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ABSTRACT
Model-Based Seizure Detection Method Using Statistically Optimal Null Filters

Liying Shi

Long-term EEG monitoring of epileptic patients makes automatic seizure detection
necessary, because it is hard for clinicians to interact with the patients or view the
recordings continuously.

The problem of seizure detection is inherently difficult because seizure EEG activity
consists of a variety of morphologies. It is generally difficult to design a single method
that can detect all types of seizures in all patients. In most patients however, one or
sometimes two or three types of seizures tend to occur repeatedly. In these cases, the
electrographic seizures of each type are similar to each other. Based on this observation,
we propose our model —based seizure detection method.

In this thesis, a model-based seizure detection method using statistically optimal null
filters (SONF) is presented. A template seizure from a patient is first selected, and a set of
basis functions that model the template seizure is derived using the proposed modeling
methods. Subsequent electroencephalogram (EEG) recording is processed by the SONF
and the output represents the noise-free estimate of the seizure. The energy ratio between
the output and the input of the SONF is calculated and processed, and used as the test
statistic for the seizure detection. Simulation result shows that the modeling Method 4
(Sinusoidal wavelet basis functions) has better performance than other modeling
methods. Experiments using 100 hours real SEEG recordings from 5 patients show that
the model-based seizure detection method using SONF can lower the false detection rate,

and it is most effective for long rhythmic seizures with a clear pattern.
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Chapter 1

Introduction



About 80 years ago, Hans Berger succeeded in recording electroencephalogram (EEG)--
the electrical activity of the brain. Since then EEG has been used as a non-invasive
diagnostic tool in a series of neurological disorders, for example, early diagnosis and
localization of brain tumors, coma assessment in intensive care, the definition and
assessment of sleep stages, and epilepsy diagnosis. Until today, EEG is still a very
important test in neurology clinic, and it is still the leading test used to help diagnose
epilepsy.

About 0.5-1% of the population suffer from epilepsy, which is the most common
neurological disease next to strokes [1]. Epilepsy is the result of abnormal synchronous
discharges in large ensembles of neurons in brain structures. These discharges may be
caused by many factors like trauma, tumors, and infections. However, in about half of the
patients no specific causative factors are found. The manifestations of epilepsy are
bursts of seizures and spikes, which are defined as abnormal EEG patterns. Nowadays,
long-term EEG monitoring is used to capture seizures in epilepsy patients, and some
automatic seizure detection methods have been developed to solve the problem of
detecting seizures in the long EEG recordings.

In this chapter, first we will introduce some basic concepts about EEG and epileptic
seizures, and then we will review the existing automatic seizure detection methods.
Finally we will give an outline of the thesis.

1.1 What is EEG?

EEG is the electrical activity of the brain. Figure 1.1 is an example of a multiple-

channel intracerebral EEG. Nerve cells in the brain are constantly generating very small



electrical signals, whether a person is in wake or sleep state. These small electrical
signals are picked up by electrodes placed on the scalp or implanted in the brain, and
amplified by the EEG machine so that the signals are observable. Depending on how the
electrodes are used, EEG can be specified as either scalp EEG (the electrodes are put on
the scalp) or intracerebral EEG (the electrodes are surgically implanted in the brain).
Intracerebral EEG is often called stereo-electroencephalogram (SEEG). There are two
kinds of EEG recording methods: one is the paper-based analog system, which has been
used for over 50 years while the other is the computer-based digital system which is
being used more widely during the last 10 years. The availability of the digital EEG
allows the application of some advanced analysis tools, such as power spectrum analysis,

topographic mapping, source localization, and spike and seizure detection [2].
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Figure 1.1 Example of background EEG



1.2 What are epileptic seizures?

Epileptic seizures are abnormal, temporary manifestations of dramatically increased
neuronal synchrony, either occurring focally (partial seizures) or widespread (generalized
seizures) [3]. The cellular and netwoi‘k mechanisms that may contribute to or cause this
increased synchrony are still the subject of active investigations. Seizures can be
classified into two types, electrographic seizure and behavioral seizure. An
electrographic seizure (or EEG seizure) is defined as the abnormal paroxysmal EEG
pattern, whereas a behavioral seizure (or clinical seizure) is defined as some clinical
manifestations noted by the patient, seen by an observer, or visible on the video, and
accompanied by a electrographic seizure. Most epileptic seizures are both behavioral and
electrographic seizures that can be identified in the review of the video and EEG.

There is no stereotypical pattern that is characteristic of all EEG seizures. Most
seizures include some rhythmic discharge of large amplitude. A small-amplitude
desynchronized EEG often marks their onset, and at some point during their
development, includes activity that is paroxysmal compared to the background. The
paroxysm can consist of increased amplitude or increased frequency, activity may likely
be rhythmic with frequencies varying in the range of 3 to 29 Hz, and relatively sustained
in duration (lasting from several seconds to several minutes). The morphologies of
seizures can be of many kinds. Low-amplitude desynchronization, polyspike activity,
rhythmic waves at different frequencies and amplitudes, spike and waves can all be
seizure activities. Figure 1.2 shows the comparison of background EEG and seizure EEG

in several channels.
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Figure 1.2 Comparison of background EEG and seizure EEG

1.3 How can EEG help in the treatment of seizures and why is

automatic seizure detection necessary?

EEG is an important test used to help diagnose and treat epileptic seizures. Many
people do not have a detectable brain lesion causing their seizures, and tests like MRI or
CT scans show normal brain structure. The EEG, however, can show abnormal electrical
function of the brain even when the imaging tests are normal. The long-term EEG
consists of the electrical activity of the brain during seizures and non-seizure times. By
looking at the patterns of the EEG in different stages the neurologist can identify
seizures, the type of epilepsy the patient may have, and what part of the brain is causing
the seizures. This information can help the doctor to determine the diagnosis and the type

of medication that is appropriate to treat the epilepsy. If medications are not helpful and a



specific brain tissue can be identified as the cause of the seizures, then the patient may be
eligible for neurosurgical treatment.

Since the time of a seizure occurrence is not known, in order to capture a number of
seizures, it is necessary to establish the long-term EEG and video monitoring system for
epileptic patients. Such a system can provide the combined information about the clinical
and electrographic seizures, and it is more likely to capture epileptiform abnormalities
than a short-term recording. However, it is impossible for the clinicians to continuously
observe the EEG or to interact with the patient, since the EEG monitoring sessions can
last from several days to weeks [4]. It is a time-consuming and tedious task for the
neurologists to review the complete long-term EEG. Moreover, visual review of the vast
amount of EEG has the following drawbacks. First, visual inspection lacks standards.
Although most neurologists tend to have identical overall conclusions on an EEG data
set, they may diverge in the interpretation of specific events [5]. Even the same reader
may judge the same event differently at different times. Second, visual inspection lacks
quantitative analysis that can uncover hidden character of the data [6, 7]. For these

reasons, it is necessary to develop methods for automatic seizure detection.
1.4 Review of automatic seizure detection methods

Automatic seizure detection has been of interest since 1970, but until recently, not
many automatic seizure detection methods have been developed. Among the existing
methods some function in the time domain, by extracting features such as the amplitude,
slope, sharpness (second derivative), and peak-to-peak wave duration. To detect an event,
comparisons can be made against fixed thresholds or against the previously observed

background EEG patterns. Some other methods are based on neural networks, which



require a large number of sample patterns for training, including the seizure EEG and
non-seizure EEG. Wavelet transform and complexity measure have also been used for
seizure detection. In the following, we will describe briefly some of these methods.
Gotman [8, 9] presented a method that attempted to recognize a wide variety of seizure
patterns. In this method, each EEG channel is broken down into half-waves, which means
the original EEG waveform is represented by a seemingly ‘sawtooth’ signal obtained by
connecting adjacent significant extrema of amplitude, and each ‘sawtooth’ is defined as a
half-wave. The EEG recordings are segmented into 2-second epochs and the following
features characterize each epoch: the average amplitude of the half-waves relative to that
of the background (indicating whether an epoch is paroxysmal), the average duration of
the half-waves (indicating frequency), and the coefficient of variation of the half-wave
duration (indicating rhythmicity). These parameters are then compared to the predefined
thresholds. For a detection to take place, the above parameters must meet some
predefined criteria. This method has been integrated to several commercial devices, and it
is in relatively widespread clinical use and has been evaluated on large patient groups in
diverse clinical environments [10, 11, 12]. The evaluations have indicated that the
method detected 70-80% of the seizures, and the false detection rate is one to three false
detections per hour. Since an neurologist will later view the EEG recordings, this method
is typically set to be overly sensitive in order to capture most of the epileptic seizures at
the expense of increased false detections. Improvements to this method have been made
to reduce false detections by training the program to “remember” the EEG patterns that

caused the false detections for a given patient [13, 14]. In subsequent monitoring, the



program can recognize the same EEG patterns and avoid such false detections. The false
detection rate is reduced to 1.26 per hour, but the method becomes more complex.
Harding [15] proposed a seizure detection method to detect seizures in an automated
seizure monitoring system. This method detects segments of steep slope in the magnitude
of the sample-to-sample differences (MDV) in the signals and counts the number of the
large MDVs in the epoch. A large number of steep slopes in an epoch indicate that
substantial fast transient activity is present. A segment of steep slope is defined as an
MDYV when it is larger than a predefined threshold. If the count of large MDVs exceeds
the threshold, a seizure has been detected. In 40 monitored patients with a total of 1578
hours of EEG, seizure detection rate was 95%, with an artifact rate of 0.67 per hour.
Murro [16] described a seizure detection method based on discrimimant analysis.
First he defined three EEG features-- relative amplitude, dominant frequency and
rhythmicity to quantify EEG epochs. The seizure discriminant function D was defined as
the logarithm of the relative probability of these quantitative EEG features occurring as

seizure or non-seizure EEG:

D=log[P(F1, F2, P1, P2, R1, R2Sz)/ P(F1, F2, P1, P2, R1, R2}non-Sz)] (1)

In (1), (F1, P1, R1) and (F2, P2, R2) are the dominant frequency (F), relative power (P)
and rhythmicity (R) of the two channels used to perform detection. P(F1, F2, P1, P2, R1,
R2|Sz) and P(F1, F2, P1, P2, R1, R2|non-Sz) are the probabilities of these features

occurring as seizure and non-seizure.



Two data sets were used: training data and test data. A test epoch’s probabilities of
seizure or non-seizure activities are computed using the generalized nearest neighbor
method and the training data. A decision is made by comparing the discriminant function
D with a threshold. The training data set included 457 seizure EEG epochs from 80
seizures in 18 patients. The test data included 8 patients’ seizure and non-seizure EEG.
The detection rate ranged from 90% to 100%, and the false detection rate was 1.5-2.5/h.

Another type of seizure detection methods is based on artificial neural network.
Webber [17] presented a seizure detection method using a three-layer back propagation
artificial neural network. The method can be divided into three stages. First, each channel
of the EEG data is divided into adjacent 2 sec epochs of 400 samples. For each epoch, the
first stage reduces the 400 data points to 31 context parameters that quantify the
amplitude, slope, curvature, rhythmicity, and frequency components of the signal, and
these 31 parameters are the input to the second stage. An Artificial Neural Network is the
main component of the second stage, and it reduces the 31 parameters to 8 parameters,
two of which represent the seizure activity (small seizure, large seizure). The third stage
applies simple rules to the output of the second stage and makes a decision as to whether
a seizure is present or not. EEG data from 16 patients were used to train the ANN, and
EEG data from 50 patients were used to test the method. The detection rate was 76%,
with a false detection rate of 1.0/h.

Gabor [18, 19] presented an automated seizure detection method using the self-
organizing map (SOM) neural network (NN). The neural network was trained to
recognize seizures using 98 training examples. A strategy was devised using wavelet

transform to construct a filter that was ‘matched’ to the frequency features of examples



used to train the NN. Four-second epochs of training examples and EEGs being tested
were transformed into time-independent representations of spectrograms resulting in a
time-frequency representation of the time-series. Rule-based contextual features were
used for detection in association with the NN. This method was evaluated with 200
records from 65 patients (4553.8 h of recording) containing 181 seizures. The result
showed that the method detected 92.8% of the seizures with a false detection rate of 1.35
false detections per hour.

Wavelet is a relatively new signal-processing tool. It can provide time-frequency
resolution by decomposing the signal in different scales. Khan and Gotman [10]
presented an automatic seizure detection method designed for intracerebral EEG (also
called stereoelectroencephalogram, SEEG) based on wavelet analysis. This method was
aimed at reducing the false detection rate while keeping the sensitivity as high as
possible. Daubechies-4 wavelet was used to decompose SEEG into 5 levels. Features
(relative amplitude, relative energy, coefficient of variation) were computed for scales 3,
4, and 5 (for a sampling rate of Fs=200Hz, scales 3, 4 and 5 represent the frequency
ranges 12.5-25Hz, 6.25-12.5Hz and 3.125-6.25Hz respectively, which cover the seizure
frequency range) and compared to the thresholds. If each of the three features passed the
corresponding threshold, a preliminary detection was assumed. Extra efforts were made
to reduce false detections by ‘remembering’ the rhythmic bursts occurring commonly in
the background. This method was evaluated with 11 patients including 229 hours of
SEEG and 66 seizures. The detection rate for this method was 85.6%, and the false

detection rate was 0.3/h.
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The complexity of the EEG data has led many people to study the EEG as the output
of complex systems [2, 20]. Diambra et al. [21] have presented a seizure detection
method by computing a complexity measure, the so-called approximate entropy (ApEn),
which is a recently developed statistical quantity for quantifying regularity and
complexity. This seizure detection method is based on the loss of complexity during the
seizure, due to the synchronous discharge of large groups of neurons. A small set data
was used to illustrate this method, however its performance was not formally evaluated.

The above is a review of most of the published seizure detection methods since
1980s. It is not an easy task to compare the different seizure detection methods. These
difficulties are due to the following reasons. (1) Different methods use different data sets
to evaluate the performance of each method. Results are highly dependent on the method
of selecting the EEGs on which the evaluation is performed. (2) There is no objective
definition of the appearance of a seizure in the EEG. For seizure detection, there are three
sets of EEG patterns: those that everyone agrees are seizures, those that are clearly not
seizures, and those where opinions differ. It is this last set that makes the comparisons
among the various methods difficult, since different EEG readers have significantly
different opinions about the last set.

One common thing in the above automatic seizure detection methods is that they all
use some general parameterization of seizures, for example, measures such as relative
amplitude or frequency are used, rather than some a priori information about specific
seizures.

Qu and Gotman [4] have proposed a patient-specific seizure onset detection method,

the first method that uses an existing seizure as template and some non-seizure
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background EEG from the patient to detect the onset for all the subsequent seizures
within the same patient. The main idea of the method is as follows. First, the template is
divided into 2.56s overlapping epochs, and the distance between the starting points of
two adjacent epochs is 0.32s. For each epoch, five features are extracted: average wave
amplitude, average wave duration, coefficient of variation of wave duration in one epoch,
dominant frequency, and average power in the main energy zone. These five features
from each epoch of the EEG can be considered as a point in the detection space, and the
template can then be represented as a set of points in the detection space. By the same
procedure, the background EEG can be represented by a set of non-seizure EEG points in
the detection space. A classifier of the ‘nearest-neighbor’ category is trained to classify a
new epoch of the EEG into seizure or non-seizure classes. The system was tested using
both scalp and intracranial recordings and the detection rate is 100% with a mean
detection delay of 9.6 seconds and a false detection rate of 0.21/h.

Compared to the methods described above, this method utilizes some a priori

information of the patient: a pre-recorded seizure and some background EEG.
1.5 Problem Statement and Outline of the Thesis

The problem of seizure detection is inherently very complex [8, 17], mainly because
there is no stereotypical pattern characteristic of all seizures. EEG seizures from scalp
recordings are often contaminated by artifacts due to movements and EMG of scalp
muscles. Besides, even expert EEG readers can make different conclusions on the same
EEG records [6]. Therefore, it is very difficult to design a single method that can detect

all types of seizures in all patients.
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In most patients, one or sometimes two or three types of seizures tend to occur
repeatedly. In these cases, the electrographic seizures of each type are similar to one
another (but never identical) [4]. This observation allows us to investigate the idea of
model-based seizure detection. That is, if a seizure has previously been detected or
visually identified, then it is possible to use this seizure to derive a model for all
subsequent detections of the same type of seizures. This strategy is different from the
traditional seizure detection methods in that the seizure type to be detected must be a
priori known in order to build the seizure model. Hence only seizures that belong to the
same type as the seizure model will be detected. We have therefore named our proposed
method model-based seizure detection method.

In our proposed method, the a priori known seizure (the template seizure) is used to
generate a model that describes the intrinsic properties of the seizure to be detected.
Estimation of the seizure signal from the subsequent EEG is then performed using the
derived model in the context of the statistical optimal null filters (SONF). If the observed
EEG contains the same type of seizure as described by the model, the output of the SONF
will represent the estimate of the seizure. The energy ratio of the output to the input of the
SONTF is processed and used as the test statistic to decide whether a seizure is present or
not.

Comparing our method with that of Qu and Gotman [4], both of the methods require a
priori known seizure as template. While their method focuses on seizure onset detection,
our method works on seizure detection. From the template seizure, the method of Qu and
Gotman extracts some features that define seizure characteristics; however, in contrast,

our method extracts some waveforms that model the seizure.
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The thesis is organized as follows: Chapter 2 describes the principle of SONFs and
summarizes several kinds of SONFs. In Chapter 3, model-based seizure detection method
using the SONF and methods of modeling the template seizure are proposed. In Chapter
4, simulated EEG data is first used to test the performance of the six modeling methods,
and real SEEG data of five patients are then processed using the best modeling method in
the model-based seizure detection method. Chapter 5 contains conclusion and some

discussions for future work.
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Chapter 2

Statistically Optimal Null Filters
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Statistically optimal null filter (SONF) is a novel approach proposed by Agarwal et al.
[23, 24] to estimate short-duration signals embedded in noise. It combines a special
instantaneous matched filter (IMF) that maximizes the signal-to-noise ratio at the output
at each instant of time with the least-square optimization criterion. Its intrinsic property is
the ability to track signals rapidly, leading to a more practical processing of short-
duration signals. It has been shown that the SONF is equivalent to the well-known
Kalman filter, but with a much simpler implementation.

In this chapter, matched filter and instantaneous matched filter (IMF) are briefly
introduced, and then several kinds of statistically optimal null filters (SONF) based on

the IMF are briefly described. Detailed information can be found in [23].

2.1 Instantaneous Matched Filter

A matched filter (MF) is a linear filter designed to provide the maximum signal-to
noise ratio at its output for a given waveform. Its main application is to detect a known
signal from the noisy background. An instantaneous matched filter (IMF) is the extension
of a matched filter.

Consider a known signal s(¢) with an additive white Gaussian noise (AWGN) n (1),

x(t) = s(t) + n(1), t [0, T] 2.1
Where s(¢) is represented by a single term
s(t) = ve(t) (2.2)
For a given time instant ¢ =¢, in the interval [0, T], the observation interval becomes

t, As time progresses, the observation interval is continuously increasing to the final
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value T. If a matched filter (MF) is used to detect the signal s(¢) at any given time, then
at the output we obtain a signal that provides the maximum output signal to noise ratio,

SNR,, for the considered time interval [0, #,]. Because the time interval is continually

increasing, at each considered time instant, the MF provides a new output signal and a

new SNR,. Hence, it is named as the instantaneous matched filter (IMF). The

instantaneous refers to the current time interval and not to the speed of processing via the

MFs. The output of an IMF at time ¢ with x(¢) as the input is

o(t) = f)x(z‘)¢(z')dz' —ve(t)+n,'(£) = 5,(6) + 1, (1) 2.3)
where n,'(¢) represents the output noise, s,(f) = ve(?) is the output signal that represents

the message signal s(z), and c(t) is defined as follows,

o) = [#*@dr =|p);]

20 e
T

o(t)

Figure 2.1 Instantaneous Matched Filter
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Note that the output v(¢)provides the most reliable (optimal) detection of s(¢f) at each
time ¢ in the presence of zero-mean white Gaussian noise. The only difference is that in
the conventional MF, the upper limit of integration is a fixed moment T corresponding to
the time at which the detection is made. In our case, the same limit is an independent
variable—the instantaneous time. The IMF provides at each instant of time the maximum
SNR, at the output, independent of the amplitude of the signal s(7).

2.2 Statistically Optimal Null Filters

2.2.1 Coherent Null filter

Consider a signal whose waveform shape is known. Let s(¢) = vg(¢), where ¢(¢) is

known and v is an unknown random variable. Now if we use the IMF, then at time

t, €[0,T7] the output v(r) provides the best measure for signal s(t =¢,) to be detected in
terms of SNR,. The notation s(t =¢,) denotes the signal up to time ¢, <7. From Figure
2.1 and Equation (2.3), we can see that if we now scale v(f) by @(¢)/c(t) , then the result

represents the desired signal s(¢) plus some noise,

5(t) = [ve(®) +n, (t)]ﬁ—% =vg(0) +n, (1) =s(O) +n, (1) 24)

Intuitively, »_(#)becomes smaller and smaller as time grows.
To determine the optimal null filter, the output of IMF v(¢)is scaled by an unknown

function A(¢)and the result is subtracted from the input to form the output y(f)as shown

in Figure 2.2.
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x() = =®—> £(0) dr N g )———-»69—>

s(t)+n(t T T
#(1) A1)

Figure 2.2 Statistically Optimal Null Filter - Coherent Case

y() = x(1) = y'(6) = x(1) = 3(t) = A(r) 2.5)
where the scaled output of the IMF, y'(¢), represents the estimate of s(¢). Substituting
(2.1)and (2.3) in (2.5), y(¢) can be written as

y(#) = (1) + n(t) = [ve(®) + n,' (0)]A) (2.6)

It now remains to find a suitable function, A(¢), such that y(¢) represents the input noise
n(t) in the minimum mean square error (MMSE) sense. This is equivalent to estimating

s(t) with MMSE.
For ideal null filtering, .., (t) = n(t), thus the error in filtering becomes
€;(1) = Yigea 1) = y(1) = [ve(t) + n,' (O]A(H) - v (1) 2.7)
Minimizing the mean-square error, E[e;(f)], with respect to the scaling function
A(t), yields

[40)

;{’opt (t) = 1,
() + %NR

2.8)
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where SNR is the input signal-to-noise ratio. Substituting 4,,(f) back in (2.7) gives a

biased estimate (asymptotically unbiased). Thus, 4,,

(t) provides statistically optimal but
biased null filtering. This is referred to as the statistically optimal null filter (SONF).
In order to implement the SONF, knowledge of the input SNRis required. To

circumvent this problem, assume that the input noise is weak (i.e., SNR — «) then

Ay (0) > A(0) = %

This is called sub-optimal coherent null filtering.
2.2.2 Non-coherent Null Filter

Consider a case where the signal shape is unknown and s(f) can be written as a linear

combination of a set of orthogonal basis functions {¢,(t),i=1, 2,---N}, as

N
s(t) = Zv,.¢,. (t) . Assume that the composing basis functions are a priori known while
i=1

the coefficients v,’s are unknown random variables. For the present, the basis functions
are assumed to be orthogonal for any time interval, which is obviously impossible, and
this will be addressed later.

Since the coherent null filter is a linear time-variant (LTV) filter, the principle of
superposition holds. Hence, the non-coherent null filter can be implemented as a set of
N parallel branches—one to estimate each term in the expansion of s(¢)--as shown in

Figure 2.3.
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x(t)

An(®)

Figure 2.3 Non-coherent Statistically Optimal Null Filters

The basis functions in the expansion of the signal must be orthogonal for any time

interval fe[0, 7]. One proposed solution is a sliding Gram-Schmidt (GS)

orthogonalization of the basis functions at each observation interval as the observation
interval increases. This approach is effective, but the computations involved are greatly
increased. To avoid this, the assumption of orthogonality of the basis functions is relaxed,

which will cause errors in the expected IMF output. It was rationalized in [23, 24] that

this error can be minimized by the optimization of A(f) s. Moreover, a globally optimal
solution of 1,(f) s can be obtained where all the A,(¢)s are calculated simultaneously.
2.3 Globally Optimal SONF

To find the A4, ,(¢#) that are globally optimal, reconsider the problem in vector

i,opt

notation. Referring to Figure 2.3, the followings are defined:
A =[4(10) 4, Ay (O

o) =[v,(O) v, () VO]
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6(1) =14, $,(1) ¢y O

V=[v Vz"'VN]T

(2.9)

where A(¢), v(t), ¢(¢)and V are the post IMF scaling functions, outputs of the IMFs, the

set of known basis functions and the amplitude of the each term of the desired signal,

respectively. By using (2.9), the input signal can be written as
x(0)=V"¢@®) +n()
And the output signal as
y(&) =V (1) +n(t) - A (Do)
The error in suppressing () becomes
e(t) = n(t) — (1) = A" (o) -V " (1)
and the MSE as a function of A(f)can be written as
E[e; (] =1,(8) = A (QOA() - A" () p(1) = p" (DA +V " p(O)g" (1)
where
o) = E[u()v” (1]
and p(0) = Eu(tyg” ()Y ]
Minimizing (2.15) w.r.t. A(r),

677/1 @)
d /1(1‘) At)=28,

=0=0(0A0) - p()

yields the globally optimal solution for A(¢)
Ay (1) =[9D(t) + N, 1" [94(1)]

where the superscript ‘g’ denotes globally optimal and
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D) = [¢(0)¢" (r)d7 (2.18)

and 9=EWV"] (2.19)

2.4 Discrete Time Recursive Implementation of the Globally Optimal

SONF

To implement the exact expressions of the globally optimal post-IMF scaling function

A5, (&), knowledge of the noise and signal power is required, which is usually not

possible in practice. To avoid the calculation of A%, (), a discrete-time recursive

implementation of the globally optimal SONF is presented in [23]. Figure 2.4 outlines the

discrete version of the non-coherent case of SONF.

CION A0

[:j:

i----Iﬁ@ -------------- A (n) Yy v
x(n) I I > — :() >
| . Loy (m) . V()
O30 | T
i T¢N<n) § Ay

Figure 2.4 Discrete version of the Non-coherent SONF

Equations (2.9) can be written using the discrete variable » as
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Am) =[A,(n) A (n) -+ Ay (W]
v(n) = [v,(n) L, (1) -0, (W]’
#(n) =[4,(n) g, (m)--- 4, (W]
V=[v, vy ]
The input x(r) can be written as

x(n) =V §(n) +n(n)

The output of the IMF is
o(n) = Y x(m)p(m) = " x(mp(m) + x(r)p(m) = o(n~1) + x()(n)

and the output y'(n)( the estimate of s(#) ) can be written as

y' ()= A (my(n) =" (m)A(n)
The error function

e(n) = y(n) = n(n) = §(n) = s(n) = A" (Wv(n) ~ V" $(n)

and the MSE can be written as
1(n) = Ele; (n)] = Ele, (n)e; (n)]
= A'm)0(n) - 2" (m)p(n) = p" (WA +V " $(n)g” (n)V’
where
O(n) = E[v" (m)v(n)]
p(n) = E[o(n)¢" (n)V]
Minimizing (2.24) w.r.t. A(n),

on(n)

m A=A =0= 2Q(l’l)ﬂ,(n) - zp(n)
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Assume D(n) is positive definite, we get

28 (n) =[9D(n) + N, 1" 9¢(n) (2.28)
In (2.28)
9=E[VVT]
(2.29)

D(n) = i¢(m)¢r (m) = D(n 1)+ ¢(n)¢" (n)

Notice that the original restriction of the orthogonality of the basis functions for any

time 7 €[0, T] is not used in the development of the globally optimal SONF. Hence, in
performing a global optimization of the post-IMF scaling functions, an implicit

orthogonalization has been done. Next, the recursive implementation of A}, (n) is shown

v/

to eliminate the need for the knowledge about § and N, in (2.28).
Let R(n)=9D(n)+ N, (2.30)
And P(n)=R(n)'$ (2.31)
(2.28) can then be rewritten as

A5 (n) =[8D(n) + N, 17 99(n)=R(n)™' 9 p(n)=P(n)p(n) (2.32)
Substitute (2.29) into (2.30)

R(n)=9D(n)+ N, =8D(n-1)+ N, + 94(n)¢" (n)

) (2.33)
= R(n~1)+ ¢(n)¢" (n)

By using (2.31) and (2.33), we can rewrite P(n)as

P(n) = [R(n=1)+ S (m)p” ()] 8
=P(n-1)- P(n— 12¢(”)¢T (n)P(n-1) (2.34)
1+¢" (m)P(n-Dg(n)

The complete recursive algorithm for implementing the SONF can be written as follows:
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v(n) =v(n-1)+ x(n)g(n)
P(n-1)g(my¢” (n)P(n-1)

P(n)=P(n-1)-
()= Pin=1) 1+ ¢7 (n)P(n-1)¢(n) (2.35)

A(n) = P(n)p(n)
y'(n) =0T (n)A(n)

The gain matrix P(n)is initially chosen to be positive definite. As a rule of thumb, one
may choose P(0)=SNR-I, where [ is the identity matrix of order N and
v(0) = x(0)¢(0) .

2.5 Estimation Using Globally Optimal SONF-- An Example

In this section, we use some simulation signals to show the effectiveness of SONFs.

There are several kinds of SONFs, here we present some simulations using the globally
optimal SONFs in the discrete recursive form. In the next chapter we will use discrete
globally optimal SONF to develop our model-based seizure detection methods.
Example: The input xm)=sm)+n(n). s(n) is composed of two sinusoids,
s(n) = A*sin(wn+6,)+ B *sin(w,n+6,) , and n(n) is an additive white Gaussian noise
(AWGN). The signal to noise ratio (SNR) is -5dB. The sinusoidal frequencies @, @, are
assumed to be known, and the basis functions used in the SONF are defined as:
#,(n) = sin(wyn), @,(n) =cos(w,n),d,(n) =sin(w,n), and ¢,(n) = cos(w,n).

Figure 2.5 shows the estimation of s(n)using globally optimal SONF. Figure 2.6
shows the mean square error (MSE) in estimating s(#n) . In Figure 2.6, MSE is calculated

based on an ensemble average of 500 trials. From the curve, we can see that estimation

error mainly exists at the start of filtering. As time goes on, MSE decreases rapidly.
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Figure 2.5 Estimation result using globally optimal SONF
(a) Signal s(n) ; (b) PSD of s(n) ; (c) mixture x(n)=s(n) +n(n);
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Figure 2.6 MSE in estimating s(n)
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Chapter 3

Model-based Seizure Detection Method and Modeling

of the Template Seizure
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In Chapter 2, we reviewed statistically optimal null filters (SONF) introduced by
Agarwal et al. [23, 24]. In this chapter, we propose a model-based seizure detection

method using SONF as the basic building block.

3.1 Model-Based Seizure Detection Method

Seizure signal can be considered as a short duration signal compared to the long
background EEG. Since our signal of interest is the seizure signal, we may define the
detection problem as follows: Let the background EEG (non-seizure activity) represent
the noise n(n) and seizure activity as the desired signal s(n) . Therefore, the problem can
be formulated as the detection of the seizure activity s(n) from the observed EEG that
consists of signal plus noise, x(n) = s(n) +n(n).

As mentioned before, in most patients, one or sometimes two or three types of
seizures tend to occur repeatedly. In these cases, the EEGs of the same type of seizures
tend to be similar to each other, though never identical [4]. For this reason, in our
proposed method, the a priori known seizure (the template seizure) is used to develop a
model that describes the intrinsic properties of the type of seizure to be detected.
Estimation of the seizure signal from the observed EEG is then performed using the
derived model in the context of the SONF. If the observed EEG contains the same type of
seizure as described by the model, the output of the SONF will represent the estimate of
the seizure. In this case, ', the energy ratio between the estimated seizure §(n) and the

observed EEG x(n) is expected to be large. Conversely, if the observation contains only

the background EEG n(n), the output should be near zero with little energy; the energy
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ratio ¥' in this case should be small. Thus, the energy ratio of the estimate of the seizure
and the observed EEG can reflect the weight of seizure components in the observed EEG,
and it can therefore be used as the test statistic to detect the presence of a seizure in the
observed EEG. A large energy ratio value indicates the presence of a seizure, while a
small value likely means no seizure. To minimize the spurious peaks, the energy ratio '
is filtered (moving average) to get a more smooth y distribution. The final test statistic
¢ is defined as the difference between the averaged y value of the test window and that
of the background window (the two windows will be defined later). By comparing & to a

threshold, a decision can be made as to whether the input EEG contains a seizure that is

similar to the template or not. Figure 3.1 illustrates the general detection scheme [25].

A E "2 S : t)

x(n) “onr S(nz " [s2 (n] S 7 o 556, Seizure

__,| seizure ~ Elx*(n)] y/n(?)
T(n) model d

(n)

Figure 3.1 Scheme of the model-based seizure detection method

In Figure 3.1, x(n)is the observed EEG, T(n) represents the template seizure, ®(n) is a
set of basis functions derived from the template seizure that model the template seizure

and used by the SONF, y' the energy ratio of the estimate of the seizure and the observed

EEG, y the smoothed version of y', & the final test statistic used to make the seizure

detection and &, the threshold. The modeling methods will be discussed in Section

3.2.
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Globally optimal SONF (discrete time recursive implementation) is used in our
model-based seizure detection method to estimate the seizure signal §(#n)from the
observed EEG x(n).

In this initial development of the method, we use a single channel EEG data. EEG

data is processed using a sliding window of 6-seconds with a step size of 0.25 seconds, as

illustrated in Figure 3.2.

6s

WWMMWWNMWWVV\NM\/\NWW

-+ 0.253«

Figure 3.2 Sliding window to process EEG data

The energy ratio (y’') between the estimated seizure and the observed EEG is
calculated at 0.25 seconds interval:

N
> §%(n)

v n=201

Y="n
> x?(n)

n=201
where N=1200, the number of samples in the sliding window given the sampling rate to
be 200Hz. The first 200 samples are discarded in the estimation since the estimation error
of the SONF is mainly at the start of filtering. As time goes on, the mean square error
(MSE) decreases rapidly.

When a seizure is present, large values of »* will persist for the duration of the

template seizure, though not necessarily for each point due to the EEG variations. To
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remove spurious peaks in y’, we apply a 24 point moving-average smoothing operation
to generate y . The 24 values of y’ represent a 6-second EEG epoch. The smoothing
operation will help in minimizing the spurious peaks during the non-seizure times, while
reducing dropouts during seizures.

The final detection criterion ¢ is defined as the difference between the averaged ¥

value of the test window and that of the background window. The test window is a 6-
second sliding window and the background window is defined as a 30-second sliding
window. There is a 30s gap between the two windows, and the purpose of the gap is to
prevent the starting part of the seizure from entering the background window. Figure 3.3

illustrates the two windows, and Figure 3.4 shows an example of the distributions of 4’

yand J.
Y
— 30s = 30s —'|6s [
Background
window Test window

e o P

Figure 3.3 Windows used in calculating ¢ . Background window with duration of 30

seconds. Test window with duration of 6 seconds. There is a 30s gap between the two

windows. Both windows slide synchronously.
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Seizure can be detected by setting a proper threshold for & , that is,

Since our model-based seizure detection method performs customized seizure

detection for each patient through the a prioi known template, the threshold &, is also

determined for each patient. The threshold &, is determined as follows: First, the
SONF is applied to the template seizure and 30 seconds background EEG before the

template seizure; Opy, is defined as the difference between the averaged y value of the

if  6>dpy,aseizure is detected

if & <7y, no seizure

template seizure and that of the 30seconds background EEG.
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All detections that occur within 30s of each other are grouped and considered as one
seizure activity. For example, if the second detection occurs 15s after the first detection,
and the third detection occurs 20s after the second detection, then all three detections are

counted as a single detection.

3.2 Modeling of the Template Seizure—Constructing the Basis

Functions

In order to use the SONF to estimate/detect seizures, a key step is to construct appropriate
basis functions that can model the characteristics of the template seizure. Since a seizure
can sometimes be as long as several minutes, it is not practical to use the complete
seizure as our template. Our purpose is to detect seizure, and the earlier we detect it, the
better. Hence, if a seizure is longer than one minute, we take the first minute from the
beginning of the seizure as the template seizure. In our opinion, this is long enough to
represent the important evolving characteristics of the seizure and will not cause missed
detections. If a seizure is shorter than one minute, we take the whole seizure as the
template seizure. Next, according to the length of the template seizure, one to three
stationary epochs are selected from a single EEG channel by visually inspecting the
template seizure, and each epoch is chosen to be 6 seconds long for two reasons. First, we
want to choose several disjoint stationary epochs to capture the evolving characteristics
of the femplate seizure. We expect that three epochs can be sufficient to meet this
requirement. Second, 6 seconds is long enough to reflect the main statistical
characteristics of the seizure and yet short enough to be relatively stationary. Figure 3.5 is

an example of the template seizure and the three selected template epochs.
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Figure 3.5 Example of a template seizure and the three selected template epochs

These three template epochs representing the evolving characteristics of the template
seizure are used to model the seizure, that is, to construct basis functions required to
implement the SONF. We introduce six modeling methods to construct the basis
functions. The following describes each of these methods.
3.2.1 Method 1: Direct Method

The most simple and obvious approach is to use the template epochs representing the
template seizure directly as the basis functions. Each of the template epochs is
normalized and used as a basis function. We use normalization in order to eliminate the
influences of the data acquisition and amplification system, since similar seizures at
different times may have different amplitudes depending on the recording, environment
and of course the physiological condition of the patient. In addition to the normalized
template epochs, the Hilbert transforms of the normalized template epochs are also used
as basis functions. The use of Hilbert transform is necessary since the phase information

of the input signal is unknown.
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3.2.2 Method 2: Sinusoidal Basis Functions (SBF)

From observation of many seizures, the most intrinsic feature of a seizure is its
rhythmic nature. ‘Rhythmicity ¢ is an important common factor of most seizure activities,
resulting from the repetitive, self-sustained and synchronized discharges of neurons
involved in the epileptic seizures. Compared to the background EEG, seizure activity in
some sense can be considered as a deterministic signal. For example, in the time domain,
the three femplate epochs in Figure 3.5 clearly show rhythmic nature around some
dominant frequencies. Figure 3.6 shows the three template epochs and their

corresponding power spectra.
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Figure 3.6 Three template epochs and their power spectra

In each spectral graph, a frequency component that is dominant over all the other

frequency components can be clearly seen. That is, most of the energy in each template

36



epoch is concentrated at the frequency corresponding to the highest peak value, and this

frequency can be considered to be the dominant frequency for each template epoch. If f,,
f, and f; represent the dominant frequencies in each of the three femplate epochs

respectively, then the basis functions that can model the seizure can be constructed as
sinusoids at these frequencies. Since the knowledge of the phase information of the input
signal is unknown, we also use the Hilbert transform of each sinusoid as basis functions.
Therefore, six basis functions in all can model the template seizure (for three selected
template epochs):

®(n) = (cosm,n, cos @,n, COS W3, Sin @1, SIN @, 1, SIN ;1)
3.2.3 Method 3: Wavelet Basis Functions (WBF)

Wavelet transform is an important tool in signal analysis and feature extraction. It has
the ability to provide a representation of the signal in both the time and frequency
domains. In contrast to the Fourier transform, which provides the description of the
overall regularity of signals, the wavelet transform identifies the temporal evolution of
various frequencies. This property suits the EEG signal, which is not stationary by its
nature, and has a time varying frequency content as well as transient events. This is
particularly important for seizures since in most seizures the frequency of the dominant
rhythm changes as the seizure evolves.

In order to obtain good results using wavelets, it is important to select a wavelet that
matches the shape or the frequency characteristics of the signal at hand. The use of the
Daubechies wavelet in the analysis of non-stationary signals such as EEG is well

documented. Khan and Gotman [10] used the Daubechies-4 wavelet to detect seizure.
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Following their work, we use the Daubechies-4 wavelet to decompose the template
epochs into different components that can be used to model the template seizure.

The Daubechies-4 wavelet is used to decompose each of the template epochs into 5
scales of detail components and a residual component. Since the EEG is band-limited to
100 Hz when sampling at 200Hz, the frequency ranges for the five scales are 50-100Hz
(scale 1), 25-50Hz (scale 2), 12.5-25Hz (scale 3), 6.25-12.5Hz (scale 4), 3.125-6.25Hz
(scale 5). The residual component represents the remaining energy in the range 0-
3.125Hz. Figure 3.7 is an example of a femplate epoch and its wavelet decompositions

using Daubeties-4 wavelet.
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Figure 3.7 Example of one template epoch and its wavelet decompositions. The seizure
signal (S) is decomposed into 5 scales and a residual component such that

S=S1+S2+S3+S4+S5+R. Scales 3, 4 and 5 cover the seizure frequency range.
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Frequency of seizures in intracerebral EEGs is typically in the range of 3-25Hz [10].
For EEG sampled at 200Hz, this is covered by scales 3, 4 and 5. However, the energy
distribution in these three scales may vary depending on the seizure under consideration.
For instance, some seizures have fairly even energy distributions among scales 3, 4 and 5,
while others may have more concentrated energy distributions in one or two of the three
scales rather than over all the three scales. In order to highlight the main characters of the
seizures and decrease false detections, for each selected template epoch, we select scales
from 3, 4 and 5 according to their energy distributions. If the energy of the three scales all
exceed 20% of the total energy of the three scales, all the three scales will be selected. If
the energy of a scale is less than 20% of the total energy of the three scales, this scale is
not considered any further. The selected scale(s) are normalized, and together with
its(their) Hilbert transform(s) are used as the basis functions.

3.2.4 Method 4: Sinusoidal Wavelet Basis Functions (SWBF)

In Method 3, we decompose the template epochs using wavelet transform and select
one to three scales from scales 3, 4 and 5 according to their energy distributions. Since
these scales represent seizure activity in a restricted frequency band, clear rhythms are
observed. It gives us a new idea of modeling the template seizure where each selected
scale in Method 3 is modeled by a sinusoid. The frequency of the sinusoid is the
dominant frequency in the power spectrum of that scale. This approach combines
Methods 2 and 3, that is, it first separates some noise (like background EEG) and artifacts
(like EMG activity) from the template epochs by using wavelet transform, and then

sinusoids are used to characterize the rhythmicity of the seizure.
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3.2.5 Method 5: Maximum Energy Wavelet Basis Functions (MEWBF)

This method is a simplification of Method 3. In method 3, scales are selected to
model each template epoch according to their energy distributions. In Method 5, for each
template epoch, only the scale with the largest energy is selected regardless of the energy
distributions among the scales 3, 4 and 5. The selected scales from the three femplate
epochs are normalized, and together with their Hilbert transforms are used as the basis
functions [25]. This method is equivalent to Method 3 when the total energy of the scales
3, 4 and 5 is concentrated in only one of the scales. This method can lower the
computational load, but at the expense of losing some of the characteristics of the seizure
when the total energy of the scales 3, 4 and 5 is not concentrated in only one of the
scales.

3.2.6 Method 6: Maximum Energy Sinusoidal WBF (MESWBF)

This method can be considered as a simplification of Method 4. For each template
epoch, after the wavelet transform, the scale with the largest energy among the scales 3, 4
and 5 is modeled as a sinusoid. The sinusoid and its Hilbert transform can be used as
basis functions to model each template epoch. This method is equivalent to Method 4
when the total energy of the scales 3, 4 and 5 are concentrated in one of the scales. This
method can lower the computational load, but at the expense of losing some of the
characteristics of the seizure when the total energy of the scales 3, 4 and 5 is not
concentrated in one of the scales.

The above six methods can be divided into two classes. The first includes Methods 1,
3 and 5. In this class, each method uses part of the original waveform from the template

seizure to model the seizure; for example, Method 1 uses the three original template
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epochs (normalized), and Methods 3 and 5 use part of the original waveforms (Method 3
uses some scales of the wavelet decompositions, and Method 5 uses 1 scale of the
wavelet decompositions). The second class includes Methods 2, 4, and 6. In this class,
each method extracts some characteristics from the original waveform to model the
seizure; for example, all the three methods focus on the seizure’s ‘rhythmicity’. Method 2
uses one sinusoidal signal to model each template epoch, Method 4 uses one sinusoidal
signal to model each of the selected scales from scales 3, 4 and 5, and Method 6 uses one
sinusoidal signal to model the scale with the largest energy among scales 3, 4 and 5.
Table 3.1 summarizes the six modeling methods.

Table 3.1 Summary of the modeling methods

Class 1 Class 2
Method 1: Direct method Method 2: Sinusoidal Basis
Functions (SBF)
Method 3: Wavelet Basis Method 4: Sinusoidal Wavelet
Functions (WBF) Basis Functions (SWBF)
Method 5: Maximum-Energy Method 6: Maximum-Energy
WBF (MEWBF) SWBF (MESWBF)

3.3 Measures Used to Assess the Performance of the Detection Method

In the literature, several measures used to assess the performance of a detection method
can be found. These include, for example, missed detections, false detections, true
positives, false positives, good detections, false detections, sensitivity, selectivity,
detection rate and false detection rate. Many of these terms have identical meaning. The

following provides the definitions of the commonly used measures.
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o True positives (true detections): the number of seizures identified by the
detection method and by the EEG experts.

e False positives (false detections): the number of seizures identified by the
detection method, but not identified by the EEG expert.

o Missed detections (false negatives): the number of seizures missed by the
detection method, but identified by the EEG experts.

o Sensitivity (detection rate): the ratio of the number of true positives to the total
number of seizures identified by the EEG expert.

e Selectivity: the ratio of the number of true positives to the total number of true
positives and false positives.

o False detection rate: some people define it as the ratio of the number of false
positives to the total number of true positives and false positives. Some people
define it as the number of false detections per hour.

In this thesis, we choose two statistical measures to assess the performance of our

method, namely, the sensitivity and false detection rate (/hour).

In this chapter, we have developed the model-based seizure detection method using
SONF, and have proposed six methods of modeling the template epochs. The criteria and
statistical measures that are used in the model-based seizure detection method are also
given. In next chapter, we will first use simulated EEG data to test the six modeling
methods, and then use SEEG data of five patients to test the model-based seizure

detection method using SONF.
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Chapter 4

Seizure Detection Using Model-Based Seizure Detection

Method
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In Chapter 3, we proposed a model-based seizure detection method using the SONFs as
the basic building block. Several methods of modeling the template seizure to construct
the basis functions needed for the SONFs were also presented. In this chapter, we present
the results of testing the method(s) by using simulated as well as real SEEG data. By
using simulated EEG data, we assess the ability of the different methods to model the
template seizures, and find out the best amongst these modeling methods. SEEG data
from five patients are then processed by our model-based seizure detection method using

the best modeling method.
4.1 Simulation

In the first step, we test our methods of modeling the template seizure using simulated
EEG data. By using simulations, we try to find as to which among the proposed six
methods of modeling the template seizure gives the best result. That is, among the six
sets of basis functions generated from the proposed six methods, we select the set that
gives the best performance. The performance of a modeling method (or a set of basis
functions) is defined as the ability to separate seizure/nonseizure activities. The higher
the ability is, the better performance of the modeling method. Later we will define a
variable to quantify the performance.

4.1.1 Simulated EEG Data

The simulated EEG is generated using the real SEEG data of one of the patients. The
patient’s first recorded seizure is used to generate the simulated seizures, and some

background EEG data from the same patient are used to generate simulated background

EEG.
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We use autoregressive (AR) models to generate the simulated signals (both seizure and
background EEG). Fourth order AR models are used to generate simulated seizures and
8" order AR models are used to generate simulated background EEG [26, 27].

(1) Simulated seizure EEG

To generate simulated seizures, first we visually select three 6-second disjoint stationary
epochs from the patient’s real seizure signal. This is the same process as choosing the
template epochs from the ftemplate seizure. These three epochs represent the
characteristics of the seizure at three different times during the seizure.

Each selected epoch is modeled with a 4™ order AR model [26, 27]. Thus, three AR
models will be constructed from the three template epochs. Zero-mean AWGN is used to
excite each of the three AR models, and the output of each AR model is 10 seconds in
duration. The three outputs are concatenated to form the simulated seizure that is 30
seconds in duration. By using this method, 37 simulated seizures are generated. The first
simulated seizure is used as the template seizure to derive the basis functions using each
of the modeling method; the other 36 seizures are used to test the performance of the six
modeling methods. Figure 4.1 shows an example of the three template epochs of a real
seizure and the corresponding three epochs of the simulated seizure generated using the
above procedure.

Since all the 37 seizures are generated from the same three AR models, their
statistical characteristics are the same, and therefore they can be considered to belong to

the same type of seizure.
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(b) Three epochs of a simulated seizure

Figure 4.1 Example of a real seizure and a simulated seizure (a) three template epochs of

a real seizure (b) three epochs of a simulated seizure

(2) Simulated background EEG
The main idea in generating simulated background EEG is similar to that used for
generating simulated seizure EEG. First, twelve segments of background EEG are
selected from the patient’s EEG recordings. Since these segments are selected at different
times during the recording, they are expected to represent different background EEG
patterns, and each segment is 6 seconds long. Each selected segment is modeled with an
8" order AR model [26, 27]. In total, 12 AR models are constructed, one for each of the
12 background EEG segments.

Zero-mean additive white Gaussian noises are then used to excite each of the 12 AR
models. The output of each AR model is 5 minutes long. Hence, we will get 12 pieces of
simulated background EEG with duration of 5 minutes each. Figure 4.2 shows an

example of a real background EEG and its simulated background EEG.
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(a) Real background EEG
(b) Simulated background EEG

S0uv
1 sec I

Figure 4.2 Example of real background EEG and simulated background EEG (a): real

background EEG. (b): simulated background EEG.

(3) Simulated EEG data
As mentioned earlier, we have generated 37 simulated seizures, each of 30-second
duration and 12 pieces of simulated background EEG, each of 5-minute duration. The
first simulated seizure is used as the template seizure to generate the basis functions
needed in the model-based seizure detection method using SONF. The remaining 36
simulated seizures are then combined with the 12 pieces of simulated background EEG.
For each segment of the 5-minute simulated background EEG, three simulated seizures
are superimposed at different times.

During a seizure, the contribution of the seizure to the total EEG activity is generally
much higher than the background EEG, resulting in a relatively high seizure-to-

background ratio (SBR),

E (sezz)

E(bg?)
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In the above equation, E(sez?)represents the seizure energy and E(bg?>) represent the

energy of the background EEG. Hence, seizure and background EEG are not simply
added together. The simulated background EEG during the seizure times is scaled down
to satisfy the desired SBR value. In our simulation, we use SBR=20dB [28].

To simulate the real situation, a measurement noise assumed to be AWGN is added to
form the final observed simulated EEG data. The level of noise is controlled by the
desired signal-to-noise ratio (SNR)

2

SNR =10log;o 75

n

where o is the variance of the measurement noise, and 0'52 is the energy of the

simulated EEG.

4.1.2 Performance Comparison of Different Basis Functions Using Simulated EEG
Data

As mentioned earlier, the first simulated seizure is used as the femplate seizure to
construct the basis functions using each of the modeling method; the other 36 seizures are
used to test the performance of the six modeling methods.

(1) Constructing the Basis Functions

The basis functions are constructed from the template seizure using the six modeling
methods proposed in Chapter 3. Figure 4.3 shows the template seizure (the first simulated
seizure) and the three selected remplate epochs (Epochl, Epoch2 and Epoch3, each of 6

seconds each).
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Figure 4.3 The template seizure (the first simulated seizure) and the template epochs

I.  Constructing the basis functions using Method 1 (Direct method)

As the first step, the template epochs Epochl, Epoch2 and Epoch3 are normalized by

L,-norm, i.e.

X =X, i=1,2,3

where X ,(i=1, 2, 3) represent the template epochs and X ,are the normalized epochs.

Hilbert transform is then applied to the normalized vectors to get Y1, Y2 and Y3.
The normalized femplate epochs and their corresponding Hilbert Transforms form the
set of basis functions corresponding to Method 1.

®,(n) = (X1, X2,X3,Y1,Y2,Y3).

II. Constructing the basis functions using Method 2 (SBF)
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Consider a system driven by white noise. The current output s(n) of the system relies on

the previous outputs s(n-k) and the current input w(n),  s(n) = w(n) — ﬁ:a s(n—k)- The
k=1

transfer function of the system is

Hz=__1

L k
1+>a,z”
k=1
This system is called a p-th order AR model. If the variance of the white noise ¢ and

the AR parameters q; are known, the power spectrum density of s(n) can be calculated
using the following equation
0 j® 2 2
S, (e’ )=|H(e’ )’ o,

We use 2nd order AR models to estimate the power spectra of the three template
epochs. Burg method is used to estimate the coefficients of the AR models and the
variance of the white noise. Dominant frequency of each template epoch is determined by
finding the frequency corresponding to the peak value of each spectrum. Figure 4.4

shows the power spectrum of Epochl.

In Figure 4.4, the frequency f, corresponds to the peak value of the power spectrum,

and it is considered as the dominant frequency in Epochl. By the same procedure, the
dominant frequencies of Epoch2 and Epoch3 are found.

If f, f,, f; are the dominant frequencies of the three template epochs, the set of
basis functions corresponding to modeling Method 2 can be expressed as a set of

sinusoidal signals at these frequencies,

®, (n) = (sin 2af,n,sin 27f, n,sin 27f;n,cos 2af,n, cos 2af, n,cos 2af;n) .
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Figure 4.4 The power spectrum of Epochl

[1I. Constructing the basis functions using Method 3 (WBF)

The Wavelet transform of a signal x(t) is defined as

WI(a,0)=— [ x(Op" (—D)dr, a20 @D
a

1
ir
In (4.1), w(¢)is called mother wavelet, and W(t—_r) is the shifted and scaled version of

a

w(t). ais the scale parameter, 7 is the shift parameter.

The Daubechies-4 wavelet is used to decompose each of the template epochs
(Epochl, Epoch2 and Epoch3) into S5 scales of detail components and a residual
component. We use the discrete wavelet transform in our method. Figure 4.5 shows the

decomposition of Epochl.
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Figure 4.5 The wavelet decomposition of Epochl. (1) Epochl, (2) residual signal, (3)-
(7): scale 5 —scale 1.

As mentioned earlier, scales 3, 4 and 5 cover the seizure’s frequency range.
Percentages of energy distributions among the three scales for each template epoch are
then calculated. For Epochl in our example, the energy distribution among the three
scales is: 43.24% (scale 3), 43.22% (scale 4), and 13.54% (scale 5). For Epoch2, they are
25.43%, 58.35% and 16.22%, and for Epoch3, 19.27%, 54.87% and 25.86%.

The scales with the energy percentage greater than 20% are selected from the three
template epochs. Therefore, scales 3 and 4 from Epochl, scales 3 and 4 from Epoch2,

and scales 4 and 5 from Epoch3 are selected. These selected scales are then normalized

(L,-norm), and together with their Hilbert Transforms form the WBF.
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IV. Constructing the basis functions using Method 4 (SWBF)

The SWBF corresponding to Method 4 are constructed as follows. Each selected scale in
Method 3 is modeled by a sinusoid. The frequency of the sinusoid is the dominant
frequency of the power spectrum of that scale, which is estimated using a 2nd order AR
model as described in Method 2. The sinusoids and their Hilbert Transforms compose the
SWBF.

V. Constructing the basis functions using Method 5 (MEWBF)

To construct the basis functions using Method 5, first the wavelet decomposition is
performed as described in Method 3. After wavelet decomposition, for each template
epoch, only the scale with the largest energy is selected from scales 3, 4 and 5. Hence,
scale 3 from Epochl, scale 4 from Epoch2, scale 4 from Epoch3 are selected. Each of
these selected scales are then normalized and together with their Hilbert Transforms, they
form the MEWBF.

VI. Constructing the basis functions using Method 6 (MESWBF)

To construct the basis functions using Method 6 (MESWBF), the selected scales in
Method 5 are modeled by sinusoids. Frequencies of the sinusoids are dominant
frequencies of the power spectra of these scales. The sinusoids and their Hilbert

Transforms compose the MESWBF.

In the above, we have introduced the implementation of the six sets of basis functions
using the six modeling methods. Next we compare the performance of the six sets of

basis functions using the simulated data.
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(2) Performance Comparison

The model-based seizure detection method is then applied to the simulated EEG data
using the six sets of basis functions generated from the template seizure. As stated in
Chapter 3, the energy ratio (¥') between the seizure estimate and the observed EEG is
first calculated and a 24-point moving average is then applied to »' to get y . Figures 4.6-
4.11 show examples of y' and y distributions of the six modeling methods using the

simulated data. In these figures, SNR=20dB, and SBR=20dB.
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Figure 4.6 Distributions of y'and y using modeling Method 1-Direct method. (a) ' (b)

¥ . The dash-dot lines indicate the seizure locations.
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Figure 4.7 Distributions of y'and y using modeling Method 2-Sinusoidal Basis Functions
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Figure 4.8 Distributions of »'and y using Method 3- Wavelet Basis Functions (WBF). (a)

7' (b) y. The dash-dot lines indicate the seizure locations.
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Figure 4.9 Distributions of y'and y using modeling Method 4- SWBF. (a) 7' (b) 7. The
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Figure 4.10 Distributions of y'and y using modeling Method 5- MEWBEF-. (a) »'; (b) 7.

The dash-dot lines indicate the seizure locations.
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Figure 4.11 Distributions of y'and y using modeling Method 6- MESWBF. (a) »' (b) ».

The dash-dot lines indicate the seizure locations.

From these figures, we can see that after applying the smoothing operation on ',
except for Method 1 (Direct Method), all the y distributions show prominent peaks at the

seizure locations. In order to compare the performance of the six sets of basis functions,
we apply the model-based seizure detection method to the simulated EEG data at
different SNR levels (SNR= -10, -5, 0, 5, 10, 15, 20dB) using the proposed six sets of
basis functions.

We use Ay to assess the performance of the basis functions (the ability to separate

seizure/nonseizure activities), where Ay is defined as the difference between the average

y value during the seizure (},, ) and the average y value of the 30 seconds during non
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seizure times before the seizure (7, 2 ), thatis Ay= 7, -7 bg - Figure 4.12 illustrates this

process. The greater the value of Ay is, the better the performance of the set of basis

functions.
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Figure 4.12 Illustration of 7, and ¥,,. 7, is the average y value during the seizure,

v bg is the average y value of the 30 seconds during non seizure times before the seizure.

Ay= }7sez"}7bg‘

For each fixed SNR level, the performance of each set of basis functions is evaluated

based on the mean Ay values from the 36 simulated seizures. The mean values and
standard deviations of Ay from the six sets of basis functions are presented in Figure
4.13. For convenience of comparison, the mean values of Ay associated with the six sets

of basis functions are also depicted in Figure 4.14.
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Figure 4.13 Mean values and standard deviations of Ay from the six sets of basis

functions
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Figure 4.14 Performance comparison of the six sets of basis functions

From these two figures, we can see that as the SNR decreases below 5dB, the Ay values
of all the basis functions show a monotonic decease; however, when the SNR increases
beyond 5 dB, the Ay values do not increase appreciably. That is, the values are
stabilized.

Among the six sets of basis functions, the basis functions generated by Method 1
(Direct method) shows the worst performance. The Ay curve is far lower than those of

the other five methods at all SNR levels. Basis functions generated by Method 4 (SWBF)

show the best performance. The Ay values for Method 4 are greater than that of all the

other methods at almost all the tested SNR levels.
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In the following, we will apply our model-based seizure detection method to some

real SEEG data using the basis functions generated by Method 4 (SWBF).

4.2 Real SEEG Data

The simulation results in the previous section show that the set of basis functions
generated by the proposed modeling Method 4 (SWBF) provided the best performance.
In this part, real stereo-electroencephalogram (SEEG) data of five patients are processed
to evaluate the model-based seizure detection method using the SONF and the modeling
Method 4 (SWBF).

4.2.1 Subjects

In order to evaluate a detection method, one important factor is the selection of the data.
The data should in no way be pre-selected [29] to address specific cases. That is, the
performance of any method can be highly dependent on the data set used for the
development. By pre-selecting the data set, it is possible to achieve a very high detection
rate and a very low false detection rate, but in fact the method may not be robust and may
not perform so well on a different data set. Hence, we randomly select five patients as
our test subjects. All the patients had intracerebral recordings sampled at 200Hz and the
SEEG data was stored on CDs. Each patient had five recordings including three
recordings with seizures, one without seizures when the patient was awake, and one
without seizures when the patient was asleep. Each recording was about 4 hours long
(sometimes 5 hours long). In all, each patient had about 20 hours SEEG data containing
at least three seizures. More information about each patient’s recordings is given in
Tables 4.1-4.5. For each patient, only one channel data was used. The EEG channel was

selected as the one in which the seizure was most prominent as identified by the reviewer.
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Table 4.1: Patient JPB (selected channel: LH1-LH3)

Files JPB-SEZ} | JPB-SEZ2 | JPB-SEZ3 | JPB-Sleep | JPB-Awake
Montage 2.1 2.1 3.1 1.1 1.1
Length 4h 4h 5h10min 4h 4h
No. of seizures 1 1 1 0 0
Seizure index and | (1) 6:34:01 | (2) 8:33:56- | (3) 5:16:41- | No No
Occurrence 6:35:32 8:35:04 5:18:12 | Seizure Seizure
Time
Table 4.2: Patient SB (selected channel: LFC3-LFCS5)
Files SB-SEZ1 SB-SEZ2 SB-SEZ3 SB-Sleep | SB-Awake
Montage 1.1 1.1 2.1 1.1 1.1
Length 4h 4h 14min 4h 4h 4h
No. of seizures I 1 1 0 0
Seizure index and | (1) 1:23:03- | (2) 7:44:45- | (3) 1:55:57- | No No
Occurrence 1:25:17 7:45:56 1:57:56 | Seizure Seizure
Time
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Table 4.3: Patient LAB (selected channel: LA1-LA3)

Files LAB-SEZ1 | LAB- LAB-SEZ3 LAB- LAB-Awake
SEZ2 Sleep

Montage 2.1 2.1 2.1 1.1 1.1
Length 4h 4h 4h 4h 4h
No. of
seizures 2 1 3 0 0
Seizure index | (1) 3) 4) 16:19:22- No No
and 23:24:01- 13:00:26- 16:21:24 seizure seizure
occurrence 23:26:03 13:02:18 (5) 16:55:10-
time 2) 16:56:59

23:45:53- (6) 18:30:24-

23:48:02 18:32:31

Table 4.4: Patient PAS (selected channel: LS4-LSS)

Files PAS-SEZ3 PAS-SEZ4 PAS-SEZ4A PAS-Sleep | PAS-Awake
Montage 4.1 4.1 3.1 3.1 3.1
Length 4h 4h 4h 4h 4h
No. of seizures 1 3 2 0 0
Seizure index and | (1) (2) 23:06:35- | (5) 10:33:41- No No

15:01:29- 23:06:45 10:34:00 Seizures Seizures

Occurrence 15:01:40 (3) 23:14:09- | (6) 11:38:34-

23:14:23 11:38:47
Time (4) 23:38:40-
23:38:52
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Table 4.5 : Patient LAM [selected channel: LP1-LP3 (Type I), LP7-LP9(Type II)]

Files

LAM-SEZ1

LAM-SEZ2

LAM-SEZ3

LAM-

Sleep

LAM-

Awake

Montage

32

32

32

22

32

Length

4h

4h

4h

4h

4h

No. of
Seizures

11

0

0

Seizure

Index and

Occurrence

Time

(H
18:58:33-
18:59:17 (D)

(2) 3:14:21-
3:15:11 (D)
(3) 3:28:31-
3:29:02 (1)
(4) 3:49:55-
3:50:53 (1)
(5) 3:56:30-
3:57:07 (I)
(6) 4:06:46-
4:07:28 (I)
(7) 4:08:48-
4:09:05(11)
(8)4:11:48-
4:12:05(11)
(9) 4:19:50-
4:20:50 ()
(10) 4:23:59-
4:24:17 (1)
(11) 4:27:36-
4:27:54 (1I)
(12) 4:30:11-
4:30:31 (I)

(13)
13:19:57-
13:20:38 (I)
(14)
14:04:37-
14:05:02 (1)

No

seizures

No

seizures

Among the five patients, patients JPB, SB and LAB all have very long generalized
seizures. The seizures are longer than 1 minute and the activities are rhythmic with
sustained large amplitude. The morphology of seizures in each patient is very similar.
The cases of patients PAS and LAM are more complicated: both of them have focal
seizures occurring only in a few channels. Patient PAS has very short seizures, with

length no longer than 20 seconds, and the amplitude of the seizure activity is not high.
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Patient LAM has two types of seizures. Type I seizures are characterized by intermittent
activity of mixed frequencies and Type II seizures are very short seizures. Both types of
seizure activities are not very rhythmic. Therefore, we divide the five patients into three
cases: patients JPB, SB and LAB as Case 1, patient PAS as Case 2 and patient LAM as
Case 3. Next we will discuss the detection results of the three cases separately.

4.2.2 Results

As described in Chapter 3, in our model-based seizure detection method, the seizure
estimation from the observed EEG is first performed using the derived model in the

context of SONF, and then the energy ratio (') between the estimated seizure and the

observed EEG calculated. A 24 point moving average smoothing is applied to the energy

ratio to get y. As mentioned earlier, the final seizure detection criterion & is defined as
the difference between the averaged y value in a test window and that of the background
window (Figure 3.5). By setting a proper threshold &y for &, we can decide as to

whether a seizure is present or not. As stated in Chapter 3, all detections that occur within
30s of each other are grouped and considered as one seizure activity.

We use two statistical measures — sensitivity (detection rate) and false detection rate
to evaluate the model-based seizure detection method. Sensitivity (detection rate) is
defined as the ratio of the number of true detections to the total number of seizures
identified by the EEG expert; false detection rate is defined as the number of false
detections per hour.

(1) Case 1: Patients JPB, SB and LAB
F‘or patients in Case 1, all the seizures are longer than 1 minute. Hence, only the first

minute of each selected seizure is taken as the template seizure. From a single channel of

65



the template seizure, three stationary template epochs are selected visually. Each epoch is
6 seconds long in duration.
For patient JPB, the No.1 seizure (6:34:01-6:35:32) in file JPB-SEZ1 is used to derive

the seizure model. The template seizure and the template epochs are shown in Figure

4.15.
Epochl
LHI1-LH3
A e A AN A WMWWWWW
Epoch2
Epoch3

bbbt TRy

0 l 300uv 20s
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Figure 4.15 The template seizure and the three template epochs of patient JPB

For patient SB, the No.1 seizure (1:23:03-1:25:17) in file SB-SEZ1 is used to derive the

seizure model. The template seizure and the template epochs are shown in Figure 4.16.

Epochl
LEG3-LFCS 1 Lol T e T g
i)

Epoch 2 Epoch 3

T

20s

0
I 300uv
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Figure 4.16 The template seizure and the three template epochs of patient SB
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For patient LAB, the No.l seizure (23:24:01-23:26:03) in file LAB-SEZI1 is used to
derive the seizure model. The template seizure and the template epochs are shown in

Figure 4.17.

Epochl
LA1-LA3

Epoch2

Epoch3

it

0

20s
| 300uv
Is

Figure 4.17 The template seizure and the three template epochs of patient LAB

Basis functions are then derived from the template epochs using Method 4 (SWBF).
Threshold values are calculated using the method described in Chapter 3. For patient
JPB, 8, =0.14; for patient SB, 6, =0.18; for patient LAB, &, =0.18.

The five data files (about 20 hours) of each patient are then processed by the model-
based seizure detection method as described in Chapter 3.

Figures 4.18-4.23 show some examples of the detected seizures, and the y and

¢ distributions.
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Figure 4.18 y and ¢ distributions of file SB-SEZ2 (Seizure No.2). The arrow indicates

the seizure location. The dash-dot line indicates the threshold
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Figure 4.19 Detected seizure in file SB-SEZ2 (Seizure No.2). The arrow indicates the

first detection.
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Figure 4.20 y and ¢ distributions of file JPB-SEZ2 (Seizure No.2). The arrow indicates

the seizure location. The dash-dot line indicates the threshold.
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Figure 4.21 Detected seizure in file JPB-SEZ2 (Seizure No.2). The arrow indicates the

first detection.
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Figure 4.22 y and ¢ distributions of file LAB-SEZ1 (Seizure No.1 &2). The arrows

indicate the seizure locations. The dash-dot line indicates the threshold.
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Figure 4.23 Detected seizure in file LAB-SEZ1(Seizure No.2). The arrow indicates the

first detection.
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From these figures, we can see that yand o values at the seizure locations are greater

than those for the background EEG, making it easy for true detections to happen.

The twelve seizures in the three patients (JPB, SB and LAB) share some common
characteristics. All of the twelve seizures are generalized seizures (a generalized seizure
means seizure occurs in many channels). Seizure amplitudes are high and durations are
long, and seizure activities are very rhythmic. Moreover, in each of the three patients, the
template seizure and other seizures in the patient resemble one another in morphology to
a great extent. For this kind of seizures, the model-based seizure detection method using
SONF shows perfect result. For the three selected patients, the sensitivity is 100% and the

false detection rate is 0/hour. Table 4.6 summarizes the detection results for Case 1.

Table 4.6 Detection results for Casel (Patients JPB, SB and LAB).

Patient | Hours Number of True False Sensitivity | False
Seizures Detections | Detections Detection
(non-template Rate
seizures)

JPB 21 2 2 0

SB 20 2 2 0 100% | 0.0/hour

LAB 20 5 5 0

(2) Case 2: Patient PAS
There are 5 visually identified seizures in patient PAS. Additionally, upon review of the
data, it was realized that there is one very distinct seizure that was missed by the expert.

Clearly, this is a true seizure and we therefore include it in the manually identified seizure
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group. All the 6 seizures are focal seizures occurring only in a few channels and are
shorter than 20 seconds.

The No.1 seizure in PAS-SEZ3 (15:01:29-15:01:40) is used as the template seizure.
Only one template epoch (6 seconds long) is selected from the femplate seizure because
of its short duration. Figure 4.24 shows the template seizure and the template epoch.

Basis functions are then derived from the template epoch using Method 4—

Sinusoidal Wavelet Basis Functions. Threshold is calculated using the method described
carlier. For patient PAS, &, =0.035. The five data files (about 20 hours) of patient PAS

are then processed by the model-based seizure detection method.

Figures 4.25 shows one example of the ¥ and & distributions, and Figure 4.26 shows

one example of a detected seizure.

Epochl

LS4-LS5
I

0 l 200uv 11s
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Figure 4.24 The template seizure and the template epoch of patient PAS. Only one

template epoch is selected because of the short duration of the template seizure.
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Figure 4.25 y and ¢ distributions of file PAS-SEZ4 (Seizure No.4). The arrow indicates

the seizure location. The dash-dot line indicates the threshold.
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Figure 4.26 The detected seizure in file PAS-SEZ4 (Seizure No.4)

Generally speaking, the detection result for patient PAS is not so satisfactory as for the

patients in Case 1. A total of 5 seizures have been detected, with 2 true detections and 3
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false detections. Three seizures have been missed. Table 4.7 summarizes the detection

result for patient PAS.

Table 4.7 Detection result for Case 2 (patient PAS).

Patient | Hours | Number of True False Sensitivity | False
Seizures Detections Detection
(non- template Detections Rate
seizures)
PAS 20 S 2 3 40% 0.15/hour

(3) Case 3: Patient LAM
The case of patient LAM is much more complicated than Case 1 or Case 2. There are 14
seizures in the five files of patient LAM. They are all focal seizures occurring only in a
few channels and can be classified into two types according to their morphologies. Type 1
seizures are characterized by intermittent activity of mixed frequencies and Type II
seizures are very short seizures. Unlike seizures in Case 1 or Case 2, seizure activities in
this patient are not very rhythmic. No sustained rhythm can be found during a seizure.
Background EEG is also complicated as it contains considerable interictal epileptic
activity. Waveforms such as bursts of spike or spike and wave, short burst of rhythmic
activities frequently appear in the background EEG.

We take the No.3 seizure (occurring from 3:28:31-3:29:02) in LAM-SEZ2 as the
template seizure for Type I seizures. Channel LP1-LP3 (Montage 3.2) is selected since
seizure activity is most prominent in this channel for Type I seizures. Only two template

epochs are selected because only two relatively rhythmic epochs can be found during the
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template seizure. Figure 4.27 shows the template seizure and the two selected template

epochs for Type I seizures.

|

WW‘VWWI‘WJ’WMnh*ffwwwwmWﬁwM‘”‘“meAWWMWW@W‘ Wi

t
i
f
1

Figure 4.27 The template seizure and the two template epochs for Type I seizures in

patient LAM

For Type II seizures, we take No.7 seizure (occurring from 4:08:48-4:09:05) in LAM-
SEZ2 as the template seizure. Channel LP7-LP9 (Montage 3.2) is selected since seizure
activities are most prominent in this channel for Type II seizures. Only one template
epoch is selected. Figure 4.28 shows the template seizure and the selected template epoch

for type II seizures.

LP7-LP9 ,Wh%

Figure 4.28 The template seizure and the template epoch for Type II seizure in patient

LAM
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In the initial evaluation, we set the length of the template epochs in patient LAM as 6
seconds, the same as in the other two cases. Basis functions are then derived from the
template epochs using Method 4—SWBF. The data files of patient LAM are then
processed using the model-based seizure detection method. The results are not

satisfactory: seizure and non-seizure activities cannot be distinguished from the y or &

distributions.

By studying the selected template epochs in Figures 4.27 and 4.28 carefully, we find
that the 6s template epochs are not adequate for this patient. As stated earlier, seizure
activities in patient LAM are intermittent and with mixed frequencies and not very
rhythmic. During the evolvement of the seizure, frequencies change rapidly and no
sustained rhythm can be found. For the current modeling method, the template epochs in
all the patients are selected to be 6 seconds in duration; however for patient LAM, no
rhythm is sustained for as long as 6 seconds. Therefore, we re-adjust the lengths of the
template epochs according to the characteristics of the two template seizures.

For Type I seizures, the new template epochs in the template seizure are chosen to be
3 seconds long and two epochs are selected. Figure 4.29 shows the template seizure and
the newly selected template epochs for Type I seizures.

New basis functions are then generated from the new template epochs using Method
4 (SWBF). The model-based seizure detection method is then applied to the data files of

patient LAM using the new basis functions.
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Figure 4.29 The template seizure and the new terlrfplate epochs for type I seizures in

patient LAM

Two examples are presented to show the comparisons (y' and y distributions) of
using 6s femplate epochs and the 3s template epochs for Type I seizures. Figures 4.30-
4.31 show the comparisons around the Type I template seizure, and Figures 4.32-4.33

show the comparisons around seizure No. 6 (Type I).
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Figure 4.30 y'and ydistributions around the template seizure (Type I) using the 6s

template epochs. Seizure cannot be distinguished from the y (') distributions.
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Figure 4.31 y'and ydistributions around the template seizure (Type I) using the 3s

template epochs. y (') has shown some increase during the seizure time.
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Figure 4.32 y'and y distributions around the No.6 seizure (Type I) using the 6s template

epochs. y (') values are not very high during the seizure time.
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Figure 4.33 y'and y distributions around the No.6 seizure (Type I) using the 3s template

epochs. 7 (7' ) has shown great increase during seizure time.

From Figures 4.30—4.33, we can see that by using the 3s template epochs instead of

the 6s template epochs to model the template seizure of Type I, seizure and non-seizure

activities can be differentiated from the y (') distributions.

The detection result for Type I seizures using the 3s template epochs is as follows: a

total of 15 seizures are detected, with 7 true detections and 8 false detections. One seizure

is missed. The sensitivity is 87.5%, and the false detection rate is 0.4/hour. Table 4.8 lists

the detection result for Type I seizures in patient LAM (675 =0.11).

Table 4.8 Detection result for Type I seizures in Case 3 (patient LAM)

Patient | Hours | Number of True False Sensitivity | False
Type 1 Detections Detection
Seizures Detections Rate
(non- template
seizures)
LAM 20 8 7 8 87.5% 0.4/hour
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For Type Il seizures, the new template epoch is chosen to be 2 seconds long and only one
epoch is selected. Figure 4.34 shows the template seizure and the newly selected template

epoch for Type II seizures.
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Figure 4.34 The template seizure and the new template epoch for type II seizure in patient

20s

LAM

New basis functions are then generated from the new template epoch using Method 4
(SWBF). The model-based seizure detection method is then applied to the data files of
patient LAM using the new basis functions.

Two examples are presented to show the comparisons (y'and y distributions) using
the 6s template epoch and the 2s template epoch for Type Il seizures. Figures 4.35-4.36
show the comparisons around the Type Il template seizure, and Figures 4.37-4.38 show

the comparisons around seizure No.8.
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Figure 4.35 y'and ydistributions around the template seizure (Type II) using the 6s

template epoch. Seizure cannot be distinguished from the y (') distributions.
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Figure 4.36 y'and ydistributions around the template seizure (Type II) using the 2s

template epoch. y (') has shown great increase during seizure time.
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Figure 4.37 y'and ydistributions around the No.8 seizure (Type II) using the 6s

template epoch. Seizure cannot be distinguished from the y (') distributions.
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Figure 4.38 y'and y distributions around the No.8 seizure (Type II) using the 2s template

epoch. y (') has shown great increase during the seizure time.
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From Figures 4.35-4.38, we can see that by using the 2s template epoch instead of the
6s template epoch to model the type II template seizure, seizure and non-seizure activities
can be easily distinguished from the y (') distributions.

The detection results for Type II seizures using the 2s template epoch are as follows:
a total of 5 seizures are detected, with 4 true detections and 1 false detection. The
sensitivity is 100% and the false detection rate is 0.05/hour. Table 4.9 summarizes the

detection result for type II seizures in patient LAM (87 =0.1).

Table 4.9 Detection result for Type 11 seizures in Case 3 (patient LAM)

Patient | Hours | Number of True False Sensitivity | False
Type 1l Detections | Detections Detection
Seizures Rate
(non- template
seizures)

LAM 20 4 4 1 100% 0.05/hour

4.3 Discussion

The first automatic seizure detection method to be widely used in clinical setting was that
of Gotman [9]. It is based on the general characteristics of the seizures, such as the large
amplitude, fast frequency, and rhythmic activity. The combined results of several
evaluations show a sensitivity of 70-80% and a false detection rate of 1-3/h. Another
notable seizure detection method is that of Gabor [18, 19] based on neural network. The

evaluation showed a sensitivity of 92.8%, and a false detection rate of 1.35/h.
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The first patient-specific automatic seizure onset detection system was proposed by
Qu and Gotman [4]. It used an existing seizure as the template and a large set of
background EEG patterns to detect oncoming seizure onsets in the same patient.

The purpose of our model-based seizure detection method is to try to improve the
sensitivity and lower the false detection rate by using a model for each type of seizure.
Similar to the method of Qu and Gotman, one a priori known seizure is needed as thé
template, from which the model is derived using the proposed modeling method.
Statistically optimal null filters (SONF) are then used to estimate the seizure from the
observed EEG. The energy ratio between the seizure estimate and the observed EEG is
calculated, processed and used as the criterion to decide if a seizure is present or not. As
the first step, we used simulated EEG data to test the proposed six modeling methods.
Results show that among the six proposed modeling methods, Method 4 (SWBF) gives
the best result. Then, we used the SWBF in our model-based seizure detection method to
process the real SEEG data of five patients.

Among the five patients considered, detection results for Case 1 (patients SB, JPB
and LAB) are perfect. For the three patients, the sensitivity is 100% and the false
detection rate is 0/h. Several reasons can account for the perfect result. First, all the three
patients in Case 1 have generalized seizures with long duration--each seizure is longer
than 1 minute. The sustained activity enables us to easily select three stationary template
epochs from the template seizure, and increases the possibility of detecting the seizures.
That is, if the seizure is missed by the first template epoch, there are still chances to
detect by the second or third template epochs. Seizure activity is very rhythmic, and this

satisfies the condition from which the set of basis functions (SWBF) were derived.
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Another very important reason is that, in each patient, seizures from their onsets to the
later stages resemble the template seizure very much. There is a very clear pattern for the
seizures in each patient. Based on the above reasons, it is not surprising that perfect
results have been obtained for all the three patients in Case 1.

Case 2 (patient PAS) has different kind of seizures from the patients in Case 1. The
most prominent characteristic of the seizures in this patient is their short durations.
Detection result using our model-based seizure detection method is not satisfactory for
this patient. The false detection rate is low, and the sensitivity is also low.

By studying the yand ¢ distributions of patient PAS, we found that, if a lower

threshold (0.021) is used for this patient, there will be no missed detections. At present,
the threshold is set to be the difference between the averaged y value of the template
seizure and that of the background (30 seconds before the template seizure), which is
0.035 for this patient. This seems too high for this patient. Even though there are no

missed detections for the three patients in Case 1, by studying the yand & distributions

of the patients we found that there is still room for lowering the thresholds without
causing any false detections. The current threshold setting seems to be not optimal. In
order to establish more appropriate threshold setting strategy, it is necessary to use a large
training data set. In the future, more training data should be used to find the optimal
threshold.

The false detections in patient PAS are caused by some high-amplitude artifacts at the
start of some of the EEG segments. Figure 4.39 shows one example of such an EEG

segment and the corresponding seizure estimate using SONF from this segment.
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Figure 4.39 EEG segment with artifact at start and its seizure estimate (a) EEG segment

with artifact at start. (b) seizure estimate from the EEG segment.

From Figure 4.39, we can see that the output of the SONF cannot track the input
properly at this situation. At the start, the input (high-amplitude artifact) has some
identical frequency components as the basis functions, therefore the output of the SONF
has the same frequency components. But when the artifact is over, even though the input
does not contain any frequency components that match the basis functions, the output
cannot track the change fast enough. The energy ratio of the output and input will be
large in this situation, making it possible for a false detection to occur. More detailed
explanations via simulation are described in the Appendix. In the future, this problem
may be resolved by identifying and rejecting the artifact in the EEG segments first.

The processing results of patient LAM (Case 3) using 6s template epochs show that

the model-based seizure detection method is not effective: seizure and non-seizure
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activities cannot be distinguished from the y ord distributions. The reason for the

ineffectiveness is that the 6s template epoch is too long for this patient, since no rhythm
is sustained for as long as 6 seconds in patient LAM. By using shorter template epochs
(3s for type I seizures and 2s for type II seizures), detection results have improved
significantly for both types of seizures. Hence, when selecting the template epochs to
model the template seizure, it is very important to choose the length of the template
epochs according to the characteristics of the template seizure rather than fix the length
for all patients. In the future, some automatic segmentation techniques that divide the
template seizure into several stationary segments may be used to help in the selection of
the template epochs.

There is one missed detection (seizure No.5, Type I) in patient LAM. Checking the
missed seizure in the selected channel LP1-LP3, we found that the morphology of the
seizure in this channel does not match the template seizure. It is therefore reasonable that
the method is not able to detect this seizure.

The false detections in patient LAM are caused by the same reason as in Case 2: some
high-amplitude, short-duration artifacts occur frequently in the channel LP1-LP3. Artifact
rejection is needed to solve this problem in the future.

For most of the seizure detection methods, short burst of rhythmic activity, rapid eye
blinking and EMG artifact caused by chewing are the main reasons that cause false
detections [8, 9, 10]. For our method, even if these activities exist, they are not likely to
match the model derived from the template seizure, and therefore false detection will not

occur. Compared to the other seizure detection methods, our model-based seizure
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detection method may lower the false detection rate, and the detection results of the five

patients suggest this to be the case.
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Chapter 5

Conclusion
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About 0.5-1% of the population suffer from epilepsy, which is the most common
neurological disease next to strokes [1]. The manifestations of epilepsy are bursts of
seizures and spikes, which are defined as abnormal EEG patterns.

Nowadays, long-term EEG monitoring with video is being used in clinics to capture
seizures in epilepsy patients. It can provide the combined information about the clinical
and electrographic seizures, and it is more likely to capture epileptiform abnormalities
(for example, seizures) than a short-term recording. However, it is difficult for the
neurologists to observe a seizure closely or to interact continuously with the patient, since
the EEG monitoring sessions can last from several days to weeks [4]. Automatic seizure
detection is thus necessary in the long-term EEG monitoring process.

Several automatic seizure detection methods have been developed since 1970. Some
are based on general seizure characteristics, such as large amplitude, high frequency,
rhythmic activity and so on, while others are based on neural networks or wavelet
transforms. Performance (for example, sensitivity and false detection rate) of these
methods varies significantly.

In this thesis, we have tried to address the problem of automatic seizure detection in a
way that is different from the traditional seizure detection methods. The traditional
seizure detection methods usually extract some general features of the seizures, such as
average amplitude and average frequency. Detection criterion is developed using these
features. Our model-based seizure detection method using the statistically optimal null
filters (SONF) performs customized detections for each patient through the use of the

patient’s own a priori known seizure as a detection femplate. Subsequent EEG recordings
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of the same patient are processed using the SONF, which was proposed for solving the
problems of estimating short-duration signals embedded in noise. The output of the
SONF represents the noise-free estimate of the seizure. A detection criterion using the
estimated seizure and the observed EEG is developed for the final seizure detection
method.

In Chapter 1, we introduced some basic concepts such as what EEG is and what
seizure is, and reviewed some of the seizure detection methods in the literature. In
Chapter 2, we described the principle of the SONF, then introduced several kinds of
SONF, and presented an example of using SONF for the estimation of a signal embedded
in noise. In Chapter 3, we presented the model-based seizure detection method using
SONF, and proposed six methods of modeling the template seizure — constructing basis
functions that are needed to implement the SONF in the model-based seizure detection
method. In Chapter 4, we first used simulated EEG data to find the optimal basis
functions from the proposed six modeling methods. Then we used the SEEG data of five
patients to develop and test the model-based seizure detection method using SONF.
Simulation results show that, modeling using Method 4 (Sinusoidal wavelet basis
functions) has a better performance than the other modeling methods. The processing
results of the SEEG data of the five patients show that the model-based seizure detection
method using SONF can lower the false detection rate, and is most effective for long
rhythmic seizures with a clear pattern. Besides, it is very important to select the length of
the template epochs according to the characteristics of the seizure rather than to use a

fixed length for all patients.
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There still remains considerable work to be done to improve the method, such as
using spatial information from multi-channels instead of using the information from only
one channel; using more training data to find the optimal detection threshold for each
patient and selecting the length of the template epochs adaptively according to the

characteristics of the femplate seizure instead of using a fixed length.
Main Contributions

The main contributions of the thesis may be summarized as follows:

1. A new seizure detection method (model-based seizure detection method using the
SONF) has been proposed. This method utilizes an a priori known seizure as a
model to detect the subsequent seizures that are similar to the model.

2. Six methods of modeling the template seizure (generating basis functions that are
needed in the SONF) have been developed.

3. Simulation has been performed to test the performance of the proposed six
modeling methods. Results have shown that Method 4 (SWBF) has a better
performance than the other five modeling methods.

4. Real SEEG data of five patients have been processed to develop and test the
model-based seizure detection method using the SONF. The results have
indicated that this method can lower the false detection rate, and is most effective

for long rhythmic seizures with a clear pattern.

Future work

Future work could be carried out on the following aspects:
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Visually selecting stationary epochs from the template seizure can be replaced by
a more precise automatic selection procedure. By using automatic segmentation,
the length of the template epochs can be determined automatically according to
the characteristics of the template seizure. Moreover, by using automatic
segmentation, the model-based seizure detection method can eliminate the
necessary human intervention to achieve a fully automatic seizure detection
method.

The information of only one channel has been used in our model-based seizure
detection method. In the future, spatial information from multi- channels must be
incorporated in the detection scheme. This will further help to enhance a true
detection and to reduce a false detection.

The current setting of the threshold seems to be not optimal. In order to establish
more appropriate threshold setting strategy, it is necessary to use a large training
data set. In the future, more training data should be used to find the optimal
threshold.

Variable length template epochs are recommended for different patients according
to the characteristics of the template seizure. This may be achieved by using
automatic seizure segmentation methods.

More EEG data must be used to train/develop the model-based seizure detection

method using SONF.
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Appendix

Investigation of SONF via simulation

This appendix is intended to explain why the high-amplitude artifact at the start of some
of the EEG segments may cause false detections. For this purpose, we consider the
following two cases.

Case 1. Input x=10.0*sin(2*pi* m *k), 0< k<1200

Basis functions: bfl= sin(2*pi* o *k); bf2=cos(2*pi* @ *k);

Figure A.1 shows the input and output of the SONF (ideal case, output tracks input
exactly). Figure A.2 shows the A and v distributions, where A's are the scaling

functions in the SONF, and v's are the outputs of the IMF in the SONF. More detail can

be found in Chapter 2.
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Figure A2 A and (A 1and A2, U1 and L2 represent the two branches of SONF)

10*sin(2* pi*wy * k)

0<k<50

sin(2* pi *

Case 2. Input x=9 |
o *(k-50)), 50<k <1200
Basis functions: bfl= sin (2*pi* @, *k); bf2=cos 2*pi* @, *k);
Figure A.3 shows the input and output of the SONF (output cannot track the input

properly). Figure A.4 shows the 4 and v distributions.
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Figure A.3 Input and output of SONF. Solid line: input. Dotted line: output.
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Figures A.3 and A.4 show that the output can’t track the input properly when there is a
high-amplitude artifact at the start of the data segment. For the first 50 samples, the
output tracks the input very well. But after the first 50 samples, even though the input
signal does not have w, frequency component, SONF still gives the output with

frequency @, . The energy ratio of the output and input at this situation will be large,

making it possible for a false detection to occur.
Refer to the recursive algorithm of the globally optimal SONF in Chapter 2. The gain

matrix P(n) is only related to the basis functions ¢ (n). Hence, when ¢ (n) is fixed, P(n)
and A (n) are fixed.

The output v(n) of the instantaneous matched filter (IMF) is calculated using the
recursive equation v(n) = v(n —1) + x(n)¢(n), and the initial value v(0) = x(0)¢(0).

The output of the SONF is y'(n) = A (nyv(n)

The equation can be extended as

¥'(m) = AT (mo(n) = A ())[x(n)g(n) + x(n ~1)g(n—1) +....+ x(0)$(0)]
Hence, the output at sample » relies on the input samples from 0 to n-1. This can

explain the phenomena in Figure A.3.
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