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Abstract

Custom and Model Based Detection of Deficiencies
Related to Java Multithreading

Jagmit Singh

Multithreading (MT) has been extensively used for developing Graphical User
Interface (GUI) and server side applications, because of the multiple benefits, both
concerning program organization and efficiency, offered by it. On the other hand,
multithreaded programming is difficult and error prone. It is easy to make a mistake in
programming, which could lead to errors and these errors are difficult to detect. Thus
automatic bug detection techniques, such as runtime analysis, static analysis, model
checking and theorem proving are applied.

Runtime analysis is based on the idea of concluding properties of interest from a
single run of the program. We implement and compare two runtime analysis approaches,
an ad-hoc custom based approach and model checker based approach to detect common
bug patterns. Hyades, a plugin of Eclipse Integrated Development Environment (IDE)
supplemented with bytecode instrumentation tool - JTrek is used for trace collection. All
the relevant events required for analysis are collected using this trace collection approach.
The state-of-art model checker Spin is used for trace verification. The comparison of the
approaches is based on experiments we performed on three different Java multithreaded
applications, and the results indicate that the custom based approach performs better than

the model-based approach.
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Chapter 1. Introduction

Multithreading has been extensively used in web related, server side and graphical
user interface and many more applications because of its multiple benefits, both
concerning, program organization and efficiency. Some of these benefits include
increased performance, multitasking, parallelism, increased responsiveness and others. At
the same time, because of the inherent non-determinism and unpredictable scheduling of
the threads in multithreaded applications, they are prone to various concurrency related
problems such as deadlocks, livelocks, and dataraces. Here we concern analysis of Java
multithreaded applications, because Java language is one of the most popular and
successful programming languages with extensive multithreading support. Also we
consider detection of those bug-patterns or antipatterns which reoccur in various Java
multithreaded applications. Manual detection of such antipatterns is difficult, time
consuming and inefficient. Thus the automatic bug detection techniques are applied.
Broadly these techniques can be divided into static and runtime analysis. Here
experiments are performed for antipattern detection using runtime analysis.

The runtime analysis is based on the idea of concluding properties of interest such
as correctness, performance, patterns etc, from a single run of the program [25]. A few
popular runtime analysis tools are JPAX, JMPAX and JavaMac [27], [36], [49]. The
runtime analysis can be broadly divided into offline and online analysis. In the offline
analysis (also known as post mortem analysis), a trace obtained from the execution of the
target application is analyzed for bug patterns or antipatterns. On the other hand, with
online analysis, antipattern analysis is conducted while the target application is executed.

The online analysis is more beneficial than offline analysis for antipattern detection



(especially those antipatterns related to real-time) in large-scale applications, because the
size of the execution trace of large applications is large and thus cumbersome to analyze
by offline analysis. The offline analysis is applied to antipattern detection in small scale
to medium size applications whose execution traces are manageable enough to analyze.
Mostly small and medium scale applications are targeted. Here we propose and
implement two offline runtime analysis approaches. We develop offline analysis
approaches because of the reduced overhead and simpler analysis.

We implement two runtime analysis approaches namely custom based detection
and model checker based detection. Both approaches are based on the idea of offline
analysis of the execution trace for antipattern detection. In the custom detection the
execution trace is verified for antipatterns using detectors coded in Java. In the model
checker based approach, a formal model in input language of SPIN model checker is built
from the execution trace and then antipatterns are detected using model checking. Both
approaches use the same instrumentation and trace collection technique, but the
difference between them is in the antipattern detection method.

Both approaches rely on the Eclipse platform for the trace collection. Eclipse
platform is an IDE (Integrated Development Environment) built on a mechanism for
discovered, integrated, and executable modules called plug-ins [34]. Hyades, an Eclipse
plugin for testing, tracing and monitoring software systems is used in our approaches for
trace collection.

Finally a comparison is made between these two approaches (namely custom
based detection and model checker based detection) in terms of the quality of analysis,

resource consumption, time usage, complexity, ease of usage and scalability.



1.1 Motivation

Multithreading has been extensively and widely used to perform complex computations
and operations in multiprocessor and multiplatform networking environment, such as
Internet. In particular, it is essentially used in developing GUI and server side
applications. Also most of the recent programming languages provide support for
multithreading.

Developers and designers are more adapted to thinking and programming in a
sequential manner. As a result they commit a lot of mistakes when programming
multithreaded applications, which are concurrent in nature rather than sequential. In other
words, multithreaded errors are difficult to avoid; thus, for the detection of these errors,
automatic bug detection techniques are usually applied. Runtime analysis is one of the
automatic bug detection techniques. Runtime analysis has been successfully applied in
the detection of “difficult to detect errors” in many projects [49], [27], [36]. The errors in
multithreaded applications often manifest only on certain executions, which makes their
detection more difficult. However, sophisticated analysis methods are able to predict
problems that do not appear on the observed executions [50]. Unfortunately, few of these
methods are based on solid formal basis; lack of the formal basis often results in
numerous false alarms. Thus there is a need to develop methods for predictive trace
analysis, based on formal verification techniques, such as model checking.

The runtime analysis of Java multithreaded (MT) programs written in Eclipse

environment was part of the joint work between SAP labs and CRIM.



1.2 Objectives

The objectives of this work are as follows:

1. To develop a lightweight instrumentation approach to extract the information
necessary for detecting antipatterns, without causing significant overhead to the
target program.

2. To develop runtime analysis approaches for multithreaded antipattern detection in
Java multithreaded applications, namely custom based detection (a semiformal
approach) and model checker based detection (a formal approach), and to
implement them.

3. To make a detailed comparison between these two runtime analysis approaches

by performing experiments.

1.3 Related Work

The runtime analysis has gained increased importance in recent years because of the
increased use of critical and business related software. The continuous and smooth
functioning of software in these critical applications is very important. Even a slight
interruption can lead to a huge loss of life or property. These critical applications are used
in space missions, nuclear power plants and medical related devices and instruments.
Considering the criticality of these applications various bug detection testing techniques
are applied. Runtime analysis is one such popular bug detection technique.

Runtime analysis has been extensively researched in industry and academics,
because of its increased importance. It has been studied and used in organizations such as

NASA Ames Research Centre, University of Pennsilvania, University of Urbana



Champaign, Digital Corporation and Compaq. These studies have led to many analysis
tools such as JMPAX, JPAX, JavaMac, Verisoft, and JProbe Threadalyzer [36] [27] [49]
[56] [41]. The tools JMPAX and JPAX are developed to detect bugs in the software used
in NASA space missions. JIMPAX (University of Urbana Champaign) has the ability to
predict the errors in all possible executions (of a multithreaded trace) only by observing
the single run of the program. The possible executions are those executions which do not
violate the observed casual dependencies on state updates events. This ability to perform
comprehensive analysis is achieved with the help of the vectors clocks inserted into the
bytecode to capture the relevant causality of the events and thus helps to predict the
potential errors from the single run of the program.

The JPAX, a tool for monitoring the execution of Java programs, is developed at
NASA Ames research centre [27]. The tool facilitates the automated instrumentation of
Java bytecode, which when executed emits relevant events of interest to the observer.
The observer performs the verification of the properties of interest based on the
information extracted from these events. JPAX uses a variant of Eraser [50] algorithm to
predict data races by analyzing a single execution of the monitored program [27].

The JavaMac - a research prototype tool developed at University of Pennsilvania is
a version of the existing MAC (Monitoring and Checking) framework applied for Java
programs. The salient aspect of the JavaMac architecture is the use of formal requirement
specification to check run-time executions of the Java programs. The formal specification
is specified as Primitive Event Definition Language (PEDL) and the Meta Event

Definition Language (MEDL) [49].



The JProbe Threadalyzer, developed by Quest software, can identify deadlocks
(even potential deadlocks), data races, and stalled threads. JProbe is one of the most
successful commercial tools for thread analysis. JProbe Threadalyzer uses two analyzers
to detect potential deadlock conditions. The first analyzer detects deviations in the order
of lock acquisition, which often indicate potential deadlocks. Lock order violations can
occur when concurrent threads need to hold two locks at the same time. The second
analyzer detects the so-called “hold-while-waiting” condition that occurs when a thread
holds a lock while waiting for notification from another thread [41]. Also JProbe
Threadalyzer uses two different methods to predict possible data races. The first method
is based on the happen-before relation [41] and the second method is based on lock cover
analysis. The lock cover analyzer watches all access to shared variables, and tracks the
lock cover - the set of locks held by all threads that access a shared variable.

The multithreaded problems are explained in detail in Chapter 2, and relevant
tools and techniques for the analysis of Java multithreaded applications are reviewed in

Chapter 3.



1.4 Research Contribution

The main research contributions of this thesis can be stated as follows:

e Lightweight Instrumentation of Java Applications

The Java tracing is based on Hyades, which is probably one of the most promising
platforms for development of various quality assurance applications. Unfortunately, the
non-intrusive tracer of Hyades is not able to collect all the events required for the
detections of multithreaded problems. Thus, the bytecode is instrumented to collect such
events.

Most of the instrumentation tools cause overhead to the target application, which
can alter real time properties. The lightweight instrumentation approach developed in this
thesis complements an existing, tracing tool (Hyades) for collecting all the relevant
events of interest from the target application without causing significant overhead to the
target application. Our instrumentation is lightweight because only empty methods are
added.

e Multithreaded Java Trace Analysis Based on Model Checking

A model checking verification technology is applied for detection of multithreaded
antipatterns in the traces of Java programs. While the application of existing model
checkers for trace analysis is not new, our model of trace reflects thread concurrency and
enables predictive analysis, which could predict possible faults or problems.

e Custom Multithreaded Java Trace Analysis

It is shown that certain simple multithreading related antipatterns do not need

sophisticated detection techniques, and could be detected more efficiently with custom



detectors. The custom analyzers for the execution traces of Java multithreaded
applications, using same Java-XML technology (JAXB) are built.

e Comparative Analysis

A comparative analysis of both tools (custom analyzer and model based detector) is
performed. Our experiments reveal that for medium size applications, the custom analysis
tool is faster (almost 3 times) than model based detection. Although the analysis time for
both tools is of the same order. The model checking time is negligible compared to the

time consumed in model building, compilation, linking and other auxiliary steps.

1.5 Organization of the Thesis

The thesis is organized as follows. Java multithreading problems are explained in detail
in Chapter 2. Chapter 3 describes relevant tools and techniques for the analysis of Java
multithreaded applications. In Chapter 4 we suggest an instrumentation method build on
existing approaches. Chapter 5 describes the custom based detection approach and
developed experimental prototype tool. Chapter 6 describes in detail the model checker
based detection approach, while in Chapter 7 a detailed comparison of two approaches,
namely custom based detection with model checker based detection is provided. Finally

Chapter 8 contains conclusion and a description of future work.



Chapter 2. Java Multithreading

2.1 Introduction to Java Multithreading

The Java multithreading can be defined as a way of building Java based applications with
multiple threads. In a multithreaded application each thread is a different stream of
control that can execute its instructions independently, which allows a multithreaded
application to perform numerous tasks concurrently. For example, the first thread can run
the GUI, while the second thread performs some 1/0 and third performs some calculation
[43]. Thus, multithreading enables concurrent execution of several threads within the
same application. Multithreading is a convenient way to decompose large application into
relatively independent smaller tasks and thus increases the overall efficiency [43].
Multithreading is almost a necessity for all but the most trivial programs.

However analysis of multithreaded programs can be a challenging task, because
of the complications involved in characterizing the effect of the interactions between
threads. The solution therefore is developing efficient abstractions and analysis

techniques that capture the effect of each thread's actions on other parallel threads.

2.2 Benefits of Multithreading

In spite of all the challenges of multithreading, it has many benefits, some of which are
listed here. Because of the benefits offered by multithreading, it has been supported in
most of the recent programming languages. It has been extensively used in Java

programming for developing server side, user interface and web related applications.



Performance gains from multiprocessing hardware/parallelism

Computers with more than one processor (multiprocessor computing) offer the
potential for enormous application speedup and thus higher performance gains
[43]. Multithreading (MT) is an efficient way to exploit the parallelism of the
hardware. Different threads can run on different processors simultaneously with
no special input from the user.

Increased application throughput

In a single threaded program, when a request for service is made, it must wait till
the service is complete, which makes CPU idle [43]. In such a situation the
multithreaded program can utilize the CPU idle time by utilizing second thread to
service another request. For example, the second thread can handle I/O operation.
Thus multithreading helps in effective utilization of time and hence increases the

overall application throughput.

¢ Increased application responsiveness

In the case of single threaded application, a single thread performs most of the
operation. If one part of that single thread operation is stopped then the whole
operation administered by that thread is stopped [43]. Such a blocking situation
decreases the user responsiveness. To prevent such a blocking situation,
multithreaded program proves useful, that is even if one thread is stopped other

threads can still continue their operation.

¢ Replacing process-to-process communication

In an application where multiple processes are used for communication purpose,

multiple threads can replace those processes to accomplish the same task. In the
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traditional multiprocessor environment the communication is done through
sockets, pipes etc, and the same communication be performed more efficiently by

multiple threads through shared variables.

2.3 Terms Related to Multithreading

Multithreading

A form of parallelism where multiple execution threads run concurrently and
communicate via shared memory.

Locks

Multithreaded application use locks to synchronize and communicate their behaviour
to one another. The locks around shared variable allow the threads to easily
synchronize and communicate. The thread that holds the lock on an object knows that
and will not allow other threads to access this object. Even if the thread holding the
lock is pre-empted another threads cannot access the object, until the original thread
wakes up, finishes its work and releases the lock. Thread that acquires the lock in use
goes to sleep until the thread holding the lock releases it, when the lock is released the
sleeping threads wake up and move to the ready-to-run queue.

Monitor

As defined by C. A. R. Hoare in 1974, “a monitor is a concurrency construct that
encapsulates data and functionality for allocating and releasing shared resources (such
as network connections, memory buffers, printers and so on)” [31]. To achieve
resource allocation or release, a thread calls a monitor entry (a special function that
indicates as an entry point into a monitor). If there is no other thread executing code

11



within the monitor, the calling thread is allowed to enter the monitor and execute the
monitor entry's code. But if a thread is already inside of the monitor, the monitor
makes the calling thread wait outside of the monitor until the other thread leaves the
monitor. The monitor then allows the waiting thread to enter. Because
synchronization is guaranteed, problems such as data being lost or scrambled are

avoided.

2.4 Java Implementation of Multithreading

Threads functionality is implemented in Java using the class java.lang.Threads
and there are two approaches to create a new thread of execution. One approach is to
declare a subclass of Thread class. This sub class should override the run method of
Thread class. An instance of the subclass can then be allocated and started. Another
approach is that another thread can be created, which implements the runnable
interface. That class then implements the run method (sample of this Java implementation
is shown in Figure 2.1). One can then create a thread object with this runnable as the

argument and call start () on the thread object.

Public MyRunnable implements Runnable {
Public void run ( )

doWork ( );

}
}

Runnable r = new MyRunnable ()
Thread t = new Thread (r);
t.start ( );

Figure 2.1: Code Sample to Implement a Runnable in a Thread
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2.4.1 Thread Synchronization in Java

Here we explain how the thread synchronization is implemented in Java using locks. In
Java programming, each object has a lock; a thread can acquire the lock using the
synchronized keyword [7]. With this keyword, certain method on blocks of code
could be declared as synchronized on an object. For example, let o be an object, when
entering a section that is synchronized on o, the current thread tries to acquire the lock
(“enters the monitor”) for o. If lock is granted, no other thread could access a section or a
method, synchronized on o, unless the lock owning thread quit the synchronized section,
or invokes o.wait. By calling o.wait the current thread temporarily releases the
locks it holds on o and thread is added to the wait set of o. It is suspended until another
thread calls o.notify, or when an optional specified amount of time has elapsed.
Wait can be useful if the current thread is waiting for a certain condition that can only
be met by another thread that needs access to the monitor. When the waiting thread
resumes execution, the locks are automatically reacquired. By calling Q.notifyAll
all threads in the wait set of o wake up. NotifyAll is used when it cannot be
guaranteed that each thread in the wait set of o can continue execution [7].

Yet another method of Java, Thread.join (), could be used for different
type of synchronization. Whenever one thread calls the join () method of a second
thread, it ensures that all the events of the callee thread have been executed before the
events following the join () call in the caller thread. In many cases one could use

join () instead ofthewait ()/ notify () pairs.
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2.5 Multithreaded Problems

Multithreading can cause various problems, such as incorrect application behaviour or

deadlocked conditions. Here we will discuss the common multithreaded problems

2.5.1 Deadlock

The misuse of locks could cause many problems, mostly synchronization related and
deadlock is one of most severe among them.

There are several definitions for deadlock condition. It can be summarized as; when a
deadlock occurs in a program, the whole program or a part of does not progress anymore
[22]. In a multithreaded Java application, deadlock occurs when each of two or multiple
threads is waiting for availability of a lock that will not become available because it is
held by some of these threads [22]. We illustrate the deadlock conditions with a small

example [5].

Thread 1
Synchronized (&) {
Synchronized (B) { }
}

Thread 2
Synchronized (B)
Synchronized (C) {}

}

Thread 3
Synchronized (C) {
Synchronized (A) {}

}

Figure 2.2: A Simple Deadlock Example
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As shown above in Figure 2.2, if all three threads hold one lock each, none of them can
continue, because the second lock they need is already taken [5]. Such a cyclic acquiring

will create a deadlock condition [5].

2.5.2 Race conditions

Races occur when several threads access the same resource simultaneously without
proper coordination [50]. As a result the program might end up producing output far
different from the desired one. For example, a race condition occurs when two concurrent
threads access a shared variable and when, a least one access is write, and the threads use
no mechanism to prevent the simultaneous access.
The following conditions for two events could lead to data race condition in an object
oriented multithreaded program [11}:

e The two events access the same memory location (same field/element in a

class/object).

e The two events are executed by different thread objects.

e The two events are not guarded by same synchronization object.

o There is no execution ordering enforced between the two events by thread

creation or termination.

2.5.3 Livelocks

A livelock occurs when one thread takes control (e.g., locks an object of a shared
resource) and enters an endless cycle. In other words, a livelock is a condition in which
two or more threads continuously change their state in response to change in the other

thread(s) without doing any useful work [5].
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A livelock is similar to a deadlock in that no progress is made but differs in that
neither process is blocked or waiting for anything.

Due to the similarity between a deadlock and a livelock the task of identifying and
detecting livelocks in a program becomes cbmplex as well. An example of a livelock is
the famous dining philosopher problem [16]. Consider, in a dining philosophers program,
the scenario where all the philosophers pick up the fork on their right at the same time.
Then, they all put the fork back simultaneously. By repeating this endlessly the program
enters in a livelock where all the philosophers are active but none is eating. The
justification is that all the philosophers were trying to avoid a deadlock (when they all

take the fork to the right and do not release it). However, they ended up with a livelock.

2.5.4 Efficiency and Quality Problems

The main factor affecting the efficiency of MT applications is synchronization. As much
as it is needed in MT programs, synchronization causes a significant overhead that
usually accounts to 5-10% of the total execution time in some cases [1]. This results from
the fact that managing synchronization in Java MT applications requires the Java Virtual
Machine (JVM) to perform some internal tasks (writing any modified memory locations
back to main memory) that could impair the efficiency of the application.

Another aspect that affects the efficiency of MT applications is the use of
notify () method instead of the notifyAll () method (whenever it is possible).

The notifyAll () method is more expensive.

16



2.6 Multithreaded Antipatterns

The concept of patterns has been widely used in software design and development. A
pattern is “a consistent, characteristic form, style, or method” [17].  General
characteristics of patterns are [57]:
e When developers write a code, they usually follow some pattern. The pattern
followed is derived from their previous experience.
¢ Some developers follow the same pattern.
¢ Some patterns could lead to success and some bad patterns could lead to failure.
e Usually patterns are localized within a small amount of time and space.
e Patterns instance are recognizable.
Recently in the software verification and validation domain, the concept of predefined
error description (known as antipatterns or bug patterns) has been introduced to help
reduce the effort spent in verification or debugging the software. Design Patterns are
often used in software design and development particularly in the object-oriented design
and development; they offer elegant solutions to common problems in software design.
Their usage helps in saving the software development and maintenance cost.
Two types of antipatterns identified so far are design antipatterns and bug

patterns, as described below:

2.6.1 Design Antipatterns

Common design patterns which have failed again and again in the software design and
development. From this viewpoint, a design antipattern is simply a solution to a problem

that does not work correctly, and it can be seen as just another design pattern [9]. The
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notion of an antipatterns can be stated as “something that looks like a good idea, but

which backfires badly when applied” [3].

2.6.2 Errors or Bug Patterns

A bug pattern is a pattern, which leads to errors/faults in software applications. In the
multithreaded context we view that bug patterns could lead to MT problems, e.g.
deadlocks, livelocks, and race conditions. A bug which frequently repeats themselves in
the various Java programs can be classified as a bug pattern or bug antipattern.

2.7 Antipattern Library

At the least 38 different antipatterns (bug patterns) have been identified, which relate to
concurrency, synchronization, and other common multithreaded Java problems [22].
These MT antipatterns have been catalogued in library and classified in their
corresponding groups [22].

2.7.1 Classification of Antipatterns

Antipatterns identified can be classified into the following categories [22]. This
classification is based on the MT problems (listed below) the antipatterns address.

1. Deadlocks

2. Livelocks

3. Race Conditions

4. Efficiency Problems

5. Quality and Style Problems

6. Problems with unpredictable consequences.
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2.7.2 Antipattern Template

To archive the antipatterns in a library, the template as shown in Table 2.1 is defined
[22]. The template was proposed to represent antipatterns of problematic situations in the
MT Java code. Each template provides information about a particular antipattern
including the definition (name, description, and category), an example of occurrence

(when possible), the re-factoring solution, and potential conflicts of applying the solution,

possible detection technique, and some comments.

Table 2.1: Antipattern Template

Name A concise definition of the problem.

Description The situations in which this problem could appear.
The effects it has on the code and the application.

Category Deadlock, Livelock, Race Condition, Efficiency problem, Quality and
Style Problem, Problem with unpredictable consequences.

Example If available, sample code where the problem is illustrated.

Detection How to detect the problem in the Java code. A high level description

of the proposed algorithm to be used in the detection process.

Re-Factoring

Solution: How to solve the problem once detected in the program.

Conflicts: Sometimes solving one problem of a certain class can
cause another problem of a different class. For example, Blob threads
and over synchronization.

Comments

The source of this pattern.

Any comments that could be helpful in the detection or re-factoring.

The information provided in the template helps both the developers of MT applications

and professionals building tools to detect the antipatterns in MT applications. The

template is easy to be understood by programmers. It contains useful information for
using antipatterns in programming practice, as most of the fields are directly related to

programming practice. It can be used to teach programmers how to avoid writing buggy

19




programs. Next we give example of an antipattern “premature join () call” [22]

whose detection we will discuss later.

Table 2.2: Antipattern- Premature Join () Call

Name Premature join () call

Description A call to the join () method of a thread is premature if this thread
has not been started at the time of the call. In Java such calls are simply
ignored, but their presence is alarming because they may indicate a fault
in the program logic or non-optimal code.

Category Quality and style problem.

Detection

A data flow analysis is needed, but dynamic analysis could be more
efficient.

Detectable by Flavers.

Re-Factoring

Solution: Rethink the logic of the program to make sure that the join
()} method of a thread is not called until it is already started.

Conflicts: None.

Comments

Source:
http://cis.poly.edu/gnaumovi/papers/flavers-java.pdf

2.7.3 Dynamic Java Antipatterns and Relevant Events

As the focus of this research is mostly on dynamic analysis, only dynamic MT

antipatterns are listed. Dynamic analysis approach is detailed later in Section 3.2.

Antipattern: Locked but not used object

Description: A thread locks but never uses an object.
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Detection: In each synchronized block, check if the synchronized object is being actually
used.
Events required for its detection:

e monitor enter/exit,

e object creation.
Antipattern: Overthreading
Description: It is when a “large” number of threads are defined and created.
Detection: This antipattern can be detected by computing the number of the threads
creation and destruction events that are logged. The threshold of simultaneously running
threads is user defined, though some sources [22] suggest that it should be set to the value
of three.
Events required for detection:

e thread creation,

o thread blocking.
Antipattern: Blob thread
Description: A thread that takes the whole or a large part of the activity of the system.
Detection: This antipattern can be detected by calculating the ratios (duration of the
program)/ (duration of the thread) for all the threads and then comparing the ratio for the
blob thread with other threads. In this way, we can calculate the duration of the global
program execution and those of the threads and thus detect the presence of the blob
thread.
Events required for detection:

¢ method entry,
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« monitor enter.
Antipattern: Complex computation within an AWI/Swing thread
Description: The listeners in a Java’s Abstract Windows Interface (AWI) thread:

e are too long (temporary irresponsive interface),

e mnever end, e.g, due to a cycle with a continuous true condition

(irresponsiveness),

¢ share many objects with the main thread (may affect responsiveness).
Events required for detection:

e method entry/exit,

e object access.
Antipattern: Misuse of notifyall ()
Description: The notify () method is more efficient than the notifyall ()
method, especially when not too many objects are shared between threads. In addition,
there is a possible performance problem with the overuse of notifyall () known as
“Thundering Herd”. When notifyall () is called, all threads (that are waiting for the
same object-lock), will receive a signal but only one gets the lock. On the other hand,
when there are just two threads operating on this object, the use of notifyall () is
not needed [22].
Detection: Collect all objects used in each thread and then search for objects that are used
by only two threads.
Events required for the detection:

e notifyall()calls.

22



Antipattern: Unnecessary notification
Description: Notification issued when no threads are waiting. For example for each
thread that may call notify () or notifyall () methods, check if another thread
could callwait () method on the same object.
Events required for detection:

e method call (calls of notify/wait).
Antipattern: Waiting Forever
Description: Thread executes the wait for the lock object of monitor, but is never
notified and thus, never resumes its execution.
Detection: A pure dynamic approximation would be to detect long waits (waits that
exceed a user specified long period of time, e.g., one sec). Detection of such a property
from a trace is straightforward.
Events required for detection:

¢ method entry/exit.
Antipattern/Problem: High Level Data Race
Description: “High-level data races occur when different activities, executed in parallel,
do access shared resources, but with different atomicity views” [6].
Detection: It can be performed using a run-time analysis algorithm, which searches
inconsistencies in the views that different activities have on shared resources. The
algorithm works by analyzing a single randomly chosen execution trace for operations
that take and release locks and for operations that access shared resources [6]. From this
information it can be concluded whether all the activities have consistent views.

Inconsistent views typically arise if at least one activity “does it right”. This antipattern
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covers a wide range of bugs and is sometimes referred to as a special subclass of datarace
problem.
Events required for detection:
¢ monitor enter/exit,
o field variable access.
Antipattern: Dead Interaction
Description: Call of the thread that has already terminated.
Events required for detection:
¢ method enter/exit,
e exceptions throw.
Antipattern: Wait Stall
Description: The thread should not wait (after calling the wait method) for more than
user specified amount of time
Events required for detection:
e method entry/exit,
o thread start/end.
Antipattern: Premature join () Call
Description: A call to join () is premature if this thread has not yet started at the time
of the call [22].
Events required for detection:
¢ method entry/exit,

e thread start/end.
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Antipattern: Join () with “Immortal” thread
Description: A call to join () with a thread that never ends (e.g. daemon or main
thread). Since thread immortality is not always detectable dynamically, the antipattern
should be approximated.
Events required for detection:

¢ method entry/exit.
Antipattern: Double call of the start () method of a thread
Description: The start () method is not supposed to be called more than once for the
same thread [22].
Events required for detection:

» method entry,

o thread start/end,

e  monitor enter/exit.
Antipattern/Problem: Divergence
Description: A divergence (in the form of livelock or stall) occurs when a process does
not attempt to communicate with the rest of the system for more than a given (user-
specified) amount of time [56].
Events required for detection:

¢ object access (with timestamps).
Antipattern/Problem: Resource Deadlock
Description: A resource deadlock can occur when two or more threads block each other
in a cycle while trying to access synchronization locks (held by other threads) needed to

continue their activities [24].
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Events required for detection:
e object access (with timestamps),

¢ monitor exit/enter or deadlock contention.
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Chapter 3. MT Java Analysis Approaches

3.1 Introduction

In this chapter, techniques and tools for antipattern detection are described. These
techniques and tools can be broadly classified by three types namely; dynamic checkers,
static checkers and formal techniques such as model checking and theorem proving.

Dynamic analysis requires the execution of the program and then analysis of the
execution trace for the property verification. In static analysis, one does not run the
program, but performs analysis of the code (either source code or bytecode). The analysis
is normally independent of the input order or thread scheduling since the code is analyzed

without execution.

3.2 Runtime Analysis

Runtime Analysis — is based on the idea of concluding properties of interest from the
single run of a program [25]. “The purpose of runtime analysis is to cover an area not
covered by formal verification and testing” [42]. The purpose of formal verification and
testing is to assure the correctness of all possible executions of a target application,
whereas runtime analysis assures correctness of the current execution of a program. We
tried to detect the classified antipatterns with both static analysis and runtime analysis.
Most of the antipatterns identified could be detected by both static and runtime analysis
except for few. But runtime analysis gives significant edge over static analysis in
detection of certain antipatterns. In detection of these antipatterns, runtime analysis could

detect false positives generated by static analysis.
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3.2.1 Benefits of Runtime Analysis

The advantages of runtime analysis:

1.

The possibility of detecting errors, which have actually happened (on specific
data, platform, and JVM).

The ability to detect errors which are impossible or too difficult to detect
statically.

Source code is not required.

3.2.2 Challenges of Runtime Analysis

Implementing the runtime analysis approach faces a number of challenges, among which

arc:

. Observation of a program behavior requires special efforts (instrumentation).

Instrumentation at points of observation may cause side effects on behavior and
timing characteristics.

The runtime analysis can assure correctness of the current execution taken during
the observation period and not much can be said about other possible executions.
Thus it cannot prove the system correct as a whole.

Similarly, the results are valid only for a thread scheduling performed while the
program was executed. Thus the results are not consistent.

Errors are often difficult to reproduce.
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3.2.3 Tools for Runtime Analysis

Below we provide summary of a few most popular commercial and research runtime

analysis tools.

3.2.3.1 Tool: JavaMac

JavaMac was developed at Department of Computer Science, University of
Pennsylvania; main authors are Moonjoo Kim, S. Kannan and M Viswanathan. JavaMac
is a prototype implementation of monitoring and checking (MAC) architecture for Java
programs [49].

A salient aspect of the JavaMac is the use of a formal requirement specification to
check run-time execution of the target program. For specifying formal requirement the
Primitive Event Definition Language (PEDL) and the Meta Event Definition Language
(MEDL) are used. Its architecture is modular, separates monitoring implementation-
dependent low-level behaviour and checking high-level behaviour with regard to formal
requirement specification. JavaMac’s architecture can be divided in three main modules
namely Information Extraction, Monitor/Checker and Formal Requirement Specification.
In addition architecture instruments the target program and analyzes the execution the
execution of the target program automatically based on the formal requirement

specifications.
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3.2.3.2 Tool: Java PathExplorer

Java PathExplorer (JPaX) was developed at the Automated Software Engineering
Group, NASA Ames Research Center; main authors are Klaus Havelund and Grigore
Rosu [27].

Java PathExplorer is a tool for monitoring the temporal behavior and finding
concurrency related errors (such as deadlocks and dataraces) detection particularly in
multithreaded applications. The tool performs script driven instrumentation of the
program's bytecode, which emits events to an observer during its execution. The observer
checks the emitted events against user specified high-level requirement specifications, for
example, temporal logic formulae, and against lower level error detection procedures,

usually concurrency related, such as deadlock and data race algorithms.

3.2.3.3 Tool: Java MultiPathExplorer

Java MultiPathExplorer (JMPaX) analyzes a multithreaded program against the safety
properties expressed using temporal logic [52]. The tool is developed within Formal
Systems Laboratory at the University of Illinois at Urbana-Champaign; main authors are
Koushik Sen, Grigore Rosu and Gul Agha. In fact, the limitations of JPaX motivated this
development.

JMPaX is a prototype tool for runtime safety analysis of multithreaded programs.
It can predict violations of safety properties expressed in temporal logic from executions
of multithreaded programs [52].

The user of JMPaX specifies the safety properties of interest, using a past time

temporal logic, regarding the global state of the multithreaded program (assumed to be in
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compiled form). Then, JMPaX calls an instrumentation script which automatically
instruments the executable multithreaded program to emit relevant state update events to
an external observer, and finally runs the program on any JVM and analyzes the safety
violation messages reported by the observer [52]. An appealing aspect of this approach is
that a single execution, or interleaving, of a multithreaded program is observed, a
comprehensive analysis of all possible executions is performed; a possible execution is
any execution which does not violate the observed causal dependency partial order on
state update events. The tool JMPaX built on this approach has the ability to predict

safety violation errors in multithreaded programs by observing successful executions.

3.3 Static Analysis

Static Analysis detects runtime errors and unpredictable code constructs without
executing code. In other words, it is based on the analysis of code (source code or
bytecode) and is normally independent of input order or thread scheduling since the code
is analyzed without execution. Static analysis tools of various types, including formal
analysis tools, are being developed, which can detect faults in the multi-threaded
application [47] [22]. Common static analysis techniques include data flow analysis,
control flow analysis, type checking as performed by modern programming language

compilers, abstract interpretation and type and effects analysis.

3.3.1 Benefit of Static Analysis

Verification can begin earlier in the Software Life Cycle resulting in early detection of

problems and thus reduction in development cost [47].
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3.3.2 Challenges of Static Analysis

The biggest challenge for Static Analysis is generation of false positives sometimes due
to over approximation [47]. However, in some cases the number of false positives may be
very large and subsequent errors can be the result of an initial or upstream error. Thus
correcting these errors can eliminate some false positives.

For example, assume that the analysis only tracks the sign of some integer
variables. If positive and negative values are added, the algorithm cannot tell the sign of
the result and will consider both alternatives as error on the safe side. One of them may
lead to error that corresponds to no actual feasible execution of the real program [47].
3.3.3 Tool for Static Analysis
Here a brief description is given for JLint, a typical static analysis tool.

3.3.3.1 Tool: Jlint

Jlint checks Java class files for loops in the lock dependency graph. This graph includes
both static and runtime methods. It also makes sure the programs follow certain
consistency rules when using the wait method in Java. Race conditions are found by
building the transitive closure of methods, which can be executed concurrently, and the
methods they call. Then, all field accessed by such methods which fulfill certain
conditions are reported as possible race conditions in data access. Jlint is rather
conservative at reporting errors, since it does not allow annotations, which could

eliminate false positives [5].
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3.4 Model Checking

Model checking is a formal technique for verifying finite state concurrent systems against
required specification of the system. The tasks involved in model checking are as follows
[51]:

1. A formal model of the system is build in terms of a state transition system. The
state transition system is a tuple M = (S, SO, R, L) where:

e Sis the finite set of states.

e SO a subset of S is the set of initial states from which system can start its
execution.

e ReSx Sis atotal relation, describing the possible transitions from one state to
another state of the system, and;

e L:S— P(AP) is a labelling function, stating the atomic propositions (AP) that
hold in a given state, where P(4P) is the powerset of the set AP.

2. The properties that the model must satisfy are stated as a specification. The
specification is usually given as input in some logical formalism. The commonly
used formalisms are temporal logics.

3. After expressing the model and the formal specification, the verification task
involves checking the conformance of the model to the given specification. In
case of a negative result, a counter-example is generated. This process is
completely automatic.

In model checking, all possible computations of the systems are analyzed. So the
verification is rigorous and complete. Model checking discovers a bug if it is present in

the system. Theoretically, model checking is very efficient. However, in practice model
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checking may require the entire state space of the system to be stored before bug can be
detected, this result in state space explosion problem. In sequential programs variables
may have many possible values leading to a large number of possible states. If the total
number of possible states of the system is large, model checking becomés intractable

which makes this technique not scalable.

3.4.1 Spin Model Checker

Spin is a widely used model-checker that supports the formal verification of distributed
systems. This model checker was developed at Bell Laboratories in the Formal Methods
and Verification group.

Spin has also been used to detect logical design errors in distributed systems
design, such as operating systems, data communications protocols, switching systems,
concurrent algorithms, railway signalling protocols, etc. The tool checks the logical
consistency of a specification. It then reports on deadlocks, unspecified receptions, flags
incompleteness, race conditions, and unwarranted assumptions about the relative speeds

of processes.

3.4.1.1 Language of Spin

PROMELA is input language for Spin Model-checker. PROMELA (Process Meta
Language) is a non-deterministic language, loosely based on Dijkstra’s guarded
command language notation and Hoare’s language CSP. It contains the primitives for
specifying asynchronous (buffered) message passing via channels, with arbitrary numbers

of message parameters. It also allows for the specification of synchronous message
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passing systems (rendezvous). Mixed systems, using both synchronous and asynchronous
communications, are also supported [32].

The language can model dynamically expanding and shrinking systems: new
processes and message channels can be created and deleted on the fly. Message channel
identifiers can be passed from one process to another in messages.

Correctness properties can be specified as standard system or process invariants
(using assertions), or as general linear temporal logic requirements (LTL), either directly
in the syntax of next-time free LTL, or indirectly as Buchi Automata (expressed in

PROMELA syntax as Never Claims).

3.4.1.2 Features of Spin

Spin can be used in three basic modes [47]:

¢ As a simulator, allowing for rapid prototyping with random, guided, or interactive
simulations.

e As an exhaustive state space analyzer, capable of rigorously proving the validity
of user specified correctness requirements (using partial order reduction theory to
optimize the search).

e As a bit-state space analyzer that can validate even very large protocol systems

with maximal coverage of the state space (an approximation technique).

3.4.1.3 Documentation

The tool is well documented with tutorial, user manual, several research papers and
books. The most recent and comprehensive reference is book of Gerard J. Holzmann, The

Spin Model Checker “Primer and Reference Manual”.
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3.4.2 Benefits of Model Checking

The benefits of model checking are [47]:

1. It is a fast, automated method for exploring all relevant execution paths of non-
deterministic systems. This is very important because it is virtually impossible for
humans to conceive every test scenario required to verify a non-deterministic
system in a plausible time frame for software development.

2. Model checker can possibly backtrack to explore alternative paths from a
common intermediate state, avoiding the costly reset between tests required in
traditional scenario based testing.

3. Detects problems in the early stages of software development lifecycle; thereby

greatly reducing overall development costs.

3.4.3 Challenges of Model Checking

There are two challenges associated with model checking [47]:

e Models must be translated into model checking language like PROMELA (for
Spin).

e State space explosion — Because of the complexity of software components
interaction and because of wide range of data structures values, it is common for a
model checker to run out of memory before exploring the entire state space.

e Very few model checkers provide a direct support to verification of Java

applications.

36



3.4.4 Model Checking Based Tools for Java

Here we provide summary of few popular Java analysis tools based on model checking

3.4.4.1 Tool: Bandera

Bandera has been developed by SANTOS group at Kansas State University. Bandera
takes as input Java source code and generates a program model in the input language of
one of several existing verification tool; Bandera also maps verifier output back to the
original source code. It enables the automatic extraction of safe, compact finite-state
models from the program source code [13]. Bandera tries to bridge the gap between

software source code and an abstract representation of it.

3.4.4.2 Tool: JPF

The Java PathFinder has been developed at the Automated Software Engineering (ASE)
department at NASA. The Java PathFinder, JPF, is a translator from a subset of Java 1.0
to PROMELA, the programming language of the Spin model checker. The purpose of
JPF is to establish a framework for verification and debugging of Java programs based on
model checking. The system is especially suited for analyzing multi-threaded Java
applications, where normal testing usually falls short [37]. The system can find deadlocks
and violations of Boolean assertions stated by the programmer in a special assertion

language.

3.5 Theorem Proving

Theorem proving — It is a rigorous formal technique, based on logical induction, in which
system requirements are translated into complex mathematical equations and solved with

verification experts. Solving these equations proves that the system is accurate [47].
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3.5.1 Benefit of Theorem Proving

It can use the full power of mathematical logic to analyze and prove properties of any

design.

3.5.2 Challenge of Theorem Proving

Theorem proving requires significant efforts and expertise, and is mostly appropriate for

analysis of small-scale systems.

3.5.3 Theorem Proving Based Tool

3.5.3.1 Tool: ESC/Java (Extended Static Checker for Java)

ESC/Java is a programming tool for finding errors in Java programs. ESC/Java detects at
compile time, common programming errors that are not detected until runtime and
sometimes not even then; for example null dereference errors, array bounds errors, type
cast errors, deadlocks, and race conditions [18].

ECS/Java uses program verification technology (automatic theorem prover), but
feels to a programmer more like a type checker. It tries to detect certain kind of errors
only, but does not prove the program’s correctness and also this technique is more
automatic than full program verification. ESC/Java performs modular checking, that is,
ESC/Java verifies each class separately. This means that ESC/Java can be applied to code
that calls libraries even if the code for the libraries is not available. It also means that
ESC/Java can be applied to library code whose clients or subclasses have not yet been

written.
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Chapter 4. Java Trace Collection

4.1 Introduction

The runtime analysis requires the execution of a program. Then the analysis (either online
or offline) of the execution trace for antipattern detection. An execution trace contains
relevant events, which are analyzed for the users’ specified MT antipatterns. In order to
extract these relevant events, the target program is instrumented. Instrumentation may be
performed either at bytecode, source code, or JVM level. When the instrumented
program is executed, the relevant events are emitted and collected in an execution trace
(in XML format).

Information provided by these events depends on the instrumentation tool used,
the location of the instrumented code, level of instrumentation, and depth of the
instrumentation etc. Thus quality of runtime analysis depends on the instrumentation tool
used and the approach followed.

For example, in JMPaX, a runtime analysis tool has the ability to predict safety
violation errors in multithreaded programs by observing successful executions. The
ability to predict safety violation errors was obtained through the use of “smart” observer
and this “smart” observation was possible due to vectors clocks inserted in the program.
These vector clocks are inserted by the bytecode instrumentation toolkit-BCEL in order
to monitor static member variables [52].

This chapter discusses various instrumentation tools (both commercial and
research based) and then describes in detail the instrumentation approach followed in this

project. Our instrumentation approach for trace collection is a hybrid one, it combines
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Hyades tracing with bytecode instrumentation tool- JTrek. Most of the relevant events

required for antipattern detection were collected using our instrumentation approach.

4.2 Instrumentation Review

The instrumentation tools can be divided into four categories based on the level at which

instrumentation is performed:

Operating system,
e Java Virtual Machine (which includes both custom and standard

instrumentations such as profiling and debugging services),

Source code or;

Compiled code (bytecode).

4.2.1 JVM Level Instrumentation

Java Virtual Machine (JVM) instrumentation consists of modifying the existing JVM to
provide the required data collection. An attractive feature of JVM instrumentation is
access to information, which is unavailable with internal methods, such as byte and
source code instrumentation.
Custom JVM level instrumentation suffers from the following disadvantages [42]:
o Reengineering of a JVM requires deep knowledge of the JVM, which is a
complex software component, and could be error prone.
e The JVM uses Just-In-Time (JIT) compilation and Hot Spot dynamic
compilation for performance enhancement [4]. When these features are enabled,

simple modification of the bytecode interpreter unit is not sufficient [42]. One
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also has to modify compilation, inlining, and interpreter units. This increases the
complexity of JVM instrumentation.

e JVM has been updated frequently (there have been four major and two minor
updates during the last four years — v1.0 to v1.3 being major and v1.4 to v1.5
being minor updates); modification of the JVM for monitoring should be done as
frequently.

Custom JVM instrumentation is difficult, thus many tools previously built over custom
instrumentation, migrate to standardized instrumentation.

Because of the above limitations, JVM level instrumentation does not seem to be a
practical solution. To overcome the above-mentioned difficulties of custom:
instrumentation, modern JVM are already instrumented with standardized and extensible
profiling (JVMPI) and debugging (JPDA) services. With the development of the JVM
profiling interface, custom JVM instrumentations have become rare. In fact, some tools,
such as JinSight, abandoned them in favor of JVMPL

The standard debugging and profiling architectures (JVMPI and JPDA) of JVM

are discussed in detail in Sections 4.3.2 and 4.3.4.

4.2.1.1 Java Virtual Machine Based Instrumentation Tool

4.2.1.1.1 Tool: JinSight

JinSight developed at IBM AlphaWorks is a tool to visualize and explore a Java
program's run-time behavior. It is useful for performance analysis and debugging of Java
program. It displays performance bottlenecks, object creation and garbage collection,

execution sequences, thread interactions, and object references [40].
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JinSight consists of two parts:

1.

Instrumented Java Virtual Machine, which inserts the instruction and these
instructions are executed as Java program runs. As the program runs, it produces a
Jinsight trace file with information about the execution sequence and objects of
the program. The user can choose options to turn tracing on and off, to limit the
type of information recorded, and to mark significant events in the trace file.
Filtering and control over level of the detail are particularly useful since tracing
every detail of a program's execution will generate large size trace rapidly
(30MB/min); the resulting trace quickly running into the hundreds of megabytes
and more.

JinSight visualizer, which reads the trace data and presents graphical views of
program execution, recurring method call patterns, object interconnection, call

graph etc.

4.2.1.2 Java Profiling Interface

The JVMPI (Java Virtual Machine Profiling Interface) is a bidirectional function call

experimental interface between the Java virtual machine and an in-process profiler agent

[39]. The virtual machine notifies the profiler agent of various events, e.g. memory

allocation, thread-start and lock contention etc. On the other hand, the profiler agent can

issue requests for more information through the JVMPIL. For example, the profiler agent

can tum on/off a specific event notification, request a dump (snapshot) of objects,

threads, or lock (monitor) status, based on the needs of the profiler front-end. A proof of

concept profiler agent is provided within Sun SDK since version 1.2.

The possible monitored events using the JVMPI are:
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e Method enter and exit

e Object alloc, move, and free

o Heap arena create and delete

e  Garbage Collection start and finish

e NI global reference alloc and free

e JNI weak global reference alloc and free

e Compiled method load and unload

e  Thread start and end

e (lass file data ready for instrumentation

e Class load and unload

¢ Contended Java monitor wait to enter, entered, and exit
e Contended raw monitor wait to enter, entered, and exit
e Java monitor wait and waited

»  Monitor dump

e Heap dump

o  Object dump

o Request to dump or reset profiling data

e Java virtual machine initialization and shutdown

4.2.1.2.1 Profiling Tools

Tool: Hyades

Hyades, an Eclipse project provides an open source platform for Automated Software
Quality (ASQ) tools, and a range of open source reference implementations of ASQ

tooling for testing, tracing and monitoring software systems. Hyades provide an
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extensible framework and infrastructure that embrace automated testing, trace, profiling,
monitoring, and asset management. The goal of the Hyades project is to bring ASQ tools
into the Eclipse environment in a consistent way that maximizes integration with tools
used in the other processes of the software lifecycle [34].
The Hyades project offers a Java Profiling Agent that collects the following events:

e trace start/end

¢ method call/return/entry/exit

o thread start/end

e exception throw

e object allocation/free/move

¢ JVM initialization/shutdown

e garbage collection start/end
Lock contention events are not supported. The collected events are stored in XML

compliant files.

4.2.1.3 Java Debugging Architecture

JPDA (Java Platform Debugger Architecture) is a three-tiered debugging architecture that
allows tool developers to easily create remote debugger applications, which run portably.

The architecture is standardized and supported by most JVM implementations [38].

Certain functionalities of JPDA and JVMPI overlap. For example it allows more
control and interaction, namely, to manipulate (suspend, resume, stop, ...) threads,
add/remove breakpoints, get/set the value of a local variable, watch field access, and

change memory allocation scheme, as well as line by line execution.
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The possible observed events are:
e method entry and exit
o field access and modification
e thread end and start
e class load, unload and preparation
e death and initialization of virtual machine

e single step execution and breakpoint events

However local variables and arrays are not observed. To make them observable source
code modification is recommended to transform arrays and local variables into

observable entities.

4.2.1.4 Java Platform Profiling Architecture of J2SE 5.0

The J2SE 5.0 (Java 2, Platform Standard Edition), currently the latest version of Java
release, provides comprehensive monitoring and management support: instrumentation to
observe the Java virtual machine, Java Management Extensions (JMX) framework and
remote access protocols [35].

The JVM Monitoring & Management API specifies a comprehensive set of
instrumentation of JVM internals to allow a running JVM to monitor. This information is
accessed through JMX (JSR-003) MBeans and can accessed be locally within the Java
address space or remotely using the JMX remote interface.

J2SE 5.0 provides the following APIs for monitoring and management [35]:
1. Java Virtual Machine Monitoring and Management API: The

java.lang.management API enables monitoring and managing the Java
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virtual machine and the underlying operating system. The API enables
applications to monitor themselves and enables JMX-compliant tools to monitor
and manage a virtual machine locally and remotely.

2. Sun Management Platform Extension: The com.sun.management package
contains Sun Microsystems' platform extension to the
java.lang.management API and the management interface for some other
components of the platform.

3. Logging Monitoring and Management Interface: The
java.util.logging.LoggingMXBean interface enables us to retrieve
and set logging information.

4. Java Management Extensions (JMX): The JMX API defines the architecture,
design patterns, interfaces, and services for application and network management

and monitoring in Java. The APIs are based on the JMX Specification.

4.2.2 Source Code Level Instrumentation

Source code instrumentation is to adds extra source code (for example instructions,
packages etc) called probes to report the events in the program to be analyzed [10].
Advantages of source code instrumentation are:
e Source code is more naturally understood and thus allows a custom
instrumentation.
» Source code instrumentation eliminates the need for understanding the JVM and
the actions of the compiler.
o  Source code instrumentation is portable over platforms and machines.

One major disadvantage is that source code is required, and is not always available.
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4.2.2.1 Source-Code Level Instrumentation Tool

Tool: JavaScope

JavaScope was developed at Sun Microsystems. JavaScope is a set of software programs
to determine how well a Java program or one or more Java source files are tested (test
coverage measurement). It provides a tool to instrument the application and a browser to
view resulting data. It can instrument everything, but offers no control over

instrumentation techniques, location, or ability to add probes.

4.2.3 Bytecode Instrumentation

The Java compiler converts the Java source code to the class file format [44]. Instead of
modifying source code (which is source code instrumentation), the resulting Java
bytecode is modified. An executable Java program consists of a set of classfiles, a
classfile contains definition of one class. A Java classfile is loaded into running Java
virtual machine at run-time and these classfiles are dynamically linked at run-time. In
order to link classfiles dynamically, a classfile contains symbolic information such as
string constants, class names, field names, method names, local variable names, and other
constants that are referred to within the classfile. This information in a classfile helps in
instrumentation.

An instrumentor is a program which perform instrumentation, instrumentor takes
two inputs namely, Java classfile (*.class) and instrumentation specification, which
contain information such as variables/methods to be monitored and thus instrumented.

Based on these two inputs, the instrumentor inserts instructions in the target classfile.
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Bytecode instrumentation is of two types: dynamic and static instrumentation.
Dynamic instrumentation is performed during program execution, while static

instrumentation is performed prior to execution.

4.2.3.1 Java Bytecode Format

The understanding of the Java Bytecode format is important for the bytecode
instrumentation. Bytecode is the intermediate representation of Java programs just as
assembler is the intermediate representation of C, C++, or other compiled programs.
Knowing the assembler instructions that are generated by the compiler for the source
code we write, helps to know how to code differently to achieve memory or performance
goals [21].

The content of a Java class file starts with a header containing a “magic number”
(0xXCAFEBABE) and the version number, followed by the constant pool, which can be
roughly thought of as the text segment of an executable, the access rights of the class
encoded by a bit mask, a list of interfaces implemented by the class, lists containing the
fields and methods of the class, and finally the class attributes [14]. Attributes are a way
of putting additional, user-defined information into class file data structures.
The Bytecode translation of a well-known statement “System.out.println

(“Hello World”)~” is:

getstatic java.lang.System.out
Idc “Hello World”
invokeVirtual java.io.printstream.Println

The first instruction loads the contents of the field out of class
java.lang.System onto the operand stack. This is an instance of the class

java.io.PrintStream. The 1dc (Load constant) pushes a reference to the string
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"Hello world" on the stack. The next instruction invokes the instance method println

which takes both values as parameters (Instance methods always implicitly take an

instance reference as their first argument).

4.2.3.2 Advantages of Bytecode Instrumentation

Bytecode instrumentation offers numerous advantages [42]:

1.

A class file, the unit of Java bytecode contains the rich symbolic information
about the system such as method names, global variable names and local variables
that is useful for automatic instrumentation.

Many of the issues of interest for run-time monitoring such as actual access to
variables and power consumption of instructions are revealed precisely at the
bytecode level.

Java bytecode prohibits pointer arithmetic, which enables the detection of the
updating of variables and also it is strongly typed.

Bytecode instrumentation adds the least overhead to a Java programs execution.
Java Bytecode is platform independent.

Many high level languages like Ada and Lisp compile their source code to Java
Bytecode. Thus techniques and tools developed for Java could apply to Ada and
Lisp [42].

The tool support for byte code instrumentation is better than source code or JVM

level instrumentation support.

The main disadvantage in developing of bytecode instrumentation tool seems to be a

need for deep knowledge of Java bytecode language.
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4.2.3.3 Java Bytecode Instrumentation Tools/Toolkits

The bytecode instrumentation tools such as JTrek and BCEL were being successfully

used in several runtime analysis projects such as JavaMac, JPaX and JMPaX

respectively. In JMPaX project, BCEL was chosen for instrumentation purpose above

JTrek, because the vector clocks can be easily inserted using BCEL than JTrek. Some of

the bytecode level instrumentation tools are listed here.

4.2.3.3.1 Tool: JProbe Threadalyzer

JProbe Threadalyzer detects thread problems that can threaten the application

performance [41]. It analyzes the Java code to:

pinpoint the cause of stalls, deadlocks énd race conditions;
predict deadlocks with advanced lock analysis;

visualize the status of all running threads;

view precise source location, where problems occur;

avoid data corruption due to race conditions.

The event collection is performed by instrumentation. The events relevant to the property

under analysis are logged into “snapshot” files, and could be visualized (see Figure 4.1)

or converted into text or XML formats.

50



Recording) Started recording.
4307 main hread) ‘'main’ {id: 4307) started.
bilock 5919 Bne hread) *one* {ic: 5919) started.
unlock. 5770 examples threada ’ ::::gﬁ::;n?{?; 1':0;,5)9 ;tgg pped.
rn 5855 Thread-0 AThread) ‘Thread-0° (id; 5955) started.
block - 5956 two Thread) two’ (id: 5956) started.
fack 5683 javaang.Object 2 (Thread Awaken) ‘ane’ (id: 5919)
ook 5682 java.lang.Object Thread Block) 'one’ (id: 5919)
’ ’ Thread Block) 'twao’ (id: 5956)
un 5889 SymedIT-LazyComii iThread) "SymedJiT.L azyCompilation.0 (id: 5969) started.

Deadlock):

Thread 'ene' (id: 5919) holds java.lang.Object instance 5682 and is hlocked at void
examples threadalyzer.applications.deadlocker. Deadlocker§DeadThreadOne.run():58 waiting to acquire java.lang.Object instance
5683.

Thread two’ (id: 5956) holds java.lang.Objectinstance 5683 and'is blocked at void
examples threadalyzer.applications.deadlocker.Deadlocker$DeadThreadTwo.run(: 72 waiting to acquire java.lang.Objectinstance
5682,

Figure 4.1: A Trace Snapshot from JProbe

Threadalyzer flags thread stalls as potential problems in the analyzed programs.
Threadalyzer leaves it to the programmer to control how long a thread must be inactive
before being flagged as stalled.

Threadalyzer is capable of identifying and flagging any data races it encounters
while running the program. The data race detection process is usually resource intensive
and may lower down Threadalyzer performance. Powerful lock analyzers help in

identifying thread problems before they happen.

4.2.3.3.2 Tool: JTrek

JTrek was developed at Digital Corporation (Digital has now merged with Compaq and
Hewlett-Packard). JTrek is a platform independent advanced technology written in Java

for troubleshooting Java applications. JTrek consists of the Trek class library, which
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enables Java developers to write Java applications that analyze and modify Java class
files.

It is used as an instrumentation tool in Java PathExplorer (JPaX), a Run-time
Verification Tool. JTreK reads Java classfiles, traverses them as abstract syntax trees
while examining their contents and inserts new code. The inserted code can access the
contents of the method call-time stack at run time. JTreK is also used as an
instrumentation tool in Java-Mac “A run-time assurance tool for Java Programs”

developed at University of Pennsylvania, U.S.A.

4.2.3.3.3 ToolKit: Byte Code Engineering Library (BCEL)

The Byte Code Engineering Library (formerly known as JavaClass) is a toolkit for the
static analysis and dynamic transformation of Java class files [14]. It enables developers
to implement the desired features on a high level of abstraction without handling the
internal details of the Java class files. It is intended to give users a convenient possibility
to analyze, create, and manipulate Java class files.

BCEL was designed to model bytecode in an object-oriehted way by mapping
each part of a class file to a corresponding object. Particular bytecode instructions may be
inserted or deleted by using instruction lists and applying changes to existing class files.
Efficient bytecode transformations can be done by using compound instructions as a
substitute for a whole set of instructions of the same category. For example, an artificial
push instruction can be used to push arbitrary integer values to the operand stack. With
the aid of run-time reflection, i.e., meta-level programming, the bytecode of a method can

be reloaded at run time.
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Java MultiPathExplorer (JMPaX), a trace verification tool, uses the BCEL Java
library to modify Java class files for collecting data access events and maintaining a

vector clock, which identifies a partial order among events.

4.3 Our Trace Collection and Instrumentation Approach

4.3.1 Introduction

In our runtime analysis approach, for instrumentation purpose we developed an integrated
instrumentation approach, which combines two approaches:

o profile interface based approach — Hyades tracing,

¢ Bytecode instrumentation tool — JTrek.

By using this integrated instrumentation approach we could reap the benefits of both the
approaches. The Hyades framework consists of Java profiling interface which provides
non-intrusive trace collection, for events such as method entry/exit, trace start/end,
exception throw, etc. These events are emitted as XML fragments during execution of
target application. The target application is executed with Java profiling agent attached to
JVM to capture and record the Java application behaviour.

The limitation of Hyades tracing is that events such as; monitor enter/exit,
variable write and read could not be collected. These events are required for detection of
concurrency errors, such as deadlocks and data races. To collect these additional events
the Hyades tracing is supplemented with customized bytecode instrumentation tool -
JTreK.

For example, to log additional events such as monitorenter and

monitorexit in the trace, JTreK instruments the target classfile with empty methods
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Object.lockentry and Object.lockexit before the start and end of
synchronized block respectively. Similarly to log variable updates events in the trace,
JTrek instruments the target class file with empty methods variable write and
variable_ read before the monitored variable write or read operation.

When this instrumented classfile is executed on Hyades Platform, the additional events

such as; monitor enter/exit and variable updates are logged in execution trace.

4.3.2 Hyades Tracing

The Hyades profiling and tracing tool consists of the Profiling and Logging Perspective.
It enables to profile the application, to interact with the application when profiling, and to
examine the application for concurrency or memory related problems. The Profiling Tool
collects events related to the Java program's ruh—time behaviour. Events collected from a
profiling session are saved to an external file in XML format for later analysis.
4.3.2.1 Event Structure and Attributes
The data output of the Java Profiling Agent (Hyades Tracing) is a set of XML elements,
which are either emitted as fragments within a non-XML trace stream or as part of a valid
XML document [34]. Here we briefly discuss the event structure (in XML format) of the
execution trace of Java multithreaded appliocations.
The event structure consists of the following elements [34]:

e IDs

e Common attributes

e Structural elements

e Trace behaviour elements
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o (lass elements

o Object elements

e Method elements

¢ Line elements

e Memory management elements
¢ Exception elements

e JVM elements

e Monitor elements

e All trace elements

43.2.1.1 1IDs

Attributes of the elements have various kinds of IDs. Threads, classes, methods, and
objects each have unique IDs, represented by threadld, classId, methodIs and objectld
respectively. Each ID has a defining element and an undefining element. A defining
element provides the information related to an ID, for example, the defining element for a
thread ID contains the name of the thread.

An ID is valid until its undefining element arrives. An undefining element
invalidates the ID, whose value may be reused later as a different kind of ID. The value

of a thread ID, for example, may be redefined as a method ID after the thread ends.

4.3.2.1.2 Common attributes

Many event elements share the same attributes. The following attributes appear on

" more than one element:
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Time

The time, at which the event starts, the format of the time attribute is “utc.fff”” where utc is
the number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated
universal time, according to the system clock. It is expressed as an unsigned 32-bit value
formatted as a string.

[if is the fraction of seconds to the highest precision that can be retrieved.
Threadld/ThreadldRef

Threadld defines and threadldRef refers to the thread in which the element occurred.
Threadld's are unique within the scope of a trace regardless of how many threads are
started and ended. It is expressed as an unsigned 32-bit value formatted as a string.
Methodld/MethodIdRef

MethodId defines and methodIdRef refers to the method that the element is associated
with. It is expressed as a 32-bit unsigned value in string format.

ObjId/ObjIdRef

Objld defines and objIdRef refers to the object associated with the event. It is expressed
as a 32-bit unsigned value in string format.

Classld/ClassIdRef

Classld defines and classldRef refers to the class associated with the event. It is
expressed as a 32-bit unsigned value in string format.

Traceld/TraceldRef

Traceld defines and traceldRef refers to a UUID (Universal unique identifier) that

uniquely identifies the trace instance.
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4.3.2.1.3 Structural elements

When emitted as part of a valid XML document, the trace information is contained under
aroot TRACE element.

<TRACE>

<node/>

<processCreate/>

<agentCreate/>

all other events

<agentDestroy/>
</TRACE>

Trace Behaviour Elements
The following elements provide information about the trace as a whole:

e Node

e ProcessCreate

e AgentCreate

e AgentDestroy

o TraceStart

e TraceEnd

¢ ProcessSuspend
e ProcessResume
e Option

e Filter
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Thread elements

The following elements provide information about threads. Other elements will point to a
Thread element's thread _id to identify the thread they are running in;

ThreadEnd,
ThreadStart.

Class Elements

ClassDef;
MethodDef,

Although technically part of the classDef event, the method element is broken out into a

separate element so that it can be optionally output only when referenced.

Object Elements

The element objAlloc traces storage allocation. It has its own section because it also
holds identity information for an object, which can be referred to by method events
associated with the object, such as a methodEntry event.

Method elements

The following elements provide information about methods:
o MethodEntry
e MethodExit
o MethodCall (Deprecated)
o MethodReturn (Deprecated)
o InvocationContext
e ObjDef
e Value

e MethodCount
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MethodEntry and methodExit are output when a method is entered, and when the method
returns respectively. MethodCall and methodReturn are output when a method is about to
be called, and after a method returns.

The InvocationContext element holds identity information so that a methodEntry
can determine who invoked the method regardless of location. InvocationContext
information will identify either a methodCall or methodEntry of a remote agent for
distributed invocations.

The objDef element holds identity information for an object, which can be
referred to by elements associated with the object, such as the value element.

The value element is used to reference a data value, either for parameter values in
a methodCall, or for the return value of a methodReturn.

MethodCount tracks the number of times a particular method has been invoked.
This element is designed to aid in collecting code coverage information. A methodCount

element is produced for every method for every class loaded by the application.

4.3.3 Bytecode Instrumentation Using JTrek

Here the customized bytecode instrumentation using JTrek is described in detail. The
JTrek makes easily possible to process Java class files, examine their contents and insert
new code. The inserted code access the contents of various runtime data structures, such
as the call-time stack, and when executed on Hyades platform emit events carrying this

extracted information to the trace or console output [27].
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The instrumentation works as: JTrek iterates through the bytecode instructions of
the target program and uses callbacks to perform user-specific instrumentation. Iteration
may be at the level of Java statements or individual bytecode instructions.

JTrek allows insertion of certain types of code, but does not allow definition of
new local variables, fields, or methods. At each byte code instruction, JTrek calls a
method void at (Instruction instr), which we override, and to which the
current instruction is passed as parameter. JTrek provides a large variety of classes for
instrumentation such as Instruction, Code, Class, Statement, and Method, each targeting a
particular Java construct that can be accessed from an instruction. Each method class
contain various kinds of information. For example, in the Instruction class, the method
Statement getStatement () returns an object of the class Statement,
representing the statement in which the instruction occurs. The Statement class in turn
contains a method, Method getMethod (), returning the method in which the
statement occurs. For example, the method in which an instruction instr occurs
can be obtained by the expression: instr.getStatement () .getMethod ().

The void at (Instruction instr) overridden method is inserted before
the monitored variable/method; a switch-statement branches out depending on the opcode
of the instruction. In case an instruction is for instrumentation, JTrek inserts the call of a

method either before or after the instruction.

4.3.3.1 Additional Events Logged Using the Bytecode Instrumentation

Here the additional events logged in the execution trace using the bytecode
instrumentation are listed. The instrumentation procedure followed to log these events

will be explained below.
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4.3.3.1.1 Variable Updates

For data race analysis, information need to be extracted, such as when and which
variables are accessed, their updated values and threads referencing these variables.

For example, to monitor a class variable x of int datatype and log the events
such as; <methodEntry variableWrite>, <methodEntry VariableReads,
and the updated values of the variables in an execution trace and console output
respectively, JTrek iterates through bytecode instructions and searchs for putstatic
instruction (an instruction updating a class variable). This putstatic instruction has
the class variable name, the type of the variable, and the type of the parent class as
operand. The iteration is performed using the dot rek method of Trek class. The empty
methods such as variable write () or variable_read () are inserted after
the putstatic instruction. In the variable write () or variable read ()
methods, parameters such as variable type and its values are passed as operand. When
this instrumented bytecode is executed on Hyades platform, the events such as <method
Entry variable write> or <method Entry variable read> are logged
in the execution trace and the variables’ parameters such as variable type and variable
values are printed at the console output.

For data race analysis and other concurrency errors analysis, we combine both the
traces namely the Hyades trace and the trace obtained at the console output are combined.

The primitive field variables, local variables, and monitorentry/exit are

monitored. Below instrumentation details of these two variables types are provided:
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Primitive Field Variables

A field variable is either a class variable or an instance variable. A class variable is
updated by putstatic instruction. An instance variable is updated by putfield
instruction. Both instructions (putstatic and putfield) have variable name and a
parent class name as parameters. Both instructions take top stack operand value as the

updated value of the variable.

Local Variables

Local variable values are updated by instructions such as <T>store, <T>store n
and iinc where <T> stands for primitive type and <n> € {0, 1, 2, 3}. These
instructions contain an index to a local variable as an operand.

4.3.3.1.2 Monitor Enter and Exit

Detection of concurrency errors, such as deadlocks and data races, requires information,
such as when locks are acquired and released. At the JVM level, a lock is obtained when
a synchronized method - monitorenter instruction is executed.

For example, a monitorenter instruction indicates that a thread acquires a
lock when entering a synchronized statement, similarly monitorexit instruction,
indicates that a thread releases a lock. Detection of concurrency errors, such as deadlocks
and dataraces, requires extraction of information such as which object is locked and
which thread does it. Thus .instrumenting all monitorenter and monitorexit
instructions correctly tracks the number of locks held by a thread on an object relating to

the synchronized statements. When this instrumented bytecode is executed on the Hyades
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platform, the events such as <method entry LockAcquire> and <method
exit LockRelease> are logged in the execution trace.

Thus instrumenting all monitorenter and monitorexit instructions
correctly tracks the number of locks held by a thread on an object relating to the
synchronized statements. Figure 4.2 shows the original target source code and its
compiled bytecode (Figure 4.3), which is then instrumented (Figure 4.4) to log events
such as <methodentry lockAcquire> and <methodexit LockRelease> in

the execution trace.

private void forksAvailable(int 1) {
synchronized (convey[i]) {
convey[i] .notify () ;

}
}

Figure 4.2: Sample of the Source Code

private void forksAvailable(int i)

{

// 0 0:aload 0

/7 1 l:getfield #36 <Field Object[] convey>
// 2 4:iload 1

/7 3 5:aaload

/7 4 6:dup

// 5 7:agstore 2

/7 6 8:monitorenter

// try 9 31 handler(s) 31

// 7 9:aload 0

// 8 10:getfield #36 <«Field Object[] convey>
/7 9 13:1iload 1

/7 10 14 :aalocad
7/ 11 15:invokevirtual #100 «Method void
Object .notify () >

/7 12 18:getstatic #47 <Field PrintStream
System.out>
/7 13 21:1dc1 #102 <String "notify method is-

entered here'»
/7 14 23 .invokevirtual #65 <«Method void
PrintStream.printlin(String) >
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// 15 26:aload 2

// i6 27:monitorexit
/7 17 28:goto

// finally

/7 18 31l:aload 2

// 19 32:monitorexit
// 20 33:athrow

/7 21 34 :return

}

34

Figure 4.3: Sample of Uninstrumented Bytecode

private void

{

/7 0 O0:aload 0

// 1 l:getfield

7/ 2 4:iload 1

/7 3 5:aaload

// 4 &:dup

// 5 7:astore 2

// 3 8:monitorenter
// 7 9:alocad 0

/7 8 10:getfield

!/ 9 13:ilocad 1

7/ 10 14 :aaload

/7 11 15 :invokevirtual

Object.locklAacqguired({) >
// try 18 49 handlexr(s) 49

[/ 12 18:aload 0

/7 13 19:getfield

/7 14 22:iload 1

/7 15 23:aalocad

// 16 24 :inveokevirtual

Object.notify () >

/7 17 27:getgtatic
System.out>

/7 18 30:1dc1

entered here's

// 19 32:invokevirtual

PrintStream.printin{String) >

/7 20 35:aload 2

// 21 36:monitorexit
// 22 37:aload 0

/7 23 38:getfield

// 24 4l:iload 1

/7 25 42 :aaload

forksaAvailable (int 1)

#36

#36

#130

#36

#100
#47
#102

#65

#36

«Field Object[] conveys

<Field Objectl[] convey>

<Method wvoid

<Field Object ] convey>

<Method void
<Field PrintStream
«<8String "notify method is

«Method void

«<Field Object[] convey>
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/7 26 43 :invokevirtual #133 <Method wvoid
Obdect.locklRelease() >

7/ 27 46 :goto 52

// finally

/7 28 49:alocad 2

// 29 50:monitorexit

// 30 51:athrow

// 31 52 :return

}

Figure 4.4: Sample of Instrumented Bytecode

The sample of the instrumentor code (as shown in Figure 4.5) inserts the method
Object.locklAcquire after the monitorenter instruction. This instrumentor

code inserts methods (in the target bytecode) such as aload 0, getfield <Field
Object [l convey>, iload 1, aaload, and invokevirtual
<Method void Object.locklAcquired ().

For example, to insert aload 0 (a bytecode instruction), the instrumentor instruction
code.append (42) is written, which inserts the bytecode aload 0, the opcode
“42” refers to aload_ 0. Similarly the bytecode instruction getfield <Field
Object [] convey > is inserted by the instrumentor instruction code.append
(180, filterLock) where the opcode “180” refers to instruction “get £ield” and
filterLock refers to <Field Object [] convey> Similarly the bytecode
instruction invokevirtual <Method void Object.locklAcquire> is
inserted by the instrumentor instruction; code .append (182, monitorenter2)
where the opcode “182” refers to instruction “invokevirtual” and monitorenter2

refers to <Method void Object.locklAcquire>.
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Protected final void monitorEnterAfter 2 (Instruction
instruction)

{

Code code = null;

if (instruction.next () != null)

code = Code.addAt (null, instruction.next());

else

code = Code.addAfter (null, instruction.getStatement());

code.append (42) ;
code.append (180, filterLock) ;
code.append (182, monitorenter2) ;
code.done () ;

}

Figure 4.5: Sample of Instrumentor Code

The sample of the collected execution trace (Figure 4.6) is obtained by executing the
instrumented bytecode (Figure 4.4) on the Hyades platform. The execution trace shows
that the event locklAcquire methodentry (<lockAcquire methodentrys) is
logged before the notify methodentry. Both these method entries refer to the same

objectIdRef “8605”.

<! -- The additional events obtained by instrumentation --
I'>

<methodDef name="locklAcquired" signature="()V"
startLineNumber="247" endLineNumber="248" methodId="107"
classIdRef="120"/>

<methodEntry threadIdRef="7" time="1093561048.943165800"
methodIdRef="107" objIdRef="8605" classIdRef="120"
ticket="994" stackDepth="5"/>

<methodDef name="notify" signature="()V" methodId="103"
classIdRef="120"/>

<methodEntry threadIdRef="7" time="1093561048.957960600"
methodIdRef="103" objIdRef="8605" classIdRef="120"
ticket="1162" stackDepth="5"/>
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<methodDef name="locklRelease" signature="()V"
startLineNumber="262" endLineNumber="264" methodId="105"
classIdRef="120"/>

<methodEntry threadIdRef="6" time="1093561048.974705000"
methodIdRef="105" objIdRef="8605" classIdRef="120"
ticket="880" stackDepth="4"/>

Figure 4.6: Trace Sample of the Instrumented program

4.3.4 Trace Reduction

The execution trace obtained by the Hyades framework is large, usually in the order of 6-
20 MB. It becomes difficult to unmarshall, handle, and verify the properties on such a
large size of trace. The large size of the trace is caused by the filtering in most of the
irrelevant events (These events are irrelevant for the verification of properties of our
interest).

To reduce the trace size, fine-tuned filters of Hyades framework are used to filter-
in the relevant events and filter-out the irrelevant one. For example, for deadlock
detection only the wait and notify methodentries events are required in the
execution trace. To filter-in these events only, filter setup such as
“Java.lang.Thread.* Wait Include”, “Java.lang.Thread.* Notify
Include” and “* * Exclude” is written. This filter setup will only include wait and
notify methodentries in the trace, excluding most other methodentries, with the
exception of a few. A snapshot of this Hyades filter is shown below (Figure 4.7).

Using these filters, a smaller trace size was obtained of the order of 63-200 KB.
The size of the reduced trace depends upon the type of filters used, number of the filters

used, size of the original program, etc. The reduction in the trace size reduces the

property verification time.
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* Relaunch Process

Prohling Filters

Set the filters for profiling agents that you want to use during the profiling
session,

| INCLUDE

EXCLUDE
EXCLUDE
EXCLUDE
EXCLUDE
EXCLUDE
EXCLUDE

Figure 4.7: Snapshot of Hyades Filter

4.3.5 Benefits and Limitation of our Instrumentation Approach

By using integrated instrumentation approach, we can reap the benefits of both the
approaches, and limit their shortcomings. Here the benefits and limitations of our

instrumentation approach are listed.

4.3.5.1 Benefits of our Instrumentation Approach

1. Availability of Parsers: The execution trace obtained from our instrumentation
approach is in XML format. To analyze this trace for an antipattern, parsing is

required. There are many Java-XML parsers available; among the most popular

are SAX, DOM, and JAXB.
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2. TimeStamp Information: The events logged such as <method entry> and
<method exit> contain timestamp attributes. This timestamp information is
required in verifying the antipattern “wait stall”, because the “wait stall”
detection requires the timing comparison between the wait methodentry and wait
methodexit events for each thread.

3. Trace Reduction: The filters, available in Hyades framework, can reduce large
trace size to the order of 30 MB. These filter-out the irrelevant events and filter-in
the relevant events. The filters reduce the trace size, and thus lessen the trace
verification time.

4. Customized Instrumentation: The instrumentation can be customized to obtain
events and attributes as per the user requirement.

5. Most of the events of interest could be recorded and collected.

4.3.5.2 Limitation of our Instrumentation Approach

Additional Trace File: To monitor the updates of the variable, the values of variables are
printed to a second file. Thus additional trace file is created, which adds to the analysis

overhead and also consumes more memory.

4.4 Conclusion and Future Work

We presented an integrated instrumentation approach to extract necessary information,
namely events and their attributes required for offline analysis. This integrated
instrumentation approach helps to reap the benefits of both instrumentation approaches
while avoiding their limitations. There are a few immediate tasks which need further

work:
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Trace Integration: Integrate the two traces obtained to monitor updates of the
variables one obtained at the console output and trace obtained in XML format.

. Hyades 3.0 Probekit. Experiment with trace collection using Hyades 3.0 (a latest
version of Hyades), which contains the BCI (Bytecode Instrumentation) kit for
bytecode instrumentation.

Overhead Reduction: Further reduce the overhead caused by instrumentation on
the target program execution. A significant overhead can alter real-time properties
of interest.

. Aspect Based Instrumentation: Experiment with the aspect-based instrumentation,

in which instrumentation specification is coded as an aspect.
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Chapter 5. Custom Based Antipattern Detection

5.1 Introduction

The custom-based detection is a semiformal runtime approach to analyze the execution
trace of a Java program (post-mortem analysis) against certain MT antipatterns coded as
Java detectors. The offline analysis (post-mortem) was used to minimize the execution
overhead. The MT antipatterns to be analyzed are first formally specified as FSM or
EFSM, as shown in Section 5.3. These antipatterns are then coded as Java detectors,
sample detectors are presented in Section 5.4. An execution trace of the program being
analyzed is collected in XML format, which is then parsed and unmarshalled using Java-
XML technology, JAXB. The execution trace is then analyzed for antipatterns using the
Java detectors; the output of this analysis is a (possibly empty) set of property violations
printed on console output.
The motivation of this approach can be summarized as:
1. Develop a custom runtime analysis approach: This approach is custom because
the execution trace is verified for antipatterns using the custom Java detectors.
2. Reduce overhead: Reduce the execution overhead caused by the instrumentation.
A lightweight and integrated instrumentation approach is used, which combines
the bytecode instrumentation (a lightweight approach) with Hyades tracing - a
non-intrusive JVMPI based trace collection approach.
3. Simplify off-line analysis: Develop a simplified approach, for the analysis of the
execution trace of Java applications. The collected trace output is in XML format,

therefore trace analysis is simplified since data in XML format is quite
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representative (in XML, the data is collected in tags). There are many Java-XML
parsers available such as SAX, DOM, and JAXB package which make it easy to
read and analyze these execution traces of Java programs. In the particular case of
runtime analysis in multiprocessor and multiplatform environment such as the
Internet, where XML is used for data exchange, the XML-based trace analysis can

prove to be very useful and feasible.

5.2 Workflow

The workflow of custom based detection approach is shown in Figure 5.1. It consists of
two inputs: the Java classfile to be monitored (created using a standard Java compiler)
and the MT antipatterns to be verified.
Custom detection is performed in three steps:

¢ Event Collection,

e Parsing Step,

e Analysis Step.

5.2.1 Event Collection

Here the relevant events and their attributes are collected in execution trace (in XML
format) for MT antipattern analysis. The Java multithreaded application is executed on
Hyades platform, which contains the Java Profiling Agent attached to a Java Virtual
Machine (JVM) to capture and record the behaviour of a Java application. During the
execution of the program, the events and their attributes are emitted as XML fragments

from the profiling agent, which are collected in a trace. Most of the events required for
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antipatterns detection are collected by Hyades tracing with the exception of a few. The

remaining events are collected by the custom instrumentation.

5.2.2 Parsing

Here the parsing and unmarshalling procedure is performed using a JAXB package. The
JAXB package is a XML-Java technology developed by Sun Microsystems. The

unmarshalling procedure is explained in more detail in Section 5.4.

5.2.3 Analysis

The collected events (obtained from the event collection) are analyzed for MT
antipatterns. First the MT antipatterns are formally specified as FSM or EFSM, and then
these antipatterns are coded as Java detectors. Formal specification of the antipattern (as
FSM or EFSM) helps to better understand the antipattern, and thus its correct
implementation in Java. The Java detectors are then used for antipatterns detection in the
trace. The output of this analysis is a possible set of warnings, printed on a console

output.
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Property
violations

Figure 5.1: Workflow of Custom Based Detection Approach

5.3 Antipattern Formalization

5.3.1 Formalization of the “Double Call of Start () Method” Antipattern

In order to correctly and efficiently implement the antipatterns, formal, automata like
description as FSM and EFSM are created. The formal specification helps to correctly
understand the antipattern and thus its correct implementation. The formal description of
the antipattern is a necessary step in model checker based trace verification, and also, we
believe, beneficial in custom detector implementation.

The antipattern “double call of the start () method” is formalized as FSM and

EFSM.

74



5.3.1.1 FSM Formalization of “Double Call of Start () Method”

This antipattern can be instantiated in a set of automata (finite state machines), where
each automaton corresponds to a thread present in an execution trace, or it can be
instantiated in single trace-independent extended automaton. In the first case, the
automaton is specified as: the double circle represents the accepting state (state 0 and 1)
and the full circle represents unacceptable or violation state (state 2), which indicates that
the antipattern is detected. The transition is labeled with a tuple of the form (o,m,c),
where o is the object owning method m, m is the method itself, and c is the calling thread.
For example, in the FSM shown below (Figure 5.2) the transition is labeled as (o, start,
*), which indicates that the start method is called on the thread object o (o.start), and
the wild-card symbol * indicates that calling the thread can take any value. We assume
that events that are not explicitly defined in a state are irrelevant to the state and thus
discarded in this state. In other words, FSM does not change state when an unspecified

stimulus arrives.

‘m (o, start,*) ‘/\ (o, start,*)
@@=

Figure 5.2: FSM Formalization of Double Start ()

Implementation of a “double start () antipattern detector based on the above
automaton involves trace pre-processing to build the list of thread ids (more exactly ids of
corresponding objects), and then scanning the trace with evaluation of a set of automata.
Similar preprocessing will be required for property verification, based on the model

checker, unless the former provides a richer language than the automata. The FSM model
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can only use constants, thus the above model may only be applied to one particular object
(thread). The FSM, extended with variables and operations on these variables is called
Extended FSM (EFSM). In the next section the formalization of antipatterns using EFSM

is discussed, where o is not a constant, but an input variable.

5.3.1.2 EFSM Formalization of “Double Call of Start () Method”

In a single extended machine the antipattern “double call of start () method” can be
formalized as shown in Figure 5.3 below. The lists of threads are initially declared empty
as (L: = &) for EFSM formalization. When the next start call is on the thread object o
and the thread object o is not contained in the list L, the thread object o is added to the

thread list L.

[ =0 ((o, start,*) A (0 € L))/ (L:=L - o)

((o, start,*) A (0 g L))/ (L:=L U 0)

Figure 5.3: EFSM Formalization of Double Start ()

5.3.2 Formalization of the “Premature Join () Call” Antipattern

The antipattern “premature join () call” is formally specified as FSM and EFSM in a

similar fashion.
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5.3.2.1 FSM Formalization of “Premature Join () Call” Antipattern

The formal description of the “premature join () call” antipattern can be represented
in a set of automata (finite state machines), where each automaton corresponds to a
thread (referred by threadId) present in an execution trace. The automaton is build, in
which the double circle represents the acceptance state and the full circle represents the
violation state; entering a violation state indicates that the antipattern is detected. Note

that, when events are not explicitly defined in the state, the events are discarded.

(o, start,*)

A 4

©

Figure 5.4: FSM Formalization of Premature Join ()

Implementation of the “premature join () call” antipattern detector based on
the above automaton involves trace pre-processing to build the list of thread Ids, and then
scanning the trace for evaluation of automata. Informally it can be said that first the
methodExit of join and methodExit of run are located for each thread T. Then the
timestamps of join’s methodExit and run’s methodexit are compared. If the run’s
methodexit happens before the join’s methodExit on a particular thread 7, then the

message “premature call of join () method” detected is printed.
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5.3.2.2 EFSM Formalization of “Premature Join () Call” Antipattern

In a single extended machine (EFSM) the antipattern can be formalized as:

((0, join,*), (0 € L)) / (L:= L- 0)

2 .0 @

(o, start,*)/(L =L v 0)

Figure 5.5: EFSM Formalization of Premature Join ()

5.3.3 Formalization of the “Wait () Stall” Antipattern

5.3.3.1 FSM Formalization of Wait () Stall

Here we formalize the “wait () stall” antipattern with an automaton. Informally this
antipattern - “wait () stall” can occur when thread executes the wait () method and

wait duration exceeds the user specified threshold”.

This antipattern can be represented in a set of automata (finite state machines), where
each automaton corresponds to a thread (referred by threadId) present in an execution
trace. The automaton as shown in Figure 5.6 is built: a full circle represents the violation
state when reached indicates the wait () stall detection; a double circle represents the
accepting state. In the first transition the wait methodEntry is assigned the timestamp

¢! and in the second transition the wait methodExit is assigned the timestamp 2. If the
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difference (¢/ — ¢2) is greater than the user specified threshold, then the message “wait

() stall” is detected is printed.

(0, waitexit,*, £2) [ ((t1-t2)
(o, waitentry,*, t1) > threshold)

—© © ()

(o0, waitexit,*, t2) [ ((t1-t2)
< threshold)

Figure 5.6: FSM Formalization of Wait () Stall

5.3.3.2 EFSM Formalization of Wait Stall

The “Wait () Stall” antipattern can be formalized as Extended Finite State Machine

(EFSM), as shown below:

((o, waitentry,*, t]) A (o, waitexit, *, £2)/((t1-12)
(o e L)/ (Li=Luo) > threshold)/(L:=L - 0)

0 S— o e

(0, waitexit, *, £2)/ ((t1-12)
< threshold) / (L:=L - 0)

Figure 5.7: EFSM Formalization of Wait () Stall

5.4 Unmarshalling

All the implemented detectors rely on JAXB based unmarshalling of the XML
representation of the trace. Unmarshalling is the process of reading an XML document

and constructing a content tree of Java content objects. Each content object constructed
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corresponds directly to an instance in the input XML document of the corresponding
schema component, and the content tree represents the content and structure of the
document as a whole.

The Unmarshaller class (javax.xml.bind.Unmarshaller)
deserialize the XML data into a Java content tree as shown in Figure 5.8, and also

validates the XML data as it is unmarshalled, though such validation is optional.

// create a JAXBContext capable of handling classes
generated into the foo.jaxb package

JAXBContext jc¢ = JAXBContext.newInstance ("foo.jaxb");

// create an Unmarshaller
Unmarshaller u = jc.createUnmarshaller () ;

// unmarshal a FooBar instance document into a tree of Java
//content objects composed of classes from the example

/ /package.

TRACE tr =

(TRACE)u.unmarshal ( new FileInputStream
("C:\\jagmit\\profiling data\\guest\\reduced nativeagent.xm
1)) ;

//TRACE tr =
// (TRACE)u.unmarshal ( new FileInputStream
("C:\\jagmit\\Trace\\sap trace\\sap_trace.xml")) ;

Figure 5.8: Sample of Unmarshaller Code

5.5 Custom Detector’s Implementation

Three custom detectors, namely “double call of start () method”, “premature call of
join () method” and “wait () stall” were implemented. This section describes the

implementation of these antipattern detectors.
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5.5.1 Double Call of Start () Method Detector Implementation

The implementation of “double call of start ()” method antipattern detector
according to their formal specification as FSM and EFSM is described in this section. A
sample of the “double start () detector is shown in Figure 5.9. Initially the variable
start_count = O is defined. Then for each thread (referred by threadldi, where i is
threadId number) we iterate and search for “double call for start ()”
methodEntry. If such an instance is found, the objectlds are compared. If the objectld are
found to be the same, the message “double call of start () method” detected for
threadIdi is printed, otherwise the message “double call of start () method” not
detected for threadld; is printed. In the implementation of “double start () detector,
the trace is traversed and the objectIds of the threadStart event are saved in the
thread objId[] array. Similarly the objectIds of start methodentry are saved
in the mentry objId[] array.

Then the objectId of the threadStart event is compared with the objectId of
the first and second start () methodentry. This comparison is made in the
thread objId [] and mentry objId [] arrays obtained previously. If the
objectlds are the same the message “double call of start ()” method detected is
printed, otherwise the message “double call of start ()” method not detected is

printed.

for (int k = 0; k<threadId count; k++) {

System.out .println("Checking double start for threadlId = "
+ threadId(k]) ;

start_count =0;

for (int j=0; j<mentry objId count;3j++) {

if (thread objId[k].equals(mentry objId[j]))
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{
start count++;
}
}

if (start_count==2)
System.out.println ("Double call of the start method
detected for threadId = "+ threadIdl[k]);

else

System.out .println ("No Double call of start method
detected for thread id = " + threadlIdlk]);

]

Figure 5.9: Sample of Custom Detector for Double Start () Detection

5.5.2 Premature Call of Join () Method Detector Implementation

The definition of the premature call of the join () method states “it consists in the
invocation of the join () method to the thread, which is not yet started” [22]. In the
trace, the thread should terminate (run methodexit) after the corresponding thread
join (join’s methodentry), and before the join’s methodexit. The trace verifies this
ordering for every threadId, and if such an instance where the ordering is found
violated, then the message “prematﬁre callof join ( ) method” detected is printed.

As shown in Figure 5.10 for every thread, represented by the threadld:i (where i is
an integer of value 2, 5, 6 etc), the timestamp of run’s methodexit event is compared
with the corresponding join’s methodexit event. If the timestamp of run’s methodexit
is greater than the timestamp of corresponding join’s methodexit, the message
"Premature call of join () method detected for threadId = i" is printed,
otherwise the message "No Premature call of join () method detected for

threadId = 1i" isprinted. Also itis checked that run’s methodexit event and the
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corresponding join’s methodexit should happen on the same object, but on different

threads.
// start of first for loop (runexit count)
for ( int j = 1; j < event list.runexit count; j++)
compare time = false;
// start of second for loop (joinexit count)
for( int i = 1; i < event_list.joinexit count
&& compare time == false; i++)

if
(event list.runexit obj arrayl[j] .equals(event list.joinexit
obj arra{[i]))

//System.out.println("comparing the object Id4d");

// starting (if loop) comparing threadid of runexit and
joinexit array

if (event list.runexit thread array([j].compareTo (event 1
ist.joinexit thr ead arrayl[i]) < 0 ||
event list.runexit thread arrayl[jl].compareTo(event list.joi
nexit thread arrayl[i]) > 0)

//System.out .println("comparing the time");

compare time = true;

if (event list.runexit time array([j].compareTo
(event list.joinexit_time array[i]) > 0)

System.out.println("Premature call of join() method
detected for threadId = " +
event list.joinexit thread arrayl[il);

else if (event list.runexit time arrayl[j].compareTo
(event_list.joinexit time array([i]) < 0 )

System.out .println("No Premature call of join() method
for threadId = "o+
event list.joinexit thread arrayl[il);

// starting (if loop) comparing threadid of runexit and
joinexit array

} // end (if loop) comparing objectid of runexit and
joinexit array

} // end of second for loop (joinexit count)

} // end of first for loop (runexit count)

Figure 5.10: Sample of Custom Detector for Premature Join () Detection
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5.5.3 Wait () Stall Detector Implementation

The wait () stall antipattern occurs when a thread waits (after calling the wait ()
method) for more than the user specified threshold [22]. The methodentry and methodexit
of wait () method for each thread (referred by threadld) is located. Then the time
difference between wait () methodentry and its methodexit is calculated and
compared with the user specified time period (in this detector it is set as 0.5 seconds). If
the calculated time difference is more than the user specified period then the message
“wait () stall” detected is printed.

As shown in the Figure 5.11 for each thread represented by the threadIdi (where i
is an integer of value 2, 5, 6 etc), the time difference between wait’s methodentry and
its corresponding wait’s methodexit is calculated. If the calculated time difference is
more than the user specified period (0.5 seconds) then the message “wait () stall”

detected is printed, otherwise the message “No wait () stall” detected is printed.

if (mexit st3.equals (mstring)) {

//System.out.println(mentry st2);
System.out.println("Method Exit time for the wait method" +
mexit st2);

Float tmp2 = new Float (mexit st2);
ft2 = tmp2.floatValue() ;

ft3 = ft2-ft;
System.out.println(£t3) ;
if ( £t3<0.5)

System.out.println("Wait Stall Detected ");
else

System.out.println(" No wait stall Detected ");

}

Figure 5.11: Sample of Custom Detector for Wait () Stall Detection
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5.6 Experiments

This section discusses the detection of the antipatterns, double call of start ()
method, premature call of join () method, and wait () stall.
The experiments were performed on the following hardware and software configuration:

Hardware Configuration:

1. CPU: AMD Athlon 900 MHz,
2. RAM: 512 Mbytes.
Software Used:
1. Operating System: WINDOWS 2000,
2. Compiler: : Java 1.4,
3. IDE: Eclipse,
4. Java- XML Tool: JAXB (Java Architecture for XML Binding).

5.6.1 Antipattern: Double Call of Start () Method

Description: The start () method is not supposed to be used more than once for the
same thread.
Application 1 is a fragment of Java multi-threaded platform Guest [45].

Application 2 is a custom dining philosopher program.

Table 5.1: Analysis Time for Double Start () Detection

Trace size Execution time Total time (Execution +
Compile Time)
63.6 KB (using fine tuned 4s 27 s
filters)
627 KB(using fine tuned 5s 25s
filters)

5.6.1.1 False Positive Detection by Custom Based Detection Approach

This section explores in detail the detection of double start () antipattern by static

analysis, and then compares its detection using the custom based detection approach.
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Double call of start () method antipattern was detected by static analysis tool
Extended-JLin [45].

The message “another start method call” is emitted corresponding to the “double
call of the start method of a thread” antipattern, which is a false positive. The tool detects
the antipattern in the following segment of the code. It is signalled for the second start

() method call in line [9]. However, this method is not called for the same thread, since

the variable ¢ received a new thread object in line [8].

public void execute() {

[1] t = new Thread(guestAgent) ;

[2] t.start () ;

[3] while (agentState != 0) { // stop
[4] if (agentState==2) { // resume
[5] agentState = -1;

[6] if (t!=null)

[7]
[8]
[9]
[10]
[11] //guestAgent .timerMan.execute () ;
[12] GuestSystem.pause (1000) ;

[13] }

Figure 5.12: Sample of Guest Application Code
Based on the information (like methodIdRef, ObjectldRef) provided by the events

.interrupt () ;
= new Thread (guestAgent) ;
.start () ;

— (t t t

methodEntry and threadStart, the false positive given by static analysis for “double call of
the start ()” method antipattern is detected. The events of the execution trace, which

were used for detection, are shown in Figure 5.13.

<methodDef name="start" signature="()V" methodId="302"
classIdRef="325"/>

“First methodEntry for start method”

<methodEntry threadIdRef="2" time="1074266683.224861900"
methodIdRef="302" objIdRef="7532" classIdRef="325"
ticket="11188" stackDepth="3"/>
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<methodExit threadIdRef="2" methodIdRef="302"
objIdRef="7532" clagsIdRef="325" ticket="11188"
time="1074266683.225230500" overhead="0.000021641"/>

“Second methodEntry for start method”

<methodEntry threadIdRef="2" time="1074266683.833227200"
methodIdRef="302" objIdRef="7679" classIdRef="325"
ticket="12388" stackDepth="3"/>

<methodExit threadIdRef="2" methodIdRef="302"
objIdRef="7679" classIdRef="325" ticket="12388"
time="1074266683.833581400" overhead="0.000018102"/>

“ThreadStart event for first methodEntry”

<threadStart threadId="5" time="1074266683.298559400"
threadName="Thread-0" groupName="main" parentName="system"
objIdRef="7532"/>

“ThreadStart event for second methodEntry”

<threadStart threadId="6" time="1074266683.981886600"
threadName="Thread-1" groupName="main" parentName="system"
objIdRef="7679"/>

Figure 5.13: Sample of Execution Trace Required for Double Start () Detection

From the XML element <methodDef> the methodId = “302” corresponding to the

start method is obtained. The methodEntry event and its attribute objIdRef

corresponding to the methodIdRef = “302” (start) are located. The objIdRef’s

values of the corresponding methodEntry event are compared and found to be different.

These objIdRef’s values also refer to different threads. We conclude from this

analysis that the “double call of the start () method” is not on the same thread. Thus

the runtime analysis identified the false positive given by the static analysis.

5.6.2 Antipattern: Premature Call of Join () Method

Description: A call to the join () method of a thread is premature if the thread has not

been started at the time of the call [22].
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Application 1 is a custom race program [41].

Application 2 is a custom dining philosopher program.

Table 5.2: Analysis Time for Premature Join () Detection

Trace size Execution time Total time (Execution +
Compile Time)
29.3 KB (fine tuned 4s (approx) 26 seconds
filters)
627 KB(using fine 12s (approx) 45 seconds
tuned filters)

A Snapshot of the console output for “premature join ()” detection based on the

custom-based detection approach is shown in Appendix A.

5.6.3 Antipattern: Wait () Stall

Description: The thread should not wait (after calling the wait method) for more than
user specified threshold [22].

Detection: Similarly for “double start ()” detection in the execution trace, the
method Id “109” for the wait () method is obtained from the XML element
<methodDef>. The methodEntrys and methodExits of wait () method for a
particular thread (referred by threadId) are located. The time difference between
methodEntry and its methodExit is calculated and compared with the user
specified time period (in this detector it is set as 0.5 seconds). If the calculated time
difference is more than the user specified period then the message “wait () stall” is

detected is printed.
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This antipattern can only be detected by runtime analysis, because of the

timestamp information provided by the methodEntry, methodExit,
threadstart events in the trace.

The relevant events required for the “wait () stall” detection are given below:

and

“methodDef” element for wait method

<methodDef name="wait" signature="()V"
startLineNumber="429" endLineNumber="430" methodId="109"
classIdRef="116"/>

“First methodEntry”

<methodEntry threadIdRef="5" time="1074463868.267297000"
methodIdRef="109" objIdRef="5983" classIdRef="116"
ticket="263" stackDepth="4"/>

“First methodExit”

<methodExit threadIdRef="5" methodIdRef="109"
objIdRef="5983" classIdRef="116" ticket="263"
time="1074463869.072965900" overhead="0.000015904"/>

Figure 5.14: Sample of Execution Trace Required for Wait Stall Detection

5.7 Advantages and Limitation of Custom Based Detection

Advantages of Custom Based Detection

1. Can detect the false positive given by static analysis, particularly in the detection of

the antipattern “double call of start () method”.

2. Scalable (i.e. can be used to analyze execution traces of large size applications).

However, due to limitations of the XML marshalling tool, the custom detector

generates a memory exception when the trace size exceeds 25MB.

Limitation of Custom Based Detection

Custom based detection provides less coverage of a program compared to heavyweight

formal approaches such as model checker and theorem provers, because only a single run

of the program is analyzed. Thus it cannot prove the correctness of the system as a whole.
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5.8 Conclusion

A custom based detection runtime analysis tool was proposed and implemented for
detecting three MT antipatterns. This tool gave a significant edge over static analysis,
particularly in the detection of the double call of start () method; it could detect the false

positive generated by static analysis.
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Chapter 6. Model Checker Based Antipattern Detection

6.1 Introduction

In the previous chapters, we discussed a semiformal approach: custom-based detection
based on runtime analysis of Java multithreaded applications. In this chapter we will
suggest another technique for runtime analysis based on model checking as backend and
we will describe this technique and its experimental results. In this approach, the
PROMELA model is extracted from the trace (obtained in XML format) of the Java
program. This execution trace contains the relevant events. The PROMELA is input
language for Spin model checker. The XML to PROMELA translation is done by a Java
program based on a translation schema, (see Section 6.3 for details). The extracted
PROMELA model is verified against the MT antipatterns using Spin model checker.
These antipatterns were formally specified in LTL (Linear Temporal Logic). We choose
Spin in this approach for antipattern verification because it is one of the most popular,
mature and advanced open-source model checkers. The Spin model checker can
automatically determine whether a program satisfies the LTL property, and in case the
property does not hold true, a warning is printed.

The motivation of this approach can be summarized as:

1) Incorporate Formal Techniques: To develop the model checker based detection
approach, which incorporates formal techniques such as model checking for
antipattern detection in runtime analysis. As far as we know no work has been
done similar to ours in industry or universities. The closest work is Java

Pathfinder; a tool developed at NASA Ames Research centre [37] which
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2)

3)

4)

6.2

combines runtime analysis with model checking. In this tool, the warnings
emitted from the runtime analysis are used to guide a model checker [25].

Benefits of Formal Technique: To evaluate the benefits of formal technique such
as Spin model checker in runtime analysis, comparison is made between a formal
approach - model checker based detection and custom based detection — the

semiformal approach. The comparison is made with respect to characteristics such

as:
¢ Quality of analysis,
¢ Time usage,
e Resource consumption etc.
Predictive Trace Analysis: The model checker based approach could possibly be

used for the predictive trace analysis, as the model checker could analyze various
possible event interleavings.

State Explosion Problem: Overcoming the state explosion problem of full blown
model checking approach. To overcome this limitation, we model check the trace;
an execution trace is an abstract representation of the target application. In certain

aspects our approach is comparable to abstract model checking.

Workflow

The workflow of our approach is shown in Figure 6.1. There are two inputs to it: the

Java program in byte-code format to be monitored (created using a standard Java

compiler) and the properties/antipatterns to be verified. The output is a (possibly empty)

set of property violations printed on a console output.
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The model checker based approach can be divided into three main steps:
e Instrumentation Step,
e Model Extraction Step,

e Analysis Step.

6.2.1 Instrumentation Step

The program to be analyzed for antipatterns should be instrumented in such a way that
when this instrumented program is executed the relevant events are generated for further
analysis.

Instrumentation is performed in a program to be analyzed based on the user
specified instrumentation specification; the instrumentation specification contains
information to be monitored such as classes, methods or instance variables. Based on the
information provided, the empty methods such as lockAcquire, lockRelease,
variable write and variable read are inserted in the target classfile. The
instrumentation is performed at bytecode level, and for this JTrek, a bytecode engineering
tool from Digital [12] is used. This tool reads the Java class files (bytecode), traverses
them as abstract syntax tree while examining their contents, and inserts new codes in
highly a flexible manner [27]. This instrumented classfile when executed, on the Hyades
platform will emit relevant events as XML fragments, which are collected as trace. This

execution trace is given as input for model extraction.

93



6.2.2 Model Extraction Step

The trace is given as input and then the PROMELA model is extracted based on an input
translation schema. The extracted PROMELA model is then given as input for antipattern

analysis.

6.2.3 Analysis Step

Here MT antipattern verification is performed and property violations (if any) are printed
to the console output. The extracted PROMELA model obtained from the previous step is
given as input for antipatterns verification. These antipatterns are specified in Linear
Temporal Logic (LTL), and this LTL formula translates to never claim. During model
checking, it checks for never claim negation in the extracted PROMELA model, and if
such a never claim negation is found, it prints the warnings to the console output. Along
with these warnings, it prints other verification details, such as depth reached in the
model, number of transitions covered, number of matched states, and verification time.

A sample of the snapshot of verification output is shown in Appendix B.
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Figure 6.1: Workflow of Model Checker Based Approach

6.3 XML to PROMELA Translation

Each thread is modelled by a PROMELA process. The trace events themselves are

translated in a more or less direct way, where each event attribute is modeled by a

PROMELA variable. For few instructions, join () and start

following their Java semantics [55]. For other thread related Java constructs, a distributed
trace approach is followed that assumes that only events of same thread (process) or
involved in a communication are ordered [23] [36]. Since threads are controlled with
locks we assume that events on the same lock are ordered. Currently, data values and
communication via threads are not modeled, since they are not needed for antipattern

detection. Note that in Java, data based communication is guarantied to occur if
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appropriate synchronization constructs are used, otherwise a change of a variable value

by one thread may never become visible to other threads [55]. Here the event’s attributes

and its mapping to the PROMELA model is explained:

1.

Variable/DateType Declaration: Events attributes such as Reference to Object
Identifier (ObjectIdRef), Reference to Class Identifier (ClassIdRef), and
Reference to Method Identifier (MethodIdRef) are declared as integer data
type in PROMELA.

Process Declaration: Each thread in execution trace translates to active process in
PROMELA. For example, a trace that consists of three threads, namely thread?,
thread’ and thread6, translates to a PROMELA model that consists of three active
processes, namely process2, process5 and process6, respectively.

Relevant Events: Currently start (), join () wait (), notify
(), notifyall (), LockAcquire (), LockRelease () method
entry and exit and data access events are considered as relevant events of the
trace. Other events are not needed for verification itself, though they may be
helpful to locate the problem once detected. The model extraction is explained in
Section 6.5.

Event Body Translation: Each relevant event in XML trace translates to d_step
construct in PROMELA and each event’s attribute translates to a variable
assignment statement inside the d_step construct. The d step insures that
each event is atomic and instant.

TimeStamp: The events in the PROMELA model are assigned the logical timeStamp

value, rather than real time value as in the execution trace.
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6. Event Synchronmization: Start () methodentry and corresponding run
methodentry events are ordered. Events on the lock, related to lock entry,

exit, wait, and notify are totally ordered.

6.3.1 XML to PROMELA Translation lllustrated with Example

The general idea regarding translation is explained here. The XML trace generally
consists of set of tags and declarations and these tags provide information about the data

and its relation to other data tags of the events logged. For example, methodEntry event

logged (in XML format) as:
<methodEntry threadIdRef="7" time="1093561048.957960600"
methodIdRef="103" objIdRef="8605" classIdRef="120"

ticket="1162" stackDepth="5"/>.
The attributes of this event are; threadIdRef, time, methodIdRef,
objIdRef, classIdRef, tickets and stackDepth etc. The data type of this
event’s attribute can be either strings or integers.
The XML trace translated to PROMELA model based on a translation schema is shown
in Figure 6.2. The translation schema is explained as follows:
1. Initially before the start of event body in PROMELA model, a comment statement
is written indicating the event type, threadld and methodld. For example, a
comment statement is written as /* wait methodentry in threadld 6 for methodId
113 */.
2. After the comment statement, name of the event type is written as “name =
wait methodEntry”, and the methodIdref ™“113” refers to wait ()

methodentry.
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Other attributes of the events in the XML trace such as threadIdRef = 6,
classIdRef = 116, objIdRef = 8606, methodIdRef = 113 are

copied from the XML trace and mapped one-to-one to the PROMELA model.

. In the XML trace, the event’s timestamp is assigned the absolute value such as

time = “1091230513.794350600” but in the PROMELA model, the

event’s timestamp is assigned logical value such as “time = 7", which

signifies that this particular event happened seventh (7th) in the sequence.

. The event’s attributes in the trace such as; methodIdRef, objIdRef,

classIdRef and threadIdRed, which are assigned String datatype in
the XML trace are assigned int datatype in the PROMELA model as shown in

the Figure 6.3.

. The event’s names such as notify methodentry/exit, wait

methodentry/exit, notifyAll methodentry/exit are assigned

mtype datatype in PROMELA model as shown in the Figure 6.3.

. The event’s attributes such as ticket, stackDepth which are not relevant

from analysis viewpoint are not translated to PROMELA model.

XML Trace PROMELA Translation
<methodEntry d_step
threadIdRef="6" {
time="1091230513.794350600" /* first wait methodentry in

threadIdé for methodId 113%/
methodIdRef="113" name = wait methodentry;
objIdrRef="8606" threadIdRef = 6;
classIdRef="116" methodIdRef = 113;
ticket="1074" objIdRef = 8606;
stackDepth="4" classIdRef = 116;

/> time = 7; (logical time)
}

Figure 6.2: XML to PROMELA Translation
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#define N 120 /* nr of rendevous channels */
#define L 10 /* gize of buffer */

mtype = { methodDef, Notify MethodEntry,Wait MethodEntry,
threadstart,Wait MethodExit,

Notify MethodExit, lockAcquire_ MethodEntry,

lockRelease MethodEntry, lockAcquire MethodExit,
lockRelease_ MethodExit, Start_MethodEntry,
Start_MethodExit, Join_MethodEntry, Join_MethodExit,
Run_MethodEntry, Run MethodExit, NotifyAll MethodEntry,
NotifyAll MethodExit };

mtype = {message};
mtype Name ;

int methodId,
MethodIdRef,ClassIdRef, ThreadIdRef, ObjectIdRef, TimeStamp;

chan Q[N] = [L] of {mtype};

Figure 6.3: Spin: Some Declarations of PROMELA Model

6.4 Modeling Synchronization

A race condition between two (or more) threads occurs when they modify a member

variable of an object simultaneously. Races could lead to data corruption and other

various problems.

To avoid data races, a programmer can force fragments of code running on

different threads to execute in a certain order by adding synchronization operations. Java

offers several constructs that enforce synchronization:
e gtart and join which operate on Thread objects,
e locked objects (synchronized blocks and methods),

e wait andnotify(All).
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With join () it is feasible to model semantics of these Java constructs very closely,
predicting new executions rather then only possible linearization of partial order. In the
case of wait and notify, which provides value driven controls over thread executions,
attempts to mimic construct following their Java meaning, will likely result in imprecise
model, at least with our level of trace detail. Thus, when it concerns operations on locks,
we just enforce order on events that relates to the same lock or thread. This approach is

detailed below.

6.4.1 Synchronization in Java

Three main types of MT synchronization events are modeled in PROMELA:

1. Thread start () (StartEntry) and run methodentry (RunEntry) (the former
mostly precedes the latter).

2. Thread termination (RunExit) and thread JoinEntry and Exit.

3. The events on the same thread are modeled by totally ordered events of a
PROMELA process. If the immediately preceding events happen on the same object
but on different threads the order is enforced. To enforce this ordering in
PROMELA a message is exchanged between events such as wait, notify,

notifyAll entry/exit and lock entry/exit.

6.4.2 Modeling Synchronization in PROMELA

The synchronization is implemented in PROMELA model, using two approaches namely
“variable/ flag” or “message passing” based approach. In some PROMELA models both

approaches are combined.
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6.4.2.1 Message Passing Approach

6.4.2.1.1 Modeling Synchronization with Message Passing
Message based approach is used to enforce order for wait-notify (All),

lockacquire/lockrelease and start-run (Entry) events. When a thread
invokes wait on an object, the execution of the thread is halted until another thread
executes notify or notifyAll on that very same object. However, a thread is only
allowed to invoke wait or notify on an object if that thread owns the lock of that
object.

An example of synchronization based on the message based approach is shown in
the Figure 6.4. In this example, a message is exchanged between events if they happen on
the same objects (objectIdRef) but on the different threads (threadIdRef). As
shown in the Figure 6.4, an event Start MethodEntry happens on the threadId 2
and objectId 5317 and the consequent event Run Methodentry happens on the
threadId 5and objectId 5317.

To model this synchronization, a message (Q [1] ! message) is sent from the
Start_methodentry event and received at the run methodentry event (Q

[1] ? message).

/* Starting of the process 2%/
active proctype thread2 ()

{

d_step

{

/* Message is send to another object on different thread
(at methodEntry event, at start) */

QI1] lmessage->
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/* Start MethodEntry for methodId 301 */

Name = Start MethodEntry;
ThreadIdRef =2;

TimeStamp = 1;
MethodIdRef = 301;
ObjectIdRef = 5317;

ClassIdRef = 324;

}

}/* End of process 2%/

/* Starting of the process 5%/
active proctype threads ()

{

d step

{

/* Message is received from another event on different
thread (at MethodEntry event, at start) */
Q1] ?message->

/* Run MethodEntry for methodId 311 */

Name = Run_MethodEntry;
ThreadIdRef =5;
TimeStamp = 3;
MethodIdRef = 311;
ObjectIdRef = 5317;
ClassIdRef = 324;

}
}/* End of process 5%/

Figure 6.4: Sample of PROMELA Model, Synchronization Based on the Message Based
Approach

6.4.2.1.2 Advantages and Disadvantages of Message Based Approach

Message based synchronization approach is used in our early research prototypes, since it

is easy to visualize message exchange with MSC (Message Sequence Chart) in Spin.
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However this approach is limited in écalability due to Spin limitations on number of
channels, which can be declared (approximately 255). Because of this limitation, message
based synchronization approach is replaced with variable based synchronization
approach.

A sample of the MSC generated based on message based approach is shown in

Appendix C.
6.4.2.2 Variable Based Approach

6.4.2.2.1 Modeling Synchronization Using Variable Based Approach

A sample of the PROMELA model generated using the variable based approach to model
behaviour of the join method is shown in Figure 6.5. The global Boolean variable
ActiveThread,;, where i is an integer of value 2, 5, 6... is a thread identifier; this is
initially declared false. When the thread is started (i.e. RunEntry event) this variable is
set to true (“ActiveThread; = true”). Similarly when the thread terminates (i.e
Run Exit event) this variable is set to false (ActiveThread; = false). To enforce
order between the RunExit and JoinExit, where the latter should happen before the

former and also on the same object but different threads, JoinExit event is executed

only when this condition satisfies (“: :ActiveThread; = = false ->").
bool Activethread2 = false;
bool Activethread5 = false;
bool Activethreadé = false;

/* Starting of the process 5%/
active proctype thread5 ()

{

d_step

{

/* Run MethodExit for methodId 285 */
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Activethread5 = false;
Name = Run_MethodExit;
ThreadIdRef =5;
TimeStamp = 6;
MethodIdRef = 285;

ObjectIdRef = 4379;
ClassIdRef = 298;
}

}/* End of process 5%/
/* Starting of the process 6*/
active proctype threads ()

{

:: (Activethread5 = = false) ->
d_step

{

/* Join MethodExit for methodId 283 */
Name = Join MethodExit;

ThreadIdRef =6;

TimeStamp = 9;

MethodIdRef = 283;
ObjectIdRef = 4379;
ClassIdRef = 298;

}

}/* End of process 6%/

Figure 6.5: Sample of PROMELA Model, Start()/Join() Synchronization Based on the
Variable Based Approach

A sample of the PROMELA model generated to model synchronization between events
lockacquire and waitentry and based on the “variable based” approach is shown
in the Figure 6.6. Initially the global variable Q is declared as bit Q [N], where N is
the array index, which indicates the synchronization order. The wait is executed (i.e.
waitentry event) and the variable Q is set equal to 1 (“Q [N] = 1”). When the
corresponding lock is acquired (i.e. lockAcquire event) before notify-entry the
variable Q is compared to one (1) and if found equal, its value is set equal to zero (0) such
as (“(Q [N] = = 1) -> Q [N] = 07). The events (LockAcquire and

waitentry) should happen on the same object but on different threads. Also the latter
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should happen before the former. Similarly, the variable based approach is used to model
synchronization between other events such as lockrelease, notify
entry/exit, notifyAll entry/exit, waitexit, start entry and

run entry.

bit QI[N];

d_step

{

/* The variable is set at receiving end, same objectId
different threadId (at MethodEntry event) */

(Q[21]== 1)->Q[21] = 0;

/* LockAcquire MethodEntry for methodId 107 */

Name = lockAcquire MethodEntry;
ThreadIdRef =5;

TimeStamp = 90;

MethodIdRef 107;

ObjectIdRef 8562;

ClassIdRef = 120;

}

d_step

{

/* The variable is set, case of different objectIds and
same threadIds (at methodEntry event) */

Ql21]= 1;

/* Wait MethodEntry for methodId 111 */

Name = Wait MethodEntry;
ThreadIdRef =8;
TimeStamp = 79;
MethodIdRef 111;
ObjectIdRef 8562 ;
ClassIdRef = 120;

}

Figure 6.6: Sample of PROMELA Model, Wait ()/Notify() Synchronization Based on the
Variable Based Approach
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6.4.2.2.2 Advantages and Disadvantages of the Variable Based Approach

The variable based approach is particularly advantageous over the message based
approach for modeling large traces. In the message based approach, messages are
exchanged between events using channels. In the extracted PROMELA model, an array
of channels of size L is declared, the size of L is limited (it is 255). The message based
approach fails to model large traces in which the size of channel array required exceeds
255.

On the other hand, the “variable based” approach has a disadvantage over the
“message passing based” approach: the MSC (Message Sequence Chart) cannot be

obtained in former.

6.5 XML to PROMELA Translation Algorithm and its

Implementation

6.5.1 Translation Algorithm

The XML to PROMELA translation algorithm is implemented in Java. The translation
algorithm where the synchronization is based on the message based approach is explained
below. Please refer to the flowchart in Appendix E for more details.

1. The XML trace is parsed and objectld’s and threadld’s of relevant events e.g.
waitentry/exit, notifyentry/exit, lockAcquire
entry/exit, lockrelease entry/exit startentry,
runentry, runexit and joinexit are saved in objectId [] and

threadId([] arrays respectively. Then their event types, such as
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lockoperation event, startentry event, runentry event

and other event aresaved in event type [] array.

The events obtained from the previous step are categorized as follows:

e The events wait entry/exit, notify entry/exit,
lockAcquire entry/exit and lockrelease entry/exit, and
are categorized as lockoperation_event.

e The events runexit and joinexit are categorized, as other event.
The events startentry and runentry, are categorized as startentry
and runentry.

The next iteration is performed in objectId[], threadId[] and
event type[] arrays. At the same time a search is performed for those
objectIds and threadIds in the arrays whose preceding objectIds and
events are the same but are on different threadIds. In the start and run
synchronization, the event start methodentry should be preceded by a run
methodentry event. If such instances are found, the indexes of the objectIds
are saved in send_message [] array. The indexes of those objectIds from
which they are different are saved in receive message [] array. These
arrays are created to number send and receive messages, which are used to model
synchronization in message passing based approach.

The events of the XML trace are not written to the PROMELA model in the same

order as they are read from the XML trace, but in a different order. For example,

all the relevant events of threadld 4 are written first, and then all the relevant

events of threadld 5 are written second and so on. Because of the way the model
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is generated, the send and receive messages are not numbered according to the
order obtained from the send message [] and receive message[]
arrays.

. The next iteration is performed through the objectId [], threadId [] and
event type [] arrays in such a manner that the objectIds in objectId
[1 array is iterated in order corresponding to their threadld 2, 3, 4.. .While
iterating in this manner, a search is performed for those instances whose
consecutive objectIds are the same, but corresponding threadIds are
different. Whenever such instances are found its, index key is saved in the integer
i and then its relative position g is found in the send _message [] array using
the method “int g = Arrays.binarysearch (send message, 1i)”.
The send message - Q [g] ! is then numbered accordingly.

The same procedure as just detailed is followed to number the receive messages -
Qlgl>z.

. The XML trace is iterated again and the threadId’s of the <threadStart
methodentry> event are saved in the threadIdStart [] array.

The events from the XML trace are written to the PROMELA model as detailed
in step 2. The information from the threadIdStart [] array obtained in step
5 is used, while writing events to the PROMELA model.

. While events are written to the PROMELA model, synchronization is enforced
based on the message based approach, i.e. send and receive messages are
numbered and inserted. The send and receive messages are numbered according

to algorithm described in step 2 & 3. Before or after writing any event body to the
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PROMELA model, a check is performed to see, whether a send or receive
message is required to be inserted and if required, the send and receive messages

are numbered and inserted.

6.5.2 Java Implementation of the Algorithm

The XML to PROMELA translation algorithm as implemented in Java consists of six
classes namely logical timestamp, thread count, list entry exit, receive_send message,
method_def and main classes. Here the functionality of these classes is explained.

1. Logical timestamp: This class assigns a logical timestamp to events in the
PROMELA model. The timestamp of events in the XML trace are assigned absolute
value, time="1091230513794350600". The absolute timestamp is mapped to
a logical timestamp in the corresponding translated event in the extracted PROMELA
model. The mapped logical timestamp indicates the relative occurrence of the event.

2. Thread _count: This class outputs the number of threads in an execution trace. To get
the thread count, the trace is parsed and the thread count is assigned a value based on
the number of <thread_ starts> entries.

3. List_entry_exit: This class outputs the objectId [] and threadId [] arrays.
The trace is parsed, and objectlds and threadlds of the relevant events are saved in the
objectId [] and threadId [] arrays, respectively.

4. Receive send Message: This class outputs the receive message[] and
send message[] arrays. The objectId |[] and threadId [] arrays,
obtained from previous class are parsed. The index values of those objectIds,

which are the same but happen on different threadIds, are saved in the
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send message [] array. Similarly the index values of those objectIds from

which they are different are saved in the receive message [] array.

. Main Class: This class translates the XML trace to the PROMELA model and writes

this model to an external .doc file. While writing these events to the PROMELA
model, the send and receive messages are numbered and inserted. As discussed
before, events are not written in the same order as they are read from the XML trace,
but in a different order. For example, all the relevant events of the threadId 4 are
written, and then the relevant events for the threadId 5 are written and so on.
Before or after writing each event body to the PROMELA model, it is checked if the
send or receive message is required to be inserted or not. If fequired then the send and

receive messages are numbered and inserted.

6.6 Property Specification in PROMELA with LTL

Before discussing the MT antipattern specification in LTL, a brief introduction on LTL is

given below.

6.6.1 LTL Overview

Temporal Logic is a special branch of modal logic that investigates the notion of time and

order. Pnueli suggested using Linear-Time Propositional Temporal Logic (LTL) for

reasoning about concurrent programs. Since then, several researchers have used LTL to

state and prove correctness of concurrent programs, protocols, and hardware.

Linear-Time Temporal Logic (LTL) is an extension of propositional logic where, in

addition to the propositional logic operators (and (&&), or (||), xor (%), not (1), etc.) there
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are future-time operators. The following syntax is used in our tool for these four
operators [32].
e Always in the future. One can use the English keywords Always, or a box ([]) to
represent the always operator.
e Sometime in the future. One can use the English keywords Sometime or a
diamond (<>) to represent a sometime operator.
e Until. One can use the English keywords Until, or U to represent the until and
since operator.
e Next iteration. One can use the English keywords Next, or a cross (X) to

represent these operators.

6.6.2 Property Specification

Here we consider formalization of premature join () antipattern in LTL. It consists in
the invocation of the join method to the thread, which is not yet started [22]. Obviously
it is impossible to specify such an antipattern in LTL independently of the number of
threads. Consider the instantiation of antipattern for one particular thread 7; (i is an
integer 1,2,3..), where join to thread 7; is called before the start of 7;. Actually, it is
more convenient to formalize the absence of an antipattern, so a model checker can
pinpoint the problem with a counterexample to the correctness claim. Obviously, the
formalization of antipatterns requires predicates, which indicate invocation of the join
method; Join (7;) and thread staﬁ, Start (7;). To formalize the absence of a “premature
join” to the thread (7;), a pattern specification system [54] could be used. The most

adequate pattern is precedence: S = Start (7;), precedes P = Join (7}), which is mapped
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onto LTL, as! P W S =! Start (T;) W Join (7;), where W is the weak until operator. In a
trace that consists of n threads T,..., T, instantiations of antipatterns for each thread
could be either checked one by one, for each thread T, or at once with all combined in
one composite property;

! Start (77) W Join (T1) & ! Start (73) W Join (73) &...& !Start (T,,) W Join (T,,)

The second approach was followed, which is more convenient, while the first one
provides better diagnosis. It is immediately clear, which exact thread is involved in
premature join. Instantiation of predicates Start(7;) and Join(7}) is implementation
dependent.

Similarly, formalization of double start () antipattern in LTL is considered. It
is informally defined as “the start () method is not supposed to be started more than
once for the same thread”. Actually, its absence is formalized so that model checker
could pinpoint the problem with a counterexample to the correctness claim. The
formalization of this antipattern requires the definition of two predicates P and Q, defined
as P = Start (77) and Q = start (Ti). In terms of these predicates, the double start
absence is defined as “absence of P after Q”. This claim is specified in LTL as [] (Q -
> X [1 (! P)). This means that [] (always) in a thread Ti, predicate Q should []
(always) be preceded (X operator) by the absence of predicate P (! P).

In a trace that consists of multiple threads 71, 72.....Th, the absence of the double
start should be checked on each thread separately.

An example of double start antipattern specified as LTL formula for three threads

follows: “/] (@ -> X [] (a)) && [] b ->X[] (/D) && [] (¢ > X][] (!c)”,

where the a, b and c are predicates, which are defined as follows in PROMELA:
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#define a (MethodIdRef == 301 && ObjectIdRef == 5317
&& ThreadIdRef == 2)

#idefine b (MethodIdRef == 301 && ObjectIdRef == 5317
&& ThreadIdRef == 5)
#define c (MethodIdRef == 301 && ObjectIdRef == 5317
&& ThreadIdRef == 6)

This LTL formula translated to never claim negation as:

/*
* Formula As Typed: [1 (a =-> X [1 (! a)) && |1
(b ->X [ (!Db)) & []1 (¢ ->X 1[I (1! c))
* The Never Claim Below Corresponds
* To The Negated Formula ! ([] (a -> X [] ( ' a))
& [1 (b ->X [I (tDb)) & [1 (¢ ->X[1 (1! c)))
* (formalizing violations of the original)

*/

never { /* 1l (a -> X [1 (1! a)) & [1 (b ->
X[l (!'Db)) && [1 (¢ ->XII1 (1 c))y) */
TO init:
if
((e) && (((b)) || (())) && (((a)) || ((((b)) ||
((¢)))))) -> goto accept S5 '
((b) && (((b)) || ((e))) && (((a)) || ((((b)) ||
(()))))) -> goto accept S9
((a) && (((a)) || () || ((e)))))) -> goto
accept S13
(1) -> goto TO_init
fi;
accept_S5:
if
({(c)) -> goto accept_all
(1) -> goto TO_S5
fi;
accept_S9:
if
((b)) -> goto accept_all
(1) -> goto TO_S9
£i;
accept_S13:
if
((a)) -> goto accept_all
(1) -> goto TO_S13
fi;
TO_S5:
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if
((c)) -> goto accept all
(1) -> goto TO_S5

fi;

TO_S9:

if
((b)) -> goto accept_all
(1) -> goto TO_S9

fi;
TO_S13:
if
((a)) -> goto accept_all
:: (1) -> goto TO_S13
fi;
accept_all:
skip

}

To verify the LTL in a trace which consists of N threads (71, 72, 73....Tn), this LTL

formula is extended accordingly for N number of Threads.

6.7 Experiments

6.7.1 Steps of Verification

The verification of MT antipatterns using the model checker based approach is performed

in the following steps.

1. Never Claim and Source Code Generation: = The command prompt instruction
“spin - a -N c:\double start.ltl c:\double start” generates
never claim negation from the LTL formula and source code. This is then compiled
and run to perform verification. The —a option generates source code that can be
compiled and run to perform various types of verification of a PROMELA model.

The output is written as a set of C files named pan. [cbhmt], that must be compiled to
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produce an executable. The -N option allows the user to specify a never claim file
that the Spin parser will include as part of the model.
Compilation: Before verification, the executable is generated from the compiled C
program (pan.c). The compilation command “gcc -DVECTORSZ = 2048 -0
pan.exe pan.c -Ic:\include -L c¢:\11ib” generates an executable
(pan.exe). This compilation instruction is executed with “-DVECTORSZ = 2048”,
which is a command-line argument. The default size for the state vector is 1024 bytes,
which is usually insufficient for large model, will prompt for the recompilation with a
higher value. In this verification, the default size is specified as -DVECTORSZ =
2048. The include instruction “~Ic:\include” will include the required header
files (with .h extension).
Verification.  After compilation, the executable (pan.exe) is executed by command
option “pan - a”, which performs the verification. When the verification
terminates, the verification result appears as shown in Appendix B. The top line says:
“property violated”, and further down it states: “errors: 1”. If there are no errors then
“errors: 0” is printed.

The message sequence chart (as shown in the Appendix C) is explained here.
A message is sent (message! 1) before the occurrence of event at thread6, second is
sent (message! 2) before the occurrence of event at thread7 to the corresponding
event in thread6. The sent messages are labeled as message! 1, 2, 3, 4 ... and receive
messages are labeled as message? 1, 2, 3, 4... A message is exchanged between

threads if the consecutive events in the PROMELA model happens on the same

object (same Object Id) but on the different threads.
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6.7.2 Antipatterns Detection

Experiments were performed to detect two antipatterns namely: “double call of start
() method” and “premature call of join () method” using model checker based
detection approach. The experiments were performed on the following hardware and
software configuration:

Hardware Configuration:

1. CPU: AMD Athlon 900 MHz
2. RAM: 512 Mbytes
Software used:
1. Operating System: WINDOWS 2000
2. Model Checker: Spin 4.1
3. Compiler: gcc (C compiler)
4. Java - XML Tool: JAXB (Java Architecture for XML Binding)

6.7.2.1 Double Call of Start () Method Detection

Description: The start () method is not supposed to be used more than once for the
same thread [22].
Application 1 is a fragment of Java multi-threaded platform Guest [45].
Application 2 is a custom dining philosopher program.

Before verification, the PROMELA model needs to be extracted, Table 6.1 lists
the total time (execution + compilation), required to build the model for the double

start () detection. Table 6.2 lists the verification and the compilation time.
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Table 6.1: Model Extraction Time for Double Start () Detection

Trace size PROMELA model Execution time Total Time(Execution +
size Compile Time )
63.6 KB 3.25KB 9s 34s
627 KB 64 KB 18s 38s

Table 6.2: Verification & Compilation Time for Double Start () Detection

PROMELA model Pan.c built time Pan.exe built time Verification time
size

3.25KB 1s 2s 1s

64 KB 1s 3s 2s
Verification Data

State Vector Size: 1592 bytes

Depth Reached: 15

Number of transitions: 8 (stored + matched)

Number of matched states: 0

Number of states stored: 8

Number of errors: 1

6.7.2.2 Premature Call of Join () Method Detection

Description: A call to the join () method of a thread is premature if this thread has not
been started at the time of the call [22].
Application 1 is a custom race program [41].
Application 2 is a custom dining philosopher program.
Table 6.3 lists the total time (execution + compilation) required to build the model

for the premature join () detection. Table 6.4 lists the verification and the compilation

time.
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Table 6.3: Model Extraction Time for Premature Join () Detection

Trace size PROMELA model | Execution time | Total Time (Execution
size + Compile Time)
29.3Kb 2.23 Kb 5s 27s
627 Kb 64 Kb 18s 38s

Table 6.4: Verification & Compilation Time for Premature Join () Detection

PROMELA Pan.c built time | Pan.exe built time Verification time
model size
2.23Kb 1s 2.5s 1s
64 Kb 1s 3s 2s
Verification Data
State Vector Size: 1592 bytes

Depth Reached:
Number of transitions:

21
17 (visited + matched)

Number of matched states: 1
Number of states visited: 16
Number of errors: 1

6.8 Open Problems and Alternatives for Trace Modeling

Here is the list of possible future works or open problems in the model checker based

detection approach

6.8.1 Open Problems

1. Antipattern Specification using Embedded C: As described before, the generated
PROMELA model was verified for MT antipatterns specified in LTL. The LTL
formula translates to never claim and the model checker searches the state space
for never claim negation. An alternative to this approach is to implement the MT

antipattern detectors in C. The Spin version 4.0 or later supports embedded C
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inclusion in the PROMELA model through the use of five new primitives. These
primitives are ¢_expr, c_code, c_decl, c_state, c_track. Using
these primitives the antipatterns coded in C language are embedded at certain
locations in the model. During the model verification, these embedded detectors
provide guidance to the precise location of errors. Another advantages of using
embed C is that it could be used to specify trace independent properties.

Aspect Oriented Paradigm (AOP): Aspect oriented paradigm (AOP) an
alternative to object-oriented paradigm (OOP), could possibly be used for
PROMELA model extraction from trace. AOP based model extraction will be
particularly useful when the execution trace is of large size with many
interleavings. To model large traces, using AOP the specifications of the model
are divided as concerns and then these concerns are coded independently. Aspect
J is a popular AOP based tool.

Extend the model checker based detection approach to verify other multithreaded
antipatterns.

The current model checker based detection approach, which is mainly targeted for
error detection can be extended to error correction. To extend it, warnings emitted
(antipattern violations) by the model checker, can be read and given as feedback

to the target program for error correction.

6.8.2 Alternatives

There are few alternatives to trace modelling and analysis, listed here some of them.

1.

Possibly use mathematical techniques such as logical induction for model

extraction from the execution trace, and then verify the extracted model for the
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MT antipatterns using the theorem proving techniques. The advantage of using
theorem proving is that this technique is not limited by the state space size.

. Experiment with other verification engines such as Maude for MT antipattern
detection. Maude is a modularized specification and verification system that
efficiently implements rewriting logic [46].

Causality Based Analysis: In the multithreaded programs, threads communicate
via a set of shared variables and these variables are recorded in the execution
trace. It is observed that some variable updates can causally depend on others.
This causality based analysis is used to predict errors that can potentially occur in

a possible run of multithreaded programs.
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Chapter 7. Comparison

7.1 Introduction

In this chapter we make a detailed comparison between two approaches, namely model
checker based detection and custom based detection. The comparison will be made on the
characteristics such as time usage, complexity of analysis, scalability and quality of
analysis.

Our motivation to conduct this comparative study is to assess the applicability of

formal approaches in runtime analysis for antipattern detection.

7.2 Experimental Results

We used Java detectors to analyze execution traces of large Java programs, such as SAP
Vending Machine Server. The size of an available SAP vending machine Server trace is
about 80 megabytes. Analyzing such a large trace directly using a custom based detection
approach caused memory overflow exception. To overcome the memory overflow
problem, we used filters to reduce the trace size. We could possibly use more scalable
parsing tools such as SAX parser.

As discussed earlier, the model checker based detection approach is based either
on a variable based approach or a message passing based approach or both. Modeling the
trace based on message passing approach does not scale to very large execution trace
size, because of the certain inherent limitations of the PROMELA language. Because of
this reason we completely replaced the message passing based approach with shared

variables for scalability purposes.
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For comparison we performed experiments on three applications and two
antipatterns using both the custom and model checker based detection approaches. The
first application is a fragment of Java multi-threaded platform Guest [45]. The second is a
toy demo program (borrowed from JProbe); both with injected faults and the third one is
SAP vending machine server. The experiments are performed on AMD Athlon 900 MHz

system with 500MB of RAM and Windows 2000 operating system.

Table 7.1: Experimental Results

Antipattern  Trace Size PROMELA  Custom Model
(using  Model Size Analyzer Building and
filters) Verification
Appl Double start 64 K 3.25KB 4s 13s
App2  Premature join 29.3 KB 23KB 4s 10s
App3 Double start 667 KB 22.0KB 6s 20s

7.3 Evaluation of Main Characteristics of Custom and Model
Based Detection

The comparison between these two tools is made based on the characteristics such as
time usage, complexity of analysis, scalability and quality of analysis.

Time Consumption

The results from the experiments have shown that custom detectors are faster
(approximately 3 times); however most of the time is consumed not by model checking
itself, which takes less than a second, but by auxiliary steps, such as building PROMELA
model, compiling PROMELA into executable, etc.

Complexity of Analysis

The model checker based detection is more cumbersome and complex than the custom

based detection because in the former the PROMELA model of the trace is required to be
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generated, which adds to complexity whereas in the latter we directly analyze the XML
trace. While model checkers are known to suffer from the state explosion problem, we
did not experience this problem in our experiments on small and medium size
applications.

Scalability

The custom detection scales better than model based detection; however in our case
custom detection is limited by XML processing tool JAXB. Message based versions of
our model based detection tool do not scale to large execution traces due to the certain
limitations of the model checker of choice, Spin. The variable based version scales better
at least up to medium size applications.

Quality of Analysis

Regarding the quality of analysis, model checker based detection is rated better than the
custom based detection. A custom tool cannot guarantee the trace correctness because it
analyzes the order in which events are recorded. Correctness can be assured by model
checker based detection because the model checker based detection allows predictive
trace analysis, in the sense that it can analyze several event interleavings. Especially,
properties in multiprocessor environment can be more accurately verified using model
checker detection than custom based detection. In the multiprocessor environment,
multiple threads run on the multiple processors. For example, threadl runs on processorl
and thread2 runs on processor2 and so on and when executed the tracel and trace2 are
obtained. Our model based tool can perform model checking of parallel composition of
these traces (trace 1 & 2). Thus the concurrent properties can be verified. One such

concurrent antipattern is premature join () call, it is sensitive to the order, in which
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events are observed. The concurrency in multiprocessor system, instrumentation, or trace
collection setup could possibly distort the event order. For éxample, if thread joins
prior to its start, the corresponding events could be recorded in the opposite order.
Thus the premature join () call antipattern will be missed by custom detector.
Properties that describe antipatterns related to Java multithreading, such as double
start () callorwait () stall, which are not truly concurrent, and do not depend on
the event interleavings, are detected reliably with custom tool.
Resource (memory) consumption
Regarding the resource consumption (memory), custom detection is rated better than
model based detection, because to store the model extracted from the execution trace, an
extra memory is required; whereas in the custom based detection we directly analyze the

trace.
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Chapter 8. Conclusion and Future Work

8.1 Conclusion

We discussed several runtime analysis approaches for dynamic antipattern detection in
Java multithreaded applications. While some of the antipatterns depend on the thread
scheduling and event interleaving, others are independent of the order in which events
occur (e.g. double start). Antipatterns such as premature join () depend only on the
thread-local order of events whereas wait stall antipattern is order-independent. To detect
these multithreaded (MT) antipatterns, we developed two runtime analysis tools. The first
tool is based on a formal verification method - model checking, and the second tool is
based on ad-hoc custom analysis. A model checking tool, Spin, could analyze various
possible event interleavings, which improves quality of analysis for order-sensitive
patterns. The model checking is known to cause state explosion, but this problem is
alleviated since we analyze only one particular distributed execution. In custom
antipattern detection tool, each antipattern detector is implemented in Java. The custom
based detection benefits from formal antipattern specification in FSM and EFSM, which
could be used to define antipattern formally. Then the antipattern detectors are coded
manually in Java.

In these two tools, the same instrumentation approach (Hyades tool supplemented
by the bytecode instrumentation tool — JTrek) is used for the relevant events extraction
from the target program. Hyades — a non-intrusive tracer is complemented with bytecode
instrumentation, based on JTrek. The supplementary instrumentation is needed because

an analysis of MT applications could require a synchronization events collection such as
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monitor (lock) entry and exit, a task that is not supported by Hyades. This
instrumentation approach could be seen as lightweight, since it instruments Java bytecode
with empty methods, which do not perform any functionality. The Hyades tracer collects
the invocations of these empty methods. Thus this integrated instrumentation approach
results in a small overhead to the target program.

To evaluate these two runtime analysis tools we experimented with antipattern
detection on three small and medium size applications. Our comparison study concludes
that overall the custom tool is faster, consumes fewer resources, and scales better than a
model checker based detection tool. Moreover, custom analysis is equally efficient as a
model checker based tool for some simple antipatterns detection. However, a model
checking tool could deliver higher quality analysis for concurrent antipatterns. A paper,
based on these results appeared in the Proceedings of the Workshop of Dynamic Analysis

(WODA-05) [8].

8.2 Future Work

The work could be extended in the following directions:

1. Experiments in antipattern detection using our tools on several realistic large
cases studies to compare the results with those obtained from other runtime
analysis tools such as JMPAX, JPAX and JavaMac.

2. Detection of other multithreaded antipatterns.

3. Implement GUI for both tools.

4. Improve visualization and traceability.

5. Investigate possibilities for combining static analysis with runtime analysis.
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Appendix A - Snapshot of “Premature Join ()” Detection

- Custom Detection

fecho}
[x3e]
fx3e]
[echo]
{javac]

runt
[echal
[3eva)
[javal

Compiling the schema seiternal hinding file. ..

Compiling file:/Ci/jagmit/eclipse/workspace/premature _join analysis/trace.dod
Uriting output to C:\jagmit\eclipse\workspace\premature_join snalysis

Compiling the java source files...

Compiling 109 sgurce files to C:)jaEgmitieclipse\norkapace)\premature join analysis

Runnineg the sample application...
Dbetecting antiPattern premature call of joiniimethod. in. & Trace
Fremature call of join() method detected for threadid = 2

BUILD SUCCESSFUL

otal times

31 seconds
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Appendix B - Snapshot of “Premature Join ()” - Model

Based Detection

Lo jﬁ&NT srﬁ:?j,; md.exe
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Appendix C - Snapshot of MSC - A Message Sequence

Chart

He 1 - GSview

File: msc.ps 242, 657pt . Page: 1" 10f 1
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Appendix D - Ordering of the Events on the same Object

Thread 6

Lock Entry
Thread 7

Y

Q0] Wait Entry
Lock Entry a

Y Object Id 8606

Notify Entry @)

Q1]

Notify Exit

Wait Exit Thread 5

Lock Release

Lock Release
Lock Entry
Wait Entry
Object Id 8604
Notify Entry
Notify Exit Q]
Wait Exit
Lock Release

Lock Release
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Appendix E - Flowchart for XML-PROMELA Extraction

The XML trace is parsed and objectIds and threadIds of the relevant events such as waitentry/exit, notifyentry/exit,
lockAcquire entry/exit, lockrelease entry/exit, startentry, runentry,runexit and joinexit are saved in objectld[] and
threadld[] arrays. Then event types such as lockoperation_event, startentry_event,runentry_event and other_event are

Save objectld, threadld
in objectld[], threadId[]
array and set event type 1«
as startentry_event in
event_type[] array Yes

Save objectld threadld
in objectld[] and
threadId[] array and set

event type as
runentry_event in
event_type[] array

Save objectld threadld
in objectld[] and

threadld] array set event j—--

event_type[] array

Save objectld threadld in
objectId[] and threadlId[]
array set event type as |[¢—VYes
other_event in

event_type{] array

Save objectld threadld in
objectld[] and threadId[]
array set event type as «——VYes
lockoperation_event in
event_type[] array

saved in event_type[] array .

Create objectId[], threadId[]

and event_type [] array

XML
Trace

Read the XML

trace and get
event type

Is event of type
startentry?

No

Is event of type
runentry?

No

Is event of type
runexit?

Is event of type
joinexit?

Is event of type
waitentry/exit, notifyentry/
exit, lockentry/exit?

Create Objectld[], threadld[]
and event_typel] array  pagel

The event types such as wait
entry/exit, notify entry/exit,
lockAcquire entry/exit and

lockrelease entry/exit are
categorized as
lockoperation_event.

The event types such as runexit
and joinexit are categorized as
other_event.

The event types such as startentry
and runentry are categorized as
startentry and runentry
respectively.

Terminate
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Here we iterate through the objectId[], threadld[] and event_type[] arrays and search and save those objectlds and
threadIds in the arrays whose preceding objectld and event type is same but different threadld (exception in start and
run synchronization, where event type start methodentry should be preceded by run methodentry event type). If such
instances are found, we save the indexes of the objectlds in send message [] array and save those index values from
which they are different in receive_message [] array. These arrays are created to number send and receive messages
to model synchronization.

create send message[] and
receive_message [] array
page 2

create send_message]]
and receive_message]]
array

create objectld[],
threadId[] and
event_type[] array

y
i=1
j=1

N = length of objectId[]

B-34

A

What is the

"lockoperatio "startentry_ev |"other_event"

n_event" type event_type[i] ? ent” type type
4
j=i+l
j=i+l
Ytles ]
Yes
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Create send_messagef]
and receive_message|]
array- page 3

Ts Objld [i] ==

Objld[j] && ol <41

Terminate

Yes

s Threadld [i] =
= Threadld [j]?

Yes—b| |=it] ’W

No

)

Save value of i in
send message []
array

Save value of j in
receive_message [} —Yes—» i=i+] >
array

B-2
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Create send_message]]

and receive_message|]
array page 4

ves Isj==N? >

v
i++
j =j+1 No

s Objld [i] == Objld[j
&& event_typelj] ==
"lockoperation_event"?

Yes No--bi J =j +1

Terminate

Yes

i=i+1

Save value of i in
send message []
array

y

Save value of j in
receive_message [] > i=itl
array

B-2
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The algorithm followed in this flowchart is the same as followed before for the creation
receive_message [] (in page 2, 3 & 4), except that the indexes are not saved in arrays but rather their
index keys (2nd level) are found in receive_message []. While writing events to the PROMELA model,
the receive messages are numbered according to these index keys.

write receive message to write receive message to
ROMELA model, if neede PROMELA model, if
needed page 5

A

create objectld[],
threadld[] and
event_type[] array

create
receive_me
ssagel]
array

i=2
j=1

N = length of objectld[]
array

A

Ye Terminate

It what is Itis ltis
is"lockopera event_type[i]? "runentry_ev » "other_eve|—
tion_event" —typell! ent” nt"

A

j=i+1
j=i+1 }

v A

c-7 A-6

142



Yes

Searches the
receive_message []
array and return the

index of i

N

write receive message 10
PROMELA model, if
needed  page6

s ObjId [i] = = ObjId[j]

&& event_type[j]==
"startentry_event"?

j=j-1

1=i+l1

H@

intg=
Array binarysearch
(receive_message,

i)

Is receive
message required
to be inserted?

Yes

!

Write receive

message "Q[g] 7"
to PROMELA

model
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write receive message (o
PROMELA model, if
needed page7

" Is j== 07 >

i+ \/
i-1

No

§ Objld [i] == Objld
&& event_type[j]==
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Terminate
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receive_message []
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(receive_message,

i)

Yes

receive_m
essage|]
array
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Write receive
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The algorithm followed in this flowchart is the same as followed before for the creation of send_message[] (page 2,3
& 4), except that the indexes are not saved in arrays but rather their index keys (2nd level) are found in send_message
array. While writing events to the PROMELA model the send messages are numbered according to these index keys.

write send message to
PROMELA model, if

needed write send message 10
PROMELA model,
) if needed page 8
create objectld[],
threadld[] and

event_type[] array

!

create
send_messag
e[] array

y
i=1
j=1

N =length of objectld[]
array

B-9,10 <

Yes Terminate

No

Itis what is event Itis Ttis
"lockoperation e i]? "startentry eve
LP P type(i] W ¢ "other event"
vent nt
| !

Yes Yes
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rYe

i+t

j=itl

Objld [i] = = Objld[j

Yes && event_type [j]== No— j=j+1
“runentry_event” ?
_ Yer 5l i=it] W
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array and return the

intg=
index of i

Array.binarysearch
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send_mess
age[] array

s send message
required to be
inserted?

N

Yes
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model
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Yes
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PROMELA model, if
needed page 10

i++
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No

Terminate
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N
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This flowchart creates threadldStart [] array, containing the list of

threadlds of the XML trace.
Build list of Build list of Threadlds
Threadlds page 11
h 4
XML
Trace

Transverse the
XML Trace and
save threadlds of
threadStart event

N

threadIdStart[]
array

y
{ Terminate )
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This flowchart, explains the algorithm for writing events to PROMELA model. Events of the XML trace
are not written to the PROMELA model in the order they are read from the XML trace, but in different
order. For example, all the relevant events of thread Id 4 are written first, then the subsequent events of

thread Id 5 are written next and so on.

write event body, send and receive write event body, send and
messages to PROMELA receive message to PROMELA

model - page 12

build list of
threadlds

create
send_message[]
and
receive_message

[] array

Trace

intkK=1

l

Read the
trace Kth
time

Write to
PROMELA
"active proctype
thread K"

A-13
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write event body, send and

receive message to

Read threadld of PROMELA model - page 13

the first relevant
event

Read threadld
of next event

threadIdStart array

s threadld equal to
Kth element of

threadldst
art[] array

Yes

|

write receive
message to receive_mes
PROMELA, if sagel[] array
needed

Is the event
runentry?

Yes

'

Write to
PROMELA
"ActiveThread

==true"
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Store the
event's
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runexit_threa
dId[]

Store the
event's
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runexit?

Id[]
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intm=
Arraysbinarysearch
(runexit_objectld,
objectld )

runexit_threadl
d[] array is
contain
threadld of
runexit event

intp=
runexit_threa
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&

write event body, send and
receive message to
PROMELA model - page 14

Write to
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"ActiveThread
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Write to
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ActiveThread
p = = false ->"

<

Write
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to PROMELA
model

y
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write send
G-9,10 message to
PROMELA, if
needed

‘Are there more

write event body, send and
receive message to PROMELA
model

page 15

send_mess
age[] array

events of Kth
threadId ?

No

v

write to
PROMELA

"End of
Process K"

-13

K++;

s it the last event

of last threadId?

Yes
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This flowchart describes the creation of a PROMELA model with send and receive messages inserted in
addition to event body. Before writing event body to PROMELA model, we check if send or receive
messages are required to be written; if required we number and insert send or receive message before or
after the event body.

The main program - page 16

Start

Write necessary variables (boolean
variables, type declaration and
channel declaration)

write event body, send
and receive message to
PROMELA

y

{ Terminate }
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