Squash Ball Simulation In OpenGL

RUI BI

A Thesis
n
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

September 2005

© Rui Bi, 2005

Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-10281-0
Our file Notre référence
ISBN: 0-494-10281-0
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Squash Ball Simulation In OpenGL

Rui Bi

In this thesis, we show how to construct a 3D model of a squash ball, analyze
dynamics and impact force, and simulate the deformation of the ball in the real
world. The goal of this project is to achieve a realistic behavior of a squash
ball using physical calculations. Some algorithms, simulation results, user-

interface design and future work are presented in this report.

Acknowledgements

This work would not have been possible without the guidance and
encouragement of my supervisor, Prof. Peter Grogono. Thank you Peter for
helping to set up the project in the first place, providing resources and offering

direction throughout the course of this work.

Also, I would like to express my gratitude to all the people who have provided

enthusiastic support for this project.

1.

2.

3.

Table of Contents

INTRODUCTION.....coniiiiriniiisinsensensssessecsssssesssssessassssesssssasossssasssssossancs 1
1.1 MOTIVATION ...ttt st 1
1.2 THESIS OUTLINE ..eiiieiiieeieniie et sttt eae e e 1

BACKGROUND ...uuoiivieiinnerncsnnsseesesessessasssessssssossessssssasssssssssasssssssassesss 3
2.1 RELATED WORK....oooviriiiiiiiiiiiiiiiiicie ittt 3

2.1.1 Bouncing Ball SImulationscccccevveerveveeneeennenrieeeesee e 3

2.1.2 Deformable Models........cccoooieriinininiieeeiee e 6

2.1.3 Racquetball BOUNCEcoeeovveiiiiieniienieeeecceieeee e 7
2.2 SQUASH OVERVIEW ..ovviiiiiiiiiiiieiieieeeeeeeeetareeeereeeseeeeeeeeseerereeeeeeseresessesens 8
23 TECHNICAL BACKGROUND........uciviiiiiiiiiiiieiicieete e 9

2.3.1 3D Graphics CONCEPLS...cvervverreerieriieierieiente e saeeanens 9

23.2 Object-Oriented Languagec..ccveveeeneniercieencecieneeienene 12

2.3.3 Physical Environmentcccocoveiieiieecieniiee e 12

DESIGN cuoaeiiriiieniincsensrsssnsseissssssessesssesssessssssissssssesssssssesssssssessessssoses 15
3.1 3D MODEL ..ottt ettt 15

3.1.1 Ball Framecccooviiiiioiiiiecieeeee e 16

3.1.2 NOIMAl VECIOTS ..oieiiiiiiieiieiee ettt ettt e e 18

3.13 SPring Meshcoviiiiiiiiieeeeee e 19

3.2 DYNAMICS Lottt s s 21

3.2.1 FOTCES it 21

3.2.2 Newton’s Laws of MOtioncceveeviiiriceeerreeeseiieecee e 27

33 PRESSURE . ettt ettt ettt re e e e e e e e s aeee vt e et b o seresessnas 28

3.3.1 VOIUME ..ot e 29
332 Pressure Calculation.........cocovvecieiienieonieeceneeeee e 31
3.4 ONE POINT SIMULATION ...cvtiiiiiiniitiieetieeite et e et 33
4. IMPLEMENTATION...ccooninrinisriossosonssossrsssosssssssssssssssssssesssssssasssossons 35
4.1 CLASS DEFINITIONSoeitiiiiieiiieiieniieeteeeeie et sttt e st e e ssee e 36
42 POSITION BALL AND RACQUET .cooooiiiiiiiiiiieeeeeee e 37
43 GLUI CONTROLS .ceiiitiitieeiieeete ettt ettt st e 38
4.3.1 Side WiIndOW......covveiiriiiiiiirie et 39
4.3.2 Bottom Window.........ccooeiiiiiciieiieceeceeee e 43
433 Window Managementcc.coceeviermineicineeniencesee e 47
4.4 PROBLEMS AND SOLUTIONSoeiiiiiiiiieteeiiieaseteesiteeseeeesseeseseee e 49
4.4.1 Boundaries Checkooooiiiiiiiieiieccceeeeee e 49
4.4.2 Conflicts of Controls.......c.coevvievveeeiieiiieeiece e 51
443 Rendering Racquetoocvveviiiiiiiciicieciieeeeeeee e 51
4.5 SAMPLE CODE ...ttt ettt ettt e s 52
5. RESULTS.....cceuvenee. . csessessesesasessessissesasssssssensessssnsersssssess 55
5.1 SIMULATION ONE - BALL /RACQUET AND BALL/WALL IMPACT 55
5.1.1 SCIEeN SROLS ...oveviiiieiiieiiite ettt e e aeaens 56
5.1.2 Physical Environment Controls............cocoeveeviiiieneiniiciinnen, 61
5.2 SIMULATION TWO - BALL/FLOOR IMPACTccooviiiiiiiiiieicrieeeen 65
5.2.1 Screen SHOtS....oveevieeeiiie e 66

vi

522 Drop Height.. ..o 68

6. CONCLUSION . iierretcccersnecnressecesserssesesssesesersessssosssssssersossssnssssessansassssses 69
6.1 EXPERIENCES IN PHYSICS-BASED APPROACHES ..covvemivveiecreeeeiiiinnnn. 69
6.2 FUTURE WORK ..ottt ettt v et s et e s a e raaesranns 71

REFERENCES ... oeeeeteceireeerensssscosereseressesssssnssssssesesssssssssssssssssasssnnanansssnsnsns 72

vii

LIST OF FIGURES

FIGURE 2-1 BOUNDING BOX OF A BALLcooiiiiiiiiiiiciin e 5
FIGURE 2-2 BALL BOUNCE FROM THE GROUNDccccutemiiiiniieniieenneeenneene 7
FIGURE 2-3 SQUASH COURT ..covtiiiiriienieniieeiee ettt 8
FIGURE 3-1 TRAPEZOID MESH.....cciviiiiiiiinicnete ettt 15
FIGURE 3-2 TRIANGLE MESHccuiiiiiiiiniiiniec ettt 15
FIGURE 3-3 BALL’S CONSTRUCTION ...ccovoutemiieiiiiteenreeennteeieresnesesnneseieas 17
FIGURE 3-4 NEWELL'S ALGORITHM....uttivuieriiieeiiieeiiteennteesieeeeeieeessiie e 19
FIGURE 3-5 A PATCH OF SPRING MESH.....cccctevuiiniieieinienieenresnee e 20
FIGURE 3-6 SPRING FORCEcccooiiiiiiiiiiieecceneeeee e 22
FIGURE 3-7 PRESSURE AT POINT P ..oooiiiiiiiii e 28
FIGURE 3-8 CONVEX SURFACEccovitttiiiteeniieenireeetreeeiteeeeeeesieee e eeree e 29
FIGURE 3-9 CONCAVE SURFACE......ccccitttemiteeniienaitteeeiteesereesiteesssees e 30
FIGURE 3-10 ONE POINT DISPLACEMENTceoitiiiiienirenireeeeeeeeseeeeree e 33
FIGURE 4-1 MATN WINDOW ...corvtiiiiiieniiieieeiiiere et sere st sne e eesneenens 35
FIGURE 4-2 SQUASH COURT AT TOP VIEW ...coouiiiiiiiiiiiieeeeceecce e 38
FIGURE 4-3 GLUI WINDOWS WITHIN MAIN WINDOWcccoivirieeiiieanens 39
FIGURE 4-4 BALL MESH FRAME......coooiiiiiiiiiiiiiii et 40
FIGURE 4-5 BALL PROPERTIESottiiiiiiieiicnniiee et eircs e s e 40
FIGURE 4-6 HEIGHT CONTROL «..couvviiiiiiriicnieeeiiee et 40
FIGURE 4-7 RACQUET PROPERTIES.....cccouttiiiiiiiiiiiiiniieeeieeeeee e 41
FIGURE 4-8 RESULTS OQUTPUT ...ccirutttiiiiiiieniiiee ittt e 42

viii

FIGURE 4-9 ROTATION AND TRANSLATION CONTROLS oovveiiiievieieeeivinaeees 44

FIGURE 4-10 SCALE SPINNERoottritieiirtienitee ettt e et e ebee s s sseeesieessanee e 44
FIGURE 4-11 LIGHT INTENSITY SPINNER ...ccoouiiiiiiiiiniieniciiee e 45
FIGURE 4-12 AMBIENT LIGHT ... vviiiiiiiiiiieeeec et 46
FIGURE 4-13 LIGHTING EFFECT WITHOUT NORMALS ...oovvuiriiiienienriennnns 46
FIGURE 4-14 LIGHTING EFFECT WITH NORMALS....cccccceiviiiniiiiiiinieniienans 47
FIGURE 4-15 THE GROUP OF BUTTONScceiiiiiiiitiniieeeiee et 47
FIGURE 4-16 TWO POLES OF THE SQUASH BALL ...ccoooiiniiiiniciicieeee, 50
FIGURE 4-17 ENABLE AND DISABLE CONTROLS......coteviirieenieienerennerenane 51
FIGURE 4-18 SQUASH RACQUET ...uviteeeee e 52
FIGURE 5-1 RACQUET IMPACTING BALLocoviiiiiiiiiiiiiieccece e 59
FIGURE 5-2 BALL HITTING WALL oottt 61
FIGURE 5-3 RESULTS UNDER DIFFERENT PRESSUREScccceceveuerenieerieeenne 62
FIGURE 5-4 RESULTS WITH DIFFERENT DAMPINGccoociiniiiniiiinieeenneeens 63
FIGURE 5-5 RESULT WITH DIFFERENT RACQUET SPEEDccovceivnreeenneens 64
FIGURE 5-6 RESULT WITH DIFFERENT RACQUET DWELL TIME 65
FIGURE 5-7 INITIAL WINDOW OF BALL DROPPING SIMULATIONcc..c.... 66
FIGURE 5-8 BALL HITTING FLOORccciiiiiiiiiiiiiiceecceececeeee e 67
FIGURE 5-9 RESULTS WITH DIFFERENT DROP HEIGHTcooviiiiiiiiiiicinnen, 68

1. Introduction

In this thesis, we describe a 3D simulation of a squash game coded using OpenGL
and C++. The thesis focuses on the changing shape of the squash ball rather than the
complete game. The goal of the research of this project is to simulate the behavior of
a squash ball and to visualize the simulation by means of physical calculations using

object-oriented technique with OpenGL.

1.1 Motivation

In the 3D graphics world, deformation physics is applied widely. It is an advanced
technique needed to create a realistic 3D graphic environment. This project is
concerned with modeling a physics-based squash ball and providing controls that

enable the user to interact with the simulation.

1.2 Thesis Outline

The organization of this thesis is as follows. The second chapter generally introduces
related work and technical background including OpenGL fundamentals. The third
chapter focuses on the design methods, physics-based modeling, as well as physical
theories and computations. The fourth chapter describes the implementation in
details, including class definitions, GLUI (GLUT-Based User Interface library)

controls and solutions to some problems. The fifth chapter reports some experimental

results and analyzes the results. The last chapter concludes with successes and

limitations of this project and suggestions for future work.

2. Background

In this chapter, we describe squash games, related work and basic technical

background of this project.

2.1 Related Work

There are two kinds of objects in ball game simulations: rigid and deformable.
Deformable objects are harder to simulate than rigid ones. For some games such as
billiards and pool, the balls are so hard that their deformation can be ignored; while
for others such as squash, the deformation of the balls are good to be simulated.
Squash is one of a large family of games in which an elastic ball is struck with an

implement. This family includes basketball, racquetball, squash, and so on.

2.1.1 Bouncing Ball Simulations

In this section, we introduce some research and work in deformable ball simulations.

2.1.1.1 Air-filled Ball
When a ball bounces on the court, its speed, acceleration, and form change. M. James
Bridge used a 2D Java applet to simulate the bounce of an air-filled ball, like a

basketball [13][14]. The program demonstrates how the drop height, which is

proportional to the impact velocity and pressure, influences the response of the ball
after it impacts the ground. This project is limited in two ways. First, the part of the
ball not in contact with the ground remains spherical, whereas a real ball distorts
under its own weight and momentum. Second, the ball does not oscillate after impact
because the applet does not model the ball's elasticity. In the real world, this part of
ball also squeezes in and rebounds out. A racquetball’s behavior is similar to a

basketball’s, but racquetballs are softer and therefore more deformable.

2.1.1.2 Pressure Soft Ball

Maciej Matyka implemented a 2D pressure softball model using OpenGL [15]. His
paper “How to implement a pressure soft body model” contains detailed description
of how to start the simplest program for simulation of soft bodies [15]. He explained
spring force and damping force calculation using Hooke’s law, which we will see

again in section 3.2.

In another paper, “Pressure model of softball simulation” [16], Matyka introduced a
common technique for calculation of soft objects volume - bounding volume: simply
define the maximum and minimum positions in X and Y directions of all body points,
the bounding box (rectangle in two dimensions) gives first approximation of the body

volume.

FIGURE 2-1 BOUNDING BOX OF A BALL
As shown in figure 2-1, the bounding box can be an approximation of the ball.
Bounding volumes are not very accurate. They can be used for general volume
changes, while we need more precise volume for pressure calculation, which we will

describe in section 3.3.

2.1.1.3 3D Deformable Ball Simulation

Recently, Jessica Fitch and J. Reed Walker posted their work “Deformable ball
simulation”, developed using OpenGL [17]. They used point cloud presentation, a
3D modeling technique to generate a 3D ball. They used the principle of linear
impulse and momentum to get the contact force; then, calculated the displacement of
the ball. They assumed the volume is preserved during the deformation, so they
applied an algorithm to distribute the volume difference to per visible slice of the ball.

In reality, volume does change during deformation.

2.1.2 Deformable Models

In this section, we introduced some previous work on deformable modeling suitable

for animating flexible objects.

Demetri Terzopoulos, John Platt, Alan Barr and Kurt Fleischer described how to
model elasticity deformable materials such as rubber in their paper “Elastically
deformable models” [18]. They employed elasticity theory to construct differential
equations that model the behavior of non-rigid curves, surfaces, and solids as a
function of time. They described active elastically deformable models: they respond
in a natural way to applied forces, constraints, ambient media, and impenetrable

obstacles.

In another article, “Dynamic deformation of solid primitives with constraints” [19],
Demetri Terzopoulos developed a systematic approach to deriving dynamic models
from parametrically defined solid primitives, global geometric deformations, and
local finite element deformations. Even though their kinematics is stylized by the
particular solid primitive used, the models behave in a physically correct way with

prescribed mass distributions and elasticities.

Kazuya G. Kobayashi and Katsutoshi Ootsubo described a method of free-form
deformation in their paper “t -FFD: free-form deformation by using triangular mesh”

[20]. An original shape of large-scale polygonal mesh or point-cloud is deformed by

using a control mesh, which is constituted of a set of triangles with arbitrary topology
and geometry, including the cases of disconnection or self-intersection. This method
works on a simple mapping mechanism. First, each point of the original shape is
parameterized by the local coordinate system on each triangle of the control mesh.
After modifying the control mesh, the point is mapped according to each modified
triangle. Finally, the mapped locations are blended as a new position of the original

point, then a smoothly deformed shape is achieved.

2.1.3 Racquetball Bounce

We cannot see the distortion of a racquetball accurately, while a special high-speed
camera can. Figure 2-2 shows the gradual deformation of a racquetball hit the ground
and rebound. These video clips were taken via high-speed camera. It takes time to
rebound back to the original round shape and constant speed because of the resilient
and damping factors of the material. The two scenarios in this project - the racquet
hitting the ball then the ball rebounding from the front wall, and the ball dropping

then rebounding from the floor, imitate these motions in the real world.

FIGURE 2-2 BALL BOUNCE FROM THE GROUND

2.2 Squash Overview

Compared with a racquetball, a squash ball is smaller and less bouncy. The diameter

of the ball, measured perpendicular to the seam, must be between 39.5mm and

40.5mm [10]. The diameter of the squash ball in this project is 40 mm, a bit less than

2 inches. This project demonstrates a standard single court with the following

dimensions [9]:

Length Width
Court | 9.754m (=32 feet) | 6.402m (=21 feet)
Height
Front Wall | 4.572m (= 15 feet)
Back Wall | 2.134m (= 7 feet)
T iy
ff ?ﬂ
/ E ,
S - 2 \\
& o .,
/ §¢
4 ST —— A

FIGURE 2-3 SQUASH COURT

Since the purpose of the simulation is to show the deformation of the ball, the
program exaggerates the size of the ball and the racquet, and renders the walls of the
court transparently. The second effect is actually realistic, because U.S. and English
open squash matches are played in transparent courts so that the audience can see the

action.

2.3 Technical Background

Before discussing the design of this project, we review OpenGL fundamentals,

Object-Oriented Programming and the relation between graphics and physics.

2.3.1 3D Graphics Concepts

OpenGL consists of two libraries: the Graphics Library (GL), the Graphics Library
Utilities (GLU). The OpenGL Utility Toolkit (GLUT) implements a simple window

application programming interface (API) for OpenGL.

GLUT provides the functionality necessary to transfer the OpenGL frame buffer to a
window on the screen. GLUT programs are platform-independent: a GLUT program
can be compiled and run on a unix workstation, a PC running Windows, or a Mac,

with substantially the same results [1].

2.3.1.1 Modeling Transformations

We present an entire squash court. A user may rotate, translate and scale the whole
scene to get the best visual effects. These operations use modeling transformations.
Modeling transformations change the coordinates of a point from (xo, yo, Zo) to (X, V,

z). The common kinds of modeling transformations are [1]:

Translation: x=%Xg+a

y=Yotb
z=zp+cC
Scaling: X =TXg
Y=8%o
Zz=12z
Rotation: X = X(€0s 6 - yo sind

y = X sind + yy cos6
Z=12
(This is a rotation about the Z-axis. Equations for rotations about the other axes are

similar.)

By using homogeneous coordinates, we can use matrices to represent all three kinds

of transformation. 4 x 4 matrices are required for these 3D transformations.

10

The OpenGL commands for these transformations are glTranslate(), glRotate(), and
glScale(). All these commands generate equivalent translation, rotation and scaling

matrices; then these matrices are multiplied with the current matrix.

2.3.1.2 Viewing Transformations

A viewing transformation locates and changes orientation of the viewport, and
positions the camera at the origin. To achieve the complete scene or partial scene in a
final picture, the camera and the model must be separated. The program can do this
by applying a transformation that moves the camera away from the model. For every
such transformation, there is a corresponding inverse transformation that moves the
model. Thus, modeling transformations and camera transformations are

complementary [2].

To construct a viewing transformation, we can also use gluLookAt (). This routine
simulates “looking at” the scene by defining the camera or eyes position and direction
towards the scene. glulLookAt () is useful because it constructs a transformation that
is hard to compute. Without it, you have to translate away from the model, rotate to
get a particular point at the center of the image, and then twist to get the ‘up’ vector

vertical.

11

2.3.2 Object-Oriented Language

C++ is an object-oriented Language used widely in 3D objects design and
implementation. In Object-Oriented programming (OOP), objects represent real-
world objects with the properties we choose to manipulate. There are a lot of
advantages using OOP in this project:

e The encapsulation mechanism keeps the data private.

e It makes easier to build up models, organize and expand the system.

e The code is concise, readable, and easier to write.

OpenGL is a C Application Programming Interface (API). Using OOP techniques,
we build classes that call the basic GL functions. These classes are described in

chapter 3.

2.3.3 Physical Environment

As computational power increases, users and applications are demanding increasing
levels of realism in these domains. This trend is particularly apparent in computer
graphics where more sophisticated geometric shapes and physical objects are being
modeled in the context of complex physical environments. In particular, the ability to

model and manipulate deformable objects is essential to many applications [4].

12

2.3.3.1 Physics-based Modeling
Physics-based technique is based on continuum mechanics. It involves the effects of
material properties, external and internal forces, and environmental constraints on

objects.

We simulate a squash ball deformation in the following physical environment:
e Material — synthetic materials mixed with rubber, modeled using mass-spring
¢ Internal force — spring force, inside pressure

e External force — racquet impact force, gravitational force, air resistance

Another modeling technique, non-physics technique, uses purely geometric
technique: individual or group of control points or shape parameters are manually
adjusted for shape editing and design. Non-physics technique relies on the skill of the
designer rather than on physical principles. Using Non-physics technique,
deformation needs to be explicitly specified and the system has no knowledge about

the nature of the objects being manipulated.

Compared with non-physics methods, physics methods are free from the limitation
from the user’s expertise. Assisted with geometry technique, physical principles and
processes make it possible to compute the shapes and motions of deformation objects.
In chapter 3, we describe what physical principles and how these physical principles

are applied in this project.

13

2.3.3.2 Approximation of Graphics

Graphics is all approximation and illusion. Even with fast, modern processors, we
cannot hope to simulate accurately every molecule of real objects. So we have to find
approximations that don't take too long to compute. In graphics, what matters is the

appearance.

14

3. Design

In this chapter, we describe how to create a 3D ball, define some physics laws and
formulas applied in this project as well as related dynamic calculations, and explain

the main classes.

3.1 3D Model

In 3D games design, balls are composed by several patches as polygons; they are

triangles, trapezoids, pentagons, etc. These polygons can be used uniquely or jointly.

FIGURE 3-1 TRAPEZOID MESH FIGURE 3-2 TRIANGLE MESH

The following table shows the difference between a triangle mesh and a trapezoid

mesh in various aspects:

15

- Triangle Mesh

Each vertex connects 5 or 6 edges.

Trapezoid Mesh

Each vertex connects 4 edges. Fewer

edges stmplifies spring force and normal

calculations on each vertex.

It is not completely symmetrical:

triangles have different size (smaller
triangles are used where more details are

needed). It is harder to construct.

It is simpler to construct a sphere using
trapezoids: it is easy to find points on the
latitudes and longitudes of a sphere; four

adjacent points enclose a trapezoid.

It is close to symmetry and it is easy to

render.

It ts harder to render than triangles
because trapezoids consist of four edges

while triangles consist of three edges.

Triangles always lie in a plane.

Trapezoids may not lie in a plane.

3.1.1 Ball Frame

Similar to a globe divided in latitudes and longitudes, the surface of the simulated ball

is divided into a number of horizontal rings with radius w and height z (called stacks

in this project) and vertical equal rings that pass two poles (called slices in this

projects).

16

¢
S—

TR T
P
Lo
w—wm—?’t"‘«""‘ww

i

1

1

|

I

I

I

I

>,
o, W e
R T

FIGURE 3-3 BALL’S CONSTRUCTION

As shown in figure 3-3, two adjacent slices and stacks enclose one trapezoid. There
is a special case for two poles: the two rounds of patches around two poles are
composed by triangles. Connected on two adjacent vertices on the same horizontal
ring to the center of the ball, the angles ¢ are equal on all horizontal rings; the same
is true for two adjacent vertices on the same vertical ring. Thus, given the radius,
number of slices, and number of stacks, we can build a 3D ball using sine and cosine
functions. Simultaneously, we store the positions of all the vertices in a two-

dimensional array of stacks and slices for later normal vectors and dynamic

computing.

17

The initial position of point P on the surface of the ball is (figure 3-3):
X =1 cos ¢ cos 0
y=r1sin @
Z=T1Cc0S ¢ sin 0

With0 <o <n, 0<0<2n.

To obtain discrete points, we assume N is the number of stacks and M is the number
of slices,use1=0,1,2...,Nandj=0,1,2..., M-1, then:
¢o=1in/N

0=2jn/M

3.1.2 Normal Vectors

A surface normal at a point on a surface is a vector orthogonal to the tangent plane at
that point. By default, OpenGL assumes that the vector is a unit vector for lighting

calculations, which is why it is best to use unit normals.

In this project, a squash ball is constructed of many small trapezoids whose edges are
lines of latitude and longitude. We use average normals at the vertices, and OpenGL
will interpolate colors across the trapezoids, giving the illusion of a curved surface.

Newell's formula (figure 3-4) is a simple and robust way to compute the normal to a

polygon since it takes all vertices into consideration. Newell’s algorithm [3] is exact

18

if the points lie in a plane. It is also useful for curved surfaces due to the fact that it
gives a good approximation even if the points are not exactly coplanar. In this project,
Newell's formula is used to calculate the changing normals of points on the surface of

the squash ball when it deforms.

N1
Ny = Z (i — H{s+41) mod Nj}}[gi + Z((i+1) mod Nj}

t it

A1

Ny = 3 (5 = 2((s41) mod 3))(Es + Z((i41) mod &)
f=0
N-1

N, = Z (i — T((ir1) moa 3)) (B + Ygs41) mod &)

fumfd

FIGURE 3-4 NEWELL'S ALGORITHM

3.1.3 Spring Mesh

“Mass-spring model is a physics-based technique that has been used effectively for
deformable objects” [4]. In order to model a squash ball deformation, the surface of a
squash ball is modeled as point masses connected by springs in a lattice structure

(figure 3-1).

19

Each point on surface joins four neighbor springs. The neighbors of P [i, j], in
counterclockwise order are (figure 3-5), where1=0,1,2...,Nandj=0,1,2. ..,
M-1, N is number of stacks and M is number of slices, then:

P1=PJi-1,]]

P2=P[i,j-1]

P3 =P [i+1,)]

P4=P[i,j+1]

pd

FIGURE 3-5 A PATCH OF SPRING MESH

If j =0, use M-1 instead of j -1.

If j = M-1, use 0 instead of j +1.

There are some special cases:
¢ Most points have four neighbors. For the points near the two poles (i = 1 and
1 = N-1), one of their neighbors is the pole.

e Each pole has M neighbors.

20

At each point P [i, j], there is a normal vector n [i, j]. The normal can be calculated

applying Newell’s formula [3] to the point and its neighbors.

3.2 Dynamics

This section is focused on variety of quantities including force, acceleration, velocity
and displacement, dynamic equations, and Newton’s laws, which are used in
describing the motion of a squash ball. All the quantities are represented by 3D
vectors, which have both magnitude and direction. All the mathematical operations

on these quantities are performed with or upon vectors.

3.2.1 Forces

A force is a push or pull acting upon an object as a result of its interaction with
another object [6]. There are a variety of types of forces functioning on a squash ball:

spring force, gravitational force, applied force, and air resistance.

3.2.1.1 Spring Force

The spring force is the force that results when a spring is compressed or stretched.
Hooke’s spring law determines the forces acting on two particles connected by a
spring. Each spring has a rest length. If the spring length is greater than this length

then the force acts to pull the two particles together; if the spring length is less than

21

the rest length then the force acts to repel the two particles. “For most springs, the
magnitude of the force is directly proportional to the amount of stretch or

compression” [6].

In this project, each spring has a natural length that is computed when the points lie
on the undistorted ball. We write natleny for the natural length and actleny for the
actual length of spring k. A spring produces equal and opposite forces on the points
at its ends. Suppose spring S joins points P and Q, and u is the unit vector in the
direction PQ (figure 3-6). Then:

ForceonP=Fu

Force on Q =-F;u
Where Fs = K (natleny - actlenyy K is the spring coefficient (also called spring

constant), the stiffness of the spring.

P R natleny . Q
P actleny Q P actleny Q
ForceonP ——>» ¢
—_—
Forccon Q «—— Force on P Force on Q
Case 1: compressed Case 2: stretched

FIGURE 3-6 SPRING FORCE

22

Here is what should happen: initially, the spring forces should be zero because the
springs are all at their natural length. If the excess pressure inside the ball is zero
(pressure is explained in section 3.3) and the ball does not impact any objects, the ball
should not deform. There are two aspects causing spring mesh to compress and
stretch:
e Pressure - If the excess pressure inside the ball is positive, the ball should
expand until the spring forces counteract the pressure. After expanding, it will
contract again. In fact, it will continue oscillating forever if the system is

undamped.

e Obstacles - When the ball hits the racquet, floor, and wall of the court, the
impacting springs will be stretched or compressed from their equilibrium

positions and influence all connecting springs.

3.2.1.2 Damping

Damping is the amount of energy absorbed by the spring as it bounces. Damping is
necessary so that the spring doesn't keep oscillating forever. Damping can be
modeled as force acting in the opposite direction to the velocity: Fg = - K4 v, where

Kqis the damping constant.

The spring damping force depends on the difference in velocity of the two end points.

Both of the spring and the damping forces act along the line defined by the two end

23

points. Given two end points a and b conntected by a spring, according Hooke’s

spring law, the force on point a is given by [5]:

f=-lKo(||xa=Xp |- 1) +ky(Va vp). 2" X0 } 2" Xp_
{ ‘ [xa=xo]] [Pxa=xs]

Where Xa and Xb are the positions of particles a and b, Va and Vb are the velocities
of a and b, and r is the rest length between a and b. We have already discussed the
part “Ks (|| Xa-Xsl| - 1)”, the spring force, in section 3.2.1.1. The other part “K4 (Va-

V) * (Xa=Xb)/ (]| Xa-Xb |)” 1s the damping force between two particles.

Since the squash ball is composed of a mass-spring mesh, for each point, the
differences in the velocities of all four adjacent points should be considered for
damping force calculation:
Fqo=-Kq (V[i,j] -V [it1,]])
+(VIL,jl-VI[i-1,3D
+(VILj]I-VIij-1D
+(V [, j]-V[i,j+1])
V [i, j] is the velocity of point P [i, j], and V [i+1, 3], V [i-1,j], V [1, j-1], V [i, j+1] are

velocities of its four neighbor points.

24

3.2.1.3 Gravity

The force of gravity accelerates the squash ball when it drops towards the floor and
decelerates 1t when it rebounds upwards. Weight is the force generated by the
gravitational attraction of the earth on any object. By definition, weight is the mass
of an object times the gravitational acceleration:

F,=mg

Where m is the mass of the object and g ~ 9.8 m/s” is the acceleration due to gravity.

3.2.1.4 Applied Force

An applied force is a force that is applied to an object by a person or another object
[6]. When a player serves, the translated force from the player due to impact acting

upon the squash ball is an applied force.

Momentum can be defined as “mass in motion” [7]. It is the product of the object's
mass m and velocity v, or mv. A force acting for a given amount of time will change
an object's momentum [7]. The equation can be written as a consequence of
Newton's second law (explained in 4.2.2.2):

FAt=m Av

The following shows how this equation is derived from the Newton's second law:
Newton’s Second Law says that force is mass times acceleration: F = ma.

Acceleration a is the rate of change of velocity: a = dv/dt. For a small interval of time

25

At, we can assume that dv/dt = Av/At, where Av is the amount by which v changes

during the interval At. Consequently: F = mAv/At, and therefore FAt = m Av.

When the racquet hits the ball, it squeezes the ball with the depth proportional to the
speed of the racquet, which makes the ball deform. The impact force acting on the
ball is proportional to the speed of racquet. Thus, the velocity change of the ball is
proportional to the impact time (dwell time) T and the speed of racquet:

EMAV)=K Viaq T
Where ¥ means the sum of the products of the mass and velocity of each point on the
surface of the ball, m is the mass and AV is the velocity change of each point, Vi, is

the speed of the racquet, T is the impact time, and k is an experimental coefficient.

3.2.1.5 Other Forces

Some forces are frequently neglected due to their negligible magnitudes such as air
resistance force. The air resistance is a special type of frictional force that acts upon
objects as they travel through the air. Like all frictional forces, the force of air
resistance always opposes the motion of the object [6]. Air resistance force is

proportional to the square of the speed times the frontal area of the object.

26

3.2.2 Newton’s Laws of Motion

Newton’s first and second laws of motion are applied in this project. The equation of
Newton’s laws: a = XF/ m is used in this project to calculate the displacement of the
ball, where XF is the sum of all the forces acting on each point, and m is the mass of

each point.

By definition, velocity is the integral of acceleration over time:

v = Jadt (1)
If the acceleration is constant, we can evaluate the integral in (1), obtaining

v=at+C (2)
Where C is the constant of integration. Assuming that v = vy when t =0, (2)
simplifies to

v=vptat 3)
However, in this application, the acceleration is in general not constant. We assume
that it is approximately constant during a short interval At. Assume that the velocity
is v at the beginning of the interval and v +Av at the end of it, (3) gives

v +Av = v + aAt (4)
Cancel v on both sides in (3), we get

Av = aAt (5)

By definition, displacement p is the integral of velocity over time:

p=Jvdt (6)

27

Using the same method we derived from (1) to (5), we get

Ap =vAt (7

3.3 Pressure

When a squash ball hits the racket strings and the wall and floor of the court, some of
this energy is transformed into heat in the racquet strings, wall, floor, and surrounding
air and some into sound. However, most of it becomes heat in the ball itself [10].
“One of the effects is: the air inside the ball, which was originally at normal
atmospheric pressure, effectively becomes pressurized” [10]. The increase in
pressure occurs during impact with the racquet, wall and floor. The effect of the
pressure inside the ball at a point P is directed outwards, in the direction of the normal,
and depends on volume:
Fpressure = K, f (V) n

Where K, is the constant of pressure, V is the volume, f (V) is a function (explained
in 3.3.2) with V as input variable, and n is the normal at point P (figure 3-7).

n

FIGURE 3-7 PRESSURE AT POINT P

28

3.3.1 Volume

Volume V equals 4/3 7 r’ when a squash ball is not only stable and but also spherical,
where r is the nature radius of the ball. Once the ball deforms, the distances between
points on the surface and the center of the ball are different so we need an

approximate method to calculate the volume.

One approximate calculation is to divide the ball into thin disks of horizontal rings (as

shown in figure 3-3); see the 2D orthogonal surface in figure 3-8.

FIGURE 3-8 CONVEX SURFACE

The approximate volume is equal to the sum of the volumes of all the disks:

V=3 (nr’h)

Due to the different speed of each point on the surface of the ball during the
deformation, it may happen that the surface of the ball becomes concave at one of the
poles, as shown in Figure 3-9, which shows a 2D projection of a ball that has become

concave at one pole.

29

Disk j P1 Disk 1
SouZ.
equator

/

Disk K

d4

dl

d3 d2

FIGURE 3-9 CONCAVE SURFACE

As shown in figure 3-9, there are 3 kinds of disks:
e Disk k: should be counted entirely.
e Disk j: should be counted except the middle disk i, which is the exterior of the
ball.

e Disk i: should not be counted.

In the other words, disk j subtracting disk i forms an annulus (the patched part in

figure 3-9), and it is the area of this annulus that we need.

So, how do we tell whether the disk should be added or subtracted in the volume

calculation?

30

Let’s start from the concave pole: we meet pl, p2, p3 and p4 in order, and we meet
disk i before disk j. We should consider the two points on the same side of the disk in
the concave orthogonal surface:

If the distance from Pi to the equator is shorter than the distance Pi+1 to the equator,
this disk is outside the ball. As shown in figure 3-9, disk i (the patched part) is

outside the ball because d1 <d2.

On the other hand, if the distance from Pi to the equator is longer than the distance
Pi+1 to the equator, this disk is inside the ball. As shown in figure 3-9, disk j is
inside the ball because d3 > d4 (d3 = d2, d4 = d1). We don’t have to worry about the

middle disk which is outside the ball because it is already subtracted as disk i before.

3.3.2 Pressure Calculation

When a gas expands or contracts slowly enough for its temperature to change, it
obeys Boyle’s Law, PV = constant. When the expansion or contraction is too fast to
allow heat to enter or leave the system, the gas obeys the Adiabatic Gas Law (ADL),

PV = constant, where vy, the gas constant, depends on the gas.

The motion of a squash ball is very fast. Nevertheless, the ball does gain heat during
repeated collisions, and its pressure goes up. On a millisecond timescale the
compression of the air will be adiabatic, so the pressure increase can be calculated

from the standard relation of ADL:

31

PV'=K ()
Where K 1s a constant. If the pressure changes to P +AP and the volume changes to V
+AV, (1) gives:
(P +AP)(V +AV) " =K

Therefore:

(P +AP)(V +AV)'=PV" 2)
Dividing both sides by (V+AV)"in (2) gives:

P+AP=P V'/ (V+AV)' (3)
Subtracting P from both sides in (3) gives:

AP=P V7/(V+AV)'-P 4)
Rewriting (4), we get

AP=P (V'/(V+AV)'-1) (5)
Assume P g is the atmosphere pressure and V is the original volume when the ball is
stable before any impact, we get:

AP=Po (Vo' / (Vo+AV)"-1) (6)
Since V¢+AV is the changed volume of ball, let’s say V', we get AP, the increased
pressure inside the ball, which exerts force on the surface of the ball:

AP=Py (Vo'/ V' 7-1) (7
Rewrite (7), we get:

AP =P, (Vo/ V')"-1) (8)

For air, y= 1.4.

32

3.4 One Point Simulation

In this section, we analyze a simulation of one point displacement, using all the forces
discussed above: one patch of the spring mesh — one moveable point p and fixed

neighbor points pl, p2, p3 and p4, as shown in figure 3-10.

p4

FIGURE 3-10 ONE POINT DISPLACEMENT

Here is what should happen for point p:

e Initially, point p is still because all the springs are at their natural lengths and
there is no spring force.

e Displace point p front its initial position.

e Then calculate the spring force upon point p from four connecting neighbors
pl, p2, p3 and p4, the acceleration, the velocity and the changing position of
point p.

e If the simulation works, point p should move back to its equilibrium position,

keep going to its maximum, then move back to its equilibrium position again.

33

e To stop the continuous circular motion, damping force is added on point p, so
p will be slow down, the “circle” will get smaller, and p will stop at its initial

position after a while.

This simulation was tested using C++, and it works well. Now we apply this
simulation to the ball, allowing all the points on the surface of the ball to move, and

adding the pressure force on all points.

Now to simulate the scenario of the ball hitting the wall:

e Putthe wall at x =0.

e Position the ball so that all points have positive x coordinates.

o Initialize the velocities of all points to (-v, 0, 0), so that the ball is moving
towards the wall.

o In the computation, restrict x coordinates to positive values:
If x += v At would make x <0, set x = 0.
If x = 0, the point remains “stuck” to the wall.

When x > 0, the point starts moving back.

34

4. Implementation

This project is implemented using C++ and OpenGL, with assistance from Concordia
University Graphics Library (CUGL) [11] and GLUI User Interface Library [12]
(described in section 4.3). CUGL provides a selection of class abstractions such as

“point” and “vector” that speed up the development of this project.

There are two simulations implemented in this project
e The racquet hitting the ball and the ball rebounding from the front wall.

e The ball dropping and rebounding from the ground.

The initial scenarios of the two simulations are almost identical, as shown in figure 4-

1. The difference is only that there is no racquet in the ball dropping simulation.

FIGURE 4-1 MAIN WINDOW

35

4.1 Class Definitions

There are four main classes to describe 3D objects in a squash court: ball, spring,

racquet, and court.

Ball Class - the ball class has private shape, position and dynamic attributes,
including:

e Number of stacks and number of slices.

e 2-D array of areas of all trapezoids on the surface.

e 2-D array of the combination forces of all points on the surface.

e 2-D array of springs (explained in 3.5.3) connecting to each point.

e 2-D array of accelerations of all points.

e 2-D array of velocities of all points.

e 2-D array of displacements of all points.

The ball class has public functions that are called in OpenGL functions, environment
setup functions, and user-control functions, including:

e Functions to initialize attributes of the ball.

e A function to calculate the changing volume of the ball.

e Functions to update the dynamic attributes of points on each unit time.

s A function to compute normals of points.

e A function to render the ball.

36

Racquet Class - as a 3D object, racquet class has shape, position and dynamic
attributes similar to the ball class. The racquet is assumed to be solid in this project so

the racquet does not contain any spring structure.

Spring Class - the spring Class consists of natural lengths of four connecting springs
of a mass point. Natural lengths are compared with actual lengths of the springs at

each time unit to get spring forces.

Court Class - the court class has measurements of a standard squash court. They are
used to render a squash court. In addition, they are the boundaries for a moving

squash ball.

4.2 Position Ball and Racquet

In order to show the ball close to the center of the viewport initially, the ball is
positioned right on top of the half court line and the short line of the court (the red
spot in figure 4-2), and the height to the ground is 1.5m, about 3 quarters of the height

of the back wall.

Since the distance from the racquet to the ball does not influence the movement and

deformation of the ball, the racquet is positioned right behind the ball (21.6mm from

the center of the ball) as shown in figure 4-3.

37

half court line short

line

FIGURE 4-2 SQUASH COURT AT ToP VIEW

4.3 GLUI Controls

GLUI is a GLUT-based C++ user interface library that provides controls such as
buttons, checkboxes, radio buttons, and spinners to OpenGL applications. It is
window-system independent, relying on GLUT to handle all system-dependent issues,

such as window and mouse management [12].

In this project, there are two GLUI windows - bottom window and side window

within the main window, as shown in figure 4-3.

38

FIGURE 4-3 GLUI WINDOWS WITHIN MAIN WINDOW

4.3.1 Side Window

The side GLUI window provides users with objects’ properties and options, real-time

results and keyboard controls.

39

4.3.1.1 Ball Properties

The ball can be rendered in two methods — either by filling or by mesh frame (figure

4-4), chosen by checking the checkbox “Meshframe” (figure 4-5).

FIGURE 4-4 BALL MESH FRAME

Users can see the differences in the deformation and the movement of the ball by

choosing different radius, inside pressure and damping coefficient (figure 4-5).

FIGURE 4-5 BALL PROPERTIES FIGURE 4-6 HEIGHT CONTROL
In the ball dropping simulation, there is a spinner control “Drop Height” (figure 4-6)

right below the ball properties control. The higher the ball is dropped from, the

40

higher the ball bounces and more the ball deforms. Real-time results output gives the

details of relevant data (described in 4.3.1.3).

4.3.1.2 Racquet Properties

In the racquet hitting the ball simulation, as mentioned in 3.2.1.4, the speed and
impact time of the racquet determines the velocity of the ball. Users can see how the
combination of velocity and dwell time (figure 4-7) acts on the ball. Users might like
to move away the racquet to focus on the ball movement chosen by checking the

checkbox “Hide Racquet”.

FIGURE 4-7 RACQUET PROPERTIES

4.3.1.3 Real-time Results output

The results output is based on the online Java applet that simulates the bounce of an
air-filled ball [14]. Figure 4-8 is the results output of the simulation that the ball is hit

by the racquet and bounces back from the front wall.

41

The top two values are the velocities of the ball before and after bouncing from the
front wall and the efficiency is the quotient of these two values. The footprint is the
maximum radius of the contact area. The contact time is counted from the moment

when the ball hits the front wall to the moment when it leaves the wall.

FIGURE 4-8 RESULTS OUTPUT

4.3.1.4 Keyboard controls
For convenience, a group of hot keys is used to operate the applications, which are
defined by GLUT callback function glutKeyboardFunc(). We show hotkey usage at
the bottom of the side GLUI window (figure 4-3) instead of using standard C++
function “cout “ to output it, so users can easily notice it.

e S/s-start the simulations

e Spacebar - step by step control of the simulations

e ESC - reset the simulations

e R /r- move the scene to the right

42

e L/1-move the scene to the left

e U/ u-move the scenec upwards

e D/ d - move the scene downwards

e M/ m - zoom in or zoom out the scene

o Left/ Right Arrows - rotate the scene around Z-axis
e Up/ Down Arrows - rotate the scene around X-axis

e PgUpDn - rotate the scene around Y-axis

4.3.2 Bottom Window

The bottom GLUI window provides users with rotation and translation controls, scale

control, light intensity control and some buttons.

4.3.2.1 Rotation and Translation

The rotation control displays as a checkboard-texture sphere (figure 4-9), which users
can manipulate directly. The current rotation of the control is passed to the
application as an array of 16 floats, representing a 4x4 rotation matrix. This array can
be passed to OpenGL directly to rotate an object, using the function glMultMatrix()

[12].

43

FIGURE 4-9 ROTATION AND TRANSLATION CONTROLS

Two types of translation controls - XY and Z translation controls and used in this
project (figure 4-9). Translation controls allow users to manipulate X, Y, and Z
values for the entire or part of scene chosen by clicking on and dragging on-screen

arrows.

4.3.2.2 Scale

Compared with the hotkey ‘M’ and ‘m’, Scale spinner provides continuous cycling
over a range of float-point values (figure 4-10), which are the inputs of function

glScaled ().

FIGURE 4-10 SCALE SPINNER

4.3.2.3 Lighting

It is hard to create the illusion of the real world without lighting. The OpenGL
lighting model consists of four components: ambient, diffuse, specular, and emitted.

These four components can work individually or jointly. A squash court needs to be

44

lit by some scattered lights. There are two lights - light0 and light1 “installed” on top

on the court. They are ambient and diffuse light sources:

// Initialize the lights

GlEnable (GL_LIGHTING);

GlEnable (GL_LIGHTO);

GlLighttv (GL_LIGHTO0, GL_POSITION, light0 pos);
GlLightfv (GL LIGHTO, GL. DIFFUSE, light diffuse);

GlLightfv (GL_LIGHTO0, GL_AMBIENT, light ambient);

GlEnable (GL_LIGHT1);
GlLightfv (GL_LIGHT1, GL_POSITION, light1_pos);
GlLightfv (GL_LIGHT1, GL_DIFFUSE, light_diffuse);

GlLightfv (GL_LIGHT1, GL_ AMBIENT, light_ambient);

OpenGL light sources can be turned on and off. Users can adjust the intensity of the

light (figure 4-11) gradually to animate the scene.

s
R

FIGURE 4-11 LIGHT INTENSITY SPINNER

45

From left to right, figure 4-12 shows the squash ball illuminated by the lights with

ambient value 0, 0.5 and 1.

FIGURE 4-12 AMBIENT LIGHT

As mentioned in 3.1.2, OpenGL needs to know the direction of the normals to
perform lighting calculations at each point of the surface that it is rendering. Figure
4-13 shows the ball illuminated without telling the normals and figure 4-14 shows the

ball illuminated with the normals.

FIGURE 4-13 LIGHTING EFFECT WITHOUT NORMALS

46

FIGURE 4-14 LIGHTING EFFECT WITH NORMALS

4.3.2.4 Buttons

As shown in figure 4-15, the first seven buttons issues the same actions as the relative

hotkeys, and the last button “quit” ends the applications.

FIGURE 4-15 THE GROUP OF BUTTONS

4.3.3 Window Management

GLUI provides a friendly user interface enable animated graphics with user

interaction.

47

4.3.3.1 Live Variables

GLUI associates live variables with most types of controls. Live variables are regular
C variables that are automatically updated whenever the user interacts with a GLUI
control. These variables make the GLUI interface transparent to the application. For

example:

checkbox1 = glui-> add_checkbox to panel ball panel, “Meshframe”, filledFlag);

The Boolean variable filledFlag will be automatically toggled between one and zero
whenever the user checks or unchecks the control. In result, the ball will be rendered
filled or meshed according the updated filledFlag in the GLUT display callback

function.

4.3.3.2 Callbacks

GLUI controls can generate callbacks when their values change. For example:

/[Create listbox of pressure

GLUI_ Listbox *list] = glui->add _listbox_to panel (ball panel, “Inside Pressure:”,
&curr_pressure_idx, PRESSURE ID, control cb);

Control_cb (int control id) is a callback function that will be called when the value of
curr_pressure idx is changed, and the control ID PRESSURE ID will be passed the

callback function as an input.

48

4.3.3.3 Synchronization

One new feature in GLUI version 2 is function sync live all() that automatically
synchronizes all live variables in all GLUI windows simultaneously. This function is

evoked in the GLUT idle callback function.

4.4 Problems and Solutions

Some problems and solutions during the implementation are described in this section.

4.4.1 Boundaries Check

The calculation of forces and displacements starts from the pole which first impacts
the racquet, the wall, and the floor because it is the first part to get distorted. As
shown in figure 4-16, the procedure of the simulation is:

e The racquet impacts polel and the ball moves forwards.

e Pole2 hits the front wall and the ball bounces back.

e Polel hits the back wall and the ball bounces back.

49

Back Wall Polel Pole2 Front Wall

FIGURE 4-16 TWO POLES OF THE SQUASH BALL

To distinguish the direction of the ball movement, some flags are set and reset by
checking boundaries, for instance: when the ball hits the front wall, the “hitFlag” that

indicates the ball and the wall impact will be set.

//Check the front wall boundary

if(tmpArr[0][0][0] >court.frontWallVer[0][0])

{
impactFlag =false;

hitFlag = true;

50

4.4.2 Conflicts of Controls

Some GLUI controls cannot be touched if some other controls are activated. For
example, if users click the “start” button to start a continuous simulation. The “step
by step” button should not be touched until the simulation finishes, and vise versa.
Therefore, to prevent a conflict, one button will be disabled when the other is

activated by using function GLUI_Control::disable(void).

Another example: the physical features of the ball should not allow to be changed
once the ball moves, whereas the ball can still be rendered either solid or frame. As

shown in figure 4-17, the radius, the pressure and the damping listboxes are disabled.

FIGURE 4-17 ENABLE AND DISABLE CONTROLS

4.4.3 Rendering Racquet

The left picture in figure 4-18 is a standard squash racquet. The frame of the racquet

is not a center-symmetric oval and the vertical strings of the racquet are not parailel.

51

Since the racquet is assumed solid in this project, the racquet is simply rendered as

the right picture in figure 4-18.

FIGURE 4-18 SQUASH RACQUET

4.5 Sample Code

In this section, we take the ball dropping on the ground as an example. We explain
one iteration in details, from forces to position calculations on vertex vec|i][j], where

i is the index of stacks and j is the index of slices.

//calculate actual lengths, velocity differences, and compress or stretch lengths
//between vec[i][j] and its four neighbors.

actlenl = vec[i][j]-vec[i][j-1];

It

veloffl = vel[i][j]-vel[i][j-1];

!

actoff] = spr[i]{j].natlenl - actlenl.length();

52

actlen2 = vec|i][j]-vec[i+1][j];
veloff2 = vel[i][j]-vel[i+1][j];

actoff2 = spr[i][j].natlen2 - actlen2.length();

actlen3 = vec[i][j]-vec[i][j+1];
veloff3 = vel[i][j]-vel[i][j+1];

actoff3 = spr[i][j].natlen3 - actlen3.length();

actlend = vec[i][j]-vec[i-1][j};
veloffd = vel[i][j]-vel[i-1][j];

actoff4 = spr[i][j].natlen4 - actlend.length();

//calculate the spring forces on vec[i][j]
f=fk *((actoffl * actlen1.unit() +actoff2 * actlen2.unit()

+actoff3 * actlen3.unit() +actoff4 * actlen4.unit()));

//add damping force on vec[i][j]

f - = damping *(veloffl + veloff2 + veloff3 + veloft4);

//add inside pressure if the volume excess is negative

if (curVol<defVol)

f += curPressure* area[i]*normalli][j];

53

//get the acceleration of vec([i][j], including gavity and air resistance accelerations
acc[i][j] =f / massVec +grav-fair *vel[i][j].unit()* vel[i][j].length()*

vel[i][j].length()* area[i]);

//get the velocity of vecli][j]

tmpVel[i][j] = area[i] *dt;

//get the position of vec|i][j]

tmpArr[i][j] += tmpVel[i][j] *dt;

//if vec]i][j] hits the ground, restrict y value of vec[i][j] to y value of the ground
if (tmpArr[i][j][1] < court.floorVer[0][1]){

tmpArrfi][j][1] = court.floorVer[0][1];

//record the maximum footprint
if (max_footprint< fabs(tmpArr[i][j][0]))

max_footprint = fabs(tmpArr[i][j][0]);}

//if vec][i][j] hits the ground, restrict the velocity on y direction of vec|i][j] to zero

if (tmpArr[i][j][1] = = court.floorVer[0][1])

tmpVel[i][j][1]= 0.0;

54

5. Results

In this chapter, we show some experimental results with a series of screen shots. We

explain how physical properties affect the motion of the ball according to the output

results. The following table lists the physical parameters we used:

Parameters Ball/Racquet impact Ball Dropping
spring constant 0.96 0.96
pressure constant 89 79
damping constant 0.6525 0.6525
racquet speed 0.2 not applicable
impact time 10 not applicable
gravity acceleration not applicable -0.0098

5.1 Simulation One - Ball /Racquet and Ball/Wall Impact

This section illustrates the two scenarios separately - the racquet hitting the ball and

the ball hitting the front wall.

55

5.1.1 Screen Shots

The following two groups of screen shots, which are the racquet impacting the ball
and the ball hitting the wall are taken under the default setting of the physical

environment as shown in figure 4-3 using “StepbyStep” button.

Figure 5-1 (figure 5.1.1 - 5.1.15) shows fifteen typical screen shots taken during the
sequence of the squash ball being impacted by the racquet, deforming, and moving

forwards.

e Figure5.1.1-5.1.3;

The left pole squeezes in towards the center of the ball due to the impact force.

g

===

o e e e e S B et St Bt

%ﬁ

i

i

i |
il

[@

hi

Figure 5.1.1 Figure 5.1.2 Figure 5.1.3

56

e Figure5.1.4-5.1.6;

The ball starts moving forward due to forces generated by the contracted

spring and to increasing pressure caused by decreasing volume.

Figure 5.1.4 Figure 5.1.5 Figure 5.1.6

e Figure 5.1.7-5.1.8:
The ball leaves the racquet. The springs are stretched so the poles are distorted

away from the centre of the ball.

Figure 5.1.7 Figure 5.1.8

57

e Figure5.1.9-5.1.12:

The ball keeps going. The springs pass their equilibrium position and start to

compress.

Figure 5.1.9 Figure 5.1.10

Figure 5.1.11 Figure 5.1.12

58

e Figure5.1.13-5.1.15:

The springs relax to its equilibrium position.

Figure 5.1.13 Figure 5.1.14 Figure 5.1.15

FIGURE 5-1 RACQUET IMPACTING BALL

Figure 5-2 (figure 5.2.1 - 5.2.13) shows the process of the squash ball hitting the wall
then bouncing back. The process of the deformation is similar to the ball impacting
the racquet. For an ideal visual effect, we use “Right” button and “TranXY” control
to move the front wall close to the middle of the view and make the two vertical

edges “stick” together from users’ view. See the white line in figure 5.2.1.

Figure 5.2.1 Figure 5.2.2 Figure 5.2.3

59

Figure 5.2.5 Figure 5.2.6

Figure 5.2.9 Figure 5.2.10

60

Figure 5.2.11 Figure 5.2.12 Figure 5.2.13

FIGURE 5-2 BALL HITTING WALL

5.1.2 Physical Environment Controls

We used a scenario in simulation one - the ball hitting the front wall and bouncing
back and the result output in the right GLUI window to analyze the physical
properties. The meanings of the data in output have been already described in section

4.3.1.3. We picked the velocity of the right pole to present the velocity of the ball:

Velocity (pole) before impact:

Recorded at the moment when the right pole impacts the front wall. Since the ball
has traveled half of the court after served by the racquet, the ball is almost in its
equilibrium form (figure 5.2.1) and the velocity of the right pole can represent the

velocity of the whole ball.

61

Velocity after (pole) impact:
Recorded at the moment when the left pole hits the back wall. After moving ball
from the front wall, the ball is almost in its equilibrium form so we still use the right

pole to sample the velocity of the ball.

5.1.2.1 Pressure

Figure 5-3 shows three results, with the corresponding pressure control above. All
the other controls are the default values. We can see that the bigger the inside
pressure constant is, the less kinematic energy (velocity) is dissipated during the

deformation.

FIGURE 5-3 RESULTS UNDER DIFFERENT PRESSURES

62

5.1.2.2 Damping

The property of damping enables an object to dissipate energy, usually by conversion
of kinetic energy into heat energy. Damping consumes mechanical energy from the
As shown in Figure 5-4, a small

system and attenuates vibrations more quickly.

difference in damping makes a large difference in efficiency, which is the quotient of

the velocities of the ball before and after bouncing from the front wall.

Damping
. MMNWMW
e : Efficiency
BRI
Damping Efficiency
1: 0.6525 92.1%
2: 0.6534 68.2%
3: 0.6536 60.8%
4: 0.6544 55.1%
5: 0.6549 49.6%
6: 0.6556 45.1%

FIGURE 5-4 RESULTS WITH DIFFERENT DAMPING

63

5.1.2.3 Impact Velocity and Dwell Time

As mentioned in 3.1.2.4, the velocity of the ball increases when the impact time and
the speed of the racquet increase. Figure 5-5 and figure 5-6 show the results when
changing dwell time or speed of the racquet. All the other physical properties remain

default values.

The velocity of the right pole of the ball when leaving the racquet is output in the

result panel.

FIGURE 5-5 RESULT WITH DIFFERENT RACQUET SPEED

64

FIGURE 5-6 RESULT WITH DIFFERENT RACQUET DWELL TIME

5.2 Simulation Two - Ball/Floor Impact

The initial picture of the ball dropping simulation (figure 5-7) is similar to the one of
the racquet/ball/wall simulation. The results output is similar to the output in the 2D
Java applet [14]. In the ball dropping simulation, the efficiency is the height of the

bounce compared to the drop height.

65

@Bunce of a Squash Ball

FIGURE 5-7 INITIAL WINDOW OF BALL DROPPING SIMULATION

5.2.1 Screen Shots

Figure 5-8 shows the process of the squash ball hitting the floor and rebounding
upwards. We use “TranXY” control to adjust the view, make the front and back

edges of the floor “stick™ together from users’ view.

66

FIGURE 5-8 BALL HITTING FLOOR

Compare the following video clips we show in section 2.1.3, our simulation is close

to the real ball bounce. Our ball squeezes inwards less when hitting the ground.

5.2.2 Drop Height

The "efficiency” in results output means the height of the bounce compared to the
drop height. We drop the ball from different heights to test this efficiency. The
results show that efficiency is proportional to the drop height, as shown is figure 5-9.
All the settings in these tests were the default values except the pressure for which we

chose 79.

FIGURE 5-9 RESULTS WITH DIFFERENT DROP HEIGHT

68

6. Conclusion

After discussing all the research, the technical aspects and development of this project,

we come to conclusions and some suggestions for future work of the project.

6.1 Experiences in Physics-based Approaches

Having reviewed our work, we can summarize some achievements and shortcomings

in applying physics-based approaches in this project:

Achievements:

We achieved in physics-based modeling, and physical-based calculation using
physical processes for realistic simulation of the motion of a deformable squashball,
which will be difficult to simulate with purely geometric techniques. We applied the
mass-spring system, a simple physical technique with well-understood dynamics for
modeling, and animated real-time with interaction. The results, the processes of the
deformation are very close to the shape changes of a real ball. It basically achieved
our goal. According to the results, we can say that physical-based methods are very
effective for 3D graphic computing. It gives a good approximation of a complicated

physical process.

69

The program is well encapsulated and concise because it hides the 3D details using

vector, point and related functions from CUGL.

Limitations:

In physics-based modeling, numbers present properties of objects in the real
physical word. We have seen many variables in chapter 3 such as the constant
of pressure K, Even if these numbers come from the physical experiments,
we need to test and adjust them with the equations of Newton’s laws for
computer simulations. Take mass-spring system for example: mass-spring
model is discrete. It is an approximation of the true physics that occurs in
continuous object. The proper values of the spring constants are not always

easy to derive from measured material properties.

One limitation of the physical calculation on the squash ball mesh in this
project is: all the force, velocity and displacement computations start from the
poles of the ball. In other words, the poles always impact the racquet, the wall
and the floor first. We can always rotate the ball before impact, and it will not

influence the animation result due to the symmetrical feature of the ball.

70

6.2 Future Work

In this last section, we describe some suggestions for future work.

Performance
We need to do research to locate the inefficiencies of the program in order to speed
up the motion of the ball. In addition, we could test the ball impacting the objects

from different directions.

Physical coefficients
Since physical coefficients are experimental values, we need to do more testing to get

better values.

Racquet

The racquet is this project is solid, so it is would be worthwhile to implement an
elastic racquet. It would be a considerably more complex to simulate a deformable
ball impacting an elastic racquet (spring lattice) for the reason that it is difficult to

find the contacting vertices.

Game Simulation

Beyond the scope of this project, it would be exciting and challenging to develop a

game-like user interface with players and score board.

71

References

OpenGL
[1]

[2]

[3]

Physics

[4]

[6]

Squash
[7]
(8]

Peter Grogono, Lecture Notes of COMP 6761 Advanced Computer
Graphics, Concordia University, 2002

Peter, Grogono, Getting Started with OpenGL, Concordia University,
2002

F.S.Hill, JR., Computer Graphics Using OpenGL, Prentice Hall,

second edition, 1990, p292

Sarah F.F. Gibson and Brain Mirtich, A Survey of Deformable
Modeling In Computer Graphics, Massachusetts, 1997
Paul Bourke, Particle System Example, February 1998,

http://astronomy.swin.edu.au/~pbourke/modelling/particle

Tom Henderson, The Physics Classroom, 1996-2004,

http://www.glenbrook.k12.il.us/gbssci/phys/Class/newtlaws/u2l1a.ht

ml

Racquet Research, 2002, http://www.racquetresearch.com

Slow-motion playback of racquetball shot and bounce,

72

http://www.engr.colostate.edu/~dga/high speed video/#Sports_Equip

ment

[9] World Squash Federation, http://www.squash.org/

[10] Squash Player, http://www.squashplayer.co.uk/

Source

[11] Concordia University Graphics Library, Concordia University, May
2004, http://www.cs.concordia.ca/~grogono/CUGL

[12] GLUI User Interface Library, version 2.2, November 2004,
http://www.nigels.com/glt/glui/

Related Work

[13] M. James Bridge, “The way balls really bounce”, Physics Education,
Issue 4, p.236-241, July 1998

[14] “The way balls bounce,” 2D simulation of the bounce of an air-filled
ball, http://www.xmas.demon.co.uk/physics.html

[15] Maciej Matyka, “How to implement a pressure soft body model”,
March 2004, http://panoramix.ift.uni.wroc.pl/~maa/soft2d/index.php,

[16] Maciej Matyka and Mark Ollila, “Pressure model of softball
simulation”, 2003

[17] Jessica Fitch and J. Reed Walker, “Deformable ball simulation”, April

2005, http://vorlon.cwru.edu/~jrw24/CG/Report.htm

73

[18]

[19]

[20]

Demetri Terzopoulos, John Platt, Alan Barr and Kurt Fleischer,
“Elastically deformable models”, Computer Graphics, volume 21,
number4, July 1987

Demetri Terzopoulos and Dimitri Metaxas, “Dynamic deformation of
solid primitives with constraints”, ACM SIGGRAPH Computer
Graphics, volume 26, issue 2, July 1992

Kazuya G. Kobayashi and Katsutoshi Ootsubo, “t -FFD: free-form
deformation by using triangular mesh”, Proceedings of the eighth

ACM symposium on Solid modeling and applications, 2003

74

