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Abstract

Intrusion Detection: A Game Theoretic Approach

Mona Mehrandish

In this thesis, we consider the problems of detecting intrusions initiated by cooperative
malicious nodes and multiple malicious packets initiated by a smart intruder. Detection is
accomplished by sampling a subset of the transmitted packets over selected network links
or router interfaces. Given a total sampling budget, our framework aims at developing a
network packet sampling strategy to effectively reduce the success chances of an intruder.
We consider two different scenarios: 1) A well informed intruder divides her attack over
multiple packets in order to increase her chances of successfully intruding a target domain.
2) Different cooperating intruders distribute the attack among themselves each sending
the attack fragments to the target node. Each of the packets containing a fragment of the
attack is transmitted through a different path using multi-path routing, where each path is
selected with a different probability. To the best of our knowledge, there has not been any
work done for the case where the attack is split over multiple packets or distributed over
cooperative intruders using game theory. We formulate the game theoretic problem, and

develop optimal sampling schemes.
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Chapter 1

Introduction

1.1 Overview

Systems and networks are subject to continuous electronic attacks. Frequent attempts to vi-
olate information security requirements for data protection are increasing everyday. There-
fore, some tools have been developed as solutions to this problem such as vulnerability-
assessment tools and intrusion detection systems. Both of these tools allow organizations
to protect themselves from losses related to network security problems. Vulnerability-
assessment tools check systems and networks for system problems and configuration errors
that represent security vulnerabilities. Intrusion detection éystems (IDS) collect informa-
tion from a variety of points within computer systems and networks (depending on the IDS
information source type) and analyze this information for signs of security violations [10].

In a nutshell, intrusion detection systems do exactly as the name suggests: they de-
tect possible intrusions. In other word, intrusion detection system tools gather informa-
tion, depending on the information source (i.e., network or hosts), analyze the information
to detect computer attacks and/or computer misuse, and then alert the proper individu-
als upon detection. An IDS installed on a network functions the same as a burglar alarm
system installed in a house. Through various methods, both detect the existence of an in-
truder/attacker/burgler, and they both subsequently issue some kind of warning or alert [25].

Even though IDSs may be used in conjunction with firewalls, they should not be consid-
ered as the same thing. Frrewalls aim at regulating and controlling the flow of information
into and out of network acting as prevention tools. They protect a network and attempt to
prevent intrusions, while IDS tools detect whether if the network is under attack. On the

other hand, IDS tools form an integral part of a thorough and complete security system,



when used with security policy, vulnerability assessments, data encryption, user authenti-
cation, access control, and firewalls. Using the previous example, firewalls can be thought
of as a fence or a door positioned in front of a house and 1DSs can be thought as a security
camera inside the house [25].

There are three fundamental security functions that intrusion detection systems serve:
monitoring, detecting, and responding to unauthorized activities by insider or outsider in-
truders. Intrusion detection systems use rules to characterize certain events that, if detected
(or not detected) will issue an alert. More specifically, if a particular event (or non existence
of the particular event) is considered to violate the system security, an alert will be issued
if that event is detected (or not detected). The intrusion response [11] varies for different
kinds of IDSs. Most intrusion detection systems have the capability of sending out alerts,
so that the network administrator receives a notification of a possible security violation in
the form of a page, email, or SNMP trap. Some other intrusion detection systems not only
recognize a particular incident and issue an appropriate alert, but also respond automat-
ically to the event. The intrusion response might be logging off a user, disabling a user
account, or launching of scripts [25].

Unlike what is believed by most of people, the vast majority of the security incidents
that occur on a network is launched by an insider attacker. The insider attackers can be
authorized users who are disgruntled employees. The rest of the attacks come from the
outside, in the form of denial of service attacks or attempts to penetrate a network infras-
tructure. The IDSs are the only proactive means of detecting and responding to threats that
can be initiated by both insider and outsider intruders {25].

The February 2000 denial of service attacks [50] against Amazon.com, Yahoo, CNN,
and E-Bay(amongst others) illustrated the need for effective intrusion detection, especially
within on-line retail and e-commerce. Studies [25] show that almost all large corporations
and most medium-sized organizations have installed some form of intrusion detection tool.
Nevertheless, it is apparent that given the growing frequency of security incidents, any
entity that can be accessed through Internet should have some form of IDS running as a line
of defense. The motivation for network attacks and intrusions can be financial, political,
military, or personal reasons. Reasonably, if one has a network, she is a potential target,
and should have some form of IDS installed.

As we mentioned before, intrusion detection is the process of monitoring computers or
networks for unauthorized access. activity, or file modification. Depending on what kind of

information the IDS monitors the intrusion detection systems can be divided into two basic



categories: host-based and network-based [11]. Each of these types has a distinct approach
to monitoring and securing data, and thus each has distinct pros and cons. In particular,
the former inspects data held on individual computers that serve as hosts, while the later
inspects data transmitted between computers.

Since the intrusion detection system is a critical component of security tools, it is im-
portant to make sure it is functioning as much as expected by the organization deploying it.
The system administrator needs to be able to trust and act on the information provided by
the system. In case of unsound information (false alarm) [34], the system would be more
endangered. In other words, the forensic value of information from faulty systems is not
only negated, but potentially misleading.

Knowing that how risky the failure of an ID component can be, it is rational to consider
the ID systems as targets for the attackers. A well informed intruder might likely attack
the IDS first, immobilizing it or feeding false information to it and then attack the actual
system. For example, the intruder might distract security personnel from the actual attack
in progress, or frame someone else for the attack.

In order for a software component to defend against the attack, it must consider the
specific means by which it can be attacked, both in the design and implementation phase.
Unluckily, very little information is accessible to IDS designers to document the traps.
Besides, the dynamic characteristic of the attacks makes it impossible for the IDS designer
to plan the IDS considering all the possible attacks. However, most of the IDSs have the
feature that new attacks can be added to their databases as new attacks are discovered.
Furthermore, the majority of commercially available IDSs are not open source (they have
proprietary, secret designs), making the independent third-party security analysis of such
systems a difficult task.

ID systems that consider incoming packets independently of each other, and thus retain
no state information across packets, can easily be evaded [36]. In case of stateless IDSs,
an intruder can avoid detection by spreading elements of the attack over multiple packets
(for example, through IP fragmentation or TCP segmentation). Even stateful IDSs can
sometimes be evaded by exploiting slight differences in the way the packet is handled by
the IDS on one hand and the targeted system at the other. Therefore, it is crucial for the
system administrators to deploy a stateful IDS for networks that need more security (e.g.,

e-banking facilities).



1.2 Objective of The Thesis

Noting that how essential the stateful ID systems are, we take into consideration two sce-
narios where stateful detection 1s needed. In the first scenario, a well informed intruder
divides her attack over multiple packets in order to increase her chances of successfully
intruding a target domain. We use game theory as a tool to analyze the possibility of an in-
trusion going undetected. More specifically, we build a game theoretic framework to model
network intrusions through multiple packets. Detection is accomplished by sampling a por-
tion of the packets transiting through selected network links (or router interfaces). Given
a total sampling budget, our work 1n this thesis then aims at developing a network packet
sampling strategy to effectively reduce the success chances of an intruder. As mentioned
before, the intruder launches the attack over multiple packets. Each of the packets contain-
ing a fragment of the attack is transmitted through a different path using multi-path routing,
where each path is selected with a different probability [42].

The second scenario considers a distributed cooperative attack. Here, a group of co-
operating intruders distribute the attack over multiple packets. Then, each intruder sends
a fragment of the attack to the target node. Again, a stateful IDS is needed to detect the
attack. The attack is successful if a certain number of the malicious fragments reach the
target node without being detected. We formulate this problem using a game theoretic
framework and then present sampling strategies for the IDS in order to maximize the prob-
ability of detection. The sampling budget constraint holds for this case as well. To the best
of our knowledge, there has not been any work done for any of these scenarios.

The rest of this thesis is organized as follows. In Chapter 2, we present a survey of
intrusion detection systems. We introduce different taxonomies for IDSs, and we illustrate
them in more detail. Chapter 3 gives the background about game theory. It presents a
taxonomy of games and explains the games in each category with examples. Furthermore,
it discusses some famous examples in game theory. Chapter 4 brings in some studies
including game theory and intrusion detection and carries our contributions, which are

followed by the concluding remarks of Chapter 5.



Chapter 2

Intrusion Detection

2.1 Introduction

Intrusion detection is the process of monitoring the events occurring in a computer system
or network and analyzing them for signs of intrusions, defined as attempts to compro-
mise the confidentiality, integrity, availability, or to bypass the security mechanisms of a
computer or network [12]. An intrusion detection system (IDS) inspects all inbound and
outbound network activity and identifies suspicious patterns that may indicate a network
or system attack from someone attempting to break into or compromise a system. There
are several ways to classify an IDS, e.g., misuse detection vs. anomaly detection [11].
In misuse detection, the IDS analyzes the information it gathers and compares it to large
databases of attack signatures. Fundamentally, the IDS looks for a particular attack that
has already been documented. Like a virus detection system, the functionality of misuse
detection software is dependent on the database of attack signatures that it uses to com-
pare packets against. On the other hand, in anomaly detection, the system administrator
defines the normal state of the network’s traffic load, breakdown, protocol, and typical
packet size. The anomaly detector monitors network segments to compare their state to the
normal behavior and look for anomalies. As mentioned in the previous chapter, another
way of classifying the IDSs is network-based vs. host-based systems [11]: in a network-
based system, or NIDS, the individual packets flowing through a network are analyzed.
The NIDS can detect malicious packets that are designed to be overlooked by a firewall’s
basic filtering rules. In a host-based system, as one can guess from the name, the IDS
examines the activity on each individual computer or host. Furthermore, ID systems also

can be classified as passive system vs. reactive system [11]. In a passive system, the IDS



detects a potential security violation, logs the information and reports an alert while in a
reactive system, the IDS response is not only raising an alert but attempting to stop the
suspicious activity by logging off a user or by reprogramming the firewall to block network
traffic from the suspected malicious source.

Though commonly mistaken for each other, an 1DS differs from a firewall in that a
firewall prevents the intrusions by filtering the traffic between inside and outside of the
network, while an IDS looks out for intrusions in order to stop them from happening. A
firewall doesn’t consider the probability of existence of an insider intruder and it is not
capable of detecting an attack that is launched by an insider intruder. An IDS, on the
other hand, evaluates a suspected intrusion once it has taken place and signals an alarm.
Furthermore, an IDS also watches for attacks that originate from within a system. An IDS
should be considered as a tool to be used in conjunction with the other standard security
products such as anti-viruses and firewalls in order to increase the system’s security.

Intrusion detection is the art and science of sensing when a system or network is being
used improperly or without authorization. An intrusion-detection system monitors system
and network resources and activities. Then, it analyzes the information gathered from these
sources, in order to detect whether an intrusion is in progress or not. When an intrusion is

sensed, the 1DS notifies the authorities by raising an alarm.

2.1.1 Motivation

Considering the potential security threats of intrusions in contemporary businesse computer
networks, the creation and design of intrusion detection systems are exemplified in a simple
manner. The following lists various threats that would promote intrusion detection systems

for businesses [24].

1. Loss of Financial Assets: Financial transactions are processed every day across the
globe. This increasing trend opens financial institutions to subversion from within
or from across the computer networks. The risk is not Iimited solely to financial
institutions since online banking has rendered the customer’s financial information

liable to be intercepted via the Internet.

)

Loss of Intellectual Property: In the competitive market, an important threat is
crucial to be considered: intellectual property threat. The concept of intellectual
property protects the business’s ownership of ideas and products. Theft of intellectual

property can severely hinder any local or global company as the competitive edge is
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taken away. It is easy to understand that any protection against such threats is vital

to a company.

. Leoss of Computing Resources: The company’s Inability to access and process cru-
cial information can cripple its financial standings. Missed business transactions,
disrupted e-mail system and lost customer confidence in the online service are per-

fect examples on how a loss of computing resources affects the company.

. Loss of Privacy: The protection of sensitive information concerns both citizens and
companies. Thefts of personal information can lead to invasion of pnivacy for the
citizens and lawsuits for the company’s lack of protection of personal information.
The sources of these types of attack are wrongfully presumed to come from outside
of the company when in fact, employees who have direct access to the computer
systems are more likely the culprit of these attacks. This misconception has left
companies focusing on firewalls and web servers instead of preventing malicious
employees or corporate espionage. The followings are the scenarios that lead to

security problems [24].

(a) Misplaced Trust: The authenticity of information and processes of a computer
system are usually taken for granted by the user as trust is put into the computer
system’s intent. Accuracy, confidentiahity and correctness of information is a
typical misplaced trust when viewing and accessing a web page. Other types of
misplaced trust can be illustrated when you enter a password to gain access to a
service or system, you trust that is has not been stored to be used at a later time
and when receiving e-mails, you trust the origins of the sender in the sender

heading.
(b) Malicious Code: Businesses experiences great losses due to the effect of com-

puter viruses on business productivity. The danger experienced by computer

viruses is not due from actual viral damage but by the containment of the virus.

(c) Strong Security With a Weak Link: Security for a computer network can be
as simple and complex as desired but complexity 1s futile if a single flaw leaves

an open space for intrusions.

(d) Exploitation of Critical Infrastructure Elements: Computer networks con-
sist of elements of varied importance. A critical service or hardware that acts
as a nexus to other elements is an optimal target to cause severe damage to the

entire network.



(e) Mis-configured Software and Hardware: Configurations of simple and com-
g g P

plex software or hardware contain potential network security threats. If not

properly configured, the software or hardware would enable an intrusion or an

attack.

(f) Excessive Privilege for Simple Tasks: An improperly designed code that is
executed with high privileges can cause serious security issues. A seemingly in-
offensive bug in a program could cause major repercussions in these situations.
This 1s common as it is frequent to see code being executed with unnecessary

privileges.

(g) Being Used as a Springboard to Attack the Next Victim: A computer system
can be used to relay an attack to a third party.

Existence of these threats leads to the development of new security techniques and
methods. Three indispensable tools are discussed: firewalls, encryption and security audit-

ing tools.

1. Firewalls: A firewall consists of a system that acts as a traffic controller between
two networks. Its common utilization is to control traffic between the Internet and an
intranet. Using policy enforcement, permissions established by the firewall prevent
outside attacks on the computer systems but do not prevent insider attacks or stop
systems from becoming a springboard as discussed earlier. Obviously this is mainly
useful when the limits of the Internet and the intranet are well defined. New concepts
such as extranet (multi-partner intranets) have increased the ambiguity of the intranet

limits and therefore the implementation of a firewall has increased in difficulty.

2. Encryption: Encryption uses mathematical algorithms to render data unreadable and
unmodifiable unless specifically authorized by the algorithm. It also authenticates the

identity of the sender of the data enabling confidence in the origin of a message or

data.

The core of any cryptographic algorithm is the encryption key. While the value of
the key is known, any encrypted messages of this key éan be decrypted, altered and
retransmitted. A great advantage of this system is that even if the algorithm is known,
without the key, the decryption cannot be done. This method is not infallible since it

1s still prone to insider attack such as a third party copying the key.



Data has to go through an encryption process to be considered secured, leaving any
unencrypted data unsecured but with this in mind, encryption is uniquely a valuable

part for a security system.

3. Security Auditing Tools: Computer systems and networks can contain a series of
vulnerabilities that can be used for an intrusion or an attack. Security auditing tools
scan for any vulnerabilities and generates a report including recommendations to
remedy the situation. This concept, if done frequently, can be a vital tool against
intrusions or attacks. The frequency aspect of the tool greatly reduces the potential
dangers so if run in a continuous fashion, this leads us to the concept of the Intrusion

Detection System.

An Intrusion Detection System tries to alleviate security threats to computer systems

and computer networks. A large number of threats occurs for several reasons:

1. Valuable information is found on computer networks that can interest people who

have rightful claim to the information or malicious people who profit from this infor-

mation.

2. Evolving technology entails evolving threats and it becomes virtually impossible to
keep track of all the existing and possible threats. The rate of evolution overwhelms

the measures to detect and fix all possible threats.

3. The Internet is a great medium to deliver information to an individual or to groups
of individuals. With this attribute, the Internet has been filled with hackers trying to
demonstrate their abilities by creating numerous threats to computer networks across

the Internet.

4. Since a large number of threats come from hackers, the method of intrusion has been
simplified by creating tools. These tools are often made freely available and thus
even novice hackers gain the ability to breach a security system. This means that
one with no security specialty to write hacks and code tools can launch an attack.
Consequently, the number of attacks has increased greatly over the last few years.
Figure 2.1 shows the number of incidents reported to CERT (Computer Emergency
Response Team)! since 1989.

"hitp://www.cert.org/
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Figure 2.1: Number of incidents reported to CERT (Computer Emergency Response Team)
(1]

5. The low risk involving Intemmet Based attacks encourages hackers to practice without

fear of repercussions of being identified.

6. The accessibility of the Internet allows a high range for the attacks as networks are
often open to the Internet through some services. Even though a network can be
reached from the outside, insider attacks still constitute the highest proportion of

attacks.
7. Security systems are not infallible therefore they allow threats to occur.

8. Threats pass undetected due to the level of traffic through computer networks of these
days. Past techniques such as log monitoring are inadequate for the traffic level that

occurs presently.

2.2  The Intrusion Detection Problem

Significantly, it is impossible for any one person to continually monitor the networks man-
ually, due to the enormous amount of information flowing in the network and the level of
activity on most corporate servers. Traditional network management and system monitor-

ing tools do not address the issue of helping to ensure that systems are not misused and
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abused [24]. In case of theft of a company’s critical data, the traditional systems are inca-
pable of detecting the threat. Mostly corporation’s intellectual property resides on server
machines. Therefore, theft of information is can be really expensive for them. This makes
a tool that could detect security-related threats and attacks as they occur, a necessity for
them.

To make it clearer, we can think of an intrusion detection system as a security camera
mnside the house, and the fence and front door as firewalls and other security tools [25].
Once an intruder bypasses all the defense lines, the IDS is like the closed circuit TV cam-
eras that security guards monitor in order to obstruct the attack.

Intrusion Detection is the art of detecting inappropriate, incorrect, or anomalous activity
[2]. An intrusion detection system monitors a server machihe, a whole network, or even
an application (such as a database or web server) in order to detect patterns of misuse or
anomalies that may correspond to security breaches. The monitoring is automatic and even
on all the systems on which the IDS is deployed. Consequently the 1IDS imposes a low
overhead on the systems and network. This overhead should be low enough so that it does
not disrupt the system normal activities.

In order to attack a system, an attacker first looks for any security holes that make the
system vulnerable to subversion. After identifying a vulnerability to exploit, the attacker
will then generate an attack script and send it to the victim. The attack scripts are frequently
just shell scripts or simple programs that perform a series of fixed steps to exploit the vul-
nerability. In case of normal intruders, the script has already been written and is available
on a web page in which case the intruder just downloads it [24].

Most of the attacks are simply variations of each other. As soon as an attacker identifies
a weak spot and releases an attack script for it, many others who are inspired by her work
find similar weaknesses in other pieces of software. Therefore, attacks can be classified into
groups with common patterns in each group. Thus, after codifying an attack, it is useful to
mntroduce detection templates, such that any pattern that is analogous to this template can
be marked as an intrusion. This helps with detecting an unknown intrusion, for which we

have a variation of it in the database of attacks.

23 Evalu>ating Intrusion Detection Systems

Before classifying the intrusion detection systems, we explain some concepts used as stan-

dard measures for evaluating IDSs. These measures are shown in Figure 2.2.
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Figure 2.2: Measures for evaluating 1DSs

1. The detection rate 1s the ratio between the number of correctly detected attacks and

the total number of attacks.

2. The false alarm (false positive) rate is the ratio between the number of normal con-
nections that are incorrectly misclassified as attacks (False Alarms in Table) and the
total number of normal connections. In other words, the false positive rate is the
frequency with which the IDS reports malicious activities while the activities are
normal. A high false positive rate can be extremely dangerous in a way that it may
either cause administrators to block normal activities which leads to denial of service
or either cause administrators to ignore the system’s output when legitimate alerts are
raised. In general, increasing the sensitivity of an intrusion-detection system results
in a higher false positive rate and consequently decreasing it lowers the false positive

rate.

3. The False negative rate is the rate with which the IDS cannot detect an intrusion. In
other words, it 1s the ratio of the malicious activities for which the IDS fails to raise an
alert to total number of malicious activities. The main concern of an IDS is to detect
any malicious activity. Therefore, it is clear why these are the most dangerous types
of errors, as they represent undetected attacks on a system. Additionally, as one
might expect, false negative rates change in an inverse proportion to false positive

rates.

4. The Crossover Error Rate (CER) [33] is a point at which the system is tuned so that
both kinds of false résponses occur with the same frequency. Furthermore, CER
provides us with a metric to be able to compare different IDSs with each other. Since
the sensitivity of systems has an influence on the false positive/negative rates, it 1s

important to have some common measure that may be applied across the board. The
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CER for a system is determined by regulating the system’s sensitivity until the false

positive rate and the false negative rate are equal, as shown in the Figure 2.3.

Selecting an IDS depends on the main concerns of the administrators. If one is interested
in achieving a balance between false positives and false negatives, she may simply select
the system with the lowest CER. On the other hand, if detecting every single attack is of the
utmost priority, you may still wish to select the system with the lowest false negative rate
noting that this selection may increase the administrative overhead associated with false

positive reports.

2.4 Classification of Intrusion Detection Systems

Intrusion detection can be classified according to any of the following options [37}):

1. Information source: Host-based 1D, network-based 1D, wireless-network ID, appli-

cation logs, or sensor alerts.
2. Time aspects in analysis: Real-time analysis vs. off-line analysis.

3. Architecture: Single centralized vs. distributed & heterogeneous.



4. Continuity: Continuous analysis vs. periodic analysis.

S. Analysis strategy: Anomaly detection vs. misuse detection.

2.4.1 Information source

The source of the information might be the information obtained from a single host (e.g.
system log data, system calls data), monitored traffic in the network to which the hosts
are connected, traffic between mobile nodes, database logs, web logs, alarms generated by
other IDSs and etc.

Generally, the IDSs are divided into two major groups depending on the source of
information. The set of IDS tools that use information derived from a single host (system)
are called host based IDS (HIDS), and those I1DSs that use information gained from a
network are called network based 1DS, i.e., NIDS [11].

The following systems {28} can be distinguished as HIDS:

1. Systems that monitor incoming connection attempts. These systems examine host-
based incoming and outgoing network connections. Furthermore, they look for 1l-
legitimate connection attempts to TCP or UDP ports and can also detect incoming

poriscans.

2. Systems that examine network traffic and look for packets that attempt to access
the host. Furthermore, they protect the host by intercepting suspicious packets and

looking for abnormal payloads.

3. Systems that examine the network layer of their protected host and monitor login
activity onto the host. They monitor log-in and log-out attempts, in order to detect
any unusual activity including an event occurring at unexpected times or in particular
network locations. As an example, we can mention detecting multiple failed Jogin

attempts.

4. Systems that monitor actions of a super-user, e.g., root, who has the highest privi-
leges. These systems inspect any unusual activity related to access control such as

increased super-user activity.

5. Systems that monitor file system integnity. Tools that are capable of checking the

integrity allow the IDS to detect any changes to the files that are critical for the
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operating system. Therefore, any illegal changes in the system would be logged and

would raise an alert to notify the system admuinistrator.

6. Systems that monitor the Kernel. These systems examine the status of critical oper-
ating system files and streams. Furthermore, they are capable of blocking a part of

the actions undertaken by the super-user.

As one may say from the name, a host based intrusion detection system inhabits a par-
ticular computer (host) and provide protection for a specific computer system. In addition
to monitoring the host for misused patterns or anomalies, they might respond to an intrusion
as well.

On the other hand, the network-based type of IDS (NIDS) reassembles and analyzes
network packets that reach the network interface card for signs of intrusions. Unlike the
host based model, they do not only deal with packets going to a specific host. Having an
NIDS deployed in a network segment, all the machines in that segment can benefit from
the NIDS. Network-based IDS can also be installed on active network elements such as
routers [28].

Some of the classical attacks, e.g., DOS [50], need statistical data on the network load
in order to be detected. Therefore, a certain group of NID systems can be introduced to
monttor the network traffic and collect statistical data. These types of mtrusion detection
systems do not analyze the captured packets but only focus on creating network statistics.

There is also another class of IDSs called Network Node IDS (NNIDS), which 1s ba-
sically a mixture of HIDS and NIDS. An NNIDS has its agents deployed on every host
within the network being protected and a single agent usually processes the network traffic
directed to the host it runs on [28]. The main reason to bring in such hybrid IDS was packet
encryption where only the source and destination could see decrypted network traffic which

made it impossible for the other nodes to analyze the traffic.

2.4.2 Time aspects in analysis

Intrusion detection systems are categorized to real-time and off-line in terms of analysis
time aspects [37]. In the former the intrusion detection system analyzes the data while the
sessions are in progress (e.g. network sessions for network intrusion detection, login ses-
stons for host based intrusion detection). It raises an alarm immediately when the attack is
detected. On the other hand, the IDS analyzes the data when the information about the ses-

sions are already collected in case of an off-line intrusion detection system. Afterwards, it
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analysis the data. Off-line analysis is very useful for understanding the attacker’s behavior.

2.4.3 Architecture

The IDS can operate either as a stand-alone centralized application or an integrated appli-
cation that creates a distributed system [28]. In the former, data analysis is performed in
a fixed number of locations, independent of how many hosts are being monitored while
the latter has a particular architecture with autonomous agents that are sometimes able to
move over the network. There, data analysis is performed in a number of locations pro-
portional to the number of hosts that are being monitored [22]. Furthermore, a distributed
architecture is necessary for detection of distributed/coordinated attacks targeted at multi-

ple networks/machines.

2.4.4 Continuity

The IDS may monitor the data continuously or in periodic intervals. In continuous mon-
itoring, the IDS performs a continuous, real-time analysis by acquiring information about
the events instantly after they occur [37]. Continuous monitoring can be expensive due
to transferring the audit data and processing them in real time. In Peniodic Analysis, the
IDS periodically takes a snapshot of the environment, i.e., monitored system, and then an-
alyzes the data 'Snapshot. Afterward, 1t looks for any sign of misuse patterns or anomalies.
Obviously, due to high cost of continuous monitoring, periodic analysis is widely used by
system administrators, but not satisfactory to ensure high security, since the security ex-
posure between two consecutive runs is sufficient for an intruder with enough knowledge

about the system.

2.4.5 Analysis Strategy

Intrusion detection systems usually use signature based approaches, anomaly based ap-
proaches or a hybrid of the two [12]. In a signature based approach, we have a database of
attack signatures and intrusion patterns. The IDS would examine the packets and compare
them against this database to find any misuse attack. On the other hand, we have some
patterns or rules of normal activities in an anomaly based approach. In this case, the IDS
examines the traffic. Any behavior, i.e., monitored traffic, deviating from normal pattern

would be labeled as an anomaly, which alerts the system administrator. Figure 2.4 shows
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the classification of analysis strategies each with an example of an existing 1DS [9]. We

will discuss them later in detail as intrusion detection techniques.

2.5 Intrusion Detection Approaches

2.5.1 Data Mining and Machine Learning Approaches

In the data mining approach, we are able to detect new types of attacks. Here, anomalies
are detected using predefined rules. In order to be able to update the system with the
appropriate rules, the system supervisor should know the behavior pattern for a certain
anomaly to make the system adaptive. The system administrator should design several
rule sets for various attack patterns. Here, the rule generation methodology is done using
data mining techniques. An association rule (item set) [23] is defined with the following
generic form: X — Y, ¢, s where X and Y are the item sets for the rule and X NY = 0 is the
relation between them. s = support(X UY) where s is the support value for the rule and
c= % is the confidence for the rule. The system keeps these rules for a period
of time and uses them as the pattern for the event and behavior model for the users. As an
example [38], an association rule for the shell command history file (which is a stream of
commands and their arguments) of a user is: trn — rec.iumor, 0.3, 0.1, which indicates
that 30 % of the time when a user invokes 7rn, he or she is reading the news in rec.humor,
and reading this newsgroup accounts for 10% activities recorded in her command history
file.

There is another rule called frequent episode rule [46]: X,Y — Z, ¢, s, window where
X and Y are the item sets for the rule and X MY = 0 is the relation between them. s =
support(X UY UZ) where s is the support value for the rule and ¢ = % is the
confidence for the rule and window is the sampling window interval. Applying proper
subintervals, the system will reduce the length of the user records. At the same time, the
system will keep the historical records for the activities in its database (data reduction).
Using the user records, the system will generate a rule set for the activities within the
network. At this stage, the system can notice the irregularities and identify them (if they

are known).
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2.5.2 Artificial Intelligence Approaches

With many applications of artificial intelligence in intrusion detection, researchers have
proposed several approaches in this regard. Data mining using the association rule is also
one of the approaches which we already discussed in the previous subsection. Other Al ap-
proaches propose application of the fuzzy logic concept into the intrusion detection prob-
lem area. In [20], the authors propose a method of combining multiple decision trees
based on fuzzy logic [27], especially the fuzzy integral. In order to improve detection
performance of intrusion detection system, they divide a great large dataset into several
sub-datasets, and mine on sub-datasets separately to construct different sub-decision trees.
Then, they detect data by different sub-decision trees, and finally they nonlinearly com-
bine the results from multiple sub-decision trees by fuzzy integral. In another study [53],
Hidden Markov Model (HMM) has been deployed to detect intrustons. In that approach a
Markov-chain model represents a profile of computer-event transitions, which 1s generated
by historic data. Then, the observed activities of the system are analyzed to infer the prob-
ability that the Markov-chain model of the norm profile supports the observed activities.
The lower this probability is, the more likely the observed activities are anomalies resulting
from cyber-attacks.

Some researchers [35] have tried to use the Bayesian methodology [21] to solve the
intrusion detection problem. The main idea behind this approach is the unique feature
of the Bayesian methodology. For a given consequence, using probability calculations, the
Bayesian methodology can move back in time and find the cause of the events. This feature
is suitable for finding the reason for a particular anomaly in the network behavior. Using
Bayesian algorithm, system can somehow move back in time and find the cause for the
events. Although using the Bayesian methodology for the intrusion detection or intruder
behavior prediction can be very appealing, however, there are some issues that one should
be concerned about them. Since the accuracy of this method is dependent on certain pre-
sumptions, distancing from those presumptions will decrease its accuracy. Usually these
presumptions are based on the behavioral model of the target system. Selecting an inac-
curate model may lead to an inaccurate detection system. Therefore, selecting an accurate
model is the first step towards solving the problem. Unfortunately due to the complexity of
the behavioral model within this system finding such a model 1s a very difficult task.

Furthermore, Artificial Neural Network (ANN) has been proposed by some researchers
for intrusion detection purpose. The main goal of using the ANN approach is to provide

an unsupervised classification method to overcome the curse of dimensionality for a large
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number of input features. Normally in an Intrusion detection system, the system is com-
plex and input features are numerous. Therefore, clustering the events can be a very time
consuming task. Using the Principal Component Analysis (PCA) [14] or Singular Value
Decomposition (SVD) [47] methods can be an alternative solution. However, if not used
properly both of these methods can become computationally expensive algorithms. At the
same time, reducing the number of features will lead to a less accurate model and conse-
quently it will reduce the detection accuracy. In the computer networks intrusion detection
problem area, the size of the feature space is obviously very large. Once the dimensions of
the feature space are multiplied by the number of samples in the feature space, the result
will surely present a very large number. This is why some researchers either select a small
sampling time window or reduce the dimensionality of the feature space. Since the pro-
cessing time is an tmportant factor in the timely detection of the intrusion, the efficiency
of the deployed algorithms is very important. Time constraint may sometimes force us to
have the less important features pruned (dimensionality reduction). However, the pruning

approach is not always possible.

2.5.3 Embedded Programming and Intrusion Detection

In this approach [41}, the goal is to preprocess the network information using a preprocessor
hardware (front-end processor). Here, some parts of the processing are performed prior
to the IDS. This preprocess will significantly reduce the processing load on the IDS and
consequently the main CPU. For example, programming the Network Interface Card (NIC),
can have many properties including lower computational traffic and higher performance for
the main processor. Since the NIC is performing the major part of the processing while the
main processor only monitors the NIC operation, implementing this approach will make it

easier to detect a variety of attacks such as Denial of Service (DoS) attack.

2.5.4 Agent Based Intrusion Detection

Another approach is the distributed or the agent based computing [22]. In this approach
not only the workload will be divided between the individual processors, but also the IDS
will be able to obtain an overall knowledge of the network working conditions. Having an
overall view of the network will help the IDS to detect the intrusion more accurately and at
the same time it can respond to the threats more effectively. In this approach, servers can

communicate with one another and can alarm each other. In order to respond to an attack,
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sometimes it can be sufficient enough to disconnect a subnet. In this type of system in
order to contain a threat, the distributed IDS can order severs, routers or network switches
to disconnect a host or a subnet. One of the concerns with this type of system is the extra
workload that the IDS will enforce on the network infrastructure. The communication
between the different hosts and servers in the network can produce a significant traffic in the
network. The distributed approach can increase the workload of the network layers within
the hosts or servers and consequently it may slow them down. There are two approaches in
implementing an agent based technology.

In the first approach, autonomous distributed agents are used to both monitor the system
and communicate with other agents in the network. A Multiagent based system will enjoy
a better perception of the world surrounding it. In this way, the complex system will be
broken down into much simpler systems and will become easier to manage. In the second
approach, mobile agents are used to travel through the network and collect information or

to perform some tasks.

2.5.5 Software Engineering and Intrusion Detection

As the complexity of the IDS increases, the problem of developing the IDS becomes more
and more difficult. A programming language dedicated to developing IDSs can be useful
for the developer community. Such a programming language with its special components
will improve the programming standard for the IDS code. IDS developers can enjoy the
benefits of a new language dedicated to the IDS development. Such a language will improve
both the programming speed and the quality of the final code.

We illustrate this by presenting two studies. In [51] the main attention is focused on
the software engineering aspect of the IDS. Issues such as object-oriented programming,
component reusability and the programming language for the IDS are discussed in this
paper. A new framework called State Transition Analysis Technique (STAT) is introduced
in this paper. In their implemented framework, the authors propose a type of state machine
system called STAT that follows the state transition of the attack patterns. This framework
is for developing signature based IDSs. There is a STAT-Response class that holds response
modules. These response modules include a library of actions that are associated with the
pattern of the attack scenarios. All together, this language will produce an encapsulated
object-oriented code with a high reusability in the code. There is an event provider module
that will provide the framework with the events occurring on the network.

Another approach in programming languages for the IDS is to provide means to follow
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the state change in the system. In this way, the IDS will have the ability to have its behavior
altered if necessary. Including this feature in the IDS will make it adaptive and reconfig-
urable. The possibility to alter the behavior of the IDS will provide us with a dynamically
reconfigurable IDS. In [48] a State Machine Language (SML) approach was implemented.
It is based on the Extended Finite State Automata (EFSA) to model the correct or expected
behavior of the network. Using a well designed program in SML, the state machine will be
able to follow up with the events within the network and to produce appropriate outputs. If
no irregularities detected, then the anomaly detection part of the process will analyze the

outputs and will detect the anomalies.

2.6 Intrusion Detection Techniques

There are several taxonomies for intrusion detection depending on the analysis strategy.

Here, we have used the taxonomy proposed by [9].

2.6.1 Signature-based Techniques

Signature based intrusion detection (misuse detection) is one of the frequently used and
precise techniques of intrusion detection. In this approach there is a database of signatures
that any monitored activity is matched upon it. The signature can have many forms such as
a special string in an attack code, e.g., su in buffer overflow attacks, a threshold on some
metrics, e.g., number of unsuccessful attempts to log on a system, or etc. Signature based
techniques are very effective once the attack is known, but they can not detect the attack
in case of a new attack. In order to keep a signature-based 1D system effective, security
specialists study the attacks and once a new attack is observed, they analyze and codify
it and finally add it to the signature database. The 1DS should be updated regularly to
recognize the new attack patterns and to respond to them. The main shortcoming of this
approach is the fact that it can not detect novel attacks. Once the attack pattern is slightly
altered, this approach will not detect the altered versions of the old attacks.

All signature-based techniques are programmed, i.e., the system is programmed with
an explicit decision rule. The detection rule is uncomplicated in the sense that it includes
a straightforward coding of what can be anticipated to be labeled as an intrusion and what
can not be. In a signature based 1IDS, the patterns that uniquely lead to an intrusion should
be clearly stated.

The programmed signature-based techniques can be categorized as the following [9]:
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1. State-modeling: In state modeling there is a set of states that should be transited in
order for an intrusion to be accomplished. These states should be transited in order
of time, 1.e., they are time series. State modeling can be classified into two groups:
state transition and Petri net [13]. In the former all the states have to be traversed in
order for the intrusion to fulfill while in the latter, they are a set of paths that can be

traversed so that the intrusion occurs.

2. Expert-system: In an expert system, signatures are a set of rules. The IDS checks
the state of the system by applying the security rules looking for any sign of misuse
behavior. Forward-chaining, production-based tools are mostly utilized in order to
make the system capable of managing new information about attacks. Therefore,
expert systems are often flexible, but this often comes at a cost of execution speed

when compared with simpler methods.

3. String matching: This if often a simple method which looks for a substring in a
monitored packet. The substring search is usually case sensitive. This method is
easy to apply since they are many efficient algonithms for stnng processing. This
approach works having the assumption that in order for an attack to fulfill its goal, it

should contain a special instruction (string) in the body of the attack code.

4. Simple rule-based: Like expert system, in these system signatures are a set of rules.
Here, the rules are much less complicated that the expert system method and as a

result it is Jess expensive in terms of execution speed.

2.6.2 Anomaly-based Techniques

In anomaly based intrusion detection, the system looks for what is called abnormal behav-
ior. Unlike signature based approach, there is no database of attack signatures. Instead,
the attack is detected once the network behaves out of its regular way. Obviously, normal
behavior varies for different kind of networks. Therefore, in this approach we use a training
process where the network behavior is observed for a certain amount of time and logged.
Analyzing the network behavior and removing any malicious behavior from this logged
information, the normal behavior can be defined. This behavior is different for different
systems depending on various factors such as times of the day, the date, different working
conditions, etc., which should be considered during creating the normal behavior baseline.

Any monitored behavior that deviates significantly from this baseline, would be labeled as
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an anomaly. The disadvantage of this approach is that not every anomaly indicates an in-
trusion. This method will lead to a high rate of false positives, especially when the system
1s dynamic. On the other hand, this method is capable of detecting unknown attacks, which
make it desirable to many system administrators. Anomaly based systems are classified [9]
to two subclasses, self-learning systems and programmed systems, which are explained in

the next two subsections.

Self-learning Systems

This kind of systems, as the name suggests, are capable of building the normal baseline
by observing the network traffic for a period of time. They can be either time series or

non-time series [9].

1. Non-time series: These systems construct the normal system behavior using a stochas-
tic model that does not take time series behavior into consideration. They can be

either rule modeling or descriptive statistics.

(a) Rule modeling: In ruled base method, the system studies the system behavior
and creates a set of rules to describe the normal behavior of the system in the
training mode. In order to detect an intrusion, the system applies these set of
rules on the monitored traffic. The system raises an alarm if the observed traffic

significantly deviates from this set of rules.

(b) Descriptive statistics: In descriptive static method the system collects statistics
for different system parameters. Then it considers a normal profile of the system
as a vector of all these parameters. In order to detect an attack, the distance
vector of the system profile and the observed behavior is calculated. If this
distance is greater than a specified threshold, the observed behavior is labeled

as an anomaly.

2. Time series: This approach takes time series behavior into consideration, which
makes it really complex. Hidden Markov model (HMM) [53] and artificial neural
network (ANN) [16] are some examples of this approach.

Programmed Systems

In the programmed approach, the system is not capable of building the normal profile.

Instead, an individual, e.g., IDS administrator, programs the system, in a way that she
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generates the normal profile of the system for the IDS. The IDS uses this profile to compare

against the monitored behavior. Programmed systems are classified as follows [9]:

1. Descrniptive statistics: In these systems, a profile of normal statistical behavior is cre-
ated by using system parameters. Here, descriptive statistics on a number of param-
eters are collected to build the normal behavior profile. Such parameters can be the
number of unsuccessful logins, the number of network connections, the number of
commands with error returns, eic. These systems can use simple statistics approach,

simple rule based approach or threshold approach.

(a) Simple statistics: These systems are capable of making more abstract intru-
sion detection decisions since the collected statistics are used by higher level

components..

(b) Simple rule-based: In this approach, the normal system profile 1s a set of com-
pound rules. The intrusion detection system applies these sets of rules on the

collected statistics in order to detect an anomaly.

(c) Threshold: Here, the normal system profile is just a set of predefined thresh-
olds. This is the simplest intrusion detection approach. The system basically
compares the collected statistics against the thresholds and raises an alert if a
collected statistic i1s more than a predefined threshold. A good example of this

method is raising a security alarm after a certain number of unsuccessful logins.

2. Default deny: In this approach a complete profile of normal behavior is built. This
profile states explicitly all possible normal behaviors of the system. Any monitored
behavior 1s flagged as an anomaly, unless it falls within the profile. The state se-
ries modeling is usually used for default deny. In state series modeling, the system
normal profile is programmed as a set of states. Unlike expert systems where the
transitions between states are explicit, here state transitions are implicit. Like all the
state machines, as the monitored action carries on, the system transits from one state
to another. Once the monitored action takes the system to any implied state that is
not explicitly mentioned, the system raises an alarm. The monitored actions that can
trigger transitions are usually security relevant actions such as file accesses (reads

and writes), the opening of ‘secure’ communications ports, etc
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2.6.3 Hybrid Techniques

Since hybrid intrusion detection systems analyze the system considering both the normal
behavior of the system and the intrusive behavior of the intruder, they provide us with a
more accurate result than any of anomaly or signature-based techniques alone. In other
words, these detectors have a greater true positive rate and a lower false positive rate in the
supervised system, since they know both the patterns of intrusive behavior and the normal
behavior of the system.

These systems automatically are capable of finding out what represents an intrusive
event and normal behavior by being presented with examples of normal behavior com-
bined with intrusive behavior. One example of this system, RIPPER [39], operates by
automatically determining what observable features are interesting when forming the in-
trusion detection decision, isolating them, and using them to form the intrusion detection
decision later.

RIPPER [39] is a classification rule learning tool inspired by data mining for the au-
tomatic and adaptive construction of intrusion detection models. RIPPER uses auditing
programs to monitor the system to set all the system parameters and features. These pa-
rameters describe the system behavior. Then, it uses data mining approaches to extract
rules that accurately capture the behavior of intrusive and normal activities. These rules are

then used for anomaly and signature based detection.

2.6.4 Honey Pots (HPs)

Honey Pots (HP) have recently gained their popularity in the academic and industrial com-
munity primarily due to their practical heuristic method of intrusion detection. HP uses the
concept of bait and trap as a deception to trap undetected intruders. The passive approach
of HP compliments the IDS as undetected intrusions could succumb to the bait. This com-
bined effort has contributed greatly to reducing the amounts of undetected intrusions. HP’s
contribution to the IDS is not limited only to intrusion detections as any access to the bait

is considered malicious and the activity is monitored. The following describes key benefits
of HP:

1. The illusionary nature of the bait keeps the intruder busy and once the intrusion is
confirmed, the system’s security officer is alerted of the activity. This holds several

other benefits:
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(a) Valuable information on attacker tendencies can be gained depending on the
bait used. Similar to studying mice in a maze, intruder activities are logged as

the emulated environment is accessed.

(b) By delaying the attacker, HP will enable countermeasures to be applied within
the response latency time. Usually attacks occur too quickly for any counter-

measures to be applicable or to even trace the source of the intrusion.

(c) A believable emulated environment as bait helps divert the attention and time

of the intruder. While busy, other resources are left untouched by the attacker.
2. HP increases the dependability of the IDS with its unbiased detection method.

3. A major advantage of the HP system is its processing and resource consumption. IDS
monitors and analyzes every packet transactions thus consuming large processing
resources and utilizes other systems involved in the data transfers. In comparison to
the IDS, HP will behave like an interrupt 10, consuming resources solely when the

HP system is utilized.

2.7 Conclusion

In this chapter, we presented the main issues in intrusion detection system. First, we gave
some scenarios to illustrate the importance of network security. Then we demonstrated
the fact that firewalls and other prevention tools can not be enough and there is a need
for another line of defense when the actual intrusion is happening or has happened. We
identified intrusion detection systems as the detection tool when an intruder bypasses the
prevention tools. Afterwards, we presented some technical definitions and we discussed
different categories of intrusion detection systems and how they function. Moreover, we
talked about the state of the art in intrusion detection systems and the different approaches
such as data mining techniques, artificial intelligence, agent based techniques, software
engineering methods and the embedded system approaches. Besides, we classified all the
different methods of analyzing the monitored data and discussed them in detail. Finally,
we presented the new concept of honey pots, which can work in conjunction with intrusion

detection systems to improve the intrusion detection performance.
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Chapter 3

Introduction to Game Theory

3.1 Introduction

Game Theory, the formal modeling of conflict and cooperation, first emerged as a recog-
nized field with a publication of John von Neumann and Oskar Morgenstern’s Theory of
Games and Economic Behaviour in 1944. Since then, game-theoretic thinking about choice
of strategies and the interdependence of people’s actions has influenced all the social sci-
ences.

Game theory is the science of strategic decision making [30]. It is a powerful tool
in understanding the relationships that are made and broken in the course of cooperation
and competition. Games are characterized by a number of players or decision makers
who interact, possibly threaten each other and form coalitions, take actions under uncertain
conditions, and finally receive some benefit or reward or possibly some punishment or
monetary loss. In this chapter, we first introduce some concepts in game theory. Then, we
classify the games and discuss each one in detail. Finally, we illustrate the concept more

by providing some examples.

3.2 What is game theory?

Game theory is a formal way to analyze interactions among a group of rational agents that

behave strategically [15]. We discuss the terms used in this definition in the following:

1. Group: The decision makers in any game are called the players. The set of players
in a game is referred to as group. If there is only one player in a game, the game

becomes a decision problem.
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2. Interaction: The decision each player makes in a group has an effect on at least
one other player. Otherwise the game is simply a series of independent decision

problems.

3. Strategy: Each player has a set of actions to choose from. This set of actions is
referred to as the strategy of the player. Each strategy the player chooses affects the

game.

4. Rational: Each player chooses her best action, considering the other players’ deci-
ston . This condition can be weakened and we can assume that agents are boundedly
rational. Behavioral economics analyzes decision problems in which agents behave
boundedly rational. Evolutionary game theory is game theory with boundedly ratio-

nal agents.

3.3 Taxonomy of games

There are several ways to categonze different types of games. Here, the games are classified
as follows [30]:

1. Games of Skill
2. Games of Chance

(a) Games Involving Risk

{b) Games Involving Uncertainty
3. Games of Strategy

(a) Two-Person

1. Cooperative
A. Purely Cooperative
B. Minimal Social Situation
ii. Mixed-Motive
1. Zero-Sum
(b) Multi-Person

i. Non-Cooperative
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1it. Cooperative

The taxonomy of games 1s illustrated in Figure 3.1.

3.4 Games of skill

Games of skill involve solely one rational agent and consider nature as a certainty. Since,
nature does not constitute a genuine second player, as in the case of games of chance, they
are not really regarded as genuine games. A crossword puzzle, for example, is a game of
skill. To elaborate, two fields that use the concept of games of skill are discussed in detail:
Linear programming, optimization and basic results and the Lagrange method of partial

derivatives.

3.4.1 Linear programming, optimization and basic results

In the mathematical domain of linear programming [8], a function is optimized in retrospect
to the set €2, the constraint set. This function would be designed to maximize and minimize
respectively its output and its input. The constraint set would be sorted in an order accord-
ing to criteria. Let f: Q — R represent the constraint set where the maximizer ® € Q is
determined in order to maximize or minimize f(®). Since optimization involves finding
the local maxima and local minima of functions (collectively called optima), differential

calculus is often a strong candidate as an instrument for solving problems.

3.4.2 The Lagrange method of partial derivatives

Multivariable functions can be optimized using Lagrange’s method of partial derivative
{18]. This method can be explained in the following manner: Lagrangianfunction, A is

expressed as:
Alxy. ) = f(x.y) + Alc—g(x,y)]
where ¢ is constant; f(x,y) is the function to optimize and g(x,y) is the constraint func-

tion. All partial derivatives should be equal to zero, so that the optimization solution could

be found, which 1s analogous to the first-order test for stationary points:
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In other words, the following equations must be solved for x.y and A:

8f 4 8¢
& = Mg
S&f 4 8¢
By T A ¥
glx.y)=c

in which case all the values that produce maxima and minima for f(x,y), subjectto g(x,y) =

¢, will be contained in the solution set.

3.5 Games of chance

Still consisting of a single rational agent, in games of chance [43] unpredictability is added
to the situation and affects the outcome. Games of chance are also referred to as deci-
sion theory [30]. They either involve risk (decision theory under certainty), where the
probability of nature’s response is known; or mvolve uncertainty (decision theory under
uncertainty), where the probability of nature’s response is not known.

A decision problem (A, <) consists of a finite set of outcomes A = {a;.az,...,a,} and a
preference relation <. The expression a =< b should be interpreted as “b is at least as good

as a”. We expect the preference relation to fulfill two simple axioms:
Axiom 3.5.1 Completeness. Any two outcomes can be ranked, e.g. a <borb < a.
Axiom 3.5.2 Transitivity implies that if a <band b < c thena =< c.

The axioms guarantee that all outcomes are ordered gapless and cycleless. Albeit
convenient, it often better to use a utility function u : A — R, since only n real numbers

{uy,uz,...,u, } need to be monitored.

Definition 3.5.1 Urility function u : A — R is consistent with the preference relationship of
(A, =) ifforalla,b € A: a < biffu(a) <u(b).

Using the previous knowledge. we can now clearly identify a rational agent:

Definition 3.5.2 A rational agent as an agent faced with problem (A, <) maximizes the
utility function by selecting o™ € A. This is better expressed as for each a € A, we have

a=a").
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3.5.1 Games of chance involving risk

Games of chance involving risk are resolved based on outcome probabilities. This gives
rise to the notions of utility theory and expected utility value.

Utility theory guides the rational agent according to valuable outcomes instead of ob-

jective outcomes.

Let U(c) be the expected utility value of a choice ¢, for a continuous distribution func-

tion:
U(e) = XL piui

where u; 1s called Von Neumann-Morgenstern utility function [45] and represents the player’s

preferences among her expected values, and p; is the probability of choice i.

3.5.2 Game of chance involving uncertainty

Games of chance involving uncertainty are unpredictable to the rational agent. Three prin-
ciples have been developed for such games: the maximax principle, the maximin principle

and the minimax principle.

1. Maximax Principle: the rational agent will make a decision based on the greatest

profit while disregarding the risks involved.

2. Maximin Principle (Wald,1945): the rational agent’s decision will avoid the worst

scenario that has the minimum utility.

3. Minimax Principle (Savage, 1954): combines the previous two principles to dictate
that the rational agent avoids the largest regret. Regrets are defined as the possible

alternatives that could have been chosen if unpredictability were not present.

3.6 Games of strategy

Also considered as the normal form games, games of strategy consist of the following

elements:

1. A player list D = {1,2,...,]}. We mostly consider games with just two players. As

an example consider two people A and B, who want to meet.
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2. Each player i can choose actions from a strategy set S;. To continue our example,
each of the players has the option to go to Spot C or D . So the strategy sets of both
players are §; = S, = {C,D}.

3. The outcome of the game 1s defined by the “strategy profile’ which consists of all
strategies chosen by the individual players. For example, in our game there are four
possible outcomes - both players meet at C, (C.C), they mis-coordinate, (C, D) and
(D,C), or they meet at D (D.D). Mathematically, the set of strategy profiles (or

outcomes of the game) is defined as
S= S] X Sz (1)

In our case, the order of S is 4. If player 1 can take m possible actions, and player 2

can take n possible actions, the set of profiles has order m x n.

4. Players have preferences over the outcomes of the play. You should realize that
players can not have preferences over the actions. In a game the payoff depends on
the set of actions. In the example above, players just want to be able to meet at the
same spot. They do not care if they meet at C or at D. As long as the players choose
the same spot, they are fine. If one chooses one spot and the other player chooses the
other spot, then they are unhappy. So what matters to players are the outcomes, not
the actions (of course their actions influence the outcome - but for each action there
might be many possible outcomes - in our example there are two possible outcomes
per action). Recall, that we can represent preferences over outcomes through a utility

function. Mathematically, preferences over outcomes are defined as:
u:S—R (2)

In our example, u; = 1 if both agents choose the same action, and 0 otherwise.

All this information can be conveniently expressed in a game matrix as shown in Figure

3.2. A more formal definition of a game is given below:
Definition 3.6.1 A strategic game G consists of [43]:
I. A finite set of agents D = {1,2,....1}.

2. Strategy sets 81,57,...,5;.
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E (1.1 0.0)

C 0,0) (1,hH)

L 1

Figure 3.2: Example of a general two player game

3. Payoff functions u; - (S1 x Sy x ... x 8§;) = R.

We will write S =51 x §, X ... x Sy and we call s € § a strategy profile where s = (51,52, ...,57).
We present the strategy choices of all players except player i with s_; whichis (s1,52,...,5i—1,

Sit1;--,51)-

3.7 'Two person cooperative games

In cooperative two-person games, both players have common goals and therefore there is
no conflict. These games are interesting because of their decision making process. The
two rational agents can be considered as a single rational agent since they cannot be dis-
tinguished by their desired outcomes. Such games can be divided into two classes: purely

cooperative games and minimal social situation games [26].

3.7.1 Purely cooperative games

In purely cooperative games, the interests of both players coincide perfectly. The ratio-
nal agents agree on the preference order of the outcomes. Each rational agent formulates
strategies based on the other’s strategies, which can be obtained either by direct informa-
tion or by extrapolation. The games can be ones of either perfect or imperfect information.
In games of complete information, all players know the rules of the other game and the
preferences of the other players. On the other hand, the condition of complete information
does not apply in games of incomplete information. In these types of games, no unique best

combination of strategies exists and a solution must be sought through informal analysis.
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3.7.2 Minimal social situation games

Minimal social situation games imply that the rational agents are left ignorant of all in-
formation other than the available choices. It is important to note that simultaneous and
sequential decisions differ in minimal social situation games as sequential decisions never
lead to a mutually beneficial outcome.

The authors in [29], proposed a principle of rational choice for minimal social games
known as the “win-stay, lose-change” principle. This principle states that, if a player makes
a choice which produces a positive pay-off, the player will repeat that choice. On the other
hand, if a player makes a choice that produces a negative pay-off, the player will change
strategy. Thus, the strategies that produce positive pay-offs are reinforced and those that

produce negative pay-offs are not.

3.8 Zero-Sum Games

The two rational agent zero-sum game [43] is strictly competitive as the pay-offs sum up to
either zero or a constant. An important aspect of this type of game is that there will always
be exactly one winner and one loser.

‘Game theory is particularly well-suited to the analysis of zero-sum games and appli-
cation to everyday life. Actually a “constant-sum-game” would be a better title, since in
some circumstances, the pay-offs do not add up to zero because the game is unfair. How-
ever they do sum to a constant, which is the prevalent feature of these strictly competitive
games. The term zero-sum is used even in these instances, for the sake of simplicity.

A two person zero-sum game is defined as a 3-tuple (X,Y, M), where X and Y are sets
of possible strategies for the two players and M is real valued utility function defined on the
Cartesian product X x Y. The set X is called the set of admissible pure strategies of player 1
and set Y is called the set of admissible pure strategies of player 2. The function M is called
the pay-off function of player 1. Player 1 chooses a strategy x of the set X while player 2
chooses a strategy y of the set Y. The choices are done simultaneously and independently
and the chosen x and y determine the pay-off M(x,y) to player 1 and —M(x,y) to player 2.
The data of the game (X,Y, M) are known to both players.

A pair (x*,y*) of strategies is called an equilibrium (a saddle-point) if the following

conditions hold:
M(x,y") < M(x*,y") <M(x*)y) forany (x,y)€X xY.
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Figure 3.3: Example of matrix game

The pair (x*,y*) is called an equilibrium, the strategies x* and y* of the players are
called optimal, and M(x*,y*) is called the value of the game. It is clear that if player 1
plays x* then she can win at least M(x*,y*) no matter what player 2 plays. Likewise if
player 2 plays y* then she can win at most M(x*,y*) no matter what player 1 plays.

The special case in which X and Y are finite 1s called a finite game or a matrix game. In
this case, the function M for the game (X,Y,M) is described as a pay-off matrix A whose
rows are labeled by the elements of X (usually dented as 1,...,n) and the columns by the
elements of Y (denoted as 1,..../m). An example of matrix game 1s illustrated in Figure 3.3.
The game can be described as follows. Two players choose tail or head. If both of them
choose the same side of the coin then player two pays one dollar to player 1. Otherwise
player 1 pays one dollar to player 2. Not every game has a saddle point. In fact the above
game has none.

In view of the non-existence of the value for matrix games, it is suggested that a player
can sometimes do better by choosing her strategy randomly. For example if a player
chooses head and tail with equal probabilities, then her expected pay-offs will be zero,
independently of the behavior of the other player. This motivates the following definition.

The mixed extension of a matrix game (X,Y,M) is the game (X,Y,M) where:

n

Y:{xERn:xiZO foriE[],n],Zx,-: 1}

=1

n
Y={yeR":y;>0 foric[lm,Y yi=1}

=1

and
n

m
M(x,y) = Z Z Apjxi,yj

i=1j=1

So, the strategy set of players in the mixed extension is the set of probability distributions on
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S -1,1) 1,-1) (0,0)

Figure 3.4: Rock-Paper-Scissors game

the strategy set of the original game. The elements of these sets are called mixed strategies.
The pay-off in the mixed extension is just the expected pay-off of the player. It is clear that

the extreme points of set X or Y can be identified with the strategy sets X, Y.

3.8.1 Nash equilibrium

Definition 3.8.1 Sirategy profile s* is defined as a pure strategy Nash equilibrium of G if
and only if:
llj(S?,Si,-) = M,’(S,',Sii) (3)

Definition 3.8.2 A pure strategy Nash equilibrium is deﬁned as strict if the following in-
equality is true:

u,-(s;‘,sii) > u,-(si,sti) )

3.8.2 The advantage of mixed strategies

Randomizing and playing mixed strategies prevents the enemy’s extrapolation of a rational
agent’s strategic pattern and thus favoring victory.

Consider the following Rock-Paper-Scissors (RPS) game as shown in Figure 3.4. Note
that RPS is a zero-sum game. This game has no pure-strategy Nash equilibrium. Whatever
pure strategy player 1 chooses, player 2 can beat him. A natural solution for player 1 might
be to randomize amongst her strategies.

Another example of a game without pure-strategy NE is matching pennies, see Figure
3.5. As in RPS, the opponent can exploit her knowledge of the other player’s action, fearing
what might the opponent do. One solution is to randomize and play a mixed strategy. Each

player could flip a coin and play H with probability % and T with probability %
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Figure 3.5: Matching penneis

Note that each player cannot be taken advantage of.

Definition 3.8.3 Ler G be a game with strategy spaces 51,3, ..,S1 . A mixed strategy o; for
player i is a probability distribution on S, i.e., for S; finite a mixed strategy is a function
G;:S; — RY such that ¥, 0i(si)) = 1.
Several notations are commonly used for describing mixed strategies.

1. Function (measure): 6;(H) = % and 61(T) = ’]2‘
2. Vector: If the pure strategies are s;, , .., Siy write (5(s;,),..,6(siy)), €8 (3, 5)-

1 1
3. m+ 1T

3.8.3 Mixed strategy Nash equilibrium (MSNE)

Define Z; (also A(S;)) for the set of probability distributions on S;.
Define X for £; x ... x X; . A mixed strategy profile o € L is an I-tuple (G, ..., 67) with
G € X;.

Definition 3.8.4 A mixed strategy NE of G is a mixed profile 6* € X such that
Ll,'(G?,G*_[) 2 “i(Gi?G*—i) (%)

foralliand all 6; € X;.

3.8.4 Testing for MSNE

The defimition of MSNE makes it cumbersome to check that a mixed profile is a NE. The

next result shows that 1t 1s sufficient to check against pure strategy alternatives.

39



Proposition 3.8.1 &} is a Nash equilibrium if and only if
ui(o7,0%;) > ui(si,0%;) (6)
forall i and s; € S;.

Example 3.8.1 The strategy profile 6] = 05 = %H + %T is a NE of Matching Pennies.

Because of the symmetry it is sufficient to check that player 1 would not deviate. If he
plays her mixed strategy he gets expected payoff 0. Playing her two pure strategies gives
him payoff 0 as well. Therefore, there is no incentive to deviate.

Note: Mixed strategies can help us to find MSNE when no pure strategy NE exists.

3.9 Two-person mixed-motive games of strategy

Two-person mixed-motive games [30] can be considered as the middle ground between
cooperative and zero-sum games as the sum of the pay-offs vary dependently on the strate-
gies. In a mixed-motive game, the sum of the pay-offs differs from strategy to strategy, so
they are sometimes called variable-sum games, although the term is not strictly accurate
since cooperative games are also variable. They rarely produce pure solutions, but they are
interesting for the real-time situations they represent and for providing an insight into the

nature of conflict resolution.

3.9.1 Mixed-motive games and the Nash equilibrium

Represented in an ordinal fashion, mixed-motive games display the two rational agents’

pay-offs as coordinate pairs and are defined as the following:

1. The first rational agent has a finite set of strategies: Sy = {r1,r2,...,rm} Where |S;| =

m

2. The second rational agent has a finite set of strategies: Sy = {¢j,¢2,...,¢m} Where
1S2]=n

3. The rational agents pay-offs are the utility functions u; and u. The outcome of r and

c defines the pay-off for the first rational agent as u;(r,¢) € S} x S.
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The domination aspect of strategy r; over another strategy r; for the first rational agent
is determined by the following relationship: u;(r;,¢) > uy(rj,c), Ve € 3

The dominance is considered strict if: uy(ri,c) > uy(rj,c), Vc € S The dominance is
considered weak if: uy(ri,c) > ui(rj,c), Ve € $2

A pair of strategies (ry,cy) € S3 X S7 is considered as an Nash equilibrium if the fol-

lowing holds true:

Lo (ry,en) > uy(ren), Yre Sz

2. ux(ry,en) > wp(rn,c), Ye €Sy

Strategic pairs can be determined if a unique saddle-point exists. In the sitnation where
none exist, mixed strategies are used and in the situation where muitiple saddle-points exist,

we classify each equilibrium point according to a set of archetypes.

Archetypel-leadership games

In such games, no dominant strategies can give the most profitable outcome to each rational
agents. This fact leads to the conclusion that the minimax principle is inapplicable as regret
is generated when the worst-case pay-off is chosen and the opponent’s choice 1s known.
The leadership concept is understood as the outcome has two equilibrium points in relation
to the leader. The choice of the first rational agent will inadvertently affect the optimaf
choice of the second rational agent to be the opposite choice. Extrapolation is a key factor
as the game has no constant value therefore open communication is favored for all rational
agents to deviate from the minimax principle. Figure 3.6 shows an example of leadership
games. It can be seen from the matrix that there are no dominant or inadmissible strategies.
The minimax principle fails too because both candidates should choose their first strategy
so as to avoid the worst pay-off (1,1). Yet, if they do this, both candidates regret it once the
other’s choice becomes known. Hence, the minimax strategies are not in equilibrium and
the solution (2,2) is not an equilibrium point. It is unstable and both players are tempted to
deviate from it, although it should be pointed out that the worst case scenario is when both
dewviate from 1t (1,1).

Yet, there are two equilibrium points. If player 1 chooses the second column, player2
can do no better than choosing first column; and if player 1 chooses the second column,
player2 can do no better than choosing first column. So, there are two equilibrium points,
those with pay-offs (4,3) and (3,4).
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(2,2) 3.4

4,3) (1,1)

Figure 3.6: An example of leadership games

Archetype 2- heroic games

Same as the leadership games but the choice of the rational agent is made to be convincing

as it displays deeply unselfish motives by benefiting the opponent more.

Archetype 3- exploitation games

Similar to the previous archetypes, the rational agent deviating from the minimax principle
stands to be the sole benefactor in such decisions and embarks both rational agents towards

disaster if the choice is incorrect.

Archetype 4- martyrdom games

The mutual benefiting intent causes both rational agents to deviate from the minimax prin-
ciple but a defecting rational agent will guarantee success. The most famous example here
is the prisoner’s dilemma game, as shown in Figure 3.7, so-called in 1950 by A. W. Tucker.
It is the most famous and most analyzed game in game theory and the example below is a
variation on that well-known theme. This game is a genuine paradox. The minimax strate-
gies intersect at (2,2). Unlike the other three prototype games above, this minimax solution
does form an equilibrium point. It can be seen that for both players the second strategy
dominates.

However, this deminant solution is worse than the strategy (3,3). It appears that there
1s a conflict between individual self-interest and collective self-interest. Furthermore, the
Tatter strategy where both players optimize their collective pay-offs, (3.3), is unstable itself
since each player is tempted to deviate from it.

Games such as this are called martyrdom games because if both players deviate from
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(3.3) (1,4)

(4,1) (2,2)

Figure 3.7: An example of martyrdom games

the minimax strategy, they are doing so to benefit others as much as self. And yet, the

martyr who defects from this mutuality of martyrdom will always win.

3.10 Multi-person games

With more than two rational agents, multi-person games can be greatly affected by the
formation of coalitions between rational agents. In the event of coinciding interests in
coalitions, the game can be seen as a two-person cooperative game but in case of zero-sum
multi-person games saddle points are determined.

Non-cooperative multi-person games and a more realistic situation such as partially

cooperative and mixed-motive game are discussed in detail in the following:

3.10.1 Non-cooperative multi-person games

In non-cooperative multi-person games [30], coalition formation is not an option as com-
munication between rational agents can be unwise or even impossible depending on the
situation.

Finite non-cooperative multi-person games were proved by Nash in 1951 to containe
minimally one Nash saddle-point in pure or mixed strategies. These points represent the
outcomes that produces no regret to any rational agent involved and are frequently non-
equivalent (different pay-offs) and non-interchangeable (unique to a particular rational

agent.
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3.10.2 Mixed-motive multi-person games

A mixed motive multi-person game [30] with n rational agents can be described as follows:

1. Each rational agent i contains a finite set of strategies S;, Vi € {1,2,...,n}

2. Each rational agent i contains a pay-off utility function i#; € Sy x $2...x §, — R

Each rational agent i picks at the same time a strategy s; € S; and produces the pay-
off u;. Each pay-off is based on all n strategies therefore strategies Sy, 52, ..5, and pay-off
functions uy,uy, ..., u, are required to be understood beforehand.

A Nash saddle-point for mixed-motive multi-person games is defined as the set of
strategies {sy1,5n2,.--Snn } Where

Ui(SN1, SN2, ---SNn ) = Ui(S1.:82,...5,), Vsi € S;

In this situation, Nash equilibrium strategy is best suited for all rational agents if all
rational agents follow the same type of strategy and that strategies are made public.

Nash saddle-points have the solution sy, sn2,...5n, as:

%(SNI JSN25---SNn) = 0

and du;/ds; = 0 contains only a single solution, then there exist a unique Nash saddle-
point. Also, each sy; will be the only stationary point of the function u; and

T <0, i

will indicate a Jocal maximum.

3.11 Some classical examples

3.11.1 Matching Pennies

Zero-sum games are true games of conflict. Any gain on one side comes at the expense
of the opponents. Think of dividing up a pie. The size of the pie doesn’t change - it’s all
about redistribution of the pieces between the players (tax policy is a good example). The
simplest zero sum game is matching pennies, Figure 3.8. This 1s a two player game where
player 1 get a Dollar from player 2 if both choose the same action, and otherwise loses a
Dollar.

3.11.2 Battle of the Sexes

This game is interesting because it is a coordination game with some elements of conflict.

The idea is that a couple want to spend the evening together. The wife wants to go to the
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Figure 3.8: Matching pennies
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Figure 3.9: Battle of sexes

Opera, while the husband wants to go to a football game. Each gets at least some utility
from going together to at least one of the venues, but each wants to go their favorite one

(the husband is player 1 - the column player), see Figure 3.9.

3.11.3 Chicken or Hawk versus Dove

This game is an anti-coordination game. The story is that two teenagers drive home on a
narrow road with their bikes, and in opposite directions. None of them wants to go out of
the way. Whoever ‘chickens’ out loses her pride, while the tough guy wins. But if both
stay tough, then they break their bones. If both go out of the way, none of the them is too

happy or unhappy. The game is shown in Figure 3.10.
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Figure 3.10: Chicken or hawk versus dove

3.12 Conclusion

We discussed game theory concepts to provide knowledge background for the next chapter
where we introduce a game theoretic approach for intrusion detection. Here, we presented
a complete taxonomy of different types of games, and we discussed each subclass in detail.
Moreover, we introduced the concept of mixed strategies and Nash equilibrivm. Mixed

strategies come in handy when there is no answer to a problem in fixed strategies. We use

these concepts in the next chapter.
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Chapter 4

A Game Theoretic Model for Detecting
Network Intrusions under Different

Scenarios

4.1 Introduction

Security of computer and network systems is becoming increasingly important as more and
more sensitive information is being stored, transmitted, and manipulated online {31]. Two
key areas of concern in system security are intrusion detection and intrusion prevention
which have been extensively investigated in the research community over the past decade.
Currently, Intrusion Detection Systems (IDSs) [54] have become a critical technology for
protecting and defending networks and computer systems against malicious attacks. Net-
work intrusion takes many forms including denial of service attacks (DoS) [50], viruses
introduced into the networks, etc. Typically, in an intrusion problem, the intruder attempts
to gain access to a particular file server or web site in the network. A stylized intrusion
problem is where an intruder attempts to send a malicious packet to a particular node in the
network and the network then attempts to detect this intrusion [32].

Most of the earlier work on intrusion detection relies on ad-hoc schemes and experi-
mental work [6]. Therefore, in order to address issues like attack modeling, analysis of
detected threats, and decision on response actions, there is a need for a quantitative deci-
sion and control framework. Currently, various tools have been developed within the game
theory discipline to address problems where multiple players with different objectives com-

pete and interact with each other on the same system. These tools are successfully used
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in many disciplines including economics, political science, and control. Now, given the
continuous struggle between attackers who aim to penetrate the deployed systems and se-
curity administrators trying to protect these systems, these interactions can be modeled as a
non-cooperative game [43], where the players are the intruders and the intrusion detection
system. Therefore, game theory is a strong candidate to provide the much-needed math-
ematical framework for analysis, modeling, decision, and control pfocess for information
security and intrusion detection [7]. As a result, game theory has been lately proposed by
several studies for a theoretical analysis of IDS [3,6,7,32,40].

Recently, the authors of [32] have studied the problem of mntrusion detection through
packet sampling and formulated the problem using game theory. They considered an attack
wherein the intruder uses only one packet to carry out her task. However, a well trained
intruder may choose to split her attack over multiple packets each possibly traversing a
different route. To the best of our knowledge, none of the previous studies have considered

this more practical problem. Our contributions in this chapter are the following:

1. To build a game theoretic framework to model network intrusions through multiple
packets. Detection is accomplished by sampling a portion of the packets transiting

selected network links while not exceeding the budget constraint.

2. To investigate the case where we have a group of cooperative intruders. The intruders
initiate the attack by sending a series of malicious packets from different nodes. We
build a game theoretic model in order to detect these network intrusions by sampling
a subset of the transmitted packets over selected links. To the best of our knowledge,
there has not been any study for the case where the attack is distributed over multiple

intruders using game theory.

Our work aims at developing a network packet sampling policy to effectively reduce the
success chances of an intruder by finding the value of the game using a min-max strategy
{43]. Non-cooperative game theory will be used to formally express our problems, where
the players are: (1) the cooperative intruders or a smart intruder (depends on which scenario
we are solving) and (2) the intrusion detection system. This game theoretic model will
guide the IDS to have an optimal sampling strategy in order to detect the malicious packets. '
The strategy for each intruder is the probability of choosing each possible path to send its
malicious packet to the victim node. Consequently, the optimal strategy for the IDS is to
assign the sampling rates to each link to maximize the probability of detection while not

exceeding the total predetermined budget.
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The rest of this chapter is organized as follows. Section 4.2 overviews the related work.
In Section 4.3, we consider the first scenario where a malicious node distributes the attack
over multiple packets. We present the problem statement and then illustrate the assump-
tions. Next, we introduce the game and discuss the constraints and objective of the game.
Sections 4.4 and 4.5 present the game formulation and solution respectively. Furthermore, a
case study is done to show how the game formulation works in a practical network. In Sec-
tion 4.6, we investigate the case where at “least half” of the malicious packets are needed
to detect the attack. Sections 4.7 and 4.8 present the second scenario where a distributed
attack is launched via cooperative malicious nodes. First, a game theoretic framework is
built and then the solution of the game is introduced providing strategies for both the 1DS
and the intruders. A case study is presented as well. Section 4.9 discusses the game results

through simulations, which is followed by the concluding remarks of Section 4.10.

4.2 Related Work

In Alpcan and Basar [7], the authors presented a game-theoretic analysis of intrusion detec-
tion in access control systems. In order to establish a quantitative mathematical framework,
they modeled the interaction between the attacker and the IDS as both finite and continuous-
kernel non-cooperative security games. They modeled the imperfect flow of information
from the attacker to the IDS through a virtual sensor network based on software agents. The
interaction between the attacker and the IDS was formulated as a non-cooperative non-zero
sum game with the virtual sensor network as a third fictitious player. Existence of a unique
Nash equilibrium and best-response strategies for players under spectific cost functions was
also investigated. Then, the authors extended the model to take the dynamic characteristics
of the sensor network [5] into account. They modeled this through analyzing the interac-
tion between the players over a time period using repeated games. Finally, they discussed
properties of the resulting dynamic system and repeated games both analytically and nu-
merically where through these numerical studies, some basic strategies for the IDS and the
attacker were proposed.

In [6], the authors aimed at demonstrating the suitability of game theory for develop-
ment of various decision, analysis, and control algorithms in intrusion detection. They
accomplished this by addressing some of the basic network security tradeoffs, and giv-

ing illustrative examples in different platforms. Therefore, they proposed two different

49



schemes, based on game theoretic techniques. They considered a generic model of a dis-
tributed IDS with a network of sensors. First, the authors devised a flexible scheme using
intrusion warning levels with the IDS being able to operate in different modes at each secu-
rity level, and to switch automatically between the different levels. To deal with this issue
they used cooperative game theory and Shapely value [17]. The security warning system is
simple and easy to implement, and it has given system administrators an intuitive overview
of the security situation in the network. Furthermore, the authors modeled the interaction
between the attacker and the IDS as a two-person, non-zero sum, single act, finite game
with dynamic information. They proposed two specific sub-games and Nash equilibrium
solutions in closed forms were obtamned for these specific sub-games. Nash equilibrium
solutions were denved analytically and analyzed for the defined security game in the two
special cases.

In [40], Liu et al. proposed a game theoretic approach for estimating the attacker’s
intent, objective, and strategies (AIOS). They developed a game theoretic A1OS formaliza-
tion which could capture the inherent inter-dependency between AIOS and defender objec-
tives and strategies in a way that AIOS could be automatically inferred. They presented an
incentive-based conceptual framework for AIOS modeling. Then, the authors developed
a game theoretic formalization of the conceptual framework. They used the concept of
utilities since it was capable of integrating incentives and costs in such a way that attacker
objectives could be practically modeled. Finally, they used a specific case study to show
how AIOS could be inferred in real world attack-defense scenarios.

In [3], Agah et al. pomted out the mmsufficiency of resources in sensor networks as
the motivation of their study. They proposed a game theoretic framework for defending
nodes in a sensor network since they believed it would consume fewer resources. Their
main concern was finding the most vulnerable node in a sensor network and protecting it.
They applied three different schemes for defense; game theory, Markov Decision Process
(MDP) and an intuitive metric (node’s traffic). In the first scheme they formulated the
attack-defense problem as a two-player, nonzero-sum, non-cooperative game between an
attacker and a sensor network. They showed that this game achieved Nash equilibrium and
thus leading to a defense strategy for the network. They considered many risk factors like
reliability of a sensor node, differént types of attacks, and past behavior of the attacker.
Simulation results showed that vsing a game theoretic framework significantly improved
the chance of intrusion detection.

The work of Kodialam and Lakshman [32] has inspired and motivated our study. They
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have considered the problem of detecting intruding packets in a network by means of net-
work packet sampling. Since packet sampling and examination in real-time could be expen-
sive, the network operator had to devise an effective sampling scheme to detect intruding
packets injected into the network by an adversary. They take into consideration the sce-
nario where the adversary has significant information about the network and can either
pick paths to minimize chances of detection or could pick suitable network ingress-point
if only shortest path routing was allowed. They have formulated the problem in a game-
theoretic framework and the solution to this problem was a max-flow problem from which
the stable operating points were obtained. However, their approach is not practical when
a practiced intruder or cooperative intruders divide the attack over multiple packets and
transmits them through possibly different routes. We particularly take into account these
special problems, and use the same network model as in [32]. We then build our game-
theoretic models and formulate the sampling problem. We solve the games using min-max
approach 1o find the optimal sampling strategy for the IDS in order to detect these intrusion

packets that are launched either by a smart intruder or by cooperative intruders.

4.3 Problem Statement

The problem set-up is outlined in four steps. First, we discuss the assumptions in the net-
work. Then, we introduce the game defining the adversaries 1n a game theoretic framework.
Afterward, we describe the objective of the game that is played between the adversaries and

finally we introduce strategies for the two players.

4.3.1 Network Model and Assumptions

The network is modeled as a directed graph, G = (N,E) where N is the set of nodes and E
is the set of unidirectional links. It is also assumed that there are k nodes and / links in the
network. The capacity of link e € E is denoted by ¢, and the amount of traffic flowing on
link e is represented by f,. Given two nodes u and v in the network. let p!, represent the set
of paths from u to v in G. We present the maximum flow between u and v with MF)(c),
where c is the capacity vector. Corresponding to the maximum flow between nodes u and
v, there 1s a minimum cut [49] consisting of a set of links in the network. The set of links
in this minimum cut will be represented by Mincut). We also introduce the maximum flow
among all links in all paths in p}, by max(f) = Max{f,|Ve € P.YP € p}}. In the first

scenario, a malicious user can split an attack over n packets each containing a fragment
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of the attack. Here, we call these packets a-fragments. We have a distnibuted intrusion
detection system that is detecting attacks over multiple packets and the intrusion is being
detected if a fraction of the a-fragments 1s being sampled. The IDS can detect the intrusion
if m a-fragments are being detected where m < n. For the second scenario, we introduce Q2
,be the set of cooperating intruders, each sending a packet to the target node ¢, in order to
initiate the attack, where |Q] is the number of intruders. Furthermore, we introduce s, to
b the sampling rate on link e. It is obvious that s, < f,, i.e., the sampling rate on a link is
less or equal than the actual flow on the very link. Knowing that in practical networks the

sampling rate is an integer value, we state that s, < f, — 1.

4.3.2 Introducing the Games

In the first scenario, we assume that the game 1s played on an infrastructure-based network
between two players: The IDS and the intruder. The objective of the intruder is to inject n
a-fragments from some attacking node a € N with the intention of attacking a target node
t € N. Anintrusion is successful when at least m a-fragments out of the n a-fragments reach
the desired target node, 1, without detection. In order to detect and prevent the intrusion, the
IDS is allowed to sample packets in the network. Without loss of generality, it is assumed
that sampling takes place on the links in the network. The game is pictorially illustrated in
. Figure 4.1-a. In the second scenario, the game is played on an infrastructure-based network
between the IDS and the cooperating intruders. Assuming the set of cooperative intruders
as one player, we model the game as a zero-sum game: the IDS and the intruders. The
objective of each intruder x € Q) 1s to send an a-fragment to the target node 7. An intrusion
is successful when at least m a-fragments out of the |Q| a-fragments reach the desired
target node ¢ without detection. In order to detect the intrusion, the IDS samples packets
n the network via its agents. Furthermore, the agents sample the traffic on each link in the

network as shown in Figure 4.1-b.

4.3.3 Game objectives and constraints

Sampling all the packets flowing on a link and examining these packets can be fairly expen-
sive to perform in real time. Therefore, we assume that the IDS has a sampling budget of
B; packets per second over the entire network. This sampling effort can be distributed ar-
bitrarily over the links in the network. Here, we assume a distributed agent based IDS [22].

The IDS samples the packets on each link via the agents while not exceeding the sampling
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budget, B;. The sampling bound can be viewed as the maximum rate at which the intrusion
detection system can process packets in real time. If a link e, with traffic f, flowing on it,
is sampled at rate s,, then the probability of sampling a malicious fragment on this link 1s
given by p. = s,/ f.. Therefore, we have the sampling constraint } g s, < B;. The game
theoretic problem that we are going to discuss in the next sections, is formulated in terms
of p.. We assume that all the players have complete information about the topology of the

network and all the link flows in the network.

4.3.4 Strategies for the two players

In the case of the intruder, in the two scenarios, a pure strategy would be to pick a path
P € p’ for the malicious packet to traverse from x to ¢. The intruder, in our case, can use a
mixed strategy. In the case of a mixed strategy, the intruder has a probability vector g, =
(q(P1,),-.-,q(Py,)) over the set of paths in pi = {Py , P2, ..., P } such that ¥ pc y g(P) = 1.
Moreover, let Vi = {q : Lpe q(P) = 1} represent the set of feasible probability allocations
over the set of paths between x and 7. The intruder, x, then picks a path P € p', with proba-
bility g,(P) for each malicious packet. The strategy for the IDS is to choose the sampling
rate s, on link e such that Y . s, < B;. We also introduce U = {p : ¥ ,cg fepe < Bs} to
represent the set of detection probability vectors p = (pe,, ..., Pe, ) that satisfy the sampling
budget constraint. The strategy for the IDS is to pick a set of detection probabilities at the
links which belongs to the set U.

4.4 Game Formulation: Single Intruder with Multiple Pack-

ets

Having the intruder and the IDS each chosen their strategies, (i.e., their probability distri-
butions, (1) g over the set of paths in p,, and (2) p a set of detection probabilities at the
links for the intruder and IDS respectively). The payoff for both the IDS and the intruder
depends on the probability of the intrusion being detected as it goes from a to t. The proba-
bility of sampling an a-fragment traversing from node a to node 7 is the sum of proi)abi]ity
of taking each path times the probability of sampling the a-fragment on that particular path

over all possible routes from a to t. Denote o to be this probability then we have:
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a= ) gP)1- [0 -p) (7

Pep!, ecP

Therefore, the probability of sampling exactly m a-fragments is,
am % (1 . a))l*"l‘ (8)

Notice that the IDS will detect the intrusion if at least m a-fragments are sampled. Hence,

the IDS will detect the intrusion with probability,

n

Y o x(1—a)y %
i=m
Accordingly, the 1IDS will choose a strategy that maximizes the detection probability:
S n—i
r;}ea&(i;na x (=)', (10)

where,

U= {P: Zfepe SBS}'

eckE
On the other hand, the objective of the intruder is to choose a distribution g and number
of fragments n that minimize this maximum value. In other words, the objective of the

intruder is:
n

min max ¥ o x (1—o)" . 11
neN.geV pel Z’ ( ) ( )

=m

Using a similar argument, the objective of the IDS becomes:

n

max min ol x (1 —OL)"_i. (12)
peU neNgeV i=m

This is a classical two person zero-sum game. According to minmax theorem [52], there
exists an optimal solution to the intrusion detection game where the following noted min-

max result holds,

n
0= max min o x (1—a)"! 13
peU nEN,qEViZ ( ) ( )

=m

n
= min max y o' x(1—-o)"’,

neN.geV peU i=m
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and 0 is the value of the game.

4.5 Solution of the game: Single Intruder with Multiple
Packets

We first consider the case where the distributed 1DS needs all the a-fragments to detect the
intrusion, rn = n. Later, we investigate the game for a more general case, where at least
half of the a-fragments are needed to detect the intrusion. Replacing m with n and recalling

Equation 8, the problem will reduce to the following:

max min P11 - 1— n 14

pelU nGN}qEV PEZ’p’HQ( )[ el;IP( pe)] ( )
= min max Pyl — 1— n,

neN-,]anV peaU Pezp’GQ( I el;!)( pe)l

Before solving the game, we first prove the following lemma:

Lemma 1 The following inequality holds in our game,

er(l "Pe) Z ng(l — Pe)-

ecE ecE

Proof. Using the assumption in Section 3 (1) we have,

Je > se+ 1. (15)

Se

Given that p, = 7. we replace s, by p. f., which will give us the following:

Je> pefetl (16)

rephrasing (16), we will have,

fe(1—pe) > 1 an
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Notice that the sum of any number of variables each greater than one 1s less than or equal

to the product of them. Knowing that for all the links f,(1 — p,) > 1, the following holds,

er(]_pe)z Zfe(]'pe)- (]8)

ecE eeE

Consider the intruders problem:

min max | Z q(P)[1 — H(l —p)lI". (19)

neN,geV pelU Pepl, cP

For a fixed ¢ € V and n the inner maximization problem can be written as,

max | Y aP =[]0 -p)" (20)

Pepl, ecP

For a fixed n to maximize the expression above we have to maximize the following,

max[ Y g(P)[1—TT(1—po)ll, 1)

peV Pep!, ecP

which is equal to

max[ Y q(P)— ) [g(P)[](1=p.)]], (22)

PEU pept Pepl, ecP

or alternatively one can minimize the following,

min ) [¢(P)[] (1= pe))- (23)

Pep!, ecP

Note that for any positive function, f(x), in order to minimize that function, it is sufficient to
minimize In f(x). This follows from the strictly increasing characteristic of the logarithmic

function. Since we are solving for a fixed ¢, we can now minimize the following,

min Y [g(P)In [T (1—pe)l. (24)
el pep, ecP

which is equal to,
min Y [g(P) Y. In(1—pe)}. (25)
P pepr e€P
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It is evident that In(1 — p,) <0, since 0 < p, < 1. We introduce p/, to be —In(1 — p,) and

rewrite the minimization problem in terms of pl.

min ) 4(P) ) —pil (26)

Pepl, ecP

Or alternatively,

max Y’ [g(P) Y p.l. @7

peU Pepl, ecP

Similarly, we have to rewrite the constraints in terms of the new variable, p!. The sampling

constraint 1s,

Z fepe < BS (28)
eckE
Replacing p, with 1 — e Pe, we get,
Y f(1—eP)<B;, (29)
ecE
which is,
Y. fe=Bs< Y fee 7" (30)
ecE : ecE

Using Lemma 1, and substituting p, for p, we have,

[1fe P =Y fee P (31)

ecE ecE

Therefore, applying log to both sides and using equation (30), we get,

Y (fee 7)) > (Y fo—By). (32)
eckE ecE
Or,
Y Infe—} pe=(}, fo—By). (33)
ecE eck ecE

Therefore, the game simplifies to the following:

max ) [P, Y, a(P)], G4)

PEUCE  PephecP
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subject to the constraints,

Y o< Y Infe—n(Y fo—By),

ecE ecE ecE
/
Pe 2 0.

Associating a dual variable A [44], we obtain the following dual optimization problem with

the corresponding constraints:

min( ) Inf, —In(Y f.—B)A, (35)
ecE ecE
VecEL> Y q(P),
Pepl ecP
A>0,
Z q(P)=1.

Pepl,
Interpreting g(P) as a flow on path P, the constraint

Y, qa(P)<A,

Pepl,ecP

restricts the flow for all links to be at most A. Hence, A can be interpreted as the maximum

capacity of all links in pj,. The constraint ¥ pey g(P) = 1 enforces one unit flow to be sent

from node a to node ¢.
The objective of the game is therefore to determine the smallest A so that a flow of one

unit can be sent from node a to node t. This can be done as follows:

1. Assume that link e has capacity f. and determine the maximum flow from a to 1,

MFL(f), using these capacities.

2. Assume that link e has capacity f, and determine the maximum flow among all Iinks

in p!,, max. (f), using these capacities.

3. Scale the capacities by MF] (f)—] so that a flow of one unit can be sent from node a

to node ?.
4. A willbe MF!(f) ' max. (f).
5. The value of the game is 0 = (Y ,cpInfe — In(Yecg fe — BS))MF;(f)']max’a(f).
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Figure 4.2: Single intruder with multiple a-fragments

From the network flow duality [19], corresponding to the maximum flow value there is a
minimum cut. The IDS computes the maximum flow from a to ¢ using f, as the capacity
of the link e. Let e,e,...,e, denote the arcs in the corresponding minimum cut with
flows fi, f2, ..., f,. From duality [19] ¥.I_, fi = MF}(f). The IDS samples link ¢; at rate
Bs fMFEL(f)~ ! The intruder, on the other hand, has a fragmentation budget constraint, B;,
depending on the difficulty of launching the attack over multiple packets. He then chooses
the number of fragments, n, to be equal to B; and uses the standard flow decomposition
techniques to decompose the maximum flow into flow on paths P, P, ..., F; from node a to
node 7 with flows of mj,my, ..., m respectively (note that ):f:] m; = MF!(f)). The intruder
transmits each malicious fragment packet along the path P; with probability m;MF!(f)~1.

We now illustrate the results in Section 5 on the example shown in Figure 4.2. The
numbers next to the links are the flows on the hinks. Suppose that there is a sampling
budget B of 12 units for the IDS. Assume, also that the intruder’s fragmentation budget
constraint, B;, is equal to 3. The nodes, a = A and ¢ = [ are the attack and target nodes
respectively. The links (C,E), (B,D) and (B,G) belong to the minimum a — ¢ [49] cut
which are shown in thick lines. The minimum cut (and hence the maximum flow) has a
value of 29 units. The maximum flow on the links in p/,, max},(f), is 18.

The intruder will launch the attack over 3 fragments and the min-max strategy 1s the

following:.

For each fragment,
1. Transmit the malicious fragment along the path A — C — E — I with probability 11/29.

2. Transmit the malicious fragment along the path A — B — G — H — I with probability
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8/29.

3. Transmit the malicious fragment along the path A — B — D — F — ] with probability
7/29.

4. Transmit the malicious fragment along the path A — B — D — G — H — I with proba-
bility 2/29 .

5. Transmit the malicious fragment along the path A — B — D — E — F — ] with proba-
bility 1/29.

Correspondingly, the IDS’s strategy is the following:
1. Sample link (C,E) with the sampling rate s, = (12 x 11)/29.
2. Sample link (B, G) with the sampling rate s, = (12 x 8)/29.
3. Sample link (B, D) with the sampling rate s, = (12 x 10)/29.

Note that the total sampling budget is equal to 12.

4.6 Analyzing the game: A more practical case

We now analyze the game for a practical case, where the intrusion detection system needs
at least half of the a-fragments to detect the intrusion. Using Equation 4 from Section 4,

we introduce I to be this probability for i = 2m.

I= iaix(]Aa)"“i (36)

First, we show that I is concave, therefore having a local maximum on o € [0,1]. Then
we aim at maximizing the function I'. In order to prove that the function is concave, it is
sufficient to show that the second derivative of the function with respect to p. 1s always
negative.

We know that I is the following:

2m
=Y ox(1-o)’ (37)
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Therefore, the first derivative of the function is as follows:

; O
i— 1 2m—i_*
Bper Iz;nza —a) Spea (38)
2m . S
_ izzm(Qm — i)l x (1 a)2m i-1 6pe

Factorizing 8%(1 and o~} x (1 — o)?"~I=1 Equation (38) simplifies to the following:

6 o~ 2m—i-1
Spe 5pea,2,‘;, i—no) x (1 -o) (39)
where, 5
5.0~ L aP) T (-pe) (40)

Pepl, e'cPel#e

and ¢’ is any edge on path P except for e. Therefore, the second derivative of o with respect

. 2 . .
to p, 1S zero, 357;0& = (). Thus, the second derivative of I" reduces to the following:

Ez_r—iaxi%( - (X.)X(l’ 1 ( _a)Zm—i—] (41)
dpe ¢6pe Spei o

Applying & on the summation, we will have:
§2 2m _
—l"ﬁ(—(x)zx Z {—nxa~x (1 - o) ! 42)
+(i—not) x (i— 1) x o2 x (1 — o)~
—(i—na) x a7 x 2m—i—1)x (1 —o)>==2}
By factorizing o 2 x (1— )2 =2, Equation (42) simplifies to the following:

2m
8_ — (_a)Z Z {al 2« a)Zm—i—ZX (43)

=m

(i — na)? — no? + 20— i]}

For I' to be concave, %F has to be negative. Since ($Q)2 1s always positive, it 1s
€ €
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sufficient to show the function %,

2m
x=Y o Fx(1—0)" " x[(i—no)® — noi® + 20— i] (44)

i=m
is negative everywhere in the interval o € {0,1]. In order to prove that the function y is
negative, we have graphicly illustrated it in Figure 4.3. Proving that the function I has a
local maximum, we can solve the game. Now, we set the first derivative to zero in order to
maximize the probability of detection. Therefore, the IDS assigns a sampling probability,

Pe, to each link, e, such that the following holds:

Veepy, Y qP) [] (1—-pes)=0 (45)

Pepl, P #e
since per 0 < py < 1, therefore, (1 — p,r) is always positive, i.e., [Trepese (1 — per) 2 0.
Thus, we can see that Equation (45) is the summation of a number of positive terms. To set
this to zero, all the terms should be equal to zero. So, we should sample all the packets on
one link per path, for all the paths in p.,. To minimize the sampling, we take the set of links
to be sampled to be the minimum cut between nodes a and 1. Note that according to each
minimum cut, there exists a maximum flow with the same value. However, we know that
the sampling budget B; might be less than the maximum flow from a to 1, MF!(f). In this
case we distribute the sampling budget among the links in minimum cut, according to their

flows. Thus, the strategy of the IDS would be to sample each link, e, in the minimum cut
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with sampling rate, s, = BSM—F{P(T)'

4.7 Game Formulation: Cooperative Intruders

Here, we have a distributed agent based IDS. The IDS sample the packets on each link
via the agents while not exceeding the sampling budget, B;. The game is played on the
infrastructure network between the 1DS and the cooperating intruders. Assuming the set
of cooperative intruders as one player, we model the game as a zero-sum game: the IDS
and the intruders. The objective of each intruder x € € is to send a malicious packet to the
target node 7. An intrusion is successful when at least m malicious packets out of the |Q]
packets reach the desired target node ¢t without detection. In order to detect the intrusion,
the IDS samples packets in the network via its agents. Furthermore, the agents sample the
traffic on each hink in the network as presented in section 4.3.

The intruders and the intrusion detection system (IDS) each should choose their strate-
gies, which are the probability distributions: g, over the set of paths in p’, and p a set of
detection probabilities at the links for the intruders and the IDS respectively. Then, the
payoff for both the IDS and the intruders depends on the probability of the intrusion being
detected as it goes from the intruding nodes to the target node 1. For any node x € €, the
probability of sampling a packet traversing from node x to node ¢ is the sum of probabil-
ity of taking each path times the probability of sampling the packet on that particular path
over all possible routes from x to . We introduce 0 to be the probability of detecting the

intrusion, when intruder x is attacking node t, which is given by:

o= Y a(P[1-TT0-p) (46)

Pep, ecP

Next, we define the function @ to be the mean value of detecting the intrusion through

sampling: |
P=— ) 47
1 xg?z '

The main goal of the IDS is to maximize ®. In other words, the IDS aims at maximizing
the following:

1
max (P = —

mas(® = o X %) %)

YEQ
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where:

U:{pl ZfepeSBs}

e€E
On the other hand, the cooperative intruders aim at minimizing Equation (48). The intrud-
ers will fulfi] this objective by assigning probabilities for all possible routes to the target

node:

minmax(® = Oly) 49
geVy pel lQI(GX;'z N “49)

where:

Ve={q: } q(P)=

Pept

Using a similar argument, the objective of the IDS becomes:

max min(® = Oy 50
pel geVy ‘Ql Aé) (50)

This is a mixed strategy zero-sum game, for which the following min-max theorem holds:

1

e i @Z—-——— (X

B = max min( |Q|X€):§,Z x)

= minmax(® = o 51
min max( \Ql Lo 1)

where P 1s the value of the game.

4.8 Solution of the game: Cooperative Intruders

In this section, we propose our solution to the min-max problem formulated in section 4.7.

First, we consider the intruders’ problem:

(= 52
gél‘}}rgxeag [Q| \é}ax) (52)

For a fixed g the problem reduces to the following:

max(d = Oly) 53
pEU( ‘Q' XEZK’I ( )
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In order to maximize the previous equation, it is sufficient to maximize all the terms. There-

fore, the problem simplifies to the following:

max Oly 54)
pelU

We know that each node is sending one packet to the target node. Therefore, we can
divide the budget, By among the |Q} intruders. Thus, each intruder, x, will have the budget
constraint % or B,|Q|~'. Replacing o, using Equation (46) and rewriting Equation (54)

the problem can be written as follows:

max Y g(P)[1 - [J(1—=)] (55)

X
Tl Pep!, ecP

where,

Zn;:p€7

x€Q
Ue={n": ) fom; <B;QI™"}
ecE
Having the sampling constraint:
Y feme <BJQ™ (56)
ecE

Thus, using the same approach as in Section 5, the subgame reduces to the following:

min() Info—n(Y fo—BQ| )L (57)
{3 ecE
Subject to:
A> Y qgP)VxcoVecE (58)
Pepl.ecP
A>0 (59)
Y aP)=1 (60)
Pepl )

Next, we calculate the maximum flow from x to 1, MF!(f). Knowing that the maximum
flow is equal 1o the summation of the flows on all the paths from x to 7, we then normalize
the flows in the network (with respect to the MF*(f)). Therefore, the normalized flow on
each path can be interpreted as g(P) and constraint (58) holds. Furthermore, interpreting
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q(P) as the flow on path P suggests ¥ pecy: cpg(P) to be the normalized flow on link e.
Hence, in order to minimize 2, satisfying constraint (58), we introduce A to be the maxi-
mum flow among all the flows in p’; that is, A = max/(f). Therefore, the value of the game
is:

[Zlnfevln(Zfe—leQ‘_l)]lna.x{r(f) (61)

ecE ecE
The game would guide us to the following strategies satisfying the budget constraint. The

intruder x’s strategy is:
1. Calculate the maximum flow from x to 7 using f, as the capacity of the link e.

2. Use the standard flow decomposition techniques [4] to-decompose the maximum flow
into flows on paths Py, P>, ..., P, from node x to node ¢ with flows of my,my,...,my,

respectively, knowing that Zf":] m; = MF!(f) and |p%] = I,.
3. Transmit the malicious packet along the path P; with probability m;MF!(f )“].
Consequently, the IDS’s strategy is:
1. For each node x € € find the minimum cut.
2. Let Mincui!. denote the set of arcs in the corresponding minimum cut.

3. Sample link e at rate:

Y  BIQITMFEN(N) S (62)

xeQ ecMincut!,

Note that, ¥oe g Ve cenineus Bs|U ™ MFL(f) ™' fo = B, and therefore, satisfying the bud-
get constraint.

Now, we illustrate the game with an example as shown in Figure 4.4, where nodes A
and E are the cooperative intruders and node / is the target. In other words, Q = {A,E} and
|Q| = 2. The budget constraint, By, is 60. Therefore, B;|Q|~! = 30. The maximum flow
from A to I is 99 and the maximum flow from E to I is 54 as shown in Figure 4.4 in bold
links. Mincut, = {AB,DG,EG,EF} and Mincutl = {EG, EF}. Hence the IDS will sample

the links as follows:
1. AB with sampling rate 30*30/99 ~ 9.09
2. DG with sampling rate 30 % 15/99 ~ 4.54
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Figure 4.4: Cooperative multi-intruder attack

3. EG with sampling rate 30 39/99 + 30 %39/54 ~ 33.47
4. EF with sampling rate 30% 15/99+ 30 15/54 ~ 12.87

Note that the total sampling is 59.97 < 60. The intruders send the malicious packet as

follows:
1. Node A sends the malicious packet through path ABCT with probability 30/99.
2. Node A sends the malicious packet through path ADGI with probability 15/99.
3. Node A sends the malicious packet through path ADEGCI with probability 21/99.
4. Node A sends the malicious packet through path AEGC! with probability 18/99.
5. Node A sends the malicious packet through path AEF HI with probability 15/99.
6. Node F sends the malicious packet through path EGCI with probability 39/54.

7. Node E sends the malicious packet through path EF HI with probability 15/54.

4.9 Experimental Results

Testing and evaluation will be achieved by comparing our game theoretic framework re-
sults with two different approaches: random and uniform models. Random model is a
model where sampling is done on random links. While uniform model is achieved through

dividing the sampling effort equally over all the links. Note that, all the models must satisfy
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Figure 4.5: One intruder sending a-fragments

the sampling budget constraint. Moreover, simulation among all the models will be done
taking into consideration the same graph as shown in Figure 4.4.

First, we consider the scenarto where a single intruder transmits the a-fragments to a
target node in order to launch the attack. Detection is fulfilled if half of the a-fragments are
sampled. Here, we assume that node A is the attacker and node 7 is the target. Figure 4.5
shows the detection probability as a function of the budget, where the budget varies from
1 to 150 (packets/second). From the case study in Section (8), we know that the maximum
flow between these two nodes 1s 99. As it is shown in Figure 4.5, as soon as the budget
reaches the maximum flow, the probabihity of detection becomes 1, no matter how many
packets are being sent. This is because we are not sampling randomly or uniformly on all
the edges. Instead, we focus all the budget on the minimum cut edges, where every packet
transmitted from the attacker to the target has to traverse at least one of the links in the
minimum cut set. From the minimax theorem [49], we know that the summation of flows in
the minimum cut is equal to the maximum flow. Therefore, if the sampling budget is equal
to or greater than the maximum flow between the attacker and the target, we can sample
with a rate equal to the actual flow on each hink in the minimum cut. Thus, any packet
either normal or malicious would be sampled ensuring that the intrusion is being detected.
We can see that the game results are much better than the other two approaches. For very
small sampling budgets, all the three approaches have small detection probabilities. As the
budget increases, we can see that the detection probability increases, for all approaches.
The reason is that we sample with higher sampling rates on the links, and thus greater
sampling probabilities on each link. Therefore, the total probability of detection increases.

As shown in the figure, our game approach has a greater slope; this is due to the fact that
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the sampling 1s done on the critical links where any traffic has to be transmitted through
them (i.e., minimum cut). In other words, the budget is distributed over a set of cntical
hnks instead of all the links in the network, while all the traffic is still traversing through
these links. This results in better detection rate.

Figure 4.6, illustrates the results of another scenario, where an intruder A transmits
different numbers of a-fragments to a target node | having a constant sampling budget
equal to 60. The attacker transmits the a-fragments through different paths. Note that there
are 12 paths from A to [ that could be selected randomly by the intruder. Here, the detection
probability is demonstrated as a function of the number of a-fragments. As we can see the
detection probability for odd number of a-fragments is less than the even ones for two
comnsecutive numbers of a-fragments. This is due to the reason that the IDS needs at least
half of the a-fragments which is one more for the case of odd numbers. In case of larger
networks, this difference between odd and even number of packets would be neglected.
The results are illustrated in Figure 4.6. Using the same terminology as in the previous
scenario, our game theoretic framework presents better results than the other two models.

Finally, we illustrate the multi-intruder scenario, where m cooperating intruders dis-
tribute the attack over m a-fragments, and where each intruder sends one a-fragment to a
common target node. The attack is successful if at }east half of these a-fragments reach the
target node without being detected. The simulation results are shown in Figure 4.7. The
detection probability decreases as the number of intruders increases. This is becaunse the
IDS has to divide the budget over the number of intruders. When the number of intruders

is less than 60% of the total number of nodes in the network, focusing the samphing budget
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Figure 4.7: Multi-intruders sending one malicious packets each

on the union of the minimum cuts for each intruder and the target node, helps in increasing
the detection probability. In this case, the number of links in the union of minimum cuts
is still much less than the total number of hinks in the network. Therefore, we distribute
the total sampling budget over a smaller number of links and consequently the sampling
rate increases on each link leading to better results. As the number of intruders increases,
more and more links are added to the union of critical edges (union of minimum cut sets
for each intruder and the target node). Thus, the set of the links becomes comparable to the
total number of links. Here, the a-fragments are almost over all the links. In this case, the
sampling budget is divided by the number of attackers, which becomes a relatively small
number. The sampling rate on the other hand would be multiplied by this small sampling
budget and divided by the maximum flow. Thus, the sampling probability decreases. For
random and uniform strategy, the budget is independent of the number of attackers. In other
words, they continue to sample almost with the same rate for any number of attackers. This
shows why the uniform and random methods provide better results than the game approach
1n the case where the number of intruders is greater than 60% of the total number of nodes

in the network.
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4.10 Conclusions

We considered the problem of intrusion over mulitiple packets in a network by means of
network packet sampling. Given a total sampling budget, we developed a network packet
sampling strategy to effectively reduce the success chances of an intruder. We considered
two different scenarios where the adversary(s) has(have) considerable information about
the network and can pick paths to minimize chances of detection. In case of a single
intruder, we formulated the intrusion detection problem as a zero-sum two-player game
between the IDS and the attacker. First, we considered the case where the IDS needs all the
malicious fragments to detect the intrusion, and we have done a case study to gain more
insights about the solution of the game. Then, we analyzed the case where the IDS needs at
least half of the a-fragments to detect the intrusion. Furthermore, we considered the prob-
lem of multiple cooperating intruders. We considered the scenario where the attackers pick
paths to minimize chances of detection. We formulated the intrusion detection problem as
a zero-sum non-cooperative game between the IDS and the set of attackers. Moreover, we
solved the game to bring up strategies for both the IDS and the set of intruders. Finally, we

evaluated our game solutions via simulation.
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Chapter 5
Conclusion and Future Work

In this stody, we showed that intrusion detection systems are needed as a second line of
defense, since intrusion prevention tools can not be enough. The intrusion detection sys-
tems monitor the system for any sign of intrusive action and raise an alarm as soon as they
find a misuse pattern or anomaly. The system administrator then responds to that intru-
sion. Furthermore, we explained that there is a need for a quantitative decision and control
framework in order to address issues like attack modeling, analysis of detected threats, and
decision on response actions. We showed that game theory were a strong candidate to pro-
vide the much-needed mathematical framework for analysis, modeling, decision, and con-
tro} process for information security and intrusion detection. Given the continuous struggle
between attackers, who aim to penetrate the deployed systems and the 1DS trying to protect
these systems, we modeled these interactions as a non-cooperative game, where the players
were the intruders and the intrusion detection system. In order to provide the much needed
background, we studies intrusion detection systems and game theory in chapters two and
three respectfully.

We presented a complete taxonomy of intrusion detection systermns and we discussed
different techniques for intrusion detection. We also, discussed the state of the art of in-
trusion detection systems and the different approaches such as data mining techniques,
artificial intelligence, agent-based techniques, software engineering methods and the em-
bedded system approaches. Besides, we explained all the different approaches researchers
use for intrusion detection.

Additionally, we presented a survey of different kinds of games. We presented taxon-
omy of games with concrete examples of each in order to illustrate each kind of game. We

talked about zero sum games and Nash equilibrium in detail. Furthermore, we explained
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mixed strategies.

After providing the reader with necessary background about intrusion detection and
game theory, we proposed our game theoretic model for intrusion detection. We consid-
ered two scenarios, where in the first one a well informed intruder distributes her attack
over multiple packets to evade the intrusion detection system and in the second one a group
of cooperative attackers distribute the attack among themselves. We formulated both prob-
lems and using game theory we presented optimal sampling strategies to maximize the
probability of detection in each scenario. Finally we simulated our contributions and com-
pared them with two other sampling methods: random sampling and uniform sampling.
Our game theoretic framework showed better results in almost all cases.

In future, we are planning to extend our study for the case, where the intruder(s) and
the target can be any node in the network. We would formulate the game and provide
optimal sampling strategies. This could be more feasible by introducing a set of nodes
to be possible intruders via assigning reputation to each node depending on its previous
behavior. Furthermore, we would consider the problem of cooperation enforcement. We

believe that we can enforce cooperation by using game theory and mechanism design.
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