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ABSTRACT

Fault Recovery using Discrete Event Models

Anooshiravan Saboori

In this thesis, we study the synthesis of fault recovery procedures using discrete-event
models. It is assumed that the faults are permanent and that a diagnosis system is available
that detects and isolates the faults with a bounded delay. Thus, the combination of the plant
and the diagnosis system, as the system to be controlled, will have three modes: normal,
transient and recovery. Initially, the plant and thus the system to be controlled, are in the
normal mode. Once a fault occurs in the plant, the system (to be controlled) enters the
transient mode. After the fault is diagnosed by the diagnosis system, the system enters the
recovery mode.

We study the design of a nonblocking supervisor that enforces the specifications of the
system in all three modes. The solution is obtained by first transforming the problem to
an equivalent Robust Nonblocking Supervisory Control Problem undér Partial Observation
(RNSC-PO) and then solving the robust control problem. In the robust control problem,
the exact model of the plant is among a finite set of possible models. We show that un-
der a “Blocking Invariance” assumption on the behaviors of the possible plant models, the
solutions of RNSC-PO can be characterized in terms of certain controllable and observable
languages. However the RSNC-PO problem resulting from Fault Recovery Problem (FRP),
need not satisfy the blocking invariance assumption. To tackle this problem, it is shown that
under some certain assumptions on the possible plant models, which holds for the RNSC-PO
problem resulting from the FRP, the RNSC-PO problem can be replaced by an equivalent

RNSC-PO for which the blocking invariance assumption holds and thus the solution of the

il



resulting RNSC-PO problem, or equivalently the original FRP, are obtained and parameter-
ized in terms of certain controllable and observable languages. We discuss both single-failure

scenario and simultaneous occurrence of multiple failures.
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Chapter 1

Introduction

1.1 Fault Recovery in DES

As the complexity of control systems has increased, concerns for their safe and reliable opera-
tion in the presence of failures, especially in critical systems, have grown (see, e.g., [13],[14]).
In order to ensure reliability in case of failure, the controller may take appropriate remedial
actions such as control system reconfiguration. In this thesis we study the problem of the
synfhesis of fault recovery procedures using discrete-event models. A Discrete Event System
(DES) is a discrete-state, event driven system, that is, its state evolution depends entirely on
the occurrence of asynchronous events. This type of system includes a large class of systems
such as manufacturing systems, database management, communication protocols, data com-
munication networks, traffic systems and logistic systems. Fault recovery in discrete-event

systems (DES) has been studied by researchers.

1.1.1 Background

In this subsection, we review some of the reported results on fault recovery using discrete

event models.

1. Transition—based fault models: In this framework, faults are modeled as transitions



in the model of the plant. In [24], the system is modeled with an eztended I/O automa-
ton capturing timing information about the actions in the plant. Moreover the actions are
classified into three classes: normal, fault and recovery and lower and upper bounds are
associated with these actions, acting as deadlines for normal actions and duration of exis-
tence for temporary fault actions. Three different approaches are proposed for supervisor
synthesis: masking fault tolerant system which can recover from any fault, t-fault tolerant
system which can mask up to ¢ faults during its life time and finally gracefully degrading fault
tolerant system which resumes operation during recovery. However no algorithmic method
for supervisor synthesis is given.

In comparison to our work in the thesis, [24] assumes transient failures however we assume
permanent failures. Thus the set of problems addressed in this thesis is different from that
studied in [24]. Moreover, unlike to our framework, marked behavior is not considered in

[24] and also all faults are assumed to be observable.

2. State based fault models: In this type of approach the state set is divided
into normal and error states and similar to classical control, certain notion of stability are

introduced. The most common definitions are given in the following.

1. For a set of initial states, the system’s state is guaranteed to enter a given set and stay

there forever.

2. For a set of initial states, the system’s state is guaranteed to visit a given set of states

(E) infinitely often.

3. Stability in the sense of Lyapunov.

[20] takes definition 2 and with restricting E to “the states of system corresponding to nor-
mal operation”, it restates the definition of a stable system as “one which can recover from
anomalies without catastrophic error propagation”. Faults are assumed to be unobservable.

The proposed observer is resilient to errors in observation, i.e. inserted events, missed events
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or mistaken events. In order to synthesize the supervisor, two notations of output stabiliz-
ability and strong output stabilizability are introduced, where the former is stronger in the
sense that it could also tell us when the trajectory of events reaches the normal state set.
They show that if the system is output stablizable then there exists a supervisor which is
synthesized by synchronous product of an observer for the original system and an observer
for the modified system in which transitions starting from normal state are removed. This
framework, although having a meaningful physical interpretation for error recovery, in one
view lacks a formal structure compared with classical control theory.

Compared to our framework, one important feature that is not considered in [20] is the
nonblocking behavior of the resulting supervisor. Moreover [20] only finds a solution to the
problem compared to our work which characterizes all the solutions to the problem.

[23] introduces the notion of Lyapunov stability in discrete event systems. The work is
based on metric space analysis and Lyapunov functions. They propose sufficient and neces-
sary conditions for the stability of invariant sets of DES in a metric space. An example of
a manufacturing systems is also discussed in [23]. It also argues that the proposed method
does not require the high computational complexity of typical DES methods, however the
difficulty lies in specifying the Lyapunov function.

In comparison to our framework, [23] does not consider nonblocking as a requirement for
supervisory control. Moreover, unlike our solution, the total set of solutions is not charac-
terized in this work.

[5] proposes a definition of stability which enjoys the well-structured Lyapunov theory, in
addition to the meaningful physical interpretation of [20] thanks to the introduction of re-
siliency parameter in the definition of Lyapunov stability. Connections are also established
between this notion of stability and the property of fault tolerance. This framework suffers

the same restrictions as the two previous cases in comparison to our framework.

3. Symbolic Synthesis Approaches: These approaches are developed in response to



the following known practical problems of developing supervisors in Ramadge and Wonham

framework of supervisory control:
1. Computational complexity and state-space explosion.
2. Supervisor implementation.

[1] investigates these problems by accepting input-output interpretation of supervisory con-
trol theory. Moreover a synthesis fixpoint algorithm implementation using binary decision
diagrams (BDD) is utilized to enable the design of supervisors of realistic size. The con-
troller consists of two parts, a dynamic controller which implements the behaviorial speci-
fications (explicit or task-related) and a static supervisor which filters the commands from
the aforementioned controller according to equipment related specifications (implicit). These
specifications are mainly related to safety and liveness of the system and that is the point
which makes this work suitable for fault tolerant systems category. Moreover the nice feature
of this work is the ability of the controller to adapt to new specifications by online synthesis
of controller based on BDD. This framework is similar to our framework in the sense that the
designer is given the freedom to control the system behavior after the occurrence of faults by
assuming separate specifications for different modes of plant operation. A limiting assump-
tion of [1] compared to our framework is that all events including the faults are observable.
In [8}, a framework for analyzing and verifying fault tolerant behavior of closed loop system
(plant under supervision) is presented. Errors are modeled explicitly as separate entities
(erroneous states) such that transient and permanent faults can be modeled uniformly. Fur-
thermore, the framework can describe fauli-masking and t-foult tolerance. The model is
based on an automaton where transitions are labeled with expected events. Errors cause the
events with similar “start state” to change behavior such that they lead to the error "end
states® instead of the end state given by transition associated with the event. An approach
for stating the fault tolerance requirements in CTL is given and the use of symbolic model

checking to verify them is suggested.



The framework of [8] however, does not consider nonblocking. Also faults are assumed to
be observable. On the other hand, their framework covers both transient and permanent
failures whereas our framework only considers permanent failures.

4. Explicit Synthesis Approaches: This category is where our work falls into. This
category covers a range of frameworks. [6] investigates fault tolerance in Ramadge and Won-
ham framework. Fault tolerance is defined as the ability of the system under supervision
to reach a marked state despite the occurrence of faults and failures. A systematic way to
classify faults and failures quantitatively is proposed.

Unlike our framework, all faults are assumed to be observable. They also do not parameter-
ize the total set of solutions to their problem. It should also be noted that the solution we
present in this thesis actually includes the solution to their problem as well.

[21] generalizes the results of [6] to the design of fault tolerant robust supervisors which
guarantee fault—tolerant behavior represented as tolerable fault event sequences of a DES
in spite of model uncertainty. As for robustness, it is assumed that the exact model of the
plant is among a finite {G;}, i € Z, and the purpose of the controller is to guarantee that
for each Gy, ¢ € 7 all event sequences reach marked states in spite of faults and failures.
Multiple-failure scenarios are also cohsidered.

Again in this framework, faults and failure are assumed to be observable. No other design
specification is considered for faulty operation.

[19] investigates a modular approach to fault recovery in control systems. Failures are as-
sumed to be permanent and unobservable. Single-failure scenario is considered. A diagnoser
is assumed to be available which diagnoses the fault with bounded delay. The diagnosis is
modeled as a finite-state generator. This model is an abstraction of the underlying diagnosis
system and thus the framework does not depend on the technique used for diagnosis. The
composition of plant and diagnoser will have three modes of operation: normal, transient
and recovery. The design of supervisor consists of a normal-transient supervisor and multiple

recovery supervisors each for recovery from a particular failure mode. Moreover nonblocking

(53]



and admissibility of the proposed supervisor are studied. Our work is actually based on [19]’s
framework. We parameterize all of the solutions of the fault recovery problem, including that
of [19] and state the necessary and sufficient conditions for the existence of the supervisor.

We also generalize our results to simultaneous-failure scenarios.

5. Planning and Reconfiguration Approach In [29], Plan is a sequence of actions
leading from the initial state to a goal state and since all actions are assumed to be control-
lable and deterministic there is no explicit way to model non-determinism caused by faults.
The approach to this problem is either conditional planning or replanning. In conditional
planning, the truth value of a set of state predicates is assumed to be unknown and they
can become known during plan execution. Because of the high complexity of this approach,
replanning and reactive planning are introduced. In replanning, the supervisor observes the
execution of the plant and if the plan fails, a new plan is generated. A reactive planner is one
which mixes execution and replanning. [29] considers a model-based approach to reactive
self-configuring systems. Planner is equipped with a model based diagnoser. [4] proposes
control reconfiguration for a sensor network which is based on a model-based fault isolation.
The last two framework differs from our framework in the diagnoser module. In our case, we
separate diagnoser module from supervisor module, by using an abstraction of the diagnoser
module and assuming that a diagnoser is available which diagnoses the fault within bounded
delay; however in [4] and [29] the supervisor and diagnoser are studied together. Moreover
[29] considers probabilistic models for the generators as opposed to our deterministic models.
In [10], a reconfigurable robot team is studied which can learn and modify its plans in re-
sponse to one or more of the robots becoming faulty and thus being removed out of service.
The system is ensured to remain within the bounds of prespecified behavioral constraints.
This work can have applications in fault tolerance where the uncertainty in the system is
due to the occurrence of faults. The interesting feature of this approach is that supervisor

for a faulty mode is obtained by applying some modifications to the supervisor in use before



the fault. As a result, this method is very effective in responding to simultaneous failures.
Compared to our framework, in [10] all failures are assumed to be observable. Moreover
the necessary and sufficient conditions of the existence of the solution is not investigated
(unlike our framework). The faults are assumed to be in the form of a component of the
system removed from the system; we do not have such assumptions in our work. Finally the
proposed algorithm may not have a solution in which the supervisor has to be redesigned.
In another approach to control reconfiguration, [18] develops a framework for reconfigura~
tion of a DES controller, which has a dynamic event observation set. A mega controller is
designed that monitors the observation set of the DES controller and its state continuously.
Upon a change in the observation set, the mega controller reconfigures the controller by a
aggregation or disaggregation of the controller states. Sufficient and necessary conditions for
the existence of the solution are provided.

Unlike our framework, [18] assumes the failures to be observable and the non-blocking prop-
erty is not considered. Moreover the set of solutions of the problem is not provided.

It should also be noted that all of the methods proposed in planning and reconfiguration
category, are on-line and thus differ from our framework and our design which is offline.
One impoftant issue for all reactive planning approaches is response latency which is an
important implementation challenge.

As mentioned earlier, in this thesis, we study the problem of fault recovery in discrete-event
systems. To obtain the set of solutions of this problem, we first transform the problem
to an equivalent robust nonblocking supervisory control problem under partial observation
and then solve the robust control problem. In the following section we briefly review recent

research on the robust control of discrete event systems.



1.2 Robust Supervisory Control

Control of systems with modeling uncertainties is a complex problem. One of the approaches
to deal with modeling uncertainties is adaptive control that invokes an identification pro-
cedure to resolve uncertainties and updates the control algorithm accordingly. The other
approach is robust control in which the control system is designed to work for a family of
plants. Robust and adaptive control of continuous systems have been studied by researchers

in continuous systems as well as discrete event systems.

1.2.1 Background

There are different types of uncertainties in DES and hence different approaches in the lit-

erature to model uncertainty.

In one of these approaches[16], it is assumed that the exact model of the plant is not
known, however it is among a finite set of possibilities, i.e. {G;} for ¢ € Z for some finite

index set Z. [16] formulates the Robust Supervisory Control-Partial Observation (RSC-PO)

as follows.

Assume two nonempty and closed languages A and E are given such that

ACEC()L(Gy) (1.1)

€T
Synthesize a proper supervisor v such that for all G;,7 € T:

AC L(w/G) CE (1.2)

Here L(G;) and L(v/G;) refer to the closed behaviors of G; and G; under the supervision of

v. [16] finds sufficient and necessary conditions on the desired behavior of the closed loop



system, K, assumed to satisfy

K C[)Lm(Gy), (1.3)

i€l

such that there exists a supervisor v for which:
Lm (’Ui / G) =K

Using this result [16] establishes sufficient and necessary conditions on A and F such that

the RSC-PO is solvable.

In another approach to model uncertainty, the uncertainty is associated with internal
and unobservable events occurring in systems and denoted by A-transitions. Lirﬁ [22] ini-
tiated this framework. He assigns a positive integer to some states to show that at most a
p — step state aggregation may occur by the internal and unobservable events. The Robust
Nonblocking Supervisory Control-Partial Observation (RNSC-PO) is formulated in [22] as
follows.

Given a épeciﬁcation K such that

K C P(Ln(G))
find a nonblocking supervisor such that

P(Lv/G)) =K

where P is the projection with respect to the unobservable events in the nominal plant
(excluding A).
Similar to [16], [22] finds sufficient and necessary conditions on K for the existence of a

robust nonblocking supervisor, however [22] considers non deterministic generators as well.



In a framework closer to first approach, [9] formulates another robust supervisory control
problem. This framework is based on infinite strings and infinite behavior of automata. All
of the events are assumed to be observable and also no assumption is made on specifications
(i.e.(1.1) is removed). Nonblocking is considered as a requirement and thus L(v/G;) in (1.2)
is replaced with L,,(v/G;). The authors in [9] also generalize their formulation of robust
supervisory control by adding the requirement that the solution should maximize robustness
i.e. it should maximize the set of plants which, under supervision, satisfy the requirements

of the RNSC problem. In other words, the following set should be maximized:

o(AE,v) ={G| AC L,(v/G) CE,L(v/G) = L,(v/G)}

[9] shows that the above problem does not have a solution in general. However by restricting
Aand Ein (1.1) to AN L,(G) and EN L,(G), [9] proves that ¢(A, E,v) has a maximizing
element and proposes an algorithm for finding the element. [9] also investigates computa-
tional effort of the algorithm.

[28] generalizes the results of [9] to the unobservable case. [28] also removes the require-
ment of replacing A and E with AN L,(G) and E N L,(G) by assuming that A and E are
closed. [28] also adds another part to the RNSC-PO (in addition to robustness in the sense
of maximizing ¢(A, F,v)) that should also be maximally permissive for each of the plants in
©(A, E,v). [28] shows that the robustness can be maximized with partial observation, but
permissiveness can not always be maximized. [28] also proves that under the assumption of

observability of all controllable events, the obtained solution maximizes both robustness and

permissiveness.

In [2] the authors choose the framework of [16] as the basis of their work. However

instead of assuming upper and lower specifications (A, E), a separate specification is assumed

10



Machine 2 ».  Conveyer

Conveyer - chi - Buffer -

Figure 1.1: Example of a Fault Recovery Problem in a manufacturing system

to be given for each plant in the index set. i.e. (1.2) is changed to the following:
Lm(’U/Gz) Q Ei, 1€

In this formulation, nonblocking of the resulting supervisor is also a requirement. All of the
events are assumed to be observable. An algorithm to find a maximally permissive solution
to RNSC is proposed and is shown to terminate in finite number of steps. Moreover the
solution is proved to posses some adaptive behavior eventhough it is computed off-line.

In the following section, we first review the contribution of the thesis and then discuss

the outline in more detail.

1.3 Fault Recovery Problem: An Example

This thesis deals with Fault Recovery using Discrete Event Models. In following we provide
an illustrative example to motivate our discussion.

Example: Consider two machines in a manufacturing system (Figure 1.1). Machine 1
accepts workpieces from the input conveyer and perform process P; on it. Upon termination
of the process, the workpiece is deposited in the buffer. Machine two retrieves this work
piece from the buffer and performs process P, on it. Note that these machines have different
operations to perform on the workpieces meaning that P, is different from P. It is assumed
that both machines are acceptable of performing P, and P, processes.

In the absence of failures (normal specification), it is required that the buffer neither un-
derflow nor contain more than 10 workpieces. Any of the machines may break at any time

and thus goes out of service. Let us assume that a diagnoser is available that diagnoses

11



any failure within a delay of 0 to 2 events. While one of the machines is broken and the
fault has not been diagnosed, the system should be working under the same specification
for the normal mode. That is the buffer should neither underflow nor contain more than
10 workpieces in it. We refer to this mode of operation as the transient mode. After the
failure is diagnosed, if machine 1 has failed, machine 2 should process all workpieces in the
buffer and then should switch to a new cycle. In this new cycle, P, must be performed on 5
workpieces and then machine 2 switches to P, and retrieves the 5 workpieces being deposited
in the buffer and performs P, on them. This is the design specification for recovery from
failure in machine 1. In case machine 2 fails, machine 1 should switch to P, and process all
workpieces in the buffer. After that it must switch to the aforementioned 5P, + 5F; recipe.

(Specification for recovery from failure in machine 2).

In fault recovery problem, the objective is to design a supervisor that performs suitable
control sequences and enure that the system meets its specifications in all normal, transient
and recovery modes. Furthermore, the system should not block during its operation. Any
supervisor that meets the aforementioned objectives is a solution to the problem. In this
thesis, we manage to characterize the entire set of solutions of the above fault recovery

problem. The contributions of this thesis are explained in more detail in the following

section.

1.4 Thesis Contributions

The contributions of the thesis could be summarized as follows:

1. We show that the Fault Recovery Problem can be transferred to an equivalent Robust

Nonblocking Supervisory Control problem under Partial Observation(RNSC-PO).

2. The solution to the Robust Nonblocking Supervisory Control Problem under partial

12



observation is obtained by extending the solution to the robust control with full
observation existing in the literature. The solution is obtained assuming a “blocking
invariance” condition on the behaviors of possible plant models. This property states
that if a string creates blocking in one of the possible models, then in any other
possible plant model, it either creates blocking or can not be generated at all. The

property of blocking invariance originates in this thesis.

. The set of Blocking Invariant language n-tuples is shown to posses a supremal
element and an algorithm is proposed to obtain it. The convergence of the algorithm
in the general case is still an open problem but under certain conditions (which holds
in the problem derived from fault recovery problems), the algorithm is shown to

converge to supremal blocking-invariant sublanguage n-tuple in one step.

. In case of convergence of Algorithm A, it is shown that the original RNSC-PO can be
converted to an equivalent RNSC-PO in which the marking languages of the plant
models are replaced with the supremal blocking invariant sublanguages of the marked
behaviors of the original plants. In other words, a sufficient condition is found under
which the RNSC-PO problem can be converted to an equivalent problem in which

the blocking-invariance condition holds.

. The RNSC-PO resulting from Fault Recovery Problem in Single-Failure Scenario

is shown to posses the aforementioned structural assumptions and thus the results of
Robust Control Problem can be used to obtain the solutions to this problem. We
show that the solutions of the RNSC-PO problem, and thus the fault recovery

problem can be characterized in terms of certain controllable and observable

languages.

13



1.5 Thesis Outline

In Chapter 2, we review the background material required in the solution of Fault Recovery
Problem and Robust Nonblocking Supervisory Control Problem. In Chapter 3, we review
the Robust Nonblocking Supervisory Control Problem under Partial Observation and find
the solutions to this problem under. Chapter 4 discusses fault recovery problem and
characterize its solution. An illustrative example is also provided. In Chapter 5, we provide

a summary of the thesis contributions and discuss future directions for research.
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Chapter 2

Background Overview

A Discrete Event System (DES) is a discrete-state, event driven system, that is, its state
evolution depends entirely on the occurrence of asynchronous discrete events. This type of
system includes a large class of systems such as manufacturing systems, database
management, communication protocols, data communication networks, traffic systems and
logistic systems.

Finite-state automaton represent a class of discrete-event systems. In this thesis, we study
the design of fault recovery procedures for discrete-event systems modeled as finite-state
automata. As we will see, this problem is a special case of robust superviéory control. In
this chapter, we briefly review some of the results from the automata theory and the

supervisory control of discrete-events systems required for our work in subsequent chapters.

2.1 Languages and Automata

2.1.1 Languages[12]

Let £ be a finite set of distinct symbols called alphabet. Then define

Sti={og...ax| k=1, o €%}



Defining ¢ as the sequence with no symbol, we write:
=3t U {e}

Any element of ¥* is a string over alphabet 3. ¢ is the empty string. The concatenation
of two strings s and £ is the new string st consisting of the events in s followed by the

events in ¢. A string t is called a prefix of s if:
Ju e s=tu.

Finally ¢ is a suﬂix of s if :
JueX:s=ut

2.1.2 Operations on languages

1. Concatenation [12]: Let Ly, Ly C ¥*, then:
I1Ly = {S €EY*:s= $189,81 € Ly,80 € Lz}

In other words, Lj L, is the set of the strings resulted from the concatenation of the strings

in L; with the strings in Ls.

2. Prefix—closure [12]: Let L C ¥*, then:
L:={sex: e stcl}

Equivalently, the prefix closure of a language contains all the prefixes of all the strings in L.

3. Projection [3, 30]: Let L; C 3} and Ly C X} where we may have X; N Xy # 0. Let
¥ = ¥; UX,. We define natural projection of £* onto }: F; : ¥* — X¥, (i = 1, 2) according
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to

P(e)=¢
P5) =

P(s6) = Pi(s)R,(8), seX*deX
Simply speaking P; removes all the symbols in s which are not in 3;. Clearly P; is
catenative. i.e. P(st) = P(s)P(t).

4. Complement [12]: Let L C ¥*. Then:

L¥ =% ~1L

2.1.3 Generators and Automata

Automata and generators are the visual means of representing DES. A deterministic

generator G is a 5-tuple :

G = (Q) Z: 67 qo, Qm)

Here ¥ is a finite alphabet of symbols referred to as event set (label), @ is the state set,
0 :Q x ¥ — @ is the partial transition function, g is the initial state and Q),, C Q is
the marked states. We refer to a generator as an automaton if its transition function is a

total function over its domain.

The closed and marked languages of a generator are defined via:
L(G) == {s € 7| 6(qo, s) is defined},

Lm(G) = {s € L(G)| 6(q0, 5) € Qm}-
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L(G) represents all the event sequences that can be generated by G, starting from the
initial state go. Thus s is in L(G) if and only ¢ is defined at (go, s). Clearly L(G) is

prefix-closed. Moreover if G is an automaton we have:
L(G) =%

L,,(G) is a subset of L(G) consisting of strings s for which 6(qgo, $) € Qm-

Observe that we do not require @ to be finite. All the operations which will follow,
actually work for infinite state generator. Moreover we can represent any language L by an
automaton. The idea would be to represent the generator as a (possibly infinite) tree
whose root is the initial state and nodes at level n are reached by either strings with length
n or prefixes of length n of longer strings in 'language. In this case the state set would
corresponds to the nodes of this tree and a state is marked if and only if the string which

reaches that node from the root is a part of the language. We say G represents L and
LG)=L,Ln(G) =L

It may not always be possible to represent a language by a finite state generator. A famous
example of this type of language is L = {a"™b™ : n > 0}. We refer to languages that can be
represented by a finite state generator as regular languages. The class of regular
languages is very important since they require finite memory to be stored in computer and
thus their manipulation in controller synthesis could be easier and more practical[3]. To
have an alternative characterization of regular languages, we first need the definition
equivalence relation.

Let X be a nonempty set and £ C X x X a binary relation[30] (any subset of £ x E is a
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binary relation) on X. E is an equivalence relation[30] if

VeeX: x=gz
Ve, o' € X: z=pa’' =2 =2

Ve, 2’2" € X: z=p o, 2 =g 2" = 2= 2"

We shall also write z = z/(modE) instead of x =g &'

For z € X, let [z] denote the subset of elements z’ that are equivalent to z:
[z] :={z' € X | 2’ = =}

The subset [z] is called the equivalence class[30] of z with respect to the equivalence
relation E. We also need the definition of Nerode equivalence relation (L)[31] to define

regular languages formally. Consider a language L C ¥*. For s,t € £*, we have s = ¢ if

{d:deZandssd e L} ={t' :t' € " and tt' € L}
In other words, two strings are equivalent(mod L) if their continuations to form completed
words of L are identical. We shall write

| L |l:= card(X*/ =),

namely || L || is the (possibly denumerable) number of equivalence classes of =. Finally
the language L is regular if || L ||< oo [12]. || L || corresponds to the number of states of

the minimal-state generator representing L [31].
The following theorem summarizes the properties of regular languages.

Theorem 1. [12] Let Ly and Ly be regular languages. Then the following languages are
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also regqular:

L_17 E* _L17 L1UL27 LILQ) Ll r1L2

Consider two generators with the same alphabet : Gy = (@1, %, 81, go1, @m1) and

Gy = (Q2, %, b2, go2, Qmz2). We say that G is a subgenerator of Gy, denoted by G; C Go,
if 81(s, go1) = 02(s, goz) for all s € L(G;). Note that marked states are not considered in
this definition. Also G & G, implieé Q1 C Q2, @01 = Qo2 and L(G1) € L(G2). However
L(G,) C L(Gs) does not imply Gy C G as languages with fewer elements may require

more states in order to be generated or they may permit more aggregation of states.

2.1.4 Operations on Generators

1. Accessible (Reachable) part(3, 30]: Define

Ac(G) = (Qacs T, bac, 90, @myac)
Quc=1{g€Q:3s5€¥",0(q,5) = ¢}
Qmac = @m N Qac
Oac = 6 | Qac X T — Qac

The effect of this operation is to remove all the states in G that can not be reached by any

of the strings in L(G) starting from the initial state. Obviously we have:
L(Ac(@)) = L(G), Lin(Ac(G)) = Lin(G)

Thus we can assume all the generators are accessible.
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2. Coaccessible part[3, 30]: Define

COAC(G) = (Qcoac: 27 5coacy qo,coac, Qm)

Qcoac = {q € Q :ds e E*:é(Q: 5) € Qm}

90 if Q € Qcoac
q0,coac =

undefined otherwise

5coac =0 l Qcoac X 3 — Qcoac

This operation deletes all the sates from the state transition of G which are not
coaccessible. A state is called coaccessible if there is a path from that state in the state

transition diagram of GG to a marked state. Obviously we have

L(CoAc(R)) = Lin(G), Lin(CoAc(R)) = Ln(G)
3. Trim operation]3, 30]: Define
Trim(G) := CoAc(Ac(@)) = Ac(CoAc(G))
4. Product (Meet)[3, 30]: Define

Gi1 x Gy == AC(Ql X Q2,21 X X, 9, (%,1,%,2)7 (Qm,la Qm,z))

(61(g1,0),02(g2,0)) if d1(q1, 0)! and b2(ga, 0)!
5((‘11#12)7‘7) =
undefined otherwise

Thus at a state (g1, g2) of Gy X Gg, 6 can occur, if and only if both G; and G5 agree on the
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occurrence of that event. It could be easily verified that

L(Gl X Gg) = L(G1) ] L(GQ)

Lm(Gl X Gg) = Lm(Gl) N Lm(G2)

5. Synchronous Product (Parallel Composition)[3, 30]: Define

G || Gg == Ac(Q1 X Q2,21 U X9, 9,(q0,1,902), @m1 X Qmy2)

((51(%0),52((12,0)) ifoes; N,

((51((]1,0'), q2) ifoe (21 - 22)
5(((]17 <12)7 0) =

(g1,02(g2,0)) ifoe (Xy—%y)

undefined otherwise

In the parallel composition, a common event, that is, an event in ¥; N X5, can only be
executed if the two automata both execute it simultaneously. The other private events are

not subject to such a constraint and can be executed whenever possible. It could be easily

verified that

L(Gy || G2) = PT(L(G1) N Py (L(G2))

Ln(G1 || G2) = P (Lm(G1)) N Py (Lin(G2))

where P; (1 = 1,2) refers to natural projection w.r.t ;.



2.2 Supervision of Discrete—Event Systems

2.2.1 Full Observation

In the Ramadge-Wonham (RW) approach to supervisory control, the plant to be controlled
is modeled as a finite-state generator G = (@, %, 4, go, @m). 1t is assumed that some of the
events of the plant are not controllable such as failures and thus 2 can be partitioned into
two sets, controllable events (X.) and uncontrollable events (X,.). Control is achieved by
means of a supervisor which enables and disables controllable events. By applying
supervisory control, we can vary the languages generated and marked by the plant and
thus it is possible to limit the behavior of the plant within certain limit represented by
another language, E C L,,(G). E is called the legal language.

We can consider a supervisory control of G as a map
v:Y"—Ty

where

Iy ={v € Pur(Z)| Xu. €7}

For s € L(G), v(s) denotes the set of events enabled by the supervisor. Note that v should
not disable uncontrollable events and thus ¥,. C v(s). The system under supervision is
denoted by v/G. The closed behavior of v/G is the language L(v/G) obtained inductively
as follows:

1. ee L(v/G),

2. (s,0 € ) :s0 € L(v/G) & o € v(s),so € L(G) .

The marked langauge of the plant under supervision is defined as

Ln(v/G) := L(v/G) N Lp(G).
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v is said to be a nonblocking supervisor(25] if and only if L,(v/G) = L(v/G).
Nonblocking Supervisory Control Problem (NSC)[25]: Given the plant

G =(Q,%,6,q,Qm) with T = £,U X, and legal language E # 0 and E C L,(G), find a
nonblocking supervisor v such that:

1. Lp(v/G)CFE

9. L{v/G) = Im(w]G).

The NSC problem in general can have many solutions. Let
V := {v] v solves the NSC problem }.

A supervisor v € V is called maximally permissive if and only if
Vo' €V i Ly(v'/G) C Lin(v/G), L(V'/G) C L(v/G).

To characterize the solutions of the NSC we need the following definitions.

1. Controllability[25]: A language K C ¥* is controllable with respect to G if

In other words, K is controllable if and only if no string in L(G) that is already a prefix of
K when followed by an uncontrollable event in G, exits from the prefix closure of K.

2. L,,(G)-closedness[25]: K C L, (G) is L (G)-closed if:
K =K N Ln(G)

The following theorem parameterizes all of the solutions to the NSC problem.
Theorem 2 ([25]). Let G and E be defined as in NSC.

1. Suppose K CE, K # 0 and K 1is
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(a) Controllable w.r.t G,

(b) Ln(G) — closed.

Then a supervisor, U, exists that solves NSC with L,(0/G) = K and L(3/G) = K.
2. For any v which solves the NSC, L., (v/G) satisfies conditions (a)-(b) in part (1).

Theorem 2 implies that if F satisfies conditions (a)-(b) in part 1 of the theorem, a

nonblocking supervisor v for which
Ln(v/Gy=F

exists and will be the maximally permissive solution to NSC. However we have to answer
the following question: “What is the maximally permissive solution to NSC if E does not
satisfy conditions (a)-(b) in Theorem 27" The key to answer this question is in part (1) of
the theorem which states that every subset of E which is controllable and L,,(G)-closed
characterizes a solution to NSC. So the maximally permissive solution in this case would be
the largest controllable and L., (G)-closed subset of E, if any. To explore this issue further,
we first review a few facts from lattice theory. |

Poset (Partially ordered Set)[12, 30] : Let X be an arbitrary set and also let < be a
binary relation. The pair (X, <) is called a poset if:

1. VeeX:z<zx

2. Ve, o' r" e X e <z, <z =z

Ve, r'eX:z<d, ' <z=>z=1

If the relation < could be understood_ from the context we could also say X is a poset.

Meet and Join Operations[12, 25]: An element [ € X is the meet of z,y € X iff:

[I<z&l<y& (VMaeX:a<z&a<y=a<l)



Similarly an element u € X is the join of z,y € X iff:
rt<u&y<u& (WeX : z<b&y<b=>u<b)

Lattice[30, 12]: A lattice is a poset L in which the meet and join operations of any two
elements always exist. To generalize the notions of meet and join, consider a subset S C L.

Define [ = inf(S) as the largest lower bound of S, in other words,
VyeS:i<y] & [(V2)(VyeS:z2<y)=2<]]

We can define sup(S) in a dual fashion. Note that if S is finite, these two elements always
exist since inf(S) and sup(S) can be computed as the meet and join of the finite number

of elements of S (and L) which are also guaranteed to exist since L is a lattice. However if
S is not finite, it is not necessarily true that inf(S) and sup(S) exist. A lattice L is called
complete if for any subset S of L, inf(S) and sup(S) exist as elements of L. Now if only

sup(S) exists we say L is a complete upper semilattice!. Let
Cq(E) :={K C E| K is controllable w.r.t G}

As a subset of the sublanguages of F, Co(E) is a poset with respect to inclusion (C). The
following proposition states that Ce(E) is a complete upper semilattice with the join

operation of the lattice of sublanguages of E.

Proposition 1. /25, 80] Co(FE) is nonempty and closed under arbitrary unions. In

particular Ca(E) contains a supremal element defined as follows:

supCo(E) = J{K | K € Ca(E)}

1For an upper semilattice, the meet operation need not be defined.
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To obtain the maximally permissive solution to NSC, we need another family of languages

which is defined as follows:
Ra(E) :={K C E| K is L,(G)-closed}

Proposition 2. [15] Rg(E) is nonempty and closed under arbitrary unions. In particular

Ra(E) contains a supremal element defined as follows:
supRg(E) = E — (Lm(G) — B)T*

Proposition 3. [25, 30] Let E be Ly, (G)-closed. Then supCq(E) is also L, (G)-closed.

Theorem 2 states that every subset of E that is controllable and L,,(G)-closed is a solution

to the NSC. Thus the following class of languages parameterizes all the solutions to NSC:
RCe(E) = Rg(E)NCa(E)

Moreover RCq(E) is nonempty and closed under arbitrary unions and thus contains a
supremal element. Based on Proposition 3, L,,(G)-closedness is preserved under

controllability operator, thus:
supRCe(F) = supCq(supRe(F))

This characterizes the maximally permissive solution to NSC.

2.2.2 Partial Observation

Generally only a subset of the events generated by the plant (X,) can be observed by
supervisor. This may be due to limitations of sensors attached to the system or distributed

nature of some systems where events at some locations are not observed in other locations.
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Let P : £* — 3% be the natural projection. In these situations, since the supervisor can
not distinguish between two strings s; and s; with the same projection, that is Ps; = Psg,
the same control action should be issued in response to each one. Note that the subset of
unobservable events in general need not have any particular relation to the subset of

controllable events. NSC could be naturally extended to include the unobservable events

as follows:

Nonblocking Supervisory Control under Partial Observation Problem
(NSC-PO)[17, 7]: Given G = (Q, %, 6, go, @m) with ¥ =X, U X, X = 35, U Xy, and legal
langauge E C L,,(G), E # 0, find a nonblocking supervisor control v such that:

1. L,(v/G) C FE

2. L(w/G) = In(w/Q).

The concept of observability is crucial in finding the solution to NSC-PO.
Observability[17, 7]: A language K C X* is said to be (L(G), P)—observable if and only if

Vs, €5*,0€L: [ €K& L(G)&s6€K&Ps=Ps|=seK

This property states that if two strings in the language have the same projection then a
decision rule that apply to one can be used for the other.

The following theorem parameterizes all the solutions of the NSC-PO problem.
Theorem 3 ([17, 7]). Let G and E be defined as in NSC — PO.
1. Suppose K CE, K # ( and K is
(a) Controllable w.r.t G,
(b) (L(G), P)-observable
(¢) Ly(G) — closed.
Then a supervisor, U, exists that solves NSC — PO with L,(U/G) = K and
L®/G)=K.
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2. For any v which solves the NSC — PO, L,,(v/G) satisfies conditions (a — c) in part
(1).

Now let us bring in the following class of languages:
Og(E) := {K C E| K is (L(G), P)-observable}

Theorem 3 states that every subset of F that is controllable, observable and L,,(G)-closed

expresses a solution to NSC-PO. Thus the following class of languages characterizes all of

the solutions to NSC-PO:
ORCG(E) = Og(E) N Rg(E) ﬂCG(E)

However contrary to the full observation scenario, O(G) need not have a unique supremal
element since it is not closed under arbitrary unions. Thus a maximally permissive solution
may not exist. Normality is a property which is stronger than observability; however it is
mathematically “well-behaved ” and perhaps easier fér analysis.

Normality:[17, 7] Also a language K C L(G) is (L(G), P)-normal if and only if:
K = L(G)n PY(PK)

In other words, K is (L(G), P)-normal if and only if it could be recovered from its
projection along with a knowledge of the structure of L(G).

One of the differences between normality and observability is that in the class of closed
normal language we can say when the evolving string s exits from the language by
watching its projection. This is not the case for observable language. Normality is a
stricter property. In fact, a language which is normal is also observable but the converse

statement is not necessarily true. Finally if the controllable events are all observable then

every controllable, observable language is also normal.
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Now let us consider the class of normal sublanguages of given language E.

Ng(E) = {K C E| K is (L(G), P)-normal}

Proposition 4. [17, 30] Ng(E) is nonempty and closed under arbitrary unions. In

particular Ng(E) contains a supremal element defined as follows:
supNg(B) = | J{[sINL(G) | [s]N L(G) C E}

where

[s] ={s': s’ € &%, Ps' = Ps}
Proposition 5. [17, 30] Let E be L,,(G)-closed. Then supNg(E) is also Ly, (G)-closed.

From the definition of normal languages we have
Ne(E) € Og(E)
Thus the following class of languages also characterizes solition to NSC-PO:
NRCo(E) = No(E) N Ra(E) N Ca(E)
Observe that NRCg(E) does not provide all of the solutions to NSC-PO.
supN'RCq(E) = supNCq(supRg(E)) = sup(Na(supRa(E)) N Co(supRe(F)))

gives the maximally permissive solution to NSC-PO among the solutions based on normal

languages.
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2.3 Robust Supervision of Discrete Event Systems

2.3.1 Full Observation

As discussed in Chapter 1, there are different framework for studying robust supervisory
control. The framework of [2] is relevant to our work. In [2] the exact model of the plant
(though not precisely known) is assumed to be among a finite set of plants. Each of these
plants has its own set of alphabets (2;). It is also assumed that all plants agree on the
controllability of their common alphabets. In this setting a supervisor (solution for the

robust supervisory control problem) is a map:

v:¥ —TIy,

where

E:U&.

All events are assumed to be observable:
To=|JT0 To =1

A supervisor for G; is a map: v; : &7 — I's,. In general: ¥; # 3. Having v, the supervisor

v; can be obtained as:

vi(s) =v(s)NL;, seX;

Robust Nonblocking Supervisory Control problem (RNSC)[2]: Given plants G;
with L(G;) C T} and also legal languages E;, where E; C L,,(G;) for ¢ in some finite index

set Z = {1,...,n}, synthesize a nonblocking supervisor

v:X—Ty,
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where ¥ = JX;, such that for all 4 € Z:

(2) L (v/G;) = L(v/Gy).

The notation of maximally permissiveness is extended to RNSC as follows. Let
V := {v| v solves the RNSC problem.}
A supervisor, v € V is called maximally permissive if and only if for any v/ € V we have:

Ln(V'/G;) C L,,(v/G;) (1€1)

[2] discusses the solution of RNSC. In this thesis, we study fault recovery in DES. We show
that the fault recovery problem under consideration can be transferred to an equivalent
robust nonblocking supervisory control under partial observation. We solve the resulting

robust control under partial observation. In our study we need the following definition and

lemmas.

Definition 1. [30] Two languages L and M are nonconflicting if and only if

LNM=LNM

[2] introduces the following family of languages. Given languages E, L,,(G;) C ¥* for 7 in

some finite index set 7 = {1, ...,n}, define
NF(E)={KCE|(VMi€I): KNLy(G;) =KnLy(G;)}

Proposition 6. [2] NF (E) is nonempty and closed under arbitrary unions. In particular
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NF(E) contains a supremal element defined as follows:
supN'F (B) = | J{K | K e NF(E)}
Lemma 1 ([9]). Suppose G1 and G are DES over the alphabet ¥ with
L(G:1) C L(Ga)-

Ifv:2* — I'y, then:
L('U/Gl) = L(’U/Gg) M L(Gl)

Lemma 2 ([2]). Suppose G1 and Ga are DES over the alphabet ¥ with
L(G1) € L(G2), Lm(G1) © Lin(G2).

Ifv:¥* —TI'g, then
Lm(’U/Gl) = Lm(U/GQ) N Lm(Gl)
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Chapter 3

Robust Nonblocking Supervisory

Control Problem

As with many other areas of control theory, the notion of robust control has been
introduced to discrete event systems in order to cope with situations in which a plant’s
dynamics are not precisely known. Among different frameworks, the most natural setting is
the one in which the true model of the plant is assumed to be among a set of possibilities,
none of which can be dismissed as unlikely or impossible. In Chapter 2, we discuss the
most recent solution to RNSC in this setting by [2]. Here it is assumed that all events are
assumed to be observable. In this chapter we extend results of [2] to control under partial
observation where some events are unobservable. Later in Chapter 4, we will use these
results to solve the fault recovery problem. Section 3.1 describes the problem formulation.
In Section 3.2, the notion of Blocking-invariant languages are introduced which is later
used for solving robust control problem. Section 3.3 shows that the class of
Blocking-invariant languages posses a supremal element and proposes an algorithm to
compute it. While the convergence of the proposed algorithm in the general case is an open
problem, in Section 3.3.1, we investigate a case where the languages of the plants involved

has a star structure and show that the proposed algorithm terminates in one iteration.
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This result will enable us in Chapter 4 to find the solution to the fault recovery problem.

Section 3.4 and 3.5 characterizes the solution to RNSC-PO in terms of certain controllable

and observable languages.

3.1 Problem Formulation

In this section, we forumulate the problem of Robust Nonblocking Supervisory Control
under partial observation, which can be regarded as an extension of the RNSC problem [2]
mentioned in Chapter 2. We assume there are n different plants (74, ..., G, each with its
own event set with possibly unobservable events. We assume hoWever, all plants agree on
the controllability and observability of their common events. Therefore, the controllable
and observable events of G; are ¥.; = £, N %; and ¥,; = ¥, N X;. For each plant G;, a
language describing the plant’s legal marked behavior is also given.

Robust Nonblocking Supervisory Control under Partial
Observation(RNSC-PO) Given plants G; with L(G;) C ¥, &, C %; and I,, C %; and
also legal languages E;, where E; C L,,(G;) for i € T = {1,...,n}, synthesize a
nonblocking supervisor k »

v > Ty,

where

such that:
(1) Lm(’U/G—,) - E,',i eT

(2) Ln(v/Gi) = L(v/Gy),i €T

Note that in our setup, a supervisor for G; is a map

v 2 = Iy,



In general,

Y #£ %

Having v, the supervisor v; can obtained as
Vs e X7 vs) =v(s)NE;

Therefore we do not distinguish between v and v; when discussing the supervision of the

plant Gj.

3.2 Blocking-Invariant Languages

In this section, we introduce a class of language n-tuples called Blocking-Invariant

Languages which will be used later to solve the Robust Supervisory Control Problem.

Definition 2. Assume M;, L; C X}, L; C M; = M; withi € T = {1,...,n}. Then the
n-tuple (Li, ..., Ly) is called Blocking-Invariant (B.I.) with respect to (M, ..., M,) if:

Vi,j € T: LN M;=I;NM, | (3.1)

Remark 1. In the robust control problem, L;’s are the marked behaviors and M;’s the

closed behoviors of the plants involved. Thus:
L; = Lin(Gy), M; = L(G;)

Therefore condition 8.1 is

Lin(G:) N L(G;) = Lin(G5) N L(Gy)
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which is equivalent to

Ly (Gi) N L(Gy) C Lin(G5)

or

Lim(Gi) N (L(G;) = Lin(G;)) = 0

The above equation states that if a string s generated in G; (s € L(G;)) creates blocking,

then either it creates blocking in G; or it can not be generated in G; at all, thus the term

“Blocking Invariance”

Lemma 3. Blocking invariance (3.1) is equivalent to:

Proof. Assume blocking invariance.

_L_iﬂMj Z—EJ—QMZ
=LNM;NL;=L;nMNL;
:>EOE=L_jﬂMi(Since L; C M;)

Conversely, assume (3.2) is true and thus:

K
>
Iy
Il
&
>
I

IS
)
Ly
I
&
D
&

Therefore:
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The following Theorem provides an alternative description of B.I. languages and forms the

basis of the computation of the supremal element of the class of blocking-invariant
language n-tuple.
Theorem 4. Let L;’s (for i € I) be as in Definition 2. Then (Lq,..., Ly) is

Blocking-Invariant with respect to (M, ..., M,) iff:

Li=L—- |J (M;-I)%", viel (3.3)
JELj#1

where ¥ = U .
i€z

Remark 2. Note that (3.3) is equivalent to:

Lin |J (M;-I;)z =0, VieT
JET,j#i

Proof. (If) Assume for 4,5 € Z,1# j

Li=L— |J (M;-L)%"
JEIL,j#i

This implies
Lin(M; —L;)=0

Since otherwise, assume s € L; N (M; — L;), Then
Jso € * : 889 € Ly, 859 € (M; — L;)E*

which contradicts the assumption. Thus we have
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or

Moreover

Thus

Similarly

L;NL; C LN M
L;NL;=L;NM;
LinLi=L;nM,

(Only if) Assume for 4,5 € Z,1 # j

We have to show

We have

Thus we only have to show

To do so we show

Assume

LinL;=L;nM;=L;NM,

VieT:Li=Li— |J (M;—Ly)¥

JeT j#i

Li- |J M- L)z c L

JEL.j#i

LicLi— |J G-Iz
JE€L,g#

seL;=s¢(M—L;)z" (3.4)

seL;&sc (M;—L;T"
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Therefore

dso € 3%, 50 €5:50€ (Mj—Lj),s0 € Ly

= Sp EEQM]‘,SO ¢MHE
which is not possible because of our assumption. Thus from (3.4) we can conclude

Li=L- |J M;-I)%, VieI

JEL,j#i

This completes the proof.

3.3 Supremal Blocking-Invariant Sublanguages

In this section we will investigate the properties of blocking-invariant languages and show
that this class of languages has a supremal element. However first we have to define the

lattice of sub-language n-tuple. Recall that
Ly M; S L;C M;=M;, (i€I)

Define:
(E)=2x...x X"

Also define (component-wise) intersection and union operators via:
(K1, Kp) O (KT, KG) = (KN KT, KL DK
(Ki,...,K)MU(K?,...,K2) = (K}UK2,..., K} UK?

1
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Finally define the component-wise set inclusion, denoted by C, with:

K. . KhYC(K?.. . K)e K'CK?... K:CK?
1 ) 1 n 1 1 n n

Now (Pwr((X*)"), C) is a poset and under U and N (as join and meet operations) forms a.
complete lattice with L = (@,...,0) and T = (¥*,...,%*) (as the bottom and top

elements)

Now consider the following class of sub language n — tuple:
£BI((L17 .. 7Ln)) = {(Kl, .. .,Kn) : (Kz - Li, Vi € I) & (Eﬂ Mj = Mi HE,V’L.,]- S I)}

Theorem 5. (i) (Lgn,- .-, Lpm) == SupLlpr((Li, ..., L)) is well-defined.
(it) (Lsni,- ., Lim) is the largest fix point of the operator  : (E*)™ — (X*)™ defined with

QKy, ..., Kp)) = (K1), - .., W(KR))

(Ky) =K - U (M; — K;)%,

JEL, j#1

UE) = (K~ |J M-Fpz) - |J ;- Q(E))z.

FET, j>i €T, j<i
Proof. (i) Observe that Lp;((Ly,...,Ly,)) is nonempty since (§,...,0) € Lpr((L1,...,Ly)).

Let (K145, Kne) € Lar{(L1, ..., Ly)) for a in some index set A, i.e.,

Ki,a CL;, ,Viel: Ki7aﬂMj =Kj’aﬂMi, 1,761
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Then |J, K; o C L;. Also

(U Kiw) 0 M; = (| Kiw) N M;

acA acA

= J Eia N M)

acA

= | Eian M)

acA

= (|J Kja) N M,

acA

= (| Kja) N M;

acA

Thus we have shown

(U Kigy -, U Kna) € Lpr((Ly, ..., Ln))

acA acA

which states that £p7((L1, ..., Ly)) is closed under arbitrary unions. Therefore

(Lpni,---,Lem) == SupLpi((Ly,..., L)) is well defined and exists and is given by
SupLpr(Ly, -, L)) = | J{Ey, .. K) | (Ky,. . By) € Lpr(Ly, - ., L))}

(ii) First we have to show Lgy; is a fix point of the operator ;. According to Theorem 4

we have:
(Leri,---, Lem) € Lai((L1,...,Ly))
Therefore
Vi€ZT: Lpni=Lpn— |J (Mj—Tpp)=* (3.5)
JET,j#i



Moreover

O (Len) = Len — U (M; = Lpr)¥"
JeT.j#1

= LBIl (By (35))

Now fix 2 < n. Assume

Vj <1: Qj(LBIj) = LB[j

We show:

o

0 (Ler) = Larni

We have

(Lo = Lo — | M -Tep))E) — |J (M5 — Lep)¥

JEL,j<i JET.j>i

= (Lpr — U (M; — Lpr;)2") — U (M; — Lpr;)%* (Using induction assumption)
jET,j<i JET >0

= Lpr— |J (M;—Lpp)x
JEL,jF#i

= Lpy; (Using 3.5)

Thus we have shown (Lgn, ..., L) is a fixed point of the operator {2.

Next we show

(Kl,...,Kn)=Q(Kl,...,Kn)=>K,-g_LBﬁ, 1€

To do so, it is sufficient to show

(Kla .o -aKn) € L:BI((le s 7Ln))
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By definition of €2; we can conclude that:

which implies

Ki=(K- | M-9E)E) - | M-K)z

€T j<i JET§>i
=(K; — U (M; — K;)¥*) — U (M; — K;)Z* (K; is the fixed point of the operator ;)
JET <1 JEL,5>1
=Ki—- |J (M -Kp)z
JETj#i

Thus by Theorem 4 we have:

(Kl, . ,Kn) e ,CB[((Ll,. . ,Ln)) = (Kl, .. ,Kn) C SupﬁBI((Ll, e ,Ln))

C (Lpn,---,LBm)

And this completes the proof. a

Up to this point, we have shown that the class of blocking-invariant languages has a
supremal element but we have not yet proposed an algorithm to compute it. Moreover
Theorem 5 and 4 suggests that this supremal element could be represented as the largest
fixed point of operator {2. This is the basis of the following algorithm for the computation
of the Lgy; (i € I).

Algorithm A:

(L1,0s .-y Lno) = (L1, .., Ly)
(Ll,q+17 ... aLn,q+1) = Q_((Ll,zp Lo 7Ln,q))a q Z 0

M,q:Mi ,V7JEI7QZ0

44



Observe that the above algorithm is an iterative algorithm. At iteration ¢ a language

n-tuple (L1, ..., Lngq) is generated. The following theorem proves that if Algorithm A

converges (in a finite number of steps), it actually obtains SupLpr((L1,-.., Ly)).
Theorem 6. Consider Algorithm A.
(i) Lioo = lim L;, exists.
n—oo
(M)LBL- - Li,oo: 1€l

(111) If Algorithm A converges in a finite number of steps, say q*, then
(Ll,Q*’ ey Ln,q*) = SUPLBI((LI, . 7Ln)) = (LBH: v 7LBIn)

Proof. (i) {Lin»} is a non-increasing sequence with a lower bound of . Thus

o0
Lo = ltm L;y, exists and L; o = ﬂ Lip.
o0

T~
n=0

(11) We show this by induction. Obviously,
Lpr € L; = Lip
Now assume Lpy; C L; ;. Since §) is a monotone operator:
Lpr = Qi(Lpn) € U(Lij) = Lij

o
Thus Lpy € Li; (for j > 0) which implies Lpr € () Li; = Lico
§=0

(#3) Suppose that Algorithm A converges in a finite number of steps, say ¢*, then:

Lig = Ligs1, (€7)

Thus it will converge to a fix point of 2, which by Theorem 5-#7 is the supremal

element.

a

Example: Consider the plants G;, G5 and G3 in Fig. 3.1. The marked behaviors of these
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Figure 3.1: G, G2 and G3

plants do not form a blocking invariant tuple w.r.t their closed behaviors. In this example
we apply Algorithm A to the marked behaviors of Gy, G, G5 to find
SupBI(Lm(G1), Lin(G2), Lm(Gs3)). Following the notation of Algorithm A, we have

L;=L,(G;),({=1,2,3).
Let G, ; be finite state generators with

and
Lm(Giz) = Li;
where M; and L;; are as defined in Algorithm A.

Iteration 1: The action of the operator (2, is to compare G = G with each of the rest of
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Figure 3.2: G, 1

possible plant models (Gs9 = G2 and Gso = Gs) and remove the strings in the marked
behavior that violate blocking invariance. This will be done in 2 steps. At step 1,
compares G with Gop. a creates blocking in G but does not cause blocking in G .
Thus state 2 is unmarked to remove this string and its continuations from L,,(G1p). Now
« creates blocking in both of them. Figure 3.2 depicts the resulting plant Gl,% . It should
be noted that

L(Gyy) = L(Gao) = L(Gy)

’2

At step 2, {3 compares Gy 1 with G3g. B8 creates blocking in Gso but does not result in
blocking in G; 1. Thus the marking of state 4 is removed in G 1 to remove this violating
string from the marking of G, 1. Figure 3.3 depicts the resulting plant, G1,;. Next {2,
should continue the same procedure for Gy with respect to Gy, and G3o. This is again
done in two steps. At the first level, G54 is compared with Gy ;. S creates blocking in
(1,1 but does not generate blocking in Gao. Thus the marking of state 4 in G is changed.
In this way, G, 1 is generated. (Figure 3.4). Next Gy 1 is compared with Gizo. It can be

verified that there is no string in G, 1 violating blocking invariance. Finally Q3 will follow
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Gia

Figure 3.3: G11

Gz’%

Figure 3.4: G, 1 and G2
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Figure 3.5: Special case of Algorithm A

the same procedure for G35 and it is not difficult to verify that
Gs1 = Gsp

At this point iteration 1 is finished.
Iteration 2: It could be easily verified that the operator 2 actually does not change the

marked behaviors of any of G11,G21 or Gs1. Thus the algorithm terminates in this

iteration.Od

While the convergence of the proposed algorithm in general case is still an open problem,
we can establish convergence in a special case where the languages involved have a star
structure as defined in the following subsection. The languages involved in the Fault
Recovery problem studied in Chapter 4, have this configuration and thus the results of the

next subsection can be applied to Fault Recovery Problem.

3.3.1 Special case of Algorithm A

In this section we show that in cases where the languages L; and M; posses a “star
structure”, Algorithm A converges in one iteration. The results of this section are

applicable to Foult Recovery Problem discussed in next chapter. Figure 3.5, demonstrates
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the special case which will be considered in the following theorem.

Theorem 7. Assume the languages L; (and M;) can be partitioned into m subsets with

index sets Iy = {ny—1 + 1,...,m} with 1 <1 <m, (Figure 3.5), such that:
(1) Zn = {1}

(i) Ly C L, My C M, i €T

(i) L C Lig1, M; © Mipq, m1 +1<i<i+1<m, 2<I<m

(iv) LyN L; = Ly, M; N M; = M,

Vi, jim1+1<i<n, mm1+1<j7<n,l,te{2,...,m}

Then we have

Lpn =1L
LB[i-——‘Li—(Ml—L_])E*, i=mi+1,ng+1,n3+1,...,np1+1

Lpri=Li— (Mj-1— Li1)¥", m1+1<i-1<i<m, 2<I<m

Therefore, Algorithm A converges in one step.

Lemma 4. Assume languages L1, Ly, M1 and M,, satisfy
L1 C Ly, My C M

Then we have:

il
=

LN (M — Ly)E*
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Proof.

s € (M2 —IQ,)E* = sy : 8§ = 5152,51 € (M2 — 1_2)
= 81 ¢ _—[/—2
=51 ¢ Ly (sinceL, C Lo)

$8¢L1

Thus
LN (MQ ——E)Z* =0

|

Lemma 5. Let L; 4, M; and Lj 4, M; form_1+1<j<i<n, 2<1<m and g > 1 be as
in Algorithm A. Then:
(M; — L; )% C (M; — Lig)x"

Proof.
Lig = (Lig-1— (M; — L;,)=*) — {other terms}

Now we have

s € (MJ "Z;;)E* => 381,82 : § = 81892, 81 € (MJ —‘fj—,;)

= s, € M; (since M; C M;)

Moreover

31¢E;
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Since otherwise:

51 € EL,_q = ds3, 8183 € Li’q
= 5183 ¢ (M; — Lj,,)X* (By definition of L;g)

= 51 & (M; — Lj,)

which is not the case. Thus we have shown

S € (MJ — Lj’q)g*.

Thus

S1 ¢m,81€Mi=>81€Mi—Li’q

=s€ (M;— Ly

Lemma 6. Let L; 4, M; for ¢ > 1 be as in Algorithm A. Then fori € 1:
(My = L1,0)T" C (M; — Li )2

Proof. Similar to the proof of Lemma 5.

Lemma 7. Let L; 4, M; and L;q, M; be as in Algorithm A. Then:
(i) LigNLjg=L1, m+1<i<m, n1+1<j<n,lte€{2,...,m}q20

(1) Ljq C Lig, m+1<j<é<m, 2<1<mg=>0
Proof. (i) We first show by induction that:
Ll g Li,qai EIaq > 0
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For ¢ = 0, by assumption (%) of Theorem 7, we have:
LiCLg,i€l
Now assume for all : € 7 and withn > 1
L1 C L (3.6)

We show
L1 C L (3.7)

To show (3.7), we use induction on ¢. For ¢ = 1, we have:

Lip=ILina— |J M—-TjHm0)z
i>1, jeT
By Lemma 4 and (3.6):
(Mj - Lj,n-l)E* N L] = Q) ,j el

Thus
U M -T)s nLy=0

JE€T, §>1
Therefore,

Ll g Ll,n .

and the induction statement holds for ¢ = 1. Now fix | and assume

Vi,1<i<l—1:L; C L, (3.8)



Now we have:

Lip=(Lin1— | (M -T2 - [ (M= L;n0)EY)

j<ljez i>ljeT

From Lemma 4 and assumption 3.6 we have:

U WM -Tjn)s Ly =0

i>ljex

Also by Lemma 4 and assumption 3.8 we have:

U (M; — Lin)Z* N Ly =0

J<lj€T

Thus
LiC L,

This completes both inductions. Thus we have shown
L1 - Li,q,’L' € I,q > 0 (39)

Now assuming

mo1+1<i<n, gy +1<j<n,l,t€{2,...,m},g=>0
(3.9) implies:
Ly C LigN L

Moreover by assumption (%) of Theorem 7 and the fact that Q is a contractive map (i.e.

Q(Ky,...,K,) C(Ky,...,K,)), we have:

LigNLiyCLiNL; =1,
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Thus
LigNLig=1I4

(11) We show by induction that for ;3 +1<i<i+1<m, 2< I<m, g>0
Lijg C Liyig
The above inequality holds for ¢ = 0 by assumption (¢i¢) of Theorem 7. Now assume

Lig1 € Liyi-1

iyq—

We show

Lig € Liyig

For this, consider:

Lig=(Lig-1— |J (Mc—TLigm) — |J (Mx—TLg-1)T"

k<i,kel k>i,kel

= (Li,q—l - (Mi+1 - Li+1,q_1)2*) - {other terms}
Moreover:

Lisig= Livng1— |J Me—Teg=)— U (Mi—Leg-)™
k<i+1,keT k>i+1,k€l

- (Lz'-{—l,q—l - (Ml —_ m)Z*) — {other terms}



Note that {other terms} in both expressions are the same. Now we have:

s € Li’q =S E Li,q—l
= § € Ljt1,4-1 (By the assumption of induction)

= 5 ¢ (Mij1 — Liy1,4-1)2"

Moreover:

s € L; g = s ¢ {other terms}

Thus we show
8€Ly=>5€Li14-1& 8¢ (Miy1 — Liy14-1)2" & s ¢ {other terms}
Therefore by definition of L;;;, we have:

s € Li’q = s €& Li+1,q

Thus we show

LigCLiy1g ma+1<i<i4+1<m,2<1<m,q¢>0

which implies

Lj»qui,lb nl—1+1SJSzSnl)2Sl_<_m’qZO

Lemma 8. Let L; and M;’s be as in Algorithm A. Then

(i) fori€ {1+ 1,...,m} =1 and g > 0, we have:

1 Lig— |J (Mj—L;0q)%" =Lig— (M; — L))%"

J<i, J¢Il
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2 Lig— |J (M;—=Lj)T = Lig— (M — L)%
§>i, i¢h

(i) fori,j € {m—y+1,...,m} =1, 2< 1 <m, we have:

L Lig— |J (M;j—L;jg)% = Lig

Ji>1, ]eIl

2 (Lig— |J (Mj—Ljer1)T7) — | M —L;9)8 = Lig - U ;= Ljer)T

3<i, jEI; j>i, jel; j<i, j€L

8. Lig— U (Mj — Ljg41)2* = Lig — (Mi1 — Li-1,4+1)E"

j<i,jel

Proof. (i)(1) By Lemma 6 for ¢ > 0, we have:

My~ Tig)= € (M — L) C (M; = Lyen)S, j €T

Moreover
Ligy1 € Ly = (M — L)Z* C (My — Lygy1)Z" =
(My — L)2* C (M; — Ljg+1) ¥
. Thus
M-Iz e |J (M- Lien)T
J<i, j¢h
Therefore

Lig— |J (M —Ljgs1)=" C Lig— (M - L)z

J<i, 3¢5
Next we show
Lig— (My — L) C Lig— |J (M5 = Ligr1)%
J<i, j¢h

which is the same as showing:

s€(M;—Lig)X(f<ijel), s€Lig=>se (M- L)=*
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We have
BN (M] - Lj,q.|_1)2*, s € Li,q => 381,89 : § = §152,81 € Mj,Sl € M;, s € L_i:;, 81 ¢ Lqu+1

=81 € M;N Mj
= s; € M; (By assumption (iv) in Theorem 7) (3.10)

Moreover from Lemma 7-i for nj_q +1<i<ny, neo1 +1 <75 <ng, Lt €{2,... ,m}, we

have:
Ly C Ligr1 N Ljgi
Also :
Lig+1 € Lig
Thus:
L1 CLigN Ljgtn
Therefore:

51 ¢ Lj’q+1,81 S m = 81 ¢ —L—l_ (311)

Thus from (3.10) and (3.11) it follows that s1 € My — I, and s € (M; — L;)T*. And this
completes the proof of (1)(1).
(i)(2) Similar to (i)(1).

(i)(1) By Lemma, 7-i for ;j1 +1 <0< g <y, 2 <1< m,q >0, we have:
Li,q - Lj,q
Thus by Lemma 4:

LigN(M; = Lj)=" = 0 =
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Lign |J (M- L= =0

.7>7';J€Il
Therefore:

Lig— |J M —TL;9)%" = Lig

i>id€l;

(ii)(2) We have

(Lig— | (M —Ljqe1)2" C Lig

j<ijen
Thus
(Lig— |J (M5 =Ljq)E) N U 4 -L;)=r =0

j<i,j€l) i>igel;
Therefore
(Lig— |J M= Ligr)E") — U 4 —L;9)% = Lig— U M= L)z

j<i,j€n >t g€l i<ijel

(i3)(8) Follows from Lemma 5.

This completes the proof of the Lemma.

O
Proof of Theorem 7. We first show:
L,'yl =L;— (Mz‘—l - Li_l)Z‘*, n_1+1< 7 —1<1<nyg, 2<li<m (312)
Li,lzLi‘(Ml—'E)Z*, i=n1+1,n2+1,n3+1,...,nm_1+1 (313)
and then:
Lz',z = Li,l, i e€T. (314)

To show (3.12):

Ligp = (Lip — U (M; — Li)E") — U (M; = Lj0)="

jeT,j<i JET,j>i

3
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Now there are two possibilities here:

1) 1 —1>n_1+ 1: Then by Lemma 8-(%)(1) and(i)(2):

Liy =
(L= U M-Ts) - U (M-Tm) - (M- TS me+1<j <, 2< 1< m
J<ijen j>ijel
= (Lip — U(M9 —L;13*) — (My — L)~* (By Lemma 8-(41)(2))
j<i

= (Li— (M;_y — L;_11)%%) — (M; — L;)=* (By Lemma 8-(4i)(3))

= L, - (Mi—l - Li_l,l)E* (By Lemma 6)
2) i —1=mn;_;: Again by Lemma 8-(3)(1) and(i)(2) :
Liy=(Li~ |J M -L;0)2)) ~ (M ~L)S", ma+1<j<m, 2<1<m
§>ij€n

= L;— (M; — L;)2* (By Lemma 8- (i1)(1))

Thus we have shown (3.12) and (3.13). To show (3.14) we use induction on 7. It follows

from Lemma 8-(3) and Lemma 4 that

Lig=Liy =1
Now assume :
Li12= Lk,
we show
Lyo = L,

» )

There are two scenarios:
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1)nl_.1+1Sk—1<k§nl,2§l§m:

Lyz= L — |J (M =L;0)%9) - U 04 -z

JETL, j>k JEZ, j<k

By lemma8-(%)(1) and(i)(2) for ny.y +1 <5 < mae

= (Lea— J -Ti=n - U (M; = L;2)=%) = (My — Ly)¥)

i>kj€l j<kdel
= (Lea— | M —T52)5") — (M — L1)¥") (By Lemmas-(ii)(2))
j<kjel

= (Lgy — (My—1 — Li—12)2%) — (M1 — L)~ (By Lemma8- part (ii)(3))
= (Lgg — (Mgt — Le—1,2)2") — (M1 — L;)>* (By the induction assumption)
= Lk,l - (Mk—l - Lk_l,l)E* (By Lemma 6)

= Ly (By (3.12))

Nk=ma1+1,2<I<m

Liz = (Lky — U (M; — L;p)=") — U (M — Lj2)X"

JE€T, i>k JET, j<k

By Lemma 8-(i)(1) and(4)(2) for j in the branch of the star which starts from k:

= (L~ U M-Iz - (M — L=

j>k1j€Il

= Ly — (My — L1)%* (By Lemma 8-(73)(1))

= Ly (By (3.14))
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Thus in both scenarios the induction is proved and thus the following is true for ¢ € Z:
L’i,Z == Li,l

Therefore the algorithm converges in one step and (L1, ..., Ly, 1) is the fixed point of the

operator §) and by Theorem 5-ii we have

Lpp=1L;, 1€l

3.4 Application of Blocking-Invariant Languages to

RNSC-PO

In this section, we discuss the solution of RNSC-PO. As we will see later in Section 3.5, our
solution assume that the marked behaviors of the plants in RNSC-PO are

blocking-invariant. The following theorem states that if Algorithm A converges (in a finite
number of steps), the RNSC-PO ca be transferred into an equivalent problem in which the

marked behaviors of the plants are blocking-invariant.

Theorem 8. Consider the RNSC-PO problem. Assume that Algorithm A converges in a

finite number of steps. Then a supervisor v solves RNSC-PO if and only if:
1. Lm(v/Gs) C Ey, fori €T,
2. Lm(v/G;) = L(v/Gy), forieT.

Here the plants G; are finite-state generators with:

(Lm(él)a . 7Lm(@n)) = SUPBI(Lm(Gl)a cen 7Lm(Gn))
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E; = SupRg,(E;), €7,

E;= ENLy(Gy), ieT.

Lemma 9. Assume G, to be as in Algorithm A. Also assume v/G; is nonblocking for all

1 €TI. Then fori €T and q > 0:

Ln(v/Gig) = Lin(v/G) (3.15)

and v/G; 4 is nonblocking.

Proof. We show this by induction. For ¢ = 0 we have:
VieTl: Lm(Gi,o) = Lm(Gz) = Lm(’U/GZ',()) = Lm(’U/Gz)

Now assume (3.15) is valid for‘q = n. We show it is also valid for ¢ = n+ 1. In other words

we want to show

VieT: Lm('U/Gi,n—i—l) = Lm(’l)/Gz) (316)

To show (3.16) we use induction but this time on . For i = 1 we have

Ln(v/Gyint1) = Lin(v/G1n) N Ly (G 1) (By Lemma 2)
= L (v/G1n) N (L(G1) — | (L(G) — Tn(Gin))Z")

1€Z, i#£l

= Lpn(v/G1pn) — U (L(Gi) = L (Gin)) 2"

i€T, i1

63



Now we show
Lon(v/G1n) N (L(G:) — Ln(Gin))Z* =0, i€ T —{1}
If there exists s for which:
5 € Lin(v/G1n) & s € (L(Gi) — Ln(Gin))Z* =

381,89 : 8 = 5182,81 € L(Gy),51 ¢ Ly(Gin), 51 € L(v/Gin) =

s1 € L(v/Gyp) = L(v/Gh), s1 € L(G;), 51 & Lin(v/Gi)

Moreover we have:

L(v/G1) N L(G;) € L(v/G;)

since
L(v/meet(G1, Gs)) € L(v/G;)
L(v/meet(G’l, Gl)) = L(’U/Gl) N L(Gl) N L(Gz)
= L(v/G1) N L(G:)
Thus:

81 € L(’U/Gi),

which is not possible since v is a nonblocking supervisor for G; and we assume

51 € L(G;) — Lu(G;). Hence:

Lm(U/Gl,n+1) = Lm(’U/Gl’n) = Lm(U/Gl).
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Now we have to show if
1 S ) S I—1: Lm('U/Gi,n-l-l) = Lm(’U/GZ) (317)
then

Lm(U/Gl,n-H) = Lm(U/Gl)-

Since we are dealing with two inductions on ¢ and 4, we restate the assumptions to avoid
ambiguity:
Lm(’U/Gz’n) = Lm(’L}/Gz) 1€71 (318)

Lm(U/Gi,n—l-l) = Lm(’U/Gz) Vi<l-— 1,7 € A (319)

To finalize the induction on ¢:

LM(U/Gl,n+1) = Lm(U/Gl,n) N Lm(Gl,n+1)
= (Ln(v/Gi) N (L (Gin) = | J(L(Gi) = Ln(Ginr)) =) — | J(L(G) = Lin(Gin))Z7)

= (L (v/G1n) = | J(L(G:) = Ln(Ginar))Z*) = | J(L(G:) = Ln(Gim)) 5

<l >l

Now we show:
(t) Lin(v/Gip) NV (L(G;) = Lin(Gip1))X* =0 ,0 € I,i < !
(11) Lin(v/Gin) N (L(Gi) = Lin(Gin))E* =0 ,i € Z,i > 1

To prove (i), note that:
S E Lm(v/Gl,n) & s e (L(GZ) — Lm(Gi,n+1))Z* =

381, 89 :8 = 5152,51 &€ Lm(’l)/Glyn), 81 € L(Gz) — Lm(Gi,n-i—l) =

65



s1 € L(v/Gin) & s1 € L(G;)

Moreover since L(G, ;) = L{G}), 7 > 0:
s1 € L(v/Gy) & s1 € L(G;)
Following the same discussion as in the case i=1, we can conclude:
s1 € L(v/Gy)

and since L(Giny1) = L(G:):
s € L(U/~Gi’n+1)4

Thus we find a string, s;, such that:
51 € L(v/Giny1) & 51 € Lin(Gint1)
This implies
51 ¢ Lm(v/Gint)

By (3.19):

s1 ¢ Lm(v/Gi)

However this is not possible since s; € L(v/G;) and v is assumed to be nonblocking for G;.

Thus:
Ly(v/Gip) N(L(G;) = Lin(Gip1))X* =0 ,i € T,i <

Similar to (%), (i) can be shown and hence we have shown
Lin(v/Giny1) = Lm(U/Gl,n) = Lin(v/Gy).
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This completes the induction on ¢ and ¢ and therefore we have:

Lon(0/Gig) = Lin(v0/Gs), g3 0.

Thus:

Lim(v/Gig) = Lin(v/Gi) = L(v/G;) = L{v/Gix)

and v/G; is nonblocking.
Proof of Theorem 8(If). We assume that there exists a supervisor, v, which solves the

RNSC-PO. Now by Lemma 9 for k > 0 we have:
Lin(v/Gig) = Ln(v/G).
Replacing k = ¢* ( assuming the algorithm stops in ¢* steps):
Lin(/Gy) i= Lin(v/Gige) = Lin(v/Gy).
Moreover Ly, (v/G;) must be Ly, (G;)-closed; thus:
Ln(v/G) C E.

Therefore:

Len(v/Gy) € B! N L (v/Gy) € E.

Also by Lemma 9, v/ ézk is nonblocking for all 4 € 7, k > 0 especially k = ¢*. This
completes the proof of the (If) part.

(Only If.) We have to show if there exists a supervisor v for which L,(v/G;) C E; and
Lm(0/Gi) = L(v/Gy), for i € T, then v solves the RNSC-PO. For this, we first show:

67



L,.(v/G;) C E;, which is straightforward according to the following:

Ln(v/Gyi) = L(v/G;) N Ly (Gy)

C E;0 L (Gy)

Thus:

Next we show

Lin(v/Gi) = L(v/Gy)
which could be shown as follows:
Ly(v/G;) C Lm(v]G;)
- L(U/ Gi)

= L(v/G))

= Ln(v/G;) (By assumption)

Thus:

L, (v/G;) = L(v/G;).

And this completes the proof of Theorem 8.
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3.5 Solution to RNSC-PO

In the following theorem, we investigate the solution to the RNSC-PO. First a new DES
(G) is defined via the union of the behavior of plants G;. Afterwards a new design
specification (F) is introduced which consists of the common stings of the union of each E;
and the complement of L,,(G;) w.r.t L,,(G). It should be noted that the supervisor v only

monitors the observable events and thus :
Vs, : Ps=Ps = v(s) =v(s)

where P : ¥* — ¥} is the natural projection.

Theorem 9 (Solution to RNSC-PO). Let G be a DES defined via:

Ln(G) = | Ln(GY),

i€l

L(G) = JL(G)).

i€l

Moreover define E to be :

E = m(Ez U (Z* - Lm(Gz))) N Lm(G)

i€
Also assume (Ly(Gh), ..., Li(Gh)) is blocking-invariant w.r.t (L(Gh), ..., L(G,)). Then :
1. (i) Suppose K CE, K # () and K is
(a) Controllable w.r.t G,
(b) (L(G), P)-observable.
(¢) Lm(G) — closed,

(d) nonconflicting w.r.t Ly,(G;), Vi € T.
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Then a supervisor, U, exists that solves the RNSC-PO with L, (V/G) = K and

L(H/G) =K.
(1) For any v which solves the RNSC-PO, L., (v/G) satisfies conditions (a — d) in

part(1)(i).

2. If a supervisor, v, solves the RNSC-PO then L,,(v/G) C E.

3. If E+ 0 and E satisfies conditions (a-d) in part (1)(i), then (i)a supervisor v* exists
that solves RNSC-PO with L, (v*/G) = E and L(v*/G) = E. (ii) v is a mazimally
permissive solution to RNSC-PO if and only if Lm(v/G) = E and L(v/G) = E.

Lemma 10. For any M C L,,(G;) we have:

(Vi,j€I): MnL(G;) =MnNLy(G;).

Proof. (L (G1),-..,Lu(Gy)) is B.L wx.t (L(Gy),...,L(G,)). Thus by Lemma 3 we have:

(V’L7] € I) : Lm(Gi) N L(G]) = Lm(Gi)'m Lm(GJ)

Ln(G)NLG)NM = Lp(Gi) N Ly (G))N' M

L(Gj) N M = L,(G;) N M (since M C Lin,(Gy))
1

Lemma 11. With E, L,,(G;) and L(G;), for i € Z, as in Theorem 9, then for any K C E,

ENInGi) = KN L(Gy). (3.20)
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Proof. Without lost of generality we assume Z = {1,2,3}. It is straightforward that

E=(EyNE,NE;)U(E1NE;NLY(Gs))U (BN EsNLE(Ge)) U (E2 N EsN Lig(Gy))

U (B, NLE(G2) NLE(G3)) U (Be N LE2(G1) N LE(Gs)) U (B3 N LE(Gy) N LE(GR)).

and since Fy C L(G4):

ENL(G) = (BN E2NE3) U (BN EyN LE2(Gs)) U (Er N E3 N LE(Gy))

U (El M L%(Gz) N ng(G?’)) U (E2 NE;N L,cg(Gl) N L(G1))

U (Ea N L(Gh) N L (Gs) N L(G1)) U (B3 N Lee(Gr) N Lee(Ga) N L(GY))

Moreover by Lemma 10:

Lm(Gz) N L(Gl) = Lm(G1) M Lm(Gz) =

Es N E3 N Le2(G1) N L(Gy) = B N B3 N Le2(G1) N Ly (G1)

Here the last equation follows from E» N E3 N LE(G1) € By C Ly(Ga).

The same justification could be done for other terms of E N L(G;) which contain L(G,), so:
ENL(G,) = EN Ly(Gy)

Similarly for 7 € {2, 3},
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Now for any K C E we can say

Moreover,

Hence,

Similarly for ¢ € {2, 3},

Lemma 12. Assume v is a supervisor which solves the RNSC-PO with K; = L.(v/Gy),
and K = Ly, (v/G). Then:

K =|JEK.

i€l



Proof.

K = L(/G) N Ln(G)

=L{w/G)N (U Ln(G
= JZ@/G) N Lu(GY))
€L

= JLm(v/Gy)
€T

= UKz

O

Lemma 13. Let G be defined as in Theorem 9. Also suppose v solves the RNSC-PO and

let

Ki = Lm(’U/Gi),

K = L,(v/G).
Then fori,j € I,i# j:
K;S: N L(G) C K2k, N L(Gy) (3.21)
K; N Ln(Gs) € K; N Lin(Gy) (3.22)

Proof. We will show the results for the case when we have two plants G and Gs.

Generalization to n plants would be straightforward. Hence assume,

Ky = Ln(v/G1),
Ky = L,(v/Ga),

K = L (v/G).
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Thus:

K1 = L(v/Gy) = L(v/G) N L(G) =
KN L(Gy) = L(v/G) O L(Gy) N L(Gy)
= L(v/G) N L(Gy)
C L(v/Gy)
=K

Z—f{_gﬂL(Gz) =

K5, N L(Gy) € Ko, N L(Gs)

Similarly
Ko¥i, N L(GY) € Ki¥i, N L(Gy)

Next,
K, NL(Gy) € Ky N L(Gy)

Hence by taking the intersection of both sides with L,,(G2).

K, N Lp(Gs) € K30 Lin(Go)
Similarly,
—I(—Zn Lm(Gl) c Km Lm(Gl)

And this completes the proof of Lemma. L—_I

Proof of Theorem 9. (1)(i) If K satisfies conditions (a-c) in part i in Theorem 9 then by
Theorem 3, there exists a supervisor 9 for which L,,(3/G) = K and L(7/G) = K. We have
to show U solves the RNSC-PO.
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Using Lemma 2 :

Ln(U/G;) = Lin(T/G) N L (Gy)
=Kn Lm(Gz)
C EN Ln(Gy)

CE;

As for non—blocking,

L.(0/G;) = KN Ly(G;) ( By Lemma 2)
=K N Ly (G;) ( K is nonconflicting w.r.t L,(G;))
= K N L(G;) ( By Lemma 11)
= L(U/G) N L(Gy)

= L(U/G;) ( By Lemma 1)

Hence v solves the RNSC-PO and this completes the proof for part (i).
(1)(ii) In this part we assume we have two plants Z = {1, 2}, extension to the general case

is straightforward. Suppose,

Kl = Lm(U/G1)7
Kz = Lm(U/Gz),
K =L,(v/G).

Thus using Lemma 12

K =K UK,.

We also have for i=1,2 :
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1. K; is controllable w.r.t G;.
2. K; is (L(G;), P;)-observable.
3. K; is Ly, (G;)—closed.

and we want to show the same properties hold for K w.r.t G and also K is nonconflicting

w.r.t Ly, (G;) for i = 1,2. We start by controllability of K w.r.t G:

K5, N L(G) = (K1 UK3) Ty, N (L(G1) U L(Gy))
= (K125, N L(G1)) U (K25, N L(Gy)) U (K1, N L(G2)) U (K227, N L(GY))

Using (3.21):

K5 NL(G) = (K1X,. N L(G1)) U (K2X;, N L(G2))

CKiUKy,=K.

Next observability of K is investigated. Suppose v solves the RNSC-PO then v only

monitors the observable events. Thus
Vi,jeZ: se€ L(G;) & € L(G;) & Ps = Ps = v(s) = v(s)
Using this fact we show K is observable w.r.t to G. We have to show

Vs,8,0: Ps=Ps &s cK&soeL(G)&sosc K=soeK

Four situations are possible for 7,7 € {1,2},47 # j.
1) s'oc € L(G;) & so € K; & s’ € K; = s'0 € K;. Now since K; is observable w.r.t L(G;))

we have:

sceK
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2) s'oe L(G) &soeK; CLGy) &s' € K, = s € L(G;) & s € L(G,) & Ps = Ps'. This
corresponds to a situation in which two strings with the same projection are generated in

different plants. As we discussed earlier, we have:
v(s)=v(s) &oev(s)=>oeu(s)=>so€ K
3) s’aeL(G’i)&saefﬁ&s’EE#SEL(GQ&UEU(S)=v(s’) =
sceK,CK=soceK
4) s'oc € L(G;) & so cK; & €eK;=sdcL(G)&se L(G;) & o € u(s) = v(s) =
sceK;,CK=soekK

As for Ly, (G)-closedness,

Kn Lm(G) = (K UI—(;) N (Lm(Gl) ) Lm(GZ))
= (K7 N Ln(G1)) U (B N Lin(G2)) U (Bq 1 Lin(G)) U (B3 1 Lin(G1)

By (3.22):

K N Ln(G) = (K1 N Li(G1)) U (K2 N Liy(Ga))
B Kl U K2

=K



Finally we have to show K is nonconflicting w.r.t Ln(G1) and Lin(Gs).

K N Ly(G1) = Liy(v/G1) (By Lemma 1)

= L(v/G;) (v solves the RNSC-PO)

= L(v/G) N L(G1)
= KN L(Gy)
Moreover,
KN Ln(G1) CKENLy(G1) C KNL(Gy) =
Kn Lm(G1> = F M Lm(Gl)
Similarly

K O Lp(Ga) = K N Ly (Ga).

And this completes the proof of part 1 of Theorem 9.
(2). If v solves the RSNC-PO then

Ln(v/G;) € E; ( By Theorem 8) =
Ln(v/G)Y N L(G;) € B =

Ln(v/G) C E; U (X" — Lin(Gy))

Moreover,

Ln(v/G) C Ln(G)

Hence,

Ln(v/G) € Lu(@) N ([ BV (Z* = Li(G1)) = E

1€l



(3)(i) If E satisfies conditions (a-c) in part (1)(i) then by Theorem 3, there exists a
supervisor v* for which L, (v*/G) = E and L(v*/G) = E. We have to show v* solves the

RNSC-PO.

Using result of Lemma 2 :

Liy(v*)Gi) = Lin(v*/G) 0 Lin(Gy)
= EN Ly (G)
= (B U (5" = Ln(G))) N Ln(G5)

JjET
C (B U (2 — Ln(G2)) N Lin(GY)

= E

As for non-blocking,

L(v*/G;) = EN Ly(G;) ( By Lemma 2)

N L (G;) (E is nonconflicting w.r.t Ly, (G;))

Il
il

I

E N L(G;) ( By Lemma 11)
L

(v"/G) N L(G)

L(v*/G;) ( By Lemma 1)

Hence v* solves the RNSC-PO and this completes the proof for part i.
(3)(ii)(If.) Suppose L,,(v/G) = E then similar to part i, v solves the RNSC-PO. Moreover,
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according to part 2, for any other supervisor, v’ solving the RNSC-PO, we have

L,(V'/G)CE
= Ln(v/G) =
Ly(V'/G) N Lin(G;) C Li(v/G) N L (Gy) =

Ly(V'/G;) C Lin(v/Gs)

Hence v is a maximally permissive solution to RNSC-PO.
(Only if.) Suppose, v, is a maximally permissive solution to RNSC-PO. Also assume

Lm(v*/G)~: E with v* as in part i. Then,

Lm(’U*/Gi) - Lm(U/Gz) =
Ly (v*/G) N Lin(G;) C Lin(v/G) N L (G;) =

ENL,(G;) C L(v/G) N L (Gy)
Hence,

EN({JLm(G) € Ln(v/G) N (| Lm(Gi)) =

€L €T
EN Ln(G) € Lin(v/G) N Lin(G) =

E C Ln(v/G)
Moreover, v is a solution to RNSC-PO:
Lm(v/G) C E (By part 2)

Hence

Ln(v/G) = E.
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And this completes the proof of Theorem 9. d

Remark 3. Note that in the solution obtained for RNSC-PO, we assume that

(Li(G1), .-, Ln(Gr)) is B.J w.rt (L(G1), ..., L(Gy). If this assumption does not hold, we
may attempt to use Algorithm A to find plant’s 51, ee Gr satisfying the blocking-invariant
assumption. Specially, if Algorithm A converges in a finite number of steps (for example in
the case described in Theorem 7), then by Theorem 8, the original robust control problem
can be transferred to an equivalent robust control problem satisfying the blocking-invariant
assumption. In next chapter, we will use our results on robust control under partial

observation to find the solution to the Fault Recovery Problem.
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Chapter 4

Fault Recovery

As the complexity of control systems has increased, concerns for their safe operation and
reliability, especially in the presence of failures, have grown. In order to ensure reliability in
cases of failure, the controller (supervisor) may take appropriate remedial actions such as
control system reconfiguration. In this chapter, we study the problem of the synthesis of
fault recovery procedures using discrete—event models.

Fault recovery in DES has been studied by researchers (e.g., [27, 4, 19, 10]). [19] studies
fault recovery in DES assuming permanent faults. It is assumed that a diagnosis system is
available which detects and isolates faults with a bounded delay. The diagnosis system is
modeled as a finite—state automaton that generates a “detection event,” within a bounded
number of events after a fault occurs. The technique used in the design of the diagnosis
system could be either based on continuous—variable models such as differential equations
([13]) or DES-based (e.g., [11]). In other words, the finite-state automaton model is an
abstraction of the underlying diagnosis system. One of the advantages of this approach is
that the diagnosis and control problems are almost separated, allowing simpler solutions
for both problems.

The system to be controlled which consists of the plant and the diagnosis system will have

three modes of operation: (i) normal when the plant is functioning properly, (ii) transient
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when a fault has occurred but still not diagnosed by the diagnosis system, and (iii) recovery,
when the fault is diagnosed (and appropriate actions may have to be taken for recovery).
Based on the supervisory control theory of Ramadge-Wonham (RW) [26], [19] proposes a
modular switching supervisory control scheme to enforce design specifications in the three
modes. The issues of supervisor existence and optimality are not addressed in [19].

In this chapter, we re-examine the problem posed in [19] and manage to characterize the
solutions of the prbblem. For this, we first transfer the problem into an equivalent Robust
Nonblocking Supervisory Control under Partial Observation and then solve the resulting
robust control problem. We obtain the solution to our robust control problem using the
results of the previous chapter. We show that the solutions of the fault recovery problem
can be characterized in terms of certain controllable and observable languages. Thus we
obtain necessary and sufficient conditions for the existence of the supervisor.

Section 4.1 deals with single-failure scenarios. In Section 4.1.1 modeling of the plant and
diagnoser is described. In Section 4.1.2 the statement of the fault recovery problem is given.
In Section 4.1.3, we obtain the solutions to the fault recovery problem. Section 4.2
generalizes the results developed in Section 4.1 to simultaneous-failure scenarios. Finally in

Section 4.3 an illustrative example is provided.

4.1 Single-Failure Scenario

4.1.1 Plant and Diagnoser

We model the plant as a finite state automaton H = (@, £g, 4, go, @m ). This model
describes the behavior of the plant in normal and faulty situations. We assume there are n

failure modes Fi, ..., F,,. Furthermore, we assume:

(1) All failure modes are permanent, which means that when a failure occurs the system

remains in the faulty condition indefinitely.

(2) Single—failure scenario, which means that at most one failure mode may occur at
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Figure 4.1: Plant with three permanent failure modes (Single-failure scenario)

any time. This assumption will be removed in Section 4.2.

As a result of these assumptions, the plant can be in one of n + 1 conditions: N (Normal),
F,.. .. F,.

Based on these assumptions, we can partition the state set of the plant into normal and
faulty states according to: Q@ =QnU Qr U...UQE,. Let ¢ = {f1,..., fn} be the set of
failure events. As a result of a failure event f;, the system enters failure mode F;. Failure
events are assumed to be unobservable and uncontrollable. We partition the alphabet, Xy
according to Xy = ¥, U Xy where as mentioned before, £ is the set of failure events and
¥, contains the remaining of plant events. Fig. 4.1 shows an example in which the plant
has three different permanent failure modes.

We assume that a diagnosis system is available which detects and isolates failures with
bounded delay (for example, 3 to 5 events). If a failure f; is detected and isolated, the
diagnoser reports the failure by generating a “diagnosis event” d;. The set of diagnosis
events is denoted by X;. Diagnosis events are assumed observable, but uncontrollable.

We use an automaton D = (Y, Xp, 7, Yo, Ym) to model the diagnosis system. Here

Yp =2Xg U3y We use the example in Fig. 4.2 to explain the structure of the diagnosis

system model. In this example, the plant is assumed to have two permanent failure modes.
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Figure 4.2: Example of Diagnoser Delay Model

The minimum and maximum diagnosis delays for F} are assumed to be 1 and 2 events and
for Fy, 0 and 1 event. Initially when (by assumption) the plant is in the normal condition
and the diagnosis system is in state 0. If f1 occurs, the system enters the state 11. States
11, 12 and 13 correspond to transient mode when f; has not been diagnosed yet. Once f; is
diagnosed, dy is generated and the diagnosis system enters state 14 and recovery may begin.
Similarly, states 21 and 22 correspond to the transient mode following the occurrence of fs.
Once f» is diagnosed, the diagnosis system enters state 23 and the recovery mode begins.
The model used for the diagnosis system is an abstraction of the underlying diagnosis
system.The diagnosis system could have been designed based on any technique, as long as
the bounds for diagnosis delay are available. In general, these bounds are functions of fault
type, plant dynamics and diagnosis technique. One of the advantages of using an
abstraction is that it results in the separation of the diagnosis problem and the control
problem, thus simplifying the design process. Of course, the time bounds for diagnosis
delay have to be computed and since we use an abstraction of the diagnosis system, the
approach may be to some extent conservative. For example, in a certain cycle of operation,
the diagnosis delays may be smaller than the upper bound used for the design of

supervisory control; this may lead to a more conservative control algorithm.
Note that here we assume that after a failure occurs, the plant under supervision generates

the minimum number of events necessary for diagnosis (i.e., the minimum diagnosis delay).



Figure 4.3: Example of G

This assutption holds (trivially) if the minimum diagnosis delay is zero. Another case in
which the above assumption is true is where the system is live in the sense that it does not
have a state at which no events are enabled.!

The system to be controlled, G, is the synchronous product of H and D (G = H||D). G
has three modes of operation: (z) Normal (N) when all components of the system are
working properly (i) Transient (T) when a failure occurs in the system but the diagnosis
system has not diagnosed it yet and(41) Recovery (R) when the failure is detected and
isolated and the corresponding diagnosis event is generated. Accordingly we can partition
the states of G into three different blocks corresponding to different modes of operation:
Q% = Q5 UQF UQE. Moreover QF and QS can be further partitioned according to failure
modes. Finally let Gy be the subgenerator of G' corresponding to states Q%. This
generator describes the behavior of the system in normal mode. Also let Gy and GyTg be
the subgenerators of G corresponding to Q% U Q% and Q§ U Q% U QS respectively. Also we
define sub-generators Gng, and Gyrig, to correspond to QF U Q% and QF UQF U Q§,

respectively.

Example 1. Consider a plant with two permanent failures fi and fo. Let the minimum

and mazimum diagnosts delays be 0 and 1 events for fi, and 1 and 2 events for fo. Fig. 4.8

!Timed DES are examples of this case since in a timed DES, the clock keeps generating tick events.
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shows the generator G = H||D, where T, = {e, 8,8, 11,72}, Zf = {f1, 2}, Za = {d1, d2}.
Also, Q% = {0,20}, QF, = {10,13}, QF, = {21,22,25}, QF = QF, U Q%,,
Q%, ={11,12,14,15} QF, = {23,24,26,27}, and Q§ = Q% U Q%,.

4.1.2 The Fault Recovery Problem

Let En (C L(Gn)), Ent,(C L(Gnt,)) and Enr,r,(C Ly (Gn1yr,)) denote legal languages
for the modes N, T3, ..., and Ry,..., R,. The normal specification does not include

fault and diagnosis events (Ex C X7). For each of the transient specifications we have

ENTi Q (Ep U {fz})* and ﬁnally, ENT«;RL- g (Ep U {fz} U {dz})*

Fault Recovery Problem-Single Failure (FRP-SF) Given the plant G = H||D and
legal languages Ey, Ent, and Enrp, for i € T = {1, ..., n}, synthesize a supervisor

v: %* — I's; such that:

(1) Lm(v/GN) € En

(2) L(v/Gnr,) € Ent,

(3) Ln(v/Gnrir;) € Enmir,

(4) Lu(v/Gy) = L(v/Gn) -

(5) Tn(v/Grrin) = L(v/Grriz,).

Note that we require the plant under supervision to be nonblocking in the normal mode and
(in case of failure) in the recovery mode. Nonblocking property during the transient mode
(for Gnr,) is not required. The reason is that by assumption the failures are diagnosed with
a bounded delay and G enters recévery mode (from transient mode) after the execution of
a bounded number of events. Also note that Eng; is assumed to be prefix—closed.

As we will see in next section, FRP-SF can be transformed to an equivalent RNSC-PO.
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4.1.3 Supervisor Synthesis

In this section we use the tools we developed in previous chapter to find the solution to
FRP-SF. Specifically, we transform the FRP-SF to an equivalent RNSC-PQ problem.
Note that FRP-SF' resembles RNSC-PO. The difference is that in FRP-SF, nonblocking
property is not required in the transient mode and the legal behavior limits the closed

behavior (not the marked behavior).

Theorem 10 (FRP-SF to RNSC-PO). A supervisor, v, solves the FRP-SF if and

only if:

s

. Lm(v/Gy) C Ex
2. Lm(v/Gnr,) C Ent,

3. L(v/Gn1ir,) C EnTiR,
4 Lu(v/Gn) = L(v/Gw)

5. Lm(v/Gyr,) = L(v/Gnr,)

S

Lw(v/Gnrir) = L(v/Grrig,)-

Here,

L(Gyr,) = L(Gyr,),
Lin(Gn.) = Lin(Gv) U (LGN fiE" N L(Civ)),
L(G@nrr) = L(Gyrir),
Ln(Gnrin,) = Ln(Gyr) U Lin(Grziry),
Ent, = Byg, N Ln(Gyr),s
Enpp = Enrg, U (E;I\—TT—R, N Li(Gnr)),

lyJI\ITlR1 = SupRGNTiRi (ENT«;Ri ) .
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Lemma 14. Assume Eyrp, and Lm(aNTi&) are defined as in Theorem 10. Then:

Entir, O Li(Gyrir:) = Entims-

Proof.

Enzr, N Li(Ghrir) = (Bygm, U Bvnig, N Ln(Grr)) 0 (L(Gr) U Lin(Garir,))

= EEVT,;R,- n (Lm(éNTi) U Lm(GnriR;)) ( Since Efv:riRL- N Lm(aNTi) - E;VTiR,i)
= (Bivgr, N Ln(Gwr)) U (Bivgm, N Lon(Ghiv,))
= (Bxpr, 0 Lo(Gnr,)) U Eyrr (Since Eypp, is Lo(Gnr,r, )-closed)

= ENT{R,--

Lemma 15. Let Gyp,r, and G NT.R; be defined as in Theorem 10. Moreover assume v

satisfies conditions (1-6) in Theorem 10. Then:
L(v/Gnrir) = Ln(v/Crrir,).

Proof. We have to show
Ln(v/Gnrir) C Ln(v/GhriR,)- (4.1)

Ly(v/Gnrir) € Lm(v/Grri)- (42)

(4.2) follows from L,,(Gnr.r,) C Lm(@ NT:R;)- To show (4.1), we need to show:

Vs € Ln(v/GNrr,) i $ € Im(U/GNrir,)
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For s € L, (v/ G NT;R;) there exists
Sp E X850 € Lm(U/éNﬂ&)

Due to our problem formulation, ssp could have one of the following forms:
1) ssp € I

2) ss0 € Xpfi(Ep, UL{Si})"

3) sso € XpfulXp U {fi})"ds(3 U {£i})".

However if ssy is in the first or third group, then:
$Sg € Lm(@NTiRi) < 88 € Lm(GNTiRi)

Since

Lm(v/GNani) = L(U/GNTiRi) N Lm(GNTiR1‘)7
Ln(v/Gnrir) = L(w/Gnrip) N Ln(Grrigy),

We have

88y € Lm(’l}/aNnRi) < 88p € Lm('U/GNTiRi)

As a result, to show (4.1) we have to show
550 € Tpfi(Sp U{£:})", 550 € Lm(v/Grmin) = 5 € Ln(/Grmir:)
Since ssg € Lyn(v/Gnrr,) We conclude that
sso € L(v/Gnrr,) = sso € L(v/Gnr.r,)

By assumption, in case of failure, the diagnosis event will occur with bounded delay, say
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Doz Therefore:
354 € (S, U{fi})"ds : 55050 € L(v/Crrir) = Lw/Cnrrs) = Lm(v/Cnzn,)
Based on our previous discussion on the strings in group (3), we have
55054 € L (v/GNriR,)

which implies

s € Lm(U/GN’ERi)
And this completes the proof of Lemma 15.

Proof of Theorem 10. We show
[Lm(v/Grr) € Enn, & Ln(v/Gur) = L(v/Gyr)] & L(v/Gyz,) € Evr,
Ln(v/Gyrir,) © Entip, € L(v/Gurin,) € Ennim,
Ln(v/Gyrir) = L(/Gyr,r.) € Ln(v/Gyrr,) = L(v/Grir)
(If) We have

L(Gn1) = L(Gyr) =
L(v/Gn1,) = L(v/Gnr,)

- ENn

C Eng, N L(Gyr,)
C Enm,

C Ent, ( Since Enr, is assumed to be prefix closed)
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Moreover

Lm(v/GNTi5,) = Ln(v/Gnrims) 0 Lo (G,
C Enrp, N Lo(Gyrir,)
= (Byrz, U (Bzm, N L(Gnp)) 0 L (G,
= (Evg,p, N L(Gyir)) U (Biygig, N L (Grzir) N Lin(Gvry))
C (Byrp, N L(Grrir)) U (Bypg, N Ln(Gz)) (Engg, 18 Lin(Gyrr,) — closed)
- E.;VTiRi

C EnTiri-

Next we show

Ln(v/Gnrir) = L(v/GNriR,)

By Lemma 15:

Ton0/Ctin) = I/ Covrims)
= L(v/Gnrir:)

= L(v/Gnr:r:)

And this completes the proof for the (If) part.

(Only If) In this part we assume a supervisor v exists which solves the FRP-SF' problem.

Thus:

Lu(v/Gn1) = L(v/Gnz) N Lin(Grvz)
= L(v/Gn1,) N L(Guz)
C En, N Ln(Gar,)

= ENTi
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Moreover:

Lm(v/Grr:p) = L(v/Gyr:r,) N Lin(Grris,)
= (L(v/Gnzir) N Ln(Grzin,)) U (L(v/Gnrin) N LG, )
= Ln(v/Grrim) U (L(v/Grrir) N Ln(Grr))
C Bypr, U (Bygr, 0 Lun(Grz))

= ENTyR;

As for non blocking:

Ln(v/Gnr) = L(v/Gyr) N Lin(Grr)

= (L(v/Gnz) N Lin(Gn)) U (L(v/Gz) 0 (Len(Gn) £ N L(Gwvrs)))

v is a nonblocking supervisor for G, thus:

Ln(v/Gyr) = (L(v/Gn1,) N L(GN)) U (L(v/Grr) N (Ln(Gr) £ N L(Gz)))

= (L(v/Gn1.) N L(GN)) U (L(v/Gnr) N Len(Gn) f£*) ( Since L(v/Gnr) € L(Gnr,))

Observe that:
L(U/@N;pi) NL(Gn)={s€ L(U/@Nq;.) | s does not contain failure event “f;”}.
Also since v/Gy is nonblocking

L(w/Gnp) N L(Gy) € Ln(Gy)
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Thus

s contains at least one failure event “f;”}

L(v/Gnr) N LGN 5" = {s € L(v/CGnr,)

Which results in:
Ln(v/Gyr,) = L(v/Gnr,)

Also:
Ln(v/Gnzir,) = L(v/Gnzir,) = L(v/Grrir,).
Moreover:
Ln(v/Gnrir) € Lin(v/Ghrr) € L(v/Grr,)-
Hence:
Lun(v/Gnrr) = L(v/Gnrr.)
And this completes the proof of Theorem 10. |

Theorem 10 transfers the FRP-SF to an RNSC-PO. Hence we can find a solution for this

problem using Theorem 9. The result is stated in the following theorem.

Theorem 11 (Solution of FRP-SF). Let G be defined via:

Lm(G) = U Lm(éNTiRi)7

i€l
L(G) = | L(Gnzir)
iez

Also let E be defined via:

E= ([EN U LfS(GN)} n [ﬂ (ENﬂ U Lfﬁ'(@NTi))] N [ﬂ (ENT@- U Lf,‘{(éxvnm))] )N Li(G)
i€l i€l

94



where

L(Gwr,) = L(Grr),
Lin(Gwr) = Lin(Givy),
L(Gwrr) = L(Ghrr),
) = Lin(Grr) U (L (G S 0 Ln(Gvir),

m(GNTRl
Ent, = Exr, = Enz, N Li(Gr),
Enrr = (Eypg, N L(Grrir,)) U Biypg, 0 Ln(Grr)),

EE\/’TiRi = SupRGNT,»Ri (ENTiRi)'

Then :

1. (i) Suppose K CE, K # 0 and K is:

(a) Controllable w.r.t G

(b) (L(QG), P)-observable

(¢) Lm(G) — closed

(d) Nonconflicting w.r.t Lm(éN) and all L(Gyrr,), Lm(Gnr) (i € T).
Then a supervisor, U, ezists that solves FRP-SF with L,,(0/G) = K and

L(U/G) =
(i) For any v which solves FRP-SF, L,,(v/G) satisfies conditions (a-d) in part

(1)(5)-
2. If a supervisor, v, solves FRP-SF then L,,(v/G) C E
3. If E #+ 0 and also E satisfies conditions (a-d) in part (1)(i), then (i) a supervisor, v*,

exists that solves FRP-SF with Ly, (v*/G) = E and L(v*/G) =E (i) v is a
mazimally permissive solution to the FRP-SF if and only if L,,(v/G) = E and

L(v/G) =



Proof. We show this theorem assuming single-failure mode (£; = {f1}). Generalization to
n failures would be straightforward. For simplicity we drop index 1 from the formulas.

Theorem 9 assumes B.1., so first we use Algorithm A to construct generators Gy, G N7 and

G ~nTr such that:
(Lon(GN), L GNT), Len(Gvrg)) = SUpBI (L (Cn)y LGNty Lin(Gvrr))
To calculate SupBI, let:

Gy = Gy, Gy = Gyr, Gs = Gyrr
I={1,2,3}, I; ={1},Z, = {2,3}
Ly = L,(Gn), Lo = Lm(@NT)a Ly = Lm(aNTR)

My = L(Gy), My = L(Gy7), M3 = L(Gnrr)
Moreover it is obvious that:

L1 = Lm(GN) g Lm(aNT) - L2a
Ly = Lo(Gnr) C Lin(Grrr) = Ls,
M; = L(Gy) C L(Gnr) = My,

M, = L(CA;NT) Cc L(@NTR) = M3

In other words L;’s and M;’s satisfy the conditions in Theorem 7. Thus Algorithm A
converges in one step and the expressions given for Lm(é ~nr) and Lm(é ~NTR) in the
statement of Theorem 11 are obtained from that theorem. Note that by Remark 3, since

Algorithm A converges, the RNSC-PO resulted from Theorem 8 with

(Ln(GN)s Ln(Gn1), (G nrr)) = SupND(Lin(GN), L (G, Ln(Gnrr))
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is equivalent to the original one with (L,,(Gn), Lm(@ NT), Lm(@' NTR))- Moreover in the

new RNSC-PO, the assumption of B.I is satisfied and thus Theorem 9 could be utilized.

To apply Theorem 8 we must calculate ENT and ENTR. The formula for ENT is obvious.

For ENTR we have by Theorem &:

Enrr = SupRz (ENTR) N Lo (Gnrr)

GNTR

Moreover by Lemma 14:

Entr = Entr 0 Lin(Gyrr)

After substituting for ENTR :
Enrr = (Eyrr N Lin(Gyrr)) U (Bnrr N Ln(Gyr))-
Now Theorem 11 follows from Theorem 9 with

E\ = Ey, Ey = Exr, Es = Exrr

Gi=Gpy, Gy = éNTa Gs = éNTR-

4.2 Simultaneous-Failure Scenario

4.2.1 Plant and Diagnoser

In this section we generalize the results of Section 4.1 to the case of simultaneous-failure

scenarios. Similar to single-failure scenario, the system to be controlled has three modes of

operation: (i) Normal (N) when all components of the system are working properly, (%)

Transient(T) when there is at least one failure which has occurred but not diagnosed yet
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~
~ N GNTTRRy N
\

Figure 4.4: Multiple Failure Scenario

and (iit) Recovery when all failures occurred have been diagnosed by the diagnoser.
Accordingly we can partition the state space of the system to be controlled into three
different blocks: Q¢ = Q% U Q% U QF. Moreover Q% and Q% can be further partitioned
according to the failure and diagnosis event(s) occurred in the system. For example, Q%Tz
are those faulty states reached after first f; and then f; has occurred and Q%Tl includes
those faulty states in which the occurrence of f; precedes the occurrence of f;.
Corresponding to this partitioning of states, subgenerators of G could be defined e.g.
Gny1, corresponding to QS U Q% 7, and Gy, corresponding to QF U Q%1 . Fig 4.4
illustrates these subgenerators assuming a plant with failure events f; and fs.

For design specification, we assume for each of these subgenerators a design specification in
the form of legal marked language is present. Furthermore, the system under supervision is

required to be nonblocking in recovery and normal modes.
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4.2.2 The Fault Recovery Problem

Here for brevity, we assume the system has two failure events f1, fo (Figure 4.4). Extension
to more failures is straightforward. However it could be noted that the number of
subgenerators in the general case would increase exponentially in the number of the failure
events and the problem may become very complex. In practice, though simultaneous

occurrence of say more than 3 failures is rare specially when failures are independent.

Fault Recovery Problem- Two Simultaneous Failure(FRP-TSF) Given the plant
G = H||D with two failures f; and fo (5 = {fi, f2}), and legal languages En, EnT,,
Ent1y, Entiri, EnTiRiTy ENTiTyR: ENTTR; ENTRiR ) ENTiT R Ry ENTRiTyR; TOT

i,5 = 1,2 and 7 # 7, synthesize a supervisor v : £* — T's; such that (for 7,5 € {1,2} and

i # 7)

—t

. Lm(U/GN) C_: EN

8O

L(v/Gnr,) € EnT,

3. L(v/Gnz1y) € Entyrys

4. Lm(v/GNTl.R,.‘) C ENTiRi»

5. L(U/GNnm:g) C EntriTy)

6. L(v/Gnrryr) € EntinyR;s

7. L(v/GNnroyr;) € ENTTyR;

8. Lin(v/Gnr1yRiR;) C© ENTTyRiR)
9. Ln(v/GNryryr;R:) € ENTiT R Ris
10. Lin(v/GNririTyR;) € ENT.RT;R;

11. L(v/Gw) = Im(v/Gw)
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12. L(v/GNrr,) = Lm(v/GnriR))

13. L(v/GNnrRiR;) = Lin(v/GNT1y RR,)

14. L(v/GN1ryr;R:) = Lin(v/Gnnizy Ry R2)

15. L(v/GNT.R1yR;) = Lin(v/GNTiRT;R,)

4.2.3 Supervisor Synthesis

We will follow the same approach as in Section 4.1 and transform the FRP-TSF to a

RNSC-PO whose solutions are characterized by Theorem 9.

Theorem 12 (FRP-TSF into RNSC-PO). A supervisor, v, solves the FRP-TSF if

and only if:
1. Ln(v/Gn) € En
2. Lu(v/Gnr.) C Enr,
3. Lm(v/Gnrr;) C E‘ij_,

4. Ln(v/Gurir,) € Engine,

e

Lm(v/Gnrirr,) € Enniner,

)

6. Lm(v/Gnrzyr,) € Entinyr,,

N

7. Lm(v/aNTinRj) EN:I}:/}RJ-,
8. Lm(v/GnrryRiR;) C EN:I‘,»T,-RiRjy
9. Lm(v/Gnriyr;R:) € ENTiTyR RS

10. Lm(v/Grriryr;) C Ennrys,

11. L(’U/GN) = Lm(U/GN)
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12. L(v/Gnrg,) = Ln(v/Grzir,)

18. L(v/Grnrmyrir,) = Lin(v/ Gy, rir,)
1. L(v/Gnrarp) = Lm(v/ G r, )
15. L(v/Gnrrair;) = Ln(v/Crrry ;)
Here,
L(Gnz,) = L(Gnz.),
L(Gyr.r) = L(GnrRy),
L(Gnrrm) = L(Grrny)
L(GNTRLT r;) = L(GNTyRiTyR;)
L(Gwrr,) = L(Grrmy)
L(Gnrayr) = L(Grrzym,)
L(Grnrryr,) = L(Gn1yR;)
L(GN’.’}’.I}-RLRj) = L(GNTiryRiR;)
L(Gnrayrr) = L(Gnzyrsr:)
Ln(Gnr) = Ln(Gn) U TG £i5* N L(Gvz)),
Ln(Grry) = Lin(Gnr) U (ijz* N L(Gnry))
Ln(Grrryr) = Li(Grriry) U Lin(Grriry 1))
LGty riny) = Ln(Grryr) U Ln(Gyriny ;)
Ln(Gnrzyr;) = In(Gyrigy) U LGz ;)

Ln(Gnrimyyr:) =

Lon(Gnrizyp;) U Lin(GNTity i e))
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L(Gnr) = L(Gyr) U L (G,
Lm(@NTiRiTj) = Lin(Grrir) U (Lo (Gnrp ) 527 N L(aNﬂRiT}-))
Ln(Grrrayr,) = Lim(Grnr,) U Ln(Grrr; p,)
Ent, = Eng, 0 Lin(GnT,),
Enrry; = Entry N Ln(Grrr),
Enrr, i = By, U (Bypg, N Ln(Grr)),
ENnr, = SUpRGyrp, (ENT.R,)
Entnyr, : = Bygayr, U Bangym O Lm(Grriy)),
Enrap, = SuPRGyrz, z, (ENTT;R,)
Enrryr, : = Engayr, Y Bpn, 0 Ln(Grr,)),
Eyryr; = SUPRyrr, s, (Bvran,)
Entrne, - = By, Y (Byng e, 0 Lm(Grrar),
EJ,VTiT,-RiR]- = SupRGNTiTjRiRj (EntizyRiR;)
Enrayrn: - = Enraror Y (Bvng om0 Im(Ghryg,))s
Enrapr; = SUPRGyr,z;n,n,(ENTT; R R:)
Enrr - = Entr; N Ln(Garrer,),
Ennrar, = Eygpr, U (o Lon(GrrRetyR,))s

'
ENT,»RL»T]-Rj = SupRGNTiRiTjRj (ENTz‘RiTjRJ‘)'

Proof. The proof is done by repeated application of Theorem 10 to appropriate defined
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plants as follows. As part of Theorem 10 it was shown that

(
Lm(v/GN) - EN

In(0/Cn) = L(v/Gx)

\L(’U/GNT) C Ent

is equivalent to
(

Lm(’U/GN) g EN

Ln(@/Gr) = L(v/Gy)

4

Lm(v/@NT) C Enr

\Lfn(v/ Gnr) = L(v/Gnr)

Expressions for G ~T, and ENT,- in Theorem 12 follow from this equivalence applied to the
pari {(Gw, En), (Gn1,, En1,)}. Next if we consider Gyr, as the normal plant and Gnr; 88
the transient plant for an FRP problem and applying the transformation in (4.3) to
{(Gnz., Enz), (G ~11y, EnTyTy)} We obtain equivalent RNSC problem with

HEs ENn), (G NTTjs ENTJ;)} Following this procedure by assuming G NTyT; 88 normal
plant and Gnr1,r, (resp- Gnriayr,) 8s transient plant, expressions for G NT,T;R; and

ENTJ,- R, (resp. @NT,-T,- r; and ENTiTj r;) will follow. Finally by Theorem 10, FRP with the
pairs

{(Gwry, Entiry)s (Cwriy iy Enniryr,), (Grirymam;, Enriayer,))} is equivalent to
RNSC-PO for {(Gnrizy, Entry)s (Grrryre Entiryry)s (Gt rigy s Entiry mer)) - This
technique could be applied to {(G, En), (Gt Ent), (Gnrr, Enrr,)} to find the
expressions for G NT.R, and EN:Q- rT;- By continuing this method, all other expressions in the

statement of Theorem 12 can be shown. O

Up to this point, FRP-TSF is transferred to a RNSC-PO. However, to use Theorem 9, B.I.

assumption should be satisfied. Repeated application of Theorem 8 (Section 3.4) to an
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Gnrr, EnTR = Lin(GnrR) En Ent

Figure 4.5: Gnrr, En, ExT and Enrg in Example with one failure mode

equivalent RNSC-PO problem in which the blocking-invariance condition holds. First we
apply Theorem 8 to the plants G N,@ N1y and G NT, to obtain an equivalent problem
involving Gy, G N7, and G NT,- Note that Gy, G N, and G N1, form the ”star-structure
and thus the convergence of Algorithm A is guaranteed by Theorem 7. Secondly, note that
in the transformation Gy does not change (since in Theorem 7, Ly and M do not change).
Next we apply Theorem 7 to G NTY G NT\Ts» G NT, Ry G NTyR, T and G NT,R.TaR, b0 Obtain an
equivalent problem with G NTl,é NTszvé NT Ry G NT R, T, and G NT,R,TyR,- Once again note
that G NT17§ NTLTs» G NTiRys G NT, R, T, and G NT,R,T,R, form the required star structure. The
procedure is repeated until we arrive at an equivalent RNSC-PO problem satisfying the

blocking invariance condition.

4.3 Example

Fig. 4.5 shows the generator for Gyrg. Single failure mode is assumed (X5 = {f}).

Diagnoser diagnoses the fault with a delay of 0 to 1 event. £, = {e, 8,0}, Zf = {f},
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Gnrr, Enrr = Lin(GyrR) Enr

Figure 4.6: Gyrr, EnTr and Enr in the procedure of supervisor synthesis

Yue={f,d,a} and ¥, =X — {f}. Enrr is assumed to be the same as Gyrg meaning that
there is no restriction on the behavior of Gyrg in recovery mode (Figure 4.5). Normal and
transient legal behaviors, Ey and Enr, are also depicted in Fig. 4.5. Following the
procedure for supervisor synthesis, we first have to transfer the problem into an RNSC-PO
problem. Figure 4.6 depicts the resulting plants. In this example, Gnrr is actually
obtained by changing the marking of the faulty states (Black circles in Figure 4.6). Here
the rule to change the marking of black states is as follows: if the string that reaches the
black state from initial state does not generate blocking in normal mode mark the black
state. As a result, the black states in the lowest branch are not marked. Enr and Enrr
are altered similarly. The resulting robust control problem does not satisfy blocking
invariance assumption. For example, Saa € L (Gyrr) N L(Gy) but fac ¢ Ln(Gy).
Thus we have to apply Algorithm A and by Theorem 7 and 11 the algorithm is guaranteed
to converge in first iteration. Figure 4.7 depicts the resulting plant and specifications. As
can be seen, the only thing changed here is the marking of the state shown as ®. This

state is marked in recovery but the string that reaches this state from initial state creates
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GnTR EnTR

Figure 4.7: éNTR and ENTR resulted from Algorithm A

blocking in the normal mode; thus this state should be unmarked. Now, we construct the
"super plant” G and specification E as in Theorem 11. It could be easily verified that

G = Gyrr. A generator representing E is depicted in Figure 4.8.

In this example, since all controllable events are observable, the notion of observability and
normality coincide. Thus E has a supremal sub-language satisfying conditions (a-d) in
Theorem 11. The supervisor v in Figure 4.8 is designed based on this sub-language. The
action of supervisor on the plant models contain useful insights to this framework. In
normal mode, Saa must be removed from the marked behavior. Consequently the lowest
branch starting from this sequence is removed in £. However « is an uncontrollable event
and thus the supervisor has to disable § from the initial state. Since o is not allowed in
the transient mode and thus the § (after o) leading to the upper branch of G is disabled in
the supervisor. o« is allowed in normal mode and does not generate blocking. However,
the continuation of this string generates blocking in recovery mode. Thus the supervisor

disables o in normal mode in initial state.
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Figure 4.8: Super-plant G and specification E and the resulting supervisor v
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we study the synthesis of fault recovery procedures using discrete-event
models. It is assumed that the faults are permanent and that a diagnosis system is
available that detects and isolates the faults with a bounded delay. We use a finite-state
automaton to model the diagnosis delay. The system to be controlled which consists of the
plant and the diagnosis system will have three modes of operation: (i) normal when the
plant is functioning properly, (ii) transient when a fault has occurred but still not
diagnosed by the diagnosis system, and (iii) recovery, when the fault is diagnosed (and
appropriate actions may have to be taken for recovery). In this way the design of the
supervisor and diagnosis systems are almost separated, resulting in a simpler design. We
study the design of a nonblocking supervisor that enforces the specifications of the system
in all three modes. To obtain the solutions, we first transform the problem to an equivalent
Robust Nonblocking Supervisory Control problem under Partial Observation and then
obtain the solutions to the equivalent robust control problem.

To obtain the solution to Robust Nonblocking Supervisory Control under Partial

Observation, we first extend the solutions to Nonblocking Supervisory Control Problem
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under Full Observation to the case with partial observation. Our solution is obtained
assuming a blocking-invariance property which states that if a string creates blocking in
one of the possible plant models (in the robust control problem), then in any other possible
plant models, it either causes blocking or is not generated at all. This property is
introduced for the first time in this thesis. The set of Blocking Invariant languages is
shown to posses a supremal element and an algorithm is proposed to obtain it. It is shown
that if the behaviors of the plant models have a certain “star” structure, the algorithm
converges to the supremal blocking invariant sublanguages n-tuple. Moreover convergence
occurs in one step. We also show that in case of convergence of the algorithm, the original
Robust Nonblocking Supervisory Control under Partial Observation could be replaced with
an equivalent Robust Nonblocking Supervisory Control under Partial Observation for
which the marking language of the plants are the supremal blocking invariant sublanguages
of the marking language of the original plants, The closed languages remain the same. In
other words, we find a sufficient condition under which the RNSC-PO problem can be
converted to an equivalent problem in which the blocking-invariance condition holds.

Next we use these results to obtain the solution of the Robust Nonblocking Supervisory
Control under Partial Observation problem equivalent to the Fault Recovery Problem. It is
shown that the equivalent Robust Nonblocking Supervisory Control under Partial
Observation need not satisfy the blocking invariance assumption. However we show that in
this robust control problem the plant models posses the aforementioned star structure and
thus the problem could be transferred to an equivalent Robust Nonblocking Supervisory
Control under Partial Observation which satisfies the blocking invariance property. In this
way, we manage to characterize all of the solutions to the robust control problem and thus
the Fault Recovery Problem in the form of certain controllable and observable languages.

We show that our results hold for single-failure scenario as well as simultaneous failures.
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5.2 Future Work

The following two directions may be considered for future research:

1. Fault Recovery Problem

(a)

()

Computational issues: Computational procedures for the solution of the fault
recovery problem in the case of regular languages should be developed.

Obviously this is of high practical importance.

Timed DES: Timing information could be crucial in many recovery problems

and thus the extension of our works to timed DES should be an important topic

for future research.

Robust Fault Recovery Problem: In the current framework for Fault Recovery
Problem, we assume that the model of the plant in any of its operational mode
is exactly known. The framework could be generalized by assuming that the
exact model of the plant is not known. To solve the Fault Recovery Problem in
this framework, a more general framework have to be examined for Robust
Nonblocking Supervisory Control under Partial Observation by requiring the
supervisor not only to maximize permissiveness, but also to maximize
robustness. In other words, the set of plants which satisfies the specification

under the supervision of the optimal supervisor, should be maximized.

2. Robust Nonblocking Supervisory Control under Partial Observation.

(a)

Convergence of Algorithm A: The sufficient condition for the convergence of
Algorithm A may be relaxed. This will extend the application of the results to

all Robust Nonblocking Supervisory Control problems.
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