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ABSTRACT
Large Abox Store (LAS):
Database Support for Abox Queries

Cui Ming CHEN

The semantic web has drawn the attention from both academic and industry.
Description Logics (DLs), a family of formal languages for representing knowledge
and supporting reasoning about it, is regarded as a suitable tool that supports the
semantic web and enables its data to be both machine readable and machine
understandable. Recently, several approaches on how to combine description logics
with databases were proposed. In this thesis, we propose techniques for connecting
databases with description logic reasoners effectively and completely, and describe
the design and implementation of LAS (Large Abox Store), a DL application
combining Aboxes reasoning and database query processing to perform efficient

reasoning for Aboxes containing role assertions.

With the goal to provide a user-friendly, scalable, and complete ontology query

processor, we designed our system as an additional layer for the description logic

reasoner—RACER.
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1. Introduction

Being envisioned as the next generation web, the semantic web has drawn
considerable attention from researchers in academia and industry. Its application
will significantly benefit from combining expressive description logics (DLs) and
databases. DLs with decidable inference problems are useful in structuring and
representing knowledge in terms of concepts and roles, but reasoning procedures
are currently not adequate for answering complex queries based on large scale
data sets. Databases, on the other hand, are known for efficient data management
and features such as robustness, concurrency control, recovery and scalability.
Therefore, the importance and usefulness of combining description logics with

database has been recognized for quite sometime.

Thus, the features of description logics and databases, such as semantic
representation and powerful reasoning services, efficient management and
accessibility, have led to the research to make good use of their respective
advantages. As early as in 1983, [7] already investigated the technical issues of
enhancing expert systems with database management facilities. In 1993, the
approach of loading data into description reasoners was investigated [8]. In 1994,
the theoretical foundations of a DL approach to DBs have been established [38].
[9] extends the traditional DL Abox with a DBox so that users can transparently
make queries without being concerned about whether a DB or KB has to be
accessed. Pointed out by [10] that the previous approaches lack of an automated

translation between DL and database schemes, Roger proposed an object oriented



model that contains concrete classes, virtual classes and abstract classes, and two
translations so that the schema in this model can be translated into a description

logics schema and into a database schema [39].

In recent years ontology design—explicit formal specifications of the terms in the
domain and relations among them [4]—has focused on domains with massive
data, where a large number of related individuals exist. Although RACER has
strong reasoning abilities, there exists a great potential to combine it with
databases in order to deal with large numbers of related individuals. Our mission
is to build an extra layer combining RACER with databases so that reasoning in

this domain is efficiently supported.

Before illustrating the techniques we used to combine DLs with DBs, and
describing our system in detail, we will first give an introduction to the semantic

web and description logics.

1.1 Semantic Web
1.1.1 History of the semantic web

Invented in 1989, web browsers and World Wide Web (WWW) servers were
designed to build a place where one can find any information and reference [1]. In
other words, the WWW realizes the dream of information sharing all around the

world.



Despite its good information sharing capabilities, the current World Wide Web,
which is based primarily on documents written in HTML, offers limited support
to classify blocks of text on a page, hence the content of the web pages is mostly
machine readable but not machine understandable. Focused on a visual
presentation, HTML is used for describing and presenting interspersed text with
multimedia objects. Lacking the facility to represent formal semantics of
embedded data, the current web does not facilitate reasoning and answering

intelligent queries. As a result, the idea of the semantic web was borne.

The semantic web, proposed also by Tim Berners-Lee, who wove the World Wide
Web and created a mass medium for 21% century, is a project that intends to create
a universal medium for information exchange by giving semantics, in a manner
understandable by machines on the content of documents on the web. It addresses
to overcome the shortcoming of the current WWW, using descriptive
technologies such as RDF and OWL, and the data-centric, customizable markup

Language XML.

The main idea of the Semantic Web is to combine the descriptive technologies in
a way to supplement or replace the content of web documents by storing the
descriptive data in web-accessible databases or as markup within documents. The
machine-readable descriptions allow content managers to add meaning to the
content, thereby enable machines to understand and consume the semantics of

information in order to support automated reasoning.



1.1.2 Components of the semantic web

The Semantic Web uses the following relevant standards: XML, RDF, RDF

Schema, OWL, URIs and HTTP. We will discuss each of them briefly.

URIs
URIs are Uniform Resource Identifiers, which are text strings that identify

resources or COl’lCGptS.

HTTP

HTTP is a protocol for web browsers and servers to communicate with each other.
It has three main methods: GET—asks for information about a resource; POST—
sends a request to a resource; PUT—sends updated information about a resource.
By using HTTP, Semantic Web services get all this functionality for free, because
it is already built into many HTTP Servers and clients that are available for lots of

platforms in almost every programming language.

XML

The Extensible Markup Language (XML) is a W3C-recommended general-
purpose markup language for creating special-purpose markup languages. Its
simultaneously human and machine readable format, its hierarchical structure and
its strict syntax and parsing requirements offer document storage and processing,
both online and offline. However, its syntax is fairly verbose and partially

redundant, and there exist no facilities for randomly accessing or updating only

4



portions of a document. Moreover, mapping XML to the relational or object

oriented paradigm is often cumbersome [48].

XML was originally designed for documents, not data. As a result, the features
that are suitable for documents might cause problems when expressing data. For
example, there can be many ways to express the same thing in a document.
Because of lack of a standard expression, it is not easy to come up with
algorithms for machines to extract the meaning. If one combines two XML

documents, the resulting document may no longer be well-formed XML.

RDF

The resource description framework (RDF) is a family of specifications for a
metadata model that is often implemented as an application of XML [2]. RDF
explicitly makes statements about resources in the form of a subject-predicate-
object expression, namely, a triple in RDF terminology. The subject is the
resource—‘things” being described. The predicate describes an aspect of the
resource, and often expresses a relationship between the subject and the object.
The object is the object of the relationship. The following shows an example of
RDF forms. It has the subject as “My Home Page”, three predicates “Has title of”,
“Created by” and “Published by” and three objects “ Cui Ming Chen’s home

page”, “Cui Ming Chen” and “Concordia University” respectively.



yﬂeof' Cui Ming Chen’s Home page

Cui Ming Chen

Created by

\ C oncordia UniVel‘Sity

Published by

<?xml version="1.0"?>
<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description
rdf :about="http://www.cs.concordia.ca/~cui_chen/">
<dc:title>Cul Ming Chen's Home Page</dc:title>
<dc:creator>Cui Ming Chen </dc:creator>
<dc:publisher>Concordia University </dc:publisher>
</rdf:Description>
</xdf :RDF>

Figure 1.1 Example of RDF (Upper part: graphic explanation, lower part : RDF format)

RDFS

RDFS (The Resource Description Framework Schema) is an extension to RDF
that allows one to define RDF vocabularies using RDF itself. It includes the
relationship between things such as rdfs:subClassOf and rdfs:subPropertyOf

where “rdfs” is an abbreviation for http://www.w3.0rg/2000/01/rdf-schema#. For

example:

<?xml version="1.0"7?7>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlng:xrdfs="http://www.w3.0rg/2000/01/rdf-schema$">

<rdfs:Class rdf:ID="Teacher">
<rdfs:comment>Teacher Class</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Person"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Course">

<rdfs:comment>Course Class</rdfs:comment>

<rdfs:subClassOf rdf:resource="http://www.w3.0rg/1999/02/22-
rdf-syntax-ns#Resource"/>
</rdfs:Class>



<rdf :Property rdf:ID="teacher">
<rdfs:comment>Teacher of a course</rdfs:comment>
<rdfs:domain rdf:resource="#Course"/>
<rdfs:range rdf:resource="#Teacher"/>

</rdf :Property>

Figure 1.2 Example of RDFS

OWL

As described above, RDF Schema is a vocabulary for describing properties and
classes of RDF resources, with semantics for generalization hierarchies of such
properties and classes. However, it is not expressive enough. Therefore, OWL
(Ontology Web Language) adds more vocabulary to describe properties and
classes. For example, it adds facilities to express the relationship between classes,

the cardinality, equality characteristics of properties and enumeration of classes.

There are three subclasses of OWL [43] defined as follows:

» OWL Lite supports users who primarily need classification hierarchies
and simple constraints.

» OWL DL supports users who want the maximum expressiveness while
retaining computational completeness and decidability. OWL DL is
named according to its correspondence with description logic, a research
field that has studied the logics that form the formal foundation of OWL,
which we will introduce later in this chapter.

» OWL Full is for the users who want maximum expressiveness and
syntactic freedom of RDF with no computational guarantees.

In conclusion, the ontology vocabulary for the Semantic Web is illustrated in

Figure 1.3.



Digital Signature

Unicode

Figure 1.3 Ontology Semantic Layer [Tim Berners-Lee, the semantic web and challenge]

1.2 Description Logics
1.2.1 Introduction to description logics

As discussed before, the goal of the semantic web is to facilitate machines to
extract semantics from human words or to process natural language. In order to
achieve this, everything has to be written out in structured languages. Because the
ultimate goal is ambitious, and it is hard to achieve within a few years, nowadays,
researchers have made more reasonable and short-term achievable objectives—

collecting data in a useful way, like a large database.

In order to represent data in a way that machines can more easily do the automatic
reasoning based on the reasoning facility supplied, more support for reasoning
mechanisms within the semantic web are needed. Description Logics, a family of
knowledge representation languages, are a possible solution for this. DLs can deal
with the expressive knowledge about concepts and concept hierarchies. Given a

Tarski style declarative semantics, description logics are regarded as an important



formalism based on the traditions of frame-based systems, and can provide object-

oriented representations, semantic data models and type systems.

Description logics are comprised of three basic building blocks: concepts, roles
and individuals. Concepts, interpreted as sets of instances, are used to describe the
common properties of a collection of instances and can be considered as unary
predicates in first order logic. Roles are interpreted as binary relations between

objects, while individuals are defined as the instances of concepts.

In description logics, there exist some language constructors to define new

concepts and roles, such as intersection, union, role quantification, etc.

The main inference services supported by description logic reasoners are
classification, satisfiability checking and Abox realization. Classification is the
computation of a concept hierarchy based on subsumption. Satisfiability is to
check whether there exists at least a model. Abox realization is to compute the
most-specific concepts for each individual in the Abox. We will describe the

inference services of description logic in detail in a later subsection.

1.2.2 Components of description logics knowledge bases

A DL knowledge base is comprised of two components—a “Tbox” and an
“Abox.” The Tbox contains a terminology and is built through declarations that
describe general properties of concepts. Due to the subsumption relationships
between concepts, the hierarchy structure of the Tbox is analogous to a lattice.

9



The Abox contains extensional knowledge—also called assertional knowledge,
which is specific to the individuals of the domain of discourse. The Tbox, as
internal knowledge, is often thought to be unchangeable, while the Abox, which

represents the extensional knowledge, is changeable [3].

1.2.3 Description languages
1.2.3.1 The basic description languages AL

As introduced in [40], the language AL (Attributive language) is regarded as a
minimal language that is of interest. The other languages of this family are

extensions of AL .

The basic description language AL is formed according to the following syntax
rule [6]:

C,D~> A| (atomic concept)

T| (universal concept)
1] (bottom concept)
—A4| (atomic negation)

Cn D] (intersection)
VR.C| (value restriction, universal quantification)

3RT | (limited existential quantification)

10



1.2.3.2 The description logic ALC

In the area of Description logics, ALC is considered as a basic description logic
with structures related to first order predicate logic: conjunction, disjunction, full

negation and existential and universal role quantification.

ALC concepts are built using a set of concept names (NC) and role names (RN).

The meaning of concepts is given by a Tarski style model theoretic semantics

using an interpretation I =(A’,”) , where A’ is the domain and 7 is the

interpretation function. The function  maps each concept name in NC to a subset

of A" and each role name in RN to a binary relation over A’ (a subset of A’ x A")

such that the following conditions are observed:

TI = AI top
1'=¢ bottom
—A' =N\ A complement [C]

I _ !
(G NEG) =CinCh conjunction

I I
(GUEG) =C1uCh disjunction [u]

(VRO) ={ieAN |VjG,))eR = jeC'} universal quant,
I _ ¢ I Lo 7 . I
(ARC) ={ieA [F(,))eR AjeC} existential quant. [£]

Note that in AL, negation can only be applied to atomic concepts, and only the

top concept is allowed in the scope of an existential quantification over a role.

11



However, ALC supports full negation and full existential quantification which

means negation can be applied to complex concepts as well.

1.2.3.3 The family of AL language

The AL -family can be obtained by adding further constructors to AL . For

example, number restrictions [ N] are written as > n R (at-least restriction) and as
< n R (at-most-restriction). They are interpreted as
EnR)Y={acA||{b|(a,b)eR"}|zn}

EnRY={aeN||{b|(a,b)eR" }|<n}

Transitive roles (R, ) can be defined as {<x,y>|<x,z>eR'"n<z,y>eR'}.
Inverse roles (R™) can be defined as {< x,y >|< y,x >e R'}

Functional roles ( F) is defined as iff {(a,b), (a,c)} = R’ implies b=c.

Extending AL by any subset of the above constructors yields a particular AL -

language. An AL -language is named by a string of the form

AL[u][][N][C] where a letter in the name stands for the presence of the

corresponding constructor. For example, ALeN is the extension of AL by full
existential quantification and number restrictions. In DL terminology, S is often

used to stand for ALC with transitive role (R,) , H for role hierarchy (e.g.
hasDaughter < hasChild ), O for nominals/singleton classes (e.g.,{Canada}),
I for inverse roles (e.g. isChildOf = hasChild™), N for number restrictions (e.g.

> 2hasChild ) and Q for qualified number restrictions (e.g. = 2hasChild .Doctor ).



1.2.3.4 Inference services

In description logics, concept satisfiability, subsumption, instance checking,
retrieval and realization are the interesting inference services. Let us assume a
knowledge base X =< Thox, Abox >:

Concept satisfiability is the problem of checking whether conecept C is satisfiable,

w.rt ¥, i.e. whether there exists a model 7 of ¥ such that C' = ¢.

Subsumption is the problem of checking whether concept C is subsumed by D
w.rt. ¥, i.e. whether C' = D'in every model [ of £
Instance checking is the problem of checking whether the assertion C(a)is

satisfied in every model of .

Abox realization is to compute for all individuals in an Abox their most-specific

concept names w.r.t. Tbox T.

All inference services can be reduced to the satisfiability test. For example, the

subsumption test C < D can be reduced to test whether £ U {(C m—D(x)} has no
model. And instance checking C(a) can be reduced to test whether

2 U {~C(a)} has no model.

1.3 Motivation
As evolved from a combination of frame based systems and predicate logic,

description logics were designed to overcome some problems of the frame based

13



systems and to provide a clean and efficient formalism to represent knowledge.
Therefore, the semantic organization of data and the powerful deductive

capabilities are main characteristics of description logics.

1.3.1 Current description logics reasoners

There are a few Description Logics reasoners available these days, such as FaCT
(Fast Classification of Terminologies), RACER (Renamed Abox and Concept

Expression Reasoner), Pellet, KAON2.

FaCT is a description logic classifier that can also be used for modal logic
satisfiability testing. It can deal with the SHF logic (ALC augmented with
transitive roles, functional roles and a role hierarchy), or with the logic SHIQ [5]
(SHF plus inverse roles and qualified number restrictions), both of which use
sound and complete tableau algorithms. FACT++ is a new generation of FACT
reasoner. It used the established FACT algorithms, but with a different internal

architecture. However, neither of them supports individuals.

RACER is a knowledge representation system, which implements a highly
optimized tableau calculus for a very expressive description logic [44]. It offers
the services for both multiple Tboxes and Aboxes. It can deal with the description

logic ALCQHI . also known as SHIQ. Moreover, RACER provides reasoning

with concrete domains.

14



Pellet is an OWL DL reasoner based on the tableaux algorithms developed for
expressive Description Logics. It supports all the OWL DL constructs including
the ones about nominals, namely owl:oneOf and owl:hasValue. Pellet provides
reasoning that is sound and complete for OWL DL without nominals (SHIN(D) in
DL terminology) and OWL DL without inverse properties (SHON(D) in DL
terminology). It is provably sound but incomplete with respect to all OWL DL

constructs (SHION(D) in DL terminology).

KAON?2 is a OWL-DL reasoner and it supports SHIQ(D). KAON2 supports
answering conjunctive queries whose variables in a query are bound to
individuals explicitly occurring in the knowledge base, even if they are not

returned as part of the query answer [45].

1.3.2 Problems for DL reasoners while dealing with large Aboxes

However, although some description logic reasoners can deal with a very
expressive description logic, they are often not very efficient in reasoning with
large Aboxes. One reason is that they compute the complex tableau algorithms
mainly in the main memory, which means they are constrained by the limitation
of the memory. Therefore, if a reasoner terminates, it will not store any results
permanently. It will lose all the information, and has to recompute it again.
Another reason is that some of the tableau computations might require a lot of
CPU running time. Instead, due to the facility of nowadays DBMS, it would be a

good choice to use SQL to answer some DL queries.



The recent DL research was stimulated on merging DL reasoners with databases,
which are well known for their efficient management of huge data sets. In order to
address this problem, we use so-called Pseudo Model techniques to combine
databases and the description logics reasoner RACER. We proposed to use
databases as reasoning filters in order to reduce the number of individuals which
have to be reasoned by RACER. In particular, most of the inferences made by
RACER are converted into a collection of SQL queries, with the goal to gain
efficiency by relying on the optimization facilities of existing DBMS. We also
implemented an algorithm to generate the whole Tbox hierarchy based on the
taxonomy retrieved from RACER. Therefore, in order to answer queries about the
Tbox hierarchy, one can just rely on database SQL queries. As for the Abox
reasoning, LAS first stores pseudo models of all individuals and concept names
into the database. Then, it uses these pseudo models to do so-called mergable
tests, and choose the possible candidates to let RACER do the final checks. After
LAS gets the answers from RACER, it stores all the information into the database
for future queries. This approach is especially efficient for the registered users of
LAS, who log off the system and will log on again in the future. As for RACER,
since all the reasoning is performed in main memory, it will lose all the
information whenever the server is shut down or is required to load another new
file. Therefore, it does not keep any information permanently at all. One of the

goals of LAS is to keep all information for reuse in the future.
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LAS system is developed co-operately with my colleague Jiao Yue Wang. This
project is a result of two master theses. There exist common parts in both thesis:
The techniques for combining database and RACER, the initial design of the
system and the database schema. This thesis covers mainly on Abox queries part,

while the Tbox part is discussed in Jiao Yue Wang’s thesis

In the following chapters, we will introduce the LAS (Large Abox Store) system

which extends the DL reasoner RACER with a relational database used to store

and query Tbox and Abox information.
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2. Techniques for combining databases and RACER

Currently, there already exists a system that can deal with large Aboxes, which
combines a DL reasoner with a database, Instance Store [46]. However, it
supports only a restricted form of Aboxes, namely role-free Aboxes, which means
there are no role assertions in Aboxes allowed. With the role assertions, the
individuals are no longer isolated. They are linked to different groups by different
role assertions. Therefore, it is more complicated to deal with large Aboxes with
role assertions, because it will increase the expressiveness due to role hierarchies

and transitive roles.

Recently, the research on description logics has shifted to the development of
algorithms and optimized implementations for increasingly expressive DLs,
which support transitive roles and general inclusion axioms or even more
expressive languages [11]. In this chapter, we will discuss two techniques that can
be used to reason about an Abox containing role assertions, the so-called

precompletion and psudo model techniques.

2.1 Precompletion

The main idea of the precompletion techniques is to eliminate Abox axioms
specifying relationships between individuals, and transform a general Abox into
an equivalent role-free Abox [12, 13]. After eliminating those role assertions
between individuals, the individuals in the Abox become isolated, and are no
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longer linked with each other by a role. Therefore, the individuals become
independent and can be verified using a standard Tbox reasoner. Thus, role
assertions can be transformed into concept assertions, and the remaining relevant
elements are only concept assertions, which means Abox reasoning can be

reduced to Tbox reasoning.

2.1.1 The language scope of precompletion— ALCFHR™

As we already introduced ALC, the description logics basic language, ALCFHR"

is the extension of ALC by adding functional roles, transitively closed roles, and

role hierarchies. It has a standard Tarski-style semantics based on an
interpretation 7 =(A’,”). Let us assume A, C, D are concepts names, R, S are

roles names. T is a set of transitive roles and F is a set of functional roles, and a, b

are individuals names. The syntax and semantics of ALCFHR" is as follows:

Concepts:

Syntax Semantics

A Al c N

-C ANC!

CuD c'uD’

CnD c'nD’

JRC {aeN|FbeN (a,b)e R ,beC'}
VR.C {aeN|Vb:(a,b)eR = be(C')

Terminology Axioms:

Syntax Semantics
ReT R' =(R")*
ReF A c (34R)
RcS R S8
CcD c'cD'



Assertions

Syntax Semantics
a:C a' eC’
(a,b): R (a',b")eR'

2.1.2 Technical definitions for ALCFHR"

We define the concept name Top (T) and Bottom (1), by denoting T an
abbreviation for CU—C, and 1 as for Cn—C.

(1) Generalized concept inclusions:

If C and D are concept terms, then the generalized concept inclusion CcD is a
terminological axiom. It can be transformed into the equivalent assertion
Tc —CuD. Therefore, the whole Tbox can be transformed into the required
generalized concept inclusion form.

(2) Negation normal form:

The concept expressions are all transformed into negation normal form, which
means the negation constructor — can appear only in front of concept names.

(3) Label of individuals

Given a knowledge base ¥ = <T, A> where T represents the Tbox and A

represents the Abox. The label £(Z,0)of an individual o is the set of concept
expressions occurring in the assertions on the individual itself.

£(Z,0)={Clo:Ce A}

While the individual concept expression () £(Z,0) is defined as the conjunction

of all the concept expressions in £(Z,0): C,n...n C,,.
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(4) Functional Role Operator

o

The functional role operator is defined as ~4 (depending on the individual name
0, and an Abox name A) , which holds between two functional roles R and S, and
the Abox assertions force the R and S successors of the individual name o to be

the same element. In other words, if (x, y) €eR', (x, z2) €S’ , and

Rc F,R cF(<i<n),ScF,, where F' is functional role, then y = z.

i

Thus, R~ S .

(5) Role Hierarchy Operator

We assume in the language ALCFHR" that exist no cyclical definitions among
role names, which means if there exists S € R and R < S, then we can conclude
that S = R. Therefore, the role hierarchy can be defined using a partial order <.

It is easy to prove that a subrole of a functional role is also functional.

2.1.3 Precompletion rules

A knowledge based is precompleted if all the information entailed by the presence
of role assertions is exhibited in the form of concept assertions [11]. Therefore, in
the precompleted knowledge base, role assertions become redundant and can be
removed. The precompletion rules that break down the role assertions to concept
assertions are as follows:

(N A—->c{o:CtuAd:ifoisin O, Tc Cis in Thox and 0:C is not in A. This is

for global axioms.
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2)A—>V{o:Dyud:ifo:C,UCisin A, and D = Cior D = C,, and neither

0:C, nor o:C,innotin A. This rule deals with disjunctions.

B3)A—>3o":CtuAd:if 0:3RCand <o0,0'>:Sis in A, R;A S, and o": Cis not
in A. This rule deals with existential restrictions.

4 A>V{0o""VRC}UA: if 0:VT.Cis in A, <0,0'>: S is in A, and there is
ReTRN (transitive roles) such that S<R<T, and {0": VR.C}is not in A. This
is a transitive role value restriction rule.

S)YA->n{o:C,0:C,}uAd:if 0:C,NC,isin A, neithero: C, nor o:C, is in A.
This rule deals with conjunctions.

(6) V'{0':Cyu 4 : if 0:VRC and <o0,0'>:S are in A, there is R'<R s.t.

R;ASand 0":C isnotin A.
(MV{':Ctud: if 0:VRCis in A, and <o0,0'>:Sis in A, and S<R, and

o": Cis not in A. This rule deals with universal quantifications.

As proved in [11], the precompletion algorithm will always terminate no matter in
what order applicable rules are chosen. Although different strategies for the
priority rules to be chosen can lead to a different computational complexity, as
long as the disjunction of concept exists, the worst case of the computational
complexity will be exponential. Now, we will give an example to explain how to

apply these rules to transform an Abox with role assertions into a role-free Abox.

Tbox: Tc—-D, U X UY
Abox: (a,b): R, b :C a:VR(AUB)
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(a,b,) R, b, :C, a:VF.D,
(a,b,): R, b, :C, a:VF,.D,
R <K R, <F R, <F,
R, <F, ( F;1s functional roles)

Step1: Precompletion rule (1)
a:-DUXUY

bl IﬂDl uXuY
bz I—|D1 uXuY
b3 Z—lDlUXUY

Step2: Completion Rule
(a,b)): R,

=b:4AUB
a:VR (AU B)

Step3: Precompletion rule (7)
(Cl, bl) : Rl
a:VFE .D, =b,: D,
R <H

Step4: Precompletion Rule (6)

(a,b,): R,
a:VF .D, =b,: D,

R < F.R, ;A R,
Step5: Precompletion Rule (7)

(a,b,): R,
a:VF,D, =b,:D,
R, <F,

Step6: Precompletion Rule (7)
(a,by): R,
a:VF,.D, =b,:D,
R, <F,

Step7: Precompletion Rule (2)
b:AUB =b 4

So finally, the new Abox is as follows:
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(a,b): R, b, :C, a:VR (AU B)
(a,b,): R, b,:C, a:VF.D,
(a,b,): R, b, :C, a:VF,D,

R <H R, <H R, <F,

R, <F, b:4 b :D,

b, : D, b, : D, b,:D,

Note that in the step 7, we can choose either b, : 4or b, : B, Thus, if there are n
individuals and m disjunctions for each individual, represented as
0,:C,U..uC,(1<i<m), there would be m" choices. Therefore, although the
precompletion algorithm can guarantee to generate a finite number of
precompletions, but it has an exponential computational complexity in the worst

casc.

2.2 Pseudo model techniques:

In this section, we will discuss another approach to combine databases with
description logic reasoners, called Pseudo Model Technique. The main advantage
of this technique is to avoid the expensive satisfiability test, which is due to the

undeterministic completion rules.

As for description logics reasoning, classifying Tbox and realizing Abox are the
two most expensive computations. Therefore, it is critical to speed up the
subsumption test during the classification of a Tbox and realization of an Abox.
The pseudo model technique introduces a very effective mergable test which re-
uses the information computed for previous satisfiability tests by the tableau

algorithms [14].
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Each subsumption test (C < D) can be transformed into a satisfiability test as
(unsat (C n—=D)). If (Cn—=D)is satisfied, then (C < D) does not hold, which
means C is not subsumed by D. In order to test whether the conjunction
(CN—=D) is satisfied or not, a mergable test between C ’s pseudo model
and—D ’s pseudo model can be applied. If the pseudo models of Cand —D can be
merged by the mergable test, in other words, there is no interaction between the
pseudo models of Cand —D, then (C—D)is satisfied. Therefore, it can be

inferred that Cis not subsumed by D.

The pseudo model technique is sound but incomplete. If the respective pseudo
models of Cand —D cannot be merged, the tableau algorithms must be applied
later on to test the satisability of the conjunction (C M —D). However, as one can
see, using the mergable test can effectively reduce the burden of invoking the
tableau algorithms for subsumption queries. In this section, we will explain the

definition of a pseudo model and the algorithm of mergable test [15].

2.2.1 Flat pseudo model for Abox reasoning

As mentioned in section 1.2.3.4, to realize an individual a, in other words, to
compute the direct types of the individual a for a given subsumption lattice of the

concepts D, ..., D, , it is required to perform a sequence of Abox consistency tests

for 4, = AU{a:—D,}. Therefore, supplying a cheap but sound mergable test for
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the focused individual a and sets of concept terms —D, is the main purpose of the

flat pseudo model technique.

(1) Pseudo model for an individual a .
We assume that Abox A is consistent, and there exists a non-empty set of

completions C . A completion A'€ C . An individual pseudo model M for an
individual a in 4 is defined as the tuple <M* M ™ M’ M" >w.rt. A'and 4
using the following definitions:

M*={A|la:Ae A"}

M™={4d|la:=Ae A}

M?={R|a:3RCe 4}

M"={R|a:VRCe A"}

(2) Pseudo model for a concept D
First, we define a label set L,(a) for an individual a. L (a) is a set of all concept

terms from all concept assertions for a in a completed Abox A'. Let Dbe a

concept and A be the Abox : 4 ={a: D}, the flat pseudo model M for D consist
of the following cach sets:

M;={D|DeL,(a)}

My*={D|-DeL,(a)}

M} ={R|3RCe L, (a)}

M* ={R|VR.Ce L,(a)}
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The mergable test for flat pseudo models M, and M, is to check whether there are
some interactions:
For atomic concepts: (Mg NM™ £d)v (M2 nM?* #¢))

For role successors: (M3, "M 2 = @)v (M "M # $))

As discussed before, Tbox subsumption test can be preceded by the mergable test,
and the realization of an Abox can also be preceded by the mergable test for the
individual and the concept. For example, to test whether D is the type of
individual a, it is sufficient to test whether a’s pseudo model is mergable with

—D’s. If they are mergable, then D is not the type of individual a.

However, the mergable test is only a sound but incomplete algorithm. In order to
have a better understanding of the pseudo model technique, we will discuss the

soundness and completeness problem in description logics.

2.2.2 Soundness and completeness

In descriptions logics, a decision procedure solves a problem with YES or NO
answers to: KB | —,a , whether sentence « can be derived from the set of sentences
KB by procedure i [16]. Thus, we can assume that the mergable test is regarded
as a decision procedure which solves a problem with YES or NO answers, since it
can be treated as to decide whether the focused pseudo models are mergable or

not.
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Soundness: Procedure 7 is sound if whenever procedure i proves that a sentence

o can be derived from a set of sentences KB(KB|—, &), then it is also true that

KB entailsa (KB |=a) . A procedure is sound means no wrong inference is drawn
from the knowledge base using this procedure. However, sometimes, a sound
procedure may fail to find the solution in some cases, even though there indeed

exists one. Therefore, it leads the notion of completeness.

Completeness: The procedure i is complete if whenever a set of

sentences KB entails a sentencea (KB |=«), then procedure i proves that o will
be derived from KB(KB | —,«) . In another word, the complete procedure can draw

all the correct inferences from the knowledge base. However, a complete
procedure may claim to have found a solution in some cases, when there is
actually no solution. Therefore, we can say that for the YES/NO questions, if the
procedure is sounds, and the answer we get is YES, then we can trust that. On the
other hand, if the procedure is complete, and the answer we get is NO, we can

trust it.

However, it is not ensured that we can find sound and complete algorithms to
solve problems in any case. In fact, there exist many sound and incomplete
algorithms which are considered as good approximations of problem solving,
because they can simplify the procedure to find the solution by reducing the
computational complexity. In our case, the pseudo model techniques we used are

also sound and incomplete. Therefore, for the mergable test for the subsumption
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question 4, < 4,, where we assume that 4, and 4, are both complex concepts, we

consider the following four conditions:

(Mp "My =¢)
(Mp* "M%, =¢)
(M3 "MGF = ¢)
(M52 "My = @)

If all of them are true, which means there is no interaction between the pseudo
models, they can be merged and the conjunction of concept terms 4, N—4, is
satisfiable, which means 4, is not subsumed by 4, . If one of the condicitons is
false, which means that the pseudo models of 4, and —4, have an interaction, the
tableaux prover must be used to test the satisfiablility of the conjunction.
Therefore, it is easy to see that for this sound and incomplete algorithm, if there is
no interaction between the pseudo models, we do not need to pursue the
expensive tableaux algorithm to test the satisfiability problem, which largely
reduces the computational complexity.
For example:
(DHTbox: C=4 D=ANnBNE

Query:?C oD
Mergable test: 7 C o D is equivalent to test whether D m—C is unsatisfiable.

So we should test whether the pseudo model of —C and D are mergable.

M} ={4,B,E} M =¢

. Mjt=y Y M=
P M= M =4
Mp=¢ M. =¢

29



Test : Whether (M M2, (M ' nM*.), (MjnM".) and (M) "M>.)
=4.

One of them has an interaction, because M, N M4 = {A4}. Generally speaking,
we can not get the conclusion that C oD because the mergable test is
incomplete. However, each of the concepts D and —C has only one possible

pseudo model as shown above, so we can say thatC o D .

Now, we will see another example to illustrate why the mergable test is

incomplete.
(2) Tbox: C=A4ANB D=AUBUC
Query:?C oD

Mergable test: ?C o D is equivalent to test whether D n —C is unsatisfiable.

The pseudo models for D and —C are as follows:

Mp ={4} M;Z = (B} M, ={C}
My =¢ Myl =¢ M =
MD,: I D, = 3 MD3= 3 _
MD1_¢ MD2:¢ MD;‘
M} =¢ My =¢ My =¢
ML=ty M ={B)
-C, = E R -C, E
Mﬁc,—¢ Mﬁcz—¢
qu:(b M:/c2:¢

If we choose M, to take the mergable test with M ., there is an interaction

between these two pseudo models, as we already discussed above, since it is
incomplete, we can not trust it. The reason is obvious that as long as there exists a

disjunction in a concept’s definition, it will lead incompleteness, because during
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the satisfiability test, RACER generates only one pseudo model for each concept
and each individual no matter whether they have disjunctions in their definition or
not. As to the above’s example, due to the disjunction in D, there exist three
pseudo models for D. However, for the mergable test, only the one generated
during the satisfiability test will be used. Therefore, it does not contain complete

information about D.

We now discuss the individual realization [15]. Let a be an individual mentioned

in a consistent Abox A w.r.t. a Tbox T, —C be a satisfiable concept, M, and
M _, donote the pseudo model for the individual a and the concept

—C respectively. If the mergable test returns true, which means it does not have

an interaction at all, the Abox A4 {a:—C}is consistent, so a is not an instance of

C.

In general, individuals in an Abox only belong to a few named concepts,
therefore, the proof of contradiction will not derive a clash, which means in most
of the cases, a is not an instance of C. As for the mergable test, if @ is not an
instance of C, there is no interaction between those two pseudo models. Since the
mergable test is sound and incomplete, we can trust the “YES” result. We do not

need to perform the expensive tableaux algorithm most of the time.

Now, let us see an example about the individual realization.

Thox: C=3RY

31



Abox: (a,b):R, b:X
Query:? a:C

We build the pseudo model for ¢ and —-C

M::¢ MjC:¢
_ M =¢ v _ME=C
"M ={R} M=
M) =¢ MY ={R}

So there is an interaction between M and M_., the two pseudo models are

unmergable. Due to the incompleteness of the mergable test, we need to do the
tableaux test. However, if we continue recursively, we can see that we can still

succeed with the mergable test. From (a,b): R, b: X and C=3RY we can

perform the mergable test of M, and M _, .

M} = (X} M’ =4
_ M =g v MY =
boM)=¢ oM =4

MbV:¢ M-V‘Y:¢

So there is no interaction between M,and M ,, they are mergable which can

lead to the conclusion that a is not an instance of C. However, this kind of deep
pseudo model technique is based on a tree instead of a graph. Because it
recursively applies the completion rule based on the previous one, it would have

problems with graphs that are not trees.
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2.3 Our choice—pseudo model techniques
After illustrating the basic concept of the two techniques to combine the
description logics reasoners with databases, it is easy to draw the conclusion that

we prefer to apply the pseudo model techniques.

As for the precompletion technique, by applying the precompletion rules, it
removes the role assertions from the Abox and keeps only concept assertions. The

definition of a precompletion for a knowledge base <7,4> is given in a
procedural way, as a new KB <T, 4, >is created where the Abox is extended

using the syntactic precompletion rules as long as they are applicable. Because of

the nondeterminism of the rules ( R, R, rules), several precompletions can be

generated. It is sound and complete. However, as discussed in section 2.1.3, it
may generate an exponential number of precompletions, which means if the
computational complexity is a critical concerned for a system, it is not a very

good choice to take.

Compared to the precompletion technique, instead of being based on a whole set
of precompletion rules, the pseudo model technique is only based on one
completion while generating pseudo models for individuals and concepts. Just
because of that, it is sound but incomplete. However, its minimal computational
overhead and the avoidance of any indeterminism overweigh its incompleteness,

especially when efficiency is the main concern for a system.
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Our objectives for building the LAS (Large Abox Store) are to make good use of
both reasoning services of description logic systems and efficient data
management of database systems. Dealing with a large Abox, one of the
difficulties is to retrieve individuals given a query concept. If we do the instance-
checking test one by one, it will involve a lot of work. By observing the
characteristics of an Abox, to perform the mergable test between pseudo models
for all individuals in an Abox and pseudo model for the given concept can largely

avoid the expensive tableau test.

On the other hand, the description logics reasoner RACER generates all the
pseudo models for the concepts and individuals while loading the file into itself.
To be more precise, pseudo models for concepts are generated while RACER
performs the Tbox satisfiability tests, and pseudo models for individuals are
generated while RACER test the Abox satisfiability. Therefore, no matter which
technique we use, RACER will have the pseudo models computed in its
initialization phase. Hence, it is a good reason to apply the pseudo model

technique.
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3. The Large Abox Store (LAS)

LAS is a Java application that combines databases with the description logics

reasoner RACER.

In general, we designed our system into two modes— lazy and eager mode. Both
of the two modes will first connect to RACER, and get the basic information for
initialization, then store the information into the database. In the lazy mode, LAS
does reasoning on demand, which means whenever a query is posed, it will ask
RACER to get the result, and then return the answer to users. Afterwards, it will
store the results in the database for future use. For the eager mode, LAS will try to
convert description logics reasoning into equivalent DBMS SQL queries, so that

the reasoning efforts by RACER can be reduced.

For the initialization, no matter what mode has been chosen, LAS will first load
the file into RACER, and let RACER check the satisfiability of Tbox and Abox.
Then we store the Tbox taxonomy and Abox assertions into the database.
Afterwards, when the queries are posed, we check the database, and apply SQL to
extract results. If the information about the specific incoming query is not
complete, we will send the query to RACER. After RACER has finished its
reasoning, the result is sent to both the user and its corresponding database, and

the completeness of information is recorded in the database for the future use. As
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we rely on RACER to perform the final checking, in total, our system can answer

queries correctly and completely.

3.1 System Architecture

3.1.1 Four Main Components of LAS

LAS consists of four components (see also Figure 3.1):

a database such as

Orcle, JdataStore Explorer or MySQL, which can be accessed through JDBC.
aresoner; RACER

Because LAS applies the pseudo model technique, a technique which is only
compatible with RACER, we only chose RACER as the description logics
reasoner.

an ontology :

A set of objects and axioms in the form of either OWL or LISP

User Interface:

User portal to initialize and execute queries.

3.1.2 Three Interfaces of LAS

These four components can be divided into three main groups according to their

different functional responsibility:

LASUser:

Mainly responsible for the display and interaction with users including user

initialization and queries. For the user initialization, it is partitioned into two
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different parts according to the status of users. For the new users who use LAS for
the first time, we create the accounts for them and build the database and create
all the tables. As for old users, who had already logged in to LAS before and have
their records in the corresponding database, we do not need to generate a new
database for them. LAS will open the database connection using JDBC.
Afterwards, users can pursue their queries based on the existing information in

their database.

LASRACER:

The LASRACER interface is responsible for communicating with RACER. It
consists of the TCP-based client for RACER, and all classes are based on or
related to Racer reasoning results. On the other word, it passes the results to LAS

from RACER and vise versa.

LASDatabase:

LASDatabase interacts with the database, and generates the queries for the

database.
OWL File
i Query Load l
lmtialize | LAS | Racer
) <
uery (Java) Return final result
User

Store tuples,

candidates

Database

Figure: 3.1 The LAS System architecture structure

(Oracle)
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3.2 Database management
One of the main features of the LAS System is that it can reuse the information
retrieved from RACER no matter whether the RACER server has been shut down
or not. Therefore, for different ontology files, even though they share the same
schema, we will create different databases for them so that they are independent
and will not overwrite the other ontology files.
3.3 Database schema
In order to convert the whole ontology into the database tables, we define a
database schema as follows:
1. Individual (individualname String,

inpseudomodelid Integer,

indcomplete Boolean)

2. IndividualPseudoModel (inpseudomodelid Integer,

ina String,
innota String,
inexistence String,
inuniversial String,
unique Boolean)
3. Description (descriptionname String,
despseudomodelid Integer,
negationdespseudomodelid Integer,
descomplete Boolean)

4. DescriptionPseudoModel (despseudomodelid Integer,

desa String,
desnota String,
desexistence String,
desuniversial String,
unique Boolean)

5. DesParent (desparent String,
Deschildren  String)
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

DesAncestors (desancestors  String,
dessendants  String)
Tmp Desparent (desparent String,
deschildren String)

Tmp Desancestors (tmp_desancestors String,
tmp desendants  String)

TmpDesPM (des String,
desa String,
desnota String,
desexistence String,
desuniversial String,
uniquename Boolean)

Inassertion (individualname  String,

descriptionname  String,
mostspecific Boolean)

RoleType (rmame String)

Transitiverole (rname String)

Rsynonyms (rnamel String,

rname2 String)

RAncestors  (rancestors String,

rdecendants  String)

RParents (RParents String,

RChildren String)
RoleAssertion (individuallname String,
individual2name String,
rolename String,
completel Boolean,
complete2 Boolean,
rolecomplete Boolean)

Synonyms (descriptionnamel String,

descriptionname2 String)

SymmetryRole (rname String)

Tmp RAncestors (RAncestors String

RDescendants String)
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These nineteen tables are partitioned into three groups: those that represent the
ontology, those that deal with the pseudo models, and those that represent the
taxonomy of the ontology. Each group deal with different RACER queries. Please

refer to Appendix A for the specification of the used RACER query commands.

The first group consists of the tables Individual, Description, RoleType,
TransitiveRole and Rsynonyms, which store the Tbox information and tables

InAssertion and RoleAssertion, which store the Abox information.

Individual (individualname, inpseudomodelid, indcomplete)

The attribute individualname stores the individual’s namespace which is obtained
from RACER, inpseudomodelid stores the pseudo model ID of the corresponding
individual, while indcomplete is a flag which indicates the completeness status of
the information about this individual. If the information about the individual is
complete, which means all the atomic concepts of which the individual is an
instance are known and already stored in the table InAssertion, then indcomplete
is set to T. Therefore, when the query “individual-types” [Appendix A] is
excuted, LAS first checks this column and then decides whether to ask RACER

for further reasoning or just extract the information from the database.

Description (descriptionname, despseudomodelid, descomplete)
The descriptionname column stores the namespace of the description and

despseudomodelid stores the pseudo model ID of the corresponding description.
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The descomplete is the status flag for information completeness about the
description. For example, for the retrieve query, which means to retrieve all the
individuals from an Abox that are instances of the specified concept, LAS checks
the descomplete flag first. If it is True, which means the information is complete,
LAS just executes a SQL query and retrieves the instances as result. If the status
flag is False, it will first perform the pseudo model mergable test in the database,
and then forward the known candidates to RACER and let RACER perform the
final check. It is easy to see the advantages. For the non-complete information, the
database acts as a filter for RACER. Due to the pseudo model technique, all the
pseudo models information is already stored in database; the mergable test can be
performed by the database. Due to the efficiency of SQL queries, the mergable
test is fast, and reduces the number of possible candidates. It only sends the most
possible candidates to RACER. The advantage is especially obvious for a large
Abox. In general, the number of the instances of a specific concept will not reach
the total number of the individuals in the Abox. Conversely, most of the
individuals do not belong to a specific named query concept. Therefore, as a filter,
LAS reduces the workload of RACER so that RACER does not need to check all
the individuals whether they are instances of that specific concept. For the
complete information, we do not need to interact with RACER, we can just

execute a simple SQL query and get the correct answers efficiently.
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RoleType (rname)

TransitiveRole(rname)

Rsynonyms (rnamel, rname?2)

The RoleType table stores all the roles defined in a Tbox, and TransitiveRole
stores the corresponding transitive roles. A tuple from the Rsynonyms is a pair of
equivalent role names. This tuple refer to the same role by using different names.
At the first glance, this design is a bit odd, because according to the database three
normalization theory, we can design the table RoleType as RoleTypev2(rolename,
rtransitive, rsymmetry,rinversename) (v2 stands for another verstion of RoleType
table), so that to mark the feature of the specific role. For example, if the given
role is transitive, the value for the attribute ‘rtransitive’ can be set to True. The
data type of rtransitive and rsymmetry would be Boolean, while the data type of
rinversename is String, which stores the role name of the inverse role for roles.
However, according to the characteristics and implementation of our system, the
information about the properties of a role, such as transitive, symmetric and the
corresponding inverse role has to be retrieved from RACER by separate queries.
In other words, we have to use different RACER queries to extract all the
information about roles and then parse the result and store it into the database. For
example, we first use the query “all-roles” to get all roles and features from the
specified Tbox. Afterwards, LAS calls other queries such as “all-transitive-roles”
and “‘all-symmetry-roles” which return all the transitive roles and symmetric roles
respectively. As we already discussed, if we store all this information into one

table, we have to combine all the results of these queries about roles: “all-roles”,
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“all-transitive-roles” and “all-symmetry-roles”. On the other hand, the
information about transitive roles and symmetric roles is only used when we need
to query the relationship between individuals; we need to propagate the
RoleAssertion table according to the focused role’s attribute (e.g. Rtransitive,
Rsymmetry). Therefore, instead of checking the RoleTypev2 table, we can check
whether the focused role exists in the tables Rtransitive or Rsymmetry, and decide
which action to perform in order to propagate the RoleAssertion. As for this
design, it is not only more direct to store the information of the attribute of roles
because we get these results separately from RACER, but also it will reduce the
use of database space. In general, there are actually not that many roles that are
transitive or symmetric, so if RoleTypev2 were used in the schema, there would
be a lot of tuples whose value for the attributes rtransitive or rsymmetry were
False. Therefore, we finally chose to store this information separately using
different tables. The table Rsynonyms stores the synonyms of a role including the

role itself.

In the first group, the other two tables—InAssertion and RoleAssertion are used

to store the information about the Abox assertions.

InAssertion (individualname, descriptionname, mostspecific)
It stores all concept assertions from a specified Abox. The individualname stores
the name space of the individual of an assertion. The descriptionname stores the

name space of the description of an assertion. Here, we only store atomic concept
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assertions. The mostspecific attribute is a status flag which represents whether the
value of description name is the most direct type of the individual. At the
beginning, the value of ‘mostspecific’ is always set to False. If a query asks for
the direct types of a specific individual, first, we will check this attribute to see
whether the mostspecific attribute of the focused individual is T, if it is true, then
we can just use the SQL query to extract the descriptionname from the
InAssertion table. Otherwise, we will send the “individual-direct-types” query to
RACER, and store the result of the direct types of this specific individual into the
database, and at last, set the focused individual’s ‘mostspecific’ flag to T.
Therefore, when a similar query is processed, we just need to query the database,

instead of asking RACER to process the query.

RoleAssertion (individuallname, individual2name, rolename, completel,
complete2, rolecomplete)

It stores all role assertions from a specific Abox. The attributes individual Iname,
individual2name and rolename store the name space of individuals, description
and role respectively, and those three together represents the structure of a role
assertion. The attributes ‘completel’, ‘complete2’ and ‘rolecomplete’ are status
flags which indicate the completeness of the information about the individuall,
individual2 and the role respectively. At first, all these three flag are set to be
False.

Before explaining the usage of each status flag, we will first give some definitions

about the terms in role assertion. A role assertion consists of three parts:
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individuall, individual2, role, which means individuall and individual2 are in the
relationship of role. Given a role assertion (individuall, individual2, role), we
have the following terms:

Individual fillers: individual? is individuall’s fillers with respect to the specified
role.

Individual direct predecessors: individuall is individual2’s direct predecessors
with respect to the specific role.

Related individuals: individuall and individual2 are the related individuals with
respect to the specific role.

Individual filled roles: The role is the individual filled role of individuall and

individual?2.

Here, we discuss in detail the usage of the status flags. The ‘completel’ flag
records the completeness of information about individual fillers of a specific
individual—individuall, and a specific role. For example, when a user wants to
query all the individuals that are fillers of a role for a specified individual, we will
first check completel of the focused individual and the given role. If its value is
T, which means the individual fillers information for individuall is already
complete, we can just answer the query based on the database, otherwise, we will
take other actions which depend on which mode the user has chosen. For the lazy
mode, we will send the query “individual-fillers IN1 R” to RACER, and store all
the fillers we get back from RACER into the database. At last, we set the

‘completel’ flag of the given individuall and role to T. For the eager mode, we
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will propagate the RoleAssertion table based on the information in tables
TransitiveRole and SymmetryRole, Therefore, we do not need to query RACER

about the result.

The status flag complete2 records the completeness of the information about
direct predecessors of a role for a specified individual. When querying the
individual’s direct predecessors, we first check the table RoleAssertion to see
whether the tuple’s ‘complete2’ value is T or F. If the ‘complete2’ value is T,
which means the information about the direct predecessors of the given individual
and specific role is complete, we can simply perform the SQL query and return
the complete results to user. However, if ‘complete2’ is F, we have two ways to
compute the final results. One way is to completely depend on RACER by
sending the query “retrieve-direct-predecessors R IN”. After we stored the result,
the complete2 flag is set to be T to indicate that the information about the
individual’s direct predecessors is complete. The other way is based on the
propagation of roles to compute the results in the database. The details of this

query will be explained in the next section.

The status of ‘rolecomplete’ is to record the completeness of information about
related individuals of a specific role. The basic idea is the same as for the first two
status flags—completel and complete2. The details of the query will be discussed

in the next section.
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The second group of our schema, which deals with pseudo model techniques,
consists of the tables IndividualPusedoModel, DescriptionPseuddModel and table
TmpDesPM. The definition of pseudo model is introduced in Section 2.2.1.The
attribute “unique” indicates whether this pseudo model is the only one pseudo
model for the given individual (description). This information is provided by

RACER.

For example, let us assume that M, , =<{A B}, {C D E}, {R1 R2}, {R3}> and
M, =<{D B}, {E F}, {R4 R5 R6 R7}, {R1}>, where M/, = {A, B}, while
M;*= {B, D}. Therefore, we have to design a table that not only can store this
information, but is also suitable for executing queries. In our system, we designed

our pseudo model table in a way that we can use pure SQL to do the mergable

test. We used pseudomodelid to identify pseudo models. Each pseudo model has

only a unique ID. And then we store the value of M into different rows, where
each row contains the same ID, but each element of sets in M,, (i.g.

M*A M, M?,M" )requires one row.

According to the characteristics of the pseudo model structure and mergable test,
the pseudo model can be divided into two groups: (M*,M ™) and (M*,M"),
because the mergable test has to do the checking within these two groups
separately, M ?will not be checked with M. A specific pseudo model has a

unique ID and four sets: M*, M ™, M> M", each element of these sets occupies

47



one row. Among these four sets, there will be at least one set which contains the
most number of elements. Let us assume the maximum number is n, which means
the set has n elements. Hence, this specific pseudo model has n rows, each row
contains the same 1D, and for the sets whose number of the elements is less than

n, we fill the value of its corresponding columns with NULL.

For the example given above, M,, =<{A B}, {C D E}, {R1 R2}, {R3}> and
M, =<{D B}, {EF}, {R4 R5R6 R7}, {R1}>, the pseudo models for M, , and

M, are as follows, where the assigned pseudo model ID for M, ,is 1 and that for

M, is 2.

inpseudomodelid | Ina innota Inexistence | inuniversial | unique

1 A C R1 R3 T

1 B D R2 NULL T

1 NULL E NULL NULL T

Figure 3.1: Pseudo model for M, ,

inpseudomodelid | Ina innota Inexistence | inuniversial | unique
D E R4 R1 T

2 B F RS NULL T

2 NULL NULL R6 NULL T

2 NULL NULL R7 NULL T

Figure 3.2 Pseudo model for M ,

The information about pseudo models of individuals and descriptions can be
retrieved through the RACER query “get-individual-pmodel <individual-name>
<Abox-name>" [Appendix A], where <Abox-name> is optional and “get-

description-pmodel <description-name> <Tbox-name>"’, where <Tbox-name> is
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optional. Currently, RACER will compute only one pseudo model for a particular
individual (description). In other words, for a complex description with
disjunctions or an individual which is the instance of a complex description with
disjunctions, there exist more than one pseudo model, but RACER will compute
only one pseudo model and return it. Therefore, after the mergable test, due to the
disjunction, we still have to send the candidates to perform the final check.
However, even though RACER returns only one chosen pseudo model, we
propose another solution in case RACER could return all the pseudo models, so
that we do not need to forward the candidates in case the description’s definition
does not contain a role. The results on database SQL query are the final results. If
the definition of the description contains roles, then we will send the candidates to

RACER to do the deep pseudo model mergable test.

As discussed in the previous chapter, the non-subsumption checking might be
replaced by pseudo model mergable tests. As long as there is no interaction
between the pseudo models of two selected concepts, we can conclude safely that
there is no subsumption relationship between these two concepts. On the other
hand, if all pseudo models of two selected concepts do not have role parts
(existential and universal parts), and if and only if all these pseudo models have
an interaction with one another, then these two selected concepts have a
subsumption relationship. Herein, we get another idea for the mergable test which
is based on the condition that if RACER can return the information about all the

pseudo models of a specific concept or individual. The following is the schema of
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the pseudo model table according to this method. We named it as

IndPseudoModel v2 and DesPseudoModel v2.

IndPseudoModel v2 (inpseudomodelid  Integer,
indversion Integer,
ina String,
innota String,
inexistence String,
inuniversial String )

DesPseudoModel v2(despseudomodelid  Integer,
desversion Integer,
desa String,
desnota String,
desexistence String,
desuniversial String )

The other part (italic type) is the same as in the tables IndPseudoModel and
DesPseudoModel we defined before, except that we add one more column
indversion (desversion) to indicate the disjunction. Those who contain the same
indpseudomodelid (despseudomodelid) but different indversion (desversion) are
the pseudo models for the same individual (description) but are based on different
disjuncts. Those who contain the same pseudo model id and same indversion, but
a different value in other columns means they together represent one pseudo

model, and the relationship among different rows is conjunction.

Therefore, to check whether an individual is a given concept’s instance could be

replaced by checking whether all the pseudo models of this individual have

interaction with all the pseudo models of the given concept.
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For example, a: (ANBNCND)yu(ANF)u(DnNQ), we want to check

whether @ is an instance of 4N D . We store the pseudo models of a and the

complex description —4 U —D as follows. The details of the query are discussed

in the next section.

Inpseudomodelid | indverstion | Ina innota Inexistence | Inuniversial

1 1 A NULL NULL NULL

1 1 B NULL NULL NULL

1 1 C NULL NULL NULL

1 1 D NULL NULL NULL

1 2 A NULL NULL NULL

1 2 F NULL NULL NULL

1 3 D NULL NULL NULL

1 3 Q NULL NULL NULL
Figure 3.3 InPseudoModel_v2 for individual a

Despseudomodelid | desversti | desa desnota | desexistence | Desuniversi

on al
1 1 NULL | A NULL NULL
1 2 NULL | D NULL NULL

Figure 3.4 DesPseudoModel_v2 for complex description: —A4 U —D

Table TmpDesPM is a temporary table. It stores the pseudo model of a specific

complex concept when the query about a complex concept is processed. After the

query has finished, information about the pseudo model from TmpDesPM table is

deleted.

We like to point out that although it is a solution if all pseudo models are given by

RACER, it is unrealistic to compute all the pseudo models in advance.

The third group of the database schema, which mainly deals with the taxonomy of

the ontology, consists of DesParent, DesAncestores, Synonyms, Tmp Desparent,
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Tmp Desancestors which represents the taxonomy of concepts in the Tbox, and
RParents, RAncestors and Rsynonyms which describe the taxonomy of roles in
the Tbox. Table Tmp Desparent, Tmp Desancestors are the temporary tables for
generating the table DesAncestores from table DesParent. Please refer to the other

thesis [41] for the details.

3.4 Database query--Abox query

Our system can deal with various queries. It covers most of the query types
supported by RACER [47]. Abox queries focus on answering queries concerned
on concept assertions and role assertions. Compared with Tbox queries, they base
on different database tables, and different RACER commands to communicate

with RACER.

3.4.1 Individual queries

The Abox queries that are supported by LAS are query indivdiual types,
query individual direct types, query retrieve, which are about the concept
assertions of the Abox, and query indivdiual fillers, query direct predecessors,
query_individual filled roles, query related individual which are mainly
concerned with the role assertions of the Abox. In the following, we will discuss

each of these queries in detail.

3.4.1.1 query_individual_types

To query individual types is to get all atomic concepts of which the individual is
an instance. In our system, we first check the ‘indcomplete’ flag of the focused
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individual to see whether it is true or false. If it is true, then we simply use a SQL
query to retrieve the existing information from the database. Otherwise, we will
ask RACER to compute the result and store it in ‘the database and set the
indcomplete status flag to be True for the next time’s use. The pseudo code of this

query is as follows:

Query individual types (String ind, Reasoning reasoner,Connection c)

{
indcomplete = “Select Individual.indcomplete
from Individual
where Individual.indivdivalname = ‘ind””’;
if (indcomplete== True){
individual types = “select distinct descriptionname
from InAssertion
where indivdivalname = ‘ind’”;
telse {
individual types = reasoner.get individual types (ind);
store (individual types, Connection c, Table InAssertion); store the results of
; individual_types into database
update (Table Individual, String indcomplete, String ind); update the indcomplete flag of the
; specific individual ‘ind’ in the
; table Individual.
return individual types;
}

3.4.1.2 query_individual_direct_types

To query the individual direct types is to get the most-specific atomic concepts of
which an individual is an instance. It is a subset of the previous query. Due to our
database schema, we designed the table InAssertion with a column to describe
whether this concept is the most specific type of a given individual. This query is
similar to query individual types, just this query is based on the table
InAssertion, while query individual types combines table Individual and

InAssertion. The detail algorithm of this query is as follows.
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Query_individual direct types (String ind, Reasoning reasoner,Connection c)

{

specific = “Select InAssertion.specific
from InAssertion
where InAssertion.individualname = ‘ind’”;
if (specific= True){
individual direct types = “select distinct descriptionname
from InAssertion
where indivdivalname = ‘ind’ and mostspecific = ‘T’”;
telse {
individual direct types = reasoner.get individual direct types (ind);
store (individual direct types, Connection ¢, Table InAssertion); store the results of
; individual diret types into
; the database
update (Table InAssertion, String mostspecific, String ind) ; update the mostspecific flag of
; the specific individual ‘ind’ in
; the table InAssertion

}
return individual direct_types;

3.4.1.3 query_retrieve

The retrieve query is to get all individuals from an Abox that are instances of a
specified concept. Here, the concept can be atomic or complex. Our system first
checks the input concept. If it is atomic, we will check the table Description to see
whether the information about the focused concept is complete. If ‘descomplete’
has the value ‘True’, which means all the individuals of this concept are already
stored in the table, we can just execute the query based on the database.
Otherwise, we have to perform the mergable test, then compute the possible
candidates and send them to RACER to perform the final check. After getting the
return results, we will store them into the database and set this description’s
descomplete status flag to be True. If the ‘descomplete’ is False, we first have to

get the pseudo model of this complex description, and then do the mergable test
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and exonerate the non-instances of the focused complex description. After that,

the other steps are similar to those for atomic concepts.

Query_retrieve (String concept, String concept_status, Reasoning reasoner, Connection c)

{

if (concept_status == “atomic”){
descomplete = “Select Description.descomplete
from Description
where Description.description = ‘concept’”;
if (descomplete== True){
retrieved_indivdiuals = “select distinct individualname
from InAssertion
where descriptionname = ‘concept’”’;
yelse {
Vector individual candidates = mergable test (String concept);
Retrieved indivdiunals= reasoner.concept instances(concept, Abox, individual cadidates)
; send the candidates to RACER and get the final results

store (retrieved_individuals, Connection ¢, Table InAssertion); store the results of
; retrieved_indivdiuals into the
; database
update(Table Description, String descomplete, String concept) ;update the descomplete flag
;of the specific description
;‘concept’ in the table Description

telse {

; for the complex concept

;negate the complex concept and get this negation’s pseudo model
String neg_concept = "(not " +concept+ ")";

Vector des_neg_psmodel = reasoner.get cnp psmodel(neg_concept);

Vector individual candidates = mergable test (String concept);

; send the candidates to RACER and get the final results
retrieved_indivdiuals= reasoner.concept _instances(concept, Abox, individual cadidates)

; here we do not store back the retrieved individuals of the complex description into the
;database before in the table InAssertion and table Description we only store the information
;about atomic concepts

}

return retrieved _individuals;

Now, we present the mergable test which is implemented in SQL.

mergable test (String concept)
{
define candidates as ResultSet;
define sqll as
“select distinct individual.individualname from individual
where individual.inpseudomodelid in
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(select individualpseudomodel.inpseudomodelid
from individualpseudomodel,description,descriptionpseudomodel
where description.descriptionname ="' ¢concept ' and
description.negationdespseudomodelid=descriptionpseudomodel.despseudomodelid
and ( (individualpseudomodel.ina=descriptionpseudomodel.desnota and
individualpseudomodel.ina<>'NIL")
or (individualpsendomodel.innota=descriptionpseudomodel.desa and
individualpseudomodel.innota<>"NIL')
or (individualpseudomodel.inexistence=descriptionpseudomodel.desuniversial and
individualpseudomodel.inexistence<>'NIL")
or (individualpseudomodel.inuniversial=descriptionpseudomodel.desexistence and
individualpseudomodel.inuniversial<>'NIL'}))";”

candidates = c.execute(sqll)”

return candidates;

As discussed in the previous section, we also designed the pseudo model schema
for the case that we can get all possible pseudo models of a given concept or
individual. In this case, if all the pseudo models do not contain the existence part
and universal part, which mean it is in propositional logic, then we can trust the
answer and do not need to send the candidates to RACER. If they do have role
related information in the pseudo models, we will send the candidates to RACER

for further reasoning.

mergable_test v2 (String concept)

table1= * select individualpseudomodel.inpseudomodelid, indversion, desversion
from individualpseudomodel,description,descriptionpseudomodel
where description.descriptionname ="' concept ' and
description.negationdespseudomodelid=descriptionpseudomodel.despseudomodelid
and ((individualpseudomodel.ina=descriptionpseudomodel.desnota and
individualpseudomodel.ina<>"NIL")
or (individualpseudomodel.innota=descriptionpseudomodel.desa and
individuaipseudomodel.innota<>'NIL")
or (individualpseudomodel.inexistence=descriptionpseudomodel.desuniversial and
individualpseudomodel.inexistence<>'NIL')
or (individualpseudomodel.inuniversial=descriptionpseudomodel.desexistence and
individualpseudomodel.inuniversial<>'NIL"))";”

int sumiver = get_count (Table individualpseudomodel.indversion, String ind);
int sumdver = get_count (Table descriptionpseudomodel.desversion, String concept);
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int row_number = get row_number (tablel);

if row number = sumiver* sumdiver;
{ retrieved_indivdiual = “select distinct individual.individualname
from individual, tablel
where individual.individualpseudomodelid = tablel.indivdiualpseudomodelid”

}

return retrieved_individuals;

This algorithm is based on the assumption that if all of the pseudo models of an
individual have an interaction with all possible pseudo models of a description,
then this individual is an instance of the given description. If the definition of a

description contains m disjunctions with n disjuncts, then this description has at

most m" pseudo models.

Thus, in the algorithm presented above, the column “sumiver” computes the
number of the indversion, which means the number of the pseudo models of this
focused individual, while sumdver calculates the number of the desversion, which
means the number of the pseudo models of this focused description. Let us
assume that sumiver is m, and sumdver is n. There are m*n possible combinations
of the pseudo models of the individual and pseudo models of the description. If all
these possible combinations clash, which means they all have an interaction, we
can conclude that the subsumption relationship exists. Hence, the individual is an

instance of the given description.
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3.4.2 Role Assertion Queries

The following queries dealing with role assertions are implemented in two ways.
One version is mainly relying on RACER, as long as we do not have complete
information, we have to send the original query to RACER and ask for the results.
The other version is mainly based on SQL to generate the complete information
of the focused query and extract the results based on the newly generated

RoleAssertion table.

3.4.2.1 query_individual_fillers
For the first method, we show the algorithm of query_individual fillers below:

Query_individual fillers (String ind, String role, Reasoning reasoner,Connection c)
{
completel = “Select completel
from RoleAssertion
where individuallname = ‘ind’ and rolename = ‘role’”
if (complete1== True){
individual_fillers = “select distinct individual2name
from RoleAssertion
where indivdiuallname = ‘ind’ and rolename = ‘role’”
telse {
individual _fillers = reasoner.get individual _fillers (ind, role);
store (individual fillers, Connection ¢, Table RoleAssertion); store the results of
;individual fillers into
; the database
update (Table RoleAssertion, String completel, String ind); update the completel flag of the
; specific individual ‘ind’
; and role ‘role’ in the table
: RoleAssertion

}

return individual fillers;

The queries “query_direct predecessors” and “query_individuals_filled roles”
are similar, they just check different status flags to verify whether the information

of the posed query is complete. In detail, we check the status flag ‘complete2’ for
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“query_direct_predecessors” and ‘rolecomplete’ for

“query_individuals_filled roles”.

Now, we consider the second method to query these role assertions, which is
mainly based on SQL. Below, we will illustrate this method for these queries

concerning role assertions.

The procedure of dealing with the complete information is the same as in the first
method. However, if the information about the individual’s fillers is not complete,
we will not send the original query directly to RACER. Instead, we will first get
the descendents of the focused role, and select the tuples whose individual Ilname
is equal to the name of given individual. As we know, the assertions of a
particular role’s descendents are also the assertions of this role. For example, let
role has son be the descendents of has child. Therefore, if (a, b): has son is
known, we can also conclude that (a, b): has_child holds. Therefore, we can store
these tuples into table RoleAssertion in order to finish the first step of propagating
role assertions. Second, we will check whether the focused role is transitive. If it
is transitive, we have to continue to propagate the role assertions. Here, we create
a temporary table Tmp RoleAssertions to generate the partial transitive closure of
a specific role. It is called partial transitive closure because we generate this
closure based on the focused individuall and a specific role. In other words, the
transitive closure of a specific role is complete with respect to both the given

individual and role, but not complete with respect to a role itself. Hence, we call
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it a partial transitive closure. At last, we insert these new generated tuples into

RoleAssertion, and set the completel flag to “True”.

Query individual fillers (String ind, String role, Reasoning reasoner,Connection c)

{

completel = “Select completel

from RoleAssertion
where individual1name = ‘ind’ and rolename = ‘role’”;

if (completel== True){

}

individual fillers = “select distinct individualZname

from RoleAssertion

where indivdiuallname = ‘ind’ and rolename = ‘role”;
telse {
roledecendants=get roledecendants(role);
descendants_assertion = “select * from RoleAssertion

Where rolename = ‘roledecendants’ and individuallname = ‘ind’”;

; store the assertion of descendants of the specific ‘role’ into RoleAssertion table.
store_roleassertion (descendants_assertion, Connection ¢, Table RoleAssertion);
if( is_transitive role ( role)){
define transitive roleassertion as ResultSet;
transitive_roleassertion = “select * from RoleAssertion
where individuallname = ‘ind’ and rolename = ‘role’”;

create_table (Tmp RoleAssertions);
store_roleassertion(transitive roleassertion, Connection, Table RoleAssertion);

propagate transitiveclosure (table Tmp RoleAssertions, Connection c);
; store back the transitive closure into table RoleAssertion.
store (Table Tmp RoleAssetions, Connection ¢, Table RoleAssertion);

individual fillers = “select individual2name from RoleAssertion

}

999,

where individuallname = ‘ind’ and rolename= ‘role’”;

update (Table RoleAssertion, String completel, String ind);

;update the completel flag of the specific individual ‘ind” and role ‘role’
; in the table RoleAssertion

return individual fillers;

It is known that dealing with the transitive closure is not possible in traditional

SQL [17], and hence this is a problem in relational database management systems.

However, in recent DBMS, some features are offered to overcome this problem.

In our system, for propagating the transitive closure, we used the CONNECT BY
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PRIOR and START WITH clauses provided by Oracle [18] in the SELECT

statement to write the recursive query.

propagate_transitiveclosure (table Tmp RoleAssertions, Connection c)

{

“select distinct substr(paths,2,instr(paths,'/",1,2)-2)INDIVIDUALI,

substr(paths, instr(paths,'/', -1,1)+1, length(paths)-instr (paths,/',-1,1))INDIVIDUAL2
from (select sys connect by path (INDIVIDUAL?2,/")paths

from TMP_ROLEASSERTIONS

connect by prior INDIVIDUAL2=INDIVIDUAL1) where instr(paths,'/",1,2)<>0"

3.4.2.2 query_direct_predecessors

To query the direct predecessors is to get all individuals that are predecessors of a
role for a specified individual. The implementation is similar to
query individual fillers except we check the status flag “complete2” instead of
“complete]l” and select the individuallname of a role for a specific individual
“individual2”. For example, let R be a transitive role, and (a, b): R, (b, ¢): R,
(c, d) : R. If there is a query asking for the direct predecessors of d, we can easily
get the answer that {a, b, ¢} are d’s direct predecessors. As we can see from the
example, in order to propagate the transitive closure parts, we considered the
focused individual? in the bottom part of the transitive closure path in Oracle’s

SQL query. Therefore, the SQL code in propagation roleassertion is as follows:

select distinct substr(paths,2,instr(paths,'/',1,2)-2)INDIVIDUAL,

substr(paths, instr(paths,'/', -1,1)+1,length(paths)-instr (paths,"/',-1,1)INDIVIDUAL2
from (select sys connect by path (INDIVIDUALTL,/")paths

from TMP_ROLEASSERTIONS

connect by prior INDIVIDUAL2=INDIVIDUAL1) where instr(paths,"/',1,2)<>0"
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3.4.2.3 query_related_individuals

To query the related individuals is to get all pairs of individuals that are related

via the specific relation. In this query, we will check the ‘rolecomplete’ flag first.

If it is True, we select all the pairs of individual1name and individual2name of the

given role. Otherwise, we will propagate the RoleAssertion table and execute a

query based on this new table.

Query _related individuals (String role, Reasoning reasoner,Connection c)

{

rolecomplete = “Select rolecomplete

from RoleAssertion
where rolename = ‘role’”’;

if (rolecomplete== True){

}

related _individuals = “select distinct individuallname, individual2name
from RoleAssertion
where rolename = ‘role’”’;
}else {
roledecendants=get_roledecendants(role);
descendants_assertion = “select * from RoleAssertion
Where rolename = ‘roledecendants’”;

; store the assertion of descendants of the specific ‘role’ into RoleAssertion table.
store_roleassertion (descendants_assertion, Connection ¢, Table RoleAssertion);
if( 1s_transitive role ( role)){
define transitive roleassertion as ResultSet;
transitive _roleassertion = “select * from RoleAssertion

where rolename = ‘role’”;
create table (Tmp RoleAssertions);
store_roleassertion(transitive roleassertion, Connection, Table RoleAssertion);

propagate_transitiveclosure (table Tmp RoleAssertions, Connection c);
; store back the transitive closure into table RoleAssertion.
store (Table Tmp_RoleAssetions, Connection ¢, Table RoleAssertion);

related_individuals = “select individual Iname, individual2name from RoleAssertion

}

339,

where rolename= ‘role’”’;
update (Table RoleAssertion, String rolecomplete, String role);
;update the rolecomplete flag of the specific role ‘role’
; in the table RoleAssertion

return related individuals;
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4, Huge Aboxes

In order to test the performance of our LAS system, we have used the OWL
benchmark [19]—university ontology—as an experiment for the evaluation of

LAS.

4.1 Introduction to OWL benchmark

One of the test data we used is the Lehigh University Benchmark (LUBM) [42].
It consists of a university domain ontology, with a sufficient number of asserted
role relationships. The ontology hierarchy is displayed as a tree, as shown in a

popular ontology editor—Protégé.
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The characteristics of the university benchmark are that one can generate a
customizable size of data based on the same ontology. The university ontology is
designed as realistic as possible, which reflects universities, departments, and
activities that are related to this domain. It is based on the language ALC . As
shown on Figure 4.1, concepts defined in the ontology are represented as a tree.
However, it is not the case in the real world. The ontology can be actually

considered as a directed acyclic graph, instead of a tree.

4.2 Test result

The university ontology has 43 concepts, and 32 roles. The Data Generator
(UBA), generates arbitrary OWL data over the Univ-Bench of university. As in
our test, we used the UBA to generate 10 individual universities, and then import
the existing data to form a test data set as 1 university, 2 universities...10
universities. For each university, it usually contains around 1500 individuals,
1700 concept assertions, and 4000 role assertions. Also, each university consists
of only one department. Therefore, with up to 10 universities we can get around
150000 individuals and 40000 role assertions. The experiment environment was
as follows:

Microsoft Windows 2000 Operating System,;

2.40GHz Pentium 4 CPU;

1 GHz of RAM; 80 GB of Hard Disk;
Oracle Enterprise 91 9.2.0.1; JDBC/ODBC
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Numbers of | Number of Concept Role LAS

Universities | instances assertions assertions LoadTime
(CPU second)

1 1554 1656 4114 72.1

2 2920 3171 7935 179.6

3 4079 4498 11128 276.2

4 5184 5773 14157 388.4

5 6325 7126 17243 502.0

6 7447 8487 20573 701.7

7 8620 9881 23976 931.9

8 9589 11083 26738 1057.9

9 12950 15279 36793 1612.9

10 14089 16709 49222 1689.9

Figure 4.3 LAS’s Loading Time and ontology scalability

As shown in Figure 4.3, one can see that it takes more time to load a file for the
first time than just realizing the Abox in RACER. The reason for this is that
besides loading the file into RACER, LAS also has to store the basic information
about both the Tbox and Abox. RACER has to classify the Tbox, check the
consistency of the Abox, and compute the most-specific concepts for each
individual in the Abox and the pseudo models for all the atomic concepts in the
Tbox and all the individuals in the Abox. In addition, LAS has to parse the data

returned from RACER and store it in the database.

However, although it takes a bit more time for LAS to load the file for the first
time, as long as the file is loaded and stored in the database, when queries based
on an existed database are posted, LAS will just open the database connection and

answer queries instantly.
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Based on the university ontology, we designed a set of test queries. We divided
the test into two groups, one is concerned with concept assertions: “query-
individual-types”, “query-direct-individual-types” and “retrieve-individuals”. The
other is concermed with role assertions: ‘“query-individual-fillers”, “query-
individual-direct-processors” and “query-related-individuals”. We use in the
benchmark one university (1656 concept assertions), five universities (11083
concept assertions) and ten universities (16709 concept assertions) respectively.
The test was performed according to different status of the knowledge base, while

the result was compared with RACER.

Query Number of KB Answer RACER | LAS
universities status size
Query- 1 New 5 17.64 18.09
individual- Saved 0.001 0.012
types 5 New 5 4879 643.7
Saved 0.001 0.11
10 New 5 898.1 922.5
Saved 0.011 0.671
Query- 1 New 1 18.6 221
Individual- Saved 0.001 0.083
direct- 5 New I 4923 | 502.7
types Saved 0.001 0.028
10 New 1 959.7 1104.1
Saved 0.011 023
Retrieve- 1 New 28 19.3 17.4
indivdiuvals Saved 0.976 1.983
5 New 214 526.2 4333
Saved 0.05 0.071
10 New 298 843.6 726.6
Saved 0.15 0.12

Figure 4.4 Concept Assertion Query time and answer size

As shown in Figure 4.4, one can see that, in general, for both RACER and LAS,
queries on a saved KB can be answered much faster than those on a new KB. For
the first query, RACER has to check the consistency of the Tbox and Abox,

which will take some time. For the saved KB, before RACER is terminated, the
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computed result is already stored in the database. Therefore, LAS just need to do

a simply lookup to extract the result.

Query Number of KB Answer { RACER | LAS- LAS-
universities status size Lazy enthusiastic
Query- 1 New 1 18.17 19.0 1.76
individual- Saved 0.001 0.06 0.07
fillers 5 New 1 400.4 4965 | 11.71
Save 0.018 0.04 0.441
10 New 1 946.5 13140 | 21.20
Saved 0.012 0.501 | 0.55]
Query- 1 New 1 15.43 1734 | 16
Individual- Saved 0015 016 | 01
direct- 5 New 1 4954 654.4 1.17
processors Saved 0.024 0531 | 0.401
10 New 1 6995 8872 | 14.56
Saved 0.012 0.541 | 0351
Query- 1 New 1878 18.72 24.93 1.72
related- Saved 0.002 0.191 | 0.171
individuals [ 5 New 2089 4663 5132 | 5.398
Saved 0.035 0172 | 0.254
10 New 2929 687.2 10313 | 11.43
Saved 0.025 0201 | 0.119

Figure 4.5 role assertions query time and answer size

Another aspect we can notice from Figure 4.5 is that for “query-individual-
types’and ‘“‘query-individual-direct-types”, LAS is a bit slower than RACER,
while for the retrieve-individuals, our system is faster than RACER. The reason is
that for the first two queries, we need to query RACER directly to get the result,
and then store it into the database and update the corresponding completeness
status flag. Thus, it would probably take more time than RACER alone. As for the
retrieve-individuals, we employ the pseudo model techniques, which return the
possible candidates for RACER to do the final check. As one can imagine, for a
huge Abox, there exists a great amount of individuals, but in most of the case,
only a small part of those individuals are the instances of a specific concept.

Therefore, LAS filters away the non-candidates, which make up the majority of
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individuals in the Abox, and reduces the workload of RACER’s reasoning. As a
result, we can see from the table that retrieve-individuals takes less time for LAS

than for RACER.

Besides the test about concept assertions, we also constructed some test queries to
evaluate the performance with respect to role assertions. As introduced in Chapter

3, our system has implemented two modes: lazy mode and eager mode.

As we can see from Figure 4.5, the LAS-lazy mode is slower than RACER. The
reason for that is similar to that of “query-individual-types” and “query-
individual-direct-types”. The LAS-eager mode takes much less time than RACER
because instead of relying on RACER, LAS will propagate the role assertions
table by itself, and then execute the queries based on the newly generated role

assertion table.
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5. Implementation

In this chapter, we will describe the implementation details of LAS. As discussed
in chapter 3, LAS consists of the interface to RACER, the interface to the
database, and the interface to users (Figure 5.1). The following subsections are
divided according to our system’s API modules. For the interface to RACER, we
concentrate on describing how to parse the RDF/OWL/RACER file. For the
interface to the database, we will illustrate the connection with Oracle, MySql and
DB2, and an algorithm to compute the transitive closure from different types of
databases respectively. We will not discuss the user interface in this thesis. Please

refer to the other thesis [41] for details.

Controlling
(Initializing program)

4

: Next Step Next Step ;
Invoking Racer Connect Querying Interface

Server 7 Database

Figure 5.1 System Modules

5.1 Interface to RACER
In order to identify the definition of objects within the domain of a specific
ontology, we need to parse the OWL file. Hence, we have two solutions to parse

the OWL file.
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One is to mainly rely on RACER, which means to use RACER to load the files
and parse them automatically. The parsing task is transparent to our system.
RACER uses the Wilbur [21] parser to parse the XML-based files, such as XML,
RDF, RDFS, DAML, OWL. The other approach is to use the existent JAVA

XML technology, such as JAVA SAXParser [22].

As considering the advantages of the first approach—simple, explicit, direct and
unrepeated, we decided to rely on RACER and leave it to parse the file.

Therefore, what LAS has to do is to parse the results RACER sends back to LAS.

This interface is responsible for communicating with RACER. It consists of
JRacer—a java API—to connect to RACER. The main idea of JRacer is to open a
socket stream, submit declarations and queries which are represented using
strings, and to parse the answer string provided by RACER. Because JRacer
provides a Java layer for accessing the services of RACER by calling methods,

our system needs to parse RACER’s answers.

The implementation of JRacer provides all the RACER commands as different
functions. Therefore, in general, LAS parses the RACER result, and stores it in a
Java Vector Data Type. Appendix B shows the UML diagram of the interface

with RACER, and the UML of LAS’s parsing part—reasoning class.
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We use two ways to implement parsing RACER’s result. One uses the java
StringTokenizer class to divide RACER’s result into several tokens, and then
according to different content of the result, group them into related pairs. The
other way treats the RACER result as regular-expression, and then uses the JAVA
Pattern and Matcher class to split them into related pairs. The details of the

implementation of parsing the RACER result are described in Appendix B.

5.2 Interface with the database

LAS currently uses Oracle 9i, connected through JDBC. The reason we chose
Oracle 9i as a developer database is that besides its powerful DBMS, it partially
supports the computation of transitive closures. In our system, after getting the
taxonomy from RACER, which is represented as parents-children pairs, we have
to propagate all descendants of a concept or role in the hierarchy graph. Although
the computation of the transitive closure of a binary relation is a common
requirement for many applications, the traditional SQL does not support it. [23]

enumerates a number of possibilities to overcome this problem.

1. SQL 99
The last ISO standard for SQL, namely SQL 99, provides recursive queries by
defining the recursive procedure as a view, then using the view name in an

associated query expression [24].

WITH RECURSIVE
Q1 AS SELECT...FROM...WHERE. ..,
Q2 AS SELECT...FROM...WHERE...
SELECT...FROM Q1, Q2 WHERE...
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2. Proprietary SQL Extensions

IBM’s DB2 provides the WITH clause as a proprietary extension to SQL to allow
recursive queries. In addition, Oracle also provides some similar facility to
compute the transitive closure. Using the CONNECT BY PRIOR and START
WITH clauses in the SELECT statement, it can partial support path enumeration
[25]. Let us consider a scenario about the transitive closure of a manger-
employee relationship. There must exist some employees that do not have any
manager, who are at the top level of the hierarchy tree. The transitive closure of a
given parent-child relationship is the set of all pairs of employees such that the
first employee is a direct or indirect manager of a second employee, or, in
graphical interpretation, a set of all pairs of vertices (v,w) for which there exists a
path in the graph from v to w. In Oracle 9i or later version, there exist convenient

tools for hierarchical queries: CONNECT BY

PRIOR operator and SYS CONNECT BY PATH function.
SELECT employee id, last name, manager id

FROM employees

CONNECT BY PRIOR employee id = manager id;

3. Nested Views
Another solution to deal with the transitive closure in relational database systems
is to use nested views. This approach does not rely on any proprietary extensions.

However, it has its limitation too, which is the depth of the graphs should be
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known in advance. The following example shows the nested view of ancestors-

descendant hierarchy computed from parents-children relationship.

CREAT VIEW partofprodtwo (ancestor, descendant) AS
SELECT pl.parentid, p2.childid

FROM partof pl, partof p2

WHERE p1.childid = p2.parentid ;

CREAT VIEW partofprodthree (ancestor, descendant) AS
SELECT pl.parentid, p2.childid

FROM partof pl, partof p2, partof p3

WHERE pl .childid = p2.parentid AND p2.childid = p3.parentid,;

However, although it is simple, this approach is quite limited. It has to know the
depth of the graph and it is quite slow for a large amount of entries. Therefore, it
is not a very good solution for our system, because LAS has to deal with a huge

Aboxes.

After having compared the features of the different approaches, we decided that
Oracle’s proprietary extension query is more realistic and suitable for our system.
However, for using the CONNECT BY PRIOR in Oracle, we have to know at
least the top or the bottom of the hierarchy. For example, in LAS, when
computing the descendants of the known taxonomy (parents-children pairs) from
RACER, we first updates the ‘“TOP’ to become NULL, and then apply the

CONNECT BY PRIOR clause.

Statement s = ¢.createStatement();

s.execute("update tmp_desparent set desparent = NULL where desparent = "TOP™),

String sql =" ";

sql = "insert into tmp desancestors(tmp desancestors,tmp_desendants) ";

sql = sql + "select substr(paths,2,instr(paths,/',1,2)-2)desparent, ";

sql = sql + "substr(paths, instr(paths,'/', -1,1)+1,length(paths)-instr (paths,'/,-1,1))deschildren ";
sql = sql + "from (select sys_connect by path (deschildren,'/")paths from tmp_desparent ";

sql = sql + "connect by prior deschildren=desparent) where instr(paths,/',1,2)<>0" ;
s.execute(sql);

s.close();
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6. Related Work

In this chapter, we will introduce and evaluate some recent work on ontology
management systems. The issue is considered on how to choose an appropriate
KBS for a large OWL application. Currently, the prominent existing systems are
Sesame system [26], OWLJessKB [28], DLDB-OWL [32], IBM’s SnoBase [34],
HP’s Jena [35], KAON [36] and Instance Store [46]. We will briefly describe
each system below.

6.1 Sesame System

The Sesame [27] system is a web-based architecture that provides persistent
storage and efficient and expressive querying of large amounts of data in the
format of RDF and RDF Schema as well as online querying. The architecture of

the Sesame system is as follows:

client 1 client2 client 3

[ HTTP Protocol HandlerJ [ SOAP Protocol Handler]

\ /

i
1
Request Router H
1
i

7 | .

Edmin Module] [ Query ModuIeJ [Export Module]

R T

[ Repository Abstraction Layer I

Sesame

Repository

Figure 6.1 Architecture of Sesame System [26]
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In order to store RDF data persistently, the Sesame system needs a scalable
repository. As we can see from Figure 6.1, Sesame remains DBMS independent,
which enables the Sesame system to be implemented on top of a wide variety of
repositories without changing any other core component inside the system. It has
three main functional modules: (1) the RQL (RDF Query Language) Module,
which performs the RQL queries posed by the users; (2) the RDF Administration
Module, which controls how to insert as well as delete RDF data and RDF
Schema information from a repository; (3) RDF Export Module, which allows for
extraction of the complete schema and/or data from a model in RDF format. The
Sesame system supports RDF/RDFS inference, but it is not complete reasoner for

OWL Lite.

6.2 OWLJesskB

OWLJessKB is a reasoner for OWL [28], which is a successor to DAMLJessKB
[29]. It uses the Java Expert System Shell (Jess) [30]. DAMLIJessKB maps the
assertions, which are represented by RDF triples, into facts in a production system
and then applies rules implementing the relevant Semantic Web languages.
OWLJessKB loads RDF or OWL files, and uses parts of the Jena toolkit to parse
RDF documents. Once a document is parsed, OWLIJessKB asserts the triples into
a production system along with the rules derived from the OWL semantics. As a
result, new facts are populated and entailed from the knowledge base [31].
However, OWLJessKB deals with a language close to OWL Lite. Figure 6.2

shows the process of DAMLJessKB.
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Figure 6.2 The process of DAMLJessKB [30]

6.3 DLDB-OWL

Implemented by Lehigh University, DLDB is a knowledge base system that
extends a relational database management system with additional reasoning
capabilities for OWL ([32]. It uses the description logic reasoner FACT to
precompute the subsumption hierarchy and stores it into a common RDBMS (MS

Access).

It uses a ‘ONTOLOGY-INDEX’ table to manage the information about the
loaded ontologies in the database [33]. After loading the file, OWL parsers parse
the original source file, and translates it into a SHIQ equivalent knowledge base
and generates a temporary XML file. The description logic reasoner FACT reads
the file and checks the consistency of the classes, computes the taxonomy of the
ontology and reports all the implicit relationships by writing back to that
temporary XML file. After that, DLDB creates tables and views and stores the

ontology hierarchy into the database. Therefore, as all the implicit information
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about the ontology becomes explicit due to the reasoning of FACT, DLDB can be

used to answer queries now.

DLDB is designed to suit the needs for personal or small business users who wish
to take advantage of semantic web technology. Its scope of language is ALC. Due
to its full dependence on description logic reasoner to compute the taxonomy, it
can answer a large range of queries, but it is not very self supported, it has to

highly rely on DL reasoner. It is also incomplete.

6.4 IBM’s SNOBASE

IBM’s ontology Management System, namely SNOBASE [34] for Semantic
Network Ontology Base, is a system for loading ontologies from files or via the
Internet and for locally creating, modifying, querying and storing ontologies. It
consists of an ontology inference engine, a persistent data stores, an ontology

directory and an ontology source code connector.

It does not rely on the current description logic reasoner, such as RACER or
FACT, instead, it has its own inference reasoner. Internally, the system uses an
inference engine, an ontology models and the inference engine deduces the

answers and returns results sets similar to JDBC result sets.
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6.5 HP’s Jena

Jena [35] is a Java framework for building semantic web applications. It is a
programming toolkit, which uses the java programming language and provides a
programmatic environment for RDF, RDFS and OWL, including a rule-based

inference engine.

It consists of a RDF APL a module for reading and writing RDF in
RDF/XML, 'N3 and N-Triples, an OWL API, an in-memory persistent data
storage, and a user query interface—RDQL. The main component, the inference
subsystem, is designed to support RDFS and OWL, which allows additional
information to be derived from original facts. The architecture of the inference

machinery is illustrated as below:

| create

bind bindSchema rotunian

Figure 6.3 the structure of inference subsystem in Jena [35]

As described in Figure 6.3, the application accesses the inference machinery
through the ModelFactory. With the help of the reasoner in the inference

subsystem, the original facts with the additional statements, which were derived

! Language notation 3, which is basically equvalent to RDF in its XML syntax. It contains subject, verb and
object. [42]
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from the data using rules or other inference mechanisms implemented by the

reasoner, are returned by the format of a newly created model.

6.6 KAON

KAON is an open-source ontology management infrastructure targeted for
business applications [36]. It includes a comprehensive tool for building and
managing onotologies and provides a framework for building ontology-based
applications. KAON consists of a number of different modules providing different
functionalities such as creation, storage, retrieval, maintenance and application of

ontologies [37]. The architecture is described in Figure 6.4.
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Figure 6.4 KAON Architecture Overview [36]

After loading a file, the KAON API accesses RDF-based data sources via the
RDF API, for which two reference implementations exist: one is a simple main
memory implementation including RDF parser and serializer; the other is a RDF
Server which implements the RDF API remotely and allows RDF ontology
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models to be stored in relational databases and hence enables transactional

ontology modification.

KAON is based on RDF(S) with proprietary extensions for algebraic property
characteristics, cardinality, modularization, meta-modeling, explicit
representation of lexical information. However, it does not support any reasoning

or Abox queries.

6.7 Instance Store

The Instance Store is a Java application and implements a form of simple A-Box
reasoning by using a database to store asserted descriptions of large numbers of
individuals. It is applied in the field of Gene description and Web-services

discovery now.

The instance store is composed of a database, a reasoner and an ontology, and it

has two operations: assert (individual, description) and retrieve (description).

Four strategies that cache the information are implemented: The basic strategy is
that only the minimal information is stored in the database and the subsumption
and hierarchy information is retrieved from a DL reasoner; the second strategy
optimizes the basic one just through caching the classification hierarchy in the
database; the third strategy is an alternative optimization of the second one

through caching the transitive closure into primitives tables; the fourth and most
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optimized approach is by caching the classification of each asserted and retrieved

description.

Although efficient, it is severely restricted, because it can only deal with role-free

Aboxes (an Abox without any role assertion between individuals).
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7. Conclusion

After illustrating the techniques we used to develop LAS, and the architecture and
detail implementation of LAS (Large Abox Store), we will provide a summary of

our work in this chapter.

7.1 Conclusion

LAS is a description logics application which uses a combination of Abox
reasoning and database queries to perform efficient Aboxes reasoning. By
extending the DL reasoner RACER with a relational database, LAS stores the

taxonomy and the Abox assertions of the given knowledge base in its database.

LAS can deal with the language ALCH . . It does not support number restrictions

or functional roles.

In conclusion, the most interesting features of LAS are as follows:

1. Completeness: The description logic it deals with is a logic-- ALCH ., which

extends ALC by adding role hierarchies and transitively closed roles. Moreover, it
provides reasoning services on complete role-embedded Aboxes. LAS, as a
second layer of RACER, is a sound and complete because RACER is a sound and
complete description logics reasoning system.

2. Speed: As a filter for RACER, LAS largely reduced the reasoning time for

queries, especially for retrieval queries. By employing the pseudo model mergable
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test, which is implemented via SQL, LAS reduce the number of candidates for
Abox queries by filtering out individuals that are proven to be not relevant for a
particular query. Because it forwards to RACER only the reduced set of
individuals relevant to answer this query, in the presence of thousands of
individuals, the time savings can be significant.

3. Reuse: As we know that description logic reasoners do reasoning all in the
main memory, if they are terminated, all the information they computed before
will be lost. For the long-term usage, it is critical to store the information for
future reuse. By combining them with the databases, all the information about the
taxonomy and Abox assertions are stored into the database. Even though later on
RACER will be shut down, the complete and computed information is still kept in
the database.

4. Flexibility: LAS is not constrained by the Unique Name Assumption (UNA),
it can deal with the situations where the same individual can have different names.
5. Two mode implementation: LAS system is implemented in two modes: Lazy
and Eager. For the lazy mode, LAS relies completely on RACER, while for the
eager mode it relies on SQL queries to generate the complete information for the
posed queries. For the lazy mode, the system works on demand, although it takes
slightly more time because it has to communicate with RACER, the information it
obtains is complete. For the eager mode, it fulfills the task in minimal time. It is

very beneficial for the future use.
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7.2 Future Work

The future work of our system includes to explore more optimizations in order to
support more complex queries. It can be summarized as follows:

1. To support nRQL (new RACER Query Language): Although nowadays, LAS
can query most of the queries RACER provided, it needs to support more
complicated queries. One solution to this problem can rely on combing nRQL
from RACER and SQL from databases.

2. Adapt to more databases: So far we only used the Oracle database for
developing and testing our system. We plan to update our system such that it can
be used with more relational databases.

3. Multiple operating systems: So far, the operating system we used is Windows,
it is very easy to extend it so that it can be compliable with Unix and Mac.

4. Extend the language scope: We also consider to extend our language scope

from ALCHR" to ALCFNHR" which includes the functional roles and number

restriction.
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Appendix A

This appendix lists the specification of the RACER query commands used in the
thesis. For the detail description about the commands, please refer to RACER
Manual.

(1) individual-types
Semantics: Gets all atomic concepts of which the individual is an instance.
Syntax: (individual-type /N &optinal (ABN (abox-name * current-abox)))
Arguments: /N -individual name
ABN —Abox name
Values: List of name sets

(2) individual-direct-types
Semantics: Gets the most-specific atomic concepts of which an individual is

an instance.

Syntax: (individual-direct-type IN

&optinal (ABN (abox-name * current-abox)))
Arguments: /N -individual name
ABN —Abox name
Values: List of name sets

(3) all-roles
Semantics: Returns all roles and features from the specified Tbox
Syntax: (all-roles &optinal (tbox * current-tbox))
Arguments: thox -Tbox object
Values: List of name sets

(4) all-transitive-roles
Semantics: Returns all transitive roles the specified Tbox
Syntax: (all-transitive-roles &optinal (tbox * current-tbox))
Arguments: thox -Tbox object
Values: List of name sets

(5) all-symmetry-roles
Semantics: Returns all roles that are symmetry from the specified Tbox
Syntax: (all-symmetry-roles &optinal (tbox * current-tbox))
Arguments: thox -Tbox object
Values: List of name sets

(6) individual-fillers

Semantics: Gets all individuals that are fillers of a role for a specified
individual.
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Syntax: (individual-fillers /N R &optinal (4BN (abox-name* current-
abox)))
Arguments: IN -individual name of the predecessor
R -roleterm
ABN - Abox name
Values: List of name sets

(7) retrieve-direct-predecessors
Semantics: Gets all individuals that are predecessors of a role for a specified
individual.
Syntax: (retrieve-direct-predecessors R IN abox )
Arguments: /N -individual name of the role filler

R -role term
abox - Abox name

Values: List of individual names

(8) retrieve-related-indivdiuals
Semantics: Gets pairs of individuals that are related via the specified relation.
Syntax: (retrieve-related-indivdiuals R abox )
Arguments: R - role term
abox - Abox name
Values: List of paris of individual names

(9) retrieve-individual-pmodel
Semantics: Gets pseudo models of the specific individual from a specific
Abox.
Syntax: (retrieve-individual-pmodel /N &optinal (ABN (abox-name*
current-abox)))
Arguments: IN -individual name of the predecessor
ABN - Abox name
Values: List of pseudo model sets

(10) retrieve-description-pmodel
Semantics: Gets pseudo models of the specific description from a specific
Tbox.
Syntax: (retrieve-description-pmodel des &optinal (TBN (tbox-name*
current-tbox)))
Arguments: /N -individual name of the predecessor
TBN - Abox name
Values: List of pseudo model sets
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Appendix B

In this appendix, we will describe the detail of implementation of LAS’s interface

with RACER. First, the UML diagram of interface with RACER and UML of LAS’s

parsing part—*‘reasoning” class will be shown below:

[ 1
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IOException
InputStrean
OutputStream
PrintStream
Serializable

' javanet

MaiformedURL Exception
Socket
L

pei— —— ——

=

java.util.regex

Meicher
Pattern .

: Asserﬁon
AftributeAssertion
ConceptAssertion

RacerClient

RacerConstarts
RacerException
RacerllegalConstruction
RacerSocketClient
RacerTermParser
RoleAssertion
reasoning

e .
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javaJang

CharSequence
“Exception =
teger
Math
NumberFormetException
Object =
String

StringBuffer

System .

— T =1 Enymeration .

1

javaatil.

Date

StringTokenizer
Vector
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" com.borlend.samples.texteditor

reasoning

@ all_assertions : Vector
& all_concept_ancestors : Vecior
& all_concept_children : Vector

& all_concept_decendants : Vector
@ all_concept_info : Vector

@ all_concept_parents : Vector

@ éall_individual_vect : Vector

& all_role_assertions : Vector

& all_toles : Vector

@ all_roles_chiidren : Vector

« concept_subsumes : String

@ defauliNS : String

4 ip_: String

& owfFile : String

& parent_children : Yector

& port
& psmode : Vector

& racerCommand : String
& racerfile : String

& racerResut : String

& roles_synonym : Vector
& synonym : Vector

& lransitive_roles : Vector

|
i
|
|
|

h concept_instances( : Yector
 dig_read_file() : void

3 get_abox() : String

® get_all_assertions() : Vector
% get_sll_assertions_racerfie() : Yector |
% get_all_atomic_concept() : Vector |
- get_all_individuals() : Vector
e get_all_individuais() : Vector

| % get_all_role_assertions() : Vector
| % get_ali_roles() : Vector

i | % get_cnp_psmodieQ): Vector

I'| * get_concept_subsumes() : String

% get i - ectar

| - get_concepts_parents() : Vector

L 3 get_direct_predecessors() : Vector
% get_ind_psmodie() : Vector

- get_individual_direct_type() : Vector
& get_individual_filed_roles() : Vector
% get_individual_tilers() : Vector

% get_individual_type() : Vector

| % get_psmodie) : Vector

1| % get_retated_individuals() : Vector
& get_resuttStr() : String

% get_roles_children() : Vector

¥ get_roles_synonyms() : Vector

% get_taxonomy() | Vector

% get_thox() : String

% get_transtive_toles() : Vector

¥ indivdival_instance() : String

¥ (oad_owl_tile) : void

¥ tmain() ; void

% parse_individuals() : void

S read_file() : void

2 reasoning() : void

A\ 3 retrieve _direct_predecessors() : Vector

Figure B.2 UML diagram of reasoning class
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Before describing the details, we first analyze the characteristic of the RACER
result. For example, in order to get all the role assertions from RACER, part of the
result is as follows:
(ALL-ROLE-ASSERTIONS) -->
(((Ihttp://a.com/ontology#Toodles|http://a.com/ontology#Tom|)
|http://a.com/ontology#In_same series|)
((jhttp://a.com/ontology#Toodes|http://a.com/ontology#Zoot_Cat|)
Ihttp://a.com/ontology#First Appearance|)
((|nttp://a.com/ontology#Toodles||http://a.com/ontology#Tom|)
|http://a.com/ontology#In_same cartoon_series|))
Observing the RACER result of “all-role-assertion”, we can see that the role
assertion is a list comprising three elements, the format is: ((individuall
individual2) role). As a result, we transfer the RACER result to tokens. One token
stands for one complete term—individual, role, concept. After we add all these
tokens into a vector, we will organize them according to different content of the

RACER results. The following shows how to transfer racerResult into tokens.

racerResult=(racerResult.replace('(',' "));
racerResult=(racerResult.replace(’y,'"));

racerResult=(racerResult.replaceAll(" ",","));
racerResult=(racerResult.replaceAll(" ",","));
racerResult=(racerResult.replace All(" ",","));
racerResult=(racerResult.replaceAll{" ",","));

client.closeConnection();
StringTokenizer tokens = new StringTokenizer(racerResult, ",");

Another way to parse the RACER result is using the JAVA Pattern and Matcher
class [22]. We treat the result string as a regular expression, and then build
different patterns and a parser matching the corresponding expression. For

example, to get the taxonomy from RACER, the racerResuit is shown as follows:

(TAXONOMY) -->
(TOP NIL (Jhttp://a.com/ontology#Animated cartoon|
(|http://a.com/ontology#Animation_star| |http://a.com/ontology#Cartoon_star()
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|http://a.com/ontology#Featuref|http://a.com/ontology#Human)|
|http://a.com/ontology#Place] |http://a.com/ontology#Sayings|))

The syntax of taxonomy result is defined as follows:

<entry>: 1= (<node><parents> <children>)
<node> : :=<name>|<synonym_name>
<synonym_name> : :=(<name>+)
<parents> : :=(<node>+)|NIL

Therefore, for the regular expression, <node>, <parent> and <children> can be

construced as :

Taxonomy: \W([\w]:. \W\=\W\=/#H)NsWENOON W] WA THNW WS WD) Ww 2 AN THY)
where:

<node>: ([\w]:.\-\-/#]+)

<parents>: ((WOO)WW|: W\~\-/#\\s]+)

<children>: ((WOW)\\W|:. \\-/#\\s]+) where \\w represents a word character, \\s stands for
whilespace character.

According to the definition of <node>, <parents> and <children>, we match our

RACER Result with the pattern, and parse it into a parent-children vector.
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