A NEW DISTANCE-BASED ALGORITHM FOR BLOCK TURBO CODES:

FROM CONCEPT TO IMPLEMENTATION

Nong Le
A Thesis
In
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science at
Concordia University

Montreal, Quebec, Canada

Fall 2005

© Nong Le, 2005

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10240-3
Our file Notre référence
ISBN: 0-494-10240-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

A New Distance-Based Algorithm for Block Turbo Codes:

from Concept to Implementation

Nong Le

List-based algorithms for decoding Block Turbo Codes (BTC) have gained
popularity due to their low computational complexity. The normal way to calculate the
soft outputs involves searching for a decision code word D and a competing codeword B.
In addition, a scaling factor a and an estimated reliability value f are used. In this thesis,
we present a new approach that does not require a and f. Soft outputs are generated based
on the Euclidean distance property of decision code words. More importantly, such
algorithm has very low computational complexity and is very attractive for practical
applications. Based on the synthesis result of FPGA (Field Programmable Gate Array)
implementations of the new algorithm, significant complexity saving (up to 79%) is
achieved compared to commercially available products. In terms of error performance,
we observe certain improvement (0.3dB coding gain) for BTCs of large Hamming

distance and negligible performance degradation for BT'Cs of short Hamming distance.

il

DEDICATION

This thesis is dedicated to my dear wife
Yue Wang
and my lovely Son

Ryan Le

v

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my advisors Dr. M. Reza
Soleymani and Dr. Y. R. Shayan for their guidance and encouragement during the entire
period of this research work. Their technical acumen, precise suggestions and timely
discussions is heartily appreciated.

Financial support for this research by the Natural Sciences and Engineering
Research Council of Canada (NSERC) is greatly appreciated. Special thanks go to the
staff of the Department of Electrical and Computer Engineering at Concordia University
for having been so helpful and supportive.

Many thanks to my parents and in-laws, for their endless support during my
studies. I wish to accord my special thanks to my darling wife: Yue Wang. Without her
support and understanding, I would not have had the persistence to finish my studies. 1
dedicate this work to my lovely son, Ryan Le, for being a constant source of joy and a

tireless companion through the years.

TABLE OF CONTENTS

LISTOF TABLES e e i e e e
LISTOF FIGURES e e
LISTOF ABBREVIATIONS e e
1 Imtroduction
1.1 Literature Review of Error Control Coding

1.2 Main Contributions L.

1.3 Outlineof This Thesis

2 BlockTurboCodes
2.1 Introduction

2.2 Encoding Structure of a Block TurboCode

2.3 Decoding of Block Turbo Codes

2.3.1 Decoding-Based Algorithm

2.3.2 Encoding-Based Algorithm

2.3.3 Trellis-Based Algorithm

3 Distance-Based Decoding of Block TurboCodes
3.1 Introduction Lo

3.2 Drawbacks of the Traditional Algorithm

3.3 The Distance-Based Algorithm

3.3.1 Confidence Value

3.3.2 Soft-Output Calculation

3.3.3 Algorithm Comparison

3.4 Monte Carlo Simulation Using C++

vi

3.5 SimulationResults L Lo
3.6 Discussions and Conclusions
4 FPGA Implementation of Distance-Based Decoding Algorithm
4.1 Introduction L Lo
4.2 Review of FPGA Technologies
4.2.1 Basic Structureof FPGA
422 FPGADesignFlow,
4.2.3 Introduction of Xilinx Virtex Il Family
4.3 Fixed-Point Representation of the Algorithm
4.4 FPGA Implementation of the Distance-Based Algorithm
44.1 FElementaryDecoder
442 MemoryDesign oL
4.4.3 TIterative Decoding Architecture
4.5 SynthesisResults L L.
4.5.1 Minimization of Surface Area
4.5.2 Maximizationof DataRate
4.5.3 Optimization of Error Performance
5 Conclusions and Future Work 0 0L,
5.1 Conclusions

5.2 Future Directions e e

Bibliography

Appendix

vii

49

55

57

57

58

58

59

60

64

66

67

70

72

74

74

75

76

78

78

79

81

85

3.1
3.2
4.1
42
43
4.4

45

LIST OF TABLES

Function map between Dist;.; and @

Function descriptions
" Virtex-1I FPGA family members ..

Soft outputs lookup table

Comparison to TC3021 (surface area)
Comparison to TC3021 (data rate)

Comparison to TC3024 (performance)

viil

35

47

61

69

75

76

76

1.1

1.2

2.1

2.2

23

2.4

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

LIST OF FIGURES

Structure of a turbo encoder
Structure of aturbodecoder
ConstructionofaBTC

Block diagram of a block turbo encoder

Generating a list of candidate codewords for a (5,3) code

using the order-i reprocessing algorithms

Trellis structure of ablock codes

Examples of augmented list decoding with high SNR

Examples of augmented list decoding with low SNR
Noise distributions for a simple binary block code
Confidence value versus destructive Euclidean distance
for BTC (64,51,6)>
Block diagram of the decoding procedure
Extrinsic information structure L.

Parameter setting for a BTC(64,51 ,6)2

Block diagram of the software simulation
Simulation of AWGN channel

BCH decoding using Berlekamp algorithm

BER versus Eb/No of BTC(64,51,6)” on a Gaussian channel

using BPSK signaling at iteration4

ix

10

19

21

27

28

32

34

38

39

41

42

52

3.12

3.13

3.14

3.15

3.16

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

BER versus Eb/No of BTC(32,21,6) on a Gaussian channel
using BPSK signaling at iteration4 52

BER versus Eb/No of BTC(64,57,4)* on a Gaussian channel

using BPSK signaling at iteration4 53
BER versus Eb/No of BTC(32,26,4)2 on a Gaussian channel

using BPSK signaling at iteration4 53
Comparison with other algorithms for BTC(64,51,6)°on a

Gaussian channel using signaling at iteration4 54
Comparison with other algorithms for BTC(64,51,6)* on a

Gaussian channel using signaling at iteration4 54
FPGADesign Flow 59
Internal structure of Virtex I~ 62
Virtex II general slice diagram 63
4-bit uniformed quantization scheme L. 64
Quantization results for BTC(64,51,6)” after 5 iterations 66
Elementary decoder (half-iteration) 67
Interleaver example L oL 71
Single-elementary-decoder structure Lo L L 72
Pipeline structure oL L 73
Bit rate vs. complexity trade-off 77

LIST OF ABBREVIATIONS

2D 2-Dimensional

3D 3-Dimensional

APP A Posteriori Probability
AWGN Additive White Gaussian Noise
BCH - Bose-Chaudhuri-Hocquenghem
BCIR Bahl-Cocke-Jelinek-Raviv
BER Bit Error Rate

BMA Box and Match Algorithm
BPSK Binary Phase Shift Keying
BTC Block Turbo Code

CLB Configurable Logic Block
DCM Digital Clock Manager

DVB Digital Video Broadcast

ED Elementary Decoder

FPGA Field Programmable Gate Array
LLR Log-Likelihood Ratio

LRB Least Reliable Bit

LUT Look-Up Tables

MAP Maximum A Posteriori

xi

MLD

MRIP

OSD

PDF

RS

RSC

SISO

SNR

TPC

VHDL

Maximum Likelthood Decoder
Most Reliable Independent Position
Ordered Statistic Decoding
Probability Distribution Function
Reed Muller

Reed Solomon

Recursive Systematic Convolutional
Soft-Input Soft-Output
Signal-to-Noise Ratio

Turbo Product Code

VHSIC Hardware Description Language

Xii

Chapter 1

Introduction

1.1 Literature Review of Error Control Coding

Error control coding is an essential ingredient in a high performance digital
communications system. Its main function, as the name suggests, is to reduce the number
of reception errors by adding redundancy to a signal at the transmitter and correcting
errors at the receiver. The inclusion of redundancy in the transmitted signal results in a
coded signal consisting of more bits than the original signal. In return, this overhead

enables the receiver to detect and correct the errors.

The history of coding theory can be traced back to 1948, when Shannon presented his
research work [1] in the fields of information and coding theory. In this famous paper, he
introduced the new concept of “Channel Capacity”, which denotes the upper bound of
any practical communication system. Also Shannon indicated that, ignoring the
complexity of the coding scheme, there exist certain systems which can achieve
arbitrarily reliable communication as long as the transmitted signal rate do not exceed the

channel capacity.

The earlier research in coding theory mainly focused on two main divisions: Block Codes

and Convolutional Codes.

An (n, k) block code is defined as a mapping of a k-dimensional information sequence
into an n-dimensional data sequence. Most of powerful block codes, like Bose-
Chaudhuri-Hocquenghem (BCH) codes and Reed Solomon (RS) codes, use a
mathematical construct known as a finite field or Galois Field (GF). A Galois field
contains a set of field elements associated with arithmetic operations including addition
and multiplication. The block encoder operates on the message symbols over a Galois
field and maps them into codeword symbols. In a well-designed coding system, this
mapping process spreads the set of codewords evenly into the vector space, resulting in
large Hamming distance between the codewords. In the past 50 years, many decoding
algorithms have been proposed for block codes. In 1965, a range of powerful decoding
algorithms for BCH codes were found by Berlekamp [2] and Massey [3]. Later, Chase [4]
announced a series of algorithms which can achieve near maximum likelihood decoding
of block codes by using channel measurement information. In 1978, Wolf [5] discovered
a new method of constructing trellis diagram for linear block codes. Due to the high
complexity, his work did not receive enough attention until 1988 when Forney [6] proved

that it 1s possible to construct relatively simple trellis structure for certain block codes.

Convolutional codes, found by Elias in 1955 [7], constitute another important coding
family that is widely used in many communication systems. These codes get their name

because the encoding process can be viewed as the convolution of the message symbols

and the impulse response of the encoder. Unlike block codes, convolutional codes operate
on serial data, one or few bits at a time. The optimum decoding scheme for convolutional
codes is the maximum likelihood decoding where the decoder attempts to find the closest
valid sequence to the received data stream. The most popular algorithm is Viterbi
algorithm [8], which is implemented by tracking likely paths through a “trellis” structure

and choosing the most likely path as the output data sequence.

A more powerful code that is constructed by concatenating an RS code as an outer code
and a convolutional code as an inner code can take the advantages of both codes [9]. Due
to its excellent performance, this coding scheme is widely used in many applications such

as deep space, satellite and wireless communications.

A breakthrough in coding history is the invention of Turbo Codes, which were first
introduced by Berrou, Glavieux and Thitimajshima [10] in 1993. This new coding
scheme consists of two Recursive Systematic Convolutional (RSC) encoders arranged in
a so-called parallel concatenation along with a pseudorandom interleaver as shown in
Figure 1.1. The turbo encoder processes the information vector twice but in a different
sequence due to presence of an interleaver. Also, in order to increase the code rate, a
puncturer is often used to reduce coding overhead by deleting a few parity bits. The
structure of a turbo decoder is depicted in Figure 1.2, where there are two decoders
corresponding to the two encoders. The inputs to the first decoder consist of the observed
systematic bits, the parity bit stream from the first encoder and the deinterleaved extrinsic

information from the second decoder. Similarly, the inputs to the second decoder consist

Uncoded data

Meisage bits

Convolutional
Encoder 1

A\ 4

Interleaver

Convolutional
Encoder 2

Parity bits P1
—>
Optional
Puncturing
Parity bits P2
> —>

Figure 1.1: Structure of a turbo encoder

Extrinst
informati

Denterleaver [~

\ 4

Extrinsic
System information
data » SISO P! Interleaver
Decoder
o 1
Parity Soft outputs
data
—» Demux
P Interleaver

A 4

SISO
Decoder
2

{

I

Denterleaver

Soft outputs

Figure 1.2: Structure of a turbo decoder

A4

Hard Decision

l

Decision

of the interleaved systematic bit stream, the observed parity bit stream from the second

encoder and the interleaved extrinsic information from the first decoder. Each component

decoder computes the 4 Posteriori Probability (APP) of the information symbols which

is the reliability value for the information symbols. The sequence of reliability values is

4.

then passed to the other decoder. To improve the correctness of its decisions, each
decoder has to be fed with information that does not originate from itself. This decoding
scheme is able to achieve very high performance. In [10], it is reported that 0.5dB above
the Shannon limit at a Bit Error Rate (BER) of 107 is achievable by using a code rate %
turbo code with a large block length N=2'® and 18 iterations. Inspired by Berrou’s work,

* an intensive research activity was initiated [11] [12] [13].

One year after the birth of the turbo codes, Pyndiah and et al proposed a new coding-
decoding scheme [14] which extends the turbo concept to block product codes. They call
the new codes as Block Turbo Codes (BTCs). The algorithm provides an efficient solution
for coding scheme requiring high code rates (R>0.8). For investigated codes, the Signal
to Noise Ratio (SNR) for a BER of 10” was at 2.5 dB of their Shannon limits. The
algorithm is improved by [15] [16] [17] [18] [19] and implementations are shown in [20]

[21][22].

1.2 Main Contributions

The focus of this work is towards developing a low complexity decoding methodology
for BTCs. The methodology starts from high level models which can be used for software
solution and proceeds towards high performance hardware solutions. During the study,
we have created 4 sets of C++ programs for software simulations and 2 sets of VHDL
(VHSIC Hardware Description Language) codes for hardware implementations. Main

contributions and steps taken in this thesis are as follows.

o After deep understanding of related work, numerous methods are tried to improve
the decoding algorithm for BTCs. These efforts lead to the discovery of a new
algorithm, called Distance-Based algorithm. A float point version of the decoding
algorithm coded in C++ (see appendix) is designed for investigating the
performance of the new algorithm.

e In order to study the hardware complexity of the algorithm, the effect of
quantization on the performance is investigated and a set of C++ programs is
developed for obtaining the simulation results in the fixed point model.

e Finally, the new algorithm is implemented on a real chip. FPGA is selected as a
device platform and VHDL language is used to describe the targeting system. The
circuit design process is done through system modeling, functional simulation,
VHDL synthesis, place & route, system integration, and device fabrication. These
tasks are performed by using several digital design tools including Xilinx XST,
ModelSim, and Synplify Pro. In addition, a C++ simulation program is developed

to verify the result.

1.3 Outline of this Thesis

In Chapter 2, a fairly comprehensive introduction on block turbo codes is provided.
Various attributes of block turbo codes and corresponding decoding technologies,

including trellis-based algorithms and list-based algorithms, are discussed.

In Chapter 3, drawbacks of the traditional decoding algorithm for BTCs are explained

and a new algorithm which resolves these drawbacks is introduced. The effect of varying

various parameters such as code rate, number of test patterns, and number of iterations is
presented. A software program coded in C++ is developed to evaluate the error
performance and compared with the traditional algorithm. We demonstrate that the new
algorithm is beneficial in terms of error performance, data rate, and especially

computational complexity.

Chapter 4 mainly discusses hardware implementation of the new algorithm. In this
chapter, we briefly review the digital design technology with a focus on Xilinx Virtex II
FPGA platform. Several possible decoder architectures are proposed and synthesis results

are compared to existing products in terms of data rate, occupied area and error

performance.

In Chapter 5, the conclusion of our work on low complexity decoding algorithm for

BTCs is summarized and future research directions are indicated.

Chapter 2

Block Turbo Codes

2.1 Introduction

A Block Turbo Code (BTC) is a product code obtained from the concatenation of two or
more block codes with iterative decoding technique. In some literature, it is also referred
to as a Turbo Product Code (TPC). Soft-Input Soft-Output (SISO) decoding methods that
can be applied to BTCs are divided into two categories: trellis-based algorithms [11] and

augmented list algorithms [14] [15] [23] [24] [25].

This chapter is organized as follows. Section 2.2 describes the details of the encoder
schematic of BTCs. Section 2.3 discusses the decoding technologies that are available for
BTCs: particularly, two categories of decoding methods including augmented list
algorithms and trellis-based algorithms will be discussed with detailed mathematical

derivations.

A

v

m,

Checks

Information symbols on
k rows

m

Checks
on
checks

Checks on columns

Figure 2.1: Construction of a BTC

2.2 Encoding Structure of a Block Turbo Code

Constructing a BTC requires concatenating several block codes. The most common BTCs
in practical use are 2-dimensional (2D) BTCs and 3-dimensional (3D) BTCs, which
consist of two or three linear block codes, respectively. Generally speaking, the inner
component codes of a BTC can be any block codes like Hamming codes, BCH codes,

and RS codes.

Figure 2.1 illustrates a typical code structure of a BTC constructed by serially
concatenating two systematic linear block codes C! with parameters (n;, k;, 6;) and c
with parameters (n,, kj, dy), where n;, k;, J; (i=1,2) represent the code length, the number

of information bits, and the minimum Hamming distance respectively. Information

Outer Block Inner
Encoder Interleaver Encoder
Figure 2.2: Block diagram of a block turbo encoder

symbols are arranged into k; rows and &, columns. A BTC encoder first processes k; rows
using code C° and then processes n, columns using code C’. Clearly, the resulting codes

have a code rate of (k;-ky)/(nyny). Figure 2.2 shows the block diagram of such an encoder.

In this thesis, we mainly discuss 2-dimensional BTCs that use BCH codes as the
component codes. For simplicity, we assume that the two component codes have the

same parameters, denoted as BTC(n, k, 5)2 .

2.3 Decoding of Block Turbo Codes

During the decoding of a BTC, component codes on each row (or column) are always
processed separately. Therefore, unless otherwise stated, each decoding stage operates on

component codes.

Let us assume that a codeword of a (n, &£, 0) linear block code C={c; c,. . ¢, } is
transmitted as X={x; x, _ x,}, where x; =+1 if ¢; =1 and x; =-1 if ¢; =0 , over an
Additive White Gaussian Noise (AWGN) channel. Denote the received vector R={r;
Y2, ..., ¥ j, Where r; =x; + n;, j=1,2,...,n, and n; ié a Gaussian random variable with

standard deviation o.

-10 -

For a Maximum Likelihood Decoder (MLD), the optimal decision D is obtained by
D=C" if|R-C P<|R-C}? re[1,2¥] £#i (2.1

where {C'} is a set of all valid codewords.

The major obstacle in SISO decoding of BTCs is generating soft outputs that are required
during the iterations. There are two different SISO decoding methods available for BTCs.

One is trellis-based algorithm and the other is augmented list algorithm.

Trellis-based algorithm is an extension of Bahl-Cocke-Jelinek-Raviv (BCIR) algorithm
[26], which can achieve a performance of an optimal decoding. It is proved that certain
BTCs can be represented by trellis diagrams [27] [28], and consequently, state sequence
of a discrete-time finite Markov process in a memoryless channel can be estimated.
Trellis-based algorithms have similar mathematical derivations to the traditional
convolutional turbo codes. However, the major drawback of trellis-based algorithms is
their large complexity. The current technology of representing a block code by a trellis
diagram is only available for those codes with short code length. As the code length
increases, the complexity of trellis-based algorithms usually becomes too large to be

practical for implementations.
Augmented list decoding algorithms are low complexity algorithms that can be used for

BTCs with no restrictions on their code length. These algorithms calculate soft outputs

based on a list of candidate codewords. Depending on the techniques used for generating

-11 -

the codewords list, augmented list algorithms can be further divided into two categories:

decoding-based list algorithms and encoding-based list algorithms.

More details of these decoding algorithms are described in next subsections.

2.3.1 Decoding-based List Algorithm

When Pyndiah [14] introduced the concept of block turbo codes, he initially proposed an
augmented list algorithm which uses Chase II algorithm to generate a candidate
codeword list. The key idea of Chase Il algorithm [4] is to reduce the computational
complexity by limiting the code word search procedure within a sphere of radius (6 -1)
centered on a binary sequence Y=(y;, y»,..... y,) where y;= 0.5(1+sgn(r}), i=1,2,...,n .
Soft information is computed based on a list of available valid codewords. This algorithm
uses two parameters, a scaling factor a and an estimated reliability value f, whose roles
are essential in the performance. The author reports that more than 98% of channel

capacity can be reached with high code rate BTCs.

For practical considerations, [17] presents a way to reduce the complexity of the turbo
decoder by a factor of ten compared to [14] at a cost of 0.7 performance loss. Two
practical prototypes of this decoder were presented in [20]. In [18], a fast Chase
algorithm was proposed to reduce the computational complexity of the Chase decoding

procedure as well.

-12 -

It is worth mentioning that our new decoding method for BTCs is developed based on the

original algorithm [14]. Therefore, in this section, we will focus our discussion on the

original algorithm that is proposed by Pyndiah [14].

The original algorithm starts with generating a list of the most possible codewords based

on the received sequence R. Decoding procedure using Chase II algorithm can be

described as follows [4].

1.

Determine the position of p Least Reliable Binary (LRB) symbols, where

reliability value 4°(r;) is the Log-Likelihood Ratio (LLR) normalized by 2/’ as
A'(1) =/ 1 (2.2)

Form 27 error patterns E defined as all combination of patterns with ‘0’ or ‘17 in p

LRB positions.

Form 2” test patterns as T=Y&FE, where © denotes modulo 2 addition operation.

Decode all test patterns using an algebraic decoder and save the resulting

codewords in a set G.

Find a decision codeword D= (d;, d, ..., d,) in set G, which has the minimum

squared Euclidean distance with R.

Given decision codeword D, the reliability of the decision bit d; defined by LLR can be

expressed as:

where

2.3)

A(dj)zln[w]

P(x; =~1|R)

-13 -

Pix;=+1|R}= T P{X=C'|R} (24)
Cles;*

and

Pix;=-1|R}= Y P{X=C'|R} (2.5)
C'eSj_l

where S;"' and S;' are the sets containing codewords in G such that ¢/=+1 and ¢/=-1,

respectively. Assuming that the different codewords are uniformly distributed, we obtain

the LLR of d; as:

zciesj+1 piR| X =C"}

A(d ;) =In(—) (2.6)
/ Yeies, ! piR| X =CY
where
_ i — 1 n _ | R B Ci |2
PRI X =C"} (—«/57?0) exp(Ty) (2.7)

is the Probability Density Function (pdf) of R conditioned on X. Let C*’ @ and C'% be the

codewords closest to R in Sj” and Sj'l , respectively. We get

4

AW =5 (R-CMV P =|R=C™)+) 2.8)
where

4 = exp(R=C ”"’;;; [R-C'Fy 1 it C' e 570 2.9)
and

B = exp(I R-CF-|R-C |2) <1 withC' e ™'V (2.10)

20?

-14 -

For high signal to noise ratio in Gaussian channel, since 020, ZA,. ~ ZB,. -0, the

i

second term in (2.8) tends to be zero, and the LLR of d; could be approximated by

1 it +1(i
S(R-COP —|R-C"O 1) (2.11)

M) =55

In Equation (2.11), two codewords are required for computing the reliability of the
decision bit d;. Obviously, one is the decision codeword D and the other one is the
Competing Codeword B with minimum squared Euclidean distance from R where b; # d.

Thus, Equation (2.11) can also be expressed in terms of B and D as

12 (IR-Bf -|R-DFJ)-d, (2.12)

A(dj)= 20

This equation can be further simplified as

2 R
Ad) ==+ 2one b)) (2.13)

r=1,0%f

where

0 if cl+1(i):cé—l(i)

P = {1 if c;l(i) . C[l(i) (2.14)
Normalizing/ (d)) by 2/ o’, we get

rj' =rptW; (2.15)
where w; is the extrinsic information with

w= e/ Pp, 2.16)

£=10+j

-15-

Since Chase II algorithm only considers 2° codeword candidates, it is likely that some of
the positions have no competing codeword. Therefore, a reliability factor f is introduced
to estimate the average reliability of decision bit according to decoding step ¢ This
parameter is experimentally predetermined where in [14]

B(t)=[0.2,0.4,0.6,0.8,1.0,1.0,1.0,1.0] (2.17)

For each stage, we perform decoding for each row of product code, and calculate the soft
output for each bit. Extrinsic information of rows W can be expressed as

W = R_output -R input (2.18)

Then, W is passed to the next decoding step using soft input as

Rlppu = R+aW™ (2.19)
where a is a scaling factor representing the reliability of the extrinsic information and
increases as decoding step ¢ increases. They are also decided by experimental simulation
[14] as

a (H)=[0.0,0.2,0.3,0.5,0.7,0.9,1.0,1.0] (2.20)

Similarly, the extrinsic information of columns W is given by

W= Rlouput - Rlinput (2.21)
This sequence of computations is repeated for each iteration by each of the two decoders.
After all iterations are complete, the decoded information bit can be retrieved by simply
looking at the sign bit of the soft output: if it is positive the bit is a one, if it is negative

the bit is a zero.

-16 -

2.3.2 Encoding-Based List Algorithm

Decoding-based list algorithms can achieve an error performance close to the channel
capacity when working with high code rate BTCs. However, as the Hamming distance of
the BTC increases, using the Chase algorithm to construct the candidate list is very
inefficient. This results in poor performance when we try to decode low code rate BTCs
with decoding-based list algorithms. Recently, some researchers proposed few
augmented list algorithms [23] [24] [25] which use encoding-based techniques for
generating the candidates list. These algorithms improve performance by examining a
large portion of valid codewords. One major disadvantage is that the algorithms are
usually much more complex and memory intensive. This limits their use in practical

applications.

Here, we only present the most basic algorithm, namely the order-i reprocessing
algorithm, which is developed in 1998 [23]. Many other encoding-based algorithms, such
as the Box and Match Algorithm (BMA) [24] and the Ordered Statistic Decoding (OSD)

algorithm [25], can be viewed as modified versions of the order-i reprocessing algorithm.

In an order-i reprocessing algorithm, the list of candidate codewords is generated by
encoding a set of possible information vectors. It is achieved by following steps.
1. Reorder the soft inputs from least to most reliable. This will create a reordered
systematic code, where the k Most Reliable Independent Positions (MRIPs) are
the information bits.

2. Find the generator matrix G’ of the new code based on the reordering process.

-17-

3. Form test information sequence as 7=Y@F, where @ denotes modulo 2 addition
operation, and F is all possible weight-/ error patterns in k MRIPs with /<[<i.

4. Encode all test patterns using generator matrix G’ and calculate squared
Euclidean distance between the codeword and received sequence R.

5. Find decision codeword D’=(d;, d>,., d,), which has the minimum squared

Fuclidean distance with R.

To get a clear understanding of the algorithm, we may see a simple example which
illustrates the list-generating process for a (5, 3) linear block code using the order-2
reprocessing algorithm. As shown in Figure 2.4 (a), all symbols in the received sequence
are evaluated based on their reliability values and 3 symbols (x;, x3, x4) are determined as
the MRIPs. At the same time, a new generator matrix associated with these MRIPs is
calculated and will be used for encoding the test sequences in the next steps. Since i=2,
both 1-error patterns and 2-error patterns are taken in considerations as shown in Figure
2.4 (b) (c¢) (d). As a result, by encoding these test sequences we obtain a candidates list

consisting of seven valid codewords.

-18 -

OOOOO OOOOO> o

(a) (b)

OO0 O o

@ @ @ @"’ Cn Cx
® O O co

(©) (d)

Figure 2.3: Generating a list of candidate codewords for a (5,3) code using the
order-2 reprocessing algorithm (a) received sequence with MRIPs in x;, X3, and x4
(b) encoding the initial k-tuple MRIP (c) encoding all test sequences with 1-error

patterns (d) encoding all test sequences with 2-error patterns

Once the candidates list is generated, the rest of decoding process will be the same as the
decoding-based algorithm described in the previous section, and the soft output can be
calculated by following equation:

1
207

Ad;)= (R-C'P —|R-C"OP) (2.22)

and extrinsic information 1s found as

-19-

n 1 R
w,= e, Vp, (2.23)
=10+ j

with

0 if cz+l(i) _ cé—l(i)
P, = , L (2.24)
¢ {1 if c[l(') e, 1(i)

The extrinsic information is fed into next iteration by a scaling factor a, which is also
chosen experimentally. However, in an encoding-based algorithm, the estimated
reliability S is not always necessary, since a large number of codewords are examined

and 1t is usually guaranteed that each position will have a corresponding competing

codeword.

Although the concept of the decoding-based algorithm is very simple, converting it into
hardware implementation will raise many problems. From the circuit design point of
views, reordering sequence, and creating a new generator matrix require a large amount
of computational complexity. Moreover, reviewing such a large number of codewords

will increase not only the memory requirement but also the decoding latency.

2.3.2 Trellis-Based Algorithm

Using the trellis-based decoding technique for BTCs can achieve a performance close to
a maximum likelihood decoder. The trellis representation can be obtained either by the

BCIJR algorithm or by the Massey algorithm.

-20 -

States index S’ State index S

States S; States S;
with forward with backward
probability ¢;.,(S”) O O probability B;(S)
......... +1 O x=+1 @)
O \\‘ - ’ O + 1
Y ‘ Xj—-l
......... -1 O \\ O
O O -1 el

Figure 2.4: Trellis structure of a block code

Figure 2.4 shows the binary trellis of a block code. The soft output for jth symbol can be

calculated by the following equation:

P(xj =+1 | R) 1 Z(s',s),szﬂ p(S',S’ R)
=m
P(x] = +1 l R) Z(S"s),sz_] _p(S',S, R)

L(z;)=In (2.25)

Assuming a memoryless transmission channel, the joint probability p(s’s,R) can be

written as

p(s',s,R) = p(s', Ry ;) p(s, R; | 8') p(Ry s | 5)
=p(s', Ri;) P(s|s")- p(R; | 5,8') p(Rys; | 9)

=, () B(9)- 7, (s,8") (2.26)

-21 -

where R;<; represents the sequence of received symbols 7 from the first bit up to bit j-7

and, similarly, Ry-; represents the sequence of received symbols ry from the bit j up to the

last bit.

Therefore, in order to obtain the soft output, we need to calculate the forward metrics a;,

the reverse metrics f3;, and the branch metrics ¥;.

The forward metrics a; and the reverse metrics f; are found by following two equations:

aj(S)=Z 7(s,8") ;1 (s") (2.27)

Bia(sN) =2 7;(s,5)-B;(s) (2.28)

Since the starting and the ending of the trellis diagram always merges to zero. We have

ao(0)=1 and B,(0)=1.

The branch metrics y; is given by

7;(s,8')=P(s|s") p(r;|5',8) = p(x;;r;) (2.29)
Assuming that the information bits are statistically independent, we can find the
transition probability as

p(rylx;)-Plx;) 1<j<k
p(xj;r,-)={ . (2.30)
p(r;lx;) k+1<j<n

Using log-likelihood, the a prior probability P(x;) can be expressed as

+L(x;)) e»L(xj)/z

P(x; =+1) = Loz gt (2.31)

TL(x,) =(—L(xj)/z)'e j

1+e l+e

-22-

and the conditional probability p(#;| x;) is found by

Lorx,/2
p(r;|x;)=B; e ey

(2.32)

Observe that 4; and B; are equal for all transitions from time j-/ to time j and can be

cancelled out in the ratio of (2.29). Thus, the branch metrics operation is simplified as

x;(Lyrj+L(x;)/2 _ eL(xj;rj)~xj/2

7i(s,8)=e (2.33)
where L(x;r;) 1s the log-likelihood ratio associated with p(x;;r;), written as
() {Lcrj+L(xj) 1< j<k 234
L(x.;r;)= .
T L.r, k+1<j<n

Combining Equation (2.25) ~ (2.34), the soft output using log-MAP decoder can be

expressed as

z(s',s),xj=+1 aj—l (S')ﬂj (S)
z(s',s),x,-z—l ;1 (s")B,(s)

L(x;)=L.r; +L(x;) + (2.35)

In turbo decoding, the last term in Equation (2.35) will be used as the extrinsic

information for the next iteration.

-23 -

Chapter 3
Distance-Based Decoding Of Block Turbo

Codes

3.1 Introduction

In this chapter, we introduce a new algorithm, called distance-based algorithm, as it
calculates the extrinsic information based on the Euclidean distance property. Although
the proposed algorithm is originally considered as a modification of the augmented list
algorithm based on Chase II algorithm [14], the concept can be easily extended to other
turbo product codes. Compared to the traditional algorithm in [14], when using the
proposed algorithm we observed performance improvements for BTCs having large
minimum Hamming distance and negligible loss for BTCs having short Hamming

distance.

The rest of the chapter is organized as follows. In Section 3.2, the drawbacks of the
traditional algorithm are indicated and few suggestions that may improve the algorithm

are given. Section 3.3 provides the detailed description of the new algorithm. Section 3.4

-24 -

describes how the new algorithm is simulated in C++ language. Then the error
performance of several BTCs using the new algorithm are investigated in Section 3.5.

Finally, conclusion is given in Section 3.6.

3.2 Drawbacks of the Traditional Algorithm

The traditional algorithm [14] described in the previous chapter which uses Chase II
algorithm is now widely used in many communication systems, for example, satellite
communications and digital video broadcasting (DVB). Compared to the turbo
convolutional codes using trellis-based algorithms, this algorithm achieves moderate

error performance and relatively low complexity for hardware implementations.

As with most of the commonly-used turbo codes, the major drawback of the traditional
algorithm for BTCs is its high computational complexity. From the hardware
implementation point of view, the overall complexity mainly depends on the number of
algebraic decoders that are used for decoding the test sequences. Usually, in order to
maximize the data throughput, 2”7 test sequences are decoded simultaneously, and
consequently, 27 algebraic decoders are required for each iteration in hardware design.
Technically, if we can reduce the observed number of test patterns by half, in return,
approximately 50% of complexity saving is achievable. However, the problem is that, for
the traditional algorithm, decreasing the number of test patterns will cause serious
degradation in the error performance. For example, for BTC(64,51,6)%, using 8 test
patterns instead of 16, will result in a 0.5dB performance degradation. Such a penalty is

normally not affordable for real applications.

-25.-

Another design issue is regarding the calculation of the soft outputs. Recall that in the
traditional algorithm, the competing codeword B which is selected from the 2 codeword
candidates may be different depending on the bit position. Thus, to directly realize the
algorithm, a process that searches for B and calculates corresponding soft output has to
be repeated for every bit position. This leads to large computational complexity and
memory requirement. One solution is provided in [20], which only keep the closest
competing codeword in memory. However, the corresponding performance degradation

1s also severe, which makes the solution less attempting.

Discussion above is mainly focused on computational complexity of the algorithm. Next,
we will mention few observations regarding the error performance. Since we know that
the traditional algorithm is a sub-optimal method, certainly, it is possible to improve the
error performance if we can further increase the accuracy of the feedback extrinsic
information. Note that the major step which impacts the final performance is the

derivation from Equation (2.6) to Equation (2.12), rewritten as (3.1) and (3.2),

respectively.
Y PRIX=C}
Ad) =1 ! - 3.1
“) H(Zg-es;* PRI X =C’}) G-
A@)=> 5 (R-BF ~|R-D)-d, (32)
g

This derivation is done by assuming that the communication channel has a high SNR and

the influence of the codewords other than B and D can be ignored in the calculation.

-26 -

D+‘\\ BZ°

L 4

E.»

F+.

Figure 3.1: Examples of the augmented list decoding with high SNR

This can be seen from a simple example as shown in Figure 3.1. Let us consider a code
vector space consisting of six valid codewords (B, D, E, F, H, G), where R is the
received sequence, D is the decision codeword and B is the competing codeword. To
calculate the soft output at jth position, we may divide all codewords into two groups,
where D, E, F are valid codewords with corresponding bit taking value of +1, and B, H,
G are valid codeword with corresponding bit taking value of -1, respectively. To achieve
the best error performance, soft outputs should be calculated based on Equation (3.1),

which can also be expressed as

PRI X =D} + pR| X =E} + p{R| X = I}

Ad,)=1n(
P{R| X =B}+ p{R| X =H}+ p{R| X =G}

) (3.3)

Alternatively, the suboptimal decoding using (3.2) which computes the probability
density function for only D and B is considered to be sufficient, since the channel noise is

very small and other codewords have very litter influence on the calculation of Equation

(3.3).

-7 -

' E.» E,e

(a) (b)
Figure 3.2: Examples of the augmented list decoding with low SNR (a) received sequence

is corrupted with large noise (b) the closest codeword is not in the candidate list.

Unfortunately, this approximation does not always retain acceptable accuracy. Evidence

is provided from the next two observations.

Case 1: Consider a situation as shown in Figure 3.2(a) where R is corrupted with large
noise. Clearly, since the influence of other codewords is comparable to that of the
decision codeword D and the competing codeword B, the traditional algorithm
considering only D and B is not sufficient in this case. At least, few more codewords,
such as H and F, should be taken into account in the computation of the soft outputs in
Equation (3.3). This observation indicates one fact, that is, in list-based algorithms, soft
outputs based on a decision codeword D with large Euclidean distance are usually not

reliable.

Case 2: As Chase II algorithm reviews only 27 test sequences, it is possible that the
chosen decision codeword may not be the closest codeword to R, especially when the

number of test sequences is small. Figure 3.2b shows an example, where the closest

-28 -

codeword D is not in the candidates list, and consequently, the decoder mistakenly
chooses the codeword F as the decision. Obviously, soft outputs generated based on F
will not give satisfying results. Also, it is predictable that the false decision codeword

tends to be having relatively large Euclidean distance from R.

From the case study, we have shown that soft output calculation using the augment list
algorithm may give out false information under certain situations. More importantly,
from the two observations, we find that soft output associated with a decision codeword
having large Euclidean distance from R usually has very low reliability. This discovery is

a major breakthrough in our study.

In our new approach, all the problems mentioned above are perfectly solved, and both

complexity and performance are improved compared to the traditional algorithm.

3.3 The Distance-based Algorithm

The new algorithm is developed and verified through software simulations. In order to
compare the error performance, we shall decode the same codes as in the traditional
algorithm [14]. Thus, extended BCH codes are used as the component codes to construct
BTCs. An extended BCH code can be viewed as an inner block code with an overall
parity bit. It is worth mentioning that during the decoding process (section 2.3.1), only
inner block code is used in the search of p LRBs. The test sequences for inner code are
decoded by an algebraic decoder to produce a list of possible codewords. An overall

parity bit for each decoded inner code is then calculated to produce extended codewords.

-29 -

The traditional algorithm described in Section 2.3.1 can be summarized as two steps,
where first step generates codeword list and second step calculates soft outputs. In our
approach, Chase II algorithm in step 1 is kept the same. The end of this step gives a
decision code word D that has a minimum squared Euclidean distance to the received
sequence R. However, step 2 is replaced with a “distance-based algorithm”, which
computes extrinsic information based on the distance property of D. In the new algorithm,
first the confidence value of the decoded codeword is evaluated and then the soft outputs

are computed.

3.3.1 Confidence Value

Define confidence value @ as the probability that the decoder makes correct decision

given received sequence R. Assuming that P(X = C') = 517; i=12,..., 2 then:

¢:P(D=X1R):2kp{R‘X:D} (3.4)
Y PRI X =C"}

i=1

where {C'} is the set of all valid codewords.

Computing the Equation (3.4) may be far too complex for a practical implementation.
Thus, approximation has to be used. Obviously, a straightforward way is using squared
Euclidean distance, denoted as Dist, to estimate the confidence value. By doing this, we

may treat confidence value @ as a function of the squared Euclide/an distance, written as

¢ = f(Dist) (3.5)

- 30 -

However, this method only works at the first iteration where there is no extrinsic
information. Side effects of the extrinsic information have to be removed from the
calculation of Dist in later iterations. A solution is made based on the study of Euclidean
distance property. Consider the jth position in D where the individual contribution to Dist
1s (r; + w; - dj)z . In this case, the extrinsic information w; plays a positive role in the
estimation process (decreasing the distance) when (7;- d;)* w; <0. Likewise, the extrinsic
information w; plays a negative role (increasing the distance) when (#;- d;)* w; >0 and
this part of effect should not be taken into account in the estimation process. We define
Destructive Euclidean Distance, denoted Dist,, as the sum of distance where the noise

vector has a different polarity than the decision vector, written as

Distgey = Y. (r;—d;)* where DES ={j|(r;~d;)-d; <0} (3.6)

jeDES

Note that in (3.6), we have replaced w; with d; since most of the time w; and d; have the

same sign.

Similarly, we define Non-destructive Euclidean Distance, denoted Dist,on qes, as the sum

of distance where the noise vector has the same polarity as the decision vector, written as

Dist,,, s = ».,(r,—d;)* where NONDES ={j |(r,—d,)-d, >0} (3.7)

JjeNONDES

For better understanding of the concept of destructive Euclidean distance, here we give a
simple example. Assume that a data sequence (X, X2, X3, X4, Xs, X, X7, Xg) 1S transmitted

over AWGN channel and is received as (r), 17, 13, I3, I's, Tg, 7, I3). Using an algebraic

-31 -

Ta

X1 X3 X6 i
+1 9 -

X4 o Ix7'

T3

-1] \ XZI I 1
Decision: +1 -1 +1 +1 -1 +1 +1 -1
(a)

T4

X7)

Te
I3
I

2 ‘ X5 X3
_1 X2
TIs 13
Decision: +1 -1 +1 +1 -1 +1 +1 -1
(b)

Figure 3.3: Noise distributions for a simple binary block code

(a) iteration 1 (b) iteration 2

decoder we get a decision codeword (d;, dy, ds, d4, ds, dg, d7, ds). Figure 3.3(a) depicts the
situation for the first iteration where there is no extrinsic information presented.

According to the definition of destructive Euclidean distance, we get
Dist . =n]2 +n22 +n32 +n62 (3.8)
Dist

2 2 2 2
non—des:n4 +n5 +n7 +n8 (39)

-32-

where #; is an independent noise vector as n;= r; — x;. Since noise is randomly distributed
over the channel, it is likely that, at the beginning of the decoding, the destructive
Euclidean distance Dist,.s is approximately equal to the non-destructive Euclidean
distance Dist,onq4es. Generally speaking, estimation of confidence value is easy in this
stage. Unfortunately, problems usually appear in the next iteration where the input data
sequence is added with extrinsic information. The change of the noise distribution in the
next iteration is illustrated in Figure 3.3(b). Certainly, we have seen that the destructive
Euclidean distance decreases, reflecting the fact that the associated bit is much reliable
than the previous iteration. On the contrary, the non-destructive Euclidean distance
increases a lot and causes serious problem for the estimation of the confidence value.
Therefore, our solution which uses only the destructive Euclidean distance for the

estimation procedure is much more efficient than using the whole Euclidean distance.

In our study, we obtained the relationship between the confidence value @ and the
destructive Euclidean distance Disty; through software simulation. Taking
BTC(64,51,6)* as an example, Figure 3.4 was generated by simulation for 10000 samples
of decoding results. Since @ also depends on the iteration step ¢, signal to noise ratio
Eb/No, and the number of LRB p, different curves are plotted for comparison. As can be
seen, all resulting curves are similar to each other. Therefore, for practical considerations,
we may omit the influence of the variable ¢, Eb/No, and p, and treat the confidence value

@ as a function of destructive Euclidean distance, written as

¢~ f(Disty,) (3.10)

-33-

-#- EbNo=2.7 p=4 lter.1
~EF EbNo=2.7 p=4 fter.2
-©~ EbNo=2.7 p=3lter.1 [
-%k- EbNo=2.5 p=4 lter.1

Confidence Value (¢§)

Destructive Euclidean Distance(Dist des)

Figure 3.4: Confidence value versus destructive Euclidean distance for BTC (64,51,6)

The actual values of @ have to be chosen for the individual code from software
simulation as shown in Figure 3.4. The curve with the best performance is selected as
shown in Table 3.1 for BTC(64,51,6)>. It is worth mentioning that the values of @ as a
function of Dist,., are pre-defined and are used to generate a lookup table of soft outputs
as will be discussed later. Consequently, no computational complexity is added for

practical implementations in this stage.

-34 -

Table 3.1: Function map between Dist,.; and ©

Distges

<9

10

11

12

13

14

>14

()

0.99

0.93

0.9

0.82

0.65

0.42

0.21

Also observe that confidence value @ is only sensitive to destructive Euclidean distance

in a range from 8 to 15. To simplify hardware design, we may approximate the function

map using values in Table 3.1.

3.3.2 Soft-Output Calculation

Consider the information bit x; that belongs to a codeword with certain confidence value

@. The probability of x; can be expressed as:

P(xj :il|R)=P(XJ :il,D:X'R)+P(x] :i],D;ﬁXlR) (311)

The first term represents the probability value when the decoder gives correct codeword.

Applying Bayes’ rule to this term will yield:

P(x;=+,D=X|R)=P(x;=£1|D=X,R)-P(D=X |R)

=P(x;=%1|D=X,R)-¢ (3.12)
Since we know the decision bit d; then:
¢ if d;=x
P(x;=1,D=X|R)= (3.13)
0 if d;#x;

-35-

The second term in Equation (3.11) represents the probability value when the decoder
decides in favor of a wrong codeword. In this case, we assume that the reliability of

decision bit d; is the same as an information bit corrupted with Gaussian noise.

exp(£2r; /o)

P(x, =x1|D# X)= 3.14
o |) 1+exp(+2r;/c?) 3.19)
Again, we apply Bayes’ rule to the second term of the Equation (3.11), and get
P(x; =11,D# X |R)=P(x; =£1|D# X,R)- P(D# X | R)
exp(£2r,/c?)
- L (1-¢) (3.15)
1+exp(£2r;/07)
Combining Equations (3.11)-(3.15), the a posterior probability of x; is found as:
exp(+2r./c?) |
+(1-¢) J d =+1
i ¢/1+exp(+2rj/0'2) 7o,
P(x; =+1|R) = (3.16)
exp(+2r; /o%))
(1-9) — i dy=-1
1+exp(+2r;/07)
and
exp(-2r,/c?
(1-p)-SRE2I0) g

1+exp(=2r;/ o?)
P(x; ==1|R) =1 3.17)

- 2
+(1-9) exp(-2r;/07) o =1

1+exp(=2r;/ %)

Similar to the original algorithm described in previous section, we can obtain the

extrinsic information w; by the following equation:

-36-

__O_-i P(x; =+1]R) _
w; = ln(—-—P(xj =7 R)J v (3.18)

substituting P(x;=+1|R) and P(x;=-1|R) as in Equation (3.16) and (3.17), we get,

2 +exp(2r,d ;| o?
Wj:g'z_h{(ﬁ exp(l_r;}] o)]~rj if d;=+1 (3.19)
and
o’ 1-¢
2 ¢+exp(2r;d;/o°)

Equation (3.19) and (3.20) can also be represented as:

2 2
W, =dj[%1n(¢+e"p(12_”;df/ i)]—rjde (321)

Observing Equations (3.10) and (3.21), we find that the extrinsic information w; can be
viewed as a function of 7, dj, and Distes(Distge is used to determine the confidence
value @ as described in previous section), written as w;=g(#;, d;,Disty.). Therefore, for
practical implementations, soft outputs can be pre-calculated and stored in a lookup-table
indexed by #;, dj, and Dist,,. For example, we can quantize r; into 16 levels (4 bits) and
Distzes into 8 levels (3 bits). If the data width of the soft output w; is 4 bits, then the
lookup table can be realized as a 256x4 ROM(Read-Only Memory). Comparing to other
list-based algorithms which require large complexity to search and calculate outputs for

each bit position, the advantage of using the distance-based algorithm is obvious.

-37 -

Receive sequence R

Locate positions of p LRB
Form 2” test patterns

Decode 2 test patterns
Select decision codeword D with the minimum destructive
Euclidean distance from R

Generate extrinsic outputs with a look-up table
where w; =f(Distas, d;, 1))

Figure 3.5: Block diagram of the decoding procedure

Another important difference from the traditional algorithm in [14] is that the soft outputs
generated by the distance-based algorithm can be directly fed into the next decoding
stage without scaling by a weighting factor a. Therefore, computational complexity is

also reduced. A flow diagram of the proposed algorithm is shown in Figure 3.5.

-38 -

(@) (b)
Figure 3.6: Extrinsic information structure (a) traditional algorithm (b) distance-based

algorithm

3.3.3 Algorithm Comparison

Both the traditional algorithm and our distance-based algorithm use the same set of
candidate codewords for the calculation of soft outputs. However, due to the different
techniques that are used for computing the reliability value of the decision bit, the

resulting error correcting ability of the two algorithms are also different.

In Figure 3.6, we show a visualization of the soft output structure for the two algorithms.
As can be seen in Figure 3.6 (a), the traditional decoding algorithm outputs a star-type
information structure since only few positions can have explicit values, and other
positions have to use predetermined average reliability value . Such design may raise
several problems. As mentioned in section 3.2, the most likely code word may not exist in
the 2° test patterns, especially, when p is relatively small. Since the selection of the

decision D is essential in the calculation of the extrinsic information, results based on a

-39-

false codeword D will give out wrong information. This leads to the poor performance

when we try to use the traditional algorithm with small number of test patterns.

Now, let us see how this problem is solved in our new approach. As shown in Figure 3.6
(b), the distance-based algorithm calculates extrinsic information from the same
codeword by using an estimated average value. Note in Equation (3.20) the extrinsic
information decreases as the destructive Euclidean distance increases. For a decision
codeword D having large destructive Euclidean distance, the extrinsic information based
on Equation (3.20) will tend to be zero, meaning no additional information can be
obtained from the iteration. Consequently, low reliability outputs are discarded from the

decoding procedure. This results in high performance.

On the other hand, it is worth mentioning that without considering the computational
complexity, the traditional algorithm will always outperforms our distance-based
approach if given enough test patterns. Theoretically, the traditional algorithm can
achieve optimal decoding by setting p=k. However, the proposed algorithm is not capable
to converge to that point since we eventually lost certain information due to the

estimation of confidence value.

3.4 Monte Carlo Simulation using C++

Software languages such as C/C++, MATLAB are efficient and cost-effective tools for
algorithm simulation and system modeling. In a turbo decoding system, where

complexity is relatively high, simulation speed is usuvally a major concern. In our study,

- 40 -

we model the system using C++ to take its speed advantage. The source code is available

as reference in appendix.

Basically, the program in appendix is capable to simulate the new algorithm for any
BTCs using extended BCH component codes. All parameters are defined at the beginning
of the file. Therefore, by modifying these parameters, users can simulate the performance

for various BTCs using the same program. The settings for BTC(64,51,6)* is shown in

Figure 3.7.
const int m= 6;
const int q= 064;
const int n= 64;
const int k= 51;
const int ITERATIONS = 5;
const int SAMPLES = 100000;
const double EBNO= 25;
const int T CORRECTABLE= 2;
const int T TESTING BITS = 4;
const int LISTLENGTH = 16;
const int INPUTLENGTH = 2601,
const int OUTPUTLENGTH = 4096;
const int GF_generator{]={1,1,0,0,0,0,1};
const int code generator[]={1,0,0,1,1,1,0,0,1,0,1,0,1};

Figure 3.7: Parameter setting for a BTC(64,51,6)

The design of the program is quite straight forward. Figure 3.8 shows the major blocks

which work in a similar way to the a real system.

-4] -

Noise
Generator

Information Encoder R /'\ Iterative R Error
Generator U Decoder Counter '

A

Figure 3.8 Block diagram of the software simulation

As shown in Figure 3.8, the simulation starts with the Information Generator, which is
responsible to generate information symbols. In this design, we assume the information
symbols are random binary bits with k*k bit length for each block. In C++ program, we

can use the built-in random function for this procedure.

The information sequence is then fed into the BTC Encoder. The core of the encoder is
an extended BCH encoder, which adds n-k parity check bits to each row (or column).
The result of the unit is a block of binary bits with n*n bit length, which is treated as a

transmitted data sequence.

The next step is to pass the coded bits through AWGN channel. This is simulated by the
Noise Generator, which adds noise to the transmitted data sequence. Again, this will
require the use of the built-in random function. In order to assure the resulting random

values having a Gaussian distribution, here, we adopt a well-known method, namely the

-42 -

Box-Muller algorithm, for generation of white Gaussian noise. The mathematical

background of the Box-Muller algorithm can be found in [31]. The C++ code is shown

in Figure 3.8.

/I Simulation of a AWGN channel. Noise is generated using Box-Muller method
void pass_awgn_channel(int *input, double *output, int length,double sigma)

double x1, x2, w, y1, y2;

int half=(int)length/2;

for(int i=0; i<half;i++)

{

do {

x1=2.0 *ranf() - 1.0;
x2 =2.0 *ranf() - 1.0;
w=x1 *x1+x2 *x2;
} while (w>=1.0);

w=sqrt((-2.0 *log(w))/w);

yl =sigma * x1 * w;

y2 =sigma * x2 * w;
output{i]=y1+input[i]*2.0-1.0;
output[it+half]=y2+input[i+half]*2.0-1.0;

}
if ((double)halfl=((double)length/2))
{
do {
x1 =2.0 * ranf() - 1.0;
x2=2.0 * ranf() - 1.0;
w=x1 *x1+x2 *x2;
} while (w>=1.0);
w=sqrt((-2.0 *log(w))/w);
y1l =sigma * x1 * w;
output[length-1]=y1+input{length-1]*2.0-1.0;

Figure 3.9: Simulation of an AWGN channel
On the receiver side, the major functional unit is a BTC Decoder, which is also the most

sophisticated and important unit in this design. The decoder is made up of several

individual functional blocks, which perform the tasks of locating p LRBs, generating a

-43 -

list of test sequences, decoding all test sequences, selecting a decision codeword, and
outputing extrinsic information. These functions are mostly very easy to implement in
software languages like C++. Here, we would like to say a few words on the decoding
algorithm that is used for the inner component code. In fact, there are many decoding
algorithms available for the inner BCH codes, while some of them, like the trans-table
algorithm [22] or chien search algorithm, have been optimized for particular codes. Of
course, using a fast algorithm may improve the simulation speed, but this will lose certain
flexibility in the program. Considering these facts, we decided to use a more general
decoding algorithm, namely the Berlekamp algorithm [2], for the inner BCH decoding.

The C++ code is shown in Figure 3.10.

-44 -

// Simulation of a AWGN channel. Noise is generated using Box-Muller method
bool BCH::do_decode(int *input, int *output,int listpos)
{

mt paritybit=0;

for (int 1=0; i1<n;i++)

{ output[i]=input[i];

}

get syndrome(input);

bool noerror=true;
for(i=0;i<T_CORRECTABLE*2;i++)
{ if (syndrom[i}!=0) noerror=false;

if (noerror)
{ for (i=0; i<n-1;i++)
{ paritybitt+=input[i];
}
if (paritybit==(int)(paritybit/2)*2) output[n-1]=0;
else output[n-1}=1;
return true;
}
for (i=0;i<2*T_CORRECTABLE+2;i++)
{ ulil=i-1;
for (int j=0;j<6;j++)
{ Q[i][i1=0;
}
}
Q[0][0}=1; Q[1][0]=1; du[0}=1;
du[1]=syndrom[0}; 1u[0]=0; u[1}=0;
for (int j1=2;j1<(T_CORRECTABLE*2+2);j1++)
{ if (du[j1-1}==0)
{ lufj1}=lufj1-1];
for(int =0;i<lu[j1]+1;i++)

; QUI[i1=QL1-1[iL;
}

else
{ int tempp=-1; int tempd=0; int dp;
for (int j2=0;j2<(1-1);j2++)
{ if (du[j2]!=0)
{ dp=ulj2]-lu[j2};
if (tempp==-1)
{ tempp=j2;
tempd=dp;

else if (dp>tempd)
{
tempp=j2;
tempd=dp;
3

Figure 3.10: BCH decoding using Berlekamp algorithm. (see next page)

-45 -

mt tempql;
tempq1=GF multiply table[du[j1-1]][GF inverse(du[tempp])];
int degree=jl1-1-tempp;
int tempq2[6],tempq3[6];
for(int i=0;i<degree+1;i++)
{ tempq?2[i]=0;
3
tempq2[degree}=tempql;
int lengthofgp,lengthofq3,lengthoftq,lengthofq;
lengthofgp=Iu[tempp]+1;
lengthofq3=lengthofqp+degree;
GF poly convolution(tempq?2,degree+1,Q[tempp],lengthofgp,tempq3);
lengthoftq=lu[j1-1]+1,
if (Iengthoftg>=lengthofq3) lengthofg=lengthoftq;
else lengthofg=lengthofq3;
GF poly add(Qfj1-1],lengthoftq,tempq3,lengthofq3,Q[j11);
lu[j1}=lengthofq-1;
¥
if G1!'=2*T _CORRECTABLE+1)
{
int tempdu=syndrom{j1-1];
for(int j3=1;j3<l[j1]+1;j3++)

int templ;
temp1=GF_multiply table[Q[;1][;3]][syndrom([j1-j3-1]};
tempdu=GF _add table[tempdu][temp1];

¥
du[j1]=tempdu;
}
}
int count=0;

int position;
if (lu[2*T_CORRECTABLE+1]<=2)
{ for j1=1;j1<qy1++)
{
if (get GF poly value(Q[1+2*T_CORRECTABLE]u[2*T CORRECTABLE]+1,j1)==0)
{ position=GF _inverse(j1)-1;
output{n-1-1-position]=1-output[n-1-1-position];
count=count+1;
)
}
}
if (count==0) return false;
for (i=0; i<n-1;i++)
{ paritybit+=outputfi];
3
if (paritybit==(int)(paritybit/2)*2) output[n-1]}=0;
else output[n-1]=1;
return true;

Figure 3.10: BCH decoding using Berlekamp algorithm. (continued)

- 46 -

The last part of the design is an Error Counter which compares the decoding result with

the transmitted symbols. The number of error bits is counted and saved in the memory.

At the end of the simulation, error performance is calculated and displayed in terms of

BER.

Following table describes the major functions of each procedure in the program.

Table 3.2: Function descriptions

Functions Description
Global functions
main() This function is the main function of the program

generate_message()

This function generates k random binary bits used for an information

vector.

count_errors()

This function counts the number of errors in the decoded sequence.

pass_awgn channel()

This function simulates an AWGN channel by adding noise to the

transmitted data sequence.

generate _extrinsic_lookup table()

This function creates the lookup table for extrinsic information.

generate Galois_field()

This function generates a Galois field.

GF add()

This function performs addition of two elements in a Galois field

get GF poly value()

This function calculates the value of a polynomial in a Galois field

GF _inverse()

This function calculates the inverse value of a element in a Galois field

-47 -

This function performs multiplication of two polynomials in a Galois
GF_poly_convolution()
field.

GF poly add() This function performs addition of two polynomials in a Galois field.

Functions in BCH class (used for component encoding and decoding)

get syndrome() | This function computes syndrome of a binary sequence.

do_encode() This function encode an information sequence by using BCH codes
do_decode() This function performs hard decoding of a sequence using BCH codes
do_soft _decode() This function performs soft decoding of a sequence using BCH codes
locate I.RB bits() This function locates p positions of LRBs.

generate_test sequence() This function generates 2” test sequences

This function decodes all test sequences and forms a candidate
decode list()

codewords list.

get distance() This function calculates the destructive distance of a codeword.

locate decision_code() This function selects the decision codeword.

Functions in BCHTurboEncoder class

do_encode() This function encode information vector using BTC.

Functions in BCHTurboDecoder class

initial extrinsic() This function initials all extrinsic information matrixes in the memory.

do_decode() This function performs iterative decoding on a data sequence.

-48 -

3.5 Simulation Results

In this section, simulation results for BTCs over Gaussian channel using BPSK signaling
are investigated for both the traditional algorithm and the distance-based algorithm. In

addition, the impact of selecting p on error performance will be discussed.

First consider the performance of BTCs encoded by two-error correcting component
codes. Figure 3.11 depicts BER of BTC(64,51,6)* after 4 iterations for both algorithms
with p=2,3,4. As can be seen, our proposed algorithm improves performance over the
traditional algorithm by approximately 0.3 dB at a BER of 10” with 16 test patterns (p=4),
approximately 0.5 dB at a BER of 10 with 8 test patterns (p=3), and approximately 0.7
dB at a BER of 10” with 4 test patterns (p=2). It’s interesting to see that the distance-
based algorithm has excellent performance when using a small number of test patterns.
Observe that the new algorithm with 8 test patterns outperforms, by 0.1 dB, the
traditional algorithm with 16 test patterns. This means that at least a 50% reduction in
computational complexity is achievable. Moreover, to further reduce the complexity, we
may even use 4 test patterns for the new algorithm with only a loss of 0.1 dB at a BER of

10" compared with the traditional algorithm.

Similar conclusion can also be reached for BTC(32,21,6)* as shown in Figure 3.12. For
all observed p, the new algorithm achieves better performance than the traditional
algorithm. Again, as we expected, the new algorithm demonstrates an excellent decoding

ability by using a small number of test patterns. For example, instead of using 16 test

- 49 -

patterns in the traditional algorithm, we may use the new algorithm with only 4 test

patterns to obtain a similar performance (around 0.2 dB loss).

Next, we will examine the performance of BTC with one-error correcting component
codes. Simulation results for BTC(64,57,4)” and BTC(32,26,4)° are shown in Figure 3.13
and Figure 3.14. We have observed performance improvement by using the new
algorithm when the number of test patterns are relatively small (p=2, 3). However, as p
increases (p>=4), the traditional algorithm shows better error correcting ability and the
proposed algorithm cannot improve performance as we expected. This can be explained
by studying the minimum Hamming distance of the codes. Recall that during the
decoding procedure, 2” test patterns are reviewed and only few of them may give unique
valid code words for computing soft outputs. (the others may be either invalid code
words or repeating code words). Because the number of valid candidates decreases as the
minimum Hamming distance increases, in the case of BTC encoded by two-error
correcting codes, for the traditional algorithm to be close to the performance of a nearly
optimal decoder a large number of test patterns is required. Therefore, we may use the
distance-based algorithm to improve the performance. However, for BTC with one-error
correcting codes, relatively small number of test patterns provides sufficient information
for the traditional algorithm and the new algorithm does not have any advantage in this

casc.

Finally, since we know the new algorithm is a sub-optimal algorithm, it could be useful to

compare these results with the iterative decoding simulation performance when the

-50-

optimal algorithm is used for the component codes. Normally, we consider that the OSD
(ordered statistic decoding) algorithm can achieve a performance very close to an optimal
decoder. Here, we will use the results from [25] as reference. Figure 3.15 and 3.16 shows
the simulation results for BTC(64,51,6)* and BTC(32,21,6)* over AWGN channel. As we
can see, a coding gain of 0.2 db at a BER of 10” is observed by adopting the OSD
algorithm. However, such performance improvement is usually worthless when
considering the large complexity that is required for the OSD algorithm. Therefore, the

new algorithm is advantageous for practical applications due to the low complexity.

-51-

4

i

2
3

=<4 traditional p
-EF traditional p:

4
2
3
4

p
p
p

~£- new

— — — ~ | ~3 traditional p

- = - - | =%~ new

DL e i L

i

B e L bl T el

W

-
e _\4\
|

1

__\Ti_‘
Juer Tl |
*.___i_‘ ,

e e —
1
!

L

)
T
L~ al

-

-
-

et

R el e e
'
L

sley Joud 3g

3.5 4.5

Eb/No(dB)

25

on a Gaussian channel using BPSK

6)*

2

Figure 3.11: BER versus Eb/No of BTC(64,51

signaling at iteration 4.

(guam i im0
1
_234234%
woW o n g
laocacaoaak
8 ®®

c CC
I-R-R-] 3
IEE=¥= 3
|E88 3 £
MeE s s e E
)
ket
1

1

8)ey Jou3 ug

45

35

3
Eb/No(dB)

on a Gausstian channel using BPSK

2

,21,6)

Figure 3.12: BER versus Eb/No of BTC(32

signaling at iteration 4.

-52 -

—r = —————
= traditional p=2
~E traditional p=3
traditional p=4

&~ new p=2
-&~ new p=3
3 —% new p=4 X
uncoded BPSK H

1L

Bit Error Rate

Lpl

N
o

Eb/No(dB}

Figure 3.13: BER versus Eb/No of BTC(64,57,4)* on a Gaussian channel using BPSK

signaling at iteration 4.

= traditional p=2
3 1 =B~ traditional p=3
,,,,, o oo —]~ traditional p=4
N &~ new p=2
~&- new p=3
g NEW p=4
~—— uncoded BPSK

T T ITII

T T

Thmm=-TT

|
|
l
1
T

Bit Error Rate
TOMT~

Eb/No(dB)

Figure 3.14: BER versus Eb/No of BTC(32,26,4)* on a Gaussian channel using BPSK

signaling at iteration 4

-53-

= OSD Ns=51, i=2
-~ traditional p=4
—————————————————— ~+= new p=4
— uncoded BPSK

[N

T T TT1T

Ll

T T T

-
o
T

T T T TTIT

Bit Eror Rate

TTTTTIT

Eb/No(dB)

Figure 3.15: Comparison with other algorithms for BTC(64,51,6)” on a Gaussian channel

using signaling at iteration 4

—— O0SDNs=11i=2 3
- traditional p=4
—-4= new p=4 0

uncoded BPSK

Bit Error Rate

Eb/No(dB)

Figure 3.16: Comparison with other algorithms for BTC(32,21,6)* on a Gaussian channel

using signaling at iteration 4

- 54 -

3.6 Discussions and Conclusions

In this chapter, we introduce a new distance-based algorithm, which performs SISO
decoding based on the distance property of the decision codeword. Many exciting
simulation results are presented, showing that the new algorithm is advantageous over the

traditional algorithm.

In terms of error performance, the distance-based algorithm can improve the error
correcting ability for most low code rate BTCs that use 2-error correcting component
codes. Compared to commonly-used low code rate BTCs decoded by the traditional
algorithm, up to 0.3 dB coding gain is achievable. Also, for high code rate BTCs, by
using the new algorithm we observe certain improvement with small number of test

patterns (p<4) and negligible performance loss with large number of test patterns (p=4).

The major advantage of the new algorithm is its very low computational complexity.
Compared to the traditional algorithm, complexity reduction is obtained due to the
following reasons.

e The major saving is accomplished through decreasing the number of test patterns in
the new algorithm. Based on the Monte Carlo simulation results, we show a solution
that uses only 4 test patterns and achieves a similar performance to the traditional
algorithm with 16 test patterns. This results in a significant reduction in complexity.

¢ The calculation of soft outputs is much simpler in the new algorithm. In our approach,

the competing codeword B is not necessary any more, and finding soft outputs by a

-55-

lookup table is more like a one shoot task. This feature also facilitates the hardware
implementation, since no further optimization is required.
e The multiplication operation that is required in the traditional algorithm for scaling

extrinsic information by a factor « is not necessary any more in the new algorithm.

Analyses given above only give a rough idea regarding the complexity issue. More
precise comparison has to be carried out through hardware implementations. In next
chapter, detailed description of FPGA implementation of the new algorithm is studied,

and synthesis results will demonstrate the complexity saving in real applications.

-56 -

Chapter 4

FPGA Design of the New Algorithm

4.1 Introduction

In previous Chapter, a new distance-based algorithm is presented to achieve excellent
error performance for BTCs with large Hamming distance. In fact, the new algorithm is
also very attractive for practical applications. As we mentioned in Section 3.3, since soft
outputs are pre-calculated and saved in a lookup table, computational complexity is
significantly reduced compared to the traditional algorithm. Reduction in computational
complexity is shown through several FPGA (Field Programmable Gate Array) designs
targeting on Xilinx Virtex II platform. Synthesis results of this implementation are

directly compared to the commercially available product 7C3000 from Turbo Concept.

The rest of the chapter is organized as follows. In Section 4.2, FPGA technology and
design methodology are reviewed with focus on Xilinx Virtex II products. Section 4.3
deals with some design issues such as quantization, memory arrangement, and hardware

structures. Synthesis results are presented in Section 4.4 .

-57-

4.2 Review of FPGA Technologies

A field-programmable gate array is a large-scale integrated circuit that can be
programmed after it is manufactured. As the name suggest, the term "field-
programmable” means it is able to change the operation of the device "in the field," and

"gate array” is the basic internal architecture that makes this reprogramming possible.

FPGA is a new technology which is ideal for prototyping systems, or verifying
algorithms. From a hardware perspective, the FPGA platforms fill the gap between
software programmable systems based on traditional microprocessors, and application-
specific platforms based on custom hardware functions. From a software perspective,

FPGA-based platforms enable the rapid creation of hardware-accelerated algorithms.

4.2.1 Basic Structure of FPGA

FPGAs come in a wide variety in terms of size, speed and technologies used for internal
functions. They have certain key elements in common. A typical FPGA wusually
composed of a number of programmable logic blocks, where each of the blocks contains
a few registers and configurable logic elements. These blocks are tied together with

programmable interconnections.

-58-

System Integration

Fabrication

Figure 4.1: FPGA Design Flow

Depending on the technology used for programming, FPGAs in the market today can be
divided into two categories: SRAM-based and antifuse-based FPGAs. In the first
category, Xilinx and Altera leads in many other competitors, while for antifuse-based

FPGAs, Actel , QuickLogic and Cypress are the leading manufactures.

4.2.2 FPGA Design Flow

As shown in Figure 4.1, a typical FPGA design may take following five steps: functional
design, synthesis, place & route, system integration, and fabrication. Although in the
figure, the design flow is drawn as a downward process, it is actually an iterative process
where a designer always can return to any previous stage until required functionality is
achieved. In each step, components are verified by simulation program such as ModelSim

to ensure the correct functionality before moving to next step.

-59.

1. Functional design: Initial system concept is translated into an actual
implementation either using schematic entry or a hardware description languages
(HDL) such as VHDL or Verilog. For a complex project, the design usually starts
with describing the system as several functional blocks in the behavior model, and
then these individual blocks are constructed at RTL level.

2. Synthesis: The function design is mapped into a netlist--- a description of logic
cells and their connection. The most common netlist formats are EDIF (Electronic
Design Interchange Format), VHDL, Verilog, or XNF.

3. Place & route: The blocks of netlist are arranged on the chip and make the
connections between cells and blocks. Once the locations of cells are determined,
associated time delay can be estimated and used to verify the operating clock
speed by a simulation tool.

4. System integration: A complete schematic of the entire system is constructed
which includes all FPGAs and other devices such as EPROMs, RAMs, etc. This
procedure visually prototypes the actual system and a successful simulation
almost ensures correct operation of the physical prototype.

5. Fabrication: The program is downloaded into actual FPGA devices. This is the

final process which is performed after entire system is simulated and the correct

functionality is achieved.

4.2.3 Introduction of Xilinx Virtex II Family

Virtex Il FPGAs from Xilinx are mainly developed for telecommunication, wireless,

networking, video, and DSP applications. The Virtex-1I architecture uses the leading-

- 60 -

edge 0.15 pm / 0.12 pm CMOS 8-layer metal process and is optimized for high speed
applications with low power consumption. Some major features are listed as follows:
o Densities from 40K to 8M system gates
e 420 MHz internal clock speed (Advance Data)
e 3 Mbit of dual-port RAM in 18 Kbit block SelectRAM resources
e Upto 1.5 Mbit of distributed SelectRAM resources
e High-performance interface to external memory such as DRAM, SRAM, and
CAM
e Upto 93,184 internal registers / latches with Clock Enable
. Up to 93,184 look-up tables (LUTSs) or 16-bit shift registers
e High-Performance clock management circuitry with up to 12 DCM (Digital
Clock Manager) modules

Following table shows all members in Vertex II family.

Table 4.1 Virtex-II Field-Programmable Gate Array Family Members

(1CLB =4 siic(e;;i Rax 128 bils) SelectRAM Blocks
Maximum
System Array Distributed | Muitiplier | 18Kbit | Rlax RAM Max /O
Device Gates | Row x Col. | Slices | RAM Kbits Blocks Blocks | ({Kbits) DCMs | Pads(!
Xc2vao 40K 8XB 258 8 4 4 72 4 &8
XCzvao 80K 16x8 512 16 8 8 144 4 120
XC2Vv250 250K 24 x 16 1,536 48 24 24 432 2 200
XC2V500 500K 32X 24 3,072 96 32 32 576 8 264
XC2v1000 14 40 x 32 5,120 180 40 40 720 8 432
XC2V1500 1.5M 48 x 40 7,880 240 48 48 864 8 528
XC2v2ac0 2M 56 x 48 10,752 336 56 56 1,008 8 824
XC2V3000 3M B84 X 56 14,336 448 a6 96 1,728 12 720
XC2V4000 4M BOXT2 23,040 720 120 120 2,160 12 12
XC2Ve000 &M 06 X 88 33,792 1,086 144 144 2,892 12 1,104
KXKC2V8000 BM 112 x 104 46,592 1,458 168 188 3,024 12 1,108

-61 -

Global Clock Mux—;ﬁmﬂ]ﬂﬂmiﬂmmmﬂiﬂ]]ﬁm—

LICCIE]
LI
I
I
HENN
I
| OO|loooo
Configurable Logic \ FD[| I:”:":":I | |

0
=

ooooooon
EEEEEEEN
-~ TN I LTI

Programmable Os

/ /
CLB Block SelectRAM Multiplier

Figure 4.2 Internal structure of Virtex 11

The internal structure of a Virtex I1 FPGA is mainly composed of four major elements as

shown in Figure 4.2.
o Configurable Logic Blocks (CLBs) provide functional elements for combinatorial
and synchronous logic, including basic storage elements.

¢ Block SelectRAM memory modules provide large 18 Kbit storage elements of
dual-port RAM.

e Multiplier blocks are 18-bit x 18-bit dedicated multipliers.

e DCM (Digital Clock Manager) blocks provide self-calibrating, fully digital
solutions for clock distribution delay compensation, and clock multiplication and

division.

-62 -

{2 FX

EXNALTS
FXINB >
-
<O
LUT o D— >R
[—— FFALAT
Sl o CE
inpets) CLK
B S
SR REV
I
BY
[= F5
=%
LUT
Fleo—| D L <3 OX
npute)
Ll o Q % X0
FFRILAT
CE
—ciK
SR REW
[
BX s
CEL >
CLX o
SR

UBID2 ©3 517113000

Figure 4.3: Virtex II General Slice

As the most important unit in the device, CLBs are responsible for all logic functions in

FPGA design. A close look of a slice diagram is shown in Figure 4.3.

In particular, Virtex Il FPGAs use Look-Up Tables (LUTs) to implement logic functions.
Therefore, the combination function can be implemented with a fix —propagation delay.
Moreover, LUTs also can be configured as memory units (distributed RAM) or shift

registers.

-63 -

4.3 Fixed-Point Representation of the Algorithm

The distance-based algorithm described in the previous chapter is investigated in the
floating-point domain. Directly implementing such an algorithm is almost impossible for
a practical application; thus, fixed-point number representation using a quantization

technique is a necessary step towards an actual system implementation.

Quantization strategy for turbo codes is discussed in many literatures [32] [33] [34].
There are two major quantization techniques: uniformed quantization and non-uniformed
quantization. In this thesis, we only discuss the uniformed quantization, since it is much

easier to implement.

In figure 4.4, we show a typical uniformed 4-bit quantization scheme where D is the size

of quantization step.

ma? — 8

A\ 4

Figure 4.4: 4-bit uniformed quantization

- 64 -

It is predictable that a fixed-point number representation will result in certain
performance loss, since values lying anywhere within a quantization interval are assigned
the same value for computer processing and the original amplitude value cannot be

recovered without error.

In order to study the impact of different quantization bit width on the BER, a C++
program similar to the one in the appendix is developed to simulate the algorithm in a
floating point domain with different bit width settings. The effects of quantization bits on
performance for a BTC(64,51,6)° using 4 test patterns after 5 iterations are illustrated in
Figure 4.5. It shows that a 4-bit quantization scheme (16 level, D=0.2) provides a

reasonable compromise between complexity and performance.

To be consistent, all the hardware implementations shown later in this section will use a
4-bit quantization scheme. As shown in 4.5, the hardware implementation of the distance-
based algorithm will result in an approximately 0.1 dB performance loss compared to the

floating-point version of the algorithm.

-65 -

Ny
3 \,
10 = :&::
= :E\;:
= N
E IECs
_______ g
4
£ 10 ¢ =
g - :
5 C Ai
=S R R N B
L s Tt T e s T
o X
m 10t i‘g;
o -
C v
_______ 3____
,,,,,,, YU S
5) \
10 & F==% =
E :c:%:
= o
F R
Y
3 i I
-

Figure 4.5: Quantization results for BTC(64,51,6) using 4 test patterns after 5 iterations

4.4 FPGA Design of the Distance-Based Algorithm

Hardware implementation of the distance-based algorithm on FPGA platform is quite
straight forward. In this section, we present the FPGA design for the new algorithm using
BTC(64,51,6)%. First, we will introduce the two fundamental units, an elementary decoder

and a block interleaver. Then two possible hardware structures are presented.

- 66 -

Ry’(in) Ry’ (out)
Sequential | | Algebraic Decision Output
input decoding selection unit —>
unit unit unit
K
Delay
Ry(in) Ry(out)

v

Figure 4.6: Elementary decoder (half-iteration)

4.3.1 Elementary Decoder

The core of the decoder is a half-iteration decoder, namely elementary decoder. As
shown in Figure 4.5, it consists of four major units explained as follows:

e Sequential input unit, which operates at the rthythm of input symbols. The main
function of this unit is to locate p LRBs, and calculate initial values (including
destructive distance, syndrome, and parity bit). The information will be used to
resemble 2° test sequences in the next block.

e Algebraic decoding unit, which performs BCH decoding of all test sequences. In
our approach, the unit consists of 2 BCH decoders, which enables all test
sequences to be processed simultaneously. Thus, it is clear that the total
complexity of the unit is depending on the number of test patterns used in the
design.

e Decision selection unit, which determines the codeword with the minimum

destructive Euclidean distance from R.

-67 -

e OQOutput unit, which generates the soft output for next iteration. The unit is realized

as a lookup table or a block of memory. The function table wy=g(7;, d;,Dists) is

pre-calculated using Equation

2 +exp(2r.d;/c?
w=d|Z I $+exp(2rid; /o) —rd.
J J 2 1_¢ 77T

where ¢ is assumed to be known. For practical considerations, we only need to

save the absolute values of the possible extrinsic information and the sign bit can
be found by observing d;. The value is rounded to the closest level corresponding

to the quantization scheme. An example of the lookup table for BTC(64,51,6)"

with 16 quantizaﬁon levels is shown as in Table 4.2.

-68 -

Table 4.2: Soft outputs lookup table (absolute value, 4-bit quantization)

Dist
r*d\ | <9 10 11 12 13 14 >14
0.1 1.1 0.7 0.5 0.5 03 0.1 0.1 0.1
0.3 1.1 0.7 0.5 0.5 0.3 0.1 0.1 0.1
0.5 0.9 0.5 0.5 0.3 0.3 0.1 0.1 0.1
0.7 0.9 0.5 0.5 0.3 0.3 0.1 0.1 0.1
0.9 0.9 0.5 0.5 0.3 0.3 0.1 0.1 0.1
1.1 0.9 0.5 0.5 0.3 0.3 0.1 0.1 0.1
1.3 0.9 0.5 0.5 | 0.3 0.3 0.1 0.1 0.1
1.5 0.9 0.5 0.5 0.3 0.3 0.1 0.1 0.1
-0.1 1.1 0.7 0.7 0.5 0.3 0.3 0.1 0.1
-0.3 1.3 0.9 0.9 0.7 0.5 0.3 0.1 0.1
-0.5 1.5 1.1 0.9 0.9 0.7 0.5 0.3 0.1
-0.7 1.7 1.3 1.1 1.1 0.9 0.7 0.5 0.1
-0.9 1.9 1.5 1.3 1.3 1.1 0.9 0.7 0.1
-1.1 21 1.7 1.5 1.5 1.3 1.1 0.9 0.1
-1.3 23 1.9 1.7 1.7 L5 1.3 1.1 0.1
-1.5 2.5 2.1 1.9 1.9 1.7 1.5 1.3 0.1

- 69 -

4.4.2 Memory Design

Iterative decoding requires a large amount of memory to store data. As shown in Figure
4.3, two types of data have to be saved during the decoding. They are the original
received data sequence R and the output soft data sequence R. Both of them have the
same size, which is calculated as bit-width * code length. In our approach, since code
length 1s 4096 and quantization bit width is 4, each mafrix requires a 4x4096(16k)
memory. The number of matrix is depending on the actual architecture used in the design

which will be discussed later in this chapter.

Virtex II devices provide two types of memory resources: Block SelectRAM, and
Distributed SelectRAM. In general, Block SelectRAM is a designated unit suitable for
storing a large blocks of memory. Therefore, in our design, it is used for saving both
data matrixes R” and R. Distributed SelectRAM is realized by reconfiguring CLB, and is
suitable for relatively small memory blocks such as lookup tables and FIFOs(Fist-in

First-out). It is adopted for implementing the extrinsic lookup table as shown in Table

4.2.

The memory blocks also function as a block interleaver during the decoding process.
Figure 4.7(a) illustrates a possible connection between memory and decoders. In the
figure, elementary decoders are pipelined with an interleaver (memory) in the middle. For
each decoder, the memory provides a separate port (this feature is supported by
BlockRAM dual-port technology), which can be used independently for either reading or

writing operations. Figure 4.7(b) demonstrates a simple interleaver example where 16

-70 -

Memory
Elementary Port 1(w) (or Interleaver) Elementary
Decoder 1 Decoder 2

o ° o ° Port 2(1‘)

(a)

time
—— Tterationk —P] 4— Jterationk+1 ——»

v

Port 1

(write) 12345...... 141516 15913 481216
Port 2 12 345...... 141516 15913 481216
(read)

(®

Figure 4.7: Interleaver example (a) interconnections between interleaver

and decoders (b) interleaver operation

symbols are arranged in 4 rows and 4 columns. Let us assume previous data from decoder
1 is saved in column wise. Starting with a new iteration, the decoder 2 reads the data in
the memory by rows through port 2. On the other hand, new soft output data from
decoder 1 is ready after a short delay. Thus, the used data in the memory will be updated
by the new date sequence. Observation from Figure 4.7(b) proves that no conflict

happens during the memory assessment from two ports.

=71 -

4.4.3 Iterative Decoding Architecture

So far, we have introduced two major components, an elementary decoder and a memory
block, in the hardware design. Now, we need to assemble the components to form an
iterative decoding architecture. Analysis of the algorithm indicates that there are two
different types of decoder architectures which can be adopted in the design depending on

the number of elementary decoders used.

Prototype A

Figure 4.8 illustrates a possible architecture of a BTC decoder. Notice there is only one
elementary decoder in this design. Thus, all iterations are performed in the same
component. Obviously, such design does not consume much chip area. Consequently,
relatively low-cost chips can be adopted for the algorithm implementation. However, the
major drawback of this architecture is the data rate. It is clear that once a block of data
sequence enters the decoding process, other blocks of data have to be waiting in the line
until the current iterations are completed. It is clear that, as the number of iterations

grows, the output data rate becomes very slow.

Elementary
Decoder

Memory Memory
Unit Unit
(Interleaver) (Interleaver)

Figure 4.8: Single-elementary-decoder structure

-72 -

Prototype B

In Figure 4.9, another prototype is introduced where several elementary decoders are
concatenated to form a pipeline. Consequently, all decoders are synchronized in the
decoding process with a goal to maximize the date rate. The number of elementary
decoders required is 2¢, where ¢ is the total iteration steps. Of course, the associated chip

area is usually very large. The total chip area can be estimated as 2¢ times of that of

Prototype A.

Elementary
Decoder
Input Memory Unit
(Interleaver)
Elementary
Decoder

Memory Unit
(Interleaver)

Elementary
Decoder

Figure 4.9 Pipeline structure

-73 -

4.5 Synthesis Results

In this section, we compare the hardware complexity of the distance-based algorithm
with the traditional algorithm. A commercially available product TC3000, developed by
Turbo Concept, is chosen as a reference. TC3000 is a family of BTC decoders

customizable with VHDL generics and its data sheet is available in [30].

To be consistent, we should use the same configurations in our approach. Therefore,
turbo decoders which perform 5 iterations on BTC(64,51,6)* with 16 quantization
levels(4-bit data width) are investigated. All our designs shown in the thesis are targeting
on the Xilinx VirtexII device family. They are implemented by high level VHDL
language, and automatically synthesized by Synplify Pro. Functional simulations are

performed in ModelSim, where a C++ program was used to validate the results.

Synthesis results are evaluated in terms of surface area, data rate, and performance (BER).
Similar to the members in T7C3000 family, several designs with different architectures

and parameters are developed for meeting the system requirement.

4.5.1 Minimization of Surface Area

For applications in this category, cost control is usually a main concern. Relatively low
date rates and moderate performance is affordable. Therefore, prototype A which uses
only one elementary decoder is a suitable solution in this case. In addition, to further
decrease the complexity, 4 test patterns are used for generating codeword list. Synthesis

results show that the FPGA design using the new algorithm only consumes 550 CLBs,

-74 -

which can be fit in a very low cost chip XC2V 250. Compared to TC3021 that uses the
traditional algorithm, our new approach achieves up to 79% complexity saving with a

cost of 0.1 dB degradation in performance. Details are explained in Table 4.3.

Table 4.3: Comparison to TC3021 (chip area)

Traditional Algorithm
New Algorithm
(TC3021)
CLB Slices 2682 550
Data Rate 7Mbits/s 8Mbits/s
EbNo@10~ 2.7dB 2.8dB
Test Patterns 16 4

4.5.2 Maximization of Data Rate

Prototype B which uses pipeline structure can maximize the overall data output
throughput. Therefore, it is adopted for the applications in this category. Moreover, if the
error performance is not a major concern, we recommend using 4 test patterns for all
elementary decoders. The final synthesis result of the new algorithm is compared to the
product TC3024 as shown in Table 4.4. Our approach obtained a data rate of 65 Mbits/s,
which is 2.5 times faster than that of TC3024. More importantly, by using the new

algorithm, only 36% surface area is required.

=75 -

Table 4.4: Comparison to TC3021 (data rate)

Traditional Algorithm

New Algorithm

(TC3024)
CLB Slices 10000 3600
Data Rate 25Mbits/s 65Mbits/s
EbNo@10” 2.7dB 2.8dB
Test Patterns 16 4

4.5.3 Optimization of Error Performance

For certain applications that wish to get a better performance, we may increase the
number of test patterns in the design. Table 4.5 shows an 8-test-pattern solution, which

will provide 0.1dB gain in performance over the traditional algorithm. The result shows

that our design is advantageous in terms of area, data rates, and performance.

Table 4.5: Comparison to TC3024 (performance)

Traditional Algorithm

New Algorithm

(TC3024)
CLB Slices 10000 6080
Data Rate 25Mbits/s 65Mbits/s
EbNo@10” 2.7dB 2.6dB
Test Patterns 16 8

-76 -

Data Rate

. A
(Mblts/sf
New P=2
65 1 ED
2.8db@ 107
TC3024
25 2.7db
@10°
TC3022
14 2.7db
@107

v

6K 8K 10K
Slices

*ED: Elementary Decoder

Figure 4.10: Bit rate vs. complexity trade-off

Of course, in some cases where higher performance is required, a decoder using 16 test

patterns can also be considered.

Figure 4.10 summarizes our results in a comparison chart and gives a synthetic view of

the data-rate/ complexity trade-off.

-77 -

Chapter 5

Conclusions and Future Works

5.1 Conclusions

As a member of the turbo code family, block turbo codes exhibit excellent error
performance and are widely used in many applications including satellite
communications and digital video broadcasting. This thesis tries to give a broad view on
BTCs, with focus on the decoding algorithms that are available. Both trellis-based

algorithms and augmented list algorithms are explained in great detail.

An important contribution of our work is the proposal of a new algorithm that delivers
soft outputs using the distance property of a code word. This solution can improve the
performance over the traditional algorithm by 0.3 dB for BTCs having large hamming
distance and have negligible performance loss for BTCs having short Hamming distance.
From the point of view of computational complexity, the implementation of the proposed
algorithm is much simpler than the traditional algorithm, since the soft outputs are
generated via a lookup-table. Moreover, from the investigation of simulation results, we

have noticed the fact that the new algorithm is able to achieve a moderate performance by

-78 -

using a small number of test patterns. This leads to a large saving in hardware complexity.
As a proof, the computational complexity of hardware implementations for the new
algorithm is investigated on Xilinx FPGA Virtex II platforms, showing significant saving
is achievable. For example , a BTC(64,51,6)° decoder that has a throughput of 8 Mbps by
using 4 test patterns consumes only 550 control logic block (CLB) slices, which achieves
about a 79% complexity saving in comparison to the commercially available product
TC3000. Therefore, for practical considerations, it is suitable for high data rate

applications.

5.2 Future Directions

Some of the issues that may be considered for future works are:

e Improvement of the proposed algorithm: The key step in the new algorithm is to
find the confidence value by the destructive Euclidean distance of a decision
codeword. The way that we use to obtain the confidence value via exhaustive
simulations may be replaced by other better strategies. Also, considering the
confidence value as a function of the destructive Euclidean distance may not be
sufficient. For future research, we should try to improve the accuracy of
estimation by using more parameters, such as building a lookup table as
¢ = f(Dist,,,t), where the confidence value can be adaptive for each decoding
stage.

e Evaluation of error performance: As we all know, for most of turbo decoding
algorithms, evaluation of error performance is always a tough job since Monte

Carlo simulation of a turbo code is usually very time consuming. It is proved that

-79 -

performance of certain codes can be evaluated by bounding technology with
acceptable accuracy. For the distance-based algorithm, as simulation is the only
way available for verifying the error performance, we hope that similar analytical
method can be developed for evaluating the performance in the near future.
Reduction of complexity and latency: In fact, the computational complexity may
be further reduced. One possible solution is to save the candidate codewords in
memory and use them again in the next iterations. This can decrease the total
amount of hard decoding and significantly reduce the computational complexity.
Decoding for other product codes: We have investigated the error performance
for BTCs using inner BCH codes. Obviously, the new algorithm can be easily
extended to other product codes. One example could be BTCs using Reed-Muller
component codes, which also can be decoded by trellis based algorithms with
maximum likelihood decoding. This work can be helpful to evaluate the

proposed algorithm compared to an optimum decoder.

-80 -

Bibliography

[1] C. Shannon, “A Mathematical Theory of Communication,” Bell syst. Tech., vol.
27, pp. 379-656, July 1948.

[2] E.Berlekamp, “On Decoding Binary Bose-Chadhuri-Hocquenghem Codes,”
IEEE Trans. Inform. Theroy, Vol. IT-11, pp. 577-579, 1965.

[3] J.L.Massey, “Threshold Decoding,” Cambridge, MA, MIT Press, 1963.

[4] D. Chase, “A Class of Algorithm for Decoding Block Codes with Channel
Measurement Information,” IEEE Trans. On Inform. Theory, vol. IT-18, pp. 170-
182. Jan. 1972.

[5] J. K. Wolf, “Efficient Maximum-Likelihood Decoding of Linear Block Codes,”
IEEE Trans. On Inform. Theory, vol. IT-24, pp. 76-80. Jan. 1978.

[6] G.D. Forney, “Coset codes II: Binary Lattices and Related Codes,” IEEFE Trans.
On Inform. Theory, Vol. 34, No. 5, pp. 1152-1187, Sept. 1988.

[7] P.Elias, “Error-Free Coding,” IEEE Trans. Inform. Theroy, pp. 29-37, Sept. 1954.

[8] A. Viterbi, “Error Bounds for Convolutional codes and an Asymptotically
Optimum Decoding Algorithm,” IEEE Trans. On Inform. Theory, vol. IT-13, pp.
260-269, Apr. 1967.

[9] G. D Fomney, “Concatenated Codes,” Cambridge, MA, MIT Press, 1966.

[10] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
correcting Coding and Decoding: Turbo Codes,” Proc. of the 1993 Int. Conf. on

Commun., ICC1993, Geneva, Switzerland, May 1993.

-81-

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Hagenauer, E. Offer, L. Papke, “Iterative Decoding Binary Block and
Convolutional Codes,” IEEE Trans. On Inform. Theory, Vol 42, No. 2, pp. 429-
445, Mar. 1996.

C. Berrou, and A. Glavieux, “Near Optimum Limit Error-correcting Coding and
Decoding: Turbo Codes,” IEEE Trans. Commun. Vol. 44, No. 10, pp 1261-1271,
Oct. 1996.

S. Benedetto, D. Divalar, G.Montorsi, and F. Pollara, “Serial Concatnation of
Interleaved Codes: Performance Analysis, Design, and Iterative Decoding,” IEEE
Trans. On Inform. Theory, Vol 44, No. 3, pp. 909-926, May. 1998.

R. M. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near-optimum decoding of
product codes,” in Proc. I[EEE GLOBECOM, San Francisco, USA, pp. 339-343,
Nov. 1994.

A. Picart, and R. M. Pyndiah, “Adapted Iterative Decoding of Product Codes,” in
Proc. IEEE GLOBECOM99, pp. 2357-2362, Nov. 1999.

R. M. Pyndiah, “Near-optimum decoding of product codes: Block turbo codes,”
1IEEE Trans. Commun., vol. 46, pp. 1003—-1010, Aug. 1998.

R. M. Pyndiah, Pierre Combelles, P. Adde, “ A very Low Complexity Block
Turbo Codes,” in Proc. IEEE GLOBECOM, London, pp. 101-105, Nov. 1996.

S. A. Hirst, B. Honary, and G. Markarian, “Fast Chase algorithm with an
application in turbo decoding,” IEEE Trans. Commun., vol. 49, pp.1693-1699,
Oct. 2001.

S. Dave, J. Kim, and S. C. Kwatra, “An efficient decoding algorithm for block

turbo codes,” IEEE Trans. Commun., vol. 49, pp. 4146, Jan. 2001.

-82 -

[20]

[21]

[22]

[23]

[24]

125]

[26]

[27]

S. Kerouedan, and P. Adde, “Block turbo codes: towards implementation”, I[EEE
Conf. , Vol. 3, pp. 1219 — 1222, Sept. 2001.

P. Adde, R. M. Pyndiah “ Recent Simplifications and improvements Block Turbo
Codes,” in Proc. Int. Symp. On Turbo Codes and Related Topics, Brest, France,
pp. 133-136, Sept. 2000.

S. Kerouedan and P. Adde, “Implementation of a Block Turbo Decoder on a
Single Chip,” in Proc. Int. Symp. On Turbo Codes and Related Topics, Brest,
France, pp. 243-246, Sept. 2000.

M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block codes
based on ordered statistics,” IEEE Trans. Inform. Theory, vol. 41, pp. 1379-1396,
Sept. 1995.

P.A.Martin, A.Valembois, M.P.C.Fossorier, and D.P. Taylor, *“ On soft-input soft-
output decoding using box and match techniques”, IEEE Trans. Commun. Vol.
52, pp. 2033 — 2037, Dec. 2004.

P. A. Martin, D. P. Taylor, and M. P. C. Fossorier, “Soft-input softoutput list-
based decoding algorithm,” IEEE Trans. Commun., vol. 52, pp. 252-262, Feb.
2004.

L.Bahl, J. Cocke, F. Jelinek, and J. Raviv, “ Optimal Decoding of Linear Codes
for Minimizing Symbol Error Rate,” IEEE Trans. Inform. Theory, vol. IT-20, pp.
284-287, Mar. 1974.

D. J. Muder, “Minimal Trellises for Block Codes,” IEEE Trans. Inform. Theory,

Vol. 34, No. 5, pp. 1049-1053, Sept. 1988.

-83 -

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

F. R. Kschischang and V. Sorokine, “On the Trellis Structure of Block Codes,”
IEEE Trans. Inform. Theory, Vol. 41, No. 6, pp. 1924-1937, Nov. 1995.

R. C. Bose and D. K. Ray-Chaudhuri, “On a class of Error Correcting Group
Code,” Inf. Control, Vol. 3, pp. 68-79, March 1960.

Xilinx Alliance Core-Turbo Concept, “TC3000 data sheet”, {online], Available:
http://www.xilinx.com/products/logicore/alliance/ turboconcept/ turbo concept _tc
3000. pdf

G. E. P. Box, and M. E. Muller, “A Note on the Generation of Random Normal
Deviates,” Ann. Math. Stat. 29, 610-611, 1958.

Y.Wu and B.D. Woemner, “The Influence of Quantization and Fix-Point
Arithmetic Upon the BER performance of Turbo Codes,” in Proc. IEEE Inter.
Conf. on Vehicular Technology (VTC’99), Vol. 2 pp 1683-1687, May. 1999.

Y. Wu and B. D. Woerner, “Internal Data Width SISO Decoding Module with
Modular Renormalization,” in Proc. IEEFE Inter. Conf. on Vehicular Technology
(VTC’00), Tokyo, Japan, May. 2000.

H. Michel, A. Worm and N. When, “Influence of Quantization on the Bit-Error
Performance of Turbo Codes,” in Proc. IEEE IEEE Inter. Conf. on Vehicular
Technology (VTC’00), Tokyo, Japan, May. 2000.

S. Lin and D. J. Costello, “Error Control Coding Fundamentals and Applications,”
Prentice-Hall, Englewood Cliffs, USA, 1983.

M. Reza Soleymani, Yingzi Gao, U. Vilaipornsawai, “ Turbo Coding for Satellite

and Wireless Communications,” Kluwer Academic Publishers ,2002

-84 -

Appendix Simulation Program for Distance-Based Algorithm

/f
/' Designed by Nong Le Jan.10.2005

/I This simulation program is used for BTC(64,51,6)"2

/I File name: BCHendecode.h: interface for the BCHTurboEncoder class.
/I Created by Visaul C++ 6.0

// mis6

// nis 64

/I kis 51

/! input length is 2601

/I output length is 4096

/' component codes is extended BCH(64,51)

/1

#if !defined(afx BCHendecode h €3a07593 a2cl 405d 9acc 0c613ce7bebd included)
#define afx BCHendecode h e3a07593 a2cl 405d 9acc 0Oc613ce7bebd included

#if _msc_ver > 1000
#pragma once
#endif / _msc_ver > 1000

const int m= 6;
const int q= 64,
const int n= 64;
const int k= 51;

const int ITERATIONS = 5;

const int SAMPLES = 100000,

const double EBNO= 2.5;

const int T CORRECTABLE= 2;
const int T TESTING BITS = 4;
const int LISTLENGTH = 16;

const int INPUTLENGTH = 2601;
const int OUTPUTLENGTH = 4096;

const int GF _generator[]={1,1,0,0,0,0,1};
const int code generator[]={1,0,0,1,1,1,0,0,1,0,1,0,1};

- 85-

class BCH
{
public:
bool locate decision code();
void get distance(double *input);
void decode list();
void generate test sequence(double *inputseq, int *pos);
void locate_ LRB bits(double *input, int *pos);
void do_soft_decode(double *input, double *extrinsic matrixinput,
double *extrinsic_matrixoutput, int * decision);
void get_syndrome(int *recievedpoly);
bool do_decode(int *input, int *output,int listpos);
void do_encode(int *input, int *output);
int syndrom[T_CORRECTABLE*2],tempn[n],tempk[k];
int QT CORRECTABLE*2+2]{6];
int du[T CORRECTABLE*2+2],u[T CORRECTABLE*2+2],lu[T CORRECTABLE*2+2];
int position_of decision;
bool is_valid code[LISTLENGTH];
int test_sequence[LISTLENGTH][n],decoded sequence[LISTLENGTH][n];
double destructive_distance[LISTLENGTH];
BCH();
virtual ~BCH();
3

class BCHTurboEncoder
{
public:
void do_encode(int *input,int *output);
void construct(BCH *com1,BCH *com?2);
BCHTurboEncoder();
virtual ~BCHTurboEncoder();
BCH *componentl,*component2;
int tempk1[k],tempk2[k],tempn1[n},tempn2[n];
X

class BCHTurboDecoder
{
public:
void initial _extrinsic();
double extrinsic_matrix1[n]{n],extrinsic_matrix2[n][n}];
void construct{BCH *com1,BCH *com2);
void do_decode(double *input,int *output);
BCHTurboDecoder();
virtual ~BCHTurboDecoder();
BCH *component],*component2;
int tempdecisionl[n],tempdecision2[n];
int ITERATIONSativetimes;
double temp_extrinsicl[n],temp_extrinsic2{n],tempnl[n],tempn2[n};

b

#endif // !defined(afx BCHendecode h €3a07593 a2cl 405d 9acc Oc613ce7bebd included)

-86 -

[[====
/I File name: BCHendecode.cpp

It —

#inctlude "BCHendecode.h"

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#inchide <iostream.h>

#include <iomanip.h>

#include <fstream.h>

double extrinsic__lookup table[2][41]{40];
double sigma=sqrt((double)OUTPUTLENGTH/(double)INPUTLENGTH*0.5*pow(10,(-
(double)EBNO/10)));

double sigma27=sqrt({double)OUTPUTLENGTH/(double)INPUTLENGTH*0.5*pow(10,(-
(double)2.7/10)));

int count_errors(int *input,int *output);
int alphal{q][m],GF index[q],GF add table[q][q],GF multiply table[q][{q]; //use for GF

//I _______ S —

// generate random message and add gaussian noise
It e e e e

void generate message(int *message,int length)

{
double r;
for (int i=0; i<length;i++)
{
r=((double)rand())/ RAND MAX;
message[iJ=(int)(r+0.5);
}
}
double ranf()
{
return ((double)rand())/RAND MAX;
}
int count_errors(int *input,int *output)
{
int result=0;
for (int i=0;i<k;i++)
{
for (int j=0;j<k;j++)
{
if (input[i*k+j}'=output[i*n+j]) result++;
}
}
return result;
}

-87 -

void pass_awgn_channel(int *input, double *output, int length,double sigma)
{
double x1, x2, w, y1, y2;

mt half=(int)length/2;

for(int i=0; i<half;i++)

{

do {
x1=2.0 * ranf() - 1.0;
x2=2.0 * ranf() - 1.0;
w=x1 *x1 +x2 *x2;
} while (w>=1.0);

w=sqrt((-2.0 *log(w))/w);

yl = sigma * x1 * w;

y2 = sigma * x2 * w;
output{i]=yl+input[i]*2.0-1.0;
output[i+half]=y2+input{i+half]*2.0-1.0;

}
if ((double)halfl=((double)length/2))
{

do {
x1=2.0 * ranf() - 1.0;
x2 =2.0 * ranf() - 1.0;
w=x1*x1+x2 *x2;
} while (w>=1.0);
w=sqrt((-2.0 *log(w))/w);
yl =sigma * x1 * w; ‘
output{length-1]=yl+input{length-1]*2.0-1.0;

3
}
N[
/I generate extrinsic output lookup table
[m—————————————————————————————
void generate extrinsic lookup table()
{

double relibilty base on_distance[40];
for (int inter=0; inter<=9;inter++)

{
}

for (inter=14; inter<40;inter++)

relibilty base on distance[inter]=0.99;

relibilty base on_distance[inter]=0;

relibilty base on distance[8]=0.99;
relibilty base on_distance[9]=0.93;
relibilty base on distance[10]=0.9;

- 88 -

relibilty base on_distance[11]=0.82;
relibilty base on_distance[12]=0.65;
relibilty base on distance[13]=0.42;
relibilty base on_distance[14]=0.21;

for(int dis=0;dis<40;dis++)
{
for(int inp=0;inp<41;inp++)
{
double douinp=((double)inp-20)/10.0;
double signal=-1;
double logp=2*douinp/(sigma27*sigma27);
double pplus=(exp(logp))/(exp(logp)+1);
double pcorrect=relibilty base on distance[dis];
double pafter=((1-pcorrect)*pplus)/(pcorrect+(1-pcorrect) *(1-pplus));
double rafter=log(pafter)*sigma27*sigma27/2;
extrinsic _lookup_table{0][inp][dis]=rafter-douinp;
if{ (pplus==0)||(pplus==1)||(pcorrect==0))
extrinsic__lookup_table[0][inp][dis]=0;
3

)
for(dis=0;dis<40;dis++)
{
for(int inp=0;inp<41;inp++)
{
double douinp=((double)inp-20)/10.0;
double signal=1;
double logp=2*douinp/(sigma27*sigma27);
double pplus=(exp(logp))/(exp(logp)+1);
double pcorrect=relibilty base on distance[dis];
double pafter=(pcorrect+(1-pcorrect)*pplus)/((1-pcorrect) *(1-pplus));
double rafter=log(pafter)*sigma27*sigma27/2;
extrinsic__lookup table[1]{inp][dis]=rafter-douinp;
if{ (pplus=—=0)||(pplus==1)||(pcorrect==0))
extrinsic_lookup_table[1][inp][dis]=0;

ff——— — —

// golias field math

/II — e

int array to number(int *array point)
{
int result=0;
int bi=1;
for(int i=m-1 ; 1>=0;i--)
{
result=resultt+array_point{i]*bi;
bi=bi*2;
}

return result;

-89 -

void GF_add(int *a, int *b,int* result)

{
for (int i=0;i<m;it+)
{
if(a[i]==Dbl[1]) result[1]=0;
else result[i]=1;
}
3
int get GF poly value(int *p, int length, int x)
{
int temp,result,tempm;
result=0;
temp=1;
for (int i=0;i<length;i++)
{
if (pli]!=0)
{
tempm=GF _multiply table[temp][p[i]};
result=GF add_table[result]{tempm];
3
temp=GF multiply table[temp]}[x];
3
refurn result;
}
int get GF poly reversed value(int *p, int length, int x)
{
int temp,result;
result=0;
temp=1;
for (int i=length-1;1>=0;i--)
if (p[i}==1)
{
result=GF add table[result][temp];
temp=GF _multiply table[temp][x];
3
return result;
¥
int GF_inverse(int x)
{
int result=g-x+1;
if (result==q) result=1;
return result;
)

void GF poly convolution(int *polyl, int lengthl, int *poly2, int length2, int *result)
{

for (int i=0;i<length1+length2-1;i++)

{

}

result[i]=0;

-90 -

for (int j1=0; ji<lengthl;jl1++)

{
for (int j2=0; j2<length2;j2++)
{
int temp=GF multiply table[poly1[j1]][poly2[;2]];
result[j1+j2]=GF _add table[result[j1+;2]][temp];
¥
}

}

void GF_poly_add(int *polyl, int lengthl, int *poly2, int length2, int *result)
{
int length;
if (length1>=length?) length=lengthl;
else length=length2;
int tempa,tempb;
for (int i=0; i<length;i++)
{
if (length1>=(i+1)) tempa=poly1[i];
else tempa=0;
if (length2>=(i+1)) tempb=poly2[i];
else tempb=0;
result{i[=GF add table[tempa][tempb];

3
}
bool generate golais field()
{
for (int i=0;i<q;i++)
{
for (int j=0;j<m;++)
{
alphalil{j]~0;
3
}

for (int j=0;j<q;j++)

GF_index[j]=0;
¥

for (1=0;i<q;i++)
for (int j=0;j<q;j++)
GF_add table[i][j]=0;
GF_multiply_table[i][j]=0;
}

3
GF_index[0]=0;
for (i=1; i<=m;i++)

alpha[i][i-1]=1;
GF_index[array to number(alpha[i])]=i;

-91 -

for (i=m+1;i<q;i++)

{

for (int j=0; j<m;j++)

for(int b=0;h<m;h++)
{
alphal[i][j]= alpha[i][j1+GF_generator[h]*alpha[i-m+h][j];

alphal[i](j]= alpha[i][j]-((int)(alpha[i}{j}/2))*2;

int l=array to_number(alphali]);
GF_index|[l]=i;

}

bool is_success=true;

for (i=1;i<q;it+)

{if (GF_index[i]==0)

is_success=false;

}
if (is_success)
{
int temp[m];
for (int j1=0;j1<q;j1++)
{
for (int j2=0;j2<q;j2++)
{
GF_add(alpha[j1},alpha[j2],temp);
GF _add table[j1][j2]=GF index[array to number(temp)];
if ((j1==0)}li(j2==0)) GF_multiply table[j1][j2]=0;
else
{
int ¢c=j1+j2-2;
GF_multiply table[j1][j2]=c-(int)(c/(q-1))*(q-1)+1;
}
3
}
}
return is_success;
}
Il _______ —
// BCH class
1F === ===
BCH::BCH()
{
}
BCH::~BCH()
{
3

-92.

void BCH::get syndrome(int *recievedpoly)

{
for (int i=0;i<(2*T_CORRECTABLE);i++)
{

}

syndrom[i]=get GF poly reversed value(recievedpoly,n-1,i+2);
}

void BCH::do_encode(int *input, int *output)

{

int regist[n-1-k];
for (int 1=0;i<n-1-k;i++)

{
}

int in,out;
for (1=0; i<n-1;i++)

{

regist{i]=0;

if (i<k) in=inputfi};

else in=0;
out=regist{n-1-k-1];

for (int i2=n-1-k-1;i2>0;12--)

if (code generator[i2]==0) regist[i2]=regist[i2-1];
else
{
if (out==regist[i2-1]) regist[i2]=0;
else regist[12]=1;
3
}
if (in==out) regist[0]=0;
else regist[0]=1;
}
int paritybit=0;
for (i=0; i<k;i++)
{
output{il=input[i];
paritybit+=input[i];
}
for (ik;i<n-1;i++)
{
output[i]=regist[n-1-i-1];
paritybit+=output[i];

if (paritybit==(int)(paritybit/2)*2) output[n-1]=0;
else output[n-1]}=1;

-93-

bool BCH::do_decode(int *input, int *output,int listpos)
{
int paritybit=0;
for (int =0; i<n;it++)

{
}

get syndrome(input);

bool noerror=true;
for(i=0;i<T_CORRECTABLE*2;i++)
{

3

if (noerror)

{

output[i]=input[i];

if (syndrom[i]!=0) noerror=false;

for (1=0; i<n-1;i++)

{

3

if (paritybit==(int)(paritybit/2)*2) output[n-1]=0;
else output[n-1]=1;

return true;

paritybit+=input[i];

}

for (i=0;i<2*T_CORRECTABLE+2;i++)
{
u[i]=i-1;
for (int j=0;j<6;j++)
Qlill1}=0;
}
3
Q[O][0]=1;
QM1]I0=1;
du[0]=1;
duf1J=syndrom[0];
[0]=0;
Iu[1]=0;
for (int j1=2;j1<(T_CORRECTABLE*2+2);j1++)
{
if (du[j1-1]=0)
{
ufji}=h[j1-1];
for(int i=0;i<h[j1]+1;i++)
{
QL[I1=QI1-1]();

else
int tempp=-1;

int tempd=0;
int dp;

-94 -

for (int j2=0;j2<(j1-1);j2++)
{

if (du[j2]!=0)

{

dp=u[j2}-lu[j2];
if (tempp=—-1)

{
tempp=j2;
tempd=dp;
else if (dp>tempd)
{
tempp=j2;
tempd=dp;
¥
3
3
int tempq1;

tempq1=GF_multiply table[du[j1-1]][GF_inverse(du[tempp])];
int degree=jl-1-tempp;
mt tempq2[6],tempq3[6];
for(int i=0;i<degree+1;i++)
{
tempq?2[i]=0;

tempq?2[degree]=tempql;

int lengthofqp,lengthofq3,lengthoftq,lengthofq;
lengthofqp=Iu[temppl+1;

lengthofq3=lengthofqgp+degree;

GF _poly_convolution(tempq?2,degree+1,Q[tempp],lengthofgp,tempq3);
lengthoftq=lu[j1-1]+1;

if (lengthoftg>=lengthofq3) lengthofg=lengthofiq;

else lengthofq=lengthofq3;

GF _poly_add(Q[j1-1],lengthoftq,tempq3,lengthofq3,Q[j1]);
u[j1}=lengthofq-1;

3
if (j1!1=2*T CORRECTABLE+1)
{
int tempdu=syndrom{j1-1];
for(int j3=1;j3<lu[j1}+1;;3++)
{
mt templ;
templ=GF_multiply table[Q[j1][j3]][syndrom{j1-j3-11];
tempdu=GF_add table[tempdu][temp1];
)
dufj1}=tempdu;
}

int count=0;
int position;
if (lu[2*T CORRECTABLE+1]<=2)

-95 -

for (j1=1;31<qyj1++)
{
if (get GF poly value(Q[1+2*T CORRECTABLE], W[2*T CORRECTABLE]+1,j1)==0)
{

position=GF _inverse(j1)-1;
output[n-1-1-position]=1-output[n-1-1-position};
count=count+1;

}

if (count==0) return false;
for (1=0; i<n-1;i++)

{

}

if (paritybit==(int)(paritybit/2)*2) output[n-1]}=0;
else output[n-1]=1;
retum true;

paritybit+=output[i];

}

void BCH::do soft decode(double *input, double *extrinsic_input, double *extrinsic_output, int
*decision)
{

int pos[T _TESTING BITS];

double input sum[n];

for(int i=0;i<n;i++)

{
}

locate LRB_bits(input_sum,pos);
generate_test sequence(input_sum,pos);
decode list();

get_distance(input_sum);

if (Mlocate_decision_code())

input_sum{i]=input[i]+extrinsic_input(i];

{
for (int j=0;j<n;j++)
{
decision[j]=tempn][j];
extrinsic_output[j]=0;
}
return;
}
for(i=0;i<n;i++)
{
decision[i]=decoded_sequence[position_of decision][i];
}
for(=0;i<n;i++)
{

double inputplus;

inputplus=input _sum[i];
if(input_sum[i}>2) inputplus=2.0;
if(input_sum[i]<-2) inputplus=-2.0;
int inp=(int){(inputplus+2)*10);

-96 -

extrinsic output[iJ=extrinsic _lookup table[decision[i]][inp][(int)destructive distanc
e[position_of decision]];

}
3
void BCH::locate LRB bits(double *input, int *pos)
{
for (int i=0;i<T_TESTING BITS;i++)
{
pos[i]=i;
}
double largestvalue,temp;
int posoflargest;
for (i=T_TESTING BITS;i<n-1;i++)
{
largestvalue=0;
for (int i1=0;11<T_TESTING BITS;il++)
{
temp=~fabs(input[pos[il]]);
if(temp>largestvalue)
{largestvalue=temp;
posoflargest=il;
}
temp=fabs(input[i]);
if (temp<largestvalue)
pos[posoflargest]=i;
3
§
}

void BCH::generate test sequence(double *input, int *pos)
{

for (int i=0;i<n;i++)

if (input[i]>0) tempn(i]=1;
else tempn[i]=0;

}
for (i=0; i<LISTLENGTH;i++)
{
for (int j=0:j<n;j++)
{
test_sequenceli][j]=tempn[j];
}
}
for (i=0;i<LISTLENGTH;i++)
{
int bit;

int temp_pattern=i;
for(int p=0;p<T TESTING BITS;pt++)
{

int a=temp_pattern>>1;

int b=a<<1;

-97 -

bit=temp_pattern-b;
test_sequence[i][pos[p]]=bit;
temp_pattern=a;

3
}
)
void BCH::decode list()
{
for(int i=0; i<LISTLENGTH;i++)
{
is_valid codeli]=do_decode(test sequence[i],decoded sequencel[il,i);
}
}
void BCH::get distance(double *input)
{
for (int i=0;i<LISTLENGTH;i++)
{
if (is_valid code[i])
{
double tempDis=0;
for(int i1=0;11<n;i1++)
{
double sig=((double)decoded sequencefi][i1]-0.5)*2.0;
if (input[il]*sig<0) tempDist+=(input[il]-sig)*(input[il]-sig);
else if((input[il [<1)&&(input[il]>-1))
{
tempDis+=(input[il]-sig)*(input[il]-sig);
}
}
destructive distance[i]=tempDis;
if(destructive _distance[1]>39.9) destructive distance[i]=39.9;
H
else destructive _distance[1]=39.9;
}
3
bool BCH::locate decision_code()
{
double tempdist=999999;
for(int i=0;i<LISTLENGTH;i++)
if ((is_valid code[i])&&(destructive distance[i]<tempdist))
{
position_of decision=i;
tempdist=destructive_distancefi];
3
}
if (tempdist==999999)
{
return false;
3
else return true;
}

-08 -

e —

// BCHTurboEncoder class
/1=

BCHTurboEncoder::BCHTurboEncoder()
{
}

BCHTurboEncoder::~BCHTurboEncoder()
{
}

void BCHTurboEncoder::construct{BCH *coml, BCH *com?2)
{

componentl=coml;

component2=com?2;

}

void BCHTurboEncoder::do_encode(int *input, int *output)

{

for (int i=0;1<k;i++)

{
for (int 11=0;11<k;11++)
{

}

tempk1{11]=input{i*k+11];

componentl->do_encode(tempkl tempnl);
for (11=0;11<n;11++)
{

}
}
for (int 12=0;12<n;i2++)

{

output[i*n+1lJ=tempnl1[i1];

for (int 11=0;11<k;11++)
{

}

component2->do_encode(tempk? tempn2);
for (int 12=k;12<n;12++)
{

}

tempk2[11]=output[11*n+i2];

output[12*n+i2]=tempn2{12];

-99 -

/[==
// BCHTurboDecoder class

===
BCHTurboDecoder::BCHTurboDecoder()
{
}
BCHTurboDecoder::~BCHTurboDecoder()
{
}
void BCHTurboDecoder::construct(BCH *coml, BCH *com?2)
{
componentl=coml;
component2=com?2;
3
void BCHTurboDecoder::initial extrinsic()
{
for (int i=0;1<n;i++)
{
for (int j=0;j<n;j++)
{
extrinsic matrix1[i}[j]=0;
extrinsic_matrix2[j][i]=0;
}
3
3

void BCHTurboDecoder::do_decode(double *input,int *output)
{

initial extrinsic();

for(int step=0;step<ITERATIONS;step++)

double sumofdist=0;

for(int row=0;row<n;row-++)

{
for (int col=0;col<n;col++)
{

tempn1[col]=input[row*n+col];

componentl->do_soft decode(tempn],extrinsic_matrix1[row],temp _extrinsicl,tempdecisionl);
for (int i=0;i<n;i++)

{
extrinsic_matrix2[i][row]=temp_extrinsic1[i};
3
}
for(int col=0;col<n;col++)
{
for (int row=0;row<n;row++)
{
tempn2[row]=input{row*n+col];
)

component2->do_soft decode(tempn?2,extrinsic matrix2[col],temp extrinsic2,tempdecision2);

- 100 -

for (int i=0;1<n;i++)

{
extrinsic_matrix1[i}[coll=temp extrinsic2[i];
)
for (row=0;row<n;row++)
{
output[row*n+colj=tempdecision2[row];
}
3
}
3
If=
// main program
I

void main()
{ cout<<"*********** t—urbo COding *************"<<end1;
cout<<" designed by nong le"<<endl<<end];
cout<<"this is a program dealing with block turbo code "<<endl;
BCHTurboEncoder encode;
BCH bchl,bch2;
generate_extrinsic_lookup table() ;
generate_golais field();
FILE *stream,;
stream= fopen("BCHturboresultlog.txt","a+");
fprintf(stream,” \n input length %6d , output length %6d" k*k n*n);
fprintf(stream,” BCH(%4d,%4d) code with %2d error correction capibility,%?2d testing
bits", n, Kk, T CORRECTABLE, T TESTING BITS);
forintf(stream,” \n %2d iterations: ", JTERATIONS);
fprintf(stream,” %10d observed code words: \n",SAMPLES);
fprintf(stream,” \n \n ******FFkgimulation result*F**dkdkskrtir, .
fclose(stream);
encode.construct(&bchl,&bch2);
int information[INPUTLENGTH],
encodedinfol OUTPUTLENGTH],decodedinfol OUTPUTLENGTH];
double recieved[OUTPUTLENGTH];
int error=0;
BCHTurboDecoder decode;
decode.construct(&bchl,&bch2);
cout<<"starting simulation"<<endl<<" EBNO pb error bits error words"<<end],;
int errorword=0;
for (int tim=0;tim<SAMPLES;tim++)
{
if ((tim+1)/1000*1000==tim+1) cout<<"t="<<tim<<"
"<<"errorbits="<<error<<"pb="<<((double)(error))/((double)(INPUTLENGTH*tim))<<endl;
generate_message(information INPUTLENGTH);
encode.do_encode(information,encodedinfo);
pass_awgn_channel(encodedinfo,recieved, OUTPUTLENGTH,sigma);

-101 -

decode.do_decode(recieved,decodedinfo);

int temperror=0;
temperror=count_errors(information,decodedinfo);
error=error+temperror;

if(temperror>Q)

cout<<endl<<"t="<<tim<<" "<<" error="<<temperror<<" ",
errorword++;

}

stream= fopen("BCHturboresultlog.txt","a+");

‘double pb=((double)(error))/((double)INPUTLENGTH*SAMPLES));
cout<<setw(6)<<EBNO<<"

"<<setw(14)<<pb<<setw(1l6)<<error<<setw(16)<<errorword<<endl;

fprintf(stream,"\n eb pb error bits error words \n ");
fprintf(stream,” %5.2f %7.2e %5d %5d \n",EBNO,pb,error,errorword) ;
fclose(stream);

-102 -

