the player excluded from the shot.

The Line of
ST ‘ I: :I b >
interest

Figure 3.4 Subjective camera angles.
If the camera positions are back to back on the line of interest itself, they each become
the subjective point of view of the player excluded from the shot.

Parallel Positions. In the third variant the camera sites are on the base of the triangular
figure close to the line of interest, deployed with their visual axes in parallel, and covers

the players individually.

11

The Line of

interest

_Mm

Figure 3.5 Parallel positions.
When both camera positions have their visual axis in parallel, they cover each player
individually giving us a profile view.

Right Angle Positions. When the actors are placed side by side in an ‘L’ formation, the
camera viewpoints on the base of the imaginary triangle acquire a right angle relationship,
close to the line of interest passing between the players. In this case, the camera is in

front of the players (Fig. 3.6).

v

X
The Line of
interest \‘

~

Figure 3.6 Right angle positions
When the players are placed side by side in an L formation, a right angle camera
relationship is assumed by the two sites located on the base of the triangular figure for
camera placement.

The same arrangement can be placed behind the players, with which a new variant

12

for dialogue coverage is achieved, shown in Fig. 3.7.

v

mterest

The Line of ‘\ /‘/

Figure 3.7 The right angle camera positions can also be behind the players

Common Visual Axis. To cover only one of the players in a shot while framing both
players on the other, the camera in one of the two viewpoints on the triangle base, must
be advanced on its visual axis.

Advancing on either of the two viewpoints (optically or physically) we obtain a
closer shot of the selected player, thus emphasizing him/her over his/her partner. Fig. 3.8
shows the arrangement.

The Line of

interest

v

Figure 3.8 Advance on a camera common visual axis.
To obtain coverage of a single player in the group, one of the cameras is moved forward
on the visual axis line of either of the two positions on the base of the triangle.

The above mentioned five basic variations are used not only to cover static
conversations of a group of players, but also the movement of those players on the

screen.

3.1.1.4 Camera Placement

Film directors specify camera placements relative to the line of interest. Figure 3.9

shows the first three triangle variants can be combined to multiply the camera placement.

X Y

The Line of R
interest g

A1
b ot
\\\\ [—l ,’,’
Parallel . d 7 Parallel
Apex

Figure 3.9: Camera placement is specified relative to the “line of interest”
(Adapted from figure 4.3 and figure 4.11 of Arijon 1976)

Shooting actor X from camera position b and £ gives a parallel camera placement.
Filming X from position ¢ and e yields an internal reverse placement. Shooting from
position d results in an apex shot that shows both actors. Finally, filming from a or g
gives an external reverse placement. All positions can be combined in pairs to cover both
players, except for the internal and parallel sites that cover each of the subjects

individually.

14

3.1.1.5 Camera Movement and Distance
During a shot the camera can remain fixed, or it can pan (rotate about a vertical axis, so
the image appears to move horizontally), or it can it (rotate about a horizontal axis, so
the image appears to move vertically), or it can track (travel at different speeds attached
to a moving vehicle). It moves to support the action that it records.

The camera can do all the above movements from different distances.
Cinematographers have identified that certain “cutting heights” make for pleasing
compositions while others yield ugly results (e.g., an image of a man cut off at the

ankles). Roughly there are five basic definable camera distances. An extreme close up

shows the head and cuts at the neck; a close up cuts under the chest or at the waist; a
medium view cuts at the crotch or under the knees; a full view shows the entire person;

and a long view provides a distant perspective [Arijon 76].

3.1.2 Heuristics and constraints

In this thesis, I surveyed and picked some important principles as considerable factors of
camera control. And they are general rules in film grammar, not only apply to two people,
but also more than two. These principles are listed in [Lin 04] [Christianson 96]:

Parallel editing: Visualized scenes in a film should alternate between different characters,
locations, or times.

Only show peak moments of the story: Repetitive moments from a narrative should be

deleted.

15

Triangle principle (Do not cross the line): Once an initial shot is taken from the left or
right side of the line of interest, subsequent shots should remain on the same side. This
rule ensures that the direction of the actor’s motion is clear. Again this is the triangle
principle.

Let the actor lead: The actor initiates all movement, and then the camera follows.
Therefore, camera setup should be considered before the actor.

Break movement: A scene illustrating motion should be broken into two shots. When
the actor appears to move across the middle of the screen, a shot is often cut to another

shot.

3.1.3 Idioms Related With Dialogue Between Two Players

Perhaps the most significant invention of cinematographers is the notion of cinematic

idiom — a stereotypical way to capture some specific action as a series of shots.

3.1.3.1 Both Players Sit Facing Each Other
For example, in a dialogue between two people, a filmmaker might begin with an apex
view of both actors, and then alternate views of each, at times using internal reverse
placements and at times using external reverse.

When two players face each other, the strongest camera positions to record their
dialogue are located on the base of triangle, parallel to the line of interest. Position a and

g of the external reverse camera arrangement, have two immediate advantages over the

16

camera site situated on the apex of the triangle (position d). The first advantage is that
they give composition in depth, because from their viewpoints, the actors are placed on
two different planes: one close to the camera and the other further back.

The second advantage is that one of the actors faces the camera, getting the viewer’s
full attention, while the other has his/her back to us. In theatrical terms, the second actor
has an open body position (face to the audience), while the first has a closed body
position (his/her back to the audience). Therefore the player facing the camera is the
dominant one.

On the screen this is accentuated further by the distribution of screen space in the

composition of the shot, as shown in figure 3.10.

O O
& L

Goo
N e
K—O\ o

|

Figure 3.10 Filming a conversation between two players

On normal screen sizes, the actor who speaks is given two-thirds of the screen space,

while his/her partner has only one-third.

17

While there is an infinite variety of idioms, film directors have learned to rely on a
small subset of these. Indeed, film grammar books (Arijon 1976) are primarily a
compilation of idioms along with a discussion of the situations when a filmmaker should

prefer one idiom over another.

3.1.3.2 One Player Sits While the Other Stands
Camera height influences presentation. In the previous situation that two players sit face
each other , the lens is usually at the same height as the actors” heads .

If one actor stands and the other is sitting, the camera height can vary for the reverse
shot.

In the previous examples when two players sit facing each other, we use external
reverse angles. When one of them sits while another stands, we can also use external
reverse camera placement. If internal reverse positions are used to cover the same
situation (one actor stands, the other sits) for single shots of each player the camera is

alternately high and low, as if seeing the scene from each player’s viewpoint.

3.1.3.3 Player X Moves Towards Player Y
The number of visual permutations possible for one player approaching another or a
group is almost limitless. I will describe two approaches for basic situations that are used

very often in this situation.

18

Three-shot Idiom

Figure 3.11 presents a three-shot idiom. The idiom, adapted from Arijon (1976), provides
a method for depicting short-range motion of one actor approaching another. The first
shot is a close up; actor X begins in the center of the screen and exits left. The second
shot begins with a long view of actor Y; actor X enters from off-screen right, facing Y. Y
may be either standing or sitting. The final shot begins with a medium view of Y, with

actor X entering from off-screen right and stopping close to Y.

- , L

Figure 3.11 A three-shot idiom of one player approaching another

Four-shot Idiom
Figure 3.12 shows a four-shot idiom to depict short range motion of one actor
approaching another. The idiom adapted from Arijon (1976), make the first shot to be

actor X walks straight towards the camera site. Then the camera pans to look at his side

19

in the second shot. In the last two shots, the moving actor X begins his walk with his back

to the camera and concludes by arriving at a profile position.

Figure 3.12 A four-shot idiom of one player approaching another

3.2 Computer Graphics — OpenGL

3.2.1 About OpenGL

OpenGL (Open Graphics Library) is a software interface to graphics hardware. It consists

of three libraries: the Graphics Library (GL), the Graphics Library Utilities (GLU) and

20

the Graphics Library Utilities Toolkit (GLUT).

OpenGL is the premier environment for developing portable, interactive 2D and 3D
graphics applications. Since its introduction in 1992, OpenGL has become the industry's
most widely used and supported 2D and 3D graphics application programming interface
(API), bringing thousands of applications to a wide variety of computer platforms.
OpenGL runs on every major operating system including Mac OS, OS/2, UNIX,
Windows 95/98, Windows 2000, Windows NT, Linux, OPENStep, and BeOS; it also
works with every major windowing system, including Win32, MacOS, Presentation
Manager, and X-Window System. OpenGL is callable from many programming
languages, including Ada, C, C++, Fortran, Python, Perl and Java. It also provides
complete independence from network protocols and topologies.

OpenGL doesn’t provide high-level commands that describe models of
three-dimensional objects. Such commands might allow you to specify relatively
complicated shapes such as automobiles, parts of the body, airplanes, or ships. Using
OpenGL, we can build our own models consisting of a series of geometric primitives
such as point, line, or filled polygon, plus some modeling features provided by OpenGL
Utility Library (GLU) such as quadric surfaces, NURBS curves and surfaces, and
incorporate a broad set of rendering, texture mapping, special effects, and other powerful
visualization functions. Developers can leverage the power of OpenGL across all popular
desktop and workstation platforms, ensuring wide application deployment. All OpenGL

applications produce consistent visual display results on any OpenGL API-compliant

21

hardware, regardless of operating system or windowing system.

3.2.2 Model View and Projection

We will introduce OpenGL transformation here. We will discuss the coordinate system,
modelview transformation and projection transformation which are very important in

OpenGL.

3.2.2.1 Coordinate System and transformation
OpenGL uses both the two-dimensional (2D) coordinate system and three-dimensional
(3D) coordinate system but it is primarily intended for 3D applications.

In general, several different Cartesian reference frames are used in the process of
constructing and displaying a scene. First, we can define the shapes of individual objects,
such as trees or furniture, within a separate coordinate reference frame for each object.
These reference frames are called modeling coordinates. Once the individual object
shapes have been specified, we can construct a scene by placing the objects into
appropriate locations within a scene reference frame called world coordinates. This step
involves the transformation of the individual modeling coordinate frames to specified
positions and orientations within the world-coordinate frame.

After all parts of a scene have been specified, the overall world-coordinate
description is processed through various routines onto one or more output-device
reference frames for display. This process is called the viewing pipeline.

World-coordinate positions are first converted to viewing coordinates corresponding to

22

the view we want of a scene, based on the position and orientation of a hypothetical
camera. Then object locations are transformed to a two-dimensional projection of the
scene, which corresponds to what we will see on the output device. The scene is then
stored in normalized coordinates, where each coordinate value is in the range from —1 to
1. Normalized coordinates are also referred to as normalized device coordinates, since
using this representation makes a graphics package independent of the coordinate range
for any specific output device. We also need to identify visible surfaces and eliminate
picture parts outside the bounds of the view we want to show on the display device.
Finally, the picture is scan converted into the refresh buffer of a raster system for display.
The coordinate systems for display devices are generally called device coordinates, or
screen coordinates in the case of a video monitor. Often, both normalized coordinates and
screen coordinates are specified in a left-handed coordinate reference frame so that
increasing positive distance from the xy plane (the screen, or viewing plane) can be

interpreted as being farther from the viewing position [Hearn 03].

Viewing and
V/ Projection Coordinates

m

Modeling

Coordinates

-

Normalized
World Coordinates
Coordinates

Device

Coordinates
Figure 3.13 Demonstration of modeling coordinates being transformed to
device coordinates for a three-dimensional scene

23

From the above description, we know that a series of three computer operations
convert an object's three-dimensional coordinates to pixel positions on the screen:

1. Transformations, which are represented by matrix multiplication, include
modeling, viewing, and projection operations. Such operations include
rotation, translation, scaling, reflecting, orthographic projection, and
perspective projection. Generally, we use a combination of several
transformations to draw a scene.

2. Since the scene is rendered on a rectangular window, objects (or parts of
objects) that lie outside the window must be clipped. In three-dimensional
computer graphics, clipping occurs by throwing out objects on one side of a
clipping plane.

3. Finally, a correspondence must be established between the transformed

coordinates and screen pixels. This is known as a viewport transformation.

3.2.2.2 Model View Transformation

The viewing transformation is analogous to positioning and aiming a camera. The
modeling transformation is to position and orient the model. In OpenGL, the viewing and
modeling transformations are combined to form the modelview matrix, which is applied
to the incoming object coordinates to yield eye coordinatés.

The three OpenGL routines for modeling transformations are glTranslate* (),

24

glRotate* (), and glScale* (). These routines transform an object (or coordinate
system) by moving, rotating, stretching, or shrinking it. All three commands are
equivalent to producing an appropriate translation, rotation, or scaling matrix, and then
calling glMultMatrix* () with that matrix as the argument. However, these three
routines might be faster than using glMultMatrix* (). OpenGL automatically
computes the matrices for us.

A viewing transformation changes the position and orientation of the viewpoint.
Using the camera analogy, the viewing transformation positions the camera tripod,
pointing the camera toward the model. Just like we move the camera to some position
and rotate it until it points in the desired direction, viewing transformations are generally
composed of translations and rotations. In order to achieve a certain scene composition in
the final image or photograph, we can either move the camera, or move all the objects in
the opposite direction. Thus, a modeling transformation that rotates the model
counterclockwise is equivalent to a viewing transformation that rotates the camera
clockwise, for example. Finally, we know that the viewing transformation commands
must be called before any modeling transformations are performed, so that the modeling
transformations take effect on the objects first.

At the very beginning, two coordinate system, eye coordinate system and object
coordinate system are the same. If we draw an object at this moment, it will be located at
the origin of the eye coordinate system. When we apply model transformation, we change

only the object coordinates. For example, we apply a translate transformation to the

25

object. The world coordinate does not change. But the object coordinates move to a
particular point specified by translate command. As a result, the object finally appear at
the point instead of the origin of the eye coordinate origin.

The point we look from is usually called the eye position, viewing point or camera
position. The direction look into is called the view direction. The point that appears in the
centre of the screen is called a look-at point or model point.

OpenGL function gluLookAt () is used to define a eye coordinate system. The call
of this function is also a model view transformation. It encapsulates a series of rotation
and translation commands, and form the modelview matrix. Thus it is a easy way to
construct modelview matrix and does not require the programmer to do all these

transformation step by step.

3.2.2.3 Projection Transformation

In addition to the field-of-view considerations, the projection transformation determines
how objects are projected onto the screen, as its name suggests. OpenGL provides two
basic types of projections, along with several corresponding commands for describing the
relevant parameters in different ways. One type is the perspective projection, which
matches how we see things in daily life. Perspective makes objects that are farther away
appear smaller; for example, it makes railroad tracks appear to converge in the distance.
If we are trying to make realistic pictures, we should choose perspective projection by

using glFrustum() command or gluPerspective () command. The way these

26

two commands are used is as below:

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;
glFrustum(left, right, bottom, top, near, far);

This code creates a matrix for a perspective-view frustum and multiplies the current
matrix by it. The frustum's viewing volume is defined by the parameters: (left,
bottom, -near) and (right, top, -near) specify the (x,), z) coordinates of the
lower left and upper right corners of the near clipping plane; near and far give the
distances from the viewpoint to the near and far clipping planes. They should always be

positive.

A similar effect can be achieved in a different way by the following code:
glMatrixMode (GL_PROJECTION) ;

glLeoadIdentity () ;
glPerspective(fovy, aspect, zNear, zFar);

This code creates a matrix for a symmetric perspective-view frustum and multiplies the
current matrix by it. The £ovy argument is the angle of the field of view in the x-z plane;
its value must be in the range [0.0,180.0]. The aspect ratio is the width of the frustum
divided by its height. The zNear and zFar values are the distances between the
viewpoint and the clipping planes, along the negative z-axis. They should always be
positive.

The other type of projection is orthographic, which maps objects directly onto the

27

screen without affecting their relative size. Unlike perspective projection, the size of the
viewing volume of this kind of projection does not change from one end to the other, so
distance from the camera does not affect how large an object appears. Orthographic
projection is used in architectural and computer-aided design applications where the final
image needs to reflect the measurements of objects rather than how they might look.
Orthographic projection is set as default in OpenGL.

By default, viewing volume orthographic projection is the 2*2 cube where x 1is
between [-1, 1], y is between [-1, 1], z is between [-1, 1], and with the screen in the

plane z = 0. An example:

glMatrixMode (GL_PROJECTION) ;
glloadIdentity () ;
glortho (left, right, bottom, top, near, far);

The command glOrtho () creates an orthographic parallel viewing volume. It makes
object display in a way as if we are viewing the window from an infinitely far point.

In our implementation, we deployed perspective projection.

3.2.2.4 Viewport Transformation

Together, the projection transformation and the viewport transformation determine how a
scene gets mapped onto the computer screen. The projection transformation specifies the
mechanics of how the mapping should occur, and the viewport indicates the shape of the

available screen area into which the scene is mapped. Since the viewport specifies the

28

region the image occupies on the computer screen, we can think of the viewport
transformation as defining the size and location of the final processed photograph -
whether it should be enlarged or shrunk, for example.

The call

glviewport (GLint x, GLint y, GLsizeil width, GLsizel height);

defines a pixel rectangle in the window into which the final image is mapped. The (x, vy)
parameter specifies the lower left corner of the viewport, and width and height are
the size of the viewport rectangle. By default, the initial viewport values are (0, 0,
winWidth, winHeight), where winWidth and winHeight are the size of the
window.

The aspect ratio of a viewport should generally equal the aspect ratio of the viewing
volume. If the two ratios are different, the projected image will be distorted as it is

mapped to the viewport.

3.2.2.5 OpenGL Function gluLookAt()

The OpenGL function gluLookAt () is used to define the eye position, or camera
position, the direction to look into, and the up direction (upward vector). Calling this
function performs a modelview transformation since it changes the current modelview
matrix. It makes the look-at point (model origin) separate away from the viewing point

(eye coordinate origin) so that we can view the scene from arbitrary distance specified by

29

viewing point and lookat point.
Function gluLookAt ()encapsulates a series of rotation and translation commands,
and form the modelview matrix. It specifies a model-view transformation that simulates

looking at the model or scene from a particular viewpoint.

vold gluLookAt (eyeX , eyeY , eveZ , centerX ,b centerY , centerZ,
upX , upY¥ , upZ);

eyeX, eyeY, eyeZ - Specifies the position of the eye point.
centerX, centerY, center?Z - Specifies the position of the reference point.

upX, upY, upZ - Specifies the direction of the up vector.

gluLookAt () creates a viewing matrix derived from an eye point, a reference point
indicating the center of the scene, and an UP vector.

The matrix maps the reference point to the negative z axis and the eye point to the
origin. When a typical projection matrix is used, the center of the scene therefore maps to
the center of the viewport. Similarly, the direction described by the UP vector projected
onto the viewing plane is mapped to the positive y axis so that it points upward in the
viewport. The UP vector must not be parallel to the line of sight from the eye point to the

reference point. We will show how the modelview matrix is formed in the following

description.
et N = (centerX - eyeX, centerY - eyeY, centerZ - eyeZ)
Let V = (upX , upY , upZz)

30

Since vector N defines the direction for the Z axis direction and the view-up

view

vector V is used to obtain the direction for the Y axis, we need only determine the

view

direction for the X axis.

view

First, we can get the normal along the Z, axis,
N
n :m = (nx,ny,nz)

We can compute a third vector U that is perpendicular to both N and V. And we get

u (u defines the direction for the positive X axis) by:
Vxn
u=——=(u,,u,u,)
v

The vector cross product of n and u also produces the adjusted value for V,

perpendicular to both N and U, along the positive Y axis.

view

v=nXu=(,v,,v.)
Transformation from world to viewing coordinate, we need to:

(1) Translate the viewing-coordinate origin to the origin of the world-coordinate system.

Y and

w? w

Y

view ?

Z axes with the world X

(2) Apply rotations to align the X , . Diew

Z , axes, respectively.
The viewing-coordinate origin is at world position P= (eyeX , eyeY , eyeZ).

Therefore, the matrix for translating the viewing origin to the world origin is:

1 0 0 —eyeX
0 I 0 —eyeY

- eye
0 0 1 -—eyeZ
0 0O 1

31

For the rotation transformation, we can use the unir vectors u, v, and n to form
the composite rotation matrix that superimposes the viewing axes onto the world frame.

This transformation matrix is

u, u, u_ 0

v v, v, O
R= T

n, n, n_ 0

0 0 0 1

where the elements of matrix R are the components of the u v n axis vectors.

And gluLookAt () is equivalent to:

glMultMatrixf (R) ;
glTranslated (-eyex, -eyey, -eyez);

In the above description, we have P= (eyeX , eyeY , eyeZ).The coordinate
transformation matrix is then obtained as the product of the preceding translation and

rotation matrices:

u, u, u, —ubP
v, v, v. —vP
er ve = RT = ')
N n, n, n, —npP
0 0 O 1
Matrix M transfers world-coordinate object descriptions to the viewing reference

frame. Translation factors in this matrix are calculated as the vector dot product of each
of the u,v and n unit vectors with P, which represents a vector from the world
origin to the viewing origin. In other words, the translation factors are the negative
projections of P on each of the viewing-coordinate axes (the negative components of

P in the viewing coordinates). These matrix elements are evaluated as

32

—u.P =—eyeX *u_ —eyeY *u, —eyeZ*u.

—v.P=—eyeX *v _—eyeY *v —eyel*v,

—nP=—eyeX *n, —eyeY*n, —eyel*n,
From the above analysis, we know gluLookAt () constructs a modelview matrix
automatically, and avoids the programmer having to do these calculation step by step.
Cleary, it is much easier to use gluLookAt () than to perform these calculations in the

application code. So we are going to use OpenGL gluLookat () to implement our

camera control.

33

Chapter 4 Design

In this thesis, We propose methods for obtaining cinematic camera positions and provide
a camera module that can be used to efficiently and effectively direct camera control in
computer graphics game animation, presentation or computer animated cartoons. We
define a camera class and provide a series of functions that can be used to control camera
movement, camera collision detection and cinematic camera position calculation. Also,
we will apply this camera module to a room conversation animation between two people
to demonstrate the effectiveness and efficiency of the camera control.

In order to obtain the objective described above, we will separate our design into two
parts. First we will describe the camera module and especially the cinematic camera
position calculating algorithm design. Then we will describe the room conversation

animation implemented by cinematic camera control.

4.1 Camera module design

4.1.1 Camera components

The design of camera module is showed in figure 4-1. It has three components: camera
movement, collision detection, and position calculation. In order to make this module

more general, I will use vector, quaternion and matrix transformations. The camera can

34

move left/right, up/down, forward/backward, pan and tilt. Whenever a viewer or player
moves the camera in the virtual environment, collision detection is necessary in order to
avoid camera collision with any objects in the environment. A camera cinematic position
calculation analyze people’s position in the environment, camera up direction, and user
input parameters or default value of those parameters, to obtain an appropriate camera
position and model position to look at. Thus the viewer or player will see cinematic

visual pictures on the screen.

I Camera module |

—

|Camera movementl | Camera idle I |Positi0n calculate|

A 4
[Collision detection|

Figure 4.1 Camera Components

Camera movement includes: move left/right; move up/down, move
forward/backward, pan and tilt. In order to make the camera movement function general,
we will use matrix and quaternion. Camera idle is used to make camera movement
smooth.

For collision detection, we must calculate an object’s bounding box. In 3D graphics
environment, the bounding box of an object has six faces. We build a plane equation for
each face, specify its front and back face direction. And we can imagine that the camera
is a sphere which has a radius r. Normally, when a camera moves to position point, we

calculate the distance from the camera sphere center to each plane of an object’s

35

bounding box. The distance value could be positive or negative. If its absolute value is
less then the radius » of the sphere, then the camera intersects with the plane, implying
that a collision occurs. If the distance is greater or equal to the r, then the camera is in
front of the plane. When camera is in front of any one plane of a bounding box, we do not
need to detect other planes. And we know that no collision happens. If the distance is
negative and its absolute value is greater than r, then camera is at the back of a plane of
the bounding box. We must check if the camera is at the back of all the six planes of the

bounding box. If it is, it means camera collides with the object.

Figure 4.2 Bounding Box for objects inside a room

To check if camera collides with a room, the criteria is opposite to that of objects in
the room. We treat inside direction of a room as front and outside direction as back. If
camera is behind or intersects with one plane of a room’s bounding box, then it collides
with the room , and we do not bother to check other planes. The same reason, if camera is
in front of all the planes of a room’s bounding box, then we conclude that camera is

inside the room and no collision occurs.

36

) Back
+—-—» Front

Figure 4.3 Bounding Box for a room

4.1.2 Cinematic camera position algorithm design

In chapter 3, We introduced the basic concepts of film grammar. In general, the position
of the camera should be based on conventional techniques that have been established in
filming a conversation. The placement of the camera is based on the position of the two
people having the conversation. Here, we will define constraints for an over-the-shoulder

shot and constraints for a corresponding over the shoulder shot.

Constraints for an over the shoulder shot [Drucker 95]

0 The height of the character facing the view should be approximately 1/2 the size of
the frame.

o The person facing the view should be at about the 2/3 line on the screen.

o The person facing away should be at about the 1/3 line on the screen.

0 The camera should be aligned with the world up.

o The field of view should be between 20 and 60 degrees.

37

o The camera view should be as close to facing directly on to the character facing the

viewer as possible.

Constraints for a corresponding over the shoulder shot:
0 The same constraints as described above apply here, but the people should not switch
sides on the screen; therefore the person facing towards the screen should be placed

at the 1/3 line and the person facing away should be placed at the 2/3 line.

After analyzing the above constraints, we can keep the camera up vector always aligned
with world up vector, make camera look at the head of those people in order to make
them appear 1/2 the size of the screen, and limit the camera perspective angle between 20
and 60 degrees. To calculate the camera position in order to satisfy other specifications
above, we will analyze the algorithm in the below descriptions.

In OpenGL coordinate system or world coordinate system: Y is up; X is to the
right; and Z is towards the camera (eye). According to chapter 3, film grammar assigns
great importance to the players’ heads, and almost always requires the camera to point at
them. In our algorithm, we will apply this rule.

There are two people (i.e., heads): a nearer one at N and a furtherone at F. F is
the person we want to look at. The camera is at C. We are interested in the triangle
CNF . Note that n is the distance from the camera to the nearer head and f is the

distance to the further head.

38

C n N

Figure 4.4 Triangle formed by two players and the camera

Since three points define a plane, CNF is a plane. The first thing we compute is the
angle @ at C: thisis the angle between the two heads as seen from the camera. Since
. . : " 1
according to the film grammar, our constraints are, one head should appear at position —
3
o 5
and the other at position © on the screen.
Using a perspective projection, we have the Y angle £ (called fovy in OpenGL)
and the aspect ratio r = w/h. The relation between the X angle & andthe Y angle

tan(c/2) and _ tan(c/2)

s ———, r = ————. Consequently
tan(f/2) tan(f/2)

a =2tan "' (rtan(S/2))

A perspective projection frustum volume of CNF is showed below:

39

Figure 4.5 Perspective projection frustum of two players and camera

From Figure 4.3, we can see:

tan(y) = (% *tan(a/2))/d = &;”22
@) = 2 #angars 2 1 = 200D
So
a1
¥ =tan (5 tan(c/ 2))
d=tan™ (% tan(ar/ 2))
Then,

=y+0

We can extend this idea, applying it to display the further person on % of the screen,

m
and nearer person on of the screen. Then

40

tan(y) = ((1— ?)d *tan(ar/2))/d = (1- %) tan(er/2)
tan(&) = (?d *tan(ar/2))/d = ?tan(a/ 2)
So
y = tan™ (1 ?) tan(cr/ 2))

S =tan™ (? tan(cr/ 2))

By the same reasoning,
O=y+0

Applying the cosine rule to the triangle CNF gives

c’=f*+n*-2fncosO
Assume that the further head F is k times as far from the camera as the nearer head
N . For most applications, k is roughly between 3 and 4 in an over the shoulder shot.
Then f =kn and we have

c’=k’n*+n’>-2fucosé

=n’ (k2 +l—2kcos0)

Let
s*=k*+1-2kcos®
Note that s is a constant that depends only on the perspective projection and the value
chosen for k. We also know c, because it is the distance between the heads. We now
have:
n=cls

f=kcls

41

Next, assign coordinates in the CNF plane to each point:
C=(x.,y.2.)
N=(x,,5,,2,)
F=(x,y,20)
so that
(x, =)+ (. —y,) +(z, —z) =0’
(., =x)V +(y, -y, + @z~ =f"
Then we have
(. —x) +(, -y, +(z,—z,) ="/’
=X+ (. =y + (2 —3f) =k’ s
We have to solve these equations to find the camera position (x_,y_,z.).To simplify

the equations, put the near person at (0,0,0) and the far person at (1,0,0). Then

Xn =
y, =0
ZII _O
X, =1
Y=
7, =

In this simplified coordinate system, we have ¢ =1. With these substitutions, the
equations become to the equations below:
x4y, 4z =18 (1)

(x, D> +y°+z°=k>/s)

42

Subtracting (1) from (2), eliminates z_ and gives
(x, =) =x? =k -1)/s’

which we can solve for 2x_ giving

2x =1- >

_sz—k2+1

2
N

_k7‘+1—2k0039—k2+1

2

S
=2(1—k<2:os6’j
0y
and so
1—-kcosd
X, =—F

A

Substitute x, into equation (1), we have:
2 2
y(' + Z(‘ = —7 - xC
S

1 (l—kcos«?)2

B k*+1-2kcos@—1+2kcos@—k*cos’ @

- 4

S
_ k*sin* @
= —
S
and therefore, we can get
ksin@
Yy, =f———.coso
§2
ksin@ . .
z, =f———sino (020" and 0<360°)
s

43

(using s*=k>+1-2kcosf)

The positive and negative square roots correspond to two possible camera positions. The
diagram shows one position; the other position is obtained by reflecting C in the line

NF in figure 4.2.

We now have the camera position (x,,y,,z,), in the special coordinate system. To

obtain the true camera position in the original coordinate system, we apply the following
transformations to (x.,y,,z.):

1. Rotate about the Y axis through an angle ¢ where

X .
cosgp=—L—"

7, -2,

sing =
¢ a

where d, = \/(xf -x,)’ +(z, —z,)°
2. Rotate about the X axis through an angle ¢, where

yf _yn
cos@ = ——
d2

, ;= 2,

singp = ———
d

2

where d, = \/(y_,- =y, +(z, —z,)

3. Scale (increase the distance NF from 1 to ¢, and other distances in proportion, where

¢ =y0r, =37+ (3, =3, 4 (2, 2,

X =cx
’_
y =y
7’

<l =2

44

4. Translate (move N to its correct position (x,,y,,Z2,)).

X' =cx+x,
/_
y=c+y,
’
J=cz+z,

When these transformations have been applied to (x,,y,,z,), we should have the

correct camera position.

As a check, the same transformations applied to (0, 0, 0) and (1, 0, 0) should give the
correct positions for N =(x,,y,,z,) and F=(x,,y,,z,),respectively. M isa point
on the line of CF rotate about Y axis —y get F’,or CN rotate about Y axis &
get N " . Here, we treat M = # to make it more accurate. In OpenGL, the look-at
pointis at Z axis of the view coordinate system. So we can extend M along Z view
axis to obtain a more distant model point, then we have less trouble to do camera pan and
tilt. In our program, we use M’ =M + (M —C)*30 toreplace M . This can give us a
more distant model point and the (x,y,z) coordinate value of M are restricted not to be
an infinite number.

Then we use C as the eye position and M’ as the model position in the
gluLookAt () call.

As a first extension of the algorithm, if we want to look at a person from another
person’s view (an internal reverse camera placement), which implies that the person

being looked at occupies the whole screen, then camera C should be along the line NF

and between point N and F . Thus we have:

45

CF

——— =k and
CN
CF+CN =c¢
Thus,
k
= C
k+1
1
CN = c
k+1

Different k& will give different camera position C. And the corresponding model point
M should be the point which the person being looked at.

Sometimes we can treat the nearer person N as the object we want to look at (for
not an over the shoulder shot), the same reasoning from above analysis, we have:

tan(y) = (?d *tan(er/2))/ d = %tan(a&)
m m
tan(o) = (1 - T)d *tan(ar/2))/d = (1— 7) tan(a / 2)
So
y =tan” (? tan(cz/ 2))
4 m
O=tan" ((1- 7) tan(ar/ 2))

M is apoint on the line of CN rotate about Y axis —y get N',or CF rotate
about Y axis O get F’.Because N’ and F’ are along the view Z axis, and the
model point M is along the view Z axis, too. We don’t need to know the exact
coordinate value of M . So here, we choose an average value of N” and F’, calculate

F'+N’
M =

. In OpenGL, the look at pointis at Z axis of the view coordinate system.
So we canextend M alongthe Z axis to obtain a more distant model point, then we

have fewer problems when we pan or tilt the camera. In our program, the same reason as

46

before to limit the coordinate value of M ,weuse M =M +(M —C)*30 to replace
M.

As a second extension of the algorithm, when one person i1s walking, we want to
put him/her on the specified position on the screen, according to the analysis above, the
same reason, we put model position M at a position that the line and the view Z axis form
an angle of ¥, and

y =tan"' (% tan(cr/2))

4.2 Design of an Animated Conversation

4.2.1 Project Components

The main components of the project are displayed in figure below:

Animation Ul

yY
I,’ \\
~ i Camera Control '
' M ! 1
1 '
' Event Handler : : Camera Movement l
' '
' ! !)
' ! ! '
: Keyboard Handler ') . :
' : ! Camera Position ‘
] s ']
; : : Calculate ;
']
' Mouse Handler E E '
' J [. . !
N L | Camera Animation .
————————————————————————— - \ ,I
P ety AT

Animator

Human animation

Figure 4.6 Program Components

47

The animation program is composed of four parts. 1) A user interface component
allows users to interact with the program, 2) An event handler that can accept user input
from keyboard or mouse click and notify the camera animation or human action
animation, 3) A human animation component that accepts the message from event
handler and control the people action, and decides which action a person should taken.
Human action such as walking can cause the camera to following a person, and 4) A
camera control component that accepts the message from event handler to control camera

movement or to calculate camera position.

4.2.2 Film scenes to be animated

The design of the animated conversation demonstrates the correctness of the previous
camera control and cinematic camera position algorithms. This animation will consist of
5 scenes.
1) Two people sit down having a conversation, while the camera switches from one
person to another.
2) One person stands up while another one sits.
a) The same animation as in 1).
b) The camera looks at a person from another person’s viewpoint.
3) One person sits down while another one walks toward him/her
a) Using 3 shots to describe this scene.

b) Using 4 shots to describe this scene.

48

Chap 5 Implementation

The entire code of this project was written by me in C++ and OpenGL except the
CUGL (Concordia University Graphics Library) http: //www.cs.concordia.ca /~grogono
/CUGL. We built a camera module based on the CUGL camera class.

As mentioned in Chapter 3, OpenGL provides a rich graphics API. It consists of 3
libraries: 1) the Graphics Library (GL), 2) the Graphics Library Utilities (GLU), 3) and
the Graphics Library Ultilities Toolkit (GLUT). For the program user interface, we used
the GLUT-based C++ user interface library (GLUT).

The project is implemented by rendering a room scene with two people sitting on
opposite sides of a table. Users can interact with the program to control the camera or
control the peoples’ actions using keyboard commands or mouse clicks. Users can also
input parameters on the screen panel in order to get the desired cinematic visual effects.
The program gives the effect of a film of two people having a conversation. During the
conversation we may have the following scenarios: 1) both of the people may be sitting
down; 2) one sits while the other one stands; 3) one sits while the other one walks; etc.
The camera can move left/right, up/down, forward/backward with collision detection, or

pan and tilt.

5.1 User interface implementation

49

The program interface implementation is divided into two parts. The display window
shows the whole animation scene, the right and bottom of the window frame are panels
with parameter edit boxes and buttons to enable users to interact with the program. Users
can also interact with the program from the keyboard. Every time the user inputs some

data or clicks a button, the animation scene will change as the user desired.

28 Camera Control Research - Film a conversation

- ‘Sreen widlh] j
‘ -

Gat i:amer;i posiﬁunij
| initialize sgere [
U2 Conversation Sesene]

‘Three shots j

. Fourshols !

Gamera mhvemms . . Camera Zoom -

. ¢ ‘ Pan Left i Tiltup { Zoom in ;
: L 1 pagRight i it dovm] ; Zoom ot ;
Move henzon Move vertical Eorward/Backward :

Figure 5.1 Program interface

Components on the right panel provide control for personal actions, camera position
calculations, or camera animation.

Distance CoefTicient

50

The distance coefficient is an argument that was discussed in Chapter 4, the distance
scale of CF by CN, we denote it k here to simplify the explanation. The value of this
argument reflects the camera position relative to both the nearer person and further
person.

The value of the coefficient k determines the distance of the camera to one of the
people in the scene. A value close to 0 may place the camera too close to the nearer
person’s head, blocking the view of the further player. A value of 1 indicates that the
camera is at the apex position. For conversational scenes, we have found that values
from O to 10 are appropriate.

Rotation Angle

Changing the value of the rotation angle (corresponds to the angle o introduced in
chapter 4) affects the camera position to look at players. It will affect the peoples’
position displayed on the screen. It will make the camera rotate along the line of interest
between the players. This angle could be between 0° and 360° and values within some
extents between 0° and 360° are really effect, not all the values between 0° and 360° can
get the correct camera position because they either will collide with objects in the room
space or in a position that are relative too low or too high to the players’ heads.

Screen Width to Person Width Ratio

Usually we give a numerator and a denominator to indicate the ratio of person space

to total screen space. The ratio is usually specified according to film grammar. An

example is:

51

0 The person facing the view should occupy about 2/3 line of the screen.
o The person facing away should occupy about 1/3 of the screen
Personal Action

By choosing a person from the combo box, and clicking on the sit, stand or walk
button, users can control a person’s action by making him/her sit down, stand up or walk.
Looking at a Person

By clicking on the red or blue button, users can make the camera look at the desired

person. The selected person will face the camera.

Get Camera Position
Whenever a user has finished parameter input or make a choice among the radio
button, clicking the Get Camera Position button will make the program

recalculate the camera position and display the corresponding scene.

Initialize Scene

Click Initialize Scene button, the program will arrange players Red and Blue

to sit around the table as the initial program scene.

Conversation Scene

Click Conversation Scene button, the program will automatically display the
conversation scenc between Red and Blue when they are sitting and facing each other.

This scene we have described in Chapter 3.

52

Three shots

Click Three shots button, the program will automatically play the three-shots

scene that Red is approaching Blue.

Four shots

Click Four shots button, the program will automatically play the four-shots scene

that Red is approaching Blue.

Enable/Disable bottom panel button
This button enables or disables buttons on the bottom panel. The buttons on the

bottom panel are camera movement control buttons.

Move left/right

Clicking the mouse left button on this button icon and keeping the mouse pressed
while moving left or right, causes the camera to move to left or right. Releasing the
mouse button finishes the camera movement.
Move up/down

Clicking the mouse left button on this button icon and keeping the mouse pressed
while moving up or down, causes the camera to move to up or down in the scene.
Releasing the mouse button finishes the camera movement.
Move forward/backward

Clicking the mouse left button on this button icon and keeping the mouse pressed

and move up or down, causes the camera to move forward or backward in the scene.

53

Releasing the mouse button finishes the camera movement.
Pan left/right button

Clicking the mouse left button on pan left button icon makes the camera pan to the
left in the scene; clicking the mouse on pan right button icon makes the camera pan to the
right in the scene. Releasing the mouse button finishes the camera movement.
Tilt up/down

Clicking the mouse left button on tilt up button icon makes the camera tilt up in the
scene; clicking the mouse on tilt down icon makes the camera tilt down in the scene.
Releasing the mouse button finishes the camera movement.
Zoom in/Zoom out

Clicking the mouse left button on this button zooms the view in or out.

5.2 Camera algorithm Implementation

The camera is defined as a class. Its behavior/interface consists of the following functions:
move left/right, up/down, forward/backward, tilt and pan. It also has functions to detect
collisions and to get the specified camera position according to user input parameters.

5.2.1 Data structure

The data structure of a camera class is shown below:

enum CamPosToPlane
{INTERSECTS, FRONT, BEHIND};

54

class Camera
{
public:
/] Set camera position, look at position and up vector
void set (const Point &eye, const Point &model, const Vector &up) ;
void set(const Point &eye, const Point &model) ;
// Update the camera position.
// This function should be called from the GLUT idle() function
/1 or its equivalent. It performs one step of the motion until the motion is complete
void idle() ;
void apply(); // Apply the camera position to the model-view matrix.

volid moveUp (GLfloat distance) ;

void moveDown (GLfloat distance) ;
void moveForward (GLfloat distance) ;
void moveBackward(GLfloat distance);
void moveLeft (GLfloat distance) ;
void moveRight (GLfloat distance) ;
voilid Tilt (unsigned char dir);

void Pan(unsigned char dir);

void setRadius(float r); // Setthe collision detect radius for a camera

/I check if camera collide with a object
CamPosToPlane ClassifyCamPos (PLANE pl, float& distance);
bool CollideWithPlane (PLANE pl, float& distance, int flag);
bool DetectCollision(float& distance);

// calculate desired camera position according to the person we look at
Point Calc_Model Pos(Point n, Point £, int 1, int m, Point cam,
int flag_m, int flag_c);
Point Calc_Cam Pos{(Point n, Point £, int 1, int m, float
dist_coeff, float yz_rot_angle, int flag);
Point Walk_Model_ Pos(Point f, int 1, int m, Point cam);

private:

Point eye; /I Eye coordinates for gluL.ookAt()
Point model; // Model coordinates for gluLookAt()

55

Vector up; /I ' Up vector for gluLookAt()

int steps; // Current value of step counter
int maxSteps; //Maximum number of steps for a smooth movement

float fRadius; // The camera's collision radius

14

The camera class’s member variables eye, model, and up correspond to the camera
position, the model position and the up vector, respectively. The variable £Radius is the
radius of the camera sphere. Here, we treat camera as a sphere. Whenever we want to
know if the camera collides with any objects, we just calculate the distance from the
centre of the sphere to the objects’ bounding boxes plane, and in which direction the
camera sphere locate relative to the bounding box planes. Variable steps and maxSeps
are used for camera idle() function for film animation, by setting the camera and model
position change step, we make the view scene changing very smoothly.

The effect of the functions moveUp, moveDown, moveForward,
moveBackward, moveLeft, moveRight, Tilt, Pan, is obvious from their
names.

Function ClassifyCamPos () can tell the relative position between the camera
and the objects’ bounding box. It could be Intersects, Front or Back, which means the
camera could collide with an object, in front of an object or in the back of the bounding
box plane of an object.

Function CollideWithPlane () is used to tell if the camera collides with an

56

object. And DetectCollision() is a general function to check all the objects in the
graphics scene, if the camera collides with any of them. So it is convenient for the
programmer to simply the collision detect code, just use one line to call camera
DetectCollision(), and it can tell if there is any collision.

The most important functions in this thesis are Calc_Model_Pos(),
Calc_Cam_Pos () and Walk_Model Pos().Calc_Cam Pos () will calculate the
desired camera position according to the persons’ coordinate in the scene.
Calc_Model_Pos ()can be called to get the model position the camera looking at.
And Function Walk Model Pos () are used to get the model position the camera

looking at when one person is walking.

5.2.2 Algorithms Implementation
5.2.2.1 Camera Movement
0 Move left/right + U

Up

Model

v

Eye

Eye
Y Model

Figure 5.2 Cross product of Up and model - eye or eye - model

57

Move left: Vector disp = distance * cross (up, model - eye) .unit () ;

Move right: Vector disp = distance * cross(up, eye - model) .unit () ;
The points model and eye give the positions of the point of interest and the eye, or
camera, respectively. Their difference is a vector representing the displacement from
the model to the view. The vector up points vertically upwards in the mode. The
cross-product of these vectors is a vector that is horizontal with respect to the model and
perpendicular to the direction of the camera. Consequently, it is the appropriate
direction for a camera movement to the left or right. The direction is chosen according
to the sign of this vector: model - eye or eye - model. The function unit ()
converts this vector to a unit vector in the same direction and the scalar multiple

distance gives an appropriate distance for the movement.

0o Move up/down

distance * up;

Move up: Vector disp

Move down: Vector disp distance * (-up);

Camera Up vector is a unit vector, multiple it with a given distance argument, then we get
the camera movement offset along the model view Y axis. When multiplying Up vector
with the distance argument, the camera move up along the Y axis. Multiplying -Up
vector with the distance argument, the camera move down along the Y axis. Both the

camera and model position are changed by movement offset.

58

0 Move forward/backward
Move forward: vVector disp = distance * (model - eye).unit();
Move backward: Vector disp = distance * (eye - model) .unit();
Looking from camera position to the model direction is the Z axis in the model view
coordinate system. Get this vector and make it unit, multiply with the distance argument,
we have the camera movement offset to move the camera forward. Get the negative of
this vector, multiply the distance argument, we can move the camera backward. Both

the camera and model position has changed by movement offset.

o Tilt
A
Up
Model
4—_.__
Eye
Figure 5.3 Cross product of Up and model -eye
Vector axis = cross(eye - model, up).unit():;

Quaternion rot(axis, angle/180.f*PI);

update(eye, rot.apply(model)):
This is implemented by keeping the camera (eye) position still while make the model
position rotate around X axis in the eye coordinate system. As mentioned above, get the

unit vector along eye coordinate system X axis. Use this vector to make a rotate

59

quaternion, that is, rotate the model point around this X axis about an angle (if angle is
negative, then rotate in a clockwise order (tilt down); if it’s positive, then rotate in a
counter-clockwise order (tilt up). Make a rotation matrix according to this quaternion,
and multiply this matrix with the model point, then we get the destination model
position we want to tilt the camera to.

o Pan

P

Figure 5.4 Camera rotate around Up vector

Quaternion rot (up, angle/180*PI);

update(eve, rot.apply(model));
This is implemented by keeping the camera (eye) position still while make the model
position rotate around Y axis in the eye coordinate system. Use camera Up vector to
make a rotate quaternion, that is, rotate the model point around this Up vector about an
angle (if angle is negative, then rotate in a clockwise order-pan right; if it’s positive,
then rotate in a counter-clockwise order-pan left. Make a rotation matrix according to this
quaternion, and multiply this matrix with the model point, then we get the destination

model position we want to pan the camera to.

60

5.2.2.2 Collision detection

In chapter 4, we have described the principle of collision detect. A source code for detect

objects inside a room is listed below

Y
// Parameter: side[] — An array of class Side objects, a bounding box has six side

" distance — Distance from a camera center to a bounding box plane

/! flag — O: indicates an object inside a room, other: indicates a room

bool Camera::CheckCollision(Side sidel[],float &distance, int
flag)

{

}

bool flag = true;

/I check collision status with every plane of the 6 surface around a Bounding Box
for (int i = 0; 1 < 6; i++)
{
PLANE pl = chair.m Side[i] .m Plane; // get each plane
float distance = 0;

CamPosToPlane pos= ClassifyCamPos (pl, distance);

// For an object inside a room, if camera is in front of any one of the 6 plane,
// then we know it's not inside the bounding box, so we don't need detect
// other planes further. Only if the camera is intersected or behind all the
// planes, then we can determine it's intersected with the Bound Box
if (flag == 0)
if (pos == FRONT)
return false;

// For a room, if camera is intersect with or behind any one of the 6 plane, then
/l we know it's going too far, and we can stop detecting any other planes further
else

if (pos == INTERSECTS || pos == BEHIND)

return true;

return flag;

We must check camera with every object inside the room and the room itself to determine

61

if a collision happens. If a collision really happens, the camera stops moving.

5.2.2.3 Get an ideal camera position according to user input parameters

According to the design analysis of camera position calculating algorithm in chapter 4,
given two people coordinate position in a conversation scene, and camera Up should be
aligned with the world up, I must get the appropriate camera position and a model
position. Then we can use these two points to set the camera 6 DOFs, means model and
eye point, and camera up aligned with the world coordinate up direction. The algorithms
implemented can always get an ideal camera perspective view to satisfy the
cinematography requirement. And by adjusting the value of those distance
coefficient, angle and scale value, we can get a range of different camera, model
positions to satisfy the film grammar. Below is an example of how to use the camera
position calculating function to get the camera and model coordinate, and set the camera

in a 3D environment. It is very easy to call the function.

Point eye, model, n, £;

/I Get the person’s coordinate who is backing to camera
n = NearPerson->GetCurPos () ;

/I Get the person’s coordinate who is facing to camera
f = FarPerson->GetCurPos();

/I Get the desired camera position

eye = camera.Cal_Cam Pos(n, £, L, M, dist_coeff, yz_rot_angle,
flag c);

62

/I Get the model position which camera is looking at
model = camera.Calc Model Pos(n, £, L, M, eye, flag m, £lag c);

/I Set camera position and model position
camera.set (eye, model);

5.3 Program implementation

We use C++ and OpenGL to implement the source codes of all the objects in the project.

Pictures of some the objects rendered in this project is in Figure 5.7.

Red

Blue

Figure 5.5 Animated Room Scene

5.3.1 Human being implementation
Human beings are rendered in a simple but natural way. For the purpose of this program,

a human being is composed of a head, a neck, a body, left arm and right arm, left leg and

63

right leg, left hand and right hand, a hip, left foot and right foot. An arm is composed of
an upper arm and a fore arm. An leg is composed of a upper leg and a lower leg.
Organizing a human being in this way makes it easy to manipulate its action to make it sit

down, stand up or walk. The corresponding classes are listed below:

class Person

{
public:
Person();
virtual ~Person();
private:
public:
Side m_Sidel[6]; // 6 planes of Bounding Box
public:
Head *head;
Neck *neck;
Body *body;
UpperArm *leftUArm, *rightUArm;
ForeArm *leftFArm, *rightFArm;
Crus *leftCrus, *rightCrus;
Femoral *leftFemo, *rightFemo;
Hand *leftHand, *rightHand;
Foot *leftFoot, *rightFoot;
Hip *hip;
public:

void Render(int headindex, int actionIndex);

/I Calculating the bounding box

void Calc_ Stand Bound Box();
void Calc_Sit Bound Box():;
void Calc_Walk Bound Box():;

64

/I Calculating the 6 plane equation of Bounding Box
void Calc Plane Equation();

}i

class Head

{
public:
Head () ;
virtual ~Head():;

virtual wvoid Render (int index);

class Neck

{
public:

Neck () :;

virtual ~Neck();
public:

virtual void Render();
};

There are also body, upper arm, fore arm, hand, hip, femoral (upper leg),
crus (lower leg), foot classes, which we choose not to show here because they will
occupy too much space. Each person object is composed of all the above class objects
from head, neck, etc. till foot classes. A person object will call the rendering
functions of each body part independently, to render a person object. This way makes it

easy to do human being sit, stand and walk animation.

65

5.3.1.1 Sit down animation

A human being can be made to sit down by rotating the hip through 90 degrees and
rotating the lower leg 90 degrees in the opposite direction. The sitting person is then
rendered into one display list. Whenever a standing person must be displayed, this

display list is called.

5.3.1.2 Stand animation

By rendering the standing person into one display list, the hip and lower leg do not
need to be rotated. Whenever we display the person standing, the stand display list is
called.

5.3.1.3 Walk animation

This is implemented by alternating to display between two display list. One display
list is rendered by make the human being left arm lift in front of the body while the right
arm lift at back of the body, and the left femoral lift back of the body while the right
femoral lift in front of the body. Another display list make arms and legs move opposite
to the previous list. These display lists are called alternately to render a human walking.
5.3.2 Furniture (table and chair) implementation

Vertex data of table and chairs in this program are downloaded from 3DS files. A
table and a chair 3DS files were downloaded from 3D CAFE website

(http://www.3dcafe.com/asp/househld.asp). And the corresponding texture files for them

are also downloaded from the same website. A program for reading 3DS file was

66

downloaded from website GAME TUTORIAL (http://www.gametutorials.com). We use
this program to read 3DS file and get the vertex data. They are rendered by drawing
triangles formed by the related vertexes and applied the correspond texture pieces to
those triangles.
5.3.3 Room and ornament picture implementation

Room includes the walls, floor, roof and some ornament pictures on the wall. We
defined a base class Side. The room class has 6 side objects, 4 walls, 1 floor and 1 roof.
Ornament picture class has also 6 Side objects, it has a front side which displays the
picture, a back side show nothing and 4 flank side in order to make the ornament has a

3D visual effect.

5.4 Film scenes animation implementation

Up until this point, we have used a camera class module and various objects to animate a
conversation. By combining all these together, we can animate room conversation
between two persons. In this project, we implement three film scenes: one scene for two
people having a sit-down conversation; one stand while the other sitting; and one scene
using differently implemented methods to show a conversation in which one person sites
while the other walks around. For convenience of reading, we will use Red to refer to the

red person and Blue to refer to the blue person.

67

According to the analysis of chapter 2, in a dialogue between two people, a
filmmaker might begin with an apex view of both actors, and then alternate views of each.
To implement this scene, we initialize the camera at a position such that its y and =z
coordinate are in the middle of the y and z coordinates of the two persons, and its x is at
one end of the table. From that position, the camera looks at Red. View evolution is
implemented by making three shots change smoothly. For the first shot, the camera looks
at Red across the shoulder of Blue. According to film grammar, the person we are
looking at is occupies roughly 2/3 of the screen while the other one occupies roughly 1/3
of the screen. For the second shot, the camera moves gradually to make Red occupy
roughly 1/3 of the screen and face the camera while Blue person is still back to camera
but occupying 2/3 of the screen. In the third shot, the camera moves smoothly to look at
Blue, giving him roughly 2/3 of the screen. The pictures below show part of the three

related shots.

Figure 5.6 A shot - Camera looks at Red

68

Figure 5.7 A shot - Camera looks at Blue

To film a person approaching another person, a three-shot idiom has to be completed.
Let’s call the red person Red, and the blue person Blue. The first shot is a close-up; the
Red begins in the center of the screen and exits left. The second shot begins with a long
view of the Blue; the Red enters from off-screen right, and the shots ends when Red
reaches the center. The final shot begins with a medium view of Blue, with Red
entering from off-screen right and stopping at center. We implemented this by having the
camera look at Red before he begins to walk. Then the camera looks at Blue, and keeps
still until Red approaches the blue person and enters the viewpoint of camera. Figure 5.8

shows one such shot.

69

Figure 5.8 Shot 1 of three-shots idiom.
Camera look at Red and gives a close-up shot.

Figure 5.9 shows another four-shot idiom that depicts the short-range motion of one
actor approaching another. First, The Red walks in a straight path toward the camera site.
Then the camera pans to follow him. Then the moving Red began his walk with his back
to the camera and concluded by arriving at a profile position near Blue.

To implement the above scene, first, we make camera looks at Red when he begins
to walk. Next the camera pans to look at the Red’s side, then the camera looks at his back
and ends by Red arriving at a profile position near Blue . The pictures below shows two

of these shots.

70

|

Figure 5.9 Two film shots of four-shots idiom. Shot 1 and shot 3.

To film two people when one is standing up while the other is sitting down, we make
the two people perform different actions and calculate the camera position to animate the
viewpoint when the sitting person looks at the standing person, also the standing person
looks at the sitting person. Two shots are animated here. Figure 5.10 below show these

two situations.

Figure 5.10 Two shots for two players. One is standing while another is sitting

71

Chapter 6 Results

The results of the camera position calculating algorithms and the project are shown in
figure 6.1 through 6.30. The computer used for this project is an AMD Athlon XP2400+,
1.79Ghz, 256MB memory. Figure 6.1-6.17 are animated film grammar scenes for two
person conversation and Red approaches Blue, while other pictures are showed to
demonstrate the camera position algorithm, which always places the observed people at

the correct position on the screen according to film grammar.

6.1 Film scenes animation results

6.1.1 Conversation when both people sit down

In the first shot, the camera looks at Red across the shoulder of Blue; according to
film grammar, the person observed occupies roughly 2/3 of the screen while the other
person occupies roughly 1/3 of the screen. In the second shot, the camera moves
gradually to make Red occupy roughly 1/3 of the screen and face the camera, while
Blue still has her back to the camera but occupies 2/3 of the screen. In the third shot, the
camera cuts away to look at Blue and place her roughly at the 2/3 line on the screen.

Table 1 below shows the parameters regarding calculating camera positions in scene 1.

72

Parameters

Scene Figure No ioi
Description . Coefficient k Angle 6 Person Screen
Width M | Width L

Scene 1:
Shotl Facing Red Figure 6.1 35 90° 2 3
Shot2 Facing Red, while | Figure 6.2 35 90°
camera begin to switch to
Blue.
Shot3 Facing Blue Figure 6.3 3.5 90° 2 3
Shot4 Facing Blue, while | Figure 6.4 35 90° 3

camera begin to switch to
Red.

Table 1. Parameters for camera position calculating in scene 1

The pictures below show the four related shots.

Figure 6.1 Scene 1 shot 1 — facing Red

Figure 6.2 Scene 1 shot 2 — facing Red
while camera begin to switch to Blue

73

2oy

Figure 6.3 Scene 1 shot 3— look at Blue Figure 6.4 Scene 1 shot 4 — look at Blue
while camera begin to switch to Red

6.1.2 Conversation when one sits down, another stands up

To film two person when one is standing up while another sits down, besides the
camera can be placed at a place that is similar to that in a both players sit down
conversation, it can also be placed at a position that makes the scene looks as if the sitting
person looks at the standing person, or as if the standing person looks at the sitting person.

So the animated shots are listed below. Figures below show these situations.

Figure 6.5 Scene 2 shot 1, facing Red Figure 6.6Scene 2 shot 2 facing Red

74

Figure 6.7 Scene 2 shot 3,facing Blue Figure 6.8 Scene 2 shot 4,facing Blue

Figure 6.9 Scene 2 shot 5, look at Red Figure 6.10 Scene 2 shot 6, look at
(An internal reverse shot) Blue

75

Parameters
Scene Figure No -
Description + | Coefficient k | Angle 6 Person | Screen
Width M | Width L

Scene 2:
Shotl Facing Red Figure 6.5 3.5 90° 2
Shot2 Facing Red, while | Figure 6.6 3.5 90° i 3
camera begin to switch to
Blue.
Shot3 Facing Blue Figure 6.7 35 90° 2 3
Shot4 Facing Blue, while | Figure 6.8 3.5 90°
camera begin to switch to
Red.
Shot5 Internal reversal, look | Figure 6.9 3.5 —_— 3 3
at Red
Shot6 Internal reversal, look | Figure 6.10 3.5 — 3 3
at Blue

Table 2. Parameters for camera position calculating in scene 2

6.1.3 Red moves toward Blue

6.1.3.1 Three-shot animation

A three-shot idioms has to be completed. In the first shot, Red begins in the center of the
screen and exits left. The second shot begins with a long view of Blue; Red enters from

off-screen right, and the shots ends when Red reaches the center.

76

Parameters

Scene .
Description Figure No. " coefficient k | Angle 6 Person | Screen
Width M | Width L
Scene 3:
Shotl Look at Red, and | Figure 6.11 2 3
Red goes away from screen — —
Shot2 Red enters into | Figure 6.12 1 2
screen from right
Shot3 Camera moves | Figure 6.13 1 2
/ /
forward closer to both
Table 3. Parameters for camera position calculating in scene 3

Figure 6.11 Scene 3 shot 1. Look at Red,

and Red goes away from screen

Figure 6.12 Scene 3 shot 2. Shot2 Red

enters into screen from right

77

Figure 6.13 Scene 3 shot 3. Camera moves forward closer to both

6.1.3.2 Four-shot animation

Figures below shows another four-shot idiom to depict short range motion of one actor

approaching another. Red walks in a straight path toward the camera site. Then the

camera pans to follow the person to show the 180° pan used in the first shot. Then the

moving Red began her walk with his back to the camera and concluded by arriving at a

profile position. The pictures below shows these shots.

Parameters
Scene Figure No i
Description + | Coefficient k | Angle 8 Person | Screen
Width M | Width L

Scene 4:
Shot 1 Looks at Red Figure 6.14
Shot 2 Camera pan to look | Figure 6.15 _— _— 3 3
at Red
Shot 3 Red walks with his | Figure 6.16 o — 1 2
back to camera
Shot 4 Camera moves | Figure 6.17 o — 1 2
forward closer to both

Table 4. Parameters for camera position calculating in scene 3

78

Figure 6.16 Scene 4 shot 3 Figure 6.17 Scene 4 shot 4

6.2 Cinematic camera position algorithm results

Figure 6.18-6.30 show the results of camera position algorithm. From the figures, we

know that, using this algorithm, we can always figure out a camera position to keep one

79

person displayed at a specified line M/L of the screen, while the person facing away

displayed at (L-M)/L line of the screen (for example, L=3, M=2).

. Parameters
Shot Description ilog.ure Coeffic | Angle 8 | Person | Screen
ient k Width M | Width L
Shot 1. Facing Red. Red stands up | Figure 1.28 90° 2 3
and begins to walk 6.18
Shot 2. Facing Red. Red walks to | Figure 2.7 270° 2 3
right corner of table opposite to | 6.19
Blue.
Shot 3. Facing Red. Red walks to | Figure 1.7 264° 2 3
right corner of table. 6.20
Shot 4. Facing Red. Red passes | Figure 2.3 60° 2 3
the line of Blue 6.21
Shot 5. Facing Red. Red passes | Figure 2.1 81° 2 3
Blue from his back 6.22
Shot 6. Facing Red. Red passes | Figure 2.1 81° 1 3
Blue from his back. Red occupies | 6.23
1/3 of screen
Shot 7. Facing Red. Red walks to | Figure 1.0 210° 2 3
the left of Blue on his side. 6.24
Shot 8. Facing Red. Red passes | Figure 0.7 266° 1 3
Blue from his left. 6.25
Shot 9. Facing Red. Red passes | Figure 0.4 196° 2 3
Blue from his left to the corner of | 6.26
table opposite to Blue
Shot 10. Facing Red. Red turns | Figure 1.75 275° 2 3
left at the corner of table opposite | 6.27
to Blue
Shot 11. Facing Red. An internal | Figure 1.05 84.5 2 3
reverse shot when Red begins to | 6.28
walk to the table corner opposite to
Blue
Shot 12. Facing Red. An internal | Figure 3.5 90 2 3
reverse shot when Red tums right | 6.29
at the corner opposite to Blue
Shot 13. A apex position shot Fig.6.30 1 90 1 2

Table 5. Parameters for camera position calculating some separate shots

80

Fig. 6.18 Shot 1. k = 1.28, angle = 90

Fig. 6.19 Shot 2 k=2.7, angle = 270

e

Fig. 6.20 Shot 3. k=1.7, angle = 264

Fig. 6.22 Shot 5. k=2.1, angle = 81

81

Fig. 6.23 Shot 6. k=2.1, angle = 81

Fig. 6.24 Shot 7. k=10, angle =210

e o il

Fig. 6.27 Shot 10. k = 1.75, angle = 275

Fig. 6.28 Shot 11. k = 1.05, angle = 84.5 Fig. 6.29 Shot 12. k=3.5 angle = 90

82

Fig. 6.30 Shot 13. k=1.0 angle = 90

&3

Chapter 7 Conclusion and Future Work

7.1 Conclusions

The film industry has plenty of experiences in camera techniques and has already
developed many heuristic methods and principles. How to apply film grammar in
computer graphics camera control is a big new research area. In this thesis we have
developed algorithms for cinematic camera position calculating which can present the
viewers or players good cinematography conversation shots between two players. We
have successfully combined trigonometric function and 3D space geometry
transformation to solve the problem, and made an effective use of computer graphics and
animation techniques to demonstrate our solution. We make the claim that our algorithm
is novel and has specific advantages because of the following characteristics:

o According to our research, we have not found an existing algorithm to solve the
camera position problem in a conversation. Some papers propose an idea to put
camera in a cinematic way, but have not given an definite algorithm to address
the placement of the camera.

o The solution idea is totally creative. Traditionally, when we do coordinate
transform from 3D world coordinate to 3D view transform, eventually to 2D
coordinate system. We would build equations related with model view matrix,

projection matrix and viewport transformation matrix, and we will find lots of

84

square root in these functions. And it would be very hard to solve those
equations, and may not even could solve it because could not get enough
equations to get the desired variables (e.g., x, y, z value of camera and x, y, z
value of model, total 6 variables here).

When we build related functions, although we could not have enough equations
to solve those 6 variables (camera and model coordinates). We made some 3D
spatial transformation to make the equations simple and easy to solve. Of course,
users have to input some parameters to get an unique value for the 6 variable, but
that’s reasonable since there are lots of possible values for those variables. When
users give the parameters, it will give the correspond value for each variable.

It can compute the camera and model position automatically according to the
position of two people in a conversation and some user input parameters. And it
adapts to many situations in a two players conversation, for example, external
reverse and internal reverse, right angle and apex position, etc., and can always
give a proper camera and model position and give the desired cinematic visual
effect.

The algorithms we provide in this thesis is useful for game program developer or
film makers to do story boarding. By using a combination of c++ and OpenGL

we have minimized the amount of code that a programmer has to write.

85

7.2 Future work

Our original goal of work in this thesis is to provide an algorithm for cinematic

conversation camera control and apply it in some conversation situations. While the

solution described has successfully accomplished the initial goal, it also has some
problem that should be addressed in future work.

0 Parameter adjustment. Although the camera can arrange the observed person in
the desired position on the screen, it is straightforward to all users to adjust the
parameters needed to get a good camera position.

0o Not always give a good visual effect. Although the camera can arrange the two
players in the desired position on the screen, but sometimes couldn’t give a good
visual effect.

0 Get an camera position when there are more than two players in a shot. For
graphics animation, two people conversation is only one situation of film shots.
There could be three or more people in a shot. Future research in this direction will
consider these conditions and give a good camera position to arrange all the players

in the desired positions and give a good visual effect according to film grammar.

86

References

[Arijon 76] D. Arijon. Grammar of the Film Language. New York : Communication Arts

Books, Hastings House, publishers, 1976.

[Katz 91] Steven D. Katz. Film directing shot by shot. Studio City, CA., Michael Wiese
Productions, 1991, P121-156.

[Drucker 95] Steven M. Drucker and D. Zeltzer, CamDroid: A system for Implementing
Intelligent Camera Control. In Proceedings of the SIGGRAPH Symposium on Interactive

3D Graphics °95, 1995

[Christianson 96] David B. Christianson, Sean E. Anderson, Li-wei He, Declarative
Camera Control for Automatic Cinematography, In Proceedings of the AAAI-96, August

1996.

[Lin 04] Lin, Ting-Chieh, Zen-Chung Shih, Yu-Ting Tsai, Cinematic Camera Control in
3D Computer Games. WSCG SHORT Communication papers proceedings WSCG’2004,
February 2-6, 2004, Plzen, Czech Republic. Available on line from

http:/fwscg.zcu.cz/wscg2004/Papers_2004_Short/G31.pdf

[Drucker 92] Steven M. Drucker, Tinsley A. Galyean, D. Zeltzer, CINEMA: A system for
procedural Camera Movements. Proceedings of the 1992 symposium on Interactive 3D

87

graphics. Cambridge, Massachusetts, United States Pages: 67 — 70, 1992

[Bares 97] William H. Bares, James C. Lester, Cinematographic User Models for
Automated Realtime Camera Control in Dynamic 3D Environments, Proceedings of the
Sixth International Conference,UM97. Vienna, New York: Springer Wien New York. ©
CISM, 1997. Available on-line from http://um.org.

[Amerson 01] D. Amerson and S. Kime. Real-time cinematic camera control for

interactive narratives, In The Working Notes of the AAAI Spring Symposium on

Artificial Intelligence and Interactive Entertainment, Stanford, CA, March 2001.

[Grogono 02] Peter. Grogono, COMP 6761 Advanced Computer Graphics, Lecture Notes,

2002

[Grogono 98] Peter. Grogono, Getting Started with OpenGL, Supplementary Course

Notes for COMP 471 and COMP 6761, 1998

[Hearn 03] Donald Hearn, M. Pauline Baker, Computer Graphics with OpenGL, Prentice

Hall, 2003

[Woo 99] Mason Woo, Jackie Neider, and Tom Davis, OpenGL: Programming Guide,
Third Edition, The Olfficial Guide to Learning OpenGL, Version 1.2, Addison Wesley

Developers 1999

88

Web based references

1. Concordia University Graphics Library: http://www.cs.concordia.ca/~grogono/CUGL/

2. Graphics Example programs: http://www.cs.concordia.ca/~grogono/Graphics/graphes himi

3. OpenGL, the industry standard for 2D & 3D graphics:

hitp://www.openel.oreg/about/overview. himl#i

4. NeHe productions: http://nehe.gamedev.net/

5. 3D CAFE: http://www.3dcafe.com/asp/househld.asp

6. Game Tutorial: http://www.gametutonals.com/etstore/c- L -test-cat. aspx

7. GLUI User Interface Library: http://www.nigels.com/glt/glui/

39

